
I-201

ECCTD’01 - European Conference on Circuit Theory and Design, August 28-31, 2001, Espoo, Finland

A Decomposition Technique for Setting up the Symbolic State
Equations of Large –Scale Analog Circuits

Mihai Iordache* and Lucia Dumitriu*

  Abstract - In this paper we present a decomposition
technique to systematically formulate the state
equations in symbolic normal-form for linear and/or
nonlinear time-invariant large-scale analog circuits
with excess elements. The decomposition and the
aggregation procedures are shown and an illustrative
example is given. The computation program allows the
formulation of state equations in a symbolic form
without any inverse of a symbolic matrix, providing a
symbolic or partially symbolic compact form.

1 Introduction

Setting-up the symbolic state equations of analog
circuits is a difficult task. In [2] is presented an
approach based on graph theory to obtain the
symbolic state equations of linear time-invariant
circuits. We have presented in [10] a topological
method based on the normal tree, and a
computational program developed to automatically
formulate the symbolic state equations for linear or
nonlinear analog circuits. In the present paper we
extend this method to large-scale circuits by a
diakoptic procedure. We present the decomposition
and the aggregation techniques and we discuss the
impact on result accuracy.

In order to simplify the description of nonlinear
circuit elements, their curves may be approximated
by piecewise-linear continuous curves [10], or by
new curves in which the nonlinearities are transferred
to the sources [9].

2 Assumptions on the class of circuits

One of the important problems in state-variable
approach is the selection of state variables. It is usual
to choose inductor currents and capacitor voltages for
state variables, and it is generally  accepted that the
number of state-variables associated with an
electrical circuit is equal to the number of dynamic
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elements minus the number of excess elements
[1,2,6-8].

We assume that the analyzed circuits meet the
following requirements:

1. Consistency assumptions
There are no loops consisting of only independent

and/or controlled voltage sources, called E loops;
There are no cut-sets made up of only independent

and/or controlled current sources, called J cut-sets;
All nonlinear capacitors are voltage-controlled.

This means that the charge q of each capacitor is a
function of its voltage, ( )vqq

�

= ;

All nonlinear inductors are current-controlled. This
means that the flux linkage ϕ of each inductor is a
function of its current, ( )iϕ̂ϕ = ;

2. Normal tree assumptions
The normal tree has to contain in this strict order:

all independent and controlled voltage sources, all
nonlinear voltage-controlled resistors, as many
capacitors as possible, as many controlling branches
of the CCVS’s and of the CCCS’s as possible (these
branches are considered as resistive branches having
the resistances equal to zero), and as many resistors
as possible. It will not contain independent and
controlled current sources, and nonlinear current-
controlled resistors;

Any controlled source belonging to a C-E loop or
to an L-J cut-set can depend only on the voltage of a
tree capacitor or on the current of a cotree inductor.

Our experience proves that though most practical
circuits do not violate these assumptions, regarding
the last one we can note that there are many circuits
which, although do not meet it, do have state
equations in normal-form.

The nodes of the normal tree in which at least two
tree branches and as much as cotree branches (links)
are connected, are called central nodes, and those in
which are connected only one tree branch and any
links are called external nodes.

3 Formulation of symbolic state equations

  Let us consider a nonlinear network containing
any multi-terminal linear or nonlinear circuit element
having an equivalent scheme made up only of two-
terminal circuit elements and controlled sources. A
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normal tree is selected according to the above
assumptions. The decomposition of a large-scale
analog circuit into a number of smaller subcircuits
can be made by branch tearing [5,6], in which
appropriate branches are removed; by node tearing,
in which the circuit is torn apart along appropriate
nodes [5,6], and by splitting of the central nodes
from normal tree. The last decomposition method is
adequate for setting up the state equations in a
symbolic normal-form for large-scale time-invariant
analog circuits.

 Splitting p central nodes involves the generation of
(p+1) active multi-poles. The splitting cut-sets (SCS)
that generate the (p+1) subcircuits have to contain
only links, and we assume that the couplings are
confined within each subcircuit. A splitting cut-set
divides the circuit into two subcircuits. All circuit
elements belonging to the mk links intersected by the

SCS ∑k, p,k 1= , are assigned only to the one of the

two subcircuits.
To keep the voltages of the nodes, in which the

SCS ∑k intersected the links in respect to the splitting
node (node n7 in Fig. 1) and the currents by the mk

links, we introduce ideal independent voltage sources
and ideal independent current sources, respectively,
(Fig.1) called connection sources. All voltage
connection sources are introduced in one of the
subcircuits (the subcircuit which contains all circuit
elements belonging to the mk links intersected by the
SCS), and all current connection sources in the other
one. By introducing the voltage connection sources,
new nodes will appear (nc1, nc4, nc5 in Fig. 1) which
must be introduced in the normal tree. The current
connection sources do not have to determine cut-sets
made up only of the ideal current sources.

Figure 1: Assignment of the connection sources.

We consider the nonlinear circuit shown in Fig. 2.
The normal tree is selected, and then the splitting cut-
sets are generated, according to the above
assumptions. Solid branches represent tree branches
in Fig. 2 and in Fig. 3.

The essential incidence matrix (EIM) Dm,
associated to the normal tree in the subcircuit Sm, is

partitioned according to the order of the circuit

elements in the normal tree.

Figure 2: Diagram circuit.

We use the second-level subscript t for the normal
tree, and l for the links.

Figure 3: Structure of the subcircuit S2.

We assume that the voltage vector of the controlled
voltage sources mEc ,v , and the current vector of the

controlled current sources mJc ,i can be expressed in

respect to the resistor voltages or resistor currents, or
state variables.

Using Kirchhoff’s laws and the constitutive
equations of the circuit elements, in the case when
the nonlinear resistor characteristics are
approximated by piecewise-linear curves, we obtain
for each subcircuit equations in the form:
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in which the connection sources appear.
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From these equations we have to eliminate the
variables mEmJmE concc ,,, ,, viv , and mJ con ,  i , where,

for example, ( )mJmE ccon ,,  iv  are the voltage (current)

vector of the voltage connection (current controlled)
sources. If the controlling variables of the controlled
sources belong to the state vector, or if they are
variables associated to the resistor, these equations
represent a set of nonlinear equations in respect to
the independent variables mRlmRt ,,  and, iv . Assuming

that for any specified mJmEmLlmCt ii ,,,,  and ,,, iviv

these nonlinear equations have a unique solution,
they can be solved by an iterative procedure at each
time instant jt . We obtain, for the time instant jt ,

the symbolic expressions of the variables

mRlmRt ,,  , iv , mEmJmE concc
v ,,, ,, iv , , and ,mJcon

i corres-

ponding to the arbitrary segment combination s.
  For subcircuit 2 in Fig. 3 Eqs. (1), and (2) have the
following expressions:

2,464 conRR jii =−

26644 eiRiR RR −=+−            (3)

( ) ( ) 2,55255 coniRd eseeisR +−−=⋅ .

  Substituting these symbolic expressions and their
derivatives into the equations corresponding to the tree
capacitors and to the link inductors, we obtain an

algebraic system with unknowns, mLlmCt ,,   , iv
�

�

.

  Solving this system, it results the symbolic state
equation in normal form

mmmmmmm yByBxAx
��

,1++= ,                       (4)

where the matrices Am, Bm and B1,m have the elements
in symbolic form, and
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  The vectors 
mconEv

,
 and mJ con

i , , 1,1 += pm , must

be expressed as functions of: all state variables, the
voltages of all independent voltage sources, and of the
currents of all independent current sources. For that,
we use the Kirchhoff’s current law corresponding with
the cut-sets attached to the connection voltage sources,
and the Kirchhoff voltage law corresponding to the
loops attached to the connection current sources for

each subcircuit Sm, 1,1 += pm
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  Also, for each splitting cut-set ∑k , pk ,1= , the

connection voltage source currents (the connection
current source voltages) must be equal to the
connection current source currents (to the connection
voltage source voltages)

kJkE concon ,, ii = , kEkJ concon ,, vv = .            (8)

  For the circuit in Fig. 2, equations (6)-(8) have the
following forms:
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4. SYSEG Program

  We have implemented the above method on the
program SYSEG – SYmbolic State Equation
Generation [10]– which generates, starting from the
circuit netlist, the state equations, for the linear and/or
nonlinear time-invariant analog circuits, in symbolic or
partially symbolic normal-form. SYSEG is written in
C++ and it is implemented on a compatible IBM
Pentium PC, 350 MHz.
   Using this program we obtain for each subcircuit in
Fig. 2 the state equations in the symbolic normal-form.
For the subcircuit S2 (Fig.3), these equations are:

( )

10_99_1021

)(21010_9
  

10_99_1021

2,12

10_99_1021

22
1

MMll

tIlrM

MMll

econl

MMll

el
tIl

t

+−
−

+−
−

−
+−

=
∂
∂



I-204

( )

10_99_1021

(2101

10_99_1021

2,19_10

10_99_1021

29_10
2

MMll

tIlrl

MMll

econM

MMll

eM
tIl

t

+−
+

+−
+

+
+−

−=
∂
∂

  Substituting the quantities econ1,2, econ4,3, econ5,2,
Ijcon1,1, Ijcon4,2, and Ijcon5,1, with respect to the
state variables and the input variables, we obtain the
state equations in symbolic normal-form for the whole
circuit.
  We tested our program on µA741 opamp (26
transistors – 140 branches) performing decomposition
on the fourth stages. Each subcircuit was analyzed
independently and finally, by aggregation, we obtained
the state equations in partially symbolic normal-form
of the whole circuit. We focused on the input stage and
the program worked with 33 symbols (5 transistors, 1
capacitor and 7 resistors) in 250 s. In this case, without
decomposition the program does not work, because the
symbolic manipulator Maple V5 can not manipulate
too large symbolic expressions.

5 Conclusions

  We introduced a decomposition method to
formulate the state equations in a symbolic and/or
partially symbolic normal-form for large-scale time-
invariant analog circuits. These circuits may contain
both linear and nonlinear circuit elements having an
equivalent scheme made up only of two-terminal
elements and controlled sources, and also excess
elements of the first and/or the second kind.
According to our method we implemented a very
efficient and flexible program for SYmbolic State
Equation Generation (SYSEG), that could be a very
useful tool for large-scale analog circuit design.
Starting from the circuit netlist, SYSEG checks all
assumptions regarding consistency and existence of
normal tree, checks also if the circuit to be analyzed
can be described by a set of state equations in normal
form, and it specifies the type of degeneracies. If the
circuit meets the standing assumptions, SYSEG
automatically generates the normal tree, the p+1
subcircuits, and finally, the state equations in
symbolic or partially symbolic normal-form, from
which the program extracts the state-matrix of the
circuit and compute the characteristic polynomial and
the eigenvalues.
  By splitting the central nodes in the normal tree we
obtain an efficient tearing method of a large-scale
circuit into a number of smaller subcircuits, which
are processed independently. Since the subcircuits
contain the same modeling primitives as the original
circuit, the accuracy of the simulation is not affected
by the procedure.

References

[1] P. R. Bryant, “The order of complexity of electrical
networks”, Proc. IEE (GB), Part C, 1959, pp. 174-188.

[2]. J. P. Le Baron, E. Cadran, Symbolic of Linear
Electronic Circuits with Degeneracies, Proceedings of
the Fifth International Workshop on Symbolic
Methods and Applications in Circuit Design, SMACD
98, Kaiserslautern, Germany, October 8-9, 1998 pp.
80-86.

[3] L., O., Chua, and P., M., Lin, Computer-Aided
Analysis of Electronic Circuits: Algorithms and
Computational Techniques, Englewood cliffs,
NJ:Prentice-Hall, 1975.

[4] T. E. Stern, “On the Equations of Nonlinear
Networks”, ”, IEEE Trans. Circuit Theory, Vol. CT-13,
N0. 1, Mar. 1961, pp. 74-81.

[5] A. E. Schwarz, Computer-aided design of
microelectronic circuits and systems, Academic Press,
London, 1987.

[6] W. J. McCalla, Fundamentals of computer-aided
circuit simulation, Kluwer Academic Publishers,
Boston, 1988.

[7] M. Iordache, "An analysis method for nonlinear
networks  with controlled sources, magnetic couplings
and excess elements in transient behaviour", Rev.
Roum. Sci. Techn. - Électrotechn. et Énerg., nr. 3,
1981, p. 401-413.

[8] R. Sommer, E. Hennig, M. Thole, T. Halfmann, T.
Wichmann, “Symbolic modeling analysis of analog
Integrated Circuits”, ECCTD'99, European Conference
on Circuit Theory and Design, Stresa, Italy, 27 August
– 02 September1999, Proceedings Vol. II, pp. 66-69.

[9] Fl. Hantila, “A Method for Solving Nonlinear Resistive
Networks”, Rev. Roum. Sci. Techn. Électrotechn. et
Énerg., 24, 2, 1979, p. 217-226.

[10] M. Iordache, Lucia Dumitriu, D. Delion, “Automatic
Formulation of Symbolic State Equations for Analog
Circuits with Degeneracies”, Proceedings of 6th

International Workshop on Symbolic Methods and
Applications in Circuit Design, SMACD 2000,
Instituto Superior Técnico, Lisbon, Portugal, October
12-13, 2000, pp. 65-72.

[11] F. Constantinescu, Miruna Ni � � � � 	  M. Iordache,
Lucia Dumitriu, “Finding Approximative Symbolic
Pole/Zero Expressions Using the Eigenvalue
Computation for State-Like Matrices”, Proceedings of
6th International Workshop on Symbolic Methods and
Applications in Circuit Design, SMACD 2000,
Instituto Superior Técnico, Lisbon, Portugal, October
12-13, 2000, pp. 79-82.


