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Abstract - The insertion loss (IL) is regarded as the best 

interference suppression characteristic of power filters or 
suppression components. The IL definitions are considered and 
as an alternative the paper suggests the use of network 
parameters. It is a known fact that the standard IL 
measurements do not provide reliable information about the 
operational performance of a suppressor. This is largely due to 
the source and load mismatch, which is typical in power lines. 
Arguments are presented, showing that network parameters 
allow for more complete and reliable characterization of power 
filters and components. The IL would not be abandoned, because 
the network parameters provide enough information to obtain 
not only the standard IL, but also the IL in a non 50 Ω system. A 
new treatment of “worst case” or minimum IL is proposed, 
which is also based on network parameters. Furthermore, input, 
output, or transfer impedances, simulation models, and other 
characteristics, can be obtained from the network parameters, 
but not from the currently published standard IL data. 
 

Index Terms - Electromagnetic interference, interference 
suppression, power filters, scattering parameters. 
 

I. INTRODUCTION 
HE insertion loss (IL) is used as a measure of the 
interference suppression capability of passive power 

filters and components. Sometimes the IL is confused with 
voltage attenuation, which could be in part due to the different 
definitions in the technical literature. To avoid ambiguity the 
following Section II considers those definitions. In Section III 
the equations for IL in terms of two-port network parameters 
are listed. These include chain, impedance, and scattering 
parameters, which we find most useful. If needed, similar IL 
equations in terms of admittance, or hybrid h- and g-
parameters, can be derived easily. 

There are also different ideas of “worst case” IL.  Some 
think of it as the IL measurements in 0.1 Ω/100 Ω and the 
reverse system. Others understand it as the theoretical 
minimum IL provided by the filter or component. In Section 
IV we suggest the minimum IL to be the lower of the two 
chain parameters: c11 and c22. In theory, the IL can be even 

less than that, but that can happen in very rare cases, which 
require special attention and more careful analysis.  
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Section V discusses the arguments in favor of publishing 
the filters network parameters, instead of standard IL only. 
There are also the measurements supporting those arguments.  

The conclusions are summarized in Section VI.  

II. INSERTION LOSS DEFINITIONS  

A. Classical Definition  
The IL is defined in [1] as the ratio, in dB, of two powers in 

accordance with the following equation: 
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where P20 is the power delivered to the load impedance ZL, 
which is the input impedance of the measurement instrument’s 
receiver, connected to the signal generator as in Fig. 1a and P2 
is the power delivered to the same impedance by the same 
generator, but with a filter inserted between them, as shown in 
Fig. 1b. In the figure, V1 and V2 are respectively the input and 
output voltages of the filter. Similarly, I1 and I2 denote the 
input and output current. For the definition of IL the direction 
of the output current I2 is irrelevant, but it matters in the 
definitions of network parameters. Sometimes in the literature 
the direction of I2 is reversed, but in the more general case of 
n-port networks, it is more sensible to uniformly define a port 
current as flowing into the port. In the reference measurement, 
Fig. 1a, ideally V10 = V20 and I10 = –I20. 

In the oldest source [2] known to us, the IL is defined as the 
insertion ratio (IR) in dB: 
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It is easy to show that definitions (1) and (2) are equivalent: 
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and similarly: 
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Notice that the requirement in the classical definition of IL 
is that the source impedance Zs and load impedance ZL are 
same in both measurements - with and without the filter. Zs 
and ZL do not have to be resistive, equal to each other, or 
constant. 
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Fig. 1.  Insertion loss definition: a) reference measurement (filter replaced by 
short circuit), b) measurement with the filter inserted.  

B. CISPR 17 Definitions 
The international CISPR 17 standard [3] requires that the 

source and load impedances are equal to the reference 
impedance Z0 = 50 Ω. When Zs = ZL the load voltage 
V20 = Vs/2 and (3) becomes: 
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which is the IL equation given in the standard [3]. 
According to CISPR 17, the IL is measured both with and 

without load current, in three different test circuits: 
asymmetrical (common-mode), shown in Fig. 2a; symmetrical 
(differential-mode), shown in Fig. 2b; and unsymmetrical test 
circuit, which is shown in Fig. 2c. In the last test circuit all 
lines that are not connected to the ports of the measuring 
instrument, must be terminated to ground reference through 
impedances, equal to the reference impedance Z0, which is 
specified to be 50 Ω. 

Probably the primary concern of CISPR 17 is the reliability 
and repeatability of the measurements. This could be why the 
standard emphasizes that the source and load impedances 
must be equal to the reference impedance and defines the IL 
by (5), which is a special case of the classical definition (1). 
Indeed, whenever Zs ≠ ZL, (5) does not yield IL. 

CISPR 17 also gives instructions for IL measurements in 
non 50 Ω systems. These are not mandatory and should be 
done in the frequency range from 1 kHz to 300 kHz with 
0.1 Ω/100 Ω source/load impedances as well as in the reverse 
system. The impedance transformation can be achieved with 
two wideband transformers connected as shown in Fig. 3. The 
standard suggests turns ratio of 1.4:1 to get the 100 Ω, and 
22:1 to obtain 0.1 Ω impedance, seen by the filter when both 
the generator and the receiver have 50 Ω impedance. These 
turns ratios are obviously calculated from:  
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Fig. 2.  Matched system insertion loss measurement test circuits: a) asymmet-
rical (common-mode), b) symmetrical (differential-mode), c) unsymmetrical. 

where Z is the desired Zs or ZL, seen from the input or output 
port of the filter, and Z0 = 50 Ω is the measurement system 
impedance. In theory, (6) is correct, but in practice the 
resulting impedances are far from the target values, as it will 
be shown later. Then it is not clear whether engineers should 
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Fig. 3.  Test circuits for measuring insertion loss in non 50 Ω systems: a)
common-mode, b) differential-mode. 
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adjust the turns ratio, to get closer to the 0.1 Ω/100 Ω target, 
or keep the turns ratio constant. In either case, the mismatched 
IL of a filter, measured with one pair of wideband trans-
formers, would not match that measured with another pair of 
transformers. 

C. Other Definitions 
There can be also other definitions of IL in different 

standards and publications, e.g. [4], but it is doubtful that they 
can reveal some hidden qualities, or improve the 
characterization of electromagnetic interference (EMI) filters 
or components. 

III. INSERTION LOSS IN TERMS OF TWO-PORT NETWORK 
PARAMETERS 

By definition the concept of IL is applicable to two-port 
networks, and therefore, it can be expressed in terms of two-
port network parameters. A derivation of the following 
expression for IL in terms of chain c-parameters (often called 
ABCD-parameters) can be seen in [5]: 
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where c11, c12, c21, and c22 are the c-parameters of a linear two-
port network, defined as: 

 1 11 12 2

1 21 22

V c c V
I c c I

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (8) 

with port voltages and currents as defined in Fig. 1b. 
In a similar manner, equations for the IL in terms of other 

port parameters can be derived. The IR in terms of z- and c-
parameters have been published in [1], but referred to as IL, 
which apparently confuses the IR and IL in (2). The IL in 
terms of z-parameters is: 
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where z11, z12, z21, and z22 are the impedance z-parameters of a 
linear two-port network, defined as: 
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If needed the IL can be expressed in terms of other network 
parameters by using the conversion tables found in the related 
literature, e.g. in [6].  

The easiest and most accurate way to measure two port 
parameters nowadays is via the scattering s-parameters, which 
are measured with vector network analyzer (VNA) and are 
defined as: 
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where s11, s12, s21, and s22 are the scattering s-parameters of a 
linear two-port network; the a1 and a2 are incident, and b1, b2 
reflected power waves. The equation for IL in terms of s-
parameters has also been published [7]: 
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where ρs and ρL are the source and load reflection coefficients, 
defined as: 
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Equation (12) can be derived by using signal flow graphs 
[6], or the power gain equations [6] and [7].   

Equations (7), (9), and (12) relate the IL in the sense of the 
classical definition, to the two-port network parameters, which 
characterize the filter for a given conduction mode – common-
mode or differential mode. In the special case of matched 
source and load impedances, i.e. when ρs = ρL = 0, (12) 
simplifies to: 
 2120 lgIL s= − ⋅  (14) 
which is the IL equation in terms of s-parameters, given in 
CISPR 17 standard [3]. 

IV. MINIMUM INSERTION LOSS 
In [8] the IL measurements in 0.1 Ω/100 Ω and the reverse 

system are called the “approximate worst case”. According to 
[1] there are different “worst case” insertion losses, which are 
achieved, at different source and load mismatch cases. In the 
next Section, it is shown that the “approximate worst case” IL, 
measured according to CISPR 17 guidelines for non 50 Ω 
systems, is a lot higher than the minimum IL. The theoretical 
minimum IL can be found via the chain parameters. Equation 
(7) can be rewritten in the following form:  
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When Zs → ∞, i.e. in the case of an ideal current source, it 
follows from (15) that the IL becomes: 

 21
22 21 22

22

20 lg 20 lg 20 lg 1 L
cs L

c Z
IL c c Z c

c
= ⋅ + = ⋅ + ⋅ +  (16) 

From (16), the larger ZL, the larger the ILcs would be, unless  
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where Z2,∞ = c22/c21 is the open-circuit output impedance. 
Therefore, the minimum of ILcs is when ZL = 0, i.e. when 
short-circuiting the output, except in the rare cases when (17) 
is fulfilled. In most practical cases the minimum of ILcs is: 
 ,min 2220 lgcsIL c= ⋅  (18) 

When Zs = 0, i.e. in the case of an ideal voltage source, 
from (7) it follows that: 
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As long as the following condition is not fulfilled: 
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where Z2,0 = c12/c11 is the output impedance with shorted 
input, the minimum ILvs is when ZL → ∞, and it is:  
 ,min 1120 lgvsIL c= ⋅  (21) 

It can be concluded that in most practical cases, the lover 
limit for the IL curves can be constructed by plotting the 
smaller of the c11 and c22 coefficients over the frequency range 
of interest. However, if conditions (17) and (20) are fulfilled, 
then even lower IL is possible. 

V. MEASUREMENTS AND DISCUSSION 
Publishing the full set of s-parameters, i.e. both common- 

and differential-mode, would give customers the most 
complete, accurate and reliable information about filters and 
components. The s-parameters can be converted to any other 
set of network parameters, depending on the need. Using (7), 
(9), or (12), designers could predict the insertion loss of a 
filter in any line where it would be inserted, provided they 
have estimation of the line’s impedances. The full set of 
network parameters can also be utilized to build circuit 
simulation models of suppression components or filters – 
another advantage of network parameters over IL data. 

The standard IL data, which are currently published by 
manufacturers, would not be lost, because according to (14), 
s21coefficient is the standard IL curve with an opposite sign. 
As an example, the common-mode s-parameters of the filter in 
Fig. 4 are shown in Fig. 5, where the s21 subplot is a mirror 
image of Fig. 6a, which is the measured standard common-
mode IL of the same filter.  

The standard IL measurements do not provide sufficient 
information to determine the IL at mismatched source and 
load impedances. The latter can be easily calculated, if the 
four network parameters for a given conduction mode are 
known. For example, Fig. 6b shows the mismatched common-
mode IL of the same filter (Fig. 4) with s-parameters in Fig. 5, 
but with Zs and ZL as shown in Fig. 7. Equations (7), (9), and 
(12) are equivalent and any of them would yield the same 
mismatched IL (Fig. 6b), for a given set of network 
parameters, source, and load impedance.  

A wideband transformer WBT1.5-1SLB [9] was used to 
increase the source impedance. With a 1:1.5 turns ratio, one 
would expect Zs ≈ 112.5 Ω according to (6), but the result is 
very far from that (Fig. 7) although WBT1.5-1SLB has a very 
wide bandwidth – from 40 kHz to 350 MHz. 

WBT16-1SLB, which has a bandwidth from 100 kHz to 
100 MHz [9], was used to lower the load impedance. Again 

there is a large discrepancy between theoretical and measured 
impedance. From (6), with turns ratio of 1:16, the load 
impedance seen from the output of the filter should be 
ZL ≈ 0.2 Ω, but it is more than 3 Ω for all frequencies above 
50 kHz.  

Fig. 5.  Common-mode s-parameters of the filter in Fig. 4, measured with 
VNA. Reference impedance Z0 = 50 Ω. 
  

Fig. 6c represents the mismatched common-mode IL 
measured as in Fig. 3a, with the above mentioned impedance 
changing transformers. It differs significantly from Fig. 6b, 
which was calculated from the measured standard common-
mode s-parameters according to (12).  

Obviously, the impedance transformation depends on the 
characteristics of the transformers. This makes it impossible to 
have reliable and repeatable mismatched IL measurements, 
which is probably the reason, why these are not mandatory. In 
contrast, if the network parameter measurements of a filter are 
reliable and repeatable, one would expect reliable and 
repeatable mismatched IL from (7), (9), or (12). Therefore, the 
value of IL measurements in non 50 Ω systems is 

Fig. 6.  Common-mode insertion loss of the filter in Fig. 4: a) Standard 
measurement in 50 Ω system. b) Calculated from network parameters with Zs

and ZL as in Fig. 7. c) Measured in test circuit Fig. 3a, with Zs and ZL as 
shown in Fig. 7. d) Minimum IL, which is constructed from (21) up to 
700 kHz, and (18) for the remaining frequencies up to 90 MHz.  

Fig. 4.  An example of a single-phase power filter: R = 1 MΩ, CX1 = CX2 = 
100 nF, LCM = 1.8 mH, CY1 = CY2 = 3.3 nF.  
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questionable. Instead, what is needed is the complete set of 
network parameters for common- and differential-mode.  

It was mentioned earlier that the definition of IL is 
applicable only to two port networks. However, even the 
simplest single-phase filters are in fact 4-port networks (Fig. 
4), a 3-phase filter would be a 6-port network, etc. This 
necessitates the use of the test circuits, shown in Fig. 2, the 
realization of which requires some auxiliary networks - 
connecting wires, balanced-unbalanced transformers (baluns) 
[7]. These auxiliary networks are not part of the filter itself 
and affect the measurement results. In other words, they add 
measurement errors. In this respect network parameters 
obtained with VNA can have an advantage over IL data 
measured with EMI test receivers due to the following 
reasons:  

1) A VNA uses more sophisticated calibration, which can 
take into account the connecting wires. 

2) If the s-parameters of the auxiliary networks are 
measured, deembedding [10] can be used to remove the errors 
due to these networks. 

3) The standard n-port s-parameters can be measured in the 
unsymmetrical test circuit Fig. 2c and converted to mixed-
mode network parameters [11], which contain the common-
and differential-mode s-parameters. Unsymmetrical test circuit 
measurements do not require auxiliary networks, thus, 
eliminate the associated measurement errors.  

To summarize, the standard IL data alone are incomplete 
and it is impossible to analyze the filter or suppressing 
component in greater detail. They do not provide enough 
information to predict the IL under mismatched source and 
load conditions. Furthermore, it is impossible to construct the 
minimum IL curve, to find the input, output, or transfer 
impedances, or simulate the performance of a component or a 
filter, if only its IL is known.  

VI. CONCLUSION 
The classical IL definition was compared with the 

definitions, given in the CISPR 17 standard. The equations for 
IL in terms of network parameters were given as well. Many 
of the advantages of network parameters were pointed out. 
Nowadays, any set of network parameters is usually calculated 
from the measured scattering s-parameters, which are 
accurate, reliable and repeatable. Therefore, publishing the s-
parameters, instead of IL data, would provide the necessary 
information to obtain any set of network parameters that a 
customer might need. Those used to the standard IL would not 
lose anything, because it is visible from the s-parameters. 
However, those who need the IL in mismatched conditions are 
currently unable to get it. 

It was shown that the CISPR 17 recommended procedures 
for mismatched IL measurements do not produce reliable and 
repeatable results. With the network parameters, it is possible 
to obtain the IL for arbitrary source and load terminations. 
Furthermore, the standard IL does not give any idea of how 
the performance of an EMI filter could deteriorate in extreme 
cases of mismatch, but with network parameters the minimum 
IL can be obtained.  

Fig. 7.  The source and load impedances seen from the input and output ports 
of the filter.  

Finally, the input, output, or transfer impedances, 
simulation models, and other characteristics of the suppressor, 
can be obtained from the network parameters, but not from the 
currently published standard IL data. 
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