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Abstract - Algebra, be it linear or discrete, has had
great importance for circuit theory. It has been used to
solve problems in circuit analysis and circuit synthesis.
But is the opposite true also? Has circuit theory, and its
twin brother, system theory, been able to produce new
results in algebra, and in particular in computational
algebra? In this lecture we shall show that that is indeed
the case: We shall concentrate on core algebraic
problems of approximation, algebraic minimality and
inversion. We shall also show that the scope can be
larger than what is customary in linear algebra, also
infinite systems can be handled by circuit theoretic
methods. The approach opens a variety of new
perspectives in linear algebra which we shall briefly
describe at the end of the lecture.

1 Introduction: some history

The introduction of complex function theory in
Electrical Engineering in the early years of the 20th
century has been a watershed that allowed the solution
of major problems in electrical circuit analysis and
synthesis. It allowed the treatment of many problems
considered 'of analytic nature' by algebraic methods.
The connection could be laid between desired signal
behavior at the input and output ports of circuits, the
properties of the constituting elements and the circuit
structure. Propagation of a signal through a linear
medium is described by a convolution, which after
Laplace transformation converts into an algebraic
product:

)()()( susTsy =
here u(s) is the Laplace transform of the signal, T(s)
characterizes the transfer behavior of the system and
y(s) is the Laplace transform of the resulting output.
Much of circuit analysis and synthesis has to do with
the properties of the transfer operator T(s). We give
two common examples:
- Filtering: it is desired that T(s) exhibits as closely

as desired a given frequency behavior, e.g. T(jω)
must be a low pass filter;

- Model reduction: an operator Ta(s) is desired
which approximates T(s) within some tolerance
given, with minimal computational complexity.

These examples are put here in a linear context, but
the problems are of course more general: the questions
make sense in a non-linear context as well. Classical
circuit theory has been able to find solutions to these,

and to many more problems. We give some quick
comments on the two problems mentioned:
- filtering: the classical approach has been to

approximate an ideal behavior with a rational
transfer function T(s)=p(s)/q(s) keeping desired
physical circuit behavior, e.g. contractivity or
positive definiteness;

- model reduction: the classical approach has been
to define a Hankel operator connected to the large
system behavior and then to approximate that
Hankel operator with one of low complexity,
leading to so called 'balanced model reduction' or
'Hankel norm model reduction'.

Much of classical circuit theory is highly dependent
on the properties of analytic functions in a region of
the complex plane. So what could be the import of
these theories for computational algebra?
The most basic problems in linear algebra are
connected to the prototype linear equation:

Tuy =
where u and y are vectors and A is a matrix of
appropriate dimensions. The questions we raised
make sense also in this case: can A exhibit a desired
behavior with low computational complexity? or, can
A be approximated by a another matrix Aa of low
computational complexity?
The algebraic link was first provided by a number of
great circuit and system theorists in the 1960's, with
Vitold Belevitch playing a central role [1]. I do not
want to leave unmentioned the contributions of a
number of other researchers, in particular: D.Youla,
R.Kalman, R.W.Newcomb, Ch. Desoer, L. Zadeh and
B.D.O.Anderson, where the last one probably made
the most comprehensive linkage between circuit
theory and linear algebra in his book [2].
The contributions just mentioned in fact amounted to
the introduction of the notion of state and state
transitions, leading to a representation of the transfer
behavior of a system using state equations:
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where the ∂ indicates a time evolution (a 'next'
operator: a time derivative in the time-continuous case
or the next value in the time discrete case), and
{A,B,C,D} is a quadruple of matrices. Although linear
algebra was ushered in circuit theory in a new way, a
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number of unexpected problems were introduced as
well. While it was relatively easy to characterize
physical circuit behavior using Laplace transforms,
that certainly was not the case with the state
description. For example, contractiveness and positive
reality were hard to characterize, leading eventually to
the PR-lemma, known otherwise as the Kalman-
Yacubovitch-Popov criterium. Also complexity gave
its host of problems. The state space representation is
not unique, it utilizes an intermediate state quantity x
which is certainly not unique. Depending on its
choice, a realization may have very different
computational properties. One may safely say that the
question of the impact of circuit and system theory on
computational algebra was still open. What was
needed was a way of handling the opposite direction:
that will be the main goal of this exposition.

2 From circuit to matrix

Since we are interested in translating circuit
properties to properties of matrices, we put ourselves
squarely in the context of discrete time systems. Since
the great contributions of A. Fettweiss, we know that
most if not all continuous time properties can be
translated to discrete time properties via the bilinear

transformation 
s

s
z
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 (which transforms the right

half plane to the unit disc - we use here the
convention that a delay is represented by z rather than
the common engineering convention z-1).

A transfer operator of the type ∑= k
k zTzT )(  will

now correspond to an input/output map of the type:
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in other words: a doubly infinite Toeplitz matrix.
Classical operators do translate to a very special type
of non-standard (because of non finite dimensions)
matrix. How could the normal matrix case be fitted
in? A first step would be to take the individual
components of the transfer time varying: at position
(i,j) we would put a Ti,j rather than a Ti-j. A second
important step is to make also the dimensions time
varying, including 'no dimensions at all', when an
input or output is not present. Hence, the input
dimensions are indexed by numbers {mj}, the output
dimensions by numbers (ni} and the block Ti,j has
dimensions ni×mj.. When mj=0, then Ti,j has zero
columns (but does have rows!). We extend the
classical matrix calculus with matrices of dimension

zero and utilize the convention that the product of a
matrix of dimension m×0 with one of dimension 0×n
is an m×n matrix with entries zero. In this way, a
finite matrix can be interpreted as an infinite one,
whereby dimensions of entries become zero for small
and large values of the indices. One is free to position
the 0,0 or central element where it is convenient. We
indicate the sequence of input dimensions by a
sequence },,,,{ LL 101 mmm−  and likewise (with

n's) for the output sequence, where the central, zero'th
element is distinguished with triangular brackets for
identification. For example: a map },,{ 112  to },{ 21

will have the form
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where the central element is put between triangular
brackets. Elements in positions k,k for arbitrary k
belong to the 'main diagonal'. In the example shown,
the main diagonal consists of a single non-trivial
element, a 2×2 block matrix in position 0,0 at the left
lower corner. Lower diagonal matrices or operators
play a special role: they correspond to classical 'causal'
maps, i.e. maps for which inputs only influence future
outputs. A state space representation of such causal
maps now becomes time varying, and it has the form
(we specialize to the discrete time case)
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in which all matrices are block matrices and
dimensions are also time-varying, in particular, they
may disappear. State space representations are not
unique, in fact and with kR an invertible matrix for

each k, we have another adequate representation as
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We shall denote the state space dimensions by kδδ .

Introducing a generic causal shift
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mapping state sequences },,,,{ LL 101 δδδδδδ−  to

},,,,{ LL 012 δδδδδδ −− , and block diagonal global

representations for the state space matrices as e.g.
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we find the global state space representation for the
causal operator T (assuming I-ZA invertible)

ZBZAICDT 1−−+= )( .

One should realize that every computing system can
be represented by state space equations, the state
stands for what the computing system remembers
from the past of the process. When the computation is
linear, then the state space equations will be linear as
well. The dimension of the state space controls the
size of the memory needed. The number of
algebraically independent parameters in the state
space matrices will control the complexity of the
calculation at each point in time k. In our theory here
we do not allow reshuffling of the inputs and outputs
across time points, we assume that when an input uk

comes in, the corresponding yk has to be computed.

3. Realization theory

Realization theory is concerned with finding
minimal kδδ 's given the transfer operator or matrix T.

The answer is given by what is known as 'generalized
realization theory', which goes back to the work of
Kronecker at the end of the 18th century. We define
the 'kth Hankel operator' related to T as
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The result is now that the rank of Hk equals the
minimal kδδ . Any minimal realization can be

obtained by computing minimal factorizations for all
Hk:
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The factorization determines the realization.

4. Algebraic minimality

The generalized Kronecker minimality result is as
straight as it possibly can be, quite another matter is to
obtain algebraic minimality. We wish to find local
realization matrices {Ak,Bk,Ck,Dk} such that the total
number of local multiplications and additions is
minimal. This problem can be approached through

embedding or Darlington theory. Let us restrict the
discussion to the case where the operator T is causal
and contractive, i.e. 1≤T . Darlington theory will

provide for a realization of an embedding
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which is causal and unitary (in mathematical terms:
inner) and has a unitary state space realization of the
same dimension as the realization for T:
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The computations can be reduced to the utilization of
orthogonal rotations (Jacobi transformations), lossless
transformations in circuit theory terms. We would
need qk*(qk-1)/2 Jacobi rotations, when qk is the
dimension of the total realization matrix. This is also
the number of free algebraic parameters, in case of
real computations. Hence: both state space complexity
and algebraic complexity can be minimized
simultaneously, just as is the case in classical lossless
circuit realization theory.

5. Factorization theory

An important intermediate theory needed in most
synthesis questions is factorization theory. We briefly
introduce a few main results. Again we consider a
causal (i.e. lower triangular) matrix or operator T with
minimal realization {A,B,C,D}. An external
factorization is a factorization of the type:

rrUT *∆∆=
where r∆∆  is causal an Ur is inner, and the

factorization is minimal, the index 'r' standing for
'right' since there will be a dual left factorization.
External factorizations amount to recursively solving
a linear equation known as a 'Lyapunov-Stein'
equation. This can be done in a straightforward and
numerically stable way on the state space
representation for T, resulting in state space
representations for ∆r and Ur, whereby the state
representation for U shares A and B matrices with T.
Another important type of factorization is known as
inner-outer factorizations, it has the form:

orrTVT = ,

where now both Vr and Tor are causal, and Vr is

isometric, i.e. 1=rr VV *  (it is not necessarily square).

The inner-outer factorization is very different from the
external factorization, in that it exhibits the 'causal
zero structure' of T, while the external factorization
exhibits its global pole structure. The inner-outer
factorization, when expressed in state space terms,
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gives rise to a so called 'square root algorithm', first
introduced by Morf and Kailath [3] in the context of
Kalman filtering. It involves an intermediate sequence
{Yk} whose dimensions reflects the causal zero
structure of T, and a QL factorization:
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in which the known left hand matrix is brought into
lower echelon form using a unitary transformation
matrix Wk. The realization for Vr is derived from the
Wk, while the realization for Tor is given by {Ak,Bk,Cok

Dok}. The square root algorithm in its various forms
may be one of the most powerful algorithms of
modern algebra! Its ramifications, especially the so
called doubling algorithms utilize notions of circuit
theory in unexpected ways.

6. Approximation theory

Both in filter theory and in model reduction theory,
approximation theory plays a central role. The central
result in complex function approximation theory is
called 'Hankel norm approximation' and it was the
central topic of the famous 'AAK theory' - a
generalization of the classical Schur-Takagi
interpolation theory [4]. Given a causal transfer
operator T representing a desired behavior, it produces
a causal approximating operator Ta, of minimal
complexity, which meets the norm constraint

εε≤−
HaTT

for a given error ε. The norm used is the Hankel
norm, it is the sup of the Hankel operators defined
earlier (in the classical time invariant case there is just
one Hankel matrix). It turns out [5] that the Hankel
norm model reduction problem generalizes to the
matrix case and involves just the computation of a
single external factorization, be it an external
factorization of a special type - using a J-unitary
matrix with J a signature matrix, rather than a unitary
factorization. This appears to be a new results in
matrix theory, for a comprehensive analysis see [6].

7. Further results

In the same vein as detailed up to now, many more
classical circuit theoretical results translate to results
in matrix calculus:

- Darlington synthesis: embedding of a
contractive matrix or operator in a unitary one
and resulting in algebraically minimal
operations.

- System inversion: in particular channel
equalization. In the general case it amounts to

an external factorization followed by an inner-
outer factorization.

- Minimal sensitivity control: this difficult
problem (initiated by D.Youla and G.Zames)
amounts to a J-inner/outer factorization and
results also in coupled square root algorithms,
as was shown by Helton and Ball [7].

8. Future perspective

Although quite a few important results have been
obtained translating circuit theory to algebra, there
remains a lot to do! Foremost there is the extension of
the theory to the non-linear case. The differential of a
non-linear system is a time varying system, the time
varying theory should provide for a new way to
approach non-linear problems such as model
reduction, system inversion and robust control. In fact,
there is already quite a literature showing that that
should be the case. On the other hand, even in the
linear case there is more work to do. Let me just
mention two unsolved problems of potentially great
technical importance:

- inversion of outer systems (with applications to
the modeling of transmission lines in large
integrated circuits);

- sensitivity conditioning of systems.
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