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Increased processing power of personal computers has enabled their use as real-time
virtual musical instruments. In this thesis, such a software sound synthesizer is designed
and implemented, with the main objective being in the development of a composite
synthesis architecture comprising several elementary synthesis techniques.

First, a survey of sound synthesis, effects processing and modulation techniques was
conducted, followed by an investigation to some existing implementations in hardware
and software platforms. Next, a formal object-oriented design methodology was applied
to capture the requirements of the implementation, and an architectural design phase was
carried out to ensure that the requirements were fulfilled. Thereafter, the actual
implementation work was divided between the reusable application framework library
and the extended implementation packages. Finally, evaluation of the results was made in
form of sound and source code analysis.

As a conclusion, the composite synthesis architecture was found to be relatively intuitive
and realizable. The generic object-oriented design methodology applied appeared to be
well suited to the design of sound synthesis systems in general, but was considered to be
too laborious to follow in every detail. The implementation work benefitted from the
properly done design phase, however. The relative amount of man machine interface code
compared to other subsystems was still surprisingly large. The timbral dimension of the
realizable sound palette appeared to be quite wide, and the quality of the audio output was
comparable, or even better than that of the existing implementations.

Keywords: audio effects, musical acoustics, object-oriented design methods, software
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Henkilokohtaisten tietokoneiden kiytto tosiaikaisina soitinsovelluksina on mahdollistunut
lisdéintyneen laskentakapasiteetin myotid. Téssd diplomitydssd kuvataan em. kaltaisen
ohjelmistopohjaisen #ddnisyntetisaattorin suunnittelu- ja toteutusprosessi, jonka pééta-
voitteena oli useista eri perussynteesitekniikoista koostuvan synteesiarkkitehtuurin kehit-
tdminen.

Tyossd lapikdyddidn lukuisia ddnisynteesi-, muokkaus- ja modulaatiotekniikoita, minkd
jélkeen tarkastellaan joitakin jo olemassaolevia laitteisto- ja ohjelmistopohjaisia jirjestel-
mid. Toteutettavan sovelluksen vaatimusméirittelyyn ja tdtd seuraavaan jarjestelma-
arkkitehtuurin suunnitteluvaiheeseen sovellettiin yleiskdyttodistd oliopohjaista suunnittelu-
metodiikkaa. Varsinainen toteutusvaihe pilkottiin sovelluskehyksen ja sen varaan raken-
netun laajennusosion kesken. Tyon tulosten arviointiin kdytetddn #ini- ja ldhdekoodi-
analyysia.

Tyossé kehitetty kokoava synteesiarkkitehtuurirakenne osoittautui intuitiiviseksi ja toteu-
tuskelpoiseksi ratkaisuksi. Kéytetty suunnittelumetodiikka soveltui hyvin dénisynteesi-
jarjestelmien suunnitteluun, mutta sitd pidettiin liian tyolddnd menetelmidnd ldhinna
ylldpitovaatimusten vuoksi. Toteutusvaiheessa hyvin tehdystid suunnittelusta oli luonnol-
lisesti hyotyd, vaikkakin kiyttoliittymédkoodin suhteellisen suuri midrd aiheutti
analyysivaiheessa ylldtyksen. Syntetisaattorin tuottaman dinimateriaalin monipuolisuus
oli positiivinen havainto, minki lisdksi ddnen laatu osoittautui vertailukelpoiseksi, ellei
jopa parempitasoiseksi kuin vastaavissa kaupallisissa sovelluksissa.

Avainsanat: musiikkiakustiikka, ohjelmistokehys, oliopohjainen suunnittelu, ddniefektit,
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Chapter

1 Introduction

1.1 Objectives

I was introduced to the synthetic sound at a time when the first affordable digital
synthesizers started to make their debut at local music stores. Ever since I have been
active both as a performer and as a sound designer, and managed to tweak parameters
on dozens of different models and brands of synthesizers, both analog and digital alike.
I have often wondered what would my personal dream machine be like, i.e. what set of
parameters would it have, how would it be programmed and played, and most
importantly, what would it sound like (or preferably — unlike). This thesis tries to find
answers to these questions.

Having also investigated a wealth of different synthesis techniques, I have noticed that
each technique has its strong and weak points in terms of sounds that it can be produce.
Would it then be possible to integrate those seemingly unrelated methods of sound
generation together, under single composite conceptual model, and strengthen the weak
parts of one technique with another more suitable method ?

Modular synthesizer environments allow already that flexibility, but their user interfaces
are often so versatile, that it is easy to lose the timbres into the forest. A semi-modular
synthesis architecture proposed in this thesis provides a considerable amount of freedom
when patching the instrument, but has still enough rigidness so that more organized
interaction mechanisms can be utilized. A novelty concept also discussed later is the
hierarchical patch structure, where composite patch is constructed from a collection of
smaller subpatch components. This facilitates sound design at different abstraction
levels, and as any individual parameter can be overridden at higher levels, a basic sound
component library can be reused at will. Furthermore, this basic library could be even
built from the pre-programmed synthesizer patch banks of earlier years, thus recycling
(albeit in approximate form) those proven sounds in a new context.

Programming (or patching) a synthesizer is only one side of the story, however. An
equally important part is the responsiveness of the instrument in real-time performance
situations. The large amount of synthesis parameters, and the potentially minor audible
effect of a single parameter tweak do cause a controlling problem. A partial solution to
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this is proposed in form of a macro facility, i.e. the grouping of several synthesis
parameters under a single controller. Such a macro could for example to be bound to a
single slider to control an abstract ‘brightness’ attribute of the composite sound.

In summary, the problem space is quite large, and does therefore require a formal design
methodology to be followed in order to be manageable. A widely used object-oriented
requirement analysis and architectural design methodology is utilized, and its suitability
to the particular project shall be discussed. Observations on the implementation phase
shall also be made. In particular, the amount of synthesis related code vs. supporting
(trivial) coding shall be compared, and the framework expandability, code reusability
and complexity shall be discussed.

1.2 Scope

This thesis shall take a practical approach to sound synthesis. Theoretical background is
presented, but mathematical treatment is kept in minimum and left to numerous
reference sources readily available. Also, the amount of program code is so large that it
would not make sense to include every bit of it in this thesis, not even inside the
appendices. Some of the key algorithms are described with pseudo code snippets,
though.

Synthesizer implementation realized in this work should be regarded as a working
prototype of a final product, and any functional difference (usually a lack of feature)
between the two is stated in relevant context. The prototype shall provide enough
features so that the objectives described above are reached, and so that quantitative and
qualitative results can be evaluated against realizability of the final product.

A prior knowledge of hardware or software synthesizers, effect devices nor musical
sound production environments is not required of the reader. It is assumed though, that
he has some background on digital signal processing and some familiarity on object-
oriented design and programming. Design diagrams are presented using the UML
notation, and pseudo code snippets are given in a language similar to C++.

1.3 Structure of the Thesis

Chapter 2 gives the theoretical treatment of sound synthesis concepts. It starts by first
describing some of the techniques that are available for the creation of audio signals,
and continues by examining various means of processing them. Discussion of control
and modulation signals follows thereafter.

Chapter 3 moves from concepts to practice, by first investigating the problems
encountered when audio and control signals are combined into a working synthesizer
unit. Section 3.2 discusses briefly existing hardware based solutions and compares the
architectural constructions of three flagship workstations from Roland, Yamaha and
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Korg. Section 3.3 describes software based approaches with a more detailed view of
VST plugins

Chapters 4 and 5 carry out the formal design phases of the project. Requirements are
captured in chapter 4, starting from the user’s view of the system, and reflecting that
directly to the software requirements of the work. Sections 4.2 through 4.4 give a
detailed model description of a general software synthesizer, which can be applied to
any synthesizer architecture. The synthesis architecture of PHUZOR, which is the
synthesizer implemented in this work, is given in section 4.5 as an extension of the
generic model. The MMI subsystem is defined in section 4.6 among other specific
requirements.

The architectural design phase is described in chapter 5 so that all requirements given in
chapter 4 are implemented. It takes a topdown approach by decomposing the synthesizer
into packages, subsystems, classes, attributes, methods and their interfaces. The purpose
of design phases is to describe what needs to be done, and leave algorithmic issues to
the actual implementation phase. This is selectively discussed in chapter 6.

Chapter 7 evaluates the results of the work, and a conclusion is finally drawn in chapter
8.



Chapter
2 Sound Synthesis Concepts

The signal routing mechanism of a typical synthesizer categorizes processed signals into
three functional groups. Audio signals are born inside the oscillating components, are
further processed by effect units, and are eventually sent out of the box to make audible
sound. Modulation signals shape these audio signals during their journey out by
continuously changing sound’s loudness, pitch and timbral properties. The third group
consists of control signals that are results of performer’s gestures. They are used to
generate gates, triggers and other expression events that are used in a manner similar to
that of the modulation group.

In fact, all these signals are basically alike, as they can be simply treated as functions of
time. Their data rates are different however, because audio signals reach frequencies
that go up to 20 kHz and beyond, and according to the sampling theorem, must be
handled in the digital domain at least twice that frequency. Modulation and control
signals do not need to be updated at such a high rate, and control rates below 100 Hz are
not uncommon.

Discussion of audio rate signals is presented in sections 2.1 and 2.2, followed by control
rate signals in section 2.3.

2.1 Synthesis Techniques

Because of time and space limitations, a special consideration is given to the techniques
that are utilized in this thesis. More thorough discussion can be found in [1] - [4].

2.1.1 Additive Synthesis

In additive synthesis elementary waveforms are fused together into a more complex
composite waveform. Component waveforms are usually simple (traditionally
sinusoidal, in order to have precise control over (in)harmonic content of the resultant
spectrum), although waves of any complexity can be used. Figure 2.1 in the following
page shows a simple additive instrument with M sinusoidal oscillators, each having
inputs for frequency, amplitude and phase. Oscillator outputs are summed together and
scaled so that the maximum amplitude of the composite sound is equal to A4 .-
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If oscillator inputs F}, A; and 6 remain constant over time, a waveform with a static
spectrum is produced. This method can be used in digital oscillators when generating
classic analog style waveforms, like square or sawtooth waves, as it offers a way to
define precise harmonic structure and guaranteed bandlimited spectrum. For example, a
sawtooth wave can be approximated by summing all the harmonics having relative
amplitude coefficients 4, = 1/k and a square wave by summing only odd harmonics
with amplitudes 1/k.

A dynamic spectrum can be obtained when time variant coefficients are introduced, and
according to the Fourier theorem, any periodic signal can be constructed from infinite
sum of sinusoidal components having specific frequency, amplitude and phase. In
approximate form this can be written as [3]

s() = A, () % A () sin [ (kam + 2708, () + 8, (20) | (2.1)

k=1

where s(n) is the output signal, n is a sample number, ® is the radian fundamental
frequency of the note, £ is the partial number, M is the number of oscillators, 4,(n) is the
amplitude, Fi(n) the frequency and 6(n) the phase track of X partial, and Ag(n) is the
overall amplitude.

[E]  [E] (5] [ ]

YCA
RV

8

Figure 2.1 a) Additive synthesis instrument with global amplitude scaling. b)
Subtractive synthesis instrument.

Amplitude, frequency and phase tracking does not have to occur at audio rate, so
modulation signals can be approximated by linear or exponential curves of control rate.
However, when large number of partials are to be controlled, a lot of control data is still
needed. A variant method called group additive synthesis reduces the amount of control
parameters by mixing partials that share a similar temporal loudness and pitch evolution
into a single wavetable [5]. These wavetables are then used instead of simple sinusoidal
oscillators in order to produce more efficient way to create a composite waveform, but
that is achieved at the cost of generality. Another approach is the wavestacking
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technique utilized in the commercial sampler units, where oscillator source waveforms
are actually complex multicycle snapshots of acoustic instrument timbres [1].

2.1.2 Subtractive Synthesis

This technique was used in early analog synthesizers, and is therefore sometimes
misleadingly termed as analog synthesis. Subtractive synthesis starts with spectrally rich
source material, such as noise, sawtooth, or pulse waveforms. Desired output signal is
then formed by removing excess spectral content through filtering, and possibly by
emphasizing certain formant frequencies. The amplifier component at the end of the
signal chain allows global amplitude scaling (see Figure 2.1). In a sense, the subtractive
process can be seen as a rudimentary model of an acoustic instrument, where the source
oscillator acts as the excitation component, and the filter as a resonator.

However, key strengths of subtractive technique does not lie in providing convincing
emulation of acoustic instrument sounds, due to over-simplified model of excitation and
resonator. Rather, it has sculpted sounds that are nowadays considered as sounds having
character in their own right, and has become a source of emulation itself. It is also a
relatively intuitive model of synthesis, as OSC-VCF-VCA architecture is commonplace
even in digital synthesizers utilizing different synthesis methods.

Oscillator (OsC)

Raw source material is produced by one or more oscillators. Analog circuitry is not able
to conveniently produce any waveform imaginable, so the basic waveset of subtractive
oscillators include sources for sine, triangle, square, pulse (with adjustable duty width),
sawtooth and noise waveshapes. Bandlimited forms of these waves can be generated by
additive method described above, for other solutions see [6].

Noise waves are aperiodic, and as such do not have a distinct pitch. They can be
parametrized by the amount of energy present in higher frequencies, and are associated
with a color analogously with visible spectrum of light. White noise has equal power
density throughout the entire frequency range, and other shades of noise can be
generated by running it through a low pass filter. In digital domain, noise can be
produced using one of the pseudo random number generator algorithms.

If two oscillators are at disposal, a slight detuning can be used to add animation to the
resultant sound. Ring modulation and audio rate frequency modulation between
oscillators are also commonly used methods for producing a wider source material
palette. Another characteristic subtractive sound can be made with hard sync, where
slave oscillator’s cycle is reset whenever master oscillator has completed the cycle of its
own [7]. The resultant sound is spectrally rich, and thus subjective to aliasing in digital
domain, alas.
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Filter (VCF)

The sound produced by a subtractive system is characterized mostly by the type and
quality of filtering components in use. Many a synthesizer has become a legend or total
failure due to the filtering implementation, the famous example of the first kind being
the Moogs with their imperfect but warm sounding ladder filter network [8]. In general,
the subtractive technique utilizes filters operating in four basic modes, which can be
categorized by their frequency response properties. A low pass filter (LPF) is the most
commonly used mode designed to pass frequencies below a specific cutoff frequency,
and to attenuate those above it. Other common types are high pass (HP), band pass (BP)
and band reject (BR) modes.

The cutoff or center frequency is adjustable, and a narrow band of frequencies around
that point can be boosted by an additional resonance parameter. The amount of
attenuation in stop band is dependent on filter design and the amount of poles in its
transfer function, and is specified in dB / octave units (a 6 dB drop halves the amplitude,
and one octave doubles the frequency). 6, 12 and 24 dB per octave slopes are most
common, and correspond to 1, 2 or 4 pole designs, respectively. In frequency response
graphs, a steeper curve means more attenuation.

Filters in different modes can be connected together to form a composite filter bank. For
example BP and BR modes can be emulated by arranging LP and HP filters serially or
parallel to each other. Another configuration is to use multiple BP and BR filters
together to realize formant filters, which are basically filters with multiple resonance
peaks throughout the passband.

Amplifier (Vca)

In practical implementations, the signal coming out of the filter circuitry must be
brought up in level so that the output signal shall be strong enough to drive the line level
inputs. This is done in an amplifier, and although not part of the actual synthesis
process, it somewhat affects the color of produced signal because of non-linearities. It
usually consists of a knob for setting the overall gain level, and one input and one output
port. Most importantly, it has also a control input for temporal amplitude level changes,
which is the point where amplitude envelope generator's ADSR signal shall be patched.

2.1.3 Modulation Techniques

Nonlinear synthesis techniques produce sound by distorting simple source waveform
into sonically more complex structure, using only a handful of synthesis parameters
along the process. They can be computed quite efficiently, and have been utilized in
various commercial synthesizer products ever since the beginning of 1980's. Modulation
synthesis is one of such techniques, in which some parameter of a carrier oscillator is
continuously modified with a modulating oscillator. Having their roots in radio
transmission techniques and on the other hand in musician's articulation techniques to
add minor nuances into sound of his instrument (by introducing small amounts of
vibrato or tremolo), they have been in existence for quite some time. However, their use
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in producing complex audio waveforms is a relatively new discovery, and their power
becomes apparent when both carrier and the modulator signal frequencies are brought
into the audible frequency range.

In the following discussion, sinusoidal waves are used for both carrier and modulator. In
practice, any signal can be used, but as even simple systems with just two sinusoidal
oscillators are capable in producing very complex timbres, it is often not necessary to do
so. A sine carrier signal is given as [9]

s(a) = Alzjsmiaa, + 028 ) = Alx)anl #2mf + 18] (2.2)

where n is a sample number, 4(n) is the carrier amplitude, @. the carrier angular
frequency, f. is the carrier frequency in Hz, and 6. the carrier phase offset. Possible
modulation destinations in this equation are A, f. and 6., which lead to amplitude,
frequency and phase modulation, respectively. Latter two are collectively called angular
modulation techniques.

s(n) = Afn) sin(n2x f,+ néd,)
Ay —!

Fm
Fum

Amplitude modulation

In amplitude modulation, the amplitude of the carrier signal follows modulator's output
signal, and can be implemented in the digital domain by multiplying outputs of both
oscillators together. In cases where the modulator is unipolar, we speak of amplitude
modulation (AM), and when bipolar, we speak of ring modulation (RM) [1]. In the
sinusoidal AM, the carrier frequency is surrounded by two sidebands, lower at /. - f,, and
higher at f. + f, (for complex waves, each partial spreads around fundamental
frequency). Amplitudes of both sidebands are equal, and proportional to the amplitude
of the modulator. In RM, the resultant spectrum does not include carrier’s fundamental
frequency spectrum component, as its energy is transformed into the sidebands. In both
AM and RM, the sidebands are bound to be in inharmonic relation to the carrier and
modulator frequencies, and particularly RM has a characteristic metallic sound.

Basic logical functions (OR, XOR, AND) between source signals can be used instead of
multiplication, but as the transformation operation is quite radical, the resulting signal
aliases and overflows easily. Best results are achieved when source signals are closely
related at amplitude and frequency levels, but any source waveform can be used as long
as its amplitude level is kept small (this is acceptable as the resulting signal covers full
amplitude range independently of source signal scaling).
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Figure 2.2 a) Ring Modulation instrument b) Amplitude Modulation instrument. c)
Shows equivalent implementation of A. d) Frequency Modulation instrument.

Frequency and Phase modulation (FM and Pm)

Although Chowning’s classic paper [10] and Yamaha's marketing jargon both speak of
FM, they actually are doing phase modulation. The difference between these methods is
that in PM the phase of the carrier varies directly with the modulating signal, while in
FM the phase is varied with the integral of the modulating signal [9]. In this discussion I
shall adapt to the common nomenclature, and use the term FM to cover both angular
modulation methods, and restrict the study to phase modulation.

Figure 2.2d shows a simple FM stack instrument. For simple FM with one sinusoidal
modulator and one carrier, we can write equation 2.2 as

s(x) = A()sin [270F, n+ D sin 27 £, %) | (2.3)

where [ is the modulation index defining the bandwidth of the resulting signal.
Increasing [ spreads carrier energy to the sidebands that are located symmetrically
around the carrier at (f. * f,), (f. = 2f,,) and so on, with relative amplitude levels
determined by Bessel functions of the first kind. This can be seen from equation 2.4,
which is a generalized Fourier series form of equation 2.3 :

s() = A() i T (1Y sin 277 Fom -+ k27T f) (2.4)

k=-a0

where k is the order of Bessel function and a number of the sideband. Negative
sidebands are reflected at 0 Hz with phase inversion, and summed to the corresponding
sideband at positive frequency. If f. / f,, can be presented as a ratio of two integers, a
harmonic spectrum is produced, but if this is not the case, an inharmonic spectrum is
resulted as the reflected components fall between frequencies f. £k f,,.
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Palamin et al. suggest an additional parameter » to equation 2.4, allowing control over
spectral asymmetry around carrier frequency [11] :

e =ﬂ(njir”ik(f] S 27T o0 + K2 ft) (2.5)

K=-ca

When r > 1 amplitudes of sidebands higher than f. are increased, and if » < 1 the lower
end gets the boost, so r can be used as a filter type of effect. For synthesis equation
(referring to Figure 2.2d), this results the term / to be multiplied by (» + 1/r) / 2, and the
term A4, to be multiplied by exp( I (r - 1/r) cos(2xf,,n) / 2). A dynamic spectrum can be
achieved when 7/ and/or  are modulated in the time domain.

There exists also other variations of simple FM scheme, namely double FM [12] (where
the carrier of equation 2.3 is replaced with another modulator), the use of multiple
carriers and modulators [1], using complex waves as modulators [13] and feedback Fm
[1] (where the output of oscillator is fed back to the system’s frequency modulation
input).

2.1.4 Waveshaping

Waveshaping is a general nonlinear synthesis technique. The classic articles describing
it are [14] - [16], and some well-written tutorials can be found in [1], [2] and [17]. In
waveshaping, instantaneous amplitude of a source signal g(n) is distorted with a transfer
function F' to produce output y(n), which can be written as

yin)= Flgin)) (2.6)

If the graph of F'is a straight line without any discontinuities, there is no distortion, and
the outputted signal replicates the input (possibly with amplitude scaling, in respect to
different slopes of F). However, if F' is a nonlinear function, a change in input's
amplitude causes a change in the output waveform's shape, denoting a spectral mutation.
The choice of F' is naturally most crucial parameter of the technique, in practical
implementations constrained at F(0) = 0, and scaled to produce values in the same range
as y and g. Any discontinuities or sharp edges produce unlimited amount of partials,
which manifest themselves as aliasing. Bandlimiting is also difficult to achieve with
complex input signals, so practical implementations often use a sinusoidal function as
g(n). Figure 2.3 shows sample outputs when sin(n) is shaped with various transfer
functions.
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Figure 2.3 Waveshaping applied to a sinusoidal input signal. A) Attenuation. B)

Compression with soft clipping. C) Odd transfer function produces only odd partials. D)
Chebyshev polynomial T,.

Using polynomials as a transfer function

Polynomials have many useful properties when used as the transfer function. First, they
provide a good approximation of any smooth curve, so a wide range of transfer
functions can be represented in polynomial form. Second, the degree of the polynomial
determines the highest harmonic that is produced when cosine source is fed through the
waveshaper, thus bandlimiting the resultant output spectrum at will. Third, relative
weights of partials are determined by polynomial's coefficients, which makes it possible
to have precise control over the produced spectrum, and also dynamic control of all
harmonics using a single parameter. This distortion index (o) is analogous to the
modulation index used in FM synthesis. Introducing a into equation 2.6 and replacing
g(n) with cos(n) we can write [2, pp. 132-135]

i) = Fla cos(n)) = dy +di@x+d,aix? + o+ d o xV (2.7)

where d; are the polynomial coefficients, N is the highest harmonic produced, and x is a
cosine wave with unity amplitude. If coefficients are given, the amplitude of each
harmonic can be calculated using Pascal’s triangle with binomial coefficients and
weighted by distortion index a., raised to the appropriate power.

Chebyshev polynomials of the first kind possess a property that makes them a worthy
solution when synthesizing a static harmonic spectrum. If a cosine wave of unity
amplitude and a frequency of f; is passed through transfer function consisting of a
Chebyshev polynomial of " order, the output will be a sinusoid having harmonic
frequency kfy [2, pp. 135-136]. A spectrum with multiple harmonics can be produced by
combining polynomials of different orders.

Dynamic spectra can be obtained by making the distortion index o time dependent. The
problem lies in the fact that particularly higher order transfer functions do not change
the partial structure smoothly enough, and small changes in distortion index can cause
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abrupt jumps in the spectral evolution. A possible solution is to alternate transfer
function’s even and odd term signs independently [2]. Inharmonic spectra can be
synthesized by ring modulating the output of the waveshaper with another sound source.

Another problem arises because the distortion index is used to control not only the
spectral content, but also the loudness of the sound. In principle, acoustic instruments
have a tendency to sound brighter when they get louder in level, but it is rare to find a
common modulation source for timbre and loudness. One possible solution is to control
the output level with a separate scaling function, which is also a function of o [2].

Bézier Synthesis

Lang suggests a synthesis technique that uses cubic Bézier curves as source waveforms
[18]. A Bézier curve passes through start point p, and end point p; with respect to two
control points p; and p,, so that when ¢ is varied from 0.0 to 1.0, following equations are
satisfied [19].

p(z)=as® +he* +et+p, (2.8)
c=3{p,—py)
b=3p,-p,;)-¢ (2.9)

a=p;-p;—c—b

Control points are further constrained so that p; shall always be within [0,0] .. [A, Ymax]
and p, in the corresponding negative coordinate plane (Figure 2.4). Distance between
start and end points defines the wavelength of the sound, while amplitude is determined
by control points’ relative distance to the x-axis. Control points can naturally be
modulated either at control rate (changing harmonic structure of the waveform or
overall amplitude smoothly), or at audio rate: Lang concludes that when a control point
is modulated at y-direction, results are similar to those of AM, with additional spectral
peak at modulating frequency. Modulating in x-direction produces an FM-like spectrum,
again with additional spectral clusters centered at 2 f, and higher harmonics.

o Fnax

~Vimax

Figure 2.4 Some waveforms that can be produced using cubic Bézier curves.
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2.1.5 Karplus-Strong (Ks) Algorithm

A computationally efficient plucked string sound simulation was developed by Kevin
Karplus and Alex Strong in early 1980's [20]. Figure 2.5 shows a diagram of a simple
KS instrument consisting of a low-pass filtered white noise generator, delay line and a
modifier. When a new note is initiated, the delay line is first filled with a burst of noise.
The amplitude of the produced sound can be controlled by the amplitude of the inserted
noise, and timbral variance can be produced by low-pass filtering the output of the noise
generator before it is inserted into the delay line. Produced pitch is determined by delay
line length combined with the modifier-introduced group delay.

&
w Modifier |
J
|LF‘F O Recirculating Delay Line =0

Figure 2.5 Simple plucked string implementation.

The actual sound producing stage of the synthesis process loops through the samples in
the delay line, outputting and feeding each sample through the modifier back into the
delay line for a next waveform cycle. If the modifier is omitted, a reed-like timbre is
produced, having spectrum with all harmonics and equal amplitudes, and continuing to
ad infinitum. In order to produce a naturally decaying amplitude curve in the output, the
modifier can be constructed from a loss filter having less than unity gain, like the
following simple first-order averaging low-pass filter:

() = [x(2) + 2= 1)] f 2 (2.10)

This generates sounds whose complex attack portion is quickly reduced to a sinusoidal
form of oscillation. Overall decay time is inversely proportional to produced pitch, i.e.
lower tones have longer decay time than higher ones, which is also the case with
realworld acoustic instruments. It is possible to change the overall decay time by
multiplying the right side of equation with a damping factor slightly less than 1. To
stretch decay times, modifier can be written in form [1]

v =[xy +x(n-1]/ 2, with probability lis 211
win) = =(n) L With probabifify - le '

where s is the pseudo random stretch factor in range (0..1]. Other constructs for the
modifier are possible, for example cheap percussion like timbres can be produced with
the help of probabilistic blend factor [20].

The basic algorithm suffers from tuning problems, which is more profound at higher
pitches (when length of the delay line decreases). In fact, some pitches in the upper part
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of the keyboard range are off tune by more than one semitone. Jaffe and Smith proposed
the use of interpolating filters in order to get a fractional delay line length [21], and
introduced other important extensions to the basic implementation. They also studied
the algorithm further, and realized that it was physically analogous to a sampling of the
transversal wave on a string instrument, where feedback loop filter represents the total
string losses over one period. Generalization of the algorithm lead to digital waveguide
synthesis techniques. Sullivan applied the algorithm to electric guitar simulation with
distortion and feedback [22].

2.1.6 Wavetable Synthesis

Wavetable synthesis techniques are based on a digital table-lookup oscillator, which
generates its output by simply reading individual samples from an onboard memory
wavetable, containing either pre-calculated or pre-recorded waveforms. Reasoning
behind this approach is that a memory access requires much less computing resources
than would be necessary for per-sample evaluation of a complex mathematical formula'.
Wavetable synthesis is very general, as any sound can be produced, but the downside is
that it is rather inflexible in terms of real-time modifications [4]. It also requires a lot of
memory when compared to other synthesis techniques, which can be reduced by
looping, pitch shifting and data compression algorithms. It is a popular method
however, due to its use in computer soundcards, mobile phones and dedicated sampler
units.

The frequency of a digital table-lookup oscillator can be calculated from

T R @i

5

where S/ is the sampling increment, f; is the sampling rate and N is the wavetable size.
To get different frequencies from same source material, S/ must be changed, because in
fixed sampling rate systems f; is constant, and the same goes for N as wavetable
contents are not usually modified. Changing S/ effectively changes the size of wavetable
either by skipping or holding samples during a table scan.

SI has usually a fractional part that must be converted to an integer index that is required
by the table lookup procedure. There are several solutions, the simplest being truncating
method which makes the translation by just brutally ignoring the fractional part.
Rounding oscillators round floating point value to the nearest integer, which is more
accurate, but excellent results can be achieved by using interpolating oscillators (linear
or even higher order ones can be used). All of these translation methods add table

" These days, microprocessor cache handling scheme might result in a situation where shuffling a large
wavetable between main memory and cache becomes the bottleneck, and simple calculations may
actually be carried out faster than table accesses. In general however, it can be assumed that wavetable
accesses are more efficient than brute calculations.
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lookup noise to the outputted signal, and there is the traditional tradeoff between
computational cost vs. error reduction.

Table 2.1 Signal to noise rations for table lookup oscillators in respect to wavetable size
k (in bits) [2].

method SNR in dB 256 bytes 512 bytes 1024 bytes
truncate 6(k-2) 36 42 48

round 6(k-1) 42 48 54

linear interpolation 12(k-1) 84 96 108

Wavetable synthesis brand groups together a number of techniques that can be classified
based on the number of wavetables that are audible at one time [1]. Multiple wavetables
are usually utilized in all variations, as even small amounts of pitch shifting quickly
destroy the character of original recording, and because different waveforms might need
to be triggered in response to the intensity of articulation. In this light, Roads' term
“multiple wavetable synthesis” is somewhat misleading, and perhaps it would be better
to speak of “mixed wavetable synthesis” when the number of simultaneously audible
wavetables exceeds one.

In the simplest form only one wavetable is audible, and the one that is picked from
available waveset is based on triggering key's pitch and intensity (or velocity). This
form is used in entry level samplers, computer soundcards and mobile phones,
particularly those supporting Emu's SoundFont [23] or Downloadable Sounds [24] file
format (latter is also part of MPEG-4 standard, known as SASBF [25]).

Mixed wavetable synthesis is a more advanced variation. In wavetable crossfading, two
waves are mixed together so that while the first is fading out, the next one fades in. This
can make a transition from a key or velocity zone to another sound somewhat smoother
than in the single wavetable variation. It can also shape the sound of a single key press,
as wavetables are faded in and out in time dimension, either automatically using
amplitude envelope with initial delay stage, or via performance controlled slider or
joystick. The third possible crossfading method is to use an interpolating oscillator so
that initial waveform is gradually morphed into second wave.

Another mixed wavetable synthesis technique quite similar to crossfading is
wavestacking, which is actually a form of additive synthesis. It uses complex waves as
components instead of simple sinusoids. Any number of wavetables can be audible at
one time, and each oscillator has its own dedicated amplitude envelope. These
techniques have been implemented in more advanced sampler units, and were quite
successfully used in late 80's synthesizers sharing the sampled attack - synthesized
sustain paradigm. Vector synthesis machines belong also to this category.

2.1.7 Synergy of Synthesis Methods

This section attempts to find common components of different synthesis techniques
presented in previous topics, in order to build a hybrid environment where various
methods can coexist simultaneously. Such an environment would be capable of
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producing a broad range of sound material, as strengths and weaknesses of individual
methods can be taken into account.

It is obvious that an oscillator is employed by all methods. A table lookup method
seems to be adequate for all other techniques except for noise generator (used in
subtractive and plucked string implementations), and the Bézier oscillator. Wavetable
technique allows any source waveform to be used, which can even be generated
algorithmically from a spectral definition. Waveshaping just uses an indirection to get
its output value from source oscillator material.

Modulation techniques call for oscillator interconnections, as do subtractive hard sync
and additive mixing. A natural solution is to arrange oscillators into an audio rate
modulation matrix together with feedback paths. Interconnection types would then
include AM with variations, FM and PM, sync and simple arithmetic mix, with
modulation amount set by modulating oscillator’s level. Each oscillator defines also
control rate modulation inputs for amplitude and frequency.

Filtering is exclusively used by subtractive method, as other techniques manage to shape
spectra internally. Exception is the plucked string algorithm, which uses filters in
excitation and feedback loops. However, as source material produced by any technique
above can be spectrally rich, filtering might be proper in those contexts as well.

2.2 Effects

Dry synthetic sound often sounds synthetic. It can be characterized as being electronic,
cold, boring and unnatural when compared to the sound generated by traditional
acoustic instruments. On the other hand, it is not necessarily the physical construction of
acoustic instruments that makes them more interesting to listen and play. It has also
largely to do with the environment that the instrument is played in. Acoustic instruments
radiate sound energy into three-dimensional space, and this space can add its own
characteristics to the resultant sound, whereas electronic sound is outputted via more or
less uni-directional loudspeaker system.

For this reason, from its early (but relatively late) beginnings, synthesized sound has
been processed by effect devices, to make it more natural and more interesting to listen.
At first, these devices were separate pieces of hardware, and were used to post-process
the sound produced by a synthesizer in order to simulate a group of instruments playing
together, or to mimic acoustic space with echo or reverberation units. The next step was
to integrate outboard effects into the synthesizer unit itself, and when synthesizers were
moving into the digital domain, also analog effects were replaced by digital circuitry.
The post-processing approach prevailed, as effects were usually placed at the end of the
audio processing chain, and at the time of this writing, that is the most common practice
taken by many of a synthesizer. More importantly, effects can nowadays be considered
as an integral part of the produced sound, as effect algorithm parameters are stored with
the patch, and some parameters can be even modulated like conventional synthesis
parameters. This makes them real sound modifiers, taking same kind of a role that filters



CHAPTER 2 -- SOUND SYNTHESIS CONCEPTS 17

are usually seen in. Later synthesizer architectures also allow the amount of effect
processing be separately adjusted for each subcomponent of a compound sound, in form
of send / return busses (where a common effect is shared by all subcomponents, but
with differing amounts), or as insert effects (where a dedicated effect is assigned to the
subcomponent, with controllable dry / wet mix amount) .

Next sections describe briefly the effect types that are most commonly found inside a
synthesizer, with a list of their most important parameters. It is customary that effect
algorithms can be selected from a large set, but only a few of them can be active at a
single time.

2.2.1 Time-based Ambience Effects

Delay repeats source material once or several times, simulating an echo reflecting from
a distant surface. At the simplest form, only two parameters are used to control the
algorithm: delay time (i.e. the time lapse between repetitions) and feedback to determine
the number of repeats. More complicated delay units are also available, including
stereophonic units with panning or cross channel feedback, multi-tapped models (where
the entire delay line length is divided into number of shorter segments), ones that are
tied to external song tempo, and units that simulate analog tape loop or bucket brigade
implementations with a low pass filter in the feedback chain, or with slight randomness
introduced to the delay time. Delays are most often used as send effects.

Reverb is used to simulate natural listening environments by introducing a pre-delay,
early reflections (perception of room size) and decaying echo tails into source signal.
Parameters can be used to specify reverb fype (plate, spring, tape, room), room size or
decay time, and modeled environment fexture (high-frequency damping, diffusion,
colour). It usually appears at the end of synthesizer’s audio chain, and is often used as a
send effect when working with mixing consoles.

2.2.2 Modulation Effects

When the length of a delay line is modulated with a periodic low-frequency signal, the
pitch of the delayed signal is constantly altered and detuned from source signal. If delay
times are kept small, the effect of multiple instruments playing in unison can be
simulated, and sound produced can be characterized as thicker and warmer than the
original source sound. Chorus effect is produced this way and is frequently found in
synthesizers to fatten up single oscillator sound sources. Parameters include mix balance
between dry and wet signals, delay time, depth of modulation (i.e. how much delay time
is altered), modulation speed (how quickly delay time fluctuates between minimum and
maximum values), and width determining stereophonic spread of the effect. Advanced
units have multiple parallel lines for even thicker output, or selectable LFO waveforms.
Flanger effect is similar to chorus, but uses shorter delay times and an additional
parameter for feedback. Vibrato effect can be generated by setting mix parameter to 100
% wet. All aforementioned units are typically used as insert effects.
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Amplitude modulation effects include Tremolo (achieved by modulating the source
waveform’s amplitude with an LFO set to a pulse or triangular waveform) and Ring
Modulation where source signal’s instantaneous amplitude is multiplied by another
bipolar audio frequency signal.

Phaser effect can be created by mixing source signal with a delayed version that has
been fed through a series of allpass filters. Each allpass stage (there are typically 4-12 of
them) introduces a phase shift into the signal, and the entire string of filters can be tuned
to produce a spectrum with non-uniform notch distribution. Characteristic dynamic
sound of a phaser is then generated by sweeping notch positions up and down in
frequency domain with an LFO.

2.2.3 Filters

Basic synthesizer filters (HPF, LPF, BPF, BRF) were already discussed in section 2.1.2.
Graphic EQ is a special filter type, in which the whole audible frequency range is
divided into a group of evenly spaced bands. Each band has a parameter that either
boosts or cuts frequencies around the center of the band. Parametric EQ allows
determination of a center frequency, into which the frequency boost or cut is applied. It
usually has also a setting for the bandwidth around the center frequency that filtering
operation affects. EQs are usually located at the end of the signal chain, and work as
insert effects.

2.2.4 Dynamics and Gain Control

Compressor squeezes the dynamic range by attenuating high levels and boosting silent
ones. Parameters consist of threshold (giving the level that input sound has to reach
before compression becomes active), ratio between input and output signal defines
amount of compression, and attack and release times in order to gradually fade the
effect in and out. Expander has the opposite effect.

Limiter affects only high level signals by attenuating those that would bypass the set
threshold. 1t is a harsher form of compression, originally used to maximize loudness
without overloading the dynamic range. Noise gates were originally used to cut out
background noise by setting a threshold value that a signal must reach before it is passed
on to the audio path.

When dynamic range is overloaded, new high frequency components are introduced
into the source signal. Overdrive was originally achieved by overloading valves of tube
amplifiers, and is an essential effect when processing electric guitar sounds. Distortion
or Fuzz is a more harsh sounding effect, and was originated when transistors were
overloaded. Parameters include drive or gain amount (i.e. how much original signal is
boosted beyond reference level).
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2.2.5 Stereo and Panning

Automatic panner has an LFO or an EG attached in order to cyclically modulate
stereophonic positioning of the source signal. There are also psychoacoustic panners
that emulate the interaural differences and other distance cues in order to create 3D
soundscapes through binaural channels, or to create pseudo-stereo signals from a
monophonic source.

2.3 Control Signals

2.3.1 Internal Modulation

Without modulation generators, even the most sophisticated synthesis algorithm will
sound static. The first group of control signals carries modulation signals that are pre-
programmed to the patch, and are either applied automatically, or in response to an
external performer event.

2.3.1.1 Envelope Generators (EGs)

The amplitude of natural sounds is not constant over time, but rather follows an
envelope contour, characterizing a particular sound source. This contour can be split
into stages, and each stage can be approximated by a straight line or exponential curve
drawn between segment's start and ending points. A device that produces either piece-
wise linear or exponential functions of time is called an envelope generator. Traditional
EGs have controls for attack, decay and release times, and one for sustain level (see
Figure 2.6). Envelope generator is triggered with a key press: it starts from zero and
goes to maximum amplitude in time set by attack time parameter, then fades to sustain
level within decay time attribute, where it stays until the key is released. Finally,
amplitude goes from sustain level to zero within release time parameter setting. Later
designs feature complex multistage EGs with loopable sections.

The output of an EG is usually connected into a VCA module in order to produce
changes in loudness levels, but it can also be used to modulate filter's cutoff frequency
and oscillator's pitch. It should be noted that when EG is patched into an amplifier
module, it should be unipolar, whereas in other cases there isn’t such a restriction.

F 3
: ' gustain : : »
atkack | decay | ! release |
——pi—— K—]
key on key off

Figure 2.6 Traditional ADSR envelope.
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2.3.1.2 Low Frequency Oscillators (LFOs)

A common performance technique is to introduce a slight vibrato into sound's sustaining
stage. Such minute changes in frequency can be modelled by a low frequency oscillator
operating on sub-audio frequencies, patched into OSC, VCA or VCF, which can result
variety of effects ranging from subtle vibrato-like modulation to wide range frequency
sweeps. Another frequency related routing is to vary audio oscillator's pulse waveform
duty cycle width with an LFO.

Synthesis parameters of an LFO consist of waveform selection (where all familiar OSC
shapes are available, including both up- and down ramping sawtooths and random
waveform), frequency in range of 0.01..30 Hz, amplitude determining modulation
depth, and delay for postponing vibrato to note's sustaining phase.

2.3.1.3 More Exotic Modulators

In contrast to continuous random value stream generated by random LFO waveform, the
Random Value Generator (RVG) draws a new value only when explicitly triggered, for
example in response to a note on event. Another triggered unit is Sample and Hold
component, which samples current value in its input port whenever triggered, and keeps
outputting that value until retriggered once again.

A Ramp Generator is like an envelope generator with a single attack stage : when
triggered, its value goes to zero and rises back to full value at parametrized ramp rate. It
is often used for fades and sweeps, and although it can be replaced with conventional
EGs, its use is much simpler because there is only one parameter to control.

A Tracking generator is like a control rate waveshaper. It transforms a linear input value
into output through a parametrized piecewise linear curve. As such, it can change the
shape or scale of a modulation source, and is often used when creating custom key and
velocity response curves.

A Lag processor smooths down sudden changes in control signals, allowing separate
control over signal’s rise and fall times. For example, when attached to oscillator’s
pitch, and triggered by a note on event, a portamento effect is achieved. There is no
restriction on destination parameter, however, so it can process velocities and LFO
shapes as well.

2.3.2 Performance Control

The second group of control signals transmits performance-related events (like
instructions to play a note at specific pitch at a specific moment in time, with increased
amount of vibrato) from physical controllers (like keyboard or modulation wheel) into
synthesizer’s control logic inputs. Alternatively, control signals may be generated by
another machine. In analog domain that could be an arpeggiator, step sequencer or any
other control voltage generator. With digitally controlled synthesizer, data could come
from a computer application that has recorded musician's performance events, from an
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edited musical score in electronic format, or even from an algorithmic virtual composer
or accompanist.

With such a diversity of sources, it is important to have a universal interface
specification to define how these devices can be made to understand each other. Analog
control bus operates with control voltage levels, and in digital domain one of the earliest
and still most widely used event stream format is MIDI, which defines both the
electronic interface and the messaging protocol between musical instruments [26].

For the purpose, it defines a set of control sources and their expected destinations inside
a 16 channel stream operating at the speed of 31.25 kbit/s. It is a serial protocol, where a
byte consists of 10 bits (8 for data plus 2 for synchronization), so transmission time for
single byte is 0.320 ms. Event packets are of one to three bytes in length (1 byte if
running status is used), so the transmission of single event takes 0.320, 0.640 or 0.960
ms, typical case being the three byte version. Each controller event has a 7 or 14 bit data
value associated with it, but unfortunately they are global to the whole channel, and the
only note specific events are on-off gate, velocity and polyphonic aftertouch.

Table 2.2 MIDI channel voice messages. Numbers are hexadecimals, n in status byte
encodes channel information. MSB = Most Significant Byte, LSB = Least Significant
Byte.

Status | Event Data 1 Data 2

8n Note off note number velocity

9n Note on note number velocity

An Poly pressure note number velocity

Bn Controller control number control value
" 00..1F " continuous controller MSBs (14 bits)
" 20..3F " continuous controller LSBs (14 bits)
" 40..45 " switches
" 46..5F " 7-bit controllers
" 60..63 " (non)registered parameters
" 64..79 " undefined

Cn Program change program number | -

Dn Channel pressure | pressure value -

En Pitch wheel value LSB value MSB

2.3.3 Modulation Matrix

Modular synthesizers (see section 3.2) employ very flexible signal routing capabilities,
as almost any source signal can be patched into any imaginable destination for
modulation purposes. Semimodular synthesizers often route their modulation signals via
a modulation matrix, which has a row (or slot) for each source-destination connection
pair, column for each available destination, and a knob or parameter value at each
junction to define the amount of modulation. Usually, single source can modulate any
number of destinations, and each destination can have multiple sources.

The Downloadable Sounds standard takes the basic concept a bit further [24].
Connection blocks are used to define links between sources and destinations, and they
consist of modulation source, control, scale, transform and destination. Sources are
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either internal generators (LFOs and EGs) or external MIDI sources (such as key number,
velocity or pitch wheel). A Control can be used to offset the modulation amount (e.g.
mod wheel can influence to the amount of pitch change generated by an LFO source). A
Scale value defines the preset value of destination or amount of modulation, and
Transform is used to apply a specific mapping into destination’s parameter space.

Source () () Destination

Scale (<)

Control
Figure 2.7 Connection Block as defined by Downloadable Sounds specification.
Yet another technique is used by Emu’s desktop instruments [27], which have 36 virtual
patch cords (i.e. slots) each with source, destination and modulation amount settings.

They do offer similar flexibility that DLS specification achieves by allowing cord’s
modulation amount to be a possible destination of another cord.
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3 Sound Synthesis in Practice

Sound synthesizers are available both as hardware and software configurations. Due to
flexibility issues, the latest trend seems to be moving towards software-based solutions,
although hardware-based systems are not likely to disappear altogether. This is because
their customized signal processing abilities still outperform those of general purpose
PcCs, and because they do not crash in actual performance situations.

Existing hardware implementations can be categorized into devices having either analog
or digital sound production components, while software-based systems fall into batch-
oriented or real-time environments. Structurally synthesizers can be grouped into
hardwired and modular setups, based on scalability of their internal architecture.
Hardwired designs are more performance oriented, enabling only limited freedom of
interconnectivity between synthesizer elements.

3.1 Mixing Audio and Control Signals

Regardless of categorization, all sound synthesis systems face the task of combining the
audio and control signals into a working whole. Analog synthesizers operate on voltage
control principle, so mixing these signals is more or less a simple matter of connecting
modulator output signal into the input of another module, including the necessary signal
level matching.

In digital implementations signal busses are not physical entities, but rather their logical
abstractions in forms of data structures. Buss contents cannot be mixed easily, because
external control buss data must be parsed and converted from MIDI format into
appropriate function calls and parameter values before it makes sense to feed it further
to the synthesis engine. Even internal modulation data must be transformed and scaled
so that the end result does not exceed system’s dynamic range, and so that the audio rate
aliasing is kept in minimum. This complicates processing requirements, and as a result,
latency figures may become problematic and make the real-time use of a digital
synthesizer impractical. This in turn impacts the synthesis algorithm complexity,
making it necessary to employ synthesis techniques that can produce interesting
material using a minimum amount of computing power and control data. Another
approach is to reduce the amount of polyphony that the system can provide.

23
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Roads calls the work that is involved with performance control data handling as event
processing, and finds four subprograms to realize the task [1 pp. 698-701]. Processing
starts when the control logic detects an input event and issues an interrupt request to the
control processor, whose first task is to parse the incoming message according to MIDI
grammar. Decoded event is then passed to Voice Assignment subprogram which
converts event to DSP commands that should be executed in response to the input,
assigns those commands to appropriate DSP voice channels and writes them to a list of
required actions. Event Scheduler task is activated at each control rate tick. It checks
whether action list contains an entry that should be executed at that point in time, sets
DsSP parameters accordingly and goes back to suspended state. Finally, Resource
Allocation task is invoked when a note start or stop related event is encountered. It
manages states of active voices and decides which voice is allocated for the new note,
and in case of an overflow, replaces one of the active notes (using a fast amplitude
envelope tailing ramp on old note) with new one. There are many strategies on how this
dynamic voice allocation can be implemented, the most common being first, last, high
and low note priority schemes.

Roads also discusses parameter update problem, which arises when control and internal
modulation data is synchronized to the DSP task [1, pp. 950-955]. Parameter updates
tend to occur at bursts and it might be difficult to keep up with audio rate processing if
bursts take too long to handle. A fixed update period before each sample calculation
cycle is one possible solution, and if there are too many parameters to update during a
single period, pending updates are processed at the start of the next cycle. In worst case,
this scheme might lead to an overflow of update queue, and might require selective
discarding of parameter updates.

In addition to real-time data, the digital control buss is also used for routing more
statically inclined patching data, containing snapshots (or presets) of the settings of all
synthesis parameters. In such cases, sound output is usually turned temporarily off, and
all currently playing sounds are retriggered after all parameters have been updated. This
might be a desired behaviour anyway, since consecutive patches might produce so
different sonic material, that without proper morphing there would just be annoying
clicks in the sound output.

3.2 Hardware Implementations

Dedicated hardware synthesizers on the market are usually based on a fixed architecture
model, and in general utilize only single synthesis technique in their sound production
process. However, some recent models can mix several elementary synthesis methods
together, but this is achieved by expanding the basic sound engine with addon boards,
and there is no interaction between elements of different synthesis methods (besides
simple arithmetic mixing of element outputs). Even if modulation between elements is
possible, the number of oscillators is too small to gain any remarkable benefit out of it.
Furthermore, the topology of the elements is essentially fixed.



CHAPTER 3 -- SOUND SYNTHESIS IN PRACTICE 25

Three high-end workstations from Roland, Yamaha and Korg were evaluated [28]-[31],
and they all suffer from shortcomings described above. In their basic configuration, the
units are wavetable-based with subtractive processing. The expansion options give
access to analog modeling, physical modeling, and modulation synthesis techniques.
Modulation EGs are relatively simple extended ADSR sources, and configurable
modulation matrix is only available in Korg.

In addition to the large onboard sample pool, the strong points of the units are in the
amount of polyphony, and in the versatile modifier and effects sections, although the
latter is commonly located at the end of the audio chain.

Table 3.1 Summary of elements per voice in three hardware-based workstations. Letters
in square brackets in EG row define stages [Attack, Decay, Sustain, Release, Initial
delay, Hold].

Roland V-Synth Yamaha Motif Korg Triton
Oscillators 2 4 2
Modifiers / Filters 2 4 2
Audio Modulators 1 - -
Amplifiers 1 4 2
EGs 13=(4+2)x2+1 [ADSR] | 12 =3x4 [IAHDSR] 6=3x2 [AHDSR]
LFOs 5 =1+1)x2+1 4 =1x4 4=2x2
Effects 3 5 =2+3 8=5+3
max polyphony 24 62 + plugins 60 + plugins

3.3 Software-based Approach

Also software-based sound synthesis systems can be seen either as generic modular
environments (which are realized with dedicated synthesis languages) or as fixed-
architecture software synthesizer plugins (that are used within a virtual desktop studio
environment). The latter is a more performance oriented system operating in real-time,
while the implementations belonging to the former group are generally less impulsive
offline processes, offering deeper level of interaction with the synthesis algorithms.

3.3.1 Synthesis Languages

Synthesis languages abstract the synthesis process with concepts like unit generators,
instrument graphs, function tables, control structures, and messaging protocols between
abstracted components [32]. They are extremely flexible, allowing even exploration of
novel synthesis techniques, but at the same time suffer from this generality as the
amount of parametrization data easily blurs the ultimate goal of music making. Batch-
oriented nature with lack of proper performance control is another negative aspect of
this approach.

Synthesis languages use either character-based or graphical interfaces. Examples of the
former are MusicV based languages like Csound [33], and SuperCollider [32] which
provides an object-oriented approach to sound synthesis. Graphical front shells have
been developed for character-based languages as an afterthought, and as such they do
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not compete with pure graphical languages like PD [34] and Reaktor [35], which bridges
the gap between modular synthesizer design environments and real-time plugins.

3.3.2 Virtual Desktop Studio

Digital Audio Workstations (DAWs) of earlier days were giant hardware-based
installations, using dedicated DSP devices hardwired into a custom topology, and were
primarily intended for post-production audio editing chores. Each production site
usually had their own proprietary systems, causing incompatibility problems and
difficulties when adapting to different work scenarios. In smaller scale, synthesizer
manufacturers discovered that extending mere audio synthesis capabilities of existing
models with a few built-in effects and an on-board sequencer, a single hardware unit
could serve as a self-contained recording studio, and decided also to call them DAWs.
Extensibility issues remained still unsolved, as users were constrained to only those
synthesis methods and effect processing algorithms that were implemented in the ASICs
of the unit.

These days DAWs can be implemented in software, running on a standard personal
computer equipped with nothing more exotic than a stock soundcard. These
environments typically employ a desktop studio metaphor, where traditional recording
studio consisting of synthesizers, effects, mixing desks and multitrack recording devices
is exhaustively modeled in software. Outboard equipment is not necessarily required,
but can naturally be patched in should processing load be distributed, or if their unique
sound is preferred in a composition.

At the heart of every virtual desktop studio is a central /ost application which is the sole
possessor of computer's AD/DA- and MIDI interfaces, and the provider of the master
clock for various synchronization tasks. It contains facilities for routing real-time audio
streams between plugin extensions, which are software modules acting as effect devices
and software synthesizers, and storing those streams on hard disk for later manipulation.
There can also be multiple hosts running concurrently, even over a LAN in another PC or
as a dedicated hardware host unit, but there is always only one master host application
multiplexing the resources of the soundcard. Desktop studio metaphor is further
reinforced by the host with a virtual multitrack tape and virtual mixing desk MMis, thus
making musicians and studio engineers immediately familiar with the new concept.
There are other metaphors used in DAWSs, but that of mimicking the real world studio is
by far the most common one.

3.3.3 Plugin Architectures

In summary, modern DAWs offer a versatile audio production system, which can be
extended with 3™ party plugins, all working within the same basic hardware platform
that is used for word processing and internet browsing. Each host manufacturer and
operating system provider decided to implement a host-plugin architecture of its own,
leading once again to incompatibility problems (Figure 3.1). SDKs for each are available
for download via internet, however.
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Figure 3.1 Most popular plugin architectures. Last three columns show number of
software synthesizer implementations per architecture in KVR Audio’s database [36].
Data was sampled in november 2004, may 2005 and august 2005.

Plugin popularity was raised in 1996, when Steinberg released first version of their
audio plugin format, entitled VST (Virtual Studio Technology), for 3™ party developers.
It enabled development of audio processing plugins, i.e. virtual effect devices that were
capable of real-time audio stream processing inside host environment. In 1999 it was
time for version 2, which allowed creation of virtual instrument plugins, i.e. software
synthesizers that were, again in real-time, capable of producing sound in response to
MIDI messages streamed to them by a host application. As of this writing, current
version is at 2.3.

VST is a cross-platform plugin architecture, supporting Windows, Macintosh and Unix
operating systems. It contains also a VSTGUI extension, allowing platform independent
MwMI development. Latest SDK with examples and documentation can be downloaded
from [37], consisting of an undocumented C-language interface, and of documented API
in form of two C++ classes, one for each major SDK revision.

DirectX plugins are implemented as DirectShow filters, which themselves form a
subset of Microsoft's DirectX API. They have an open and well-documented SDK from
Cakewalk [38], but suffer from not being a cross-platform environment. Same
arguments hold also for Apple's Audio Units [39], but because both of these
architectures are closely linked to the operating system, they are supported by major
host applications. On Linux platforms [40] host-plugin supply is far more minute, as
major companies have ignored these markets altogether.

Cross-architecture use of plugins can be achieved by special adapters, which fit into the
host's native plugin slot on one end, and to alien architecture on the other, making
necessary protocol conversions in real-time. Especially VST-based plugs benefit from
these wrappers, as there is a converter for all other major format.

3.3.4 Internal Structure of Plugins

Plugins have three real-time (possibly threaded) data streams to handle. Audio stream
routes audio rate signals between host and plugin, while MIDI and Parameter streams
transfer control rate signals relating to external performance data and internal synthesis
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parameter automation. Following sections provide a comparison of AU, DXi and VST
plugin architectures in these main areas of operation.

3.3.4.1 Audio Processing

All architectures investigated in this section are block-oriented, as it is more efficient to
buffer the output data rather than calculate values on a single sample basis. Size of the
output buffer depends on hardware and drivers that are installed on a particular
computer, and on the amount of permitted latency. The dilemma is that lower latencies
require smaller buffer sizes, but in order to produce drop-free audio output stream, a
certain minimum size is required. All architectures support also multichannel audio, but
in different ways, as discussed below.

AU plugins possess an extremely flexible audio processing architecture. Each plugin
instance can have multiple busses, any number of input and output ports, and each in
configurable sample data format. Port and stream configurations can even change
dynamically. As a consequence, rendering method is given only timestamp, number of
frames to process and a set of flags as parameters, and plugin is responsible for getting
the input and output buffer pointers, as required by current patching setup.

DXi processing method is provided with timestamps for synchronization of parameter
updates and MIDI events, single input buffer, configurable number of output buffers,
and a queue of currently active MIDI events. All audio buffers organize multichannel
data in interleaved manner, and both input and output sample formats are negotiated
during initialization phase.

VST plugins always use 32-bit floats, and separate audio buffer is provided for each
audio channel instead of interleaving. Number of audio ports is determined at
initialization time and is fixed thereafter, which causes unnecessary CPU overhead as
plugins cannot adapt to dynamic patching configurations (i.e. it is possible to feed
monaural signal into a 2-channel input plugin, but plugin must process both input
channels as it does not have any knowledge of current patching topology). This can be
avoided by compiling separate versions of single plugin for different port
configurations, but it is obviously not an ideal solution.

VST plugin has two virtual methods which the host calls periodically in order to route
audio data between itself and the plugin. process() is typically called when the plugin is
patched as an aux buss send/return effect, and desired action is to accumulate effect's
output into the material already present in the buss. processReplacing() is a faster
method, as plugin can write over anything that is currently in the output buffer, and is
used for insert effects and virtual instrument plugins. Parameters for both methods are
equal, and prototype for process() is

virtual void AudioEffect::process (float** inputs, float** outputs, long sampleFrames);
where sampleFrames gives the number of samples that the plugin should process in

response to this call, and is usually same value that was notified for buffer size during
initialization time (it is not necessarily equal, but it is guaranteed not to exceed that
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value). inputs is an array of 32-bit floating point audio streams, originating from a
recorded audio track, live soundcard input or another plugin. outputs contains an array
of output streams, and is naturally the place where plugin should store its calculated
samples. These buffers may overlap, which should be taken into account when
designing the processing algorithm. Samples are scaled into the range of [-1..1],
inclusively.

3.3.4.2 Mip1 Event Processing

All architectures are capable of streaming timestamped events to plugins, within single
sample accuracy. Like audio data, MIDI events can come from pre-recorded MIDI track,
live from soundcard's MIDI input, or from another plugin or application. There are
differences in amount of preprocessing, however.

AU plugins get their voice and sysex messages in form of parsed callbacks, based on
event’s status byte. Events are not structured, and raw MIDI data is passed as parameters
of the callbacks. Dispatcher can also be hooked at an earlier stage, for example to
perform channel based filtering, but then without the parsing support. An important
extension is the possibility to use fractional data values for notes and controllers (in
contrast to MIDI’s 7 and 14 bit integer ranges), and the ability to have multiple instances
of same note inside a single channel.

In DXi, each input event is packed into an event structure, including a timestamp and
actual data in event type specific format. Voice data is included in both raw and parsed
form, and sysex data as a separate buffer. There can also be meta events encoded, and
single event may group several raw MIDI events into single logical instance (e.g. note
on-off pairs). This event is then sent to plugin for global filtering, and inserted into a
pending event queue if it passed the filter. During rendering, pending events are first
timestamped in relation to the current audio block, and those fitting the current timeslice
are routed through plugin for extra initialization, and moved into a queue of active
events, which is then given to the actual DSP processing callback. Finally, the plugin has
a chance to release any extra memory allocated for the event before it is discarded.

VST events are also structured, including a timestamp, raw MIDI data, and some note-
related parameters. Sysex data is not transferred', but future versions may provide also
variable-length MIDI messages, as well as raw audio and video related events. It is also
possible to generate MIDI events from plugin. There can be only one MIDI input port per
plugin, which is usually opened when plugin is powered on from host's virtual
instrument rack. While opened, events keep coming in until plugin's event processing

' This limitation means that standalone patch editors or hardware programmers cannot be used in
conjunction with virtual instruments. This is a pity especially when emulating a particular hardware
synthesizer, considering the variety of such tools already available. It is possible to overcome the
limitation by using files for data transfer, but obviously then one loses the ability to manipulate parameter
data in realtime.
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method returns a value indicating that it does not want them anymore (see Figure 5.3),
or until plugin is switched into suspended state. Prototype for the virtual MIDI input
processing method is

virtual long AudioEffectX::processEvents (VstEvents* pEvents);

where pEvents contains an array of VstMidiEvent structures (each holding data for a
single MIDI event), and an item indicating the number of elements in that array. For note
events, extra information of total note duration, offset from start of the note, note off
velocity and microtuning is included. It is important to note that VST does not provide
any kind of higher level event support, so plugin has to start its event handling mission
from parsing of raw MIDI data. Event processing also takes place in a thread of its own,
so data received should be copied into plugin's internal storage, as processEvents() may
be called multiple times per single audio processing block. Finally, SDK does not
guarantee that events are sorted according to timestamp, which might be considered as a
design fault.

In summary, event scheduling is provided only by the DXi framework, and voice
assignment and resource allocation are left to plugin’s responsibility in all architectures.
VST provides least support, as even message decoding must be handled inside the plugin
code.

3.3.4.3 Parameter Handling

Each AU plugin parameter has an index, label, unit, range, and default and current value
attached. Host queries information of parameters during initialization time, and uses that
data to tie MMI controls into plugin’s parameter space, and to provide parameter
automation facilities.

DXi parameters have an additional internal range mapping into DSP parameter space, an
automation curve definition (for linear interpolation tasks) and a list of associated
enumeration values, if applicable. Current and interpolated automation values are
accessible within processing method using a single method call.

VST parameters are indexed and associated with label, unit label and current value that
is always of type float and scaled into range [0..1]. Default MMI can display value as a
plugin provided string, but like labels, the maximum length of that string is constrained
to 8 characters.

VST plugins can update their synthesis parameters either from MIDI input port by
responding to various control change messages (see previous section), or by receiving a
stream of parameter automation data originating from host's automation tracks. These
automation events can usually be drawn as multisegment curves using host-supported
tools, but they can also originate from plugin's MMI and recorded into host's automation
track.

virtual void AudioEffect::setParameterAutomated(long index, float value);
virtual void AudioEffect::setParameter (long index, float value);
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First method is invoked by plugin when user changes one of the automated parameters
in the MMI so that the host is able to record parameter changes, if so desired. The
second one is callbacked by host when such a stream is played back in order to update
synthesis parameter and MMI controls accordingly.

3.3.5 Example Plugin Instrument

As mentioned earlier, most plugin instruments have fixed internal architecture, perhaps
with configurable modulation structure at the most. One notable exception is VirSyn
TERA [41], which is a modular plugin with six prewired setups employing common
components of TERA’s modular synthesis engine.

Source section consists of six oscillators. There are three single cycle OSCs with
supersaw, FM, sync and waveshape mutation, white and pink noise sources and a
spectrum oscillator. Modifier section has a waveshaper, ring modulator, two multimode
filters, formant filter and a wave delay module for physical modelling tasks. Mixer
section has five inputs, two submix outputs, and two total outputs (one equipped with a
fixed lowpass filtering). Output section is at the end of the audio chain, and consists of
amplifier and three insert effects.

Control rate modulation setup is quite exhausting, with four DADSR and four
multisegment EGs, and four LFOs. These sources augmented with MIDI controllers are
routed via 20-slot modulation matrix into any of the 81 destinations available. There are
also four vector control surfaces allowing control of up to 64 destination parameters
simultaneously, and a 64-step sequencer with multiple patterns to serve as a time-based
modulation source.

The modular architecture of TERA makes it clearly more flexible than hardware
workstations. In fact, TERA is capable of realizing at least in principle all synthesis
methods that were described in section 2.1. The choice of effects is considerably
narrower, but as plugins are intended to be used in conjunction with other effect plugins,
it isn’t really a problem.

Table 3.2 Elements in VirSyn TERA.

Oscillators 6

Modifiers / Filters 6=3+3

Mixers 2

Amplifiers 1

EGs 8=4+4 [DADSR + MEGs]
LFOs 4

Effects 5=3+2

max polyphony 64
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4 Requirements Specification

The design phase of PHUZOR is conducted using a software engineering standard PSS-05-
0 developed by the European Space Association [42], in conjunction with object-
oriented methodologies [43]. The standard approaches software development project by
forming a lifecycle model of the software product, and finds six prominent milestones in
the process. As the scope of this thesis is restricted to building a working prototype,
only four of the phases are accomplished (i.e. acceptance testing and maintenance
phases are not carried out).

The first of the accomplished phases is the user requirements capture, which in this
thesis is combined with the software requirements definition phase, and described in this
chapter. Architectural design phase follows in chapter 5, and the implementation issues
are discussed in chapter 6. In short, requirement specification phases describe what
needs to be done, architectural phase designs how it is done, and the implementation
details the work in algorithmic level. Object-oriented design techniques utilized include
use cases and object models in several levels of detail, using in UML notation [43].

Section 4.1 states general requirements of PHUZOR, and sections 4.2 through 4.4 give
detailed model description of a general software synthesizer that should be applicable to
any synthesizer architecture. As an extension of this general model, the synthesis
architecture description of PHUZOR is given in section 4.5. Finally, section 4.6 describes
various specific requirements, in particular the MMI in 4.6.3. The complete requirements
specification is included in [48].

4.1 General Description

PHUZOR shall be a real-time audio synthesizer with polyphonic sound generation and
dynamic synthesis parameter manipulation capabilities. It shall be implemented entirely
in software as a VST plugin, and run in a standard personal computer equipped with off-
the-shelf audio card, or mainboard integrated audio chipset. Note articulation commands
and other controller data shall be generated by external MIDI devices, so dedicated
hardware is not necessary.

A variety of synthesis techniques shall be utilized in order to produce a wide spectrum
of sound material. Although common parameter spaces shall be used as much as

32
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possible to control these diverse synthesis algorithms, relatively large amount of control
data is needed to allow expressive performance. To make musician’s interface simpler,
a parameter grouping feature shall be implemented so that single controller movement
can have effect on a number of individual synthesis parameters. These macros could
affect fundamental timbral elements such as brightness or vibrato.

PHUZOR shall also be equipped with basic sound modifiers in form of patchable effects
having dynamically controlled parameters. This is because the use of effects should be
considered as an integral part of produced sound, and not as an external make-up that is
applied to disguise shortcomings of a particular synthesis method. In prototype, effects
shall be simpler than in the final product, and shall be included for architectural
completeness in mind. They can always be bypassed altogether (to hear dry sound only,
or to route them via host’s dedicated effect plugins for more professional sound quality).

Table 4.1 PHUZOR general specifications

type synthesizer plugin

polyphony configurable, limited by host CPU resources

multitirmbral no

Lo audio ot (27, audio in (27, midiin (17

patching semimodular

patch memory 1 active

patch databaze browezer, number of patches limited by host HDD (stored as files), subpatches
Waveform memory |limited by host RAM, stored as files

synthesis

type hybrid ; waveoycle, sample playback, subtractive, (group) additive,

waveshaping, analog modeling, plucked string
oscillators per voice 1.8, max 56 (using ¥ pseudo-ozcillators in each of the 8 main oscs)
Modulation

audio rate Fhd, A0 + BM, logical, sync

control rate B4 EGz, B4 LFDz, 32 RViGs

modulation matrix 128 slots (40 prewvired + 85 patch), 320 sources, 448 destinations

controllers all external midi controllers azsignable via modulation matrix, macros for
parameter grouping

Pl videts 32

Effects

number of FX unitz |2 inserts foscillator, 2 inserts ! particle, 5 global (4 inserts + 4 aux)
rnumber of FXtypes |8

4.2 System Context

Boundaries between PHUZOR and its environment are shown in Figure 4.1. Actors are
drawn using solid boxes, while data streams are surrounded by dashed rectangles. Audio
signals are presented as outlined arrows, and synthesis control and parameter related
data as dashed lines. Basic plugin control (such as instantiation and mode changes), and
MwMi-related information channels are indicated by solid black lines.
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Figure 4.1 Context Diagram in form of top level data flow diagram.

The person using the system can take two interwoven roles. As a performer, he selects
pre-programmed patches and plays PHUZOR in real-time as a musical instrument, while
simultaneously manipulating synthesis parameters that affect the produced sound. As a
sound designer, he creates and modifies preset patches and stores them for later use.
PHuzOR shall be implemented in such a way, that these two roles are virtually
inseparable, and for this reason, Performer is used in this thesis to refer the user of the
instrument, regardless of his role. For Host, controller, parameter and audio stream
descriptions, see section 3.3.2.

4.3 Use Cases

This section summarizes how Performer and Host target PHUZOR at the topmost level.

Space limits restricts presentation here to a single example case and to a summary table

listing all specified scenarios. The complete use cases are in [48].

Performing with External Controller

Summary PHUZOR responds to performance input by synthesizing audio
Frequency By request. Commands take 0.320 .. 0.960 ms to transmit.
Usability regs Latency time shall be less than 20 ms.

Actors Performer, Host

Preconditions

Input command is recognized [Unrecognized command]
Voices are available [Voice stealing]

Description

Host plays back controller stream

1.
2.
1. Performer interacts with external controller, or
2.
3. See postconditions

Related cases

UC-10 : Configuring PHUZOR Functionality
UC-12 : Performing Using External Audio Source

Exceptions

Unrecognized command : Ignored

Voice stealing : One of the active voices is replaced, or command is ignored

Postconditions

PHUZOR interprets commands and generates sound according to parameter settings in

current patch.

Notes

Voice stealing algorithm can be selected as part of preferences { UC-10 }. There shall
also be provision to gracefully stop all sounding voices without damaging ears or

speakers. Simultaneous audio stream is possible, see { UC-12 }.

Figure 4.2 Example use case describing actions involved when performer plays the

instrument.
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Most of the use cases are linked to the MMI tasks, as they are triggered by Performer’s
actions. In particular, boundary conditions and exceptions are of great importance when
designing the dynamic behaviour of the system, as are the usability requirements giving
quantitative performance related indications. They are summarized separately in section

4.6.4.

Table 4.2 Use case summary.

# Description Actors | Type Related
1 Selecting a Patch P Patch 2,3
2 Storing a Patch P Patch
3 Browsing a Patch Collection P Patch 1,10
4 Viewing Patch Parameters PH Patch
5 Editing Patch Parameters PH Patch 8
6 Initializing Patch Parameters P Patch 2,10
7 Storing a Patch as Default P Patch 2
8 Defining Midi Controller for Editing a Parameter P Patch 9
9 Disconnecting Midi Controller from Parameter Editing P Patch 8
10 | Configuring PHUZOR Functionality P Plug
11 | Performing Using External Controller PH Perform 10,12
12 | Performing Using External Audio Source PH Perform 11
13 | Changing Operating Mode PH Plug
14 | Loading and Initializing PHUZOR PH Plug 6,15
15 | Unloading PHUZOR PH Plug
16 | Opening and Closing Main Window P Plug 2

L3
4.4 Conceptual Object Model
4.4.1 Conceptual Class Model
Persistent
Load Parameter [S----- Panel
Skore Wi ShowParameters
T w [ subParch |Edit 5 40..*
i n :I 1 Ll.pu:late ﬂ
Library Patch Bind i Page
Filter r - - qMame = - - - 5 [Unbind = - = SetCurrent
Browse E :_ ______________ HERTRINN | L
1 1
! curent i @{Plug ——Editor
SynthEngine [<* -' 1 1Host ; Qpen
@{Load + Init ; Close
I S Unlnad b
In PARETERIS o IO Port ———{ChangeMode  [p———Setting
' key + Value
B i Read
[in [inowt | inoct L ke
Midi Audio Automation | . | Configure

Figure 4.3 Conceptual Class Diagram.
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Figure 4.3 shows the specification level object model of PHUZOR using UML notation
(entire model dictionary is in [48]). The Host streams of Figure 4.1 are represented as
three ports that are inherited from an abstract 10 Port class, and both MMi-related
streams are interfaced by the Editor class encapsulating the main window. In addition,
MMI contains dedicated pages for further synthesis parameter manipulation tasks, and
these are modeled above using an abstract class Page, which can further hold a number
of subwindows abstracted by Panels.

Pages and Panels provide views to the current patch and to the parameters inside that
patch, so a link is drawn from Page to classes Patch and Parameter. Parameter is an
abstract class encapsulating single synthesis parameter, and a collection of these is held
in a Patch, which defines single synthesizer timbre. A subPatch link groups functionally
related parameters together, and allows consequently separate archival of units, as Patch
is derived from Persistent class offering interface to disk files. Library is a collection of
patches, and shall be used in future version to handle patch management related tasks.

SynthEngine encapsulates DSP specific functionality of a software synthesizer. It uses
Parameters of the current Patch in order to produce distinct timbres, and is responsible
for real-time MIDI and Audio stream handling. Automated synthesis parameters are
updated via a direct link to Parameter class. Finally, to keep all classes together, model
includes a Plug class that is responsible of core tasks associated with the Host
environment interfacing.

=Performer =Host SynthEngine
----------
| MidiPort | C'E."
| controferStream rc_D\T_\Haybark I : i Thead G
' | ;
: l onContraller) P‘I :
I I | ProcessEvent() rI BufferEventi) :
I I I I :
I KE mmmmmmmmm e e m e mmmm oo o - :
.......... 44T4
""""" 1 - B et S
: | AudioPort : Ao :
| udioStream ,GDT,\%rbadr | | L Thead G
| | |
| | Ondudiol) HI |
: ' | ProcessAudiol) I Synthesize)
I Ismﬂ?mmﬁﬂf{'_q'__l .
| | | :
) s e S U S S S S S S S s
: I ParameterPort Patch U Paramater |
:mﬂmam > Automation | | Lo Thread i
| | ;
: I OnParameter)) HI : :
I I | SetParameter() I
| | | |
!  hengedpaameter L I
1 ! J

Figure 4.4. Sequence diagram for performing scenarios (UC-11 and UC-12).
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4.4.2 Dynamic Model

The example use case of Figure 4.2 is drawn as a sequence diagram in Figure 4.4,
describing the temporal relationships of actions that relate to performance tasks.
Performer generated real-time streams shall be mixed with the streams provided by the
Host’s playback system, which are then routed to the appropriate input ports. They shall
handle input streams concurrently, i.e. there are three simultaneous threads running in
host context.

Timestamped controller stream shall be buffered for later use in audio thread, which
synthesizes the audio stream according to buffered events, and returns that stream back
to the host for further processing and output. Synthesis engine is not burdened with the
parameter stream, as it is routed directly into / from the current patch memory.
Synchronization to host tempo shall be handled inside audio stream.

4.5 Synthesis Architecture and Parameters

The most important design decision with any hard-wired synthesizer (in contrast to fully
modular setup) is the definition of its synthesis architecture, i.e. the selection of
individual synthesis components, their interconnections, parameters, and modulation
routings between sources and destinations. Complete list of synthesis parameters is in
[48], and the architectural structure is presented in Figure 4.5 of next page.

There are four sections in Figure 4.5. A voice is a collection of synthesis elements that
are triggered by a single note event, and in PHUZOR that shall be equal to Source section.
Subelements of Source (P1..P8) share synthesis parameters across all active voices, and
the sum of these can be manipulated inside the Line Mixer section (e.g. P1 outputs of all
active voices are summed together, and handled in C1). To complete entire patch
definition, global Master Mixer and Modulation sections shall be included.

Audio signals shall be generated inside Source section, and shall then be routed through
Line and Master Mixer sections into audio outputs. Modulation section shall generate
control signals that can drive parameters of all sections, including itself. In addition to
control rate modulation, Source section can route audio signals internally so that audio
rate modulation is also possible.

4.5.1 Source Section

The Source section shall consist of eight Particles (P1..P8) and of an external audio
source (EXT). The output of each particle can be routed to the Line Mixer section when
it’s generating audible waveform data, and/or to modulation input of another higher
order particle when it is acting as an audio rate modulator. Single particle output can
modulate up to seven destination particles, which in turn can have as many as eight
modulating particles (when EXT is counted in) active at the same time.
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Figure 4.5 Synthesis architecture of PHUZOR. Solid lines denote audible signals, and
dashed lines audio and control rate modulation signals.

Each particle shall have audio rate amplitude and frequency modulation inputs, but only
one type of modulating algorithm can be active at an instance. For example, for a single
input particle, it is impossible to have some modulators performing RM while others are
doing FM, nor is it possible to mix two types of amplitude modulation algorithms
together. This limitation shall only affect single particle though, as there can be RM on
particle P2, and FM on P3. There shall also be other particle intermodulation options
beside amplitude and frequency modulation, and these are listed below.

Table 4.3 Particle’s audio rate modulation algorithms.

Algorithm Operation Description

Fm OscB(OscA) Frequency modulation

AM, RM OscA * OscB Amplitude modulation (multiplication)
XOR, OR, AND OscA | & OscB Amplitude modulation (logical)

Mix OscA + OscB Addition

Sync OscA -> OscB Slave oscillator synchronized to master
Pass OscB = OscA Replacement

In order to be able to modulate EXT input, a special intermodulation type ‘Pass’ shall be
included, which disconnects internal oscillator of a particle and replaces it with input
that is fed into audio rate modulation input. Each particle can also perform self
modulation. The amount of modulation shall be determined by the product of
modulator’s output level and destination particle’s input level settings.
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Using this kind of patchable source section topology, PHUZOR shall provide freedom of
modular systems, and allow wide variety of synthesizer architectures to be imitated. For
example all original Yamaha DX7 [49] algorithms can be realized (not including carrier-
to-modulator feedback path of algorithm 6). Matrix setups shall be static in nature, and
can be stored and loaded independently of other patch parameters.

4.5.1.1 Particle

Figure 4.6 displays the internal structure of a particle. As can be seen, there shall be
three particle algorithms, each utilizing a different synthesis technique. Class A shall be
shared with wavecycle and sample based oscillators, the difference is implied by
oscillator’s waveform selection (sample data can either define a single cycle or a
multicycle waveform). Modifier is discussed later in this chapter, but it shall usually
contain at least one filter component. The amplifier component shall be included for a
modulatable output and feedback level parameter, and it shall be identical in all particle
classes. Class B shall use a waveshaper instead of a modifier, and shall contain some
unique parameters, so it was decided to create a dedicated class for waveshaping alone
(it could be also implemented by using a waveshaper modifier in class A particle).
Finally, class C particles shall utilize plucked string algorithm, which is notably
different from previous classes. In future versions class C shall be used as a general
driver - resonator system, enabling more advanced physical modelling capabilities.

Modulation + Controllers |

1 1
Il L L
1 1 1
b ¥ ¥
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amnp
ARM — (871 — Modifier — Amp {=
freq —|
f 1]
Modulation + Controllers |
1 1 1 1
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=LA : ; '-.-'-.-'.;ve )
ARM — (9[-0 — Shaper — Amp {=
freq —|
B
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ARM S5l St Modifier Amp I=
freq —|
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Figure 4.6. Particle classes. A) Wavetable B) Waveshaper C) Plucked String. Single
particle is actually a self-contained synthesizer unit in itself. ARM = Audio Rate
Modulation.



CHAPTER 4 -- REQUIREMENTS SPECIFICATION 40

All internal particles (P1..P8) shall be monophonic. If the Line Mixer channel of the
particle is in stereophonic mode, the output of the particle can be panned into stereo
space, but in essence the sound shall be monophonic. There is an exception to the rule,
however, as when sampled waveform with two channels is selected as an oscillator
waveform, both channels shall be output to the Line Mixer. EXT particle can also feed
stereophonic output, and when it is routed to one of the internal particles, choice of
channel shall be made available.

In summary, fundamentally different synthesis techniques shall be implemented as
unique particle classes, which are interchangeable inside the source section topology.
Modulation synthesis techniques such as FM shall not be dedicated particle classes, but
shall be realized as audio rate modulation interconnections between particles. At least
the following techniques are realizable (and even within a single patch).

Table 4.4. Realizable synthesis techniques in PHUZOR.

Technique Recipe
Additive
sinusoidal up to 8 partials, with dedicated frequency and amplitude envelopes and initial phases
group like sinusoidal, but using offline generated single cycle wavetables instead of single sinusoid
Subtractive
analog emulation single cycle waveforms + filter + amplifier, multiphase oscillators, hard sync
sample playback multicycle waveforms + filter + amplifier
Wavetable based
crossfading attack waveform in one particle, looped sustain waveform in another, mixed in time
wavestacking like additive, but uses sampled waveforms
Waveshaping
Chebyshev by using dedicated particle
Bezier by using dedicated particle
general by using wavetable particle with waveshaper modifier
phase distortion Casio CZ style can be emulated with general method described above
Physical modelling
Plucked string (extended Karplus-Strong algorithm) by using dedicated particle
Modulation
Fm by audio rate modulation
AM + RM by audio rate modulation
logical by audio rate modulation

Audio Rate Modulation Input Block (ARM)

ARM input block shall define audio rate modulation topology between particles. Active
can be used to quickly toggle modulation input port on and off, which might be useful
when programming patches, but it is more CPU effective to cut the modulation
connections altogether. Source particle list shall define those particles that act as
modulators to the particle containing the ARM block. Modulation #ype shall be used to
define intermodulation algorithm, and input /evel shall define amount of modulation. It
shall be a control rate modulation destination, in order to synthesize dynamic spectra.
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Oscillator Block (DcO)

Dco parameters shall be particle class specific, but shall contain also a common set that
is shared by wavetable and waveshaper particles, including the usual waveform (sine,
triangle, square, pulse, sawtooth, noise stock waves, and samples), and pitch related
parameters. Of special interest are the fatness parameters available for the wavetable
particle, which shall work with multiphase pseudo oscillators. When fatness spread is
set to a value other than zero, the internal oscillator shall be surrounded by pseudo
oscillators, one group detuned to higher and the other to lower pitch than the internal
oscillator. Fatness detune shall define the number of cents that pseudo oscillators are
tuned away from the center (either as positive or negative amount). Fatness level shall
define level of pseudo oscillators in relative to internal DCO. This simple algorithm shall
allow output of up to 7 detuned oscillators from single particle, and will fatten its sound
quite a bit. When applied to the sawtooth waveform, the characteristic supersaw sound
of Roland synthesizers can be produced.

It should be noted that contrary to common approach taken in literature, DCOs in PHUZOR
shall always output signals with maximum amplitude, because control rate amplitude
modulation input is moved into the DCA block. Wavetable particles with single cycle
waveform shall have a parameter defining the phase of the waveform, and if waveform
is set to stock pulse, pulse width parameter shall be available. Both of these can be
control rate modulation destinations.

Multicycle particles shall allow more control over playback settings, like parameters for
looping and sample start offset. In case of a multisample spread to cover entire keyboard
range, extra settings provided shall be shared by all individual samples. This is a
limitation of prototyped version, and the final release shall allow settings to be made to
each sample separately. This shall be valid also for DCO common pitch parameters.

Amplifier Block (DcA)

This common block shall contain two amplitude-related parameters, both of which shall
be modulation destinations. Level shall control maximum output amplitude of the
particle, and feedback level the amount of signal that is sent back to particle’s
modulation inputs. Self-modulation destination shall be currently active modulation

type.
Waveshaper Block (Dcw)

Modifier block shall be replaced by a DCW block in the waveshaper particle. It shall be
more advanced than a simple waveshaper modifier, as it shall have a dedicated
Chebyshev mode, which can be used to produce any harmonic spectrum with direct
definition of harmonic amplitudes. In Bézier mode, oscillator waveform shall be defined
using a spline with two control points in two-dimensional plane.
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Plucked String Block

The oscillator block of a plucked string particle shall be realized using an excitation
waveform that is loaded into a virtual string in order to describe its initial displacement
positions. All pitch and waveform related common DCO parameters shall be available,
with additional parameters defined by extended Karplus-Strong models, including
attack and pick related parameters (strength, attack length, count, pick position and
material), decay, string stiffness and feedback parameters (gain and pitch). Note that
amp distortion can be modelled using a waveshaper modifier inside the particle and that
feedback shall be formed by particle self-modulation.

4.5.1.2 Modifier Block (MFX)

Modifier block shall be a particle component, but can also be located at three other
places in the signal chain (referring to Figure 4.5, modifier block can be found inside
any component with dark gray color, excluding the EXT box). It shall comprise two
modifiers A and B, which can be connected in serial or parallel fashion. It shall take an
audio source signal, apply selected processing algorithm to the signal (with real-time
modulation inputs), and output the resulting audio stream. Audio input and output ports
shall be either mono- or stereophonic depending on location of the modifier block.
Modifiers in PHUZOR shall include filters, waveshapers and dedicated effect units.

Modifier blocks shall perform different tasks depending on their location. The block
inside a particle shall facilitate oscillator-specific insert processing, and there can be a
maximum of 8 of these blocks in simultaneous use for each voice. Depending on the
Line Mixer channel settings, it shall have 1 or 2 outputs, but usually only one input (2
inputs with stereophonic sample playback), and shall consume more CPU power than the
modifier blocks in other locations. Modifier block inside a Line Mixer channel shall be
an alternative place to perform insert processing, and depending on channel mode, shall
operate either in 1-in-1-out or 2-in-2-out configuration. Block placed inside Master
Mixer channel shall always be in 2-in-2-out configuration, and shall perform as a
mastering effects unit. Naturally there can be only one such block per voice, and
because of this, it shall consume least CPU power.

All modifier locations described so far are for insert type processing, but the fourth
possible modifier location shall operate in send / return configuration and in true stereo.
Each Line Mixer channel shall have two send outputs and send level trims, both
configurable either as pre- or post-channel fader mode. The output of aux effect
modifier blocks shall be summed to outputs of master channel, and shall be eventually
transmitted to the audio output ports.

In summary, there can be a maximum of 20 (8 + 8 + 3 + 1) modifier blocks, and 20 x 2
= 40 modifiers active per single voice. Real-time modulation routings shall add to the
CPU load also, so overusing modifiers will certainly overrun even the most advanced
PC’s in market today. It should be bore in mind that the modifier architecture was
designed with flexibility in mind, and most sounds do well with just a few carefully
chosen algorithms at proper locations.
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The modulation block shall have just one parameter which determines its fopology. Both
modifiers inside the block shall have individual common parameters, and algorithm-
specific parameters and modulation routings. If a modifier is not needed, it can (and
indeed should) be inactivated in order to save CPU resources. Inactive modifier shall be
in bypass mode, i.e. it shall not block the signal flow. Type and subtype combination
shall be used to select modifier’s algorithm. Balance shall determine the amount of mix
between dry (unprocessed) and wet signal applied at the output.

Filter (DCF)

Filter mode can be either lowpass (LP), highpass (HP), bandpass (BP), or band reject
(BR). Slope shall define LP or HP filter order, and can take values between 6..24 dB /
octave, in 6 dB increments. For BP and BR mode, slope shall be replaced by Q setting.
Cutoff or center frequency and resonance/Q amount shall operate as modulation
destinations.

Waveshaper

Subtype parameter shall define the preset transfer function or the function type. Other
parameters shall refine transfer function’s shape definition as polynomial coefficients
and line segment slopes.

Delay and Reverb

A monophonic delay modifier shall have parameters for delay time and feedback level.
A stereophonic version shall duplicate these for separate control on both channels, while
adding cross-channel feedback and panning controls. Reverb shall be controlled via
room size, high-frequency damping and stereo width parameters.

Chorus, Flanger and Phaser

Chorus, Flanger and Phaser modifier parameters shall consist of modulation speed and
depth, delay time (for chorus and flanger), feedback level (flanger and phaser), and
phaser only parameters for number of allpass filter stages and sweep range.

4.5.2 Line Mixer Section

Line Mixer section shall have eight channels C1..C8 (one for each particle), which shall
be summed together into a stereo pair. Each channel shall contain controls for /evel and
pan (or balance if in stereophonic mode), and two global modifier sends and send level
and pan/balance trims. Sends can be configured to operate ecither in pre- or post fader
mode, the latter feeding global modifier block after the output level control. As
discussed earlier, each channel shall contain also an insert modifier block, which can be
in a 2-channel mode if channel is in stereophonic mode.
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Figure 4.7. Line Mixer channel.

4.5.3 Master Mixer Section

The Master Mixer section shall have three stereo channels, which shall be summed
together and routed through balance and master level trims to the audio output ports.
One of the channels shall be fed with output of the Line Mixer section, and the other
two contain signals that shall be fed by mixer channels’ aux send streams. All three
channels shall be identical, and consist of mute control, modifier block, output level
fader and a balance control.
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Figure 4.8. Master Mixer section.

4.5.4 Modulation Section

Modulation section shall consist of modulation generators and of a control rate
modulation matrix for source to destination interconnection management. Sources shall
comprise 64 EGs, 64 LFOs, 32 RVGs, all channel voice messages defined by MIDI, and
32 mouse-sensitive MMI controls. Destinations can be selected amongst 448 synthesis
parameters, and the matrix shall have 40 prewired slots and 88 patch slots, giving a
grand total of 128 virtual patch cords.
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4.5.4.1 Sources

Envelope Generators (EGs)

EGs shall have 1..64 segments, each with parametrized time, level and slope settings.
Time and level parameters can act as modulation destinations, and continuous slope
shall parametrize whether segment is linear, exponential or logarithmic in shape. A loop
region can be further defined between two points, or as a single point in order to realize
standard ADSR style curves. There shall also be a number of predefined curves available
for quick patching, and complete EG definitions shall be separately loadable from a sub-
patch files.

Low Frequency Oscillators (LFOs)

LFos shall have three characteristic parameters, which are waveform, rate and delay.
Waveform can be selected from sine, triangle, pulse, ramp up, ramp down, random, and
a short freeform WAV file that is scanned at control rate. Rate and delay parameters
shall be modulatable. In addition, there shall be a parameter defining initial phase of
waveform, freerun mode where LFO phase shall not be reset at trigger time, and a fadein
time for transition smoothing. Polarity switching is done inside the modulation matrix.

Random Value Generators (RVGs)

RVG shall draw a random number when triggered. Available trigger modes shall be a
reception of a certain MIDI event, a control rate tick, and a tailing pulse edge of an LFO.
There shall also be a parametrizable counter that defines how many times trigger must
be activated before current value is changed, or a threshold that controller value must
exceed before triggering occurs.

MipI Controllers

External controller events received via MIDI input port consist of <controller> and
<value> pairs that can be used to control synthesis parameters in a manner similar to
internal modulation generators described above. In addition to actual controller
messages, other channel voice messages listed in Table 4.5 shall be available.

Mwmi1 Widgets

MMI shall contain a dedicated performance page that contains various user interface
elements that can be manipulated using the mouse. These widgets can be routed to the
synthesis parameter destinations in a way similar to external controllers.

4.5.4.2 Destinations

Appendix A lists modulatable synthesis parameters of PHUZOR. Destinations shall be
responsible for range scaling of modulation values into parameter space, as all sources
generate values that fall into [0..1] range. They shall also be able to interpolate values
between control rate updates, in order to reduce zipper noise and sharp transient clicks
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that would otherwise be inherent in abrupt changes. For easier patching, there shall be
conceptual destination groups, where one virtual destination is connected to multiple
actual destinations (e.g. particle pitch destination group affects pitches of each
individual particle from P1 to P8).

4.5.4.3 Modulation Matrix

All modulation sources shall be routed to their destinations via modulation matrix,
consisting of 128 slots or virtual patch cords for those connections. Each cord shall have
individual settings for source, destination, amount and curve. Amount shall be
modulatable, and can be negative in order to change source polarity. Curve selection
shall be destination dependent, and there shall be linear, exponential, logarithmic and
various quantized variations available.

There shall actually be two control rate modulation matrices in PHUZOR. The first one
shall contain essentially hardwired routings that are frequently used, but seldom
changed. Routing ‘note on’ message’s key value to particle’s pitch, or amplitude EG
connection to DCA level are examples of prewired matrix cords. These settings can be
overridden in the second matrix, which contains all patch specific modulation routings.
Both matrices shall be independently loadable from customary files. Synthesizer
template files shall also contain a specific modulation matrix section so that the routings
available in the original model can automatically be included.

4.6 Specific Requirements

4.6.1 Communication Interface Requirements
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Midi keyboard Speakers
Controllers Audio source
: =7
1
......... . A RERIR
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Figure 4.9. System Context Diagram with interfaces and data stores.
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System context diagram of Figure 4.1 is given in more detail in Figure 4.9, where
physical and logical interfaces and data stores have been added. Communication
interfaces shall consist of MIDI and ASIO, which are described in this section. Software
interfaces shall include VST2 and WIN32 APIs, which are covered in subsequent
sections.

4.6.1.1 MIDI

Real-time controller signals are translated into MIDI protocol [26] by external MIDI
devices, and transmitted to PHUZOR’s MIDI input port via VST2 interface. These signals
shall include gates to start and stop audible sound at desired pitch, and various
articulation messages in form of switches and continuous controller values.

Table 4.5. MIDI implementation chart of PHUZOR, version 1.0, 08 / 2005. ‘Transmitted’
column has been left out, as there are no MIDI messages generated by this device.

Function Recognized Remarks Global Parameter Range
Basic Channel Detfault 1.16 memarized 01 Midi Channel 1..16
Changed 1.16
Mocle Detault Mode 1.3 memaorizecd 02 Micli Crrmmi on foff
Meszages Mono, Poly, Omni ondoff
Attered Mono -= Cmni
Mote Mumber o0 0127 o 03 Tuning Takle mig
Selocity Mote on oow =127 | 04 Yelocity Curve mig
Mote off i} | 04 Yelocity Curve mig
After Touch Hey's o 5[ 05 Aftertouch Curve  nip
Channel's [u} = [ 05 Aftertouch Curve  nip
Pitch Bender o (14 bit resolution) 50 0& Bernd Ranges nip
Control Change 0.63 o (14 hits) |
E4.95 o (¥ bitz and switches) g [0(==E4: an)
95,101 ¥ (Fpn + nrpn) mig
102,121 o (7 bitz) 50
Defaults 1 o mod wheel -= woice LFO amourt
T 0 main yolume -= master level
10 0 pan -= master pan
G4 0 : sustain pedal -= B sustain
Program Change ®
Swetem Mezzages *
Aux Messages Local control =
Al notes off (o 123,127 |
Active senze =
Reset ®
Hotes 0:yes Mode 1 Cnmi on, Paly
Sl Mode 2 Omni on, Mono
o :can be routed via modulstion matrix Mode 3 Omni off, Poly
O routed via global midi input fiter, memarized hade 4 Omni off, Mono
nig - not in protatype version
4.6.1.2 ASIO

ASIO is an acronym for Audio Stream Input Output, and it defines a software and
hardware layer for real-time exchange of multi-channel digital audio data. It replaces
operating system’s low level audio handling methods with functions that are tied even
closer to the hardware, thus providing lower latency audio data streams. PHUZOR shall
not be directly concerned by this interface, as it uses VST2 also for audio streaming, and
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it is included in the diagram for completeness. More on the subject can be found in [37].
ASIO drivers are strongly recommended instead of Windows MME drivers for practical
real-time use.

4.6.2 Software Interface Requirements

PHUzZOR shall run within Microsoft Windows Os 98SE or XP Home / Professional
editions, and it shall be a DLL (dynamic link library) extending a VST2 compatible host
application. In order to fit into the host’s VST2 slot, corresponding plugin interface shall
be implemented in the DLL.

Although PHUzOR shall be developed with multi-platform portability in mind, certain
operating system services have to be utilized. Where possible, higher level libraries like
ANSI stdio or C++ streams shall be used instead of hardwired OS functions. Microsoft’s
WIN32 API [45] is a collection of interfaces and libraries that allow OS -related calls to
be made, more specifically those dealing with file [0, registration database and
graphical user interfaces shall be routed via standard WIN32 API.

4.6.2.1 VST2 Host

VST2 plugin standard was discussed earlier in section 3.3.3. For the purpose of PHUZOR,
a subset of methods in the SDK shall be utilized, and can be categorized as a) core
functionality providing basic process controlling actions (loading, initialization,
termination, state changes and MMI functionality), ) MIDI event routing methods, ¢)
parameter automation interface and d) audio stream routing. Definition for all VST2
methods is documented in [37].

4.6.2.2 Files

Files shall be used to store oscillator waveform data as samples (RIFF WAV and SF2
formats), or as spectral description (customary SPE format) and synthesis parameter
setups (patches or subpatches). Files can be accessed via MMI at any execution stage
between initialization and termination. Initial state of synthesis parameters shall be
loaded during initialization time from specially named default patch file, which shall be
structurally like any other patch file, allowing customizable startup settings for patch
editing.

RIFFs as WAV Files

Microsoft's RIFF (Resource Interchange File Format) specification defines a chunk-
based file format capable of storing different multimedia content, including data for
digital audio and video. The container files house also Windows' native sound WAVs,
supporting various bit resolutions, sample rates and encoding formats. Multichannel
audio is represented as interleaved streams. RIFF documentation can be found in [45]
and a fine WAV-oriented presentation is at [46].
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PHUZOR shall be able to load WAVs with any sample rate, but is limited to bit resolutions
8 and 16, and to linear uncompressed PCM sound data format only. One or two channel
data shall be supported. These fundamental parameters describing WAV structure are
stored in 'fmt ' chunk, which is usually located at the very beginning of the file. Actual
sample frames are inside 'data' chunk following the format definition, with left-justified
sample points stored in little-endian order. Looping information is read from 'smpl'
chunk, but only one loop segment shall be supported'. All loop types currently defined
in specification (i.e. forward, alternating and backward only) shall be recognized,
however. Fine tuning information is stored inside 'inst' chunk. Other chunks shall be
ignored, should there be any.

RIFFs as SoundFont 2 Files

The problem with WAV files is that they can conveniently contain only a single sample.
E-Mu addressed this shortcoming with a RIFF -based format called SoundFont [23],
which bundles a collection of individual samples into one compound file, while adding
envelopes and LFOs to enhance otherwise passive waveform playback with basic
modulation related parameters. The waveform collection can be assigned to different
key and velocity zones so that different samples can be triggered instead of pitch
shifting a single waveform to entire keyboard range.

SoundFont files consist of three basic chunks, each further divided into variable length
list of subchunks. 'INFO' chunk defines supplemental information for documentation
purposes, and is not used in actual sound production stage. 'sdta' holds all binary sample
data as a single large pool of samples, and 'pdta’ corresponding preset, instrument and
sample header related information of that data. PHUZOR shall utilize sample data and
sample header chunks, together with loop and zone related parameters. Filter,
modulation source and effect parameters could also be loaded, but that work has been
shifted towards later releases.

Spectral Definition Files

Spectral composition of a single-cycle oscillator waveform can be defined using a
proprietary file that is stored in human-readable format. It contains a snapshot of
sound’s steady-state spectrum, possibly using multiple fundamental frequencies in order
to spread the waveform realistically across the whole keyboard range. By convention,
files shall have ‘SPE’ extension and can contain only printable ASCII characters.

An SPE file shall consist of sections delimited by lines having square bracketed [section
name]. Inside each section there shall be attribute lines having a keyword, an equal sign
and the attribute’s value. All characters followed by an aposthrope (‘) shall be treated as

! This is the loop segment where playback repeats itself when envelope is in its sustaining stage. Some
hardware samplers have also separate release loop segment, but this is not a very commonplace feature.
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comments and shall be ignored. Empty lines and white space shall be allowed between
tokens to add clarity.

There shall be two types of sections. [Header] shall define name of the waveform, the
maximum number of groups that partials are accumulated into, and the number of pitch
sections to follow. Each analyzed pitch shall have its own section, and shall be
identified by a note name from equal-tempered scale, and its octave. For example [A5]
defines pitch of A above middle-C, usually tuned to 440 Hz. Inside pitch section there
shall be one line for each partial with a keyword for partial number (0 describes
attributes for fundamental frequency). After equal sign, there shall be values for group
(starting from 1), frequency, amplitude and phase.

PHUZOR shall support up to 8 groups, and up to 128 pitches. Prototype version shall not
interpolate between spectra of different pitches, so spectral definition for one pitch shall
be valid for all interleaving pitches until new pitch section is encountered. It should also
be noted that although pitch section maps spectra to 12-tone equal temperament keys,
any tuning scale can be defined by setting fundamental frequencies to desired values.

Synthesis Parameter Files

Traditionally, all synthesis parameters constituting a synthesizer timbre are collected
into a single patch, and a group of these equal-sized patches are collected into a bank
fitting exactly into the synthesizer’s onboard user program memory. Due to versatile
synthesis architecture, PHUZOR can be controlled using a large array of parameters, and
because redundant information from patch to patch is often included, slightly different
approach shall be utilized.

Each PHUZzOR patch shall consist of a number of subpatches. If a parameter value is not
defined in a patch file, its definition shall be read from a subpatch, and if it still not
found, a hardcoded default value shall be used. On the other hand, any parameter value
defined in patch scope shall override corresponding value defined in subpatch scope. On
positive side, patch programming process shall become faster and more intuitive, as
previously developed subpatch blocks can be assembled together and there is no need to
program each parameter separately. A fine tune in common subpatch block shall have
influence on all patches sharing that block. Patch sizes shall become also smaller.
Negative side effects arise from similar reasons. A tweak in shared block might cause an
unwanted change in a specific patch, and it is also more difficult to transfer patches
between different locations as multiple files need to be included. A solution to these
problems is to include an option to save all parameters into single patch (thus overriding
all possible subpatch definitions).

All files storing synthesis parameters shall have a common format, where each file shall
be divided into number of sections, and each section shall be divided into number of
attributes and their values. Syntax shall be similar to the one described for spectral files
above.
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Table 4.6. Subpatch files.

Subpatch Category Ext | Description

Template Global syn Prewired ARM and CRM routings (e.g. Roland Juno-2)

ARM Matrix Modulation arm | ARM routings (e.g. Dx7 algorithm)

CRM Matrix Modulation crm | CRM routings

CRM Macro Modulation mac | Modulation destination group (e.g. brightness of all particles)

Envelope Modulation env Envelope curve

LFO Modulation Ifo LFo settings

RvG Modulation rvg RVG settings

Particle Source par Entire particle or particle group (e.g. FM operator stack)

Dco Source dco Dco block

Dca Source dca Dca block

Dcw Source dcw | Dcw block

Modifier Modifier mod | Single modifier or pair of them

Waveshaper function Modifier shp Waveshaper transfer function

Line Mixer channel Mixer mix single or multiple line mixer channels

Master mixer channel Mixer mas | single or multiple master mixer channels (including modifiers)
4.6.2.3 Registry

PHUzOR shall read user-definable preference information from Windows registration
database and adapt itself to those settings during initialization time. A dedicated
preference dialog shall be included in MMI to allow easy preference configuration.

4.6.3 Man Machine Interface (MMI)

PHUZOR shall have a single main window with switchable pages to navigate through
different parts of the interface. Only modal dialogs, such as alerts and confirmation
prompts, and standard OS file dialogs shall appear outside of the main window. The
main window shall be divided into 4 parts, as shown in figure 4.15 below.

Miain mode selection buttors | [urrent patch into |

Page area

|S‘tatus area

Figure 4.15 Main window components

The top part of the window shall be always visible, and shall contain buttons for main
mode selection and currently active patch area. Below that there shall be a space for
individual page and its controls, and whenever switching to a new page, contents of
middle part shall be changed. Bottom part shall contain a status row, which shall be
always visible like the top row.
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Table 4.7. Pages and panels.

Page Description
Perform Performance mode
Widgets MMI controls like xy-pad, sliders, knobs, buttons attached to parameters or macros
Library Patch database handling, not included in prototype
Design Sound Design mode
Structure ARM Matrix with audio signal mixing controls + modulation panel
Source Panels for ARM, Dco, MFx, Dcw, MoD and DcA
Mixer Interface to Line Mixer + MFX and MoD panels
Master Interface to Master Mixer + MFx and MoD panels
Modulation | CrRM Matrix
Configure Settings MMI

4.6.4 Performance Requirements

Controller data shall be transmitted via MIDI. Host may transmit sequencer generated
data at a higher tick resolution than is defined in MIDI standard, but adhering to serial
line’s transmission times, event shall be available in timestamped buffer of PHUZOR after
1 ms of its initial generation.

Changes in patch parameter values shall be reflected in synthesized audio. Their effect
and treatment shall be similar to those of sound engine’s internal modulation generators,
which shall be evaluated at control rate, with linear interpolation for in-between values.
Control rate of PHUZOR shall be the same as block rate of audio, and setting block size to
512 samples at 44.1 kHz sampling rate gives 11.6 ms per block. So in general, PHUZOR
shall update parameter value in 12 ms or less. Parameter nature affects the speed of the
update, for example if file 10 is involved when changing oscillator waveform, the
response time is dependent on size of file and the speed of storage media.

Synthesizing continuous audio stream means that sound engine must be able to fill
output sample buffer at the rate that those buffers must be fed into audio hardware.
Using figures from previous paragraph, sample period is 0.0226757 ms, so PHUZOR shall
be able to calculate single sample value in 22.68 us or less. This is the absolute
maximum value though, as host, other plugins, and even other parts of PHUZOR do need
their slice of CPU time. Audio input processing takes place at the same rate and is
included in value above.

Empirical tests have shown that when latency times exceed 20 ms, the playability of the
instrument begins to suffer and it starts to feel unresponsive, and latency times over 50
ms will make it inappropriate for live performance. This is a subjective matter however,
and is influenced by performing style, physical properties of external controller device,
the type of the sound and so on. If requirements stated above can be realized, the 20 ms
limit is achievable.
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4.6.5 Hardware Interface Requirements

PHUZOR shall work with standard PC having Intel Pentium 4 processor clocked to 2 GHz
as a minimum. Other SSE2 instruction set processors, like Intel Xeon and AMD Athlon
64 can be used alternatively.

Minimum of 256 MB of RAM is required, but 512 MB is recommended. Full installation
of PHUZOR will take 1 MB of hard disk space. Patches and particularly sample data add to
this required size. MMI requires 16-bit color depth, and screen resolutions starting from
1024 x 768 pixels.

Pc should be equipped with Windows MME-compatible audio hardware, but for
performance reasons, ASIO compatibility is recommended. At minimum, standard 16-bit
/ 44.1 kHz sound card or mainboard integrated AC’97 compatible audio chipset is
sufficient. The prototype shall not support sample data beyond 16 bits, but as internal
processing resolution is 32 bits, and as sample rate can be 96 kHz or even higher, sound
quality can be improved using 24-bit / 96 kHz audio hardware. For external controller
setup, MIDI interface is also required.

4.6.6 Testing Requirements

Following items shall be analyzed and discussed when evaluating results of this thesis
(chapter 7) :

- Sawtooth waveform (stock, sample, spectral, supersaw)
- FM electric piano patch from Yamaha DX7 as emulated by PHUZOR, with a discussion
of the theoretical spectrum.

Responsiveness to external MIDI device shall be tested. Both subjective and quantitative
measurements of timing performance are carried out. Flexibility vs. complexity of
synthesis architecture shall be discussed, and observations on hierarchical patch
management system shall be made.

4.6.7 Portability Requirements

Platform specific code shall be separated from portable code by interfacing classes,
header files and cross platform libraries. Plugin specific portions shall also be made
easily replaceable using abstract framework classes. Specific processor dependent code
optimization techniques shall be bracketed by compiler directives, and a portable non-
optimized alternative shall always be available. Future porting options include DirectX
and AudioUnits architectures, and Macintosh X operating system.
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4.6.8 Safety Requirements

PHUZOR can cause permanent damage to hearing and speaker systems, even if it is
working properly. Sound volume levels should be kept within reasonable limits at all
times, as simple change in one of the synthesis parameters can have unthinkable side
effects within other parts of programmed patch. Also, in case of software malfunction,
loud random sounds may be outputted, and the only way to silence them is to turn the
volume down and reboot the computer.

A panic button shall be accessible from MMI, and pressing it shall gracefully mute all
voices that are currently audible. Gracefully here means that a hardcoded emergency
envelope tail (i.e. one that fades out very quickly, but does not cut sound off
immediately in order to avoid sharp transient clicks) shall be run through both outputs.
To reduce sudden amplitude changes in proper working situations, envelopes shall not
have brickwall steps, but even at minimum settings do employ a short constant
transition time. EGs shall be fine-tuned so that they still feel responsive despite the short
minimum time interval.

PHUZOR shall also respond to ‘all notes off” commands received via MIDI. The action is
to perform emergency muting as described above, and to reset voice allocation
algorithm to power on state.



Chapter
S Architectural Design

This chapter describes the software architecture design phase of PHUZOR so that all
requirements given in chapter 4 are implemented. It takes a topdown approach by
decomposing PHUZOR into packages, subsystems, classes, attributes, methods and their
interfaces. This enforces information hiding and enables independent design of
subcomponents without affecting others.

A package is a compile-time concept, while subsystems are considered as run-time
entities. Subsystems are assembled into a collection of classes that are interconnected by
associations and other static relationships. Classes are further decomposed into methods
and attributes, which is the lowest level of the architectural design phase. Data flow and
messaging between subsystems and classes is conducted through a collection of well-
defined interfaces.

Section 5.1 gives a more detailed view of PHUZOR in its relation to external subsystems.
Section 5.2 describes top level subsystems and packages in framework context, while
5.3 discusses some common design issues. Finally 5.4 is ready to give a detailed view of
the subsystems’ internal composition.

5.1 System Context

Figure 5.1 extends the system context diagram of Figure 4.9 further by describing the
data that is passed between external subsystems, data stores and PHUZOR. Performer -
Host connection is omitted for clarity. By examining the figure below, some
architectural design decisions become evident.

To reduce CPU load and complexity of implementation, erroneous or out-of-context
input data should be discarded as early as possible. This can be achieved by introducing
filtering and state awareness inside low-level input components. For example,
rudimentary MIDI filtering shall ignore all events addressed to alien channels, and audio
processing can be reduced to mere output buffer clearing if there are no pending events.

55
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Figure 5.1 System Context Diagram in DFD format.

Synthesis parameters are updated either by MIDI events, host’s parameter automation or
by performer’s MMI actions. This suggests that a single component is responsible for
the actual update, and that data from each source should be parsed and converted to a
format that the updater component understands. Configuration data comes directly from
the registry or as a result of MMI editing actions, so MMI component should have the
capability of converting that data into editable form and submitting editing changes
back to the registry interface implementer component. Furthermore, the MMI
component takes part in all tasks between PHUZOR and performer.

File handling should be centralized to a single service component, which shall be
accessible from all other subsystems needing its services. This would include low-level
10, syntax checking and conversion actions leaving only semantical considerations to
the invoking instance.

Plugin process control and host service interface should also be centralized and
accessible from any part of PHUZOR. Finally, the actual synthesis engine should be
separated from the rest of the code in order to make it replaceable by another engine,
and conversely to make port for different plugin architectures possible by just changing
relevant parts in the framework.

5.2 System Design

At the topmost level, PHUZOR is a dynamic link library (DLL), which is a single module
that can be loaded into the memory on demand. This chapter decomposes PHUZOR into
packages and top level subsystems, and keeps the scope on framework (i.e. reusable)
layer, and leaves the discussion of proprietary synthesis architecture level details to
section 5.3.3.
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5.2.1 Subsystem Decomposition

PHUZOR is decomposed into 13 top-level subsystems shown in Figure 5.2. Dashed boxes
denote packages. Subsystems belong to both framework and extended packages, as

framework classes are often overridden to provide custom functionality.
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Figure 5.2 Subsystem layer of PHUZOR.
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5.2.2 Subsystem Responsibilities and Interfaces

Table 5.1 lists PHUZOR subsystems. Left column contains subsystem names, components
and main interface classes, and right column gives a short description of their
responsibilities. Interfaces between Extended subsystems are described later.

Table 5.1 Subsystem responsibilities and interfaces.

::Host Encapsulates VST2.3 SDK
AEffect VST1 plugin functionality (abstract class)
AEffectX VST2 plugin functionality (abstract class)
AEffEditor VST MMI core functionality
1:Win32 Encapsulates relevant parts of Win32 Platform SDK
FilelO Basic file handling functionality
Registry Registration database functionality
vstWrapper Hides VST from rest of the implementation
CvstPlug Wraps native VST calls for framework
CvstEditor Wraps native VST core MMI calls for framework
winWrapper Hides Windows specific implementation
CwinFile Base class for file handing
CwinRegistry Base class for configuration database
Core Plugin core functionality (like creation and mode changes)
IFsynth mode changes, plugin properties
IFplugCore audio port creation, plugin properties
DSP Audio processing
IFdspConfig audio related properties (sample and control rate, blocksize, tuning)
IFdspX audio processing
IFdsp global audio stream enabling and disabling
Params Parameter handling
IFparameterHandler | audio related properties (sample and control rate, blocksize, tuning)
IFparameterX audio processing
IFparameter global audio stream enabling and disabling
EH MIDI event handling
IFmidiEventX event processing
IFmidiEvent global event stream enabling and disabling
MMI Man machine interface
IFmmiEditorX opening, closing, updating of MMI windows and controls
IFmmiEditor update and resize requests
Utils Static utility functions and macros
Patches Parameter chunks
Files Loading and storing of Patches and waveform definitions
Settings Configuration management

5.2.3 Interaction Diagrams

Figure 5.3 shows the Controller Thread management of Figure 4.4 in subsystem and
class levels, in relation to the real-time DSP synthesis thread. The top part graphs the
Core actions that need to be taken so that the Host is able to stream MIDI events to the
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plugin. Letters A and B refer to section 6.2, which describes the algorithm in more
detail.
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Figure 5.3 Reception of MIDI events and their processing.

5.2.4 Subsystem Division, Referral and Concurrency

Each class belongs to one of the three packages, namely External Interfaces, Framework
and Extended. This approach fulfills portability requirements by allowing classes in
External Interfaces package (CvstPlug, CvstEditor, CwinFile and CwinRegistry) to
be replaced with ones for another plugin architecture or operating system. Separating
Framework and actual project specific code into different packages allows reusing much
of the trivial core functionality and rapid implementation of totally different synthesizer
architectures.

On subsystem level, division is based on functional decomposition and concurrent
threading model. As described in section 3.3.4, audio, events and remaining functions
are run concurrently in different threads, so DSP and EH subsystems are a natural
consequence of this model. Functional composition is further used to divide rest of the
functionality into Core, Params, Patch, MMI, File, Utils and Configuration Management
subsystems.

Referral between subsystems can only be performed via interface classes defining the
subsystem interfaces, each of which provides a global way of accessing its implementer
(subsystem container has also static convenience methods that handle the casting
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internally). This is possible as only one subsystem instance can exist concurrently. In
time critical situations it is permissible to store pointer to the interface implementer in
order to reduce the method call overhead. This poses a limitation that interface
implementers can not change at runtime, but in context of PHUZOR this is not applicable
anyway.

5.3 Common Design Issues

Global hardware resources are managed by the Host application, so all synchronization,
thread priorization, and global buffer management actions are handled therein. The
software control implementation shall be event-driven, dispatched by Host and OS,
implying that the plugin MMI must be modeless.

Plugin shall run only within Host context, so stand-alone version shall not be developed.
The architectural construction shall reflect real-time responsiveness to external interface
generated inputs. Because of this, PHUZOR shall be optimized for speed over memory,
and a slight overhead in the initialization phase (caused by stock waveform creation and
MMI component setup times) shall be acceptable for improved real-time performance.
MMI shall only be available in English language.

5.3.1 Handling of Boundary Conditions
5.3.1.1 Initialization

The main entry point into PHUZOR is the main () function, which is located inside
vstWrapper subsystem, and called by the Host when plugin is loaded into the instrument
rack. It shall create and initialize an instance of the CvstPlug class (to interface the
Host application), and thereafter the actual Csssynth derivative (which acts as the
framework main class and subsystem container). All other subsystems are created and
initialized by Csssynth. This includes the MMI components (as discussed above), so
that they are ready to be displayed when the Performer opens the instruments front
panel. In the class level, each class shall have an Init () method that should be used for
operations such as memory allocation, and other failure sensitive initialization tasks.

5.3.1.2 Termination

Host starts the termination sequence by invoking a close () call, thereafter deleting the
CvstEditor and CvstPlug instances. CvstPlug in turn deletes the framework’s main
class CssSynth, or its descendant created in initialization phase. The main class is the
owner of all other subsystems, and responsible of releasing the memory allocated for
them.

5.3.1.3 Failure

Special consideration shall be given to failure handling, as malfunction in form of loud
signals might cause permanent damage to listeners’ ears and audio equipment speakers.
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Software errors can be minimized by systematical null pointer testing and exception
raising, but due to the complexity of the algorithms, it is very difficult to achieve a high
rate safety level. For these reasons, an audio fuse (which mutes audio output when a
certain predefined number of out-of-range samples have been generated, and restricts
the output inside system’s dynamic range) shall be patched before main outputs. There
shall also be a panic button that is accessible any time, allowing rapid emergency
muting of output.

5.3.1.4 Mode-specific Behaviour and Mode Changes

PHUZOR shall be either in suspended or resumed state. In suspension, all audio and MIDI
input is ignored, and the only action that is performed is the zeroing of the output buffer.
In resumed state, all input streams are active, and synthesized audio is written into the
output buffer.

PHUZOR shall initially be in suspended state. Switching between resumed/suspended state
is initiated by Performer’s MMI actions, which the Host typically metaphors to power
on/off toggling. Suspended state is also entered if the audio fuse blows up, or if the
panic button was clicked by the Performer.

5.3.2 Implementation and Testing Environment

The implementation and testing phases are conducted using following hardware and
software environment:

Table 5.2 Implementation and testing environment.

Hardware
Processor Intel Pentium 4, 2.4 GHz, FSB800, 512 KB L2 cache
Memory 512 MB, DDR400
Hard Disk 120 GB, DMA/133, 7200 rpm
Audio Card SB0220 Live, EMU10K1-JFF
Audio Equipment Basic home stereos + headphones
Mipb1 Controllers 5 octave keyboard + pitch bend + modulation wheel + sustain pedal
Software
Os Windows 98 SE
VsT Host MiniHost 1.04 [50]
Compiler Microsoft Visual C++ v6 with MFC 4.2 and Win32 Spk [45]
Audio Editor Sonic Foundry Sound Forge v4.5 [51]
Spectrum Analyzer | Sonic Foundry Sound Forge v4.5, MATLAB [59]
Sound Driver AsIO4ALL v1.8 [52]
Plugin Spk VsT 2.3 SpK [37]
5.3.3 Extended Design

PHUZOR shall be implemented through framework’s Extended package class inheritance,
and there shall thus be no direct connection to the Host SDK. External Interfaces
package is also implemented in framework, but in rare situations their direct use is
possible as was described in 5.2.4.



CHAPTER 5 -- ARCHITECTURAL DESIGN 62

5.4 Detailed Subsystem Descriptions

This section describes the inner construction of each subsystem, based on functional
grouping. Using this approach makes it possible to visualize components of framework
and PHUZOR in a single diagram, and to describe relationships between classes more
clearly as there are less loose ends than there would be if each subsystem where drawn
into a separate diagram. Downside is that some classes are split up into more than one
diagram (particularly CvstPlug).

Whenever a class outside functional scope is included in the diagram, its name is
preceded by scope delimiters (::) and drawn over light gray background. Bold class
name is used when framework classes are inheritable, and dashed outlines denote the
interface classes. Note that only the most important methods and members are shown,
more detailed design is in [53].

5.4.1 Core
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setlniquelli) - == IFniLaCome D5P s CoxiavePool
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sethumInputs() SetaudioPorts() subsysiem arcess

Figure 5.4 Core classes. Host dispatched message handlers are shown on left.

Core classes manage initiation, termination and mode change functionality, and act as
containers of other subsystems in framework and PHUZOR. The main entry point creates
CvstPlug and CoxSynth instances as discussed in 5.3.1.1. The audio port topology is
fixed during initialization phase (VST does not support dynamic port configurations).
Two DsSP related global subsystems are also created inside Core, and are responsible for
fixed audio buss structure management, and dynamic oscillator waveform storage.
OnPower () is invoked in response to suspend/resume calls, and shall be routed to EH
and DSP subsystems for input port (de)activation tasks.

5.4.2 Event Handling (EH)

MIDI input port is enabled and disabled using EnableEventStream () method, which is
called from onPower () message handler. processEvents () is called when there are
new events waiting to be processed, and it routes them to CssEventHandler class for
input filtering and buffering (m_cEvents is a time-stamped MIDI event queue).
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Figure 5.5 MIDI event handling classes.

Buffered events are handled by IFmidiEventProcessor methods, which are called by

CssSynthEngine class while processing the audio stream. Note related events are

passed via IFvoiceAllocation to CssVoiceManager, which starts or stops CssVoice

instances according to messages and voice allocation algorithm in use. Controller events

are handled in CssControllerManager, which takes care of all-notes-off commands as

well. IFvoiceManager methods are used in initialization phase and at runtime to gain

access to individual voices.

Framework’s CssVoiceManager and CssVoice classes are overridden in order to create

custom voices of PHUZOR, as discussed in section 4.5.1. The size of the m_pVoices array

is defined by polyphony, and as it is dynamically constructed, the polyphony is indeed

scalable.

5.4.3 Dsr

DsP subsystem is decomposed into four pictures below due to subsystem complexity:

DSP core contains the classes handling the main entry points from other parts of the

system, lowest level classes perform the actual sample level manipulation, and are

modulated by control rate classes. The fourth picture describes static container classes.

It should be noted that all DSP classes do have a match in the synthesis architecture

description of section 4.5.
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Figure 5.6. DSP core classes.

DSP thread entry points are implemented in CssSynthEngine which delegates
processing further via IFdspProcessor interface to voice level (CoxSourceSection)
and patch level synthesis classes (CoxMixerSection and CoxMasterSection).
CssVoice lifecycle is controlled by IFvoice methods, which are invoked by
CssVoiceManager in response to received MIDI messages and state of the DCA
amplitude envelope. Synthesis parameter changes are notified via IFparamContainer,
which is implemented by CssModule and inherited by all main synthesis elements,
including the particle structure displayed at the bottom right part of the picture above.

[CssModule |  iFdspProressor i iCoscTableLookop -'
i at ! CoscSarnple ;
[ 5 | | CoscMulbiTablelookup
CoxModifierBlock —{CssModifier Coscoscilakor ' CoscYariablePulse
m_bSerialTopology TModifier* TOscillabor* i_oscBezier
MixStreams1) 200 m_state m _state iCu:usu:I“-.Iu:uise
L —Creats() OnMotestart/End() e o U] R
Iniik()
___________________________________________ s, | {CFilkerBiquad '
{CFxFixedDelay i iCFxWaveshaper CFilker EF—CFilkerIIR_Crderl
izFxvariableDelay i iCfuFreeverb : TFilker* iCFiIterIIR_Resunatl:ur
i CFxChorus i iCFxStercid CalcCoefficients() iCFilkerMoogLadder
CFxFlanger i iCFxBlender : {CFilkerMong24
iWCFxPhaser ! iCFilkerstatetariable

Figure 5.7. Lowest level DSP processing classes

CoxModifierBlock consists of two CssModifiers, and it handles the selection of
specific modifier algorithms (i.e. instantiation of CssModifier subclasses) on basis of
current patch parameters. CoscOscillator and its descendants are contained inside
CpartParticle instances, and are arranged in a tree-like inheritance relationship as
shown at top right.
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Figure 5.8 Control rate modulation classes.

Control rate modulation matrix is contained in CssModManager, and implemented as an
array of TSlot instances. Gate and tick signals originate from CssSynthEngine and
CssVoice classes via IFmodulator interface, which is implemented in CssModulator
descendants. CoxEG notifies the system after finishing its release segments.
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Figure 5.9. Static DSP classes.

Finally, there are two statically allocated container classes managing a) the busses that
connect main synthesis components together, and b) the precomputed and sampled
waveforms loaded from disk storage. All busses are stereophonic and are created in
response to host supplied maximum block size notification message.

5.4.4 Parameters and Patch

The final release version of the framework shall have a uniform parameter handling
mechanism, which simplifies synthesizer development by reducing the parameter
definition phase to mere listing task. Further benefits are gained because provided list is
enough to facilitate parameter automation, interpolation, modulation, patch file and MMI
related interaction management.

However, the prototyped version of PHUZOR uses a tailor-made parametrization scheme
without host automation features. Parameters are stored inside CoxPatch, which defines
entire synthesizer timbre, and there is only one instance available at one time (PHUZOR is
monotimbral). It is contained inside CoxParameterHandler, which has also a map for
routing controller messages when programming a patch, and two methods for storing
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and notifying MMI initiated parameter changes to DSP classes, and accessories to each
parameter value.
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Figure 5.10 Classes for Parameter and Patch handling.

CoxPatch has an overloaded assignment operator for each subpatch file type that can be
separately loaded from disk, merging the loaded parameters into current timbre. It has
also a unified parameter setting method OnParameterChanged (), which is called by
CoxParameterHandler. Actual parameters are grouped into structures, and there is one
for each composite section defined in section 4.5 and [53].
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Figure 5.11 MMT handling.
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MMI consists of three kinds of basic components. CwndPage instances are used to fill the
center part of main window acting as containers for other pages and CwndPanels, which
are smaller areas inside a page, grouping related section components together (e.g. DCO
or Modifier controls). Interaction is handled using a set of custom widgets, which are
usually assigned to single parameter, or to a group of them (e.g. graphical EG editor).
Widgets restrict parameter editing to permissible ranges, and each editing action is
reflected to the model via centralized IFParameter::OnParameterChanged ()
interface. Parameters are transferred into widgets within ShowParameters () calls.

CccSkin class is used by all visual MMI components, and it provides customizable color
schemes for the interface. Predefined schemes are stored in Settings.

5.4.6 Files
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Figure 5.12 File classes.

File classes are created on demand, i.e. a temporary instance of proper type is used to
transfer data between disk and memory. CssPlatformFile is platform independent
class that for the purpose of PHUZOR is derived from CwinFile, which implements basic
file I0 methods published in IFFile. CssRiffFile and CssProfile implement the
functionality that is common to the sample data and text-based proprietary spectral
definition and patch files. Instantiable classes are CssWavFile and CssSF2File for
sample data, and CoxSpectralFile and subpatch file types listed in Table 4.6. Each of
these defines the Convert () method for translating stored data into/from memory
structures.

CoxPatch has an assignment operator for each converted subpatch type, and MMI is
used to initiate loading / storing of all instantiable file classes (links omitted from
picture above for clarity).
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5.4.7 Settings and Utilities
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Figure 5.13 Configuration management and utility functions, macros and classes.

CoxSettings 1is a static class that uses CwinRegistry to read and write <name,value>

pairs from system registration database. Utilities subsystem consists of CssLogger

which is used to log messaging between host and plugin into a file, and is used as a

debugging aid only. Macros are used to smooth parameter changes, avoid processor

denormalization switching and to restrict output inside system’s dynamic range. MMI

and MATH namespaces provide some useful static functions, and CssString class

extends MFC’s string handling with conversion and tokenization functionality.
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6 Implementation

Armed with the requirements specification and architectural design decisions, it is time
to step into the implementation phase. In practice, the process is iterative, though, and
sometimes the architecture (and even requirements) do change with issues that emerge
while coding. This chapter describes the key algorithms of PHUZOR, and discusses some
of the iterative steps that were taken, with a special consideration given to DSP and EH
subsystems.

6.1 Core

The interface classes between subsystems have a static method Get Instance (), which
returns a pointer to the interface's implementer, thus providing a centralized way to
access functionality of any subsystem from any place of the code. Corresponding call to
SetInstance () is made by the implementer during its initialization phase. PHUZOR has
also convenience methods in CoxSynth class for getting casted subsystem pointers.

VST plugin’s entry point main () creates CvstPlug and CoxSynth instances. CvstPlug
is a simple protocol converter that serves as a router between native plugin architecture
and framework classes, and when host signals that performer has loaded the plugin, it
calls CoxSynth::Init () that in turn initializes CoxBussManager and CoxWavePool
objects, and lets the base class take care of framework’s subsystem creation. CssSynth
does this by using virtual creation and initialization methods, some of which are
overloaded in PHUZOR to provide its custom functionality.

6.2 Event Handling

6.2.1 Mip1 Input Stream Processing

Figure 5.3 shows a sequence diagram relating to the MIDI input processing task. PHUZOR
initializes itself in response to performer’s loading and power on actions, and informs
the host that it should start feeding MIDI events whenever they are due. Host obeys, and
when live MIDI data is received from external controllers, or when any of the sequencer
tracks bound to PHUZOR have MIDI events to be rendered, it dumps those raw events in a

processEvents () call.

69



CHAPTER 6 -- IMPLEMENTATION 70

CvstPlug then loops through all events, transforms each native VST event into universal
framework format with a call to InitEvent (), and passes it through IFmidiEventX: :
onMidiEvent () for further processing. After all events have been handled this way, a
final call to SortEvents () might be necessary to put events into timestamped order. At
the end of processing cycle, PHUZOR returns 1 to indicate that host should keep on
sending MIDI data.

long CvstPlug: :processEvents (VstEvents* pEvents)

{
// —-- plugin architecture independent structure
TssMidiEvent ssMidiEvent;

for (long iEvent = 0; iEvent < pEvents->numEvents; iEvent++)
{

VstEvent* pEvent = pEvents->events[iEvent];

if (pEvent->type == kVstMidiType)

{
InitEvent ( ( (VstMidiEvent*)pEvent, ssMidiEvent) ;
if (!IFmidiEventX::GetInstance () ->OnMidiEvent (ssMidiEvent))
return 0; // no more events
}
}

// —— Sort according to deltaFrames
IFmidiEventX::GetInstance () ->SortEvents () ;

return 1; // want more

}

Figure 6.1 Processing Midi input data

CssEventHandler class implements the IFmidiEventx interface, and the purpose of
OnMidiEvent () method u is to perform filtering of input events, and to store events
passing the tests into an internal memory structure for later investigation during audio
rate processing cycles. Events are kept in a double-ended queue (ordered by their
timestamps and possibly by an explicit SortEvents () call), so that it is easy to insert
new events into the end of the queue, and to fetch the oldest ones from the front for
parsing. STL class deque is used for event queue in non-optimized version of PHUZOR.

Filtering algorithm is able to quickly determine whether received midi event is worth of
storing, or whether it should be discarded right away. Only events having certain
command status and channel pass the filter, and any combination of commands and
channels can be configured to be passed using three 16-bit wide masks (one for channel
messages 0x8n..0xEn, another for system messages OxFO0..0xFF, and one for 16
available MIDI channels). These masks are bitwise anded with input event's status byte,
and if the result is equal to zero, the event is filtered out.

Ideally, all irrelevant events should be discarded, as it is highly undesirable to burn CPU
cycles at audio rate just to notice that a stored event does not have any influence to the
produced sound. However, this would complicate input filtering implementation too
much, and the benefits gained by ignoring an event altogether might be insignificant, or
even negative (ideal approach would require parsing the input data twice).
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6.2.2 MipI Processing at Audio Rate

IFmidiEventProcessor interface implemented also by CssEventHandler contains
two methods which are invoked by the time slicing algorithm of the audio thread.
PeekEvent () examines the buffered MIDI event queue, and if there are pending events
waiting to be processed, fetches the frontmost (i.e. the oldest) event from the queue. It
does not remove it from queue yet, in order to make parsing algorithm simpler.
HandleOldestEvent () is the place where MIDI messages are translated into synthesis
commands and parameters. Before this stage, MIDI events were just transformed,
filtered, moved around and scheduled, and the decision on what to actually do with the
event was postponed to a later date. Processing cannot be delayed anymore, as the time
slicing algorithm has, in a sense, made the event current, so this method has to take the
responsibility.

HandleOldestEvent () B pulls the oldest event from the queue, stores its timestamp
into an internal variable, and passes the event to OnParseMidiEvent () method. It then
peeks the next event from queue, and if it has the same timestamp as the first one, it gets
the same treatment. This is repeated until the queue becomes empty, or if the timestamp
of the frontmost event is later than that of the current event, meaning that its time is due
in the (near) future. OnParseMidiEvent () method is the top level MIDI event parser,
and depending on the status byte of the event, it is sent either to CssVoiceManager or
CssControllerManager for further analysis. All system messages are ignored.

Voice Management

NoteOn and NoteOff messages are sent to CssVoiceManager, which is responsible for
voice allocation. The algorithm in the prototype is very basic, as it just ignores NoteOn
messages if there are no free voices available. In assistance to a more advanced voice
allocation algorithm, each voice maintains its internal state (Figure 6.2), a cumulative
length in ticks and parsed MIDI information (note number, velocity and channel). It
should be noted that voice inactivation is done only after its amplitude envelope has
finished its cycle, in order to eliminate audible clicks that would otherwise be present,
should the voice be cut off immediately in response to NoteOff message.

Envelopelone

Inactive .L Active NoteOFf @ sustain pedarlis down
o Moterin

MoteDff @ suwstain pedal s uo
Envelopelone SustainUp ; fey s we

InRelease

Figure 6.2 Voice states and transitions from state to another.
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External Controllers

Controller messages are routed to CssControllerManager, which normalizes the data
value and stores it into the controller table. The table is scanned at the time of control
rate processing cycle. Channel mode messages are parsed separately.

6.2.3 Time Slicing Algorithm

The audio rendering callbacks process () and processReplacing () are both caught in
the CvstPlug instance, which combines them into a single CssSynthEngine::
OnProcess () call, where replacing mode is passed as a boolean parameter. If audio
thread was invoked in replacing mode, OnProcess () starts by clearing the whole output
buffer for silence, because polyphonic implementation assumes that each voice can
simply accumulate its audio output to the material already in the output buffer. The time
slicing algorithm kicks in thereafter, and splits output buffer (representing a continuous
real-time audio stream) into smaller slices, each of which can be synthesized as an
atomic entity without being interrupted by control or MIDI rate parameter updates. The
algorithm is easiest to explain through an example.

Midi Input Queus |$I, | | il | |
0 200 300 400 511
Audio Oukput Buffer | | | | |
mic rabe [ -
[ Processslicel) ] [ Processslice() l
contrafrafe () i 3
auddo rate | Il Il Il |

Figure 6.3 Time Slicing Algorithm example.

Let's suppose that the plugin has one monophonic output port, and that the host has a
(maximum) output block size of 512 floats. The host then sends a continuous feed of
requests to fill that output buffer, and at time ¢, = 0 the plugin has already cleared the
output buffer. Let's further suppose that at time 7, there is a single NoteOn message in
the MIDI input queue, and a corresponding NoteOff at 7, + 300, and that plugin's control
rate is set to 200 ticks (i.e. EGs and LFOs are updated at time ¢y, t, + 200, t, + 400 and so
on). At time ¢y, CssEventHandler is consulted to check the MIDI input queue, and it
finds that there is an event to be handled at time offset 0, so it shall parse it, assign a
voice to it, initialize dynamic synthesis attributes to their initial state, and finally remove
the event from the pending input queue. Next event is peeked, and scheduled to happen
at tp + 300, so output buffer elements [0..299] can be sent to the ProcessSlice ()
method.

ProcessSlice () has to make further sub-slicing actions depending on the configured
control rate interval. Continuing with the example, the first control rate update takes
place at the very beginning of the first slice, so before any audio generation actions can
be taken, a global patch level ProcessControlRate () method is invoked, followed by
corresponding calls to update the modulation parameters of each active voice. After EG
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and LFO outputs have all been refreshed and transformed, the output buffer range
[0..199] can be synthesized. Internal control rate update counter is then increased, and at
t = 200, a new control rate refresh cycle is initiated. Finally, the output buffer range
[200..299] is synthesized.

Once the first slice has been filled with synthesized output values, internal time counter
is increased, so that it now points to time offset 300. Event handler's parser is invoked to
manage the NoteOff message, which eventually empties the midi input queue, leaving
slice [300..511] to be sent to ProcessSlice () method, which has still to sub-slice it at
time ¢ + 400 in order to perform control rate refreshing. After slice #2 has been entirely
processed, the whole output buffer has been filled, and can be returned to the host for
further processing and audio output. Shortly a new buffer fill request will come in, and
the whole process is repeated with possible MIDI input queue handling, and control rate
refreshes occurring at times ¢ + 88, ¢t + 288 and ¢ + 488.

6.3 Dsp

6.3.1 Oscillators
Table Lookup Oscillators

PHUZOR oscillators have gone through couple of revisions before they have matured into
the versions that are used in the prototype. The first revision used ideal mathematical
representations of the waveforms, e.g. a square wave was generated by setting output
value to 1.0 when instantaneous phase was less than half the wavelength, and to -1.0
when it was advanced into the second half. Of course, this algorithm aliased heavily,
and another solution was necessary. One could use over-sampling in order to shift
aliasing frequencies upwards in frequency scale, and then low pass filter the decimated
signal, but it was decided to use additive synthesis techniques instead. The second
revision oscillators were implemented as straight-ahead sinusoidal oscillator clusters.
The results were promising, as there was no audible aliasing, but there was still a
problem because it was far too CPU intensive to be practical. So finally it was decided to
use precalculated table lookup oscillators for stock waves, user spectra and naturally for
sampled waveforms as well.

The inner loop of basic table lookup oscillator algorithm of PHUZOR is shown in Figure
6.4, which illustrates that per sample calculation and conditional branches are kept at
absolute minimum, and that all processing is kept inline. The algorithm uses linear
interpolation, because the improved signal-to-noise ratio is worth the extra CPU cycles
(figures in Table 2.1 were evaluated in practice, as early versions of PHUZOR utilized
truncating and rounding alternatives, and the results proved the figures correct). It was
decided to use 1024 byte table sizes instead of 512 in order to achieve 108 dB SNR,
because with 32-bit IEEE floats will give 25 bits resolution, and consequently it is
possible to reach at least 150 dB (sign bit + 24 bit mantissa, 20*log(2>°)). The number of
wavetables per oscillator is 1 for sine waves (implemented as CoscTableLookup), and
128 for triangle, square and sawtooth waves (CoscMultiTableLookup) and pulse waves
(CoscvariablePulse), i.e. there is a separate table for each MIDI key, holding entire
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range of a standard concert grand (88 keys) plus an octave and a fifth. Pulse waves with
variable width duty cycles are generated in real-time by superpositioning an inverted
and phase shifted sawtooth wave with another positive polarity sawtooth. Different
pulse widths are then achieved by modifying the phase shift amount.

while (slicelLength > 0) // for entire block of samples
{

// —-— table indexes

fPhase = fmod(m phase, iTableLength);

iTableIndex = int (fPhase) ; // integer part

fFract = fPhase - float(iTableIndex) ; // fractional part

if (iTableIndex < iMaxIndex)
iNextIndex = iTableIndex + 1;
else iNextIndex = O0;

// —-- linear interpolation

fSamplel = m pWaveTable[iTableIndex];

fSmaple2 = m pWaveTable[iNextIndex];

fvalue = fSamplel * (1.0 - fFract) + fSample2 * fFract;

// —-— store output
*pfOutputBuf++ = fValue * fAmp;

// —-- interpolate control rate modulation destinations
fAmp += fAmpDelta;
fPhaseIncrement += fPhaselIncrementDelta;

// —— prepare for next sample
m phase += fPhaseIncrement;
sliceLength--;

Figure 6.4. Table lookup oscillator algorithm.

The wavetables are created at initialization time using IDFT. Based on current tuning of
concert A and 12-tone equal temperament, the number of non-aliasing harmonics is
calculated, and if this number is equal for two consecutive keys, then a single wavetable
is shared by both keys. As it turns out however, each key has different amount of non-
aliasing harmonics, so a separate table is assigned to each key. Thereafter, harmonics up
to the calculated number are summed together according to Fourier series of waveform,
or up to the point where harmonic is considered to have no impact on perceived sound
(this happens when its amplitude is below certain threshold value, which is currently set
to -108 dB below normalized fundamental component amplitude, see SNR above). This
process is repeated for each sample so that full cycle of the waveform is formed.

The playback algorithm of CoscMultiTableLookup is identical to that shown in Figure
6.4, with the difference that the wavetable that is being scanned is determined by a
combination of current key number, pitch parameter settings and possibly by a pitch
modulation value. If the pitch is being modulated, instantaneous frequency is quantized
to a base frequency of the tuning table, and nearest matching wavetable is used for
scanning. The fractional deviation from the base frequency is used as an offset when
determining the sampling increment. As the modulation value is likely to change in
course of a note event, scanned wavetable might be changed to another at control rate,
so that nearest precalculated wavetable is always used as the base.

Spectral definition waves loaded from SPE files are precalculated using the same
principle, and played back using CoscMultiTableLookup oscillators, because single
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file can contain definitions for up to 128 key ranges. The prototype has no velocity
zones, so it is impossible to have different source material assigned to key velocity.

CoscSample uses likewise the multitable approach. In addition to the basic table lookup
algorithm, it has means to manage looping points inside the main synthesis code. After
each m_phase incrementation, phase value is compared against loop end point, and if it
is beyond that, the loop region length is subtracted from m_phase. Backwards looping is
handled similarly, but this time m_phase is decremented by sampling increment, loop
start position is examined and region length is added instead of subtracting. There is no
crossfading implemented at loop points in the prototype.

An interesting supplement to the standard table lookup oscillator algorithm is the use of
pseudo oscillators, detuned slightly sharp and flat in respect to the actual oscillator’s
pitch. Each pseudo oscillator uses a unique set of m_phase and m_phaseIncrement
variables, which are used to calculate separate output value for each pseudo oscillator.
All output values are finally added together and scaled by the number of pseudo
oscillators in use, and outputted as the value of the entire oscillator.

Algorithmic Oscillators

By definition, the noise oscillator cannot use precalculated values. Its output must be
generated for each sample algorithmically, and should thus be as efficient as possible.
The algorithm that is used in PHUZOR is linear congruential generator [54], which uses a
recurrence relation and has just single multiply and add, plus a floating point divide for
range scaling. It is fast.

The Bézier oscillator CoscBezier used in the waveshaper particle is more problematic,
as solving time from Equation 2.8 is quite tedious. This was also noticed by Lang [18],
and he suggests using Newton-Rhapson iterative method for root finding [54], which is
used also in PHUZOR. Evaluation has to be performed for each sample, but the oscillator
retains the previously computed root in its state variables and uses that as the initial
guess in the algorithm. The epsilon to stop the iteration is set to 10, which yields just
about 2.2 iterations on the average.

The plucked string oscillator CoscPluck can use noise or any of the precalculated or
loaded waveforms as the excitation source. After initial excitation, the delay buffer is
lowpass filtered using 3-point averaging FIR filter squish parameter times (modeling
pick material), and with one-pole lowpass usually modulated by key velocity. The initial
amplitude of the fill material can also be determined by key velocity. Delay line is
implemented as a simple ring buffer with one combined read/write pointer (this means
that oldest value is read from the delay line before new value is written, after which the
single pointer is incremented modulo ring buffer length). Value from delay line is
copied into output buffer, and put back into delay line via 2-point averaging lowpass
and allpass filter to provide fractional delay line lengths. Decay damping and stretching
settings are taken into account when computing the output value.
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6.3.2 Modifiers
Container

CoxModifierBlock class has two CssModifier instance member variables, which can
be dynamically created when patching the sound, or attached to the pre-constructed
instances when loading a patch from a file. It serves as a parameter, control rate
modulation, and audio rate rendering router between actual modifiers and other parts of
the framework. The most important algorithm of CoxModifierBlock are the various
Process () methods, optimized for each possible port configuration (i.e. mono-to-mono,
mono-to-stereo and true stereo modes). Inside these methods, output buffers are passed
to the individual modifiers according to current modifier topology (serial or parallel),
taking care of not cutting the signal flow in case one or both of the modulators are set to
bypass state.

Modulation Effects

CfxPhaser is implemented using up to 12 first order allpass filters connected in series.
Each sample is fed through an allpass filter parametrizable stages times. The filters have
been tuned in octave steps, so at maximum there are 6 notches in the composite filter
spectrum, located at multiples of modifier’s firequency parameter. The allpass delay
values are modulated at control rate with an LFO (for stereo versions with two LFOs
having 2™ polarity reversed). The LFOs are by default inside the cfxPhaser class, but it
is also possible to use an external modulation matrix source for them. This facilitates per
channel rate, waveform, delay, amount and phase settings.

CfxChorus is used for both chorusing and flanging effects, and it is implemented using
two variable fractional length delay lines in parallel, with an independent internal LFO
for each channel (for monophonic configuration, there’s only one of each). Delay lines
are ring buffers with combined read and write index, and a fractional delay offset that is
calculated at the start of the audio rendering cycle. The delay line contents are updated
from the input stream, and from the output value fed back for flanger effects.

Spatial Effects

CfxFixedDelay uses a fixed length ring buffer as a delay line, where fixed means that
although the length is parametrized, it cannot be modulated at a course of a note. The
buffer is described with a start pointer to allocated memory block, and with a size of that
block, defining also the maximum achievable delay time. For convenience, there is also
an end pointer that points to the end of the allocated block. Current write position to the
buffer is also kept in a pointer, which traverses from start pointer to the end pointer,
after which it folds back to the start of the buffer.

When delay time is changed by the user, read pointer is offset from the write pointer
with an amount equal to the set delay time in samples. During audio rate rendering,
output sample is fetched from the read pointer location, mixed with the incoming
sample according to dry/wet parameter, and stored into the output buffer. Incoming
sample is combined with the sample that was read from the delay line according to
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feedback parameter setting, and written into the delay line at the write pointer location.
Finally, read and write pointers are increased within buffer boundaries.

There is also a stereophonic version of CfxFixedDelay, which has two delay lines
running in parallel. It contains crossfeed parameters defining the amount of to-be-
delayed signal that leaks into the other channel. This facilitates complex rhythmic delay
effects, which can be further animated using channel specific panning.

CfxFreeverb 1is based on a public domain Schroeder/Moorer reverb implementation
[55] with eight parallel comb filters per channel, the output of which are accumulated
together and fed through four allpass filters in series. This version does not have control
over predelay or filtering parameters.

CfxSteroid is a stereo image width enhancer. It operates on L-R difference signal by
feeding it through an internal delay line similar to that of CfxChorus, and adds the
processed signal to original left channel, and an inverted version to the right channel,
with parametrized gain amount. There is also a pseudo stereo generator for monophonic
input implemented using same basic principles.

Filters

All filter classes are derived from an abstract CFilter, each implementing two basic
methods. CalcCoefficients () is called at control rate each time filter’s frequency or
resonance parameter is changed (by performer or by modulator). Coefficients are stored
internally, and used at audio rate rendering Process () methods, which take input signal
and internal state members stored from previous inputs and outputs as operands. Output
value is computed from these operands and coefficients with a dedicated algorithm for
each CFilter subclass.

There are numerous filter implementations in PHUZOR, most of which are straight
forward IIR incarnations of 6, 12 and 24 dB / octave designs. Of particular interest are
the four pole lowpass Moog ladder filter [8] emulations based on algorithms by Stilson
and Smith [56] and Huovilainen [57]. The latter uses a cascaded tanh network, two
point averaging FIR for phase compensation, two times oversampling because of the
nonlinearities, and a lookup table for performance boosted tanh evaluation.

Other Modifiers

CfxBlender is a two channel stream processor that is able to extract or generate left,
right, sum and difference signals from a stereophonic source, invert the extracted sound
and pan it independently. It facilitates for example MS pair encoding and decoding, L-R
signal inversion, crude stereo-to-mono mixing and channel swapping. The algorithm
operates on single sample only (i.e. it does not have any internal state variables), and is
consequently very simple and effective, allowing it to be used in series with other
modifiers without any noticeable CPU overhead.

CfxWaveshaper drives input stream of samples through a 1024 point transfer function,
which has been scaled to cover the range from -1.0 to 1.0. The input sample defines the
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shaper table index, and the output of the modifier is transfer function’s value at that
index (and the next index, using linear interpolation).

6.3.3 Containers

CoxSourceSection contains members for all eight CpartParticle instances, and its
main purpose is to act as voice gating, parameter change notification, control rate
modulation, and audio rate rendering router between particles and other parts of the
framework. Its Process () algorithm optimizes the use of busses so that unnecessary
clearing and copying does not slow down synthesis algorithms. Processing triggers also
the ARM synthesis methods and provides proper streams for participating oscillator
inputs by mixing modulating audio streams together, scaled by the square root of the
number of input streams (it would also have been possible to use more conservative 1/N
scaling, but as signals are usually uncorrelated, i.e. there are no peaks at the same time,
clipping should be consequently rare). See also section 6.3.5.

CpartParticle and its descendants delegate much of their work to CoscOscillators
and CoxModifierBlocks. They do handle the panning inside their Process () methods,
and for that reason implement also ProcessControlRate () method. CpartWaveshaper
class is more complicated, as it implements the actual transfer function lookup actions
after source oscillator has been asked to provide the needed indices. The lookup
algorithm is similar to that of CfxWaveshaper class.

CoxMixerSection::Process () methods route the input stream first through the
modifier block, and perform the necessary mixing and panning calculations into the
send and main mixer busses inside two tight loops thereafter. CoxMasterSection::
Process () first scales input signals by dividing them with a square root of the number
of active channels -scheme (see above), then routes the scaled signals via modifiers, and
finally mixes and pans all three channels together into a stereo pair. This master signal
is then routed via mastering modifiers (should there be any in use), and to complete the
synthesis process, copied into audio output buffer with parametrized panning and level
scaling.

For safety reasons, master output is run through a restrict macro, which clips all out of
range samples into the host’s [-1.0..1.0] range. Before clipping, there is also an audio
fuse, which mutes the output if predefined number of out of range samples is detected
during single output block processing.

6.3.4 Control Rate Modulation
Modulation Matrix

Control rate update cycle is managed by CssModManager class, which iterates through
all active cords in the control rate modulation matrix, ticks each source to get current
modulator value, and stores that value into the cord. After all cord sources have been
ticked, active cords are iterated once again, this time to check if any of the active cord
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destinations is the amount parameter of another cord. In such cases, destination’s
amount value is updated according to source’s current value. This iteration is a one-pass
process, so cords can be chained only if cord destinations are forward references. All
feedback connections are activated during next control rate update cycle. Finally, the
cord array is iterated the third time — this time active cords are grouped by destination,
and all values from cords connected to a single destination are accumulated together
(after multiplying each with cord’s amount), and composite value (with possible curve
transformation) is transferred into destination’s modField.

Sources

As modulators are ticked at control rate, and aliasing is not relevant in these cases, their
implementation is simpler than that of audio rate signal generators. Instances derived
from CssModulator maintain their current time domain position in m_phase, which is
either reset to zero when modulator is gated (in response to a note on message), set to a
random value for LFOs oscillating in freerun mode, or to a predefined initial phase.

Inside each Tick (), m_phase is incremented with a delta time that defines the interval
between two consecutive Tick () calls, and if m_phase exceeds current segment/cycle
length, either new EG segment values are transferred into current values, or m_phase is
reset to the beginning of a new cycle.

EG segment's state variables consist of begin and end levels, length of current segment
(in control rate ticks), and segment's slope. If slope is set to 0.5, EG segment is linear,
and current level value is determined from start and end levels using simple linear
interpolation. On the other hand, if slope is larger or smaller than 0.5, segment is either
exponential or inverse exponential, and current value is determined from equation
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where y; and y, are start and end levels, x is the time in ticks, and o segment curvature
calculated from slope of range [0..1] as a = 20 - 40*slope. The equation is from cmusic
gend routine [58], and the slope has been scaled into common VST parameter range.

LFOs calculate their current value either via table lookup, using pseudo random number
generator, or algorithmically in case of pulse waveforms. RVGs get ticked when source
MIDI event is received, at each control rate cycle, or when source LFO’s pulse transits
from positive value to negative, depending on RVG’s trigger mode. It first increments an
internal counter and compares it to the patched counter parameter, and if they are equal,
a random value is generated and set as current value. If trigger mode is MIDI event, the
received data value is compared to patched threshold parameter, and new value is drawn
accordingly.

MIDI controller data values are stored in a controller table, which is updated by
CssControllerManager each time an external controller message is received via MIDI.
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Ticking external controller sources is just a simple table lookup operation. Widgets have
a GetValue () method which is called during main control rate update cycle.

Destinations

Oscillators and other destination parameter containers are also ticked at control rate.
Inside OnProcessControlRate () method, a target value is computed from parameter’s
current value and its corresponding modValue field, giving the value that is reached at
the end of the audio rate rendering cycle. A delta value that is added on single sample
interval can then be calculated, and this delta value is used inside Process () method to
linearly interpolate destination synthesis parameter at audio rate, eliminating zipper
noise entirely. Finally, current synthesis parameter value is updated so that is ready to
be modulated during next control and audio rate processing cycles.

6.3.5 Audio Rate Modulation

PHUZOR particles comprised initially two oscillators that could be internally connected to
form a modulator-carrier pair. Carrier oscillator could also be externally modulated by
another particle, and the ARM matrix held such connections for four particles. Although
this scheme enabled fast patching of certain timbres (e.g. detuned two-oscillator analog-
like sounds), it restricted other patches (e.g. DX7-style 6 operator setups), and was later
replaced with a more flexible architecture that allows any oscillator to operate either as
a carrier or as a modulator, or as both at the same time.

Audio rate modulation is handled within CoxSourceSection: :Process () method,
which is called once per output block for each active voice. The algorithm iterates
through all active particles, and if there are other particles modulating current particle,
outputs of those particles are mixed into a temporary buss, which is then given as the
input stream for the CpartParticle: :Process () method. As only those particles that
have smaller index (i.e. particles inside CoxSourceSection are contained in an array,
indexed from O to 7) can modulate current particle, the output streams of modulators are
already synthesized and stored inside the source buss. This restriction emerges from
block-oriented processing architecture, and there would naturally be no such constraints
if synthesis was done on single sample basis.

The lack of feedback connection between particles is a consequence of this restriction.
There is a feedback path from particle's output into the input of the same particle,
though, and it is handled inside the particle's Process () method. It should be noted that
the only ARM type that must be handled inside oscillator's synthesis loop is FM, as it
affects the phase increment of the table lookup oscillator'. Pass ARM type is reduced to
modulated block copy operation without the need to synthesize carrier output at all.

' In PM current sample is read from a lookup table before modulation is applied to the lookup index,
while in FM the lookup index is updated prior fetching. PHUZOR does actually PM.
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Sync is also a special case, where input stream data is ignored and only modulator's
frequency is of importance. There might also be control rate modulation applied to the
modulating stream (most commonly using EGs), resulting one additional multiplication
in the algorithms.

Figure 6.5 shows a simplified version of PHUZOR’s XOR audio rate modulation algorithm,
and the corresponding SSE optimized code in Figure 6.6. Control rate modulation code
has been omitted for clarity. As can be seen from the optimized version, there shall be a
remarkable speed improvement, because FPU can compute XOR operation using single
instruction and as it can calculate four samples in parallel.

while (slicelLength-- > 0)
{

// —-- get input values and switch to 16-bit integer processing
fCarrier = *pfStreamCarrier++;

fModulator = *pfStreamModulator++;

iCarrier = int(fCarrier * 65535);

iModulator = int(fModulator * 65535);
// —— compute and store output
iXOR = iCarrier »~ iModulator;

*pfOutputBuf++ = float (iXOR) / 65535.0;
}

Figure 6.5 Audio rate modulation example. Simplified C++ implementation.

int iPackLength = iStreamLength / 4;

for (int iPack = 0; iPack < iPackLength; iPack++)
{
// —-— compute and store output
*pml28Dest = mm xor_ ps(pml28Modulator, pml28Carrier);
// ——- prepare for next pack
pml28Dest++;
pml28Modulator++;
pml28Carrier++;

}

Figure 6.6 SSE instruction set optimization of previous example.

6.4 MMl

PHUZOR's MMI is implemented using a combination of subclassed Windows common
controls and custom controls developed for software synthesizer specific interaction
tasks. Implementation is based on straightforward adaptation of model-view-controller
paradigm of MFC and its CFormView class, where pages and panels comprising the MMI
are designed using a graphical resource editor provided with the development tools.
Specialized widgets include graphical envelope editors, multifield edit controls with a
virtual slider (where vertical mouse dragging operation is used to alter numerical field
values), four-state checkboxes and menu buttons fusing a combobox and a popup menu
into a single control.

Of particular interest is the Structure page, which is used to interface PHUZOR’s audio
rate signals (Figure 6.7). It combines the functionality of Line and Master Mixer pages
with the audio rate modulation matrix into a common surface, that facilitates signal
routing between particles, modifiers and mixers, output and send level settings, panning,
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and switching of particles and mixer channels. It allows also configuration of audio rate
modulation type between particles.

There are nine diagonally positioned outlined particle boxes (the leftmost being the
external audio input), and four outlined master mixer channel boxes at the bottom right
of the page. ARM matrix and line mixer controls are located between outlined boxes,
where each node represents a connection between the source (the outlined box vertically
above the node) and the destination (the outlined box to the right of the node). Node is
dimmed if there is no connection. A connection is made by left clicking the node, and
by dragging mouse vertically up and down in order to set the output level of the source.
Once connected, the node is visualized with a yellow number inside a solid box, and
lines connecting the source with the destination are drawn to indicate the participants.
The three bottom most node rows contain two nodes per connection, where the right one
is used for pan position definition.

[m; ARM Ezample
B

| structure | : i : Master ! Madulation

Figure 6.7. Structure Page. Particles 1,2 and 5 are carriers, while 3 and 4 operate as
modulators (FM and XOR, respectively).

Particle boxes are further assembled into six internal boxes, which are used to define the
particle state (on/off), ARM method, self modulation amount, ARM input level setting,
and particle modifier send level settings. Master mixer boxes contain 3 internal boxes
for on/off switching, and output level and pan settings.

6.5 Parameters, Patches and Files
Parameters and Patches

CoxPatch groups all synthesis parameters under a single accessible unit, breaking them
into structures by controlled element. The class is also able to take a parsed parameter
file as input, and transfer values into places that are accessible from the synthesis
elements.
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CoxParameterHandler contains a common method to set a particular parameter value
of the current patch, and has knowledge to notify parameter containers when changes
have been made. The implementation is a simple parser basically in form of a large
switch statement, whereby case labels are parsed from parameter’s scope and id, as
provided by the method caller.

Patch and Subpatch Files

Each persistent object implements IFPersistent interface’s OnLoad () and OnStore ()
methods, which stream object’s attributes from/to disk files. Attributes are stored in
human readable form, and are at the lowest level accessed using Windows profile API
calls. coxPatchFile and its descendants buffer file input via persistent object members,
and after successful parsing and parameter loading, the MMI passes file instance to the
CoxPatch class, which then transfers buffered input to the current patch. To accomplish
this, each persistent object overloads the assignment operator, which copies attributes
from source instance to the destination. Storing is not buffered. At the start of the store
operation, file is truncated to zero length, after which a section header is written, and
each persistent object belonging to the container section then writes itself to the file.

Other Files

Waveform files are for input only, and are parsed and loaded through an internal buffer
into CoxWavePool’s structures. Oscillator wavetable pointers and other patch parameters
are updated accordingly.

Spectral definition files are also for input only, and handled in a similar way as
waveform files. CoxWavePool builds a set of wavetables out of the definitions using the
Fourier summation algorithm as described in section 6.3.1. The number of wavetables
that are created depend on the number of groups defined inside the SPE file.

Waveshaper transfer function definitions, i.e. the degree and the polynomial coefficients
are passed after parsing once again to the CoxWavePool class, which calculates the
transfer function for values between [-1..1], and stores the generated wavetable in
internal structures for use inside CpartWaveshaper and CfxWaveshaper instances.

6.6 Settings and Ultilities

CoxSettings contains PHUZOR’s configuration setup for such items as directory paths of
patch and sample files, MMI skin definitions, master output level and pan position,
master tune and the number of voices. It is derived from CwinRegistry, which
interfaces Windows registry API. Values are read from registry at initialization time, and
are written back whenever modified within Configure page. All configurable items are
static and public, thus easily accessible from any part of PHUZOR.

CssString which is derived from MFC Cstring class contains a handy implementation
of a simple parser. It is initialized with a call to InitTokenizer (), which sets the
separator character and resets internal counters. It operates on the contents of the string
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itself, and each call to GetNextToken () returns the substring that is delimited by
separators, or zero if there are no more tokens. It is used extensive when parsing patch
files, as are the conversion methods AsInteger (), AsFloat () and AsBoolean ().

CssLogger writes each message between host - plugin communication as a formatted
ASCII string, which is useful when debugging specific host incompatibility problems. It
can be used for other debugging purposes as well, because breakpoint based debugging
might be impossible in real-time.

Utilities subsystem contains also macros for inlined support code. One of the macros is
used to remedy the denormalization switching problem of Pentium processors, which
manifests itself as a huge CPU overhead when floating point calculations operate on
very small magnitudes (according to Intel, the factor can be as much as 250:1). The
origin of the problem lies in IEEE floating point specification, which states that very
small numbers must be treated in a special way, instead of truncating them to zero. The
macro works by adding a small, but sufficiently large number to its operand so that
switching is not made.
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7 Evaluation of Results

This chapter describes the measurements that were conducted on the PHUZOR prototype.
First, four different algorithms for sawtooth oscillators available in PHUZOR are
compared with each other, and to that of a hardware vintage analog synthesizer. Second,
a six oscillator FM patch is programmed, and the sound of PHUZOR is confronted with the
sound of a commercial software synthesizer using an identical patch, and accordance
with the FM theory is discussed. Third, time and CPU related performance measures are
taken, and finally, some quantitative metrics characterising the implementation phase
are calculated.

7.1 Sound Analysis

Time and frequency domain graphs and spectrograms were used for sound analysis. The
sound material was first captured into a 16 bit, 44.1 kHz WAV file directly from the
PHUZOR’s outputs, so that sound card unidealities did not interfere with the results. The
file was then loaded into MATLAB [59] and ran through a custom script to produce the
plots shown below. FFT was averaged from the entire sample using a rectangular
window because of the periodicity of the sources.

7.1.1 Sawtooth Waveforms
PHUZOR Stock Sawtooth

PHUZOR was patched so that only one wavetable particle was active. The IDFT generated
sawtooth was used as the waveform, and EG was constructed to be a simple gating
curve. Two notes (middle C at 261 Hz, and a C one octave below that, i.e. at 130.5 Hz)
were played.

As can be seen from Figure 7.1, there is no aliasing, and both waveforms contain a full

set of harmonics. There is a small overshoot in the amplitude inherent in the time
domain representation, due to the uncompensated Gibbs effect.
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Figure 7.1. PHUZOR stock sawtooth waves. Thick lines at the bottom part of the spectrum
plots do not indicate audio aliasing, but are due to graphical imperfections.

Sampled Minimoog

A Minimoog sawtooth sample was downloaded from the Internet [60]. The sample was
a one-second raw unfiltered sawtooth with fundamental frequency of 261 Hz (i.e.
middle C), recorded at 44.1 kHz and with 16 bit resolution. The sample was loaded into
PHUZOR’s wavetable particle and middle C was pressed.

The downloaded sample included aliasing, which can be seen from the spectrum plot
just below 20 kHz and up to the Nyquist frequency. The interesting bit is the time
domain graph showing exponential like ramp.
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Figure 7.2. Sampled Minimoog wave. Here we have also audio aliasing.

Spectral Reincarnation

For evaluation of the SPE format waveforms, the original Moog sample was loaded into
Matlab, and extracted spectral peaks were exported via clipboard to Excel spreadsheet.
The amplitudes were transformed into floating point range [0..1], and partial frequencies
were regenerated to match the ideal sawtooth (Moog harmonics were in general about 6
cents flat). The file was loaded into PHUZOR and once again, middle C was pressed. The
results can be seen in Figure 7.3.
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Figure 7.3. PHUZOR’s spectral version of the Minimoog sample. Only amplitudes were
extracted from the original sample.

Aliasing has disappeared, and the higher harmonics have lower strength than those of
the theoretical sawtooth of Figure 7.1. The time domain graph of the waveform is not
identical to that of the sampled version, however, as partials’ frequency and phase
information was not used in resynthesis. Unfortunately it is not possible to create
inharmonic spectra without aliasing. It is nevertheless possible to use the exact (within
FFT resolution) partial frequencies if aliasing does not sound too bad, and the produced
timbre is naturally more close to the original than the stripped version, which sounds
somewhat duller than the original.

Supersaw

Figure 7.4 shows the waveform and spectrum of PHUZOR’s supersaw waveform, with six
pseudo oscillators detuned 7, 14 and 21 cents flat, and 4, 8 and 12 cents sharp in relation
to the fundamental pitch. Pseudo oscillators have 80 % of the amplitude of the center
oscillator.
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Figure 7.4. PHUZOR supersaw played at C3.

The sound is fat indeed, and is the output of only one particle. With eight particles, each
detuned slightly from the others, and panned throughout the stereo space, the output
starts to resemble the sound of a tuned noise (this would equal 48 sawtooth oscillators in
unison).

7.1.2 FM-style Electric Piano

Patch Description

Probably the most characteristic sound often associated with Yamaha DX7 synthesizers
is the digital Rhodes emulation, or the factory patch FullTines of the mark II range. It
uses three parallel two operator stacks — two of the stacks giving the body of the sound
(i.e. the rubbery sustain part, slightly detuned and panned around the center), and one
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that synthesizes the bright attack portion (emulating the striking of the metal bars of
Rhodes electric piano). The modulator - carrier frequencies of the sustaining operators
are of ratio 1:1, and thus produce a sawtooth like mellow timbre. The attack portion on
the other hand produces inharmonic metallic overtones because of the 12:1 modulator -
carrier ratio, where the modulation index changes from full range to zero in about 2 s.

Fm7

Native Instrument’s FM7 [61] is capable of accurate DX7 emulation, and is even
compatible with its MIDI sysex dump format. The original FullTines factory patch was
imported into the FM7, and a sequencer was used to trigger a full velocity, six seconds
long note at frequency fy = 261 Hz. The spectrogram of Figure 7.5a clearly shows the
sustaining body of the sound (all harmonics up to about 2.5 kHz), and the output of the
12:1 tuned operator stack as two peaks occurring at k*/2f; + f, which constitute to the
attack portion and decay rather rapidly.

Fraquency [kHz)

0%— == ————————
0 1 2 3

A Timne (=) B Tirne ()

I I
4 i3 3

Figure 7.5. A) FM7 output of FullTines patch. B) PHUZOR version.

PHUZOR’s Emulation

Envelope times, levels and slopes were manually transferred from FM7 into PHUZOR, and
six wavetable particles with sine wave sources were then structured into a similar ARM
matrix as the original DX7 algorithm 5. Particle output levels were also set to the same
values that were in the original Full/Tines patch. Other parameters of the original patch
were discarded.

The spectrogram in Figure 7.5b is nearly identical to that of FM7. The modulation index
mapping into modulator output level is not exact, as can be seen from smaller number of
harmonics below the two peaks at 2.5 kHz, but it is very close. The slightly wavery
pattern of partials in FM7 output is due to the detune parameters, which were not set in
PHUZOR patch. Minute partial length differences are due to unequal EG implementations.
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7.2 Performance Measurements

Performance related timing figures were measured using Win32 API high resolution
performance counter functions, which give at least 1 ps resolution within the testing
environment. In addition, the CPU load meter values from MiniHost application were
recorded. The metric is presented as a percentage value, ranging from 0.3 % when idling
to full 100 % when the entire time scheduled for the process is consumed. These figures
follow quite closely the measured timing values, suggesting similar derivation.

The output buffer size of 512 samples per channel was used in measurements. Only
single notes were triggered, and each measurement were repeated ten times to get the
listed average. The fourth column of Table 7.1 contains the maximum polyphony
achievable if all CPU cycles were used to synthesize the timbre shown in the first
column. These values were calculated from the time required for synthesis of single
voice, column 2), and from the amount of time that is available per block of drop-free
audio streaming (at 44.1 kHz sample rate with 2 output channels equalling 5.805 ms).
The release configuration of PHUZOR was compiled with speed optimized, but without
SSE tuning.

Table 7.1. PHUZOR performance. Time is in milliseconds, unless otherwise noted.

General Time (ms)

Startup time 10..11s

Mip1 input and MM1 update

MIDI in -> event queue 0.023

MIDI in -> synthesis start (i.e. latency - synthesis time) 0.056

Oscillator pitch doubled from Mm1 -> sound output 7.816

Synthesis of one output buffer Cpu (%) | Polyphony
1 wavetable particle with stock sawtooth wave 0.062 0.7 94
1 waveshaper particle with Bézier wave 0.120 1.3 48
1 pluck particle 0.075 0.8 77
1 wavetable particle with supersaw 0.143 1.3 41
supersaw synthesized from 7 detuned stock sawtooth waves | 0.171 1.6 34
6 - particle FM patch 0.361 2.6 16
Synthesis of one output buffer using Modifiers

1 filtered (24 dB LpF) wavetable particle with sawtooth 0.110 1.1 53
1 wavetable saw particle run through chorus (insert) 0.148 1.4 39
1 wavetable saw particle run through master reverb (send) 0.296 2.5 20

The results of the performance tests were encouraging, as the goals set in requirements
specification phase were clearly fulfilled. The total latency time, from the moment that
MIDI input is available in PHUZOR’s input port to the point when synthesized output
buffer is ready, is naturally dependent on the complexity of the patch, but with the
timbres listed above, only the FM patch and reverbed sawtooth exceeded the latency
time of one sample. Reverberation is a rather demanding effect, as expected, but when
used as a send effect, the CPU requirements stay constant regardless of amount of
polyphony. On the other hand, the FM algorithm and the initial startup time need further
optimization. It is safe to assume though, that SSE code at selected spots will improve
the figures above with a considerable amount, especially those associated with audio
rate modulation.
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7.3 Source Code Analysis

Quantitative source code analysis was made using SourceMonitor [62], which is an off-
line tool that is able to parse C++ code and calculate a collection of metrics from the
results. One of such metrics is the number of C++ classes. Including struct definitions,
the prototype version of PHUZOR comprises 188 classes, of which 63 (34 %) belongs to
the framework package, and 125 (66 %) to the dedicated synthesizer implementation.
Some of the classes of the latter package, especially those implementing such standard
elements as table lookup oscillators and filters, are also quite reusable, so they could be
eventually transferred into the framework domain.

Another metric is the number of statements (i.e. the lines terminated with a semicolon
character and control structures), giving a better indicator of the size of the code than
pure number of lines (which includes comments and empty lines as well). The total
amount of statements is 19160, which distributes to 5191 (27 %) and 13969 (73 %)
instances between packages. Figure 7.6 shows how PHUZOR statements are scattered
amongst the subsystems of Figure 5.2.

Files 6%
Passe Patches and Parameters 7%

Care 4% Setkings and Ukils 3%

Modifiers 11%

DSP 27% Oscillators 5%

MMI S0% Containers 5%

Madulakion 3%
Core 3%

Figure 7.6. Functional distribution of PHUZOR source code statements.

The most striking aspect of Figure 7.6 is the amount of MMI code, which is half the
entire amount, and nearly twice as much as the amount of DSP code. Although the MMI
is not algorithmically particularly complex, the amount of the trivial code makes it large
indeed. On the other hand, the division inside the DSP segment reflects well PHUZOR’s
synthesis architecture complexity. Rather surprising is the amount of Event Handling
code, which 1s mere 3 % of the entire lot.

The total size of PHUZOR may be proportioned to the source code distribution of csound
v4.11 [33], which has 66968 statements (i.e. it is 3.5 times bigger than PHUZOR, even
when lacking the MMI). Perry Cook’s Synthesis Toolkit v4.20 [63] is object-oriented,
having 98 classes and 17511 statements, which makes it roughly the same size as
PHUZOR.
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8 Conclusions and Further Work

In this thesis, a generic design methodology was applied to the design of a software
sound synthesizer. A composite synthesis architecture comprising several elementary
synthesis techniques and sound processing algorithms was proposed and used as a
conceptual model. A prototype software sound synthesizer was then implemented as a
VST plugin, using C++ as the programming language.

PHUZOR includes all the features that were specified for the prototype during the design
phase, and it is now time to decide whether development of the final version is worth
the effort. The main results of the thesis are discussed in section 8.1, and some
improvements and extensions to the implemented prototype are suggested in 8.2.

8.1 Conclusions

The entire process from specification requirements, via software architectural design to
the actual implementation phase was iterative. In the light of this work, ESA’s software
lifecycle model should best be regarded as a tool which organizes the decisions and
other knowledge data gathered throughout the project into manageable chunks that can
later be referred easily. The strict formalism of the produced documents was found to be
too demanding to keep them up to date, should every implementation time decision be
reflected back into the design model. When working with the actual release version, the
amount of extra work might be considered beneficial, however.

The use case approach (i.e. snapshots of working scenarios) was applied only to the
generic synthesizer model, as the functional separation worked best when designing the
synthesis architecture of the dedicated device. In general, the object-oriented approach
suits perfectly to the modeling of synthesizer elements, so it is a pity that the real-time
demands require it to be often sacrificed for the sake of efficiency.

Considering PHUZOR, the architectural design phase of the software succeeded relatively
well, because there are only few links between subsystems and classes, and most of the
detail is hidden inside the boxes. This was also noticed during implementation phase.

One of the main objectives of this thesis was to find a conceptual model that fuses
several elementary synthesis techniques into a single compound semi-modular synthesis
architecture. Although the final judgement can be made only after more patches have
been created, the audio rate modulation between particles, simple arithmetic mixing and
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the possibility to exploit single synthesis method in detail appears to offer such a model.
The actual synthesis architecture of PHUZOR seems flexible, but at the same time rigid
enough so that user is not overwhelmed with patching possibilities. The concept of
freely assignable modulators would perhaps been better if some of the most common
routings were hardcoded, and only a subset of the modules was routed via modulation
matrix.

DSP code is usually very tight, but the amount of MMI code was still a surprise. Using a
3™ party widget library is not enough to make significant code size reduction, as much
of the code is required to handle particular implementation specific logic. It is hoped
that the framework will give some assistance for future projects. The real-time nature of
the implementation also makes debugging a very difficult task. It was found that ears,
oscilloscope and a spectrum analyzer were the best tools available.

It shall be remained to be heard if PHUzZOR has a characteristic sound of its own, or
whether it can just mimic the timbres of others. It has the parameters that my personal
dream machine would have, but other sound designers might face the same kind of
shortcomings that led me into the development of PHUZOR in the first place. The
prototype has nevertheless proved that a finalized version is realizable.

8.2 Further Work

Although the overall concept of PHUZOR is already in its final stage, in order to build a
release quality software synthesizer, some polishing actions need still to be carried out.
In particular, source code optimization and slight MMI related improvements would
make it more usable in sequencing and live performance scenarios. A release related
issue would also be the replacement of the VST wrapper component into another plugin
architecture.

A versatile patch collection and a sample library should also be available. As PHUZOR’s
synthesis architecture seems to be quite flexible and consequently be able to broad-
mindedly emulate other synthesizer models, an offline application that converts pre-
programmed patches into PHUZOR format could be developed. The hierarchical patch
concept demands furthermore a dedicated MMI component to be implemented, as
subpatch handling at the moment is scattered around the interface.

It would be interesting to include additional synthesis techniques and modifier
algorithms into the framework. The pluck particle was from the start regarded as a
placeholder for a collection of more refined physical modeling algorithms, and more
research is required also for the already included Bézier and XOR modulation methods.
A standalone version of PHUZOR could serve as a host for other plugin effects as external
modifiers or synthesizers as external particles, and to complete the circle, it could even
host a copy of itself.
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10 Appendix A -- Parameters

Following tables list synthesis parameters of PHUZOR showing each name, range, type,
modulation destination indication (x), and comments.

ARM Matrix Block

active

source particles
modulation type
mod input level

Particle Common
active

name

modifier block
class

keyzone low
keyzone high

DCO Common
waveform

pitch ratio

pitch offset / fixed
fatness spread
fatness detune hi
fatness detune lo
fatness level

DCO Wavetable
phase

pulse width

loop mode

loop start point
loop end point
start offset

DCO Waveshaper
mode

harmonic coefficients

(x1,y1) and (x2,y2)

DCO Plucked
attack strength
attack length
repluck count

o
©

0..100

0..127
0..127

0..7

0..32.9999
-999.99 .. 9999.99
0..3

-100..100
-100..100

0..100

0..360
.100

o

0..100
0..100

bool
list
enum
int

bool
string
object
enum
int

int

enum/file
float
float

int

int

int

int

int
int
enum
int
int
int

enum
list
int

int
int
int

97

P1..P8

off, on

particles connected to this ARM input

FM, AM, RM, XOR, OR, AND, Mix, Sync, Pass

P1..P8
off, on

see Modifier Block

wavetable, waveshaper, plucked
keyzone lower split point
keyzone upper split point

P1..P8

sin, tri, squ, pulse, saw, noise, samples
relative to fundamental frequency, if 0 : fixed
Hz, constant added after ratio scaling
number of pseudo oscillators / 2

cents, for pseudo oscs above real oscillator
cents, for pseudo oscs below real oscillator

0 : real osc only, 100 : pseudo oscs only

P1..P8

for singlecycle waveforms

%, for pulse waveform only

for multicycle waveforms : off, fwd, alter, bwd
in samples, for multicycle waveforms

in samples, for multicycle waveforms

in samples, for multicycle waveforms

P1..P8

Chebyshev, Bézier

in Chebyshev mode
control points for Bézier

P1..P8

affects excitation spectrum

number of repeats of excitation wave
number of replucks
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repluck time 0..1000 int X |msecs, time interval between replucks

pick material 0..100 int x |0 : hardest, 100 : softest plectrum

pick position 0..100 int X

decay -50..+50 int x |-50 : shortest, 0 : standard, 50 : stretched most
string stiffness 0..100 int X

feedback gain 0..100 int X

feedback pitch int X

DCA P1..P8

output level 0..100 int

feedback level 0..100 int for self modulation

pan -50..+50 int if Line Mixer channel is stereophonic

Line Mixer Section

Channel

active

stereo

modifier block

solo 0..1
Output

mute 0..1
level 0..100
pan / balance -50..+50
send position 0..1

Master Mixer Sect

bool
bool
object
bool

bool

int
bool

C1..C8

off, on

mono, stereo

see Modifier Block

sendl1, send2, master mixer

muted, not muted

-50 : full left, 0 : center, + 50 : full right
pre / post fader, for sends only

Channel

active 0..1
modifier block

level 0..100
balance -50..+50

Modifier Block

bool
object

int

X
X

3 inputs (mix, aux1, aux2) + 1 out (master)
off, on
see Modifier Block

-50 : full left, 0 : center, + 50 : full right

topology 0..1

Modifier Common

active 0..1
dry - wet balance 0..100
algorithm 0..4
DCF (Filter)

subType

mode

slope 6..24
cutoff / center freq 0..100
resonance amount 0..100
Delay

time

feedback level 0..100
cross feedback level |0..100
wet pan 0..100

enum

bool

enum

X X X X

serial, parallel

A and B

off, on

0 : dry only, 100 : all wet

Filter, Delay, Spatial, Waveshaper, Modulation

Moog, MooglLadder, Biquad, ...
LP, HP, BP, BR

6, 12, 18, 24 dB, where applicable
mapped to 0..Nyquist

msecs, stereo delay has separate L+R
%, stereo delay has separate L+R

for stereo delay : L+R

for stereo delay : L+R
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Reverb

room size int
damping 0..100 int
width 0..100 int
Waveshaper

subType enum
coefficients list
breakpoint 0..100 int
slopel 0..1 int
slope2 0..1 int
paramA..D 0..100 int
Chorus + Flanger

rate float
depth 0..100 int
delay time int
feedback level 0..100 int
Phaser

rate float
depth 0..100 int
width 0..100 int
feedback level 0..100 int
stages 4..12 int

X | X X | X X X X | X

X | X X | X

%
%, high-frequency absorbtion
%, for stereo reverb

poly, 2seg, dist, ...

polynomial coefficients

% for 2-segment linear

for 2-segment linear, before breakpoint
for 2-segment linear, after breakpoint
for preset transfer functions

Hz, modulator LFO's rate
%

msecs

%

Hz, modulator LFO's rate
%
%
%
number of allpass filters

Modulation Sect

EG

active 0..1 bool
loop start 0..64 int
loop end 0..64 int
numSegments 1..64 int
EG segment

time float
level 0..1 float
slope 0..1 float
LFO

active 0..1 bool
waveform 0..6 enum
rate float
delay time float
fadein time float
freerun 0..1 bool
initial phase 0..360 int
RVG

active 0..1 bool
trigger mode 0..2 enum
counter 1..100 int
threshold 0..127 int

off, on
0 = oneshot
loop end = loop start : conventional sustain

1..numSegments
in msecs

0.5 :1lin, < 0.5: exp, > 0.5 : invexp

off, on

sin, tri, pul, saw up, saw dn, rand, wav
in Hz

msecs

msecs, ramp from 0 to 100 %

no, yes : restart at key down -switch
degrees

off, on
midi, tick, LFO

for midi triggers, 0 : not in use
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CRM Matrix Slot
active

source class
source

dest class

dest subclass
destination
amount

curve

0..1
0.4
0..N
0..5

0..N
-100..+100

bool
enum
int
enum
enum
int
int
enum

1..N

off, on

EG, LFO, RVG, Midi, Widget

unique amongst source class

ARM, DCO, MFX, DCA, MOD

depends on dest class

unique amongst dest class + subclass pair
%, negative changes source polarity

lin, log, exp, ...



