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Abstract - In this paper, a semi-analytic method is

presented to describe symmetrical lossless networks

with two-kinds of elements, namely, distributed and

lumped elements in cascade connection. In terms of the

independently chosen parameters, element values of the

lossless symmetrical networks are given by explicit

formulas up to nine elements. It is expected that the

results presented in this paper will find immediate

usage in performance assessment, design and simulation

of analog/digital wireless communication systems put on

MMICs or VLSI chips.

1 Introduction

Lossless two ports are considered as the major

building blocks of antenna systems, microwave

amplifiers, analog/digital interface circuits and

models for interconnects of high speed, high

frequency analog/digital communications systems

layed out on the same MMIC and VLSI chips.

Furthermore, many special applications demand the

utilisation of symmetrical, lossless two-ports in two

kinds of elements. For example, design of microwave

amplifiers or antenna matching networks may require

symmetrical lossless two-ports constructed by

excessive number of elements to assure the sharp

roll-off on the performance characteristics and to

facilitate the production of the same value elements

employing the MMIC or VLSI technology. Another

example is the model of a naturally symmetrical

interconnects utilising the mixed element lossless

two-port structures. Therefore in this work, we

propose a semi analytic method to describe

symmetrical-lossless two-ports in two kinds of

elements, namely lumped and distributed elements.

Mixed element design problems has been

extensively investigated but it has not yet been

thoroughly elaborated [1][2]. Nevertheless, over the

last couple years, novel techniques have been

proposed to construct the lossless two-ports with

mixed lumped and distributed elements for restricted

class of topologies and related practical designs have

been introduced in [3-10]. In the new approaches,

lossless two-ports constructed with two kinds of

elements, are described in terms of the real

normalised Bounded-Real Strictly Hurwitz Scattering

Parameters (BR-SHSP). In a similar manner, in this

work, symmetrical lossless two-ports realised with

mixed element structures are also described in terms

of BR-SHSP in two variables up to nine elements

symmetrical ladder forms. Element values of the

lossless-two ports are obtained in terms of some

preselected independent set of parameters.

2 Scattering Description of Symmetrical

Lossless Two-Ports in Two-kinds of

Elements

Symmetrical lossless two-ports, constructed with

mixed-lumped and distributed elements can be

described in terms two variable scattering matrix

( )λ= ,pSS  or transfer scattering matrix ( )λ= ,pTT .

Here, ω+σ= jp  is the conventional complex

frequency variable associated with lumped elements

and ( ) Ω+Σ=τ=λ jptan  is the Richard variable,

associated with the equal length transmission lines. In

the classical literature, equal length or commensurate

transmission lines are also known as unit elements.

Using Belevitch representation, the scattering and

the transfer scattering parameters of a symmetrical

lossless two-port are given by,
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where 1±=σ  and the two variable real polynomials

( )λ,pg  and ( )λ,ph  can be expressed in the

coefficient form as
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If the symmetrical structure consists of only series

inductor and shunt capacitor type of lumped elements

connected with unit element (UE) then,

( ) 2/2
1),(

λλ−=λ
n

pf                                             (3b)

In the above formulation np stands for the total

number of lumped circuit elements, nλ designates the
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total number of unit elements. Alternative

expressions are given in the matrix forms as follows.

[ ] [ ]λΛ=λ G
TPpg ),( ;   [ ] [ ]λΛ=λ H

TPph ),(

where [ ] [ ]nT pppP 221= and [ ] [ ]Tnλλλ=λ 221

In this representation, HΛ  and GΛ  are called

connectivity matrices and they are formed by the

corresponding real polynomial coefficients of (3a).

For symmetrical structures, S11(p,λ)=S22(p,λ).

Therefore, the numerator polynomial h(p,λ) must be

odd in p and even in λ or vice versa. Since the

symmetrical two-port is lossless then,

I),p(TS),p(S =λ−−λ                                         (4a)

where I is the unity matrix. Employing the Belevitch

form of (1) and the losslessness condition of (4a) we

have,

),(),(),(),(),(),( λ−−λ+λ−−λ=λ−−λ pfpfphphpgpg (4b)

Cascade connection of each circuit elements of the

structures given in Fig.1, result in the complete

scattering parameters in (p,λ). In order to carry out

algebraic manipulations, one needs to derive transfer

scattering matrices for each single lumped element

(L,C) and unit element. Then, for each circuit

configuration transfer scattering matrices of the

elements are multiplied to obtained the transfer

scattering parameter of the complete structure which

in turn yields the scattering matrix of the composite

structure in two variable (p,λ).

Thus, the connectivity matrices can be obtained for

3,5,7 and 9 element circuit topologies as in [10]. As

far as the description of the symmetrical lossless two-

port is concerned, some of the entrees of the HΛ
matrix are chosen as independent parameters and rest

of the other entrees of HΛ  and GΛ  matrices are

determined in terms of these parameters employing

the losslessness condition of (4). Then, we can make

the following major “Statement”.

The Main Statement: Description of lossless two-

ports constructed with mixed lumped and

distributed elements

Any lossless two-port constructed with mixed
lumped and distributed elements, can be described in
terms of some selected independent entrees of the
connectivity matrix HΛ  such that the total number of

independent parameters is equal to the total number
of unique circuit element of the two-port.

Verification of the above statement can be found in

[3-6]. Based on the main statement, complete entrees

of the connectivity matrices HΛ  and GΛ  and the

element values of the Low Pass based, Symmetrical

Lossless two ports constructed with two kind of

elements (LPSL) are obtained in terms of these

independent parameters. For example, referring to

Fig. 1b of [UE – C – UE – C – UE] configuration, we

have 5 distinct elements. However, total number of

unknowns is three: Z1, C and Z2. In this case, entrees

10h , 21h , and 23h  of the connectivity matrix HΛ  are

selected as independent parameters such that 010 <h ,

021 <h  and 023 >h . Then, rest of the other entrees of

the matrices HΛ  and GΛ  are determined in terms of

these parameters. Finally, the unknown element

values are computed from the equations given below.

C10 −=h ;  2
221 CZ)2/1(−=h ;  2

2
2
123 CZZ)2/1(=h

Hence, the symmetrical lossless two-port of Fig.1b is

fully described in terms of independently selected

parameters 10h , 21h , and 23h . Employing the similar

approach, the coefficient relations for 3, 5 and 7

elements symmetrical structures of Fig.1 are obtain as

shown in Table 1. In the course of algebraic

manipulations, we employed the symbolic

computation toolbox of Matlab 5.1. For each circuit

component, transfer scattering matrices were defined

symbolically and they were multiplied in the given

order of Fig.1 to end up with the coefficient relations

of Table 1 [10]. The results can also be extended to

higher number of elements [10]. Due to the space

limitations details are omitted here. Complete results

will be presented at the conference.

 Numerical properties of the connectivity matrices

are quite interesting. Here, we just present a

statement, which greatly facilitates the selection of

the independent parameters.
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Figure 1: Low-pass Based Symmetrical Lossless two-

ports with lumped-distributed elements. a) 3 elements

b)5 elements c) 7 elements d)9 elements
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Statement 2: Property of the connectivity matrix

[[[[ ]]]]ijH h====ΛΛΛΛ

Symmetrical two-ports constructed with low pass
LC lumped ladder sub sections connected with unit
elements yield the following generic form of the
connectivity matrix [ ]ijH h=Λ
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As it is seen from (5), alternating entrees of HΛ  is

zero. It is found that this property greatly facilitates

the selection of independent parameters to fully

describe the symmetrical lossless two-ports under

consideration. Verification of this statement is

straightforward and can be found in [10].

In the next section we present an example where a

symmetrical matching network is designed with

mixed lumped and distributed elements for the

solution of a double matching problem.

3 Example

We wish to solve the double matching problem for

the given complex generator and the load

terminations, depicted in Fig.2 [10]. Here, it is

desired to design a symmetrical equaliser of order 5

as described in Table 1. The transducer power gain

(TPG) of the doubly terminated structure is expressed

in terms of the independent parameters h10, h21, h23

and it is optimised employing the Levenberg-

Marquardt technique over the normalised frequency

band 10 ≤≤ω . Hence, the following results are

obtained.
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In terms of the independent coefficients h10, h21, h23

the element values are obtained as

( ) ( ) 4h/h1/2Z 2
0101 ++= 210

,C1= ( ) ( ) 10
2
01210 hZ1/hh −+−

C2= ( ) ( )2
01210 Z1/hh +−− 2  The resulting 5 element

circuit realization and the performance of the

matched structure are shown in Fig. 2 and Fig. 3

respectively.
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Figure 2: Double matching problem (Z0=2.8910,

C1=1.2852, C2=0.0888, τ=0.4 fixed)

It should be noted that the configuration shown in

Fig.2 provides a satisfactory roll-off at the stop band

and it is very easy to implement as MMIC.
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Figure 3. The performance of the matched structure

4 Summary

In this paper, a semi-analytic procedure is

introduced to describe symmetrical lossless two-ports

formed with low pass, lumped ladder subsections

connected with unit elements. The lossless two-port

is described by means of its Bounded real Scattering

Parameters in two variable ),( λp  in the Belevitch

form. Using the real coefficients of ),( λph  and

),( λpg  connectivity matrices HΛ  and GΛ  have been

defined. It has been stated that the complete

scattering parameters of the lossless two-port under

consideration can be described in terms of the

independently selected set of entrees of the

connectivity matrix HΛ .

Explicit element values are given by means of the

selected independent parameters for 3, 5 and 7

elements symmetrical structures. An example is

included to design a symmetrical lossless matching

network with mixed lumped and distributed elements

for a double matching problem. It is expected that

results introduced in this work will find immediate

applications for the design and the simulation of the

miniaturised communication systems manufactured

on MMIC.
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Topology: [C]-[UE]-[C]
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Independent parameters: ,h01  12h  and h10<0

Topology: [C1]-[UE1]-[C2]-[UE2]-[C2]-[UE1]-[C1]
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Independent parameters:h01,  h10 < 0 h03 and h43< 0

Table 1. Coefficient relations for symmetrical

networks
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