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A BEHAVIORAL MODELING CONCEPT AND 
PRACTICE OF CNN-UM VLSI IMPLEMENTATIONS 

Péter Földesy and Ang el Rodríquez-Vázquez 

Abstract-- In this paper we introduce a novel simulation time 
bounded behavioral modeling technique, that optimally selects 
the incorporated block models. The method has been specially 
developed for fast performance evaluation of large mixed-
signal image processing arrays. The time domain accuracy is 
optimized under the simulation time constraint by automatic 
selection of various user supplied block models. A dedicated 
environment also has been developed for efficient numerical 
simulations. Utilizing the proposed methodology, a bridge has 
been built for the CNN-UM VLSI implementations between 
the device level and the high-level functionality. 

 
Index Terms-- Behavioral modeling, cellular neural network 

universal machine, VLSI, mixed-signal, large, heuristic 
selection, non-linear 

I. INTRODUCTION 

It is well-known that the numerical and symbolic circuit 
analysis are ways to connect the system behavior to the 
features of single components. This connection allows to 
perform error and tolerance analysis, model generation, 
hence overall numeric simulation, circuit sizing, 
optimization, and finally, automatic circuit synthesis [17]. 
Meanwhile for a wide range of standard mixed-signal 
circuits several analysis and synthesis tools and methods are 
available, for the mixed-signal Cellular Neural Network [1] 
implementations it is not so due to practical reasons. 

From the design point of view, the integration level of the 
CNN Universal Machine [2] chips have almost reached [6], 
[11] and will reach soon the milestone of 1 million 
transistors working mostly in analog region. From the other 
hand, a complete performance evaluation definitely should 
incorporate optimization of some 30 different nonlinear 
spatio-temporal transients controlled by dozens of free 
parameters. Due to the high integration level with inherent 
mixed-signal behavior the electrical simulations (e.g. 
HSPICE) of such tremendous task require computing power 
in the range of hundreds TFlops.  

Naturally, several high-level analytic and numeric 
methods have been published to accomplish the draft 
performance evaluation of a given architecture [6]-[10], but 
they cannot handle more than some idealized second-order 
device effects. The supposed and applied simplifications 
hold only roughly for real physical devices and shade the 
most significant design specific phenomena. Up to date 
only two projects are known to deal with CNN-UM chip 
behavioral level modeling [3]-[4]. The first work [3] bases 
on CADENCE Design Framework II using Verilog HDL 
(digital) and SpectreHDL (analog) description applied for a 
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specific design. The drawback of this approach is the 
remaining high computational requirements and “only” 
months of simulation time. The second approach [4] is a 
general CAD taking the advances of the regularity and local 
connectivity of the CNN, meanwhile leaving the most 
important question open: the model building. 

In order to thinner this deep gap between the device and 
the functional level, a behavioral model simplification 
technique and a dedicated simulator environment (called 
Behavioral Level CNN BLCNN simulator) have been 
developed. Meanwhile, the task of block model 
development remains in the hand of the user, their 
complexity – roughly the number of terms and functions - is 
fitted automatically. A case-study will serve as illustration 
of the proposed methodology applied for the ACE4k chip 
[11]. For which, the above mentioned optimization task 
running time could be reduced to hours. 

This paper is organized as follows. In Section II the brief 
review of the CNN-UM architecture is presented. In 
Section III the introduction of the model generation process 
can be found. In Section IV we then review some properties 
of the BLCNN simulator. In Section V the simulation 
results of the case-study can be found. Finally we 
summarize our major findings. 

II. THE CELLULAR NEURAL NETWORKS 

Cellular Neural Network is defined as a multidimensional 
array computing architecture on continuous signals, where 
the nonlinear dynamic elementary processors, the cells 
placed in the grid points of the array, are mainly locally 
connected within a finite neighborhood both with feed-
forward and feedback programmable weights. The CNN 
Universal Machine [1] was introduced as a stored 
programmed computer, with a CNN array embedded. The 
additional extensions are: local continuous (analog) and 
logic memory, local analog and logic units as well as a 
global programming circuitry. Hence, continuous valued 
spatio-temporal dynamics is embedded in a logic structure, 
both locally and globally.  

The design of such a large array sized VLSI 
implementation is quite a sophisticated task [5]. Moreover, 
its the performance estimation and circuit analysis against 
the parameter deviation and noise is an extremely time 
consuming process. The only fact, which gives possibility 
to do the job is the well-structured architecture composed of 
relatively simple blocks. The difficulty rises from the 
unknown impact of model complexity and the remaining 
long simulation time even in case of a simple model. 

III. THE MODELING TECHNIQUE 

The main goal of our intentions was including, as much 
as possible, second-order physical effects into the 
performance analysis by means of circuit modeling. On the 
contrary to the output error criterion driven circuit 
simplification modeling techniques [17]-[18], in our case 
the simulation time is the main constraint (besides the fact, 
that the referred automatic techniques cannot be applied for 
such huge multiple input–multiple output circuits). In order 
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to increase the calculable model complexity, the most 
powerful simulation technique has been chosen: building a 
costume-made dedicated simulator. This environment and a 
meaningful simulation time ST (some minutes per single 
operation) result an upper limit on the model complexity: 
an upper bound of the number of involved terms and 
equations (let be N). This limit can be estimated in advance 
supposing that the equation solving is more time consuming 
process than the function evaluation: 

 
( ) βα

β

≈

≤α+α=
solve/STlog

solveevalsim

eN

STNNT
, (1) 

where αeval, αsolve, and β are the time effort parameters of 
the simulator on a given system. 

The distinguishing constraint motivated us to develop the 
novel model generating concept. The introduced technique 
can be concluded as a heuristic search process in 
collections of different complexity block models that build 
up the full-chip behavioral model. 

In advance, the hierarchic architecture of the circuit is 
supposed to be known. Initially the model prototypes for 
every block are clarified at several complexity levels. These 
prototypes are derived both empirically and physically at 
multiple precision levels priory to the optimization: 
• Different complexity physical device models (e.g. MOS 

transistors [16]);  
• Symbolic analysis of different error criteria for linear 

blocks [17] (e.g. amplifiers);  
• Parameter extraction and macromodel generation 

methods for nonlinear blocks with different error 
tolerances [14], [15]. 

Since the full parametric modeling has no sense due to 
the known physical technology data, design reuse, and 
evidently insignificant elements, basically semi-parametric 
models are used. Hence, the different parameters of the 
prototypes are selected to be numeric or to remain variable. 
After the numeric simplifications the model library is not 
modified any more, and the selection process launched.  

A Selection Optimization 

As a heuristic search and optimization process the 
adaptive simulated annealing (ASA) technique has been 
chosen [19]. Once the models of a population are created, 
the complexity (1) and later on the numeric comparison is 
carried out in order to rank the variants.  

The brief properties of the implemented ASA are the 
followings: the number of iterations I is set between 
N/10..N/100, the temperature schedule as a function of the i 

iteration number is: ( )I)i(expTi 201 2−−= . The maximal 
length of a random jump from the actual selection is simply 

iTN ⋅± . A selection is accepted if it works with less error, 
and also accepted if a uniformly distributed random number 
between 0 and 1 is less than the square of the actual 

annealing temperature: [ ] 210 iT,rand < . In addition, the best 
selections are stored in order to not loose a good solution 
during the search process. The fitness factor was the 
numeric error (that will be described in the next chapter). 

If the complexity of a selection is estimated to be more 
than the allowed bound, the numerical comparison and the 
selection are automatically skipped. The numeric evaluation 
is performed using about a dozen of relatively complicated  
time domain waveforms of the most detailed form of the 
design (e.g. the extracted netlist of the original layout). The 
modeling process is illustrated in Fig. 1.  

 

Extracted 
circuit netlist 

Reference 
stimuli 

HSPICE 
simulation 

Reference 
waveforms 

Model library Circuit 
architecture 

Model set 
composition 

Simulated 
annealing 

selection and 
optimization 

process 
Complexity 
estimation 

Numerical 
comparisons 

BLCNN 
simulations 

Final model 

Model selection, 
generation 

complexity 
limit 

exceeded 

numerical fitness 

 
Fig. 1. The flow diagram of the modeling process. 

B Waveform Comparison and Error Metric 

The waveform difference is calculated in a special 
controlled manner. For final numerical fit a strict metric 
must be used in order to measure the precision. Meanwhile, 
in the selection optimization phase an error definition is 
needed, which allows the error space to be more “smooth” 
and tractable, causing faster convergence. In order to fulfill 
these requirements, a compact metric has been defined.  

It can be concluded as a continuos transition between a 
“filtered” difference calculation to a strict one. It is 
composed of a relative difference metric and a Euclidean 
distance operator. The former one has been chosen to 
produce the following ε waveform as  

 ( ) ( )( ) ( ) ( )
( ) Mtx

tytx
ty,tx

+
−

=ε , (2) 

where x, y are the reference and the evaluated waveforms, 
and ( ) ( )xminxmaxM −=  is the dynamic range of the 
reference. This definition allows the error calculation even 
for almost zero reference signal [13].  

The difference waveform is than transformed by an 
Euclidean operator [14], which introduces the “nonlinear 
filtering” by means of removing small phase errors, 
glitches, and generally the high-frequency behavior. The 
operator produces a new waveform (Ez) calculating the 
shortest Euclidean distance for a curve (z) as 
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where T is the simulation time and s is a scaling factor that 
scales the time distance to an equivalent voltage value. The 
resulting waveform presents the shortest distance between 
the point (0, t0) and an arbitrary point (t, z(t)) on the 
waveform z. Using this operator we can define the final 
distance metric given by 

 ( ) ( ) ( )( )( )
p

s
ty,tx

p
s tEy,xd ε= , (4) 

but we used only ds
1. And last, supposing I waveforms, the 

average error can be formed by 
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where xi
E and xi

M are the ith reference and the model 
simulation outputs, respectively. The numeric integration is 
done by trapezoid formula.  

Note, that the value of the scaling factor s controls the 
“filtering” strength of the (3) operator. Typically, s is set by 
determining the time and voltage resolution. But, choosing 
s to be zero, the filtering effect disappears and only the 
linear point-to-point comparison remains. This feature 
enables us to control the stringent of the error calculation, 
thus s is to be reduce form the initial value to zero during 
the optimization parallel with the annealing temperature. 

IV. THE BLCNN SIMULATOR 

As was mentioned in Section III, the more complex 
model could be synthesized and used under the simulation 
time constraint if the simulation tool is more efficient. 
Additionally, it must be taken into account that any CNN 
simulating tool should handle effectively large data arrays, 
algorithmic issues, and compact result evaluation. 
Definitely only a dedicated program could satisfy these 
requirements. 

Motivated by these facts, a dedicated mixed-signal 
simulator framework has been developed (called BLCNN) 
in standard C code. The framework embodies a 
computational core of a general mixed-signal electrical 
simulator [12], the possibility of “hard-wiring” a circuit 
architecture, and an open interface for different block 
model descriptions. Once every block model is selected, 
their features are translated into subroutines and embedded 
into the simulation environment. After compilation the data 
arrays (images) and the algorithm descriptions are passed 
and simulated. Let us summarize some features of the 
general simulation core of the BLCNN simulator: 

 
• Trapezoid integration method, Newton-Raphson sparse-

matrix nonlinear equation solving. 
• Advanced time scheduling: Automatic multi-rate 

detection, latency/wake-up detection, selective route-trace 
variable updating, automatic computational 
effort/timestep trade-off. Distinguished transient specific 
operating modes. 

• Mismatch introduced variation handling, sensitivity 
analysis.  

• Direct data file I/O without graphical interface. 
 

The proper working of the simulator has been checked by 
benchmark circuits (such as op-amps or RC ladders). 

V. CASE STUDY 

The behavioral modeling of the ACE4k chip will serve as 
an application case study. This chip comprises almost 1 
million transistors of 0.5 µm standard CMOS technology 
offered by Alcatel Mietec, on-chip programming and 
template memories, 64x64 cell array, cell-wise logic, 
simple arithmetic units, logic and analog memories, special 
extensions, and optically sensitized areas [11].  

The model of the cells was trained on ten different single-
cell transients, because of the practically impossible whole 
array electrical simulation. The signal distribution models 
was verified separately from the cell array using cell 
substitution of simple controlled sources.  

Every block, including the switches, have been modeled 
at two up to four different levels, starting from the simple 
static one up to complex dynamic levels. The total number 
of different selections was 122,100 and the most detailed 
model simulation time was slightly more than six hours 
with the relative error of 0.55%. Then, the fitness constraint 
on simulation time was set to appr. 4-5 minutes on an 
UltraSparc 350 MHz model. The reached times speed up 
resulted only an increase of average relative error to 0.67%. 

The measured simulation time of the BLCNN simulator, 
the extrapolated data the AHDL behavioral simulation [3], 
and the HSPICE simulation is presented in Table I. The 
experiment shows about 80 times less term number and 
1,000 times faster simulation compared with the electrical 
simulator. A time window of a numerical reference 
comparison is shown in Fig. 2. 
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Fig. 2. A time window of one of the output comparisons can be 
seen. The solid curve shows the result of the HSPICE simulation 
of the extracted layout, the dotted curve shows the BLCNN 
simulations of the behavioral model, respectively. 

TABLE I 
SIMULATION TIMING DATA OF THE WHOLE ARRAY EXAMPLE 

 HSPICE AHDL  BLCNN 

Number of  terms >10M ? 127k 
Simulation time ~4 months ~3 days 192s 
Physical time  
Timestep  

50µs 
10ps-5ns 

50µs 
3ps-1ns 

50µs 
10ps-50ns 
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As the proof of concept, results of two entire array 
executions are presented in Fig. 3 and in Fig. 4. In the first 
example consequtively ten gray-scale inversions has been 
performed on a random image. Due to paramter deviation, 
the output of the chip is a bit “blurred”. As the input-output 
pixel scatter-plots show in Fig. 3, the mismatch and noise 
models estimated this error quite precisely. 

The second example contains a spatial low-pass filtering 
operation with binarized output. The Fig. 4 shows the 
different results of an “ideal” CNN simulator [20], the 
BLCNN simulator, and the real chip embedded in a general 
algorithm development environment [20]. As can be seen, 
the strange behavior was estimated again quite properly. 

 
 

 (a) Chip result (b) BLCNNS output 
Fig. 3. Input-output scatter-plot of ten consequtive gray-scale 
inversions on the same random input image. 

 

   
 (a) Input (b) Ideal simulator 

   
 (c) BLCNNS output (d) Chip output 

Fig. 4. Output comparison of a spatial filtering operation.  

CONCLUSIONS 

We introduced a running time bounded behavioral model 
simplification technique. Baselines also have been given 
about the details of the methodology: motivation, automatic 
block model selection and optimization process, and 
dedicated simulation tool. The application area of the 
method covers the modeling of well-structured architectures 
with unknown block impact on the high-level behavior.  

As a case study, results was presented of a high 
integration level array processor chip. Through this 
example we demonstrated that the automatic selection of 
behavioral block model complexities could speed up the 
simulation efficiency with additional orders of magnitude 

without significant loss of precision and a proper qualitative 
behavior estimation of the real systems. 
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