
II-141

ECCTD’01 - European Conference on Circuit Theory and Design, August 28-31, 2001, Espoo, Finland

Digital Standard Cell Library Migration Using A Genetic Approach

Kenneth Francken* and Georges Gielen*

Abstract—Digital standard cell libraries are a key element
in every modern VLSI design flow. The most important is-
sues are compactness and speed of the cells. Therefore, the
performance of these cells and their layout are individually
tuned. This job is not only complex, but also very time con-
suming considering the fact that this is mostly handcrafted
work. Ofcourse, this only needs to be done once for every
technology. But also in the case where multiple foundries
are used, or where different flavors of the same process are
used, a new optimized library is needed. Let us also keep
in mind that new and smaller feature size technologies are
continuously becoming available and that even ’older’ pro-
cesses get tweaked when new equipment is used to increase
performance. On the other hand, market pressure demands
quick product introductions. It would be beneficiary to have
very quickly access to a first version of the new library that
can still be tuned afterwards if the need arises. In order
to speed up the migration an automated approach is neces-
sary. We therefore present such a methodology for the stan-
dard cell sizing based on a genetic algorithm. Since we use
a SPICE–level circuit simulator, accurate results w.r.t. the
performance are guaranteed. The methodology has been
implemented in an easy to use tool with graphical user in-
terface. The description and evaluation statements of the
digital cells are standard SPICE netlists that are parameter-
ized.

I. I NTRODUCTION

In order to profit from the performance boost allowed by
newer technologies, digital standard cell designers need quick
access to a standard cell library for the new process to be used.
Since the library cells will be instantiated many times, great care
has to be taken w.r.t. their performance and their area. To en-
sure rapid availability of this library an automated approach –
as opposed to hand–crafted tweaking – for the library migration
seems unavoidable. In this paper we will present such an au-
tomated approach for the resizing part of digital standard cells
based on a genetic algorithm.

When dealing with circuit synthesis a classification can be
made between two common approaches [1]. A first class is
theknowledge–basedapproach. The main advantage here is the
computational speed. Drawbacks of this method are flexibility
and the time needed to develop the knowledge plan. Even if, for
our purposes, the topology is fixed and the design targets are in-
variable in type (not in value), the plan will never be applicable
in the same form for all types of technologies. Another possi-

∗Katholieke Universiteit Leuven,
Dept. of Electrical Engineering, ESAT-MICAS,
Kasteelpark Arenberg 10, B-3001 Leuven–Heverlee, Belgium.
E-mail:kenneth.francken@esat.kuleuven.ac.be ,
Tel: +32 (0)16 32 10 76, Fax: +32 (0)16 32 19 75.

ble disadvantage is that the accuracy is proportional to the com-
plexity of the plan. In a second class, theoptimization–based
approach, two subcategories can be found: equation–based op-
timization – which suffers from similar accuracy limitations –
and simulation–based optimization. The big advantages of the
latter are its flexibility and accuracy. It has the same accuracy
as the simulator normally used in hand–crafted sizing. Here an
optimizer iterates over simulations for different values of the de-
vice sizes to tune the cell’s performance. However, the penalty
clearly resides in the large CPU time usage. The continuous in-
crease in computing power alleviates this drawback partially. A
detailed overview of optimization techniques for digital circuits
can be found in [2].

Our approach is simulation–based and the algorithm guid-
ing the parameter selections is a differential–evolution genetic–
based program [3]. An efficient and easy–to–use GUI has been
written, enabling straightforward use of the tool. The netlist de-
scription of the cells is standard SPICE syntax and the specific
performances are also represented in each netlist as measured
variables. They are then automatically parsed by the tool. The
properties of both source and target technology are specified in
an ASCII configuration file. For the migration itself, a user can
choose that the performances in the target process can be kept
equal to those in the source process or they can be tuned by re-
laxing some specifications or making them more stringent. Of
course, in practice, one will set the specifications – mainly in
terms of delays – more stringent for the target technology. By
making the netlists parameterizable, our methodology can retar-
get the given cells quickly to any given technology.

The paper is organized as follows. In section II we discuss
how to input data of the source and target technologies, the cell
descriptions and some control options. In section III, the pro-
gram flow is then explained. In section IV an overview of the
tool interface is presented as well as two experiments to validate
the methodology. Finally, in section V, conclusions are drawn.

II. OVERVIEW OF USER–SUPPLIED DATA

There are a couple of ways in which the user inputs data to
the tool. First, some general settings are set in acircuit configu-
ration file. Note that the tool can work with different simulators.
Secondly, each cell’s specifics are defined in a netlist. Then,
other – more general – settings can be done at the program level.
We will discuss these input methods in more detail below.

A. The circuit configuration file

All basic settings for a library migration are specified in one
ASCII configuration file. This file defines the following at-
tributes:
• Circuit simulator settings
– Simulator (e.g. HSPICE, ELDO, ...)
– Technology (vendornamecmos0u35)
– Model (bsim3v3, mosmodel9, ...)



II-142

– Model type (slow, fast, typical, slowfast, fastslow)
– Simulation type (dc, ac, tran)
– Model path (/path/to/model/files/)
– Simulation options filename
– Circuit path (/path/to/spice/files/)
– Circuit basename
– Simulation output directory (/path/to/output/dir/)
• Circuit simulator parameters
– Parameter name:#SYMBOL#:value
• Porting technology settings
– Target technology (vendornamecmos0u25)
– Model (bsim3v3, mosmodel9, ...)
• Porting fixed parameters
– Parameter name:#SYMBOL#:value

The first category defines the simulator to be used (currently
HSPICE and ELDO are supported), the technology of the source
process and the model, the simulation type and the appropriate
directory paths. In a second category, all parameters are defined
together with their values for the source technology process.
The following category lists the target technology and model.
Finally, in a last category, parameters for the target technology
are given that are fixed during the optimization. These param-
eters have values that can be different from the source technol-
ogy but need not be optimized (e.g. supply voltage). Parameters
listed in the second category and absent from the last are taken
as the optimization variables.

B. The input netlists

Each cell in the library is described by a standard SPICE
netlist. The measurement statements are recognised by the op-
timizer and will be used as performances to be optimised unless
they are unselected through the GUI. The input netlist can con-
tain ’.include’ statements or the circuit configuration file can be
used to include parts that are common for various cells.

C. Other inputs

Other, more general, inputs refer to the program itself. An
example are the settings for the genetic optimization algorithm.
These options can be set either in the program ASCII configura-
tion file or entered using the GUI.

III. PROGRAM FLOW

In figure 1 an overview is shown of the program flow. The
user provides the specifications of the performances that are
evaluated by means of the measurement statements in the SPICE
netlist. These specifications for the target technology can be
chosen to be the same as in the source technology or other val-
ues can be specified. Also the type (less than or greater than) of
the specification can be set. The tool then returns the optimum
cell sizes that ensure that every performance satisfies its specifi-
cation. The optimization algorithm is a genetic algorithm.

A. Genetic algorithm

As optimization algorithm we employed the differential–
evolution algorithm used in [3], which we altered slightly. It
is a genetic algorithm that searches for a global optimum and

INPUT SPECIFICATIONS GENETIC ALGORITHM

C
O

S
T

 F
U

N
C

T
IO

N

Delays

Propagation H-L [ns]

OPTIMUM
CELL SIZES

start end
Propagation L-H [ns]

simulated performances

transistor

loop

supply voltage
...

loop

widths
lengths

Evolution

Differential

SIMULATOR

SPICE
IN

P
U

T
 P

A
R

A
M

E
T

E
R

S

MIGRATED CELL

Fig. 1. The main program flow.

uses continuous parameter values. Among the changes com-
pared with [3] are the inclusion of parameter bounding and stop
criteria. We will not go into the details of the algorithm here –
for that we refer to [3] – but we will show its effectiveness for
our purpose in section IV.

B. Optimization parameters

The genetic algorithm uses the parameters defined in the cir-
cuit configuration file. One population member in the genetic
algorithm is therefore represented as shown in figure 2. These
parameters are passed to the simulator which performs the re-
quested analysis. The simulation results together with the spec-
ifications are then used to evaluate the fitness of the member by
means of a cost function.

being optimized, examples are transistor widths and lengths
each gene represents a specific value for the parameter

Wn-1... ... WnL2L1

Fig. 2. Representation of a population member in the genetic
algorithm.

C. Cost function formulation

The cost function formulation is a crucial part in any opti-
mization problem. Here, the cost function is defined as follows:

Cost= MAXi

(
W

(
Pspeci − Psimi

Pspeci

))
(1)

This is a minimax problem formulation. The algorithm will
try to minimize the cost, which is equal to the maximum normal-
ized performance deviation from the specification. Each perfor-
mance is thus normalized to have an equally important influ-
ence. Also, a weight factorW is included which is different
when the specification is met (100) or not (100000). Note that
with W = 100 and a cost threshold stop criterium of 1, a toler-
ance of 1 % is achieved.

It is, however, also possible that the genetic algorithm pro-
poses bad combinations of parameters (e.g. out of range). Then,
a “high” cost is assigned (e.g. 1E8) to such solutions.

IV. CELL MIGRATION EXAMPLES

In this section, we will exploit the capabilities of the tool to
automatically find the scaling factors for the transistor widths



II-143

(NMOS and PMOS) that are necessary to migrate digital stan-
dard cells from one technology to a newer one. To have an op-
timal performance, the scaling factors are not necessarily the
same for each type of cell. The source technology is a 0.35µm
process and the target technology has a 0.25µm gate length.
Since all cells have minimum gate length, we don’t optimize the
transistor lengths.

A first subsection introduces the graphical interface of the
tool. In the next subsections, two experiments are reported. In
the first experiment we specified the performance (in terms of
propagation delay) of the target to be identical to the source.
In the second experiment the performance specifications of the
actual cells in the target technology were given as input to the
tool.

Fig. 3. The input window for the retargeting process.

A. The graphical interface

In figure 3 the tool input window is shown. The process of
retargeting is divided into 5 steps which we will discuss briefly.
All important information is printed in a log window. When a
step has succesfully been completed, its color changes from red
(to do) over orange (busy) to green. The first step parses the
circuit configuration file discussed in subsection II-A. Based
on this information, the circuit is simulated in the source tech-
nology process (step 2). The result of this simulation is shown
in themeasurement resultswindow (see figure 4). In this win-
dow, the user can specify which measured performances are to
be taken into account for the optimization as well as their type
(less than or greater than specification). The default values are
the simulation results of the source technology process.

Fig. 4. The ’measurement results’ window for the source tech-
nology simulation.

It is however possible to fill in other specification values and, f.i.,
tighten the specifications for the target technology. In the next
step (the third step), the target technology settings in the circuit
configuration file are verified. Then, in step 4, the user can select

Fig. 5. The ’initial values’ window for the target technology
optimization.

initial, minimum and maximum values for the parameters to be
optimized (figure 5). Also, the type of the variables can be set to
be ’integer’ (discrete values) or ’double’ (continuous range) in
combination with a linear or logarithmic pruning in the feasible
range. Once all these steps have been performed succesfully, the
actual retargeting process can commence. As we mentioned in
subsection III-A, a genetic algorithm will be used as optimizer.
By pushing the ’DE Settings’ button, the user can tune a wide
variety of settings for this algorithm and the cost function eval-
uation as well as specifying the output log files (figure 6).

Fig. 6. The differential evolution algorithm and cost function
evaluation settings.

Fig. 7. The monitor window shows intermediate results and
cost function evolution.

Finally, when step 5 is activated, the intermediate results can be
followed via the monitor window as illustrated in figure 7. We
will now report some experimental results achieved with this
tool.

B. Experiment when keeping the performance specifications

A first experiment migrates a simple inverter cell from a
CMOS 0.35µm to a 0.25µm process, where we try to keep



II-144

TABLE I
SIMPLE INVERTER MIGRATION EXPERIMENT(PERFORMANCE KEPT EQUAL).

Cell Scale N/P Scale N/P 1 [%] PLH / PHL PLH / PHL 1 [%] Final cost time #gen
(real) (optimized) [ns] (real) [ns] (optimized) [h:mm:ss]

IV4 0.606 or 1/1.65 0.229 or 1/4.37 62.2 0.0276 0.0275 0.5 0.546 0:07:10 25

0.694 or 1/1.44 0.259 or 1/3.85 62.6 0.0417 0.0416 0.2

TABLE II
A SECOND EXPERIMENT TARGETS THE REAL LIBRARY PERFORMANCE SPECIFICATION.

Cell Scale N/P Scale N/P 1 [%] PLH / PHL PLH / PHL 1 [%] Final cost time #gen
(real) (optimized) [ns] (real) [ns] (optimized) [h:mm:ss]

IV4 0.606 or 1/1.65 0.625 or 1/1.60 3.1 0.0205 0.0203 0.8 0.995 0:11:09 38

0.694 or 1/1.44 0.716 or 1/1.40 3.2 0.0310 0.0307 1.0

AN2 0.625 or 1/1.60 0.651 or 1/1.54 4.2 0.1340 0.1334 0.5 0.742 0:03:20 11

0.708 or 1/1.41 0.760 or 1/1.32 7.2 0.1267 0.1258 0.7

EO 0.625 or 1/1.60 0.673 or 1/1.49 7.7 0.2880 0.2865 0.5 0.562 0:04:04 12

0.652 or 1/1.53 0.687 or 1/1.46 5.3 0.3361 0.3342 0.6

the performances. So, the question is: How small can the tran-
sistors be sized in the 0.25µm technology as to still have the
same performance as in the 0.35µm technology? Note that the
scaling factor for the transistor length is 0.714 (1/1.4). The re-
sults are given in table I, where a comparison is made with ac-
tual (real) cell data that were hand–crafted by the manufacturer
in the same technology process. The final cost function value is
given together with the time taken by the tool and the number
of generations of the genetic algorithm. Although a genetic al-
gorithm is very well suited for parallel execution, the numbers
presented here are the results of execution on a single host com-
puter (SUN Ultra 30). We can conclude from the table that the
optimized performances are within the given tolerance of 1 %
– 0.5 % for low–to–high and 0.2 % for high–to–low propaga-
tion delay respectively. Nevertheless, the optimized parameters
– the NMOS and PMOS scaling factors – deviate by as much
as 62 % from the real values that we had in the manufacturer’s
library. This is, of course, due to the fact that the speed specifi-
cation is more strict for the target library in practice. Otherwise
no advantage of the faster process would be taken.

C. Experiment with target performance specifications

In practice, when migrating to a smaller feature size technol-
ogy, also the speed specification is increased. In table II we
present the results of an experiment similar to the first but where
the target performance specification is entered to be equal to the
real simulated target cell specifications from the manufacturer’s
hand–crafted library. This is done for three different cells (in-
verter, 2–input and, exor). Again, a comparison has been made
between results from the tool and the actual cell data. It is clear
that the scaling factors now match better with the real values.
Nevertheless, they deviate by 3 to 8 %, even though the op-
timized performance is within 1 % of the specification (as re-
quested). This is probably due to design margins that are taken
in a real design.

D. Discussion of the results

The above mentioned experiments show that the migration
flow works and that the user can arbitrarily set the target specifi-
cations. The performances of the optimized cells are within the
accuracy specified by the user (1 % in our example). Also, the
optimization times are well within reasonable limits since the
library migration will be done only one time for every new pro-
cess. In addition, we didn’t make use of parallel execution on
different host computers, which would speed up the optimiza-
tion even further.

V. CONCLUSIONS

We successfully introduced a tool that uses a genetic algo-
rithm to perform the cell resizing in the migration of a digital
standard cell library. The key advantages of the tool are its flex-
ibility – both in parameters and specifications setting, its speed
and its accuracy. By making templates of the cells only once, a
fast migration at the level of cell sizing is possible for every sub-
sequent technology. It is assumed that the cell topology doesn’t
change.

ACKNOWLEDGEMENTS

This work has been supported by the IWT project FrontEnds
in cooperation with Alcatel Microelectronics.

REFERENCES

[1] R. Carley, Georges Gielen, R. Rutenbar, and Willy Sansen, “Syn-
thesis tools for mixed–signal ics: progress on frontend and backend
strategies,” inProceedings Design Automation Conference (DAC),
June 3–7 1996, 33rd, pp. 298–303, Las Vegas, USA.

[2] C. Visweswariah, “Optimization techniques for high-performance
digital circuits,” inProceedings IEEE/ACM International Confer-
ence on Computer–Aided Design (ICCAD), November 9-13 1997,
pp. 198–207.

[3] R. Storn, “On the usage of differential evolution for function opti-
mization,” inNAFIPS, 1996, pp. 519–523.


