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Symbolic Distortion Analysis of Analog Integrated Circuits

Wim Verhaegen∗and Georges Gielen∗

Abstract — A technique for generating symbolic expressions for
the distortion in weakly nonlinear analog integrated circuits is
presented. This technique uses some acceptable assumptions to
reduce the task of analyzing the nonlinear circuit to a repeated
analysis of derived linear circuits. This repetitive algorithm has
been implemented and it is demonstrated on an example circuit.

1 Introduction

In the analysis of analog integrated circuits, distortion
and intermodulation are important factors. Either they
are unwanted, as is the case in linear building blocks
like opamps, or they are explicitly wanted to obtain a
signal shifted in frequency, as is the case with mixers.
Distortion and intermodulation need to be assessed ac-
curately in both cases.

Classical numerical simulation techniques using it-
erative algorithms for solving the differential equations
are slow and inaccurate due to the large difference be-
tween the time constants normally present in the circuits
of interest. Several numerical methods have been devel-
oped to overcome this problem, e.g. the harmonic bal-
ance technique [1], multitime analysis [2] and the use of
describing functions in circuits with feedback [3]. How-
ever, the numerical nature of these techniques implies
that no symbolic results can be derived, so that re-use
of results — in the form of design equations — is not
possible.

An analysis technique that does yield symbolic re-
sults is described in this paper. Based on a set of as-
sumptions, the analysis of a weakly nonlinear circuit is
reduced to a number of analyses of linear circuits. A lin-
ear symbolic analysis core is used for these individual
analysis steps, and its results are combined and manip-
ulated to get a closed–form symbolic end result. This
result can be used as a design equation, or the impact of
the circuit nonlinearities on distortion and intermodula-
tion can be derived from it.

Before explaining this technique, it is to be noted that
similar approaches have been followed in the past to
obtain symbolic expressions for the distortion in spe-
cific classes of circuits. E.g. the distortion in sampling
mixers is analyzed in [4], and a method for analyzing
the distortion in analog building blocks is presented in
[5]. All symbolic approaches are intrinsically limited
someway, and these publications are no exceptions. The
scope of the algorithm presented in this paper is limited
to weakly nonlinear circuits. This means that the circuit
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characteristics are nonlinear in a smooth way, implying
that higher–order contributions are always smaller than
lower–order ones, and that the applied signals are small.

The basic terminology used is explained in section 2,
followed by a brief explanation of the algorithm in sec-
tion 3. The implementation is demonstrated in section
4, and the conclusions are presented in section 5.

2 Terminology

The following terms are used in this paper:

• An n–dimensional conductance is a conductance
with n controlling branch voltages. When analyz-
ing analog integrated circuits, n equals 3 at most.
The corresponding branch voltages are denoted as
vi , v j and vk in this paper.

• A nonlinear current is described using its DC com-
ponent and the derivatives to the controlling branch
voltages. The derivatives up to order 3 are de-
scribed by nonlinearity coefficients. E.g. the q’th–
order nonlinearity coefficient Kqmg1&ng2&(q−m−n)g3
of a three–dimensional conductance for q ≥ 2 is
given by

1

m!n!(q − m − n)!

∂i
(
vi , v j , vk

)
∂mvi∂nv j∂(q−m−n)vk

(1)

where g1, g2 and g3 are the conductances through
wich the current controlled by respectively vi , v j
and vk flows.

• The component of a signal at a frequency which
is a linear combination of the input–signal fre-
quencies, is denoted a phasor. E.g. the phasor
V(out,0),1,1 is the component of the signal vout,0 at
frequency fin,1 + fin,2. The signal vout,o is re–
constructed from all corresponding phasors using
the formula

v(out,0)(t) = 1
2

+∞∑
m=−∞

+∞∑
n=−∞

V(out,0),m,ne j (mω1+nω2)t

(2)
with ωx = 2π fx .

3 Algorithm

The algorithm used for analyzing weakly nonlinear cir-
cuits is explained in [6]. Only the conclusions are given
here for reasons of brevity. There is one basic formula
for calculating a phasor:
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Vx,m,n =
∑

iN L HiN L 
→vx (m jω1 + njω2) (3)

with iN L a fictitious current source, and HiN L 
→vx (s) a
linear circuit function expressing the relation between
the fictitious current and the entity of interest (in casu
the voltage vx ). As is shown in [6], the fictitious current
source is defined by the dimensionality of the associated
conductance, and the values of the coefficients m and
n, under the assumption that the circuit behaves in a
weakly nonlinear way. E.g. the fictitious current source
for a one–dimensional conductance and m = 2 and n =
−1 is given by

K22g1

(
Vi,1,0Vi,1,−1 + Vi,0,−1Vi,2,0

)
+ 3

4 K33g1
V 2

i,1,0Vi,0,−1 (4)

Note that equation (4) refers to phasors of order 2,
which can in turn be found using equation (3). These
formulas are thus applied recursively, until an expres-
sion with linear phasors only — i.e. (m, n) = (±1, 0)

or (m, n) = (0,±1) — is obtained.
The linear–analysis engine Symba is subsequently

used to replace the linear transfer functions in the re-
sulting expression with functions of the (linear) circuit
elements. To this purpose, Symba internally uses a
numerical approximation algorithm [7], and a matroid–
based symbolic term generator [8] combined with an
error controller.

The resulting expression with the linear circuit ele-
ments can grow quite large for circuits of low complex-
ity already, but luckily many terms in it are negligible.
The expression is therefore further simplified using a
number of sorting and elimination techniques like nu-
merical screening of the terms and adaptive control of
the approximating linear analysis, controlled with the
appropriate error algorithms. This finally results in an
expression of the form (3), with a reduced number of
terms.

Note, finally, that equation (3) yields an harmonic
of a current or voltage. Many distortion specs — e.g.
OIP2, IP3 — are expressed as a combination of several
such components. For these cases we must repeat the
nonlinear analysis process for the different components
and combine the end results. An example of this will be
given in section 4.

The repetitive application of equation (3) using non-
linearity stamps like the one in equation (4) has been au-
tomated in a nonlinear–analysis engine, which interacts
with the user and the linear–analysis engine Symba.
This engine has been implemented in Perl and C++ and
is linked to the Symba linear–analysis engine. The use
of the nonlinear–analysis engine on an example circuit
is demonstrated in section 4.
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Figure 1: Schematic of the Miller opamp with feedback

4 Applications

The distortion in the Miller opamp shown in figure 1
is now analyzed as an illustration of the use of the
nonlinear–analysis engine. The opamp has a differen-
tial input at the matched source–coupled pair M1a and
M1b, and a single–ended output. The unity feedback
obtained with the resistor Rfb configures the opamp as
a voltage follower. The opamp has a gain–bandwidth
product of 1 MHz, and we are interested in the second–
order distortion below that frequency.

The application of all the fictitious current sources re-
sults in a second–order response at the output V(out,0),2

which is the product of
v2

in
2 and the sum of contributions

shown in table 1. The nonlinear coefficients K∗ in the
contributions are calculated as the derivatives of a tran-
sistor characteristic fitted through points obtained using
a numerical simulator.

In order to interpret the expression for V(out,0),2 and
obtain an expression for, say, the second–order output–
referred intermodulation product O I P2, the contribu-
tions (5) to (19) have to be further simplified. This is
achieved in 4 subsequent steps:

1. The entries that contribute only a little to the value
of V(out,0),2 can be eliminated with a small loss of
accuracy. This elimination needs to be validated
over the entire frequency range of interest. In order
to facilitate this, a relative weight is assigned to
each entry using the following formula:

wi ( f ) = |ei ( jω)|∣∣V(out,0),2( jω)
∣∣ (20)

where ei ( f ) is the i ’th entry as a function of the
frequency. These weights are calculated based
on the numerical reference value of the different
terms, without any symbolic calculations.

Based on these weights, the entries (5) to (19)
are examined for elimination in order of increas-
ing maximum weight. The impact of the entries
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K2gm&go ,M1B Hvinp,0 
→vt2,b ( jω) Hvinp,0 
→vinp,b ( jω) HiDS,M1B 
→vout,0 (2 jω) (5)

K2gm&go ,M1A Hvinp,0 
→vt1,b ( jω) Hvinp,0 
→vinn,b ( jω) HiDS,M1A 
→vout,0 (2 jω) (6)

K22gm ,M1B Hvinp,0 
→vinp,b ( jω) Hvinp,0 
→vinp,b ( jω) HiDS,M1B 
→vout,0 (2 jω) (7)

K22gm ,M1A Hvinp,0 
→vinn,b ( jω) Hvinp,0 
→vinn,b ( jω) HiDS,M1A 
→vout,0 (2 jω) (8)

(K22go ,M2A + K2gm&go ,M2A + K22gm ,M2A)∗
Hvinp,0 
→vt1,vdd ( jω) Hvinp,0 
→vt1,vdd ( jω) HiDS,M2A 
→vout,0 (2 jω) (9)

K22gm ,M2B Hvinp,0 
→vt1,vdd ( jω) Hvinp,0 
→vt1,vdd ( jω) HiDS,M2B 
→vout,0 (2 jω) (10)

K22gm ,M3 Hvinp,0 
→vt2,vdd ( jω) Hvinp,0 
→vt2,vdd ( jω) HiDS,M3 
→vout,0 (2 jω) (11)

K22go ,M1B Hvinp,0 
→vt2,b ( jω) Hvinp,0 
→vt2,b ( jω) HiDS,M1B 
→vout,0 (2 jω) (12)

K22go ,M1A Hvinp,0 
→vt1,b ( jω) Hvinp,0 
→vt1,b ( jω) HiDS,M1A 
→vout,0 (2 jω) (13)

K22go ,M3 Hvinp,0 
→vout,vdd ( jω) Hvinp,0 
→vout,vdd ( jω) HiDS,M3 
→vout,0 (2 jω) (14)

K22go ,M4 Hvinp,0 
→vout,vss ( jω) Hvinp,0 
→vout,vss ( jω) HiDS,M4 
→vout,0 (2 jω) (15)

K2gm&go ,M3 Hvinp,0 
→vout,vdd ( jω) Hvinp,0 
→vt2,vdd ( jω) HiDS,M3 
→vout,0 (2 jω) (16)

K22go ,M5 Hvinp,0 
→vb,vss ( jω) Hvinp,0 
→vb,vss ( jω) HiDS,M5 
→vout,0 (2 jω) (17)

K2gm&go ,M2B Hvinp,0 
→vt2,vdd ( jω) Hvinp,0 
→vt1,vdd ( jω) HiDS,M2B 
→vout,0 (2 jω) (18)

K22go ,M2B Hvinp,0 
→vt2,vdd ( jω) Hvinp,0 
→vt2,vdd ( jω) HiDS,M2B 
→vout,0 (2 jω) (19)

Table 1: Contributions of all nonlinearities to V(out,0),2 for the Miller opamp

on the total magnitude
∣∣V(out,0),2

∣∣ — graphically
illustrated in figure 2 — is used as a verification
measure to accept or reject each elimination. It is
found that (16) to (19) can safely be omitted. As a
result of this step, no symbolic expressions will be
generated for the omitted entries.

2. The transfer functions found in the contribu-
tions (5) through (15) are one by one approxi-
mated to obtain simple, interpretable expressions.
The expressions are generated automatically using
Symba, and can be approximated by very simple
expressions due to the unity feedback.

3. After substitution of the simplified transfer func-
tion in the total distortion expression, it is found
that all contributions (5) to (15) are paired, with
the exception of (11). The thus paired contribu-
tions cancel in case the corresponding nonlinear
coefficients are (approximately) equal. The differ-
ences between the (second–order) nonlinear coef-
ficients are relatively larger than the differences be-
tween the (first–order) small–signal elements. It is
thus logical to let the mismatch in the circuit be re-
flected through the former differences. The follow-
ing contributions are thus found to be cancelling:

• (5) and (6);

• (7) and (8);

• (9) and (10), taking into consideration that
K22gm ,M2a � K22go ,M2a + K2gm &go ,M2a ;

• and finally (14) and (15), although there is no
fundamental reason for this. Note however
that this coincidence does not really mat-
ter, as both contributions are negligible com-
pared to entry (11) anyway.

All these substitutions and eliminations finally re-
sult in the symbolic formula:

V(out,0),2 =
v2
in
2

(
−

K22gm ,M3

gmM3
+

K22gm ,M1b − K22gm ,M1a

gmM1

)
(21)

4. Finally the output–referred second–order intercept
point O I P2 is calculated, which is defined as the
input amplitude for which |Vout | = ∣∣Vout,2

∣∣, i.e.

Vout = V 2
out
2

∣∣∣∣−gmM1 K22gm ,M3 + gmM3

(
K22gm ,M1b − K22gm ,M1a

)∣∣∣∣
gmM1 gmM3

(22)

So O I P2 is given by

O I P2 =
2gmM1 gmM3∣∣∣∣−gmM1 K22gm ,M3 + gmM3

(
K22gm ,M1b − K22gm ,M1a

)∣∣∣∣
(23)

For the design point chosen for the Miller opamp

2gmM1 gmM3 = 824.5 × 10−9 (24)

−gmM1 K22gm ,M3 = 424.11 × 10−9 (25)

gmM3

(
K22gm ,M1b − K22gm ,M1a

)
= −7.5656 × 10−9 (26)

As a result the contribution of K22gm ,M3 in the de-
nominator of (23) is dominant, and the expression
can be simplified to:

O I P2 =
∣∣∣∣∣ 2gmM3

K22gm ,M3

∣∣∣∣∣ (27)
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Figure 2: Frequency–dependent magnitudes of all contributions to, and the total phasor V(out,0),2 for the Miller
opamp

which equals 1.944V for the chosen design point.

Note that the obtained results are only valid in the
case of perfectly matched transistor characteristics for
the pairs M1a and M1b, resp. M2a and M2b. When this
assumption cannot be made, the entire exercise needs
to be repeated for the same circuit with mismatch intro-
duced. This will of course result in a lower O I P2.

5 Conclusions

The extension of linear analysis to obtain closed–form
symbolic expressions for the weakly nonlinear charac-
teristics of analog integrated circuits has been demon-
strated with an example circuit. The underlying algo-
rithm and simplification of the lengthy results has been
automated and linked to the existing Symba environ-
ment. The resulting simplified expressions can be used
as design equations in an analog design framework.
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