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Abstract— A mathematical model of a voltage source converter 
is presented in the synchronous reference frame for 
investigating VSC-HVDC for transferring wind power through 
a long distance. This model is used to analyze voltage and 
current control loops for the VSC and study their dynamics. 
Vector control is used for decoupled control of active and 
reactive power and the transfer functions are derived for the 
control loops. In investigating the operating conditions for 
HVDC systems, the tuning of controllers is one of the critical 
stages of the design of control loops. Three tuning techniques 
are discussed in the paper and analytical expressions are 
derived for calculating the parameters of the current and 
voltage controllers.  The tuning criteria are discussed and 
simulations are used to test the performance of such tuning 
techniques.  

Index Terms—Voltage source converter; VSC-HVDC; Vector 
control; PI controller tuning; modulus optimum; symmetric 
optimum 

I. INTRODUCTION 
NORTH of Norway has extremely good conditions for 
establishment of wind power generation farms, with a 
possibility of about 4000MW of wind power generation in 
this area. The main grid in Northern Norway consists of a 
weak 132 kV network, and considering the integration of 
massive amounts of wind power, the existing transmission 
lines, will not be able to handle and export the surplus energy 
from these areas to the consumption areas in the middle of 
Norway. Alternative methods are being considered for the 
integration of this new energy into the existing system. One 
of the alternatives is to build a new corridor with multi-
terminal HVDC from Northern Norway to Middle of 
Norway. VSC-HVDC, the HVDC technology based on 
voltage source converters (VSC), has recently been an area 
of growing interest due to a number of factors: its 
modularity, independence of ac network, independent control 
of active and reactive power, low power operation and ability 
of power reversal etc [1]. VSC-HVDC technology has been 
promoted under the commercial trade names HVDC Light 
[2] and HVDC Plus (the “plus” stands for Power Link 
Universal Systems) [3]-[4] by two prominent manufacturers. 
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Fig. 1. VSC based HVDC link 

 
As shown in Fig.1, a VSC based HVDC link consists of 

VSCs connected back to back via a dc-link. For analysis of 
the complete VSC-HVDC system, this paper starts from 
developing an understanding of a VSC from the control 
point of view. The control strategy used is based on field 
oriented vector control [5] of voltage source current 
controlled converters.  

The VSC-HVDC operating characteristics are 
determined by the controllers including the system. 
Adequate performance of VSC-HVDC system under 
diverse operating conditions depends on the selection of 
robust parameters for the control system. Usually, due to 
the simple structure and robustness, PI controllers have 
been used to adjust the system for desired responses. The 
tuning of the converter controller parameters (gain and time 
constant) is a compromise between speed of response and 
stability for small disturbances as well as the robustness to 
tolerate large signal disturbances. Furthermore, the control 
loops are nonlinear in nature, and hence needs careful 
selection of control parameters to accommodate a range of 
operating conditions. Tuning rules should also take into 
account the effects of non-ideal operating conditions and 
try to minimise them. 

 
 

Fig. 2.  Three phase PWM-VSC connected to ac source 
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In addition to the effects of controller tuning on the 
performance of the VSC-HVDC, it is claimed in [6] that 
design of converter control systems has an impact on sub-
synchronous torque interaction. There exists certain 
parameter region of the converter controllers where unstable 
shaft torsional oscillations between the VSC-HVDC 
transmission link and a nearby generator may be caused. It is 
also claimed that with proper control parameter settings, no 
sub-synchronous damping control is needed.  

This paper focuses on the control structure and tuning of 
the voltage source converter. The decoupled control of real 
and reactive power exchanged between the converter and the 
electric power system is explained. Analytical expressions, 
transfer functions and the tuning rules for the PI controllers 
are presented and discussed in an attempt to establish the 
criteria for tuning.  

II. SYSTEM DESCRIPTION 
Fig.2 shows a schematic diagram of an ac source/grid 

connected to a PWM-voltage source inverter. The control of 
the converter aims at regulating the dc voltage Vdc and 
maintaining the balance between the dc link power and ac 
power supply.  For that, standard field oriented vector control 
technique is implemented which gives decoupled control of 
active and reactive power [7].   

For the analysis of the system, basic equations describing 
the system behavior are presented based on analysis done in 
[8]-[10]. The phase voltages and currents are given by the 
equation , 
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where Vabc,  iabc, Vabc,conv are ac voltages, currents and 
converter input voltages respectively and R and L resistance 
and filter inductance between the converter and the ac 
system.   

The converter 3-phase currents and voltages are 
expressed in 2-axis d-q reference frame, synchronously 
rotating at given ac frequency, ω. The voltage equations in d-
q synchronous reference frame are, 
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The power balance relationship between the ac input and 
dc output is given as, 
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where vdc and idc are dc output voltage and current 
respectively. On the output side, 
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The d-axis of the rotating reference frame (Park’s) is 
aligned to the ac voltage vector so that vq = 0. With this 
alignment, the instantaneous real and reactive power injected 
into or absorbed from ac system is given by,  

Rotating d-axis 

Rotating q-axis 

 
Fig. 3.  Transformation of axes (α-β to d-q) for vector control  
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Therefore, the control of active and reactive power 
reduces to the control of d and q components of current. 
The angular position of the voltage vector is given by, 
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where vα and vβ are components of voltage in stationary two 
axis reference frame (Clark’s). The angle θ is computed 
using a phase lock loop (PLL) technique [11]-[12]. 
  

III. PRESENTATION OF THE CONTROL SCHEME 
The control scheme for the three-phase voltage source 

inverter is considered as cascade of two independent 
controllers, a dc voltage controller providing reference 
signals to the control system and the current controller that 
generates the switching signals according to the reference 
and measured signals, as shown in Fig 4. 

 

A. Current Controller 
As the currents are transformed to the synchronous 

reference frame, they become dc signals under balanced 
sinusoidal conditions and perfect synchronization [13]. 
Then PI controllers will ensure zero steady state error and 
increased robustness of the closed loop system.  

 
Fig. 4. Functional control diagram of VSC using vector control  
 



 

 
 Fig.  5. Block diagram of PI Current control scheme in per unit 
 
The control system requires a decoupled control of id and 

iq. However, the model in synchronous frame (2) shows that 
the two axes are coupled due to the cross terms ωL.iq and 
ωL.id. When the cross coupling terms are compensated by 
feed-forward, the d-axis and q-axis components of currents 
can be controlled independently. Synchronous reference 
frame PI regulators then regulate the d and q components of 
currents. The two independent control loops in per unit 
system can be obtained [14] to be as shown in Fig. 5, where 
Kp,pu and Ti are PI controller parameters, Ta is the delay 
caused by VSC switches and τpu  is the per unit time constant 
of the line.   

 

B. DC-link Voltage Controller 
The current controller as described earlier ensures that 

the output current tracks the reference values generated by an 
additional external control loop, which performs the output 
active power regulation by implementing control of dc 
voltage.  From (3)-(5), the dc link dynamics is given by, 
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The minimum value of required dc side voltage [15] is 
given by the inverter output voltage as,  

 ,,
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3
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where peak.phV is peak phase voltage at the ac side and 

,LL rm sV  is the line-line rms voltage. 
The dc-link dynamics, (7) is a non-linear equation and 

the parameters for the PI regulator need to be selected using 
linearization of system model around the operating point. 
The reference point for linearization is found by specifying 
reference input (Vdcref) for the nonlinear model. The 
linearization yields the transfer function as [14], 
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For the analysis of the outer dc voltage control loop, the 
second order closed loop transfer function of the inner 
current controller is approximated by equivalent first order 
transfer function by equating the error functions of two 
transfer functions, which gives the equivalent time constant, 
Teq to be 2Ta [14]. 

 

C. Feedforward in DC-link controller 
Although simple to design and implement, a cascade 

control system is likely to respond to changes more slowly 
than a control system where all the system variables are 
processed and acted upon simultaneously [16]. The feed-
forward is used to minimize disadvantage of slow dynamic 
response of cascade control.  

 

 
Fig. 6. Block diagram of dc-link voltage control scheme in pu 

 
Using feed-forward, the load variation can be greatly 

reduced and the large gain of voltage controller otherwise 
required to reduce the large error is not necessary, which is 
important from stability viewpoint.  

The dc link voltage controller controls the capacitor 
current so as to maintain the power balance. Hence under 
balanced conditions, ic =0. That is, Idc = IL. 
Thus, the reference value of Id should be, 
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which is the feed-forward term, ensuring exact 
compensation for load variation. 

When the system equations are analysed in per unit 
[14], the complete block diagram of dc-link voltage 
controller can be represented as in Fig.6, where Kpv,pu and 
Tiv are PI controller parameters, Teq  is the equivalent time 
constant of first order approximation of current control 
loop, and Cpu is per unit capacitance of dc link.  

 

IV. TUNING OF PI CONTROLLERS 
In the tuning process of PI controllers, the 

nonlinearities are generally neglected, and tuning is done 
following the criteria adopted for electric drives [17]. 
Cascade control requires the speed of response to increase 
towards the inner loop. Hence, internal loop is designed to 
achieve fast response. On the other hand, main goal of 
outer loop are optimum regulation and stability. The inner 
loop is tuned according to “modulus optimum” condition 
because of fast response and simplicity whereas the outer 
loop according to “symmetrical optimum” condition for 
optimizing system behavior with respect to disturbance 
signals [18].  

 

A. Modulus Optimum  
For low order controlled plants without time delay the 

modulus optimum (absolute value optimum criterion) is 
often used in the conventional analog controller tuning. 
When the controlled system has one dominant time 
constant and other minor time constant, the standard form 
of the control system transfer function for the modulus 
optimum is achieved by cancelling the largest time 
constant, while the closed loop gain should be larger than 
unity for as high frequencies as possible [19].  This method 
is widely used because of its simplicity and fast response. 

The open loop transfer function of current controller is 
given as, 
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The modulus optimum tuning criteria for this system 
gives the PI controller parameters as, 

p uiT τ=  (12) 
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This tuning criterion gives the open loop and closed loop 
transfer functions of the current control loop as follows. 
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The resulting system has a frequency of natural 
oscillation 1 2n aTω =  and damping factor 1 2ζ = . 
Because this method is based on simplification by pole 
cancellation, and optimizing the absolute value to 1, the 
resulting response of the system would always correspond to 
values of ζ and ωn as above. The system can however, be 
tuned for a desired value of crossover frequency by choosing 
total constant gain term of (11) to be equal to the desired 
crossover frequency. The crossover frequency of current 
open loop is chosen one or two order smaller than switching 
frequency of converter to avoid interference from switching 
frequency noise.  

 

B. Symmetrical Optimum  
When the controlled system has one dominant time 

constant and other minor time constant, the PI controller can 
be tuned using the modulus optimum criteria as described in 
previous section. However, when one of the poles is already 
near to the origin or at the origin itself, the pole shift does not 
change the situation significantly. The open loop transfer 
function of the voltage controller already has two poles at the 
origin. An alternative criterion to tune the controllers in this 
condition is given by the symmetrical optimum criteria. 

 A symmetrical optimum design criterion obtains a 
controller that forces the frequency response of the system as 
close as possible to that for low frequencies. The method has 
the advantage of maximizing the phase margin. As phase 
margin is maximized for given frequency, the system can 
tolerate more delays, which is important for systems having 
delays. This method optimizes the control system behaviour 
with respect to disturbance input. The method has well 
established tuning rules and has good disturbance rejection 
[20]. An extended approach of tuning by symmetric optimum 
[21] is presented here. 

From the system block diagram as developed in Fig. 5, 
the open loop transfer function of the system without 
considering the feed-forward and the disturbance input is 
given by, 
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For given open loop transfer function of the system, 
cancellation of pole by setting Tiv = Teq is impossible as it 
leads to two poles at origin and the system becomes unstable. 

Introducing d p u

d c p u

K
V
V

=  and 1 .c b puT Cω= , the transfer 

function can be written as, 
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The tuning criteria according to symmetrical optimum 
is obtained using the Nyquist criteria [22] of stability,  

, ( ) 1V OLG jω = , and , ( )   -  180 o
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where MΦ  is the phase margin. Differentiation of the 
angle criteria with respect to ω gives the condition for 
maximum value of phase margin, which is,  

1
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This condition gives the tuning criteria for time 
constant of the controller as, 
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The resulting open loop frequency characteristic will 
have a maximum phase MΦ  at the crossover frequency 
of dω , symmetric about 1/ Ti and 1/Teq. Then by symmetric 
property, we can also write, 

2 .iv eqT a T=  (22)  
where ‘ a ’ is the symmetrical distance between 1/ Tiv  to 

dω , and 1/ Teq  to dω . Then from the magnitude 
condition, the tuning for gain of controller can be found as 
follows. 
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Now using the PI controller parameters, the open loop 
transfer function and the closed loop transfer function 
become,  
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As it is seen that the denominator of the closed loop 
transfer function has a pole, -1 . e qs a T= . Hence, the 
system can be simplified as follows. 
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Most of the literature use Tiv = 4Teq(a=2) for the 
optimization according to conventional symmetrical 
optimum tuning [21]. The resulting performance gives an 
overshoot of around 43%, settling time around 16.3 Teq and 
a phase margin of about 36°. The phase margin value is 
low and the system has a high overshoot, but still the 
system response is fast. It is possible to compensate the 
overshoot and enhance the performance of controller by 
employing a filter in the reference signal. Another option is 
to choose a higher value of a, so that the phase margin is 
increased and the damping is also improved, but then, the 
system response becomes slower. Hence the choice of the 
controller parameters from design point of view is a 
compromise between the performances. The recommended 



 

value of the ratio Tiv/Teq is constrained between 4 and 16 in 
literature [23].  

From the denominator of the transfer function (26), the 
eigenvalues to the characteristic equations are, 

1
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This generalization shows three conditions for roots s2,s3: 

o a <3, the roots are complex conjugate. 
o a =3, roots are real and equal 
o a >3, roots are real and distinct.  

Thus for a given value of Teq, if ‘a’ is varied, the roots 
start from complex conjugate roots on imaginary axis for 
a=1, and move away from imaginary axis, becoming real and 
equal at a=3 and if increased further, the roots move along 
the real axis. The damping factor can be changed by varying 
‘a’. So the value of ‘a’ can be chosen for the condition 
fulfilling desired performance. The specifications could be 
the cross-over frequency at which the phase margin is 
maximum, or the value of desired phase margin. However, 
the specifications should result in the value of ‘a’ in the 
acceptable region.  

There are no explicit specification of performance 
indicators like damping factor or settling time, and it is 
difficult to analytically express these performances in terms 
of ‘a’, as the closed loop system is a third order system. 
However, for closed loop system (26), if the real pole is 
located very far from the origin, transients corresponding to 
such remote pole are small, last for short time and can be 
neglected. The system can then be approximated by a second 
order system, for an easier estimate of response 
characteristics. But when specifying ‘a’, there is no control 
over relative spacing of the real pole and the complex poles, 
so such a simplification and degree of freedom can not be 
achieved. 

 

C. Pole placement interpretation of Symmetric Optimum  
Using the symmetric optimum method, controllers can be 

tuned for variable damping by specifying the value of a, but 
the range of variation is very small.  Lower values of ‘a’ give 
a small phase margin and high oscillations, while increasing 
values of ‘a’ may lead to better damping but slower 
response. Symmetrical optimum method can be extended so 
as to specify damping factor for the system as part of tuning 
procedure using pole placement [23].  

This method considers the special case when a <3, that is 
the characteristic equation has one real root, p and a pair of  
complex conjugate root, σ ± jω. Then it results in a 
characteristic equation, 
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The real pole placement is defined through a relation, 
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and for the complex roots, the relation between damping 
factor and the roots is defined as 
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But the characteristic equation of the system (17) is, 
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Equating the coefficients of (31) and (32), the controller 
parameters can be found in terms of α and ζ. And, 
specifying ζ for calculating controller parameters has more 
explicit physical meaning than specifying ‘a’ as in previous 
case. 

 

V. APPLICATION OF TUNING RELATIONS 
Considering the system given in [7], with system 

parameters Lpu = 0.15, Cpu= 0.88, Rpu = 0.01 and ωb = 377, 
the cases of parameter tuning of the controller are presented 
using the tuning rules of modulus optimum, symmetric 
optimum and explicit damping factor specification. The 
switching frequency of the converter block (fswitch) is taken 
as 10kHz. Average time delay of converter is then  
 1
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A. Tuning of current controller using modulus optimum 
The current controller was tuned using modulus 

optimum criteria.  
Controller gain, Kp,pu = 3.9788 
Integral time constant, Ti = 0.039788  

The open loop transfer function as shown in Fig. 7 had 
a phase margin of 65.5° and gain margin infinity showing 
the closed loop system to be stable.  

The time response to step input was studied, which 
gave the results as in Fig. 8. 
Maximum Overshoot, M = 1.042 
Time for maximum overshoot, tm = 0.0003s 
Settling time, using 2%criteria, ts = 0.0004s 

The open loop bode plot gives the open loop crossover 
frequency of 9.1×103 rad/s (1.448 kHz), which is about 7 
times smaller than the switching frequency of 10 kHz, 
indicating acceptable ratio [16]. 

 

B. Tuning of voltage controller using symmetric optimum 
For the steady state operating conditions, Vdpu = Vdcpu 

=1pu, and choosing a =3, the controller parameters are 
tuned according to symmetrical optimum condition.  
Controller gain, Kpv, pu = 10.0474 
Integral time constant, Tiv = 0.0009 

The bode plot of open loop transfer function in Fig.9 
shows stable operating limits with a maximum phase 
margin of 53.1° , occurring at the crossover frequency of 
3.33×103 rad/s (530.5Hz).  

The step response of the system is shown in Fig.10 
which has following characteristics: 
Maximum Overshoot, M = 1.25 
Time for maximum overshoot, tm = 0.0009s 
Settling time, using 2%criteria, ts = 0.0024s 
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Fig. 7. Open loop Bode plot of current controller transfer function 

 

 
 
Fig. 8. Step response of Current controller tuned with modulus optimum  
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Fig. 9. Open loop Bode plot of voltage controller transfer function 

tuned with symmetric optimum 
 

 
 
Fig.10. Step response of Voltage controller tuned with symmetric 

optimum 
 
 

C. Tuning of voltage controller using pole placement of 
symmetric optimum 
Tuning voltage controller using pole placement is just a 

special case of tuning using symmetric optimum, where the  

 
 
Fig. 11. Step response for fixed value of α=5, and varying ζ = 0.5, 

0.707 and 0.9 
 

 
 
Fig.12. Step response for fixed value of ζ =0.707, and varying α 

= 2, 5 and 10 
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Fig. 13. Open loop Bode plot of voltage controller transfer 

function when tuned with pole placement 
 

placement of the real pole and the damping of complex 
pole can be specified. There are two parameters α and ζ that 
can be specified for a desired performance and the variation 
of step response with these parameters are shown in Fig. 11 
and 12. It is seen that by specifying the damping factor of 
the complex poles, the overshoot in the step response of 
third order system can be changed. With increasing ζ, the 
overshot is decreased and the speed of response is slightly 
decreased. On the other hand, for a given value of ζ 
increase in α seems to make the response slow with slight 
decrease in overshoot. 

For a particular case of α=10 and ζ=0.707, the 
controller parameters were tuned by pole placement 
resulting in,  
Controller gain, Kpv, pu = 4.6052 



 

Integral time constant, Tiv = 0.0013196 
The open loop bode plot of the system in Fig.13 shows a 

stable operation with phase margin 56° at crossover 
frequency of 1.66×103 rad/s (264.19Hz). 

The time domain response of the system to step input has 
the following response: 
Maximum Overshoot, M = 1.25 
Time for maximum overshoot, tm = 0.0019s 

Settling time, using 2%criteria, ts = 0.0043s 
 
 As compared to symmetric optimum, the tuning of 

controllers using pole placement method results in a slower 
response.  But still the speed of response is acceptable. In 
this method by specifying α and ζ the closed loop poles of 
the system are configured. However, as it is a special case 
when the closed loop system has a pair of complex poles, 
there is not much freedom in choosing the pole-zero 
configurations. The advantage of this method might be stated 
as the explicit specification of damping ratio and pole-zero 
configurations, that has better implications than specification 
of parameter ‘a’ in normal case.  

 

VI. DISCUSSION OF TUNING CRITERIA 
Adjustment of current controller according to modulus 

optimum provides good response with small overshoot to a 
step change of reference. Because of the cancellation of slow 
process pole by the controller zero, the response is 
considerably improved. If set point responses are 
predominant factor of concern, pole-zero cancellation might 
be right, but if load responses or disturbance rejection are 
also important, this method may not be sufficient [24]. The 
cancellation controller has good set point response but leads 
to a very slow disturbance response, because system poles 
are not altered in the disturbance transfer function, resulting 
controller zero to become poles in disturbance transfer 
function [25]. In addition to that, an inexact cancellation also 
results in sluggish response and poor robustness. Moreover, 
if the time constant of the input system (τ) is large, the 
integral time constant of the controller will increase. This 
will also cause the capability of controller for disturbance 
rejection to become poor. These factors need to be 
considered in further applications. 

Adjustment of voltage controller according to symmetric 
optimum provides high proportional gain and low integral 
time constant, which results in fast response as well as strong 
rejection of disturbance. With this method of tuning, 
substantial overshoot can be seen in the step response, which 
might require limiting of rate of change of voltage reference. 
Moreover, additional filtering might also be required for 
ripple in dc bus voltage. But again, the additional filtering 
will decrease the controller gain and the bandwidth. 
Modification of symmetric optimum using pole placement is 
possible for the special case where the closed loop system 
has complex poles. Explicit specification of damping factor 
for complex poles can be used to specify the closed loop 
pole-zero configuration and set the response of the system. 
But as seen from Fig. 13, the resulting system is not the 
optimum one from the phase margin point of view. 

Both of the tuning criteria, modulus optimum and 
symmetric optimum are based on optimisation of dynamic 
performance of the controlled system. However, in tuning of 

PI controllers for HVDC, only considering the dynamic 
performance is not sufficient.  

The control design is based on the assumption that the 
inner and outer loops are decoupled and hence, can be 
linearized. Non ideal operating condition leads to 
generation of harmonics, influencing both ac and dc 
control. When low order harmonics are present in the 
system, the two control loops cannot be considered 
decoupled. The current loop is designed considering 
constant dc bus voltage because the voltage control loop is 
much slower than the inner current control loop. If dc 
voltage has low frequency ripple, it cannot be considered 
constant for current loop design.  

In order to investigate the possible problems to be 
encountered in VSC-HVDC installation, detailed analysis 
of dynamic behaviour of the system and development of 
suitable controllers to overcome the problems are needed. 
The tuning rules of the controllers should be devised to 
reduce negative influence on system performance due to 
non-ideal operating conditions, system non-linearities etc. 

VII. CONCLUSIONS 
A mathematical model of a three phase VSC in 

synchronous reference frame was presented, and based on 
the model, current and voltage control of VSC was studied. 
The tuning methods were investigated for PI controller 
parameter setting. Method of modulus optimum was used 
to derive parameters of current regulators, and symmetrical 
optimum to derive parameters of voltage controller. Some 
possible problems in tuning were presented and discussed, 
which will be studied further through simulation to derive 
general guidelines for tuning controllers for improved 
performances. 

 

VIII. FURTHER WORK 
A good understanding of control strategies, and control 

system, their drawbacks and advantages in most general 
operating conditions, is necessary to derive the most 
relevant option for control. In further work, analysis of 
control system and controller tuning will be continued.  
With the development of the control platform, the 
controllers will be tested under several circuit conditions, to 
test the capability and robustness of the controller to handle 
the adverse situations. The simulation platform will be built 
in PSCAD to study the control system under different 
conditions of load disturbances, unbalance conditions etc. 
with different tuning rules. The simulation results would be 
studied for verification of operating range, and for severe 
disturbances to test control robustness. Effect of 
nonlinearities and unbalanced voltage conditions will also 
be studied through simulations. This work will be directed 
to the establishment of general guidelines for tuning the 
controllers and suggestions for improving the controller 
performances. 



 

APPENDIX 

A. Park and Clark transformation system 

Transformation Transforms Matrix for 
transformation 

Clark 
transformation 

from abc to 
αβ 3 3

1 2 1 22
.

3 2 2

1

0

− −

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

Inverse Clark 
transformation 

from αβ to 
abc 

01

1 2 3 2

1 2 3 2

−

− −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Park 
transformation 

from αβ to 
dq 

cos sin

- sin cos

θ θ

θ θ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Inverse Park 
transformation 

from dq to 
αβ 

cos - sin

sin cos

θ θ

θ θ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

B. Base values for Per Unit System 
The following base system is chosen for conversion of 

the system into Per Unit (p.u.) representation. 

bS = Nominal three-phase power of the ac-grid  

bV  = Nominal peak phase voltage at the ac side [ .peak phV ] 

=
,

2
.

3 LL rmsV  where ,LL rmsV  =Line-Line RMS Voltage 

bI  = Nominal peak phase current = 2
.

3
b

b

S
V

 

bZ  = Base ac impedance= b

b

V
I

 

bω  = Base frequency 
The base for per unit transformation is chosen as to 

achieve a power invariant transformation, so that the ac and 
dc side power is the same. 
As, 3 3. .phase phase phaseS V I=  and then the power balance gives, 

3
. . .

2b b b dcbase dcbaseS V I V I= =   

The base value for dc voltage is chosen as, 
,2 . 2 .dcbase peak ph bV V V= = ,  

Then by the power balance equation as above, 
3 .4dcbase bI I=  

And,  dcbaseZ = Base dc impedance= dcbase

dcbase

V
I

= 8
.

3 bZ  
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