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Signal-Flow-Graph Identities for Structural
Transformations in Multirate Systems

Alexandra Groth∗ and Heinz G. Göckler∗†

Abstract — Signal-flow-graph (SFG) transforma-
tions by means of identities are frequently used
to obtain efficient structures. In contrast to time-
domain approaches these transformations are graph-
ical and therefore easier to handle. In this paper
well-known noble identities [2] for multirate signal
processing are revisited and extended. To this end
up- and downsamplers with arbitrary integer phase
shifts are introduced. As an application, a novel z-
domain approach to efficient fractional sample rate
conversion is given.

1 Introduction

A signal flow graph (SFG) symbolically represents
a particular implementation of an algorithm, and
depicts the inherent signal flows in detail. Hence,
efficient structures with low computational load can
be obtained by SFG manipulations. To this end,
well-known identities [1,2] are widely exploited.
In multirate signal processing so-called noble

identities [2] are frequently applied. Here, up- and
downsampling is restricted to zero phase shift. As a
consequence, e.g. reversing the order of up-/ down-
samplers and delays is limited to L- or M -fold mul-
tiples of the unit delay. Hence, in the general case,
delay interchanging is impossible or leads to an in-
creased group delay due to the necessity of addi-
tional delay.
In contrast to previous publications, the aim of

this contribution is to revisit and extend identities
in which arbitrary delays are involved by overcom-
ing the aforementioned restrictions. For this pur-
pose down- [3] and upsamplers are generalized by
the introduction of arbitrary phase shifts. As a
consequence, no additional delay is required in the
course of transformation and the group delay re-
mains unchanged.
As an example, the derivation of efficient frac-

tional sample rate conversion (FSRC) is revis-
ited. By exploiting the well-known nobel identities
[2] only block-processing structures with increased
group delay can be deduced [4-5]. In contrast, a
sample-by-sample approach to FSRC without ad-
ditional group delay has so far been derived in
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the time-domain only [6]. Hence, by applying the
newly introduced multirate identities, a z-domain
representation of a sample-by-sample FSRC is de-
veloped.
Subsequently, we first introduce the required

novel identities in section 2 in order to derive the
z-domain approach to fractional sample rate con-
version in section 3.

2 Novel Identities

In previous publications it is generally assumed
that up- and downsamplers use a phase shift of zero.
In order to allow arbitrary sampling time instants,
time shifts λTo ∈ {0, ..., L − 1}To (upsampler) and
µTi ∈ {0, ...,M − 1}Ti (downsampler [3]) are intro-
duced. In the SFG representation this is indicated
by a dashed line with assigned time shift (cf., e.g.,
Fig. 1 left with λ = 0). Hence, in time domain this
novel generalized upsampler is defined by

y(mTo) =
{ x(m

L Ti) m = nL+ λ,m ∈ Z

0 otherwise, (1)

and the downsampler by

y(mTo +
µ

M
To) = x(mMTi + µTi) . (2)

By permitting arbitrary time shifts the novel
identities can be derived. This concerns all identi-
ties with delays involved. To this end, we i) have a
closer look at up- and downsampling with shifted
sample instants (identity 1), ii) consider order
reversal of arbitrary delay and up-/downsampling
(identity 2) iii) and of up- and downsamplers with
intermediate arbitrary delay (identity 3).

Identity 1: Shift of sampling instant
The identities referring to the shift of sampling
instant are depicted in Fig. 1 whereby, both for
up- and downsampling, two options are given.
The correctness is, for instance, proven for the

upsampler (option a) by demonstrating that the
output signals y(mTo) of both structures are identi-
cal. As already known y(mTo) of the original struc-
ture (Fig. 1 left) is given by Eq. (1) with λ = 0.
However, the output signal of the modified struc-
ture (Fig. 1a, top right) can be obtained by time
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Figure 1: Change of sampling instant (Two op-
tions).

shifting the input signal x(nTi) according to

u(nTi +
λ

L
Ti) = x(nTi) . (3)

In compliance with Eq. (1) upsampling of u(nTi +
λ
LTi) with time shift of λ

LTi = λTo leads to

v(mTo) =
{

u(m
L Ti) m = nL+ λ,m ∈ Z

0 otherwise (4)

=
{

x(m−λ
L Ti) m = nL+ λ,m ∈ Z

0 otherwise.

Finally v(mTo) is anti-delayed according to

y(mTo) = v(mTo + λTo) (5)

=
{

x(m
L Ti) m = nL+ λ − λ = nL,m ∈ Z

0 otherwise.

As a result we obtain y(mTo) which confirms Eq.
(1) with λ = 0.
Note that z

−λ/L
i , z

−µ/M
o are only required as

shimming delays and, hence, do not represent a
fractional delay.

Identity 2: Order reversal of up- or
downsampler and arbitrary delay
By applying the well-known identities [2] order
reversal of up- or downsamplers and delays is
restricted to z−α

o = z−βL
o or z−α

i = z−βM
i (β ∈ N).

However, the novel identities (Fig. 2) overcome
these restrictions.
The proof of Fig. 2 is self-evident and can be

conducted by applying identity 1 and eliminating
the anti-delay by combining it with the delay z−α

o/i .

Again, z
− α

L
i , z

− α
M

o represent shimming delays.

Figure 2: Order reversal of up- or downsampler
with arbitrary delay ((α)N = α modulo N).

Identity 3: Order reversal of up- and
downsampler with intermediate delay
Finally a novel result for the order reversal of up-
and downsampler with an arbitrary intermediate
delay is presented in Fig. 3, whereby µ and λ
result from the linear diophantine equation

Mλ − Lµ = α (6)

with α ∈ {0, ...,min (M − 1, L − 1)}1, µ ∈
{0, ...,M − 1}, λ ∈ {0, ..., L − 1}2, L and M co-
prime. The merit of the novel identity in contrast
to the well-known one3 is the unchanged group de-
lay of the resulting structure.

Figure 3: Order reversal of up-and downsampler
with intermediate delay.

For the prove of this identity it is demonstrated
that the output signal of the original structure
(Fig. 3, top) matches that of the modified struc-
ture (Fig. 3, bottom).

Output signal of original structure
The L-fold upsampler takes the input signal x(nTi)
and produces an output sequence

u(kT ) =
{

x( k
LTi) ∀k = nL, n ∈ Z

0 otherwise.
(7)

1For all α > min (M − 1, L − 1) an identity can easily be
derived by combining identity 2 and 3.

2Proof for µ ∈ {0, ..., M − 1}, λ ∈ {0, ..., L − 1} cf. [5]
3Partitioning of the intermediate delay in an M -fold delay

and and L-fold anti-delay or visa versa before reversing the
order of up- and downsampler
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By delaying u(kT ) α time units, we obtain

v(kT ) = u[(k − α)T ] (8)

=
{

x(k−α
L Ti) ∀k = nL+ α, n ∈ Z

0 otherwise.

Finally v(kT ) is decimated by an M -fold downsam-
pler leading to the overall output signal

y(mTo) = v(mMT ) (9)

=
{

x(mM−α
L Ti) ∀mM = nL+ α, n ∈ Z

0 otherwise.

Output signal of the modified structure
In the modified structure (Fig.3, bottom) the M -
fold downsampler takes the input signal x(nTi) at
time instants (lM + µ)Ti with l ∈ Z and produces
an output sequence (Eq. (2))

u(lTs +
µ

M
Ts) = x(lMTi + µTi), (10)

which is only defined at time instants (l + µ
M )Ts.

Interpreting z
− α

LM
s as a shimming delay leads to the

intermediate signal

v[lTs + (
µ

M
+

α

LM
)Ts] = u(lTs +

µ

M
Ts) (11)

= x(lMTi + µTi) ,

which differs from u(lTs + µ
M Ts) only in the time

instant at which it is available. By introducing
Mλ − Lµ = α (Eq. (6)) we obtain

v(lTs +
λ

L
Ts) = x(lMTi + µTi). (12)

Finally, we get the overall output signal

y(mTo) =
{

v(m
L Ts) ∀m = lL+ λ, l ∈ Z

0 otherwise (13)

=

{
x[m−λ

L MTi + µTi] ∀m = n−µ
M L+ λ,

n−µ
M ∈ Z

0 otherwise

by an L-fold upsampling at time instants (lL+λ)To

with l ∈ Z and λ ∈ {0, ..., L − 1} (Eq. (1)). By
rearranging the offset and exploiting Eq. (6) we
obtain the same output signal

y(mTo) =
{

x[mM
L Ti − (λM

L − µ)Ti] ∀ (see (13))
0 otherwise

=

{
x[mM

L Ti − α
LTi] ∀mM = nL+ α,

n ∈ Z

0 otherwise

as that of the original structure. q.e.d.

Other Identities
The order reversal of multiplications and additions
with up- and downsamplers is obvious and, hence,
not considered here: Original phase shift remains,
interchange is possible without restrictions.

3 Efficient sample-by-sample FSRC

The system theoretic approach to FSRC is a cas-
cade connection of an L-fold upsampler, a filter
H(z) and an M -fold downsampler (Fig.4). As a
consequence, all filter operations have to be per-
formed at the highest rate, which is related to the
system input rate fi by Lfi.

Figure 4: Fractional sample rate converter (FSRC).

As already indicated [4-5], significant savings
in computational expenditure can be obtained
by reversing the order of L-fold up- and M -fold
downsampler. As a result, we obtain a system
operating at a subnyquist sample rate fs = fi/M
(Fig. 8). To this end, the novel identities which
are derived in the previous section are exploited.

Step 1: Polyphase Decomposition of H(z)
In the derivation process we start with an LM -
branch polyphase decomposition of the FSRC filter
(Fig. 5, [5]) according to

H(z) =
LM−1∑

ν=0

z−νHν(zLM ) . (14)

Figure 5: Polyphase decomposition of H(z).
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Step 2: Order reversal of up- and downsam-
pler
In the intermediate step up- and downsampler are
shifted into each branch of the polyphase filter,
whereby the order of branch filters Hν(zLM ) and
subsequent M -fold upsampler is interchanged
according to [2]. Thus, we obtain a cascade
connection of L-fold upsampler, delay z−ν and
M -fold downsampler (Fig. 6).

Figure 6: Order reversal of downsampler and
branch filters.

Exploiting the novel identity 3 (Fig. 3) allows
us to interchange the order of these building blocks
without any increase in group delay (cf. with [5]).
Eventually the order of upsamplers and branch fil-
ters is reversed (see: Other Identities). The result
is depicted in Fig. 7 including shimming delays.

Figure 7: Order reversal of up- and downsampler
according to Fig. 3.

Step 3: Rearrangement of Branches
Finally, a pooling of branches with up- or down-
sampler of identical phase shift is required in order
to minimize the total number of hardware elements.
As a result, we obtain the desired efficient sample-
by-sample FSRC consisting of an input and output
commutator and an L×M MIMO (Multiple Input
Multiple Output) system (Fig. 8).

Figure 8: Desired efficient structure.

As already indicated, the above result can also be
obtained by a time-domain polyphase decompo-
sition [6] confirming the z-domain outcome (Fig.
8). Note that, in contrast to a block-processing
approach, we achieve a reduction of group de-
lay by (ML − L − M + 1)T corresponding to
z−(ML−L−M+1).

4 Conclusion

In this paper new identities for up- and downsam-
plers in connection with delays are presented. To
this end, samplers with arbitrary integer time shift
are introduced. As an application, a new system-
atic and rigorous derivation of efficient sample-by-
sample fractional sample rate conversion is given.
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