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A CNN model framework and simulator
for biological sensory systems

D. Balya ** B Roska”, T. Roska* F.S. Werblin"

Abstract — An abstract neuron model framework and
simulator is proposed for qualitative spatio-temporal
studies for biologic sensory systems. The proposed
framework defines a huge number of layer-ordered
simple base cells with neuromorphic relevant
parameters [1]. The created models can be translated to
hardware-level general multi-layer Cellular
Neural/non-linear Neural Network (CNN) templates [2].
The framework is used to create a complete mammalian
retina model. The definition of the model elements is
based on retinal anatomy and electro-physiology
measurements [1]. The developed model complexity is
moderate, compared to a fully neuromorphic one [3]
therefore chances of its implementation on a complex-
cell CNN Universal Machine [4] chips [5] using multi-
layer technology [6] and algorithmic programmability
are good.’

1 Introduction

This paper proposes a Cellular Neural/nonlinear
Network (CNN) [2, 4] model framework and
simulator (RefineC) for biologic sensory systems,
especially for the vertebrate retina [7, 8]. It presents a
pure CNN based complete mammalian functional
retina model as an example. Through the years,
starting with the early CNN models [9, 10] several
simulators have been developed. The latest one is
RefineC [11] (REceptive Field Network Calculus).

The development of the model components is based
on neurobiologic measurements [1]. The modeling
approach is neuromorphic in its spirit, relying on
both  morphological and electro-physiological
information. However, the primary aim was to fit as
close as possible the spatial and temporal output of
the model to the data recorded from mammalian
ganglion neurons. From an engineering point of view
the presented model is a simple multi-layer CNN
template, which consists of 3-layer coupled cell
structures to pave the way for a complex-cell CNN-
UM chip implementation [6, 12].

The retina, as a computational device, is a complex
and sophisticated tool for preprocessing a video flow.
It is anticipated that the results can be embedded into
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several complex algorithms and applications
targeting  real-life  applications, like  object
classification, recognition, tracking, and alarming.

The common neuronal modeling packages simulate
networks of synaptically connected neurons [13], a few
examples are Genesis, Saber, Spice, Swim, and
NeuronC [14, 15]. The typical size of the network is
about 10.000 neurons and each has about 20
compartments. Simulating biologic sensory system
with  several neuron-types require  powerful
workstations because of the huge number of variables
that need to be computed [13]. The proposed
simulation framework is simpler than previous ones
because single neuron is composed from maximum
three quasi-compartments thus only the most important
parameters should be specified. The size of the
simulated network is much bigger, nearly half million,
because the size of the computed video is 1800 by
1350 um, the distances between the photoreceptor cells
are 10 um and we model several neuron-layers. In a
typical simulation project huge fraction of time spent
on creating and modifying the model [15] therefore a
good wuser interface is important. The simulator
RefineC [11] has user-friendly graphical interface for
creating, simulating, analyzing, tuning, and managing
your high-level neuronal network models.

Chapter 2 describes the proposed abstract neuron
model framework. Chapter 3 summarizes the results
of the mammalian retina simulation.

2 Abstract neuron model framework

The basic blocks of the model framework are the
abstract neurons. These neurons are simple but they
can keep the qualitatively interesting features of the
modeled biologic sensory system therefore we do not
follow the classical compartment modeling approach
[14] but use a lumped parameterized model [9].

The abstract neuron model defines different types
of neurons with receptors using as few parameters as
possible. These neurons are organized into separate
layers. The parameters are the neuron time
constant(s), the intra-layer spatial coupling, and the
output function.

Subsequent layers supply the input of the next layer
through synapses. The abstract neuron has receptors
to implement these synapses. The three different type
of receptors are plain, delayed and desensitizing.
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The modeling takes the following steps: First, the
model structure is defined i.e. the neuron layers with
receptors are created. Second, the model parameters
are defined: the time constants, the coupling, the
output function and the receptor properties. Third,
the stimulus is selected, e.g. the same stimulus is used
as in the measurement, and the simulation begins.
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Figure 1. The processing structure of the
mammalian CNN retina model. Horizontal lines
represent abstract neuron layers (section 2.1) and
vertical lines represent the receptors (section 2.2).

The middle abstraction-level models can be
transformed into a low-level CNN multi-layer
template. Each column-, surface- or array-ordered
biological cells are modeled with CNN layers and the
synapses (inter and intra layer, chemical and
electrical, excitatory and inhibitory, as well) are
assigned to a specific CNN template. The result
contains several simple layers, where each layer has
its own time-constant and feedback connection
matrices. In the retina modeling the inter-layer
connections are zero neighborhoods cell-to-cell links
with linear or rectifier transfer functions and the
intra-layer ~ connections are  linear  nearest
neighborhood links. These restrictions guarantee the
hardware feasibility of the designed models in the
near future on the CNN-UM platform [6, 12].

2.1 The abstract neuron

The parameters of the abstract neuron are the time
constant(s) (7), neuronal feedback (s), and the
transmitter output function (f ). The time constant is
given in ms. If the neuron model is second-order the
neuronal feedback 1is definable (eq. 2). The
transmitter output function is the non-linear output of
the neuron (voltage to transmitter release) (eq. 3).

The abstract neurons are organized into separate
layers. The coupling (A) is a layer property, it

describes the spatial direct coupling (electrical
connections) between the neurons. The space-
constant is one of the quantities supplied by the
model so it is not an independent parameter but a
measurable result.

The differential equations of the n™ abstract neuron
are equations 1-3, where U refers to the receptors and
O to the convolution operator.
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The resting potential is set to zero therefore the
modeled voltage of the neuron (X') is not equal to the
measured value. Modeled and measured values,
however, can be compared after having applied a
scaling factor.

2.2 Receptors

The connection between two neurons is called
synapse. The synapses constitute the only couplings
between the layers. The source neuron is the input of
the synapse and the receptor is the receiver. Each
abstract neuron has some receptors.

The lateral extension of the synapse depends on the
physical area of the dendrite and the axon of the
source neuron. The type of the synapse spatial
organization could be gaussian (G) or pattern
defined. It defines the spatial strength of the
interaction. The gain (g) is the strength of the
interaction and sigma (0) is the spatial strength
property of the connection. The receptor transfer
curve (f ") is the non-linear input of the neuron
(transmitter concentrate to voltage).

Three different types of receptors are modeled:
plain, continuos delayed (7*) and desensitivity. The
differential equations of the m™ general receptor in
the n™ abstract neuron layer are equations 4-6.
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The desensitivity synapse operates in a way that the
effect of the synapse decreases over time as the
synapse becomes less effective. The parameters
describing the receptor are the speed of reaching the
final stage (7°) and the ratio between the transient-
and the sustained-part of the input at the steady state

().
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2.3 Transfer functions

Each abstract neuron and receptor has its own
transfer function. The system has a well-defined
steady state description: the state value of each
abstract neuron is zero. The transfer function should
have a zero crossing in the origin to ascertain this
property. The transfer function is monotonic and
continuous. Two groups of functions are defined:
quasi-linear (eq. 7-9) and rectified (eq. 10-11).
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3 Mammalian retina modeling

Recent studies [1] have revealed that the retina
sends to the brain a parallel set of about a dozen
different space-time spiking flows. The generated
representations are carried to the brain by a feature-
specific array of retinal output neurons. The input of
the retina is the activation of the cone (photoreceptor)
layer and the output is the ganglion cell spiking [8].

The retina has two main parts: the outer and the
inner retina [3, 10] we model the latter with several
blocks, therefore the mammalian retina model
consists of the following parts: the outer retina
model, the excitation pattern generators, the
inhibitory subsystems, and the ganglion cell models
[12]. On figure 1 the rectangles symbolize the blocks.

The outer retina model is the same for all the
different blocks. It has two interacting cone and
horizontal layers, which model the time- and space-
behavior of the outer retina.

The inner retina is more complex. The retina has
several types of ganglion cells. The two qualitatively
different inputs of a ganglion cell are the excitation
and the inhibition. The excitation comes from a
bipolar cell; the inhibition derives through an
amacrine cell. Each amacrine cell has connection at
least to one bipolar cell. The input of the bipolar cells
is the outer retina.

The inner retina model is divided into parts, each
one representing a given type of ganglion cells and its
input blocks: the excitatory subsystem and the
inhibitory subsystem. In general we need some
bipolar layers and a few amacrine feedback layers for

one excitatory block. Each inhibitory block has some
amacrine feed-forward layers and a few bipolar
layers. The ganglion blocks combine the outputs of
the excitatory and inhibitory blocks.

All of the above mentioned layers are modeled with
one abstract neuron layer. Figure 2 shows the
comparison of the simulations and measurements [1].
The model qualitatively reproduces the inhibition,
excitation and spiking patterns for the flashed square
stimulus.
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Figure 2. The measured and simulated space-time
feature-specific arrays in two different cases of
retinal outputs. The time runs horizontally and the
middle row of the retina is the vertical axes. The first
column of the table contains the biologic name of the
modeled cell [1].

Figure 2 contains patterns of excitation and
inhibition for different ganglions. Time runs
horizontally, space is shown vertically. The patterns
illustrate the temporal and spatial distributions of
activity for a flashed square.

The following video-flow is projected to the retina.
A white square against a gray background is
presented at the first vertical white bar and "turned
off" after the 2™ second. The dimension of the
stimulus falls between the two horizontal bars. The
spiking pattern is the output of the ganglion cell
model, the excitation and inhibition are the bipolar
and amacrine input of the ganglion layer,
respectively.
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4 Conclusions

The paper showed that the proposed modeling
framework is a powerful and effective simulation
platform for creating retinal and other sensory models
with biologically relevant parameters. The presented
model is developed for mimic the mammalian retina
from photoreceptors to the ganglion cells, which is
output of the retina. The presented whole mammalian
retina model incorporates the abstract neuron model
framework. The structure of the model is based on
the morphology and the parameters determined by the
flashed square measurements. The results of the
model for the flashed square stimuli are very similar
to the measurement of the rabbit retina for each
excitation, inhibition and spiking patterns [1].

The multi-layer mammalian retina model can be
iteratively decomposed in time and space to a
sequence of a low-level, low-complexity, stored
programmability, simple 3-layer units (Complex R-
units) with different specified parameters [12]. These
units can be represented as complex cells of a CNN
Universal Machine [4, 6].

The proposed framework can be applied to create a
low-complexity therefore hardware feasible neuro-
biologic models that can be implemented in the near
future by sugar-cube or multi-chip technology. It
could be incorporated into any sensory prosthetic
device that is required to send biologically correct
stimuli to the brain.

The developed simulator serves as a basic research
tool, allowing us to manipulate parameters and to
utilize the wisdom of biological design in a powerful
adaptable silicon device. Some examples that could
be directly inserted into image processing algorithms
are static and dynamic trailing and leading edge and
object corner detection in space and time, object
level motion detection and tracking with size
selectivity (beside local interactions), speed, size,

direction, and intensity selective video-flow
processing.
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