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In this work, we study spectral modelling of speech using all-pole models. With those
mathematical speech production models, our objective is to find the essential information in
natural speech communication. The underlying assumption is that speech can be modelled
with the so-called source-filter model. The all-pole model is an implementation of such
source-filter models and it model the spectral envelope of the short-time spectrum of speech.

Seven different methods for obtaining the parameters of all-pole models were presented.
All methods were formulated using the same notation, in order to present a uniform thery
covering the all-pole methods in question. The stability regions of the all-pole models
optimised in the time domain were analysed and derived thoroughly. Moreover, a new stability
region for the weighted linear prediction (WLPC) model was derived.

The spectral modelling properties of these all-pole models were compared using both
objective and subjective testing. This was done be comparing their behaviour in the presence
of uncorrelated Gaussian and Laplacian background noise. A certain objective measure used
was the logarithmic spectral differences and the subjective test was carried out as listening
tests where the Degradation Category Rating testing procedure was used. In both tests, the
WLPC model, where the weighting function was the short time energy of the speech signal,
gave the best results. The correlation between the objective and subjective results was found
to be remarkable strong.
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analyysi sekä niiden objektiivinen ja subjektiivinen evaluointi
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Työn ohjaajat: TkT Tom Bäckström

Tämä työ käsittelee puheen spektraalista mallinnusta, autoregressiivisiä (AR) malleja apuna
käyttäen. Lineaariset puheentuottomallit pyrkivät etsimään ihmisen puheentuotosta kom-
munikaation kannalta tärkeimmät tekijät. Tämä tehdään yleisesti jakamalla lineaarinen
puheentuottomalli lähteeksi ja ääntöväylän suotimeksi. Tällainen jako voidaan toteuttaa
AR-mallinnuksella, missä puheen lyhytaikaisen spektrin verhokäyrä saadaan mallinnettua
tehokkaasti.

Seitsemän AR-mallia määriteltiin ja formuloitiin yhtenäisiä merkintätapoja käyttäen,
minkä seurauksena menetelmiä voitiin vertailla keskenään teoreettisella tasolla. Aika-alueessa
optimisoitujen AR-mallien stabiilisuus ominaisuudet formuloitiin rakentavalla ja osittain
uudella tavalla. Tämän seurauksena painotetulle lineaariselle ennustusmenetelmälle (WLPC)
johdettiin uusi stabiilisuusalue käytettävän painofunktion suhteen.

Kyseisten seitsemän AR-menetelmän ominaisuuksia, kohinaisen puhesignaalin spektriä
mallinnettaessa, vertailtiin objektiivisten ja subjektiivisten mittojen valossa. Molemmissa
tapauksissa kohinana käytettiin korreloimattomia Gaussin ja Laplacen jakautuneita satunais-
lukuja. Objektiivisena mittana käytettiin logaritmista spektrin eroavaisuustunnuslukua (SD)
ja subjektiivisena mittana kuuntelukokeita. Kuuntelukokeissa käytettiin diskreettiä näytteen
huonontuma skaalaa (DCR). WLPC menetelmä, missä painofunktiona käytettiin puhesig-
naalin lyhytaikaista energiaa, toimi selvästi parhaana menetelmänä molemmissa testeissä.
Kyseiset mitat (SD ja DCR) osoitettiinkin korreloivan huomattavan hyvin keskenään.

Avainsanat: AR-malli, puheanalyysi, lineaarinen ennustus, ennustuspolynomi
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Chapter 1

Introduction

Speech is the most essential method of human communication. It is the most natural way
to transmit variety of information such as feelings and thoughts. If the speech signal is
considered at the acoustic level it is composed of rapid fluctuations in air pressure. This is
obvious because of the nature of the primary speech transmission channel, atmosphere [14].
When the air molecules are vibrating and colliding the speech information is transmitted
through the atmosphere to the ear and comprehended by the brain.

The requirement for the mathematical speech production models is to find the essential
inducement concerning the information relevant to the communication. This is the reason
why it is important to understand the basic physiological principle of speech production
where the lungs act as the source of air for exciting the vocal mechanism. The muscle
force pushes air out of lungs and through the entire vocal tract. When the vocal folds are
tensed, the air flow causes them to vibrate. This is how voiced speech sounds are produced.
Unvoiced sounds are produced when the vocal folds are relaxed and constrictions in the
vocal tract cause turbulent noise, in order to produce a sound.

The underlying assumption in this work is that speech can be modelled with the source-
filter model. One of the most widely used speech production models of this kind is the
linear speech production model developed by Fant [13]. This model assumes that the speech
production model or the speech signal can be separated as the glottal flow G(z), vocal tract

V (z), lip radiation L(z), and source E(z) such that S(z) = E(z)G(z)V (z)L(z), where
S(z) is the speech signal.

The all-pole model 1
A(z) is an implementation of such source-filter models and yields for

good estimates of the factor G(z)V (z)L(z) especially in the case of voiced speech signals
( 1
A(z) ' G(z)V (z)L(z)). The reason behind the excellence of all-pole model is the fact

that the vocal tract can be approximated by the rather simple tube model working as an
resonator. The all-pole model is an mathematical implementation of such resonator [13].

1



CHAPTER 1. INTRODUCTION 2

All-pole models model the spectral envelope of the short-term spectrum of speech. The
short-time spectrum has been one of the most used representations of speech signals. It is
widely used in various fields of speech processing, for instance in speech recognition and
speech synthesis.

In this work we will present several different methods for obtaining the parameters of
all-pole models. We will concentrate on the stability properties of the all-pole models op-
timised in the time domain, because of the necessity of stability properties in the practical
adaptation. It is also relatively easy to derive new all-pole models which do not preserve
the stability properties (see [4]). The most popular method for obtaining the parameters of
all-pole models is linear prediction (LP) [23]. The stability of the LP filter based on the
autocorrelation method is guaranteed, however yet even so it is suffering from several lim-
itations. It is well-known fact that in the presence of the background noise the LP method
suffers from many problems for example robustness against the uncorrelated background
noise is poor [12, 26]. In this thesis, different all-pole methods are compared in the pres-
ence of Gaussian and Laplacian uncorrelated background noise. The quality of speech
processing in the presence of additive noise is of interest in a various speech technology
applications, such as in speech transmission.

This thesis has been organised as follows. In Chapter 2 the seven all-pole models used
in this thesis are formulated. The all-pole methods in question are: linear prediction (LP)
[23], weighted linear prediction (WLPC) [10], maximum-likelihood-type estimates (M-
estimates) such as HUBER and `1 [21], weighted sum of line spectrum pair polynomial
(WLSP) [9], discrete all-pole model (DAP) [12], and minimum variance distortion-less re-
sponse (MVDR) [26]. We will present a coherent way to formulate and optimise the seven
selected all-pole models. The theoretical aspects explaining modelling errors given by dif-
ferent methods, optimisation criterion, and the spectral envelope properties, are presented in
a detailed manner. In the next section, we characterise the stability properties of the all-pole
models optimised in the time domain. Different stability regions are being presented, for
the weighted LP methods and the stability properties of the LP method and WLSP method
is derived in more detailed and accurate way than usually found in literature. Chapters 4,
5, and 6 are concerned with objective and subjective measures for evaluation of the spec-
tral differences of the spectrum envelopes, calculated from clean and contaminated speech
samples. The contamination is done by adding Gaussian and Laplacian uncorrelated noise
in the clean speech samples. Chapter 7 deals with the results of the comparisons between
the different all-pole models with respect to these measures. Finally, in Chapter 8 we will
present the conclusions for this work and give suggestions for future work.



Chapter 2

Model Formulations and Basic

Properties

2.1 Linear Prediction

2.1.1 Optimisation in the Time Domain

The idea behind the linear prediction (LP) is to estimate a future sample xn by linear com-
bination of the p past samples [23], [8]. This estimate can be formulated as

x̂n = −
p∑

i=1

aixn−i, (2.1)

where weights ai ∈ R, ∀i = 1, . . . , p. The prediction error εn(a) is defined as

εn(a) = xn − x̂n = xn +

p∑

i=1

aixn−i = aTxn, (2.2)

where a = (a0 a1 · · · ap)T where a0 = 1 and xn = (xn · · · xn−p)T . The goal is to find
the coefficient vector a which minimise the cost function ELP (a) which is also known as
the error energy. This problem can be formulated as the constrained minimisation problem:

minimise ELP (a)

subject to aT
�

= 1,
(2.3)

where the unit vector � is defined as �
= (1 0 · · · 0)T . The purpose of the constraint

is to guarantee that the first element of the optimal solution vector is equal to one. This
minimisation depends on the nature of the cost function ELP (a). Traditionally the cost

3



CHAPTER 2. MODEL FORMULATIONS AND BASIC PROPERTIES 4

function is been defined as ELP (a) = E[|εn(a)|2] where the operator E[·] is defined as the
expectation operator. By simple calculation we get

ELP (a) = E[εn(a)2] = E[

p∑

k=0

p∑

h=0

akahxn−kxn−h]

=

p∑

k=0

p∑

h=0

akahE[xn−kxn−h].
(2.4)

Autocorrelation Method

Next we will consider the factor E[xnxn−k] from Eq. 2.4. The autocorrelation method as-
sumes the signal to be wide sense stationary (WSS), that isE[xn−kxm−k] = E[xnxm], ∀ k ∈ Z.
Let us assume that the signal x is windowed such that it is zero outside the interval [0, N ]

x̃n = xnwn, ∀n ∈ Z (2.5)

where the wn is a window function with wn = 0, ∀n ∈ Z\[0, N ]. An asymptotically
unbiased estimator1 for the expectation operator is

E[xnxn−k] ≈
1

N + 1

N∑

i=k

x̃ix̃i−k. (2.6)

Let us approximate Eq. 2.4 by using Eq. 2.6, then

ELP (a) =

p∑

k=0

p∑

h=0

akahE[xn−kxn−h] =

p∑

k=0

p∑

h=0

akahE[xnxn−|h−k|]

≈ 1

N + 1

p∑

k=0

p∑

h=0

N∑

i=|h−k|

akahx̃ix̃i−|h−k| = aTRIa,
(2.7)

where the matrix RI is defined as the autocorrelation matrix whose elements have the prop-
erty: RI [i, j] = RI [i+k, j+k], ∀k ∈ Z. RI is also a symmetric matrix, that is RT

I = RI .
From these properties we conclude that RI is symmetric Toeplitz matrix and from Eq. 2.7
it can be alternatively written as

RI =
1

N + 1

∑

n∈I

x̃nx̃
T
n =

1

N + 1

∑

n∈I

Wnxnx
T
nWn, (2.8)

1For definition, see Appendix A.
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where x̃n = Wnxn and the windowing operator Wn is the diagonal matrix such that
Wn = diag(wn · · · wn−p) and the index set is defined as I := {0, . . . , N + p}. Finally,
from Eq. 2.7 we find that the cost function to be minimised in Eq. 2.3 is

E (a) = aTRIa, (2.9)

where the matrix RI is defined in Eq. 2.8. Furthermore the matrix RI is known to be
symmetric positive definite Toeplitz matrix [15] and this means that quadratic function E

in Eq. 2.9 is convex.

Covariance Method

In the covariance method, the speech signal x is not assumed to be WSS. Furthermore in
this case we use the unbiased estimator for the expectation operator from Eq. 2.4

E[xn−kxn−h] ≈
1

N − p+ 1

N∑

i=p

xi−kxi−h. (2.10)

In this case the the Eq. 2.4 can be approximated as

ELP (a) =

p∑

k=0

p∑

h=0

akahE[xn−kxn−h] ≈
1

N − p+ 1

p∑

k=0

p∑

h=0

N∑

i=p

akahxi−kxi−h

= aTCIa,
(2.11)

where the covariance matrix CI can be written as

CI =
1

N − p+ 1

∑

n∈I

xnx
T
n , (2.12)

where the index set is defined as I := {p+ 1, . . . , N}. In this case the cost function to be
minimised in Eq. 2.3 is

Ẽ (a) = aTCIa. (2.13)

The matrix CI does not have Toeplitz structure but it is positive definite, which implies that
the quadratic function Ẽ is convex.

Constrained Minimisation Problem

In both (autocorrelation and covariance) methods the quadratic function to be minimised,
in the constrained minimisation problem, is convex. Let us use the Lagrange multiplier
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method [6] in order to define the new objective function in the case of convex quadratic
cost function such as Eq. 2.9

η(a, λ) =
1

2
aTRIa− λ(aT

� − 1), (2.14)

where λ 6= 0 is Lagrange multiplier. It is well known that a minimises η iff it satisfies the
linear equation

∇aη(a, λ) = RIa− λ
�

= 0, (2.15)

where ∇a is gradient operator with respect to a. This yields to the equation

RIa = σ2 �
, (2.16)

where Eq. 2.16 is known as the normal equation and σ2 = λ denotes error energy. This can
be seen by substituting Eq. 2.16 to Eq. 2.9. In the case of the covariance method the normal
equation can be obtained in the similar way and finally the normal equation is

CIa = ς2
�
. (2.17)

Note that the cost function to be minimised in Eq. 2.3 can be defined in a more abstract
and general way. That is

ELP (a) = E[ρ(εn(a))] ≈
∑

n∈I

ρ(εn(a)). (2.18)

where ρ is the loss function and εn(a) is the prediction error. Finally the general cost
function can be written in terms of the prediction error

E (a) =
∑

n∈I

ρ(εn(a)). (2.19)

Note that choosing ρ(x) = x2 and I := {p + 1, . . . , N} ⊂ Z and if the prediction error
εn(a) is defined like in Eq. 2.2 we get the cost function defined in Eq. 2.13.

2.1.2 LP in the Frequency Domain

In order to understand the LP method it requires the use of frequency domain approach
[23]. Let us consider Eq. 2.2. By applying the Z-transform to the error εn(a) one gets

E(z) = A(z)X(z) (2.20)
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Figure 2.1: FFT spectrum of a male vowel /a/ (thin line) and the all-pole spectrum of the
LP method (thick line). The LP order was 22 and the sampling frequency was 22050 Hz.
For the sake of clarity the magnitude level of the prediction model have been lifted 10 dB.

where A(z) = a0 +a1z
−1 + . . .+apz

−p is the model Z-transform and it is noted as inverse
filter. Recall that 1

A(z) was the all-pole filter. E(z) was the Z-transform of the prediction
error εn(a) and X(z) was the Z-transform of the speech signal xn respectively. The total
error in Eq. 2.9 can be considered as the infinite sum

E (a) =

∞∑

n=−∞

εn(a)2 =
1

2π

∫ π

−π
|E(ejω)|2dω (2.21)

where the last equality is due to Parseval’s theorem and the fact that xn is assumed to be a
deterministic signal. The power spectrum P (ω) of the signal xn is defined as

P (ω) = |X(ejω)|2 =
|E(ejω)|2
|A(ejω)|2 , (2.22)

where the last equality is obtained from Eq. 2.20. The signal spectrum P (ω) is approxi-
mated by the all-pole model spectrum P̃ (ω). If we assume that the noise E(z) is white,
then |E(z)|2 = σ2 and from [23] we have

P̃ (ω) =
σ2

|A(ejω)|2 , (2.23)

where σ2 is the error energy. If we compare Eqs. 2.22 and 2.23 we see that the more “flat”
the residual power spectrum is the better approximation is accomplished (|E(ejω)|2 ≈ σ2).
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Now combining Eqs. 2.20-2.23 we obtain

E (a) =
1

2π

∫ π

−π
|E(ejω)|2dω =

1

2π

∫ π

−π
|A(ejω)|2|X(ejω)|2dω

=
1

2π

∫ π

−π
|A(ejω)|2P (ω)dω =

σ2

2π

∫ π

−π

P (ω)

P̃ (ω)
dω.

(2.24)

If we minimise E (a) as in Eq. 2.3 and get the vector ã solving Eq. 2.16, the resulting
minimum energy Emin = E (ã) is equal to the gain factor σ2 from Eqs. 2.16 and 2.23. This
means that Eq. 2.24 can be written in the form

1

2π

∫ π

−π

P (ω)

P̃min(ω)
dω = 1, (2.25)

where P̃min(ω) is the all-pole model spectrum corresponding to the vector ã such that
E (ã) = σ2.

Using Eqs. 2.24 and 2.25 we can define two major properties of the LP error measure E (a).
These properties are called global property and local property [23]. The global property

means that the spectral match at frequencies with high energy is not better than the match
at the frequencies with little energy. This is because the error energy E (a) is determined by
the ratio of the two spectra seen in Eq. 2.24 and therefore the spectral matching process is
performed uniformly over the entire frequency range.
If a small region of the spectrum is considered, one observes that in order to minimise
Eq. 2.24, a better fit is obtained when P̃ (ω) > P (ω) ( i.e. P (ω)/P̃ (ω) is small), on av-
erage, than vice versa. This means that the resulting estimate P̃ (ω) is above the original
spectrum. This property is called the local property and that is why the resulting model
spectrum P̃ (ω) is a good estimate of the spectral envelope of the signal spectrum P (ω) see
Fig. 2.1. From Eq. 2.25 one can notice one of the major disadvantages of LP modelling.
This disadvantage is called the cancellation of error and it means that the contributions to
the error when P̃ (ω) > P (ω) cancel those when P̃ (ω) < P (ω).

2.2 Weighted Linear Prediction Analysis

The weighted LP (WLPC) analysis [10] uses the loss function defined as

ρ(εn(a)) = (εn(a))2wn, (2.26)

wherewn is defined as a discrete weight function and the prediction error εn(a) is defined as
in Eq.2.2.. By substituting Eq. 2.26 to Eq. 2.19 the weighted-residual energy (cost function)
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Figure 2.2: FFT spectrum of a male vowel /a/ (thin line) and the all-pole spectrum of the
STE-WLPC method (thick line) together with the LP method (M = 12, k = 1). The order
of the all-pole models was 22 and the sampling frequency was 22050 Hz. For the sake of
clarity the magnitude levels of the prediction models have been lifted 10 dB.

E becomes

E (a) =
∑

n∈I

(εn(a))2wn. (2.27)

In order to minimise E (a) one results in similar kind of normal equation as in LP method.

E (a) =
∑

n∈I

(εn(a))2wn = aT

(
∑

n∈I

wnxnx
T
n

)
a = aT R̃Ia, (2.28)

where R̃I =
∑

n∈I wnxnx
T
n . By using the same minimisation method as in Eq. 2.3 it can

be seen that a, which minimises E in Eq. 2.28, satisfies the linear equation

R̃Ia = σ̃2 �
. (2.29)

The idea behind the weight function is to over-weight or select [32] the speech samples
that fit the LP model well. This means that those temporary excitation free speech samples
produce small LP residual are over-weighted. On the other hand, those speech samples
during the waveform changes rapidly due to, for example closure of the vocal folds are
more difficult to predict and hence they results in a larger residual. Those samples should
be down-weighted. Generally, if the change in the wave form is too rapid, linear models are
not able to follow such changes. It has been observed in [10], that the pre-emphasised vowel
sounds show clear peaks just after, and clear valleys just before, the moments of excitations.
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These peaks corresponds also to peaks in the LP residual. This observation suggests that
we could use the short time energy (STE) of the signal in weighting Fig. 2.2. Altogether,
there are many ways of doing the proper weighting for the sum of squared prediction errors.
In literature, it has been proposed to use the STE of the signal either as a selection criterion
or as a weighting function. In this thesis, the STE of the signal is employed as a weighting
function, because the sample-selective methods suffers from several shortcomings such as
high computational complexity (see [10]). Finally, the the short-time energy weighting
function can be formulated as

wn =

M−1∑

i=0

x2
n−i−k, (2.30)

where the k is the delay and M is the length of the STE window. From Eq. 2.30 we
can readily see that indeed the speech samples which follow the main excitation are over-
weighted and those samples which contain excitations are down-weighted (see Fig. 2.3).

2.3 Maximum-Likelihood-Type Estimates

Let us consider more precisely the concept of maximum-likelihood-type estimates (M-
estimates). Our objective is to minimise the cost function E defined in the same manner as
in Eq. 2.19.

min
a

E (a) = min
a

∑

n∈I

ρ(εn(a)). (2.31)

The Huber has shown that the loss function ρ should be symmetric ρ(−x) = −ρ(x) and
it should have a bounded derivative | ∂ρ(x)∂x | = |ψ(x)| < M |x| [18, 21], where the ψ(x) is
defined as

ψ(x) =
∂ρ

∂x
(x). (2.32)

In general the solution to Eq. 2.31 is not scale-invariant. This means that if the data is
multiplied by a constant, the new estimate differs from the original estimate. It is possible
to define the scale-invariant solution by ψ̂(x) = r̂ψ(x/r̂). Where the scalar r̂ is defined as
a robust scale estimate [18]. The scale-invariant solution a to Eq. 2.31 satisfies

∑

n∈I

xn−jψ̂(εn(a)) = 0 j = 1, . . . , p. (2.33)

This group of equations is, in general, nonlinear and iterative methods are required in order
to solve the vector a. The Newton algorithm and the iterative re-weighted least squares
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Figure 2.3: Time waveform of a male vowel /a/ (thin line) and STE-weight function (thick
line) where from Eq. 2.30: M = 12, k = 1. The STE-weight function is scaled to the same
level as the speech waveform.

algorithm (IRLS) have been proposed in order to solve this system of equations [21]. Let
us consider in more detail the IRLS solution. If we assume that x is very small (this is a
valid assumption because of in applications x is the prediction error) the derivative ∂ψ(x)

∂x

can be approximated as ∂ψ(x)
∂x ≈ ψ(x)

x = W (x). By substituting this estimate in Eq. 2.33
we obtain the equation

∑

n∈I

xn−jεn(a
k+1)W (εn(a

k)) = 0, j = 1, . . . , p (2.34)

The ak is the kth iteration of the solution. If the definition of the prediction error from
Eq. 2.2 is applied to Eq. 2.34 and we set wn = W (εn(a

k)), then we have

∑

n∈I

p∑

i=1

xn−jxn−iwna
k+1
i = −

∑

n∈I

xn−jxnwn, j = 1, . . . , p. (2.35)

This group of equations can be written in the matrix notation with a0 = 1, as

R̃Ia = σ̃2 �
, (2.36)

Where R̃I =
∑

n∈I wnxnx
T
n . (Note that the choice of the index set I defines whether

matrix RI is a symmetric Toeplitz matrix or not.) Finally, from Eq. 2.36, the approximated
M-estimate method yields to the WLPC method. Therefore one can straightforwardly de-
rive the requirements for the weight function W (εn(a

k)) that guarantee the corresponding
all-pole filter to be in the minimum phase as we see later in Section 3.2.
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Figure 2.4: FFT spectrum of a male vowel /a/ (thin line) and all-pole spectrum of M-
estimate method with `1 loss function (thick line) together with LP method. The order
of the all-pole models was 22 and the sampling frequency was 22050 Hz. For the sake of
clarity the magnitude levels of the prediction models have been lifted 10 dB.

2.3.1 Properties of the loss function

So far we have assumed that the error density of the error signal, or equivalently the speech
signal in Eq. 2.2, to be Gaussian (linear mapping is invariant with respect to the distribution
of the random number). It is well known from [21, 18] that if the error density f is known,
then the loss function in Eq. 2.31 can be chosen as

ρ(x) = − ln [f(x)] (2.37)

and the estimate for the weights a obtained from Eq. 2.31, is the maximum likelihood
estimate (MLE). It is easy to see that if we choose the error density to be Gaussian f(x) =

e−
1
2
x2 we obtain the loss function of the form ρ(x) = − ln(e−

1
2
x2

) = 1
2x

2, which is
exactly the same loss function that we have used in LP analysis. Moreover, if the derivative
is calculated as ψ(x) = ∂

∂x(1
2x

2) = x and if we calculate the weight function wn from
Eq. 2.35, we get wn = ψ(x)

x = 1, which is the original LP method.
There are a more general error criteria called the `℘ error measures. The loss function in

the `℘ method is defined as

ρ℘(x) =
1

℘
|x|℘, 1 6 ℘ 6 2 (2.38)
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Figure 2.5: a) Normalised Huber logarithmic loss function (thick line), where the tuning
constant c is the mean value of the signal amplitude from panel b). The thin line represent
the normalised `1 logarithmic loss function. Both functions have been scaled in order to
draw them in the same picture and both have been calculated from the excitation signal from
the covariance method calculated from speech signal from lower panel.b) Time waveform
of a male vowel /a/ where the loss functions have been calculated.

and

ψ℘(x) = sgn(x)|x|℘−1, 1 6 ℘ 6 2. (2.39)

Notice that ψ℘(x) is bounded only when ℘ = 1. That is why, in this work, the `1 error
measure (ρ1(x) = |x|) is used and the corresponding estimate is called the sample median
estimate see Figs. 2.4 and 2.5. The resulting estimate for the least absolute deviation esti-
mate is optimal if the error and distribution are Laplacian. The sample median estimate is
sensitive to the behaviour of the error distribution at its median. On the other hand, if the `2

error measure is used, which is the classical LP error measure, the obtained estimate, called
the sample mean estimate, is very sensitive to the tail behaviour of the error distribution.

It is well known that the non-Gaussian nature of the model excitation for voiced speech
should be taken into account when one is choosing the proper loss function. For all-pole
modelling for natural speech, the error density is not exactly known. This is because there
are always some outliers affecting on the signal. The distribution is assumed to be a mixed
distribution F of the form [18]
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Figure 2.6: FFT spectrum of a male vowel /a/ (thin line) and the all-pole spectrum of the
M-estimate method with the Huber loss function (thick line) together with the LP method.
The order of the all-pole models was 22 and the sampling frequency was 22050 Hz. For the
sake of clarity the magnitude levels of the prediction models have been lifted 10 dB.

F = (1 − ε)Φ + εL, (2.40)

where Φ is the standard normal cumulative, L is an unknown contaminating distribution
and ε ∈ [0, 1). The error density corresponding to F is formulated as in [18, 21]

fH(x) =
(1 − ε)√

2π
e−εL. (2.41)

This density is Gaussian in the middle and Laplacian at the tails. The corresponding loss
function, known as the Huber’s loss function, is defined as

ρH(x) =





1
2x

2 if |x| 6 c

c|x| − 1
2c

2 if |x| > c
(2.42)

where c is an efficiency tuning constant as in [21], which is a function of the corrupted
percentage ε. The tuning constant c should be chosen to achieve high efficiency both for the
nominal Gaussian distribution and for most mixture distributions. If we take the derivate of
Eq. 2.42 in order to calculate the psi-function we obtain

ψH(x) = min{c,max{x,−c}}. (2.43)

The ψH belongs to the class of minmax estimators that lie between the sample mean (`2)
and the sample median (`1) see Fig. 2.5. From Eq. 2.43 we can find that ψH is indeed
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bounded, monotonically nondecreasing (this assures uniqueness of the estimate solutions),
and continuous.

2.4 Weighted Sum of Line Spectrum Pair Polynomials

Let us introduce the zero ended coefficient vector ã = (aT 0)T , where a = (1 a1 · · · ap)T
is the vector that solves Eq. 2.16. The coefficient vectors for the LSP polynomials can be
defined as

p = ã + Jã

q = ã− Jã
(2.44)

where J denotes the row reversal operator, which can be implemented as

J =




0 · · · 0 1
... 1 0

0
...

1 0 · · · 0



. (2.45)

This implies that the vector p is symmetric and q antisymmetric. For the weighted sum of
line spectrum pair polynomials (WLSP) method [9] one defines coefficient vector d of the
corresponding polynomial D(z) as

d = λp + (1 − λ)q, (2.46)

or equivalently, taking the Z-transform from Eq. 2.46

D(z) = λP (z) + (1 − λ)Q(z), (2.47)

where λ ∈ (0, 1).

2.4.1 Properties of the Error Energy as a Function of λ

We are ready to perform the same error analysis as in [9]. Consider Eq. 2.16. If one takes
the extended positive definite symmetric Toeplitz matrix R and multiply it from the right
by the zero extended coefficient vector ã then from Eq. 2.44 we have

Rã =
(
σ2 0 · · · 0 γ

)T
, (2.48)
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Figure 2.7: FFT spectrum of a male vowel /a/ (thin line) and the all-pole spectrum of the
WLSP method (thick line) together with the LP method. The order of the all-pole models
was 22 and the sampling frequency was 22050 Hz. For the sake of clarity the magnitude
levels of the prediction models have been lifted 10 dB.

where γ =
∑p

i=0 aiR(p− i+ 1). In view of Eq. 2.48 one can write

Rp = Rã + RJã =
(
σ2 + γ 0 · · · 0 σ2 + γ

)T

Rq = Rã −RJã =
(
σ2 − γ 0 · · · 0 γ − σ2

)T (2.49)

Combining Eqs. 2.46 and 2.49 we can write

Rd = λRp + (1 − λ)Rq =
(
σ2 + (2λ− 1)γ 0 · · · 0 (2λ− 1)σ2 + γ

)T
. (2.50)

It is interesting to note that choosing λ such that the last element is equally to zero which
implies

λ = −γ/(2σ2) + 1/2, (2.51)

we obtain a similar equation as Eq. 2.16

Rd = σ̃2 �
, (2.52)

where the error energy σ̃2 = σ2 − (γ/σ)2 6 σ2. This means that the residual energy of
the p+1 order all-pole model corresponding to vector d is smaller than the residual energy
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given by the LP model of order p. In fact, the vector d from Eq. 2.50 yields to classic
LP model of order p + 1, if λ is chosen as in Eq. 2.51. This implies, interestingly, that
the residual energy of the classical LP model of order p is smaller than the LP model of
order p− 1. This is the classical result for the LP analysis [23]. If we choose λ = 1/2 we
obtain from Eqs. 2.44 and 2.46 that d = ã. Then the d is the original LP model of order
p from Eq. 2.16. Finally, it is worth noticing that the WLSP method can be interpreted as
interpolation between the LP models of order p and p+ 1.

2.5 Discrete All-Pole Modelling

The discrete all-pole model (DAP) uses the discrete Itakura-Saito (IS) error measure [30,
12, 25, 2] and the optimisation criterion is derived in the frequency domain. The reason
behind the idea is to overcome the well-known limitations of LP. That is for example the
ambition of the all-pole spectral envelopes to bias towards the pitch harmonics and the error
cancellation property [12, 24, 23]. The one of the major limitation of the LP method can
be seen by computing the all-pole envelope of the discrete spectrum, which is always the
case when spectra is computed using FFT. The all-pole envelope tend to bias towards the
pitch harmonics especially for the voiced speech. This is the case especially when the F0

is very high. From Eq. 2.25 and in view of the local properties of the LP error measure in
subsection 2.1.2 the reason behind this behaviour is obvious, see [12], [24] for more details.
In the case of conventional LP method the minimum error from Eq. 2.25 is obtained without
the identical match between the spectra P (ω) and P̃ (ω). In the DAP modelling, the error
function reaches the minimum (E (a) = 0) only when the model spectrum coincide on all
discrete points. Moreover, the DAP method tries to maximise the error flatness. Next we
will consider the concept of spectral flatness in the case of original LP model in order to
motivate new minimisation method in DAP based on these observations.

2.5.1 Maximising the Spectral Flatness of the Error Spectrum

Let us look at the concept of maximising spectral flatness of continuous spectra for the
original LP model. Let E(z) and E (a) be defined as in Eqs. 2.21 and 2.22. Let us define
the normalised log spectrum of the error as

V (ω) = ln
[
|E(ejω)|2/E (a)

]
. (2.53)

The Itakura-Saito error measure can be written as [25]

µ(E) =

∫ π

−π

[
eV (ω) − V (ω) − 1

] dω
2π
. (2.54)
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Note that from Eqs. 2.21 and 2.53 we get
∫ π
−π e

V (ω) dω
2π = 1. We can define the flatness

measure Ξ(E) based on Itakura-Saito error measure as follows

Ξ(E) = exp

[∫ π

−π
V (ω)

dω

2π

]
=

exp
[∫ π

−π ln|E(ejω)|2 dω2π
]

E (a)
, (2.55)

In view of Eqs. 2.53 and 2.55 it is easy to see that the spectral flatness measure Ξ(E) lie
between zero and one, and it is equal to one for a perfectly flat spectrum (since E (a) does
not depend on ω).

Recall the Eq. 2.20. Then

∫ π

−π
ln|E(ejω)|2 dω

2π
=

∫ π

−π
ln
(
|A(ejω)|2|X(ejω

)
|2)dω

2π

=

∫ π

−π
ln|X(ejω)|2 dω

2π
+

∫ π

−π
ln|A(ejω)|2 dω

2π

=

∫ π

−π
ln|X(ejω)|2 dω

2π
,

(2.56)

where the last equality is due to the fact that if A(z) is restricted to have zeros inside the
unit circle then its log spectrum has zero average2 value (see [25] for more detail). Finally
Eq. 2.56 can be substituted in to Eq. 2.55 and rewritten as

Ξ(E) =
exp

[∫ π
−π ln|X(ejω)|2 dω2π

]

E (a)
(2.57)

If the input to filter A(z) is fixed, then

Ξ(E) =
c

E (a)
, (2.58)

where c = exp
[∫ π

−π ln|X(ejω)|2 dω2π
]

is a constant. From Eq. 2.58 we see that minimising
the total error E (a) is equivalent to choosing the inverse filter A(z) that maximises the
spectral flatness in Eq. 2.55 at its output.

2.5.2 Minimisation criterion in DAP

The Eq. 2.58 motivates us to maximise the residual spectral flatness instead of minimising
the error energy. This is performed in DAP using discrete spectra. That is why the Itakura-
Saito error measure µ(E) in Eq. 2.54 must be used in the discrete form µD(E). It has been

2For details, see Appendix A



CHAPTER 2. MODEL FORMULATIONS AND BASIC PROPERTIES 19

done in [12] in order to derive the minimisation criterion for DAP

µD(E) =
1

N

N∑

m=1

[
eV (ωm) − V (ωm) − 1

]

=
1

N

N∑

m=1

[ |E(ejωm)|2
σ2

− ln

[ |E(ejωm)|2
σ2

]
− 1

]

=
1

N

N∑

m=1

[
P (ωm)

P̃ (ωm)
− ln

P (ωm)

P̃ (ωm)
− 1

]
(2.59)

where the σ2 is the error energy and P (ωm) is the given discrete spectrum defined at N
frequency points ωm and P̃ (ωm) is the all-pole model spectrum, defined in Eq. 2.23. Note
that the discrete spectral points can be chosen freely but, in practise, in the DAP algorithm
sampling is performed at the harmonics. The vector a from Eq. 2.2 is obtained by setting
∂µD(E)/∂a = 0. We do not go into the details (see [12] for more detail) but the vector
obtained solves the equation

RIa = h̃, (2.60)

where RI is symmetric Toeplitz matrix defined in Eq. 2.8 and vector h̃ is the impulse
response of the model and for further definition the reader is referred to see [12]. The
example of a spectral envelope given by DAP is seen in Fig. 2.8. After minimisation of
Eq. 2.59, we find that [12]

µDmin = ln

[∏N
m=1 P̃ (ωm)

]1/N

[∏N
m=1 P (ωm)

]1/N (2.61)

and

1

N

N∑

m=1

P (ωm)

P̃ (ωm)
= 1. (2.62)

The Eq. 2.62 is the discrete form of the Eq. 2.25. From these equations one can conclude
that the minimum error Emin is equal to the logarithm of the ratio of the geometric means
of the model spectrum and the original spectrum.

2.6 Minimum Variance Distortionless Response Modelling

So far we have presented the different disadvantages of the original LP method and tried to
overcome those limitations by defining the set of methods such as WLPC, WLSP, DAP, and
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Figure 2.8: FFT spectrum of a male vowel /a/ (thin line) and the all-pole spectrum of the
DAP method (thick line) together with the LP method. The order of the all-pole models
was 22 and the sampling frequency was 22050 Hz. For the sake of clarity the magnitude
levels of the prediction models have been lifted 10 dB.

M-estimates in general. A further problem is that if the order of the original LP method is
increased, then the corresponding envelope overestimates the original voiced speech power
spectrum. This means that the LP envelope is resolving the harmonics and not the spectral
envelope. The minimum variance distortionless response (MVDR) method [26] provides
a smooth spectral envelope even when the model order is increased. In particular, if one
chooses the proper order for the MVDR method the all-pole envelope obtained, models a
set of spectral samples exactly.

Let us recall the constrained minimisation problem defined in Sec. 2.1 Eq. 2.3. In MVDR
methodology the constrained minimisation problem can be stated as

minimise E (h`) = h∗
`RIh`

subject to h∗
`v(ω`) = 1

(2.63)

where RI is the positive definite symmetric Toeplitz matrix defined as in Eq. 2.8, h` =

(h0 h1 · · · hp)T is the distortionless filter to be optimised and v(ω) = (1 ejω · · · ejpω)T .
The distortionless constraint H`(e

jω`) = v∗(ω`)h` = 1, whereH` is noted as the frequency
response, ensures that the input signal components with frequency ω` will pass through
undistorted. Let us use the Lagrange multiplier method to solve the underlying filter from
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Eq. 2.63 as in Sec. 2.1 then

η(h`, λ) =
1

2
h∗
`RIh` − λ(h∗

`v(ω`) − 1), (2.64)

where λ 6= 0. If the derivative with respect to the vector h` is set to zero we obtain the
equation

RIh`,opt = λv(ω`) ⇔ h`,opt = λR−1
I v(ω`), (2.65)

where the correlation matrix RI is assumed to be nonsingular (this is the case whenever
RI is the symmetric positive definite Toeplitz matrix as autocorrelation matrix is). Let us
multiply the Eq. 2.65 by the vector v(ω`) and apply the criterion v∗(ω`)h`,opt = 1 then we
get

v∗(ω`)h`,opt = λv∗(ω`)R
−1
I v(ω`) = 1 ⇔ λ =

1

v∗(ω`)R
−1
I v(ω`)

(2.66)

If the λ is substituted in Eq. 2.65 we obtain that

h`,opt =
R−1
I v(ω`)

v∗(ω`)R
−1
I v(ω`)

. (2.67)

The optimum FIR filter h`,opt is obtained in similar way in [16]. Let us calculate the corre-
sponding minimum error energy E`,min by use of Eq. 2.67

E`,min = h∗
`,optRIh`,opt =

v∗(ω`)R
−1
I

v∗(ω`)R
−1
I v(ω`)

RI
R−1
I v(ω`)

v∗(ω`)R
−1
I v(ω`)

=
1

v∗(ω`)R
−1
I v(ω`)

.

(2.68)

Next we will introduce a essential property of MVDR analysis. We claim that if the error
energy in Eq. 2.63 is minimised in this way, then the minimum error energy E`,min is a good
estimate for the original signal power spectrum at a frequency point ω` that is PMV(ω`) =

E`,min ≈ P (ω`), where P is defined like in Eq. 2.22. If we use the same notation for error
energy as in Eq. 2.24 we obtain

PMV(ω`) = E`,min =
1

2π

∫ π

−π
|H`,opt(e

jω)|2P (ejω)dω, (2.69)

where H`,opt is the frequency response corresponding to the optimal filter h`,opt. In the
next section we will explain why this is a good estimate especially when we are studying
periodic signals such as voiced speech. This analysis is based on [26].
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Figure 2.9: FFT spectrum of a male vowel /a/ (thin line) and the all-pole spectrum of the
MVDR method (thick line) together with the LP method. The order of the all-pole models
was 22 and the sampling frequency was 22050 Hz. For the sake of clarity the magnitude
levels of the prediction models have been lifted 10 dB.

2.6.1 MVDR Envelope

Let P (ω) be the power spectrum of a periodic signal with L harmonics and fundamental
frequency equal to ω0, then

P (ω) = 2π

L∑

k=1

|ck|2
4

[δ(ω + kω0) + δ(ω − kω0)] , (2.70)

where ck’s are the amplitudes at the harmonics, and δ(ω) is the Dirac delta function. Next
we will calculate the estimate PMV(ω`) at the frequency point ω` = ω0`. From Eqs. 2.69
and 2.70 we have

PMV(ω0`) =

∫ π

−π
|H`,opt(e

jω)|2
L∑

k=1

|ck|2
4

[δ(ω + kω0) + δ(ω − kω0)] dω

=

L∑

k=1

{∫ π

−π
|H`,opt(e

jω)|2 |ck|
2

4
δ(ω + kω0)dω +

∫ π

−π
|H`,opt(e

jω)|2 |ck|
2

4
δ(ω − kω0)dω

}

=
L∑

k=1

{
|H`,opt(e

−jω0k)|2 |ck|
2

4
+ |H`,opt(e

jω0k)|2 |ck|
2

4

}
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=
|c`|2
4

+
|c`|2
4

|H`,opt(e
−jω0`)|2 +

L∑

k=1,k 6=`

|ck|2
4

{
|H`,opt(e

−jω0k)|2 + |H`,opt(e
jω0k)|2

}

=
|c`|2
4

+
|c`|2
4

|H`,opt(e
−jω0`)|2 +

L∑

k=1,k 6=`

|ck|2
2

|H`,opt(e
jω0k)|2,

(2.71)

where the second to last equality is due to the fact that |H`,opt(e
jω0`)|2 = 1 and the last

equality is due to the fact that H`,opt(z) = H∗
`,opt(z

∗), ∀z ∈ C. If we set

K(h`) =
|c`|2
4

|H`,opt(e
−jω0`)|2 +

L∑

k=1,k 6=`

|ck|2
2

|H`,opt(e
jω0k)|2 ≥ 0 (2.72)

and remember that |c`|
2

4 = P (ω0`)/2π then we can rewrite Eq. 2.71 as

PMV(ω0`) = P (ω0`)/2π +K(h`) ≥ P (ω0`)/2π. (2.73)

Note that when the error energy E`,min is minimised, then K(h`) should be very small and
we obtain a good estimate.

So far we have derived the power spectrum estimate at a one frequency point and showed
that it is indeed a good estimate. Let us rewrite this estimate in the matrix notations

PMV (ω`) =
1

v∗(ω`)R
−1
I v(ω`)

. (2.74)

Should we derive a new filter he in order to produce the signal power spectrum estimate
at different frequency point ωe? The answer is no because the filter h` is only conceptual
and is being used only in the theoretical matter in order to clarify the method. Note that the
PMV (ω`) does not depend on h`. So if we derive the new filter he and do all computations
the power spectrum estimate is obtained

PMV (ωe) =
1

v∗(ωe)R
−1
I v(ωe)

. (2.75)

Finally we are ready to write the pth order MVDR power spectrum for all frequencies as

PMV (ω) =
1

v∗(ω)R−1
I v(ω)

=
1

|B(ejω)|2 , (2.76)

where the RI ∈ R
(p+1)×(p+1) is symmetric positive definite Toeplitz matrix. The coeffi-

cients for the MVDR prediction polynomial B(ejω) can be obtained from the original LP
coefficients see [26] for more details.



Chapter 3

Stability Analysis for the

Non-Iterative All-Pole Models

Optimised in the Time Domain

3.1 LP Method

In the autocorrelation case, where RI is a symmetric Toeplitz matrix the Z-transform
A(z) of the vector a is known to be minimum phase. This means that this inverse filter
A(z) = 1 + a1z

−1 + · · ·+ apz
−p has all its roots inside the unit circle. This is not the case

in the covariance method. The minimum-phase property or equivalently the stability of the
all-pole filter A−1(z) ensures that the corresponding impulse response is convergent. The
stability property has been proved in among others [11, 29, 15]. In the following, we will
prove this in a detailed manner.

Let us rewrite the Eq. 2.16 in the case where we assume only that the matrix RI can be
factorised as RI = Y∗Y, where the matrix Y = (y0 y1 · · · yp) ∈ C

(N+p+1)×(p+1).




y∗
0y0 y∗

0y1 · · · y∗
0yp

y∗
1y0 y∗

1y1 · · · y∗
1yp

...
... . . . ...

y∗
py0 y∗

py1 · · · y∗
pyp







1

a1

...
ap




=




σ2

0
...
0




(3.1)

In other words, the coefficients a1, . . . , ap are unique solutions to the group of equations

yk⊥(y0 + a1y1 + . . . apyp), ∀k = 1, . . . , p (3.2)

24
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where the x⊥y means that the vectors x and y are orthogonal (x∗y = 0).
Before deriving any results concerning the locations of the roots of the prediction polyno-
mial we define the vector spaces K := span{y1, . . . ,yp} and K̃ := span{y0, . . . ,yp−1}
and linear projection operator Pg on K such that if vector g = (g1 . . . gp) then

Pgy0 = −(g1y1 + · · · + gpyp)

Pgyk = yk, k = 1, . . . , p,
(3.3)

There is a very important property concerning the linear projection operator and before
going further let us consider more closely this property.

Lemma 3.1.1 If the coefficients g1, . . . , gp are solutions to the group of equations defined

in Eq. 3.2 then the linear projection operator Pg, where g = (g1, . . . , gp), has the property

v∗Pgu = v∗u ∀v ∈ K , u ∈ K̃ .

Proof Assume that g1, . . . , gp are solutions to the group of equations defined in Eq. 3.2.
Then

yk⊥(y0 + g1y1 + . . . gpyp), ∀k = 1, . . . , p ⇔
y∗
ky0 + y∗

k(g1y1 + . . .+ gpyp) = 0, ∀k = 1, . . . , p ⇔
y∗
ky0 = −y∗

k(g1y1 + . . .+ gpyp) = y∗
kPgy0, ∀k = 1, . . . , p

(3.4)

Take v ∈ K ⇔ v =
∑p

i=1 diyi and u ∈ K̃ ⇔ u =
∑p

i=1 ciyi−1 then we can write

v∗Pgu =

(
p∑

i=1

d∗iy
∗
i

)
Pg

(
p∑

i=1

ciyi−1

)
= v∗u.

The last equality is due to the property derived in Eq. 3.4 and the basic property of the
projection operator y∗

kPgyj = y∗
kyj ∀k, j = 1, . . . , p.

❏

We are ready to derive the theorem concerning the locations of the roots of the inverse filter
A(z).

Theorem 3.1.2 Let the vector a = (1 a1 · · · ap)T be the solution to Eq. 3.1. Further,

assume that ∃M ∈ C
(N+p)×(N+p) such that the vectors yk from Eq. 3.1 have the relation

yk = Myk+1, k = 0, . . . , p − 1. Then the zeros of the Z-transform A(z) of the vector a

belong to the numerical range1 of the matrix M denoted as F(M).

1For definition, see Appendix A
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Proof Let us define the linear operator A : K → K as

A x = PgMx, ∀x ∈ K . (3.5)

Where Pg is the linear projection operator defined as in Eq. 3.3, where g = (a1 · · · ap).
Notice that the choosing g in this way assures operator Pg has the property of Lemma 3.1.1.
Next, take v ∈ K ⇔ v =

∑p
k=1 ξkyk. we have

A v = PgM(

p∑

k=1

ξkyk) = Pg(ξ1y0 +

p∑

k=2

ξkyk−1)

= −ξ1(a1y1 + · · · + apyp) +

p∑

k=2

ξkyk−1 =

p∑

k=1

πkyk,

(3.6)

where the property yk = Myk+1, k = 0, . . . , p − 1 and Eq. 3.3 have been used. From
Eq. 3.6 the coordinate vector π = (π1 · · · πp)T can be calculated as

π =




−a1

−a2 I(p−1)×(p−1)
...

−ap 0 · · · 0







ξ1

ξ2
...
ξp




= Cξ, (3.7)

The matrix C is the companion matrix ofA(z), that is, the zeros ofA(z) are the eigenvalues
of C. Matrix C is also the representation of the operator A with respect to the basis
of space K which can be see from Eq. 3.7. This means that C and A have the same
eigenvalues. It remains to show that eigenvalues of operator A belongs to the numerical
range of matrix M.
Take a normalised eigenvector v of operator A , that is A v = λv, where ‖v‖2 = 1 and λ
denotes the corresponding eigenvalue. By simple calculation we get

λ = λ‖v‖2 = v∗λv = v∗
A v = v∗PgMv = v∗Mv ∈ F(M) (3.8)

where the last equality is due to the fact that because v ∈ K and M : K → K̃ we can
apply the property of the operator Pg from Lemma 3.1.1.
❏

Next we return to the stability properties of the LP model, where the matrix RI from
Eq. 2.16 is a real symmetric Toeplitz matrix. From [29], the symmetric Toeplitz matrix
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RI can be factored in the following way RI = YTY, where

Y =




y0 0 · · · 0

y1 y0
. . . ...

...
... 0

yp+1 yp · · · y0

...
...

yN yN−1 · · · yN−p

0 yN yN−p+1

... . . . . . . ...
0 · · · 0 yN




=
(

y0 y1 · · · yp

)
∈ R

(N+p+1)×(p+1).

(3.9)
The columns yk of the matrix Y can be generated via the formula yk = Myk+1, k =

0, . . . , p− 1, where

M =

(
0 I

ω 0T

)
∈ C

(N+p+1)×(N+p+1), (3.10)

I ∈ R
(N+p)×(N+p) is an identity matrix and 0 = (0 · · · 0)T ∈ R

N+p. The ω is arbitrary so
it can be chosen freely.

Theorem 3.1.3 Let the vector a be the solution to the Eq. 2.16 where RI is a symmetric

Toeplitz matrix and let us choose the corresponding matrix M in Eq. 3.10 such that ω = eiφ

where φ ∈ [0, 2π]. Then A(z) has all its roots inside the circle with centre at the origin and

radius equal to cos( π
N+p+1).

Proof In view of Theorem 3.1.2 it is clear that the roots of theA(z) belong to the numerical
range of the matrix M. The numerical range of matrix M coincides with the convex hull2

of its eigenvalues because with ω = eiφ the matrix M become unitary, that is M∗M =

MM∗ = I. The characteristic polynomial3 pM(x) of matrix M is pM(x) = xN+p+1−eiφ.
This can be seen by computing det(xI − M) by a Laplace cofactor expansion [17] along
the first column. That is why the eigenvalues ψk (the roots of characteristic polynomial) are

ψk = e(2πk+φ)i/(N+p+1) k = 0, . . . , N + p. (3.11)

When the convex hull is composed from the eigenvalues ψk, one observes that it has the
geometrical shape of polygon. The roots ofA(z) are located inside the (N+p+1)-polygon

2,3 For definition, see Appendix A
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GφN+p+1 with centre at the origin. Let us remember that φ ∈ [0, 2π] was chosen arbitrary.
If a different ω is chosen such as ω = ei(φ+ε) we get the same results from Theorem 3.1.2
but a different polygon Gφ+ε

N+p+1. This polygon is the polygon Gφ
N+p+1 rotated an amount

of ε in the complex plane. The roots of polynomial A(z) are thus located inside the area
GN+p+1 defined as

GN+p+1 =
⋂

φ∈[0,2π]

GφN+p+1, (3.12)

see Fig. 3.1. By calculating the intersection points for rotated polygons we obtain that the

Figure 3.1: Example of the intersection area for rotated Gφ
3 polygons.

radius ρ of GN+p+1 is equal to ρ = cos( π
N+p+1). This concludes the proof.

❏

3.2 WLPC Method

The stability criterion of the WLPC method, in the case of autocorrelation, is similar to the
LP method. In the case of autocorrelation method (I := {0, . . . , N + p}) the left-hand side
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in Eq. 2.29 can be separated in a similar way as in Sec. 3.1

R̃I = (WY)T (WY) = ỸT Ỹ (3.13)

where Y is defined like in Eq. 3.9 and the matrix W is a diagonal matrix

W =




√
w0 0 · · · 0

0
√
w1 0

... . . . ...
0 · · · 0

√
wN+p



. (3.14)

In this case the matrix R̃I become a symmetric matrix without Toeplitz structure. Let us
consider the stability properties of the WLPC method in a similar way as in [10].

From Eq. 3.13 one observes that the columns ỹk of the matrix Ỹ = WY can be gen-
erated via the formula

ỹk = M̃ỹk+1 k = 0, 1, . . . , p, (3.15)

where

M̃ =




0
√
w0/w1 0 · · · 0

0 0
√
w1/w2

. . . 0
...

... . . . . . . ...
0 0 0 · · ·

√
wN+p−1/wN+p

ω 0 · · · 0 0




∈ C
(N+p+1)×(N+p+1),

(3.16)
For Eq. 3.15, we have from theorem 3.1.2, that the zeros of the Z-transform of the vector
a solving Eq. 2.29 belong to the numerical range of the matrix M̃. It remains to derive the
numerical range of the matrix M̃.

It has been shown [10] that the numerical range F(M̃), where ω = 0, is located inside a
circle with centre at the origin and with radius ρ = 1

2 maxn{
√
wn/wn+1+

√
wn+1/wn+2},

for n = 0, 1, . . . , N + p− 2. Let us introduce a new stability region with respect to weights
wn and a length of the data sequence. Denote the algebra of bounded linear operators4 on
the Hilbert space H by B(H ).

4For definition, see Appendix A.
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Theorem 3.2.1 Let H be a complex Hilbert space and let M̃ ∈ B(H ) be a nilpotent

operator5 with power of nilpotency n. The numerical range F(M̃) is a circle (open or

closed) with centre at the origin and radius ρ not exceeding ‖M̃‖ cos( π
n+1 ).

Proof The proof can be found in [20].
❏

Let us apply Theorem 3.2.1 to the case where M̃ is defined as in Eq. 3.16 where ω = 0.
Then the M̃ is a nilpotent operator with power of nilpotency n = N + p + 1. The norm
of the Hilbert space for the matrix M̃ is clearly equal to ‖M̃‖ = maxn{

√
wn/wn+1}, for

n = 0, . . . , N + p− 1. In view of Theorems 3.1.2 and 3.2.1 we get

Theorem 3.2.2 The zeros of the inverse filter of the weighted linear prediction model are

located inside a circle with centre at the origin and with radius

ρ = max
n

{
√
wn/wn+1} cos(

π

N + p+ 1
), n = 0, . . . , N + p− 1.

Note that by choosing the weights wn = 1, ∀n = 0, . . . , N + p, one gets the same stability
region as the LP method has (ρ = cos( π

N+p+1)).

3.3 WLSP Method

It has been proved that the WLSP polynomial D(z) is minimum phase [8] but for the sake
of completeness let us introduce a different kind of proof. In Sec. 2.4, the vector d in
Eq. 2.44 was defined using the zero extended vector (a 0)T . Let us define the vector d in
the different manner without using the extended vector (this kind of definition is similar to
the concept of the immittance spectral pairs (ISP) from [7])

p = a + Ja

q = a− Ja
(3.17)

Then the vector d is defined as in Eq. 2.46 by using the vectors p, q from Eq. 3.17. The
polynomial D(z) denotes the Z-transform of the vector d. The matrix J is defined as in
Eq. 2.45. It is easy to see that proving the stability in this situation is equivalent to the
stability of the original inverse filter in Sec. 2.4.

5Matrix A is nilpotent with power of nilpotency n if it is the smallest integer such as A
n = 0.
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If the vector d is multiplied from left by the positive definite symmetric Toeplitz matrix RI

from Eq. 2.16 we get

RId = RI [λp + (1 − λ)q] = RI [λ(a + Ja) + (1 − λ)(a − Ja)]

= RI [a + (2λ− 1)Ja] = RI [a + αJa],
(3.18)

where α = 2λ − 1. Remember that vector a was the solution to the Eq. 2.16. By using
the fact that RIJ = JRI if RI is centrosymmetric matrix (symmetric Toeplitz matrix is
centrosymmetric) we can write

RId = σ2(I + αJ)
�
, (3.19)

or equivalently
RId = σ2T

�
, (3.20)

where T = I + αJ and the unit vector �
= (1 0 · · · 0)T .

Before going further we have the property concerning the positive definite symmetric Toeplitz
matrix RI

Theorem 3.3.1 The Z-transform of the vector a solving Eq. 2.16 is in minimum phase iff

RI is positive definite symmetric Toeplitz matrix.

Proof The proof can be found in [15].
❏

We are ready to prove the stability of the WLSP method.

Theorem 3.3.2 The WLSP polynomial D(z) = λP (z) + (1 − λ)Q(z) is minimum phase

iff λ ∈ (0, 1).

Proof (’⇐’) After some straightforward calculations the inverse T−1 of a matrix T in
Eq. 3.20 is

T−1 =
1

1 − α2
(I− αJ). (3.21)

Now Eq. 3.20 can be written as

1

1 − α2
(I− αJ)RId =

1

1 − α2
RI(I− αJ)d = RI d̃ = σ2 �

, (3.22)
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where

d̃ =
1

1 − α2
(I− αJ)d (3.23)

and the first equality is due to the fact that RI and (I − αJ) commutate. From Theorem
3.3.1 we find that Z-transform of the vector d̃ is minimum phase. It remains to prove that
the Z-transform of the vector d is also in the minimum phase. If the Z-transform is applied
to Eq. 3.23 we obtain

(1 − α2)D̃(z) = D(z) − αz−pD∗(
1

z∗
), (3.24)

where the polynomial D(z) is of order p. Let us divide Eq. 3.24 by D(z) and define a new
rational function G of z as

G(z) = (1 − α2)
D̃(z)

D(z)
= 1 − α

z−pD∗( 1
z∗ )

D(z)
. (3.25)

We are ready to use the well known principle of the argument6 from complex analysis [31],
[15]. This principle is explained in the same manner as in [15] that is if one is given a
rational function f of z and let ζ be a simple closed curve in the z plane. As the path ζ is
traversed in a counterclockwise direction, a closed curve is generated in the f(z) plane that
encircles the origin Nz−Np times in a counterclockwise direction where Nz is the number
of zeros inside ζ and Np is the number of poles inside ζ .

Let us choose the simple closed curve ζ to be the unit circle. Then the polynomial D̃(z)

has p roots inside the ζ and p poles at z = 0. The polynomial D(z) has also p poles at
z = 0 and let us assume that it has k roots outside the unit circle. Then it is obvious that the
polynomial G(z) in Eq. 3.25 has Nz = p roots and Np = p− k poles and this means that
the curve in G(z) plain encircles the origin p − (p − k) = k times in a counterclockwise
direction. Now since the contour ζ is the unit circle (z = ejω) from Eq. 3.25 one gets

|G(z) − 1|ζ = |α|
∣∣∣∣∣
z−pD∗( 1

z∗ )

D(z)

∣∣∣∣∣
ζ

= |α|
∣∣∣∣
e−jpωD∗(ejω)

D(ejω)

∣∣∣∣
ζ

= |α|. (3.26)

The assumption was that λ ∈ (0, 1) ⇔ α ∈ (−1, 1). This means that the closed curve
generated in the G(z) plane does not encircles the origin see Fig. 3.2. This implies that k
must be equal to zero and hence, D(z) has all its roots inside the unit circle.

(’⇒’) If the roots of the (inverse filter) polynomial D(z) are inside the unit circle then
6For definition, see Appendix A.
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Figure 3.2: G(z) traces out a curve which is a circle of radius |α| that is centred at z = 1.

k is equal to zero. This implies that the closed curve generated in the G(z) plane, from
Fig. 3.2, does not encircles the origin. From this property we obtain that α ∈ (−1, 1) which
concludes the proof.
❏



Chapter 4

Objective Assessment in All-Pole

Modelling of Speech

The quality of the spectral modelling can be understood in many different ways [18, 21, 25].
In this thesis, we are especially interested in behaviour of all-pole modelling in the pres-
ence of the uncorrelated background noise. In practise, if two different all-pole spectra are
compared, the most convenient way of doing this is to use spectral distortion measures.
There are several objective spectral-distortion measures in literature such as RMS log spec-

tral measure, cepstral distance measure, cosh measure, likelihood ratios etc. (see [30, 3]).
In this thesis the log spectral distance SD℘ for the normalised all-pole spectrum is used in
order to evaluate the effectiveness of the all-pole models to model the voiced speech spec-
trum in presence of uncorrelated noise. Moreover, if we consider the perceptually relevant
measures in detail, the shifting of the first two formants as a function of the signal to noise
ration should be examined. The reason behind this lies in the fact that the locations of the
first two formants determines which vocal is in question. In this work, we will consider this
measure and therefore explain the concept of signal to noise ratio and the concept of vocal
tract resonances called formants.

4.1 Log Spectral Distance

The SD2 measure is based on the well known Itakura-Saito distortion measures as we shall
see later. Let us consider the general SD℘ measure in detailed manner.
Take two power spectra P1(ω) and P2(ω), and let the energies of the original signals (p1

and p2) be equal. Define the difference function of these two logarithmic spectra to be

V (ω) = log10 P1(ω) − log10 P2(ω). (4.1)
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Continuous Case

In the continuous case the SD℘ measure is defined as

SD℘ = ℘

√
1

2π

∫ π

−π
|V (ω)|℘dω. (4.2)

In mathematics this is called the L℘ norm (see [31] for more detail). What is the connection
between L℘ norms for a different ℘? One observes that when ℘ is increased the effects of
the large errors are more heavily weighted and the lower errors effects on the SD℘ measure
is decreased. If ℘ approaches infinity, only the maximum value of |V (ω)| defines the SD℘

measure. In this thesis, the discrete version of SD2 measure is used as we see in the next
section. The connection between the Itakura-Saito distortion measures from Eq. 2.54 and
SD2 can be seen by rewriting Eq. 2.54 and using the Taylor series 1 of the exponential func-
tion about the point equal to zero (which is known as a Maclaurin series of the exponential
function).

µ(E) =

∫ π

−π

[
eV (ω) − V (ω) − 1

] dω
2π

=

∫ π

−π

[
∞∑

k=0

V (ω)k

k!
− V (ω) − 1

]
dω

2π

≈
∫ π

−π

[
1 + V (ω) +

V (ω)2

2
− V (ω) − 1

]
dω

2π
=

1

2
SD2

2,

(4.3)

where the approximation
∑∞

k=0
V (ω)k

k! ≈ 1 + V (ω) + V (ω)2/2 is fairly good if
|V (ω)| � 1, ∀ ω ∈ [−π, π].

Discrete Case

The SD℘ measure can be defined also in the discrete case. In this work we are interested in
measuring the difference between two all-pole spectra. Take two different all-pole models
A1(z) and A2(z). In order to compare these models using the SD℘ measure, one must
normalise the gains of the all-pole filters to be equal. The power spectra for these models is
defined as in Eq. 2.23

Pi(ω) =
σ2

|Ai(ejω)|2 i = 1, 2. (4.4)

Next, the difference function can be calculated as in Eq. 4.1. Notice that one typically
computes the power spectra using the FFT algorithm and thus the spectra are discrete.

1Taylor series is an expansion of a real function f about a point x0 : f(x) =
P

∞

n=0
f(n)(x0)

n!
(x − x0)

n.
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Therefore, the discrete SD℘ measure must be used. That is

SD℘ = ℘

√√√√√ 2

fs

fs/2∑

f=0

|V (2πf)|℘, (4.5)

where fs is the sampling frequency.

The greatest advantage of the SD2 measure is the fact that the contributions to the total
difference in Eq. 4.1 are equally important whether P1(ω) < P2(ω) or vice versa and that
there is no error cancellation property because of the square in Eq. 4.5 and 4.2 when the
℘ is chosen to be equal to 2. SD2 is also a perceptually relevant distortion measure. That
is because the loudness of a signal is approximately logarithmic. It is also very appealing
that when one compares two slightly different all-pole spectra, the largest values of |V (ω)|
occurs when there is lot of variations in the formant frequencies of the all-pole models in
question.

4.2 Formant Shifting as a Function of Signal to Noise Ratio

In this thesis, we will measure formant shifting as a function of signal to noise ratio (SNR).
This kind of a measure gives us straightforward information about the quality of the present
all pole model if it is used in order to synthesise or re-synthesise speech. This property will
be explained later and it is based on the concept of the formant map. Let us first explain the
concept of the SNR and the vocal tract resonance called formant. Later on we will show
the way to obtain the formants from the spectrum in practise.

4.2.1 Signal to Noise Ratio

Consider a clean signal sequence {s(n)} and a sequence of uncorrelated noise {e(n)},
where the length of the both sequences is N . Let us assume that we have a additive model
for corruption

x(n) = s(n) + e(n) n = 0, . . . , N (4.6)

Then the SNR value of the signal sequence {x(n)} is defined as

SNR(x) = 10 log10

[∑N
n=1 s(n)2

∑N
n=1 e(n)2

]
. (4.7)
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Figure 4.1: The two clear peaks of the power spectrum of the synthesise filter shows the
first two formants, F1 and F2. All-pole model was computed from the Finnish vowel /a/
pronounced by male 3, using sampling frequency 22050 Hz and a large LP-order.

4.2.2 Vocal Tract Resonance and the Influence of Formant Shifting

In this section we consider the vocal tract resonances called the formants and then explain
the effect of the formant shifting. Let us first consider the basic speech production model
by rewriting the Eq. 2.20:

E(z) = A(z)X(z), (4.8)

Eq. 4.8 can be written as

E(z)
1

A(z)
= X(z). (4.9)

The all-pole filter 1
A(z) can be interpreted as a vocal tract filter and the clear characteristics

of the filter should be an approximation of the entire vocal tract, serving as a acoustically
resonant system. Eq. 4.9 can be understood as the approximation to the source-tract model
by Fant [13]. In this model the all-pole model 1

A(z) models the combined effect of the
glottal flow, vocal tract, and the lip radiation. The vocal tract can be considered a time-
varying filter that prohibit the passage of sound energy at certain frequencies while allowing
its progress at other frequencies. The formants are the resonant frequencies at which local
energy maxima are sustained by the vocal tract and are determined, in part, by the overall
physical dimensions of the vocal tract (length,volume and overall shape of the vocal tract).
When different phones are produced, the physical dimensions of the vocal tract are changed



CHAPTER 4. OBJECTIVE ASSESSMENT IN ALL-POLE MODELLING OF SPEECH38

Figure 4.2: Vocal map for Finnish vowels. The information behind this figure can be found
in [19].

and that is why the formants appear in different frequency positions for different vowels (see
Fig. 4.2). The formant frequencies thereby correspond to the peaks in the power spectrum
of the synthesis filter. This can be seen from Fig. 4.1. (For further information, the reader
is referred to see [27].)



Chapter 5

Subjective Testing of All-Pole Models

There are many standards concerning subjective testing of speech. In psychoacoustics, it is
very common to study and evaluate theoretical results using different kind of listening test
setups see ([28, 1]). Next we will consider some aspects of subjective testing concerning
the listening tests.

5.1 Listening Tests

In subjective tests, different speech samples are played to a group of listeners. The test
subjects are asked to rate the quality of the speech samples. The tests are performed for a
appropriate group of listeners and at the end the results are processed using tools of math-
ematical statistics. It is clear that the larger the number of listeners, the more reliable the
results will be. This is the case because the confidence interval decreases for a large num-
bers of listeners. Some subjective tests use so called expert listeners. This means that before
the test is being performed the group of listeners is trained to listen to certain properties of
the speech samples. Usually non-expert listeners are used because, if we are considering the
real applications, the system is eventually used by non-expert listeners (common people).

There are many issues affecting the results of the subjective testing. For example, if the
test samples are too loud or they are clipping, the effects on the results could be remarkable.
This is why the test setup should be planned very carefully and the speech samples should
be normalised to the same level and the reference signals should be processed in the right
manner. There are different kind of subjective tests belonging to the category of listening-
only subjective tests such as absolute category rating (ACR), degradation category rating

(DCR), and diagnostic acceptability measure (DAM). In this work, we are considering the
DCR testing because it is widely used test for background noise conditions. Next we will
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give a closer look in DCR testing (see [28]).

Degradation Category Rating

The DCR test uses an annoyance scale and it is suitable for evaluating good quality speech.
It is also a good test for evaluating the effects of background noise conditions in speech
samples. The idea is to play the uncorrupted (clean) speech sample first as a reference
sample and then play the contained speech sample. The listener has to rate the degradation
at the discrete DCR scale (see Appendix B Table B.1). The reader should notice that the
order of speech samples (reference and corrupted speech sample) played might bias the
scores. This is a basic difficulty when designing listening tests in general and it should be
taking into account. In this work, the DCR test is used in the manner that listener is able to
listen the sample pair as many times as he or she wants and in any order. It is well known
that this kind of setting also suffers from some difficulties.



Chapter 6

Speech material and Tests Setups

In this chapter, we will consider shortly the processing of speech signals as well as the
test setups of objective and subjective tests. Let us first consider the processing of speech
signals.

6.1 Processing of Speech Signals

The speech materials was recorded in an anechoic chamber using a high-quality condenser
microphone (Brüel&Kjær), and the data was saved onto a DAT. Next the speech samples
were down-sampled at fs = 22050 Hz, using 16 bits per sample in order to transfer the
vowels into a computer. The recorded speech material consists of Finnish vowel /a/ pro-
duced by five male speakers. Finally, the speech samples were processed with computer
in the following way. Sustained segment with duration of 25 ms located in the middle of
speech sample (551 number of samples at each speech sample) are selected and used in this
work. We did not use any pre-emphasise filtering techniques and from Tab. B.6 the reader
can see in which all-pole methods the speech samples were windowed by the Hamming
window before calculating any model parameters.

6.2 Tests Setups

6.2.1 Objective Tests

As mentioned earlier, the discrete logarithmic SD2 measure will be calculated at the dif-
ferent circumstances. In order to complement these results, the first two formants, namely
F1 and F2, are calculated at the same situations. The clean speech samples from five male
were processed in the manner explained in Sec. 6.1.

First the corrupted speech samples were created. We generated for each speech sample,
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Table 6.1: Table shows for which all pole models the speech samples were windowed by a
Hamming window, before calculating the model parameters.

All pole model Hamming window
LP yes
WLPC no
M-estimates no
WLSP yes
DAP yes
MVDR yes

seven corrupted samples with SNR 0, 5, . . . , 30. The corruption was done by adding Gaus-
sian noise or the Laplacian noise as described in Eq. 4.6. In the end, we have 15 speech
samples for one male speaker (totally 75 speech samples). In order to calculate SD2 and
the formants (F1, F2) as a function of the SNR, we calculate an all-pole model for each
corrupted signal and calculate the spectral difference for each corrupted all-pole spectral
envelope from the all-pole model envelope created to the clean speech sample. This is done
for every male speech sample (vowel /a/) in the both cases, namely the Gaussian corrupted
samples and the Laplacian corrupted samples.

In order to calculate SD2 in every situation we use the discrete form on SD2 from Eq. 4.5
and the calculation is performed in two cases, on the entire frequency range (0Hz →
11025Hz = fs/2) and in half range (0Hz → 5525Hz).
When the formant shifting as a function of the SNR is being analysed, we have to be able
to define where the first two formants are located. This has been done by calculating the 45

order LP model for the five clean speech samples and taking the first two maximum peaks
from the LP spectra. The location of the peaks can be found by calculating the zero points
of the derivative of the LP envelope. The same method has been used for every method
at all different SNRs in order to calculate the formant shifting as a function of SNR. The
calculations are performed in two different situations, namely the presence of the Gaussian
noise and Laplacian noise. Reader should notice that the respective spectra are discrete so
the formant location is the nearest spectral peak to the actual peak in the speech spectrum.
That is why one observes from the Figs. 7.4-7.5 that for example the F1 location for two
different method can be the exactly same.

The order p of the all-pole models was 22. The LP, WLPC, WLSP, MVDR, and DAP
methods were derived using the autocorrelation method. The length of the STE window
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M in WLPC method was set to be 12. M-estimates (Huber and `1) uses the covariance
method with robust scale estimate r̂ = 1 such that in Huber method the tuning constant c
was chosen to be 1.5. We calculated only one iteration round using the covariance matrix,
where the initial vector was chosen to be equal to the LP coefficient vector calculated by
the covariance method.

6.2.2 Subjective Tests

The subjective tests is carried out as an listening test as mentioned earlier. In the listening
tests, the speech samples (vowel /a/) of male 1 and male 3 have been used in the following
manner. First the samples were processed in the same manner as in Sec. 6.2. Then we
calculated the all-pole models (filters) for the same seven selected methods, using the same
parameters and orders as in objective tests in Sec. 6.2. The all-pole models for both male
were calculated from the original (“clean”) speech samples and the corrupted versions of the
same two samples. The corruption was performed using Gaussian noise at seven different
signal to noise ratios 0, 5, 10, . . . , 30. The excitations for male 1 and male 3, were composed
by means of the temporal structures of the respective clean speech samples. This means
that the excitations were impulse vectors of approximate length equally to 300 ms (6000
samples). The impulses location of the impulse train were set to be the same as the peaks in
the original time waveform of the speech sample in question. The excitations were filtered
through the all-pole filters (reverse of the original filter) in order to synthesise the speech.
The synthesised speech samples were windowed by Hanning window of length 10 ms (551
samples) and the energies were normalised to one.

Listening procedure

The listeners in this degradation category rating test were non-expert listeners but most of
them were experts in many fields of speech technology. There were 10 Finnish listeners,
8 male and 2 female. Listening test were performed in a noiseless room designed for the
listening purpose. Listening was done over headphones using a mono signal for a both ears.
The test was performed such that only one listeners was doing the test at a time and the test
took about 30 min. The test was organised in the following way:

First the listeners were instructed verbally, and then they carried through a short training
session consisting on 9 sample pairs (18 speech samples in total) which were in random
order. During the training session the listeners were advised to adjust the volume manually
to a pleasant level. After the level was chosen the listeners were not allowed to change
it during the actual test. There were 112 samples in the test and the comparison between
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the reference and the corrupted sample (56 sample pair) was performed in random order
such that the listeners were able to listen to both samples as many time as they want and
in an arbitrary order. The reference speech sample was in every situation the synthesised
speech sample calculated from the clean speech sample. The validity of each listeners were
checked in the following manner. The comparison between the two same speech samples
were included for both tests, the training stage and the actual test. We also included cases
where the comparison of some sample pairs were repeated twice. Next, the listeners were
given a discrete grade 1−5 (see Appendix B Tab. B.2). The voting was accomplished using
the mouse in order to move the scroll bar.



Chapter 7

Results

In this chapter, we will present the results of objective and subjective testing. At the end,
the correlation between the subjective and objective testing is described and calculated. In
both cases, the signals used were processed in the same manner explained in Chapter. 6.

7.1 Objective Results

As we can see from Figs. 7.2 and 7.3, the STE-WLPC method worked markedly better in
the presence of the Gaussian and Laplacian noise than the others all-pole methods. The
only methods which is almost as good as STE-WLPC method in this kind of test setups is
the MVDR method. We may ask the underlying reason behind the superior of the STE-
WLPC method? The answer for this is evident if we consider Fig. 7.1. From this figure it
is clear that if we calculate the SNR at a time interval 10 ms → 15 ms it is worse than SNR
calculated from interval 15 ms → 20 ms. The STE weight function is the one which down-
weight those intervals for low SNR. From Fig. 2.5 it is easy to see that the weight functions
from the L1 and HUBER method do not have this property. The reader should notice that
this holds in the particular case, when the noise is uncorrelated Gaussian and Laplacian.
Note that the results for both types of noise are fairly similar. The SD2 calculated from the
entire and half frequency range gives also similar results in the both cases. The reason why
the MVDR method obtains such a good results if the SD2 measure is being considered. The
reason could be because of the smoothness of the method. This means that small changes
in the speech waveform do not affect the estimation of the smooth spectral envelope (see
Fig. 2.9). The reason why DAP and WLSP are inferior to STE-WLPC in terms of SD2 is
explained by the fact that they do not posses the weighting property described in Sec. 2.2.

The calculation of formant shifting as a function of SNR is performed over the frequency
range from 0 Hz to 2000 Hz. The calculation is stopped in the situation where only one
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Figure 7.1: A clean time waveform of a male vowel /a/ and the same waveform corrupted
at a SNR=15 dB Gaussian white noise. The STE-weight function is calculated from the
corrupted speech sample and scaled to the same level as speech waveforms (M = 12,
k = 1).
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Figure 7.2: Spectral distance values between clean and corrupted all pole envelopes cal-
culated for a vowel /a/ using SNR values from 0dB to 30dB. The speech sample was
corrupted by Gaussian uncorrelated noise. The values were computed as an average over
five male speakers. Left panel: SD2 was calculated using frequency range from 0Hz to
11025Hz. Right panel: SD2 was calculated using frequency range from 0Hz to 5525Hz.
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Figure 7.3: Spectral distance values between clean and corrupted all pole envelopes cal-
culated for a vowel /a/ using SNR values from 0dB to 30dB. The speech sample was
corrupted by Laplacian uncorrelated noise. The values were computed as an average over
five male speakers. Left panel: SD2 was calculated using frequency range from 0Hz to
11025Hz. Right panel: SD2 was calculated using frequency range from 0Hz to 5525Hz.

formant is located in the frequency range in question. This means that the first two formants
are combined to one or they have moved out of the frequency range. This can be seen from
Figs. 7.4 and 7.5 where the discrete function (at a specific colour corresponding to the all-
pole method in question) as a function of the SNR stops suddenly when the SNR is near
to 0 dB. The reader should notice that the MVDR method can not be found from the
pictures. The reason behind this is obvious when studying Fig. 2.9. It is clear that the
spectral envelope produced by the MVDR method is so smooth that even at a clear speech
only the one peak value can be located at a frequency range in question. It is also interesting
to note that in both Figs. 7.4 and 7.5, both formants are travelling toward zero. The reason
behind this is not clear and should be studied in future.

7.2 Subjective Results

From Figs. 7.6 and 7.7 it is clear that the WLPC method is considerably better than other
all-pole methods. The MVDR method do not cope as well as in the SD2 tests because of the
spectral smoothness. It is difficult to rate the sound quality at a DMOS scale if the vowel
/a/ does not sound good even at a clean synthesised speech. We can conclude that only the
WLPC method is clearly differing from other methods. Altogether the results derived from
the subjective test are fairly similar to the objective tests, the SD2 measure particularly.
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Figure 7.4: First and second formant (F1, F2) locations (Hz) as a function of SNR (dB).
The analyses were using all seven selected all-pole methods. Speech was corrupted by
Gaussian additive noise. The “correct” formants (dashed lines) were derived by using 45
order LP model matched to the underlying vowel. Results were given separately for all five
male speakers.



CHAPTER 7. RESULTS 49

0 5 10 15 20 25 30 clean
200

300

400

500

600

700

800

900

1000

1100

1200

SNR (dB)

F
re

qu
en

cy
 (

H
z)

 

 

LP

WLPC

WLSP

DAP

L1

HUBER

F
i

F
1

F
2

0 5 10 15 20 25 30 clean
200

300

400

500

600

700

800

900

1000

1100

1200

SNR (dB)

F
re

qu
en

cy
 (

H
z)

 

 

LP

WLPC

WLSP

DAP

L1

HUBER

F
i

F
1

F
2

0 5 10 15 20 25 30 clean
200

300

400

500

600

700

800

900

1000

1100

1200

SNR (dB)

F
re

qu
en

cy
 (

H
z)

 

 

LP

WLPC

WLSP

DAP

L1

HUBER

F
i

F
1

F
2

0 5 10 15 20 25 30 clean
200

300

400

500

600

700

800

900

1000

1100

1200

SNR (dB)

F
re

qu
en

cy
 (

H
z)

 

 

LP

WLPC

WLSP

DAP

L1

HUBER

F
i

F
1

F
2

0 5 10 15 20 25 30 clean
200

300

400

500

600

700

800

900

1000

1100

1200

SNR (dB)

F
re

qu
en

cy
 (

H
z)

 

 

LP

WLPC

WLSP

DAP

L1

HUBER

F
i

F
1

F
2

Figure 7.5: First and second formant (F1, F2) locations (Hz) as a function of SNR (dB).
The analyses were using all seven selected all-pole methods. Speech was corrupted by
Laplacian additive noise. The “correct” formants (dashed lines) were derived by using 45
order LP model matched to the underlying vowel. Results were given separately for all five
male speakers.
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Figure 7.6: Mean DMOS values for all seven selected all-pole models. The values were
computed as an average over the data obtained from 10 listeners. The synthesised speech
sample was calculated from Finnish vowel /a/. Left panel: synthesise computed using data
pronounced male 1. Right panel: synthesise computed using data pronounced male 3.
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Figure 7.7: Mean DMOS value for all seven selected all-pole models. The values were
computed as an average over the data obtained from 10 listeners for both synthesised speech
samples pronounced by male 1 and 3. The synthesised speech sample was calculated from
Finnish vowel /a/.

7.3 Correlation Between Subjective and Objective Results

In this section we compare the results of the subjective and objective testing. This is done
simply by studying SD2 as a function of the DMOS value and by fitting the straight line
for the data by minimising the mean square error. The correlation coefficient r was also
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calculated using the definition from [5, 22]

r =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑

j(yj − ȳ)2
, (7.1)

where the x̄ is the mean value calculated from the data vector x. Fig. 7.8 shows clearly that
there is simple relationship between DMOS and SD2 scores. The correlation coefficient
between the SD2 (calculated for the entire frequency range) and the DMOS, where, in both
situations, the contamination was performed using Gaussian noise, was r = −0.9670 see
Fig. 7.8 left panel. The correlation coefficient was calculated also for the SD2 where the
calculation was performed over the half frequency range. In this situation the correlation
coefficients was r = −0.9654 see Fig. 7.8 right panel. One observes that the correlation
coefficients are fairly high. The reason behind this is the linear nature of the both, subjective
and objective results as a function of the SNR. Other reason is that there were only 49 points
included in the correlation coefficients calculations in both cases, which is rather low.
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Figure 7.8: Objective SD2 values in dB as a function of subjective DMOS values. The
straight line is fitted to the data with the least square method. Left panel: SD2 calculated
from the entire frequency range and the correlation coefficient was r = −0.9670. Right
panel: SD2 calculated from the half frequency range and the correlation coefficient was
r = −0.9654.



Chapter 8

Conclusions

In this work, the spectral modelling properties and the model errors of seven all-pole mod-
els were first compared on a theoretical level. Subsequently, the spectral modelling proper-
ties were compared using both objective and subjective testing. The all-pole models were
formulated, and their modelling properties as well as modelling error behaviour were ex-
amined in the time and frequency domain. The different limitations of LP model were
presented in order to derive and justify the existence of the other all-pole methods: WLPC,
WLSP, DAP, MVDR, and the M-estimates such as HUBER and `1 methods. All methods
were formulated using the same notation, in order to present a uniform theory covering
the all-pole methods in question. Moreover, the connection between the M-estimates and
the WLPC method was introduced. In fact, using the approximated IRLS method for the
M-estimates, the solutions were showed to be identical. Particularly in the M-estimates and
WLPC methods the properties of the different weighting functions were discussed.

Especially emphasise in this work was devoted in the stability of the all-pole models op-
timised in the time domain. Stability of the LP method was presented using a new approach
based on new property which applies the linear projection operator defined in Eq. 3.3. Us-
ing this result we were able to present the connection between the stability region and the
normal equation in a profound manner. A new stability region for the weighted LP method
(WLPC) with respect to the weighting function was derived. This new stability region is
tending towards the stability region derived for the LP method as the weights approach to
the unity. This is clearly a considerable improvement to the old stability region for the
WLPC method. The stability properties of the WLSP method were derived in new accu-
rate way by using a well known principle of the argument from complex analysis. The
properties of the objective SD℘ measures were described in a mathematical way and the
connection between the Itakura-Saito error measure and the SD2 measure was introduced.

In addition, the behaviour of the all-pole models in the presence of uncorrelated Gaussian
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and Laplacian background noise were examined with objective and subjective tests. The
objective measures used were the logarithmic spectral differences and the shifting of the
first two formants as a function of signal to noise ratio. The subjective test was carried
out as listening tests where the DCR testing procedure was used. The correlation between
the subjective and objective results were calculated using the correlation coefficient and the
correlation was found to be remarkably strong.

As a conclusion, the WLPC model, for which the weighting function was selected to be
the short time energy, gave the best results both in the objective and subjective tests. A new
stability region for the WLPC model with respect to the weighting function was derived.
Finally, we conclude that it is recommendable to use the WLPC method with appropriate
weighting function in the presence of uncorrelated noise. The stability of this method can be
guaranteed by choosing the weighting function in the right manner using our new stability
region with respect to the weighting function. We also conclude that because of the stability
and robustness of the WLPC method, it could be extremely feasible in many fields of speech
technology, such as speech enhancement and inverse filtering.

In future work, the different weighting functions of the WLPC method should be studied
in more detailed way in the presence of different kind of background noise, and stability
analysis for adaptive methods in general, should be derived in order to present more general
results concerning the stability regions.
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Appendix A

Definitions

Asymptotically unbiased estimator: Estimator θ̂ is called the asymptotically unbiased es-
timator of θ if the E[θ̂] approaches θ as sample size n is increased.

lim
n→∞

E[θ̂] = θ.

Bounded linear operator: A bounded linear operator Λ is a linear transformation between
normed vector spaces X and Y such as there exists some M > 0 such that ∀x ∈ X ,

‖Λ(x)‖Y 6 M‖x‖X .

Characteristic polynomial: The characteristic polynomial of A is defined by

pA(x) := det(xI−A).

Convex hull: Let Ω be arbitrary set. The convex hull of Ω, denoted as conv(Ω), is the
collection of all convex combinations of Ω. That is

conv(Ω) :=

{
n∑

i=1

αixi : x1, . . . , xn ∈ Ω,

n∑

i=1

αi = 1, αi 6 0 ∀i, n ∈ Z+

}
.

conv(Ω) is also the minimal convex set that contains Ω.

Numerical range of the matrix: The numerical range of an n×n complex matrix A, also
known as its field of values, is defined as

F(A) := {x∗Ax : ‖x‖ = 1, x ∈ C
n} .

Principle of the argument: Let f(z) be a single-valued function that is analytic a region
Ω enclosed by a contour ζ and let f(z) be of the form f(z) = x(z)

y(z) . Let Nz be the
number of complex roots of f(z) in ζ , and Np be the number of poles in ζ , then

Nz −Np =
1

2πj

∫

ζ

f
′

(z)

f(z)
dz.
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Zero mean property of the all-pole model This property is based on the proof presented
in [25]. Consider the prediction polynomial A(z) that has all its roots inside the unit
circle. Then if the <{·} denotes the real part operator of the complex number and
Res(·) denotes the residue, we then have [31]

∫ π

−π
ln|A(ejω)|2 dω

2π
=

∫ π

−π
ln|A(e−jω)|2 dω

2π

= 2<
{∫ π

−π
ln
[
A(e−jω)

] dω
2π

}
= 2<

{∮

Γ
ln [A(1/z)]

dz

2πjz

}

= 2<{Res(0)} = 2<
{

lim
z→0

ln [A(1/z)]
}

= 0

where we have used the residue theorems from complex analysis [31] and the fact
that the first coefficient of the prediction polynomial is equally to one.



Appendix B

Tables

Table B.1: Quality rating scale for a degradation category rating test.

Description Rating
Degradation not perceived 5
Degradation perceived but not annoying 4
Degradation slightly annoying 3
Degradation annoying 2
Degradation very annoying 1

Table B.2: Finnish quality rating scale for a degradation category rating test. The question
to be asked was: Näytteen A huonontuma referenssiääneen on:

Description Rating
Ei kuultavissa oleva 5
Kuultavissa, mutta ei häiritsevä 4
Hieman häiritsevä 3
Häiritsevä 2
Erittäin häiritsevä 1
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Table B.3: Spectral distance measure between clean and corrupted all pole envelope as
a function of SNR, calculated for a vowel /a/ for MALE 1-5. The speech sample was
corrupted by Gaussian white noise and the SD2 (in dB) was calculated in frequency range
0Hz → 11025Hz.

METHOD SNR=0 SNR=5 SNR=10 SNR=15 SNR=20 SNR=25 SNR=30

LP 5.6779 5.1267 4.4165 3.6417 2.76286 2.07068 1.46873
WLPC 4.8904 4.2415 3.39457 2.56506 1.94256 1.58799 1.04158
WLSP 5.6383 5.0912 4.37655 3.6161 2.68897 2.23745 1.46874
MVDR 5.1262 4.5252 4.03488 3.34229 2.59931 1.95351 1.39385

DAP 5.4072 4.8977 4.1236 3.33132 2.54245 1.94107 1.30772
`1 5.516 4.8634 4.12393 3.28757 2.62873 1.69613 1.35935

HUBER 5.8853 5.1964 4.52992 3.74786 3.02854 2.24529 1.59304

METHOD SNR=0 SNR=5 SNR=10 SNR=15 SNR=20 SNR=25 SNR=30

LP 7.1721 6.5681 5.80673 5.08459 4.26693 3.4804 2.73869
WLPC 6.2706 5.7229 4.83635 3.99002 3.1526 2.42196 1.73996
WLSP 7.3471 6.6946 5.91559 5.07481 4.23245 3.4062 2.71431
MVDR 6.4516 6.0749 5.42314 4.66475 3.91317 3.00442 2.48334

DAP 7.3514 6.7119 5.89794 4.63571 3.64835 2.35429 2.17893
`1 7.609 6.9687 6.13986 5.4345 4.63121 3.41422 3.03133

HUBER 7.4468 6.7932 6.00483 5.22682 4.38127 3.65121 2.98418

METHOD SNR=0 SNR=5 SNR=10 SNR=15 SNR=20 SNR=25 SNR=30

LP 6.3408 5.7458 4.9923 4.1663 3.3708 2.6008 1.8692
WLPC 5.2107 4.5487 3.425 2.6336 1.9939 1.1207 0.54938
WLSP 6.5295 5.9358 5.1018 4.2949 3.4859 2.684 1.9652
MVDR 5.6245 5.1438 4.5949 3.776 3.1222 2.2474 1.7149

DAP 6.115 5.6525 4.7361 4.2139 3.307 2.6346 1.7843
`1 6.5124 5.9423 5.0818 4.4165 3.6196 2.9769 2.1855

HUBER 6.9111 6.3172 5.6751 4.8289 4.0827 3.2288 2.5523

METHOD SNR=0 SNR=5 SNR=10 SNR=15 SNR=20 SNR=25 SNR=30

LP 7.1451 6.524 5.7411 4.9173 4.073 3.2725 2.5565
WLPC 6.8201 6.2693 5.3746 4.4248 3.691 2.6636 2.215
WLSP 7.0005 6.5733 5.8155 4.836 4.0757 3.2236 2.536
MVDR 6.3492 5.9252 5.3258 4.401 3.7003 2.8771 2.3267

DAP 7.0762 6.4896 5.7512 4.7072 3.727 2.6744 2.2529
`1 7.4325 6.7587 5.7445 5.1676 4.1576 3.4724 2.5719

HUBER 7.6244 6.8852 6.2061 5.2835 4.5137 3.6522 2.9276

METHOD SNR=0 SNR=5 SNR=10 SNR=15 SNR=20 SNR=25 SNR=30

LP 7.3039 6.7668 6.0783 5.2968 4.4936 3.6815 2.8929
WLPC 6.9805 5.835 5.2745 4.461 3.5604 2.7417 2.0618
WLSP 7.2961 6.8254 6.1437 5.3333 4.4791 3.6933 2.9579
MVDR 6.6634 6.2792 5.5993 4.8658 4.2001 3.37 2.6818

DAP 6.8259 6.7635 6.1387 5.2898 4.5119 3.7854 2.7969
`1 7.1617 6.5807 6.0615 5.3202 4.4037 3.5184 2.9365

HUBER 7.2574 6.8978 6.1382 5.2351 4.5846 3.7574 2.9223



APPENDIX B. TABLES 61

Table B.4: Spectral distance measure between clean and corrupted all pole envelope as
a function of SNR, calculated for a vowel /a/ for MALE 1-5. The speech sample was
corrupted by Gaussian white noise and the SD2 (in dB) was calculated in frequency range
0Hz → 5525Hz.

METHOD SNR=0 SNR=5 SNR=10 SNR=15 SNR=20 SNR=25 SNR=30

LP 3.4352 2.9351 2.3301 1.7116 0.92402 0.4721 0.20148
WLPC 2.6941 2.1934 1.4399 0.76707 0.45285 0.13961 0.16561
WLSP 3.3256 2.9892 2.4216 1.5941 0.9217 0.54501 0.31387
MVDR 2.8698 2.3516 1.9488 1.4229 0.71798 0.51207 0.2171

DAP 3.3011 2.6833 2.0003 1.471 0.97873 0.78755 0.37746
`1 3.3967 2.8401 2.0721 1.4828 1.0235 0.44561 0.21649

HUBER 3.2161 2.9582 2.2248 1.5635 1.0444 0.57424 0.3096

METHOD SNR=0 SNR=5 SNR=10 SNR=15 SNR=20 SNR=25 SNR=30

LP 4.3594 3.8147 3.1499 2.4205 1.8198 1.2983 0.86858
WLPC 4.0067 3.5859 2.6995 2.1295 1.5454 0.96783 0.64883
WLSP 4.5517 3.8666 3.2009 2.5079 1.7302 1.304 0.89701
MVDR 3.5199 3.4372 2.9039 2.1844 1.7276 1.1698 0.77302

DAP 5.2908 4.7069 3.9919 2.9357 2.2495 1.5455 1.3751
`1 4.7162 4.2119 3.3903 2.9892 2.3502 1.4597 1.4012

HUBER 4.5396 3.8364 3.1462 2.4424 1.9252 1.4608 0.96849

METHOD SNR=0 SNR=5 SNR=10 SNR=15 SNR=20 SNR=25 SNR=30

LP 4.0035 3.5131 2.9208 2.443 1.8991 1.4 0.95098
WLPC 3.0888 2.675 1.6828 1.5146 0.7191 0.44024 0.13072
WLSP 4.2296 3.722 3.0425 2.6444 1.9995 1.5705 0.90086
MVDR 3.1007 2.671 2.048 1.6244 1.256 0.80784 0.52739

DAP 3.8375 3.5678 2.8082 2.2961 1.8027 1.1315 0.91106
`1 4.0298 3.5325 2.7942 2.4483 2.02 1.28 0.91805

HUBER 4.0403 3.5772 3.0104 2.4147 1.8408 1.3144 0.94933

METHOD SNR=0 SNR=5 SNR=10 SNR=15 SNR=20 SNR=25 SNR=30

LP 5.2485 4.6991 4.0233 3.2736 2.6276 2.0686 1.4389
WLPC 4.9322 4.403 3.819 3.0082 2.689 1.7303 1.4751
WLSP 5.1783 4.8108 3.9303 3.3291 2.6584 2.2283 1.6051
MVDR 4.2948 3.9363 3.5297 2.7744 2.1295 1.8163 1.2867

DAP 5.0316 4.4705 4.0245 2.9768 2.5412 2.0343 1.7139
`1 5.3589 4.8143 3.903 3.5031 2.8051 2.2318 1.6559

HUBER 5.5538 5.0291 4.4142 3.6232 3.037 2.5076 2.0882

METHOD SNR=0 SNR=5 SNR=10 SNR=15 SNR=20 SNR=25 SNR=30

LP 3.3541 2.9625 2.6353 2.1623 1.6958 1.2056 0.8395
WLPC 3.306 2.5745 2.1224 1.5908 1.0216 0.54941 0.62876
WLSP 3.6972 3.3435 2.7245 2.5235 1.6725 1.0799 1.1145
MVDR 2.9288 2.63 2.2995 1.8085 1.3841 1.1217 0.7221

DAP 3.39 3.3366 2.7825 2.3889 1.9749 1.3452 0.94811
`1 3.404 3.0789 2.5781 2.1935 1.7918 1.2728 0.81393

HUBER 3.5631 3.2728 2.6137 2.0557 1.8228 1.1758 0.88594
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Table B.5: Logarithmic spectral distance measure between clean and corrupted all pole
envelope as a function of SNR, calculated for a vowel /a/ for MALE 1-5. The speech
sample was corrupted by Laplacian noise and the SD2 (in dB) was calculated in frequency
range 0Hz → 11050Hz.

METHOD SNR=0 SNR=5 SNR=10 SNR=15 SNR=20 SNR=25 SNR=30

LP 5.7783 5.2217 4.3504 3.5586 2.7798 2.071 1.361
WLPC 4.9465 4.2939 3.2178 2.7368 2.0536 1.5269 1.0218
WLSP 5.7376 5.0485 4.4102 3.7942 2.6659 2.1764 1.5344
MVDR 5.1474 4.5954 4.1223 3.3949 2.5321 1.7376 1.4377

DAP 5.2058 4.9772 4.2022 3.2168 2.6334 2.1224 1.4055
`1 5.5042 4.7894 3.9532 3.2244 2.543 1.6969 1.2577

HUBER 5.862 5.256 4.5462 3.7674 2.8349 2.236 1.5981

METHOD SNR=0 SNR=5 SNR=10 SNR=15 SNR=20 SNR=25 SNR=30

LP 7.2203 6.6232 5.9951 5.1529 4.314 3.5011 2.7435
WLPC 6.262 5.668 4.7519 3.9918 3.2887 2.4049 1.6558
WLSP 7.2291 6.8117 5.9398 4.8641 4.2572 3.519 2.6733
MVDR 6.5093 6.0305 5.3824 4.7019 3.8713 3.2825 2.4875

DAP 7.4321 6.7688 6.1322 4.9465 3.9883 2.547 2.0355
`1 7.7194 7.0707 6.1271 5.3389 4.6831 3.5232 2.6894

HUBER 7.3504 6.7901 5.9741 5.2636 4.3932 3.644 2.8169

METHOD SNR=0 SNR=5 SNR=10 SNR=15 SNR=20 SNR=25 SNR=30

LP 6.312 5.8753 5.1359 4.3551 3.5703 2.5752 1.879
WLPC 5.2048 4.4625 3.5962 2.8012 1.8837 1.0182 0.34265
WLSP 6.4589 5.8284 5.029 4.2802 3.5415 2.5368 1.9854
MVDR 5.6849 5.1815 4.5761 3.7913 2.9506 2.3433 1.6606

DAP 6.0871 5.5884 4.9117 4.1812 3.4072 2.6658 1.8517
`1 6.5176 5.8987 5.1884 4.3884 3.5848 2.8058 2.1899

HUBER 6.8693 6.3616 5.5398 4.8253 4.024 3.2429 2.4864

METHOD SNR=0 SNR=5 SNR=10 SNR=15 SNR=20 SNR=25 SNR=30

LP 7.2111 6.5928 5.8078 4.9665 4.0976 3.282 2.5247
WLPC 6.6551 6.0648 5.3905 4.4649 3.6408 2.8111 2.2385
WLSP 7.1624 6.7017 5.7505 4.7946 4.0072 3.2888 2.6242
MVDR 6.3141 5.9277 5.1916 4.4114 3.6542 2.989 2.3194

DAP 7.0366 6.4246 5.5245 4.6682 3.653 2.8277 2.2226
`1 7.4974 6.761 6.0054 4.8677 4.1472 3.4911 2.6612

HUBER 7.5828 6.9393 6.1635 5.3327 4.4551 3.6572 2.8714

METHOD SNR=0 SNR=5 SNR=10 SNR=15 SNR=20 SNR=25 SNR=30

LP 7.3897 6.8341 6.1101 5.318 4.4508 3.6556 2.8998
WLPC 6.8742 6.249 5.3997 4.3702 3.6345 3.0169 1.9301
WLSP 7.4058 6.8552 6.1527 5.3083 4.4673 3.5853 3.0023
MVDR 6.7469 6.2635 5.6291 4.7855 4.2377 3.5145 2.6674

DAP 7.1956 6.6906 6.0281 5.2213 4.5204 3.6663 3.0206
`1 7.2662 6.5057 5.8513 5.023 4.2851 3.5605 2.7367

HUBER 7.2492 6.8047 6.1418 5.2885 4.5128 3.7212 2.9715
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Table B.6: Spectral distance measure between clean and corrupted all pole envelope as
a function of SNR, calculated for a vowel /a/ for MALE 1-5. The speech sample was
corrupted by Laplacian noise and the SD2 (in dB) was calculated in frequency range
0Hz → 5525Hz.

METHOD SNR=0 SNR=5 SNR=10 SNR=15 SNR=20 SNR=25 SNR=30

LP 3.4432 2.9418 2.2994 1.6638 1.047 0.55384 0.31909
WLPC 2.68 2.0455 1.3652 0.88177 0.53841 0.21644 0.14284
WLSP 3.311 2.8149 2.3236 1.7003 0.77913 0.53114 0.28099
MVDR 2.947 2.4763 1.8952 1.4386 0.82761 0.28468 0.33366

DAP 3.1002 2.7369 2.228 1.568 1.1234 0.52417 0.48667
`1 3.2586 2.7877 1.9978 1.507 0.87529 0.55824 0.24607

HUBER 3.3918 2.7439 2.1993 1.5794 0.87195 0.55079 0.25223

METHOD SNR=0 SNR=5 SNR=10 SNR=15 SNR=20 SNR=25 SNR=30

LP 4.444 3.904 3.369 2.6921 2.0747 1.5498 1.0858
WLPC 4.0033 3.3965 2.7171 2.0727 1.5991 1.019 0.68256
WLSP 4.4747 3.8788 3.37 2.2642 1.6505 1.2879 0.81248
MVDR 3.8398 3.3437 2.7538 2.2152 1.6529 1.3719 0.7439

DAP 5.2739 4.8251 4.1705 3.183 2.4972 1.5139 1.0721
`1 4.9257 4.2304 3.5216 2.8297 2.3766 1.6192 1.0234

HUBER 4.2759 3.9215 3.1389 2.5073 2.007 1.3551 0.92766

METHOD SNR=0 SNR=5 SNR=10 SNR=15 SNR=20 SNR=25 SNR=30

LP 4.078 3.344 2.7899 2.2671 1.7453 1.2138 0.82533
WLPC 3.2239 2.5215 1.9842 1.4005 0.80898 0.43321 0.25591
WLSP 4.1435 3.5978 3.1738 2.3058 2.0623 1.4902 0.99976
MVDR 3.0612 2.5139 2.1692 1.6557 1.142 0.83299 0.45221

DAP 3.9302 3.4054 2.8304 2.2586 1.704 1.2123 0.84282
`1 3.9893 3.5788 2.8868 2.2095 1.9825 1.2605 0.80791

HUBER 4.1195 3.6281 2.9745 2.4555 1.9643 1.4503 1.1851

METHOD SNR=0 SNR=5 SNR=10 SNR=15 SNR=20 SNR=25 SNR=30

LP 5.2564 4.7586 4.0838 3.4012 2.6911 2.1079 1.6012
WLPC 4.7893 4.2692 3.8234 2.9975 2.4021 1.8451 1.2726
WLSP 5.3552 4.8399 3.9629 3.3064 2.6812 2.2162 1.8575
MVDR 4.3202 3.9559 3.247 2.6952 2.1254 1.6851 1.3121

DAP 5.0027 4.3268 3.5728 3.1894 2.3969 1.9949 1.7776
`1 5.4787 4.7783 4.1338 3.3257 2.5448 2.3335 1.9373

HUBER 5.5281 5.0012 4.3752 3.7104 2.949 2.3907 1.955

METHOD SNR=0 SNR=5 SNR=10 SNR=15 SNR=20 SNR=25 SNR=30

LP 3.5601 3.1796 2.7214 2.2354 1.6766 1.187 0.83112
WLPC 3.0189 2.9613 2.1232 1.7574 1.2202 2.0597 0.68262
WLSP 3.7268 3.4252 2.9362 2.2953 1.8771 1.2703 1.0706
MVDR 2.9307 2.676 2.2416 1.7634 1.4832 1.2551 0.733

DAP 3.4479 3.1313 2.7984 2.3128 1.7369 1.3701 0.97409
`1 3.6244 2.9883 2.531 2.0365 1.7252 1.1161 0.76529

HUBER 3.6306 3.2959 2.8759 2.3636 1.7836 1.2776 0.93394
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