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The Implementation and Development of a
Time-Domain Model of Dispersive Transmission Line
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Abstract — In the time domain, the accurate and
efficient simulation of lossy and dispersive transmis-
sion lines is still a problem.

Therefore, a time-domain model of the dispersive
transmission line based on series approximation and
recursive integration was implemented into APLAC.
In addition, model was developed to take into ac-
count the initial state.

The model was tested carefully and results ob-
tained were accurate enough compared with results
based on the frequency-domain model. The recur-
sive integration made the calculation efficient.

The new model improves the transmission line
simulation capability of APLAC.

1 Introduction

The problem of transient simulation of lossy trans-
mission lines has recently received more attention
because operating speeds in high-speed digital elec-
tronics are increasing. In that case, the conven-
tional lumped models are no longer adequate to de-
scribe the transmission line behavior of electronic
interconnects. However, in the time domain, the
accurate and efficient simulation of transmission
lines is still a problem because lossy and dispersive
transmission lines are traditionally modeled and an-
alyzed in the frequency domain as opposed to non-
linear devices or time-dependent components which
must be characterized in the time domain.

One solution to transmission line simulation
problem is the model developed by Valtonen [3].
In the model, the computation is kept as exact as
required. The characteristic admittance and prop-
agation function of a transmission line in the time
domain were obtained exactly with inverse Laplace
transforms. The power series approximation of the
modified Bessel functions allows calculating con-
volution integrals recursively and the amount of
computation is proportional to the number of time
steps.

The model has been implemented into APLAC
circuit simulator and developed in such a way that
it takes for the first time, the non-zero initial state
into account contrary to many other models which
assume a zero initial state. The relevant simulation
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results are also presented. The detailed derivation
of the whole model and a comparison of other trans-
mission line simulation approaches are available in
reference [2].

2 Transmission line model

2.1 Frequency-domain model for transmis-
sion line

The model equations for the transmission line in

the frequency domain can be formulated as follows
Il(S) = Y(S)Ul(s) — 2]*(8)6*’}/(5)6

(s) = Y (s)Us(s) — 2I*(s)e~ )¢

( ) = Y(S)UQ(S) + IQ(s)]e*'Y(S)Z

s)=13] (1)
s) = LY (s)Us(s) + L1 (s)]e™ ),

I
Ji
Ja(s) =

where the characteristic admittance

sC+ G s+b
Y(s) = \/sL—i—R _YO\/s—i—a’ (2)
where Yy = +/C/L, a = R/L, and b =

G/C. The propagation coefficient becomes (s) =
/(s +a)(s +b), where 7 = (VLC is the delay
of the line. I*(s) and I~ (s) are the incident and
reflected current waves propagating along the line,
respectively. Fig. 1 presents the model correspond-
ing to these equations.
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Figure 1: Transmission line model in the frequency
domain

According to eqgs. (1), the expressions for the
propagating current waves are

{ I7(s) = 5 [Y(5)Ua(s) + In(5)]

(o) = LY @U(s) + L) )

2.2 Model for lossy and dispersive trans-

mission line in time domain

First, the frequency-domain model based on
egs. (1) has to be transferred into the time domain.
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The model equations become

where
y(t) =LY ()}, ) =7 {7 (5)

The integrals can be divided into two parts

/ 0 t
_4 f(z,t)dz _4 f(wvt)dg“ro/f(w,t)dx,

where the first part specifies the initial state and the
latter determines the transient phenomenon itself.
Fig. 2 shows the model of the transmission line in
the time domain.
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Figure 2: Transmission line model in the time do-
main with convolution conductance

2.2.1 Model for convolution conductance

The inverse Laplace transform for the convolution
conductance is [1]:

y(t) = Yo [0(t) + ve *[lo(wt) + L(wt)]] . (6)

Here, §(t) is the Dirac delta function, lp and Iy
are the modified Bessel functions and p = %2

2
b_Ta. Now, assuming a zero initial state the

= Youl(t) + i(t)

vV =
integral (4) can be written as i(¢)

i(t) = VYoe_‘ut/{lo[V(t — )]+ hv(t — 2)]} e u(z)dz.
° ™

To construct the recursion, the modified Bessel
functions are approximated with polynomial series

Z Ckac

lo(z) + li(z (8)

where M is the order of approximation. Applying
this approximation yields

9)

t
= R yge /(t — z)*ety(z)dz. (10)
0

ik(t)

Time derivatives yield the recursion

di R

T o+ CovYou (11)
dt

d%k A Clc 2

e _ k 1, k>0, (12
" pa + vk ot (12)

Now, the numerical integration

#(tn) = B +Z[ i tn-m) + B G
(13)
gives
N
o(tn) = Y [amio(tn—m) + bmvYou(tn—m)]  (14)
m=0
N Ch
Zk = E:O |:am7/k n—m) + bm kVCk llk_l(tnfm) ’
(15)
where k > 0, ag =0,
A — ,U/Bm B,
= m — ATm d b, = 16
a 1+ B an T+ uBy’ - (16)

By considering an unknown voltage u(t,) as
a variable, i(t) can be formulated as ig(t,) =
Gru(tn) + Ji(tn). By utilizing the recursion, the
following expressions can be introduced

Go = bovYo (0
C
Gr = bovk Gr-1, k>0 (]
Cr-1
uf bm
N
bm Gk
mJ - Jr— tnfm
+m§::0a & (tn )+bOGk1k1(
Joi(ta) = O

Fig. 3 depicts the model for convolution conduc-
tance, where

M M
G=Yo+» Gr Jalta) =) J(ta) (20)
k=0 k=0
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Figure 3: Model for the convolution conductance.

2.2.2 Model for current source with mem-
ory

The other part of the transmission line model is
a current source. Now, the inverse Laplace trans-
form (5) gives [1]

K(t) = 67“75(t—r)+ﬂ I (V 2 — 7'2) e(t—r)
= N 1 )
(21)
where ¢(t) is a unit step function.
The integral of interest from eq. (4) is
¢
350 =[xt - a)ito)de = gult) +fe), (22
0
where j,(t) = e #7i(t — 7) and
g (1/ (t—x)2— 7'2)
jv(t) = I/Teiﬂt/ e"*i(z)dx.
(1) i
0
(23)

Approximating the modified Bessel function Iy,
applying the binomial expansion and differentiating
a couple of times [2] yields finally

M K

3 = a3 D drn(?)

k=0 p=0

(24)

jk,p (tn) (25)

jk,p(tn)

(27)

22p-1(k—-p+1)

N
Z bmjk,p—l(tnfm)g

m=0

T

II-

where the current term j; 1 = 0 and

Dyp = (—1)FFP (i) Cop 1”277 (28)

2.2.3 Summary of the model

The total value of current source J includes both
the actual current source and, in addition, the cur-
rent terms from convolution conductance Jg:

J1(tn) Ja1(tn) — 251(tn) (29)
Ja(tn) = Ja2(tn) — 2j2(tn). (30)
Fig. (4) presents the complete model.
él (tn) N N i2 (tn())

Figure 4: Transmission line model in the time do-
main.

According to fig. 4, i1(tn) = Gui(t) + J1(¢) and
thus on the basis of egs. (3) i"(t) = Gui(t) +
Jei1(t) — j1(t), and similarly ¢ (¢) Gua(t) +
Jaa(t) — ja(t).

When the simulation time ¢ < 7, the DC values
of propagating currents T and i~ are used. Other-
wise, the values of i+ (¢t — 7) and i~ (¢ — 7) have to
be interpolated.

3 Initial state of transient analysis

The transient sources have to be initialized to a
steady state that is equivalent to the DC state. Af-
ter carrying out the DC analysis, the currents i,
and iy are calculated on the basis of y-parameters

{

Due to continuity, these currents have to be the
same in transient analysis when ¢ = 0.

The expressions for the propagating currents can
be written

11 = Y11U1 + Y12uU2

. (31)
12 = Y12u1 + Y11U2.

(i1 + Gup + JGl)

32
(iz + Gug + JGQ), ( )

NI— D=

where the terms Gu + Jg arise from the convolu-
tion conductance. First, the values for G are de-
termined. Subsequently, the values for Jg can be
calculated by demanding Ji(t,) = Ji(tn—m) for all
m and k in formula (19). Now, Gu + Jg is known
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and the values for it and ¢~ can be determined.
Note that calculating the values for i; and 75 from
the time domain model would require the complete
value of the current source which, again, depends
on the values of 7 and ¢~. Therefore, DC values
for i; and i9 were used.

As the values of i*(0) and 7~ (0) are now known,
Jrp and ji, can be determined as with Ji by
demanding ji p(tn) = Jep(tn-m) and jgp(tn) =
Jkp(tn_m) for all indices m, k, and p in formu-
lae (25) and (27). Finally, the ”old” values of Jj,
Jr.p» and i, are initialized.

4 Simulation examples

Subsequently, some substantial simulation exam-
ples are presented to verify the operation of the
model. Fig. 5 shows the circuit used in these simu-
lations.

Ol ua(?)

Figure 5: Circuit used in simulation examples.

The operation of the model is compared with har-
monic balance (HB) results. HB solves the steady
state of a nonlinear circuit in the frequency do-
main where analyzing dispersive transmission lines
is straightforward.

The values of the distributed parameters used in
these simulations are R=0.35 Q/m, L=265 nH/m,
C=94.3 pF/m, and G=0 S.

4.1 Simulation with sinusoidal excitation

Now, the current source j(t) is composed of several
sinusoidal signals at harmonic frequencies and also
includes a distinct DC component. Fig. 6 displays
the voltage at the end of the line.

The error between transient and HB analysis re-
sults is estimated by calculating the squared error
normalized with the squared value in every simula-
tion point. As the frequency increases, error always
decreases below 0.1 %.

4.2 Simulation with pulse excitation

The simulation of a pulse is one of the most inter-
esting, because as a wideband signal, a pulse shows
distinctly the effect of dispersion. Fig. 7 displays
the voltage at the end of the line.

Dispersive transmission line simulation
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Figure 7: Simulation of uz(¢) with pulse excitation

Now, the HB results contain additional oscilla-
tion due to the limited number of harmonic frequen-
cies used. However, the model seems to be capable
of simulating this kind of wideband signals, too.

5 Conclusions

The new transmission line model has been imple-
mented into the circuit simulator APLAC. The dis-
persive transmission lines can now be simulated in
the time domain, which is not possible with tradi-
tional transmission line models. This new model
can be extended to include the skin effect.
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