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In this thesis, the design of a music synthesizer for systems suffering from limitations
in computing power and memory capacity is presented. First, different possible syn-
thesis techniques are reviewed and their applicability in computationally efficient music
synthesis is discussed. In practice, the applicable techniques are limited to additive and
source-filter synthesis, and, in special cases, to frequency modulation, wavetable and
sampling synthesis.

Next, the design of the structures of the applicable techniques are presented in detail,
and properties and design issues of these structures are discussed. A major implemen-
tation problem is raised in digital source-filter synthesis, where the use of classic wave-
forms, such as sawtooth wave, as the source signal is challenging due to aliasing caused
by waveform discontinuities. Methods for existing bandlimited waveform synthesis
are reviewed, and a new approach using polynomial bandlimited step function is pre-
sented in detail with design rules for the applicable polynomials. The approach is also
tested with two different third-order polynomials. They reduce aliasing more at high
frequencies, but at low frequencies their performance is worse than with the first-order
polynomial. In addition, some commonly used sound effect algorithms are reviewed
with respect to their applicability in computationally efficient music synthesis.

In many cases the sound synthesis system must be capable of producing music con-
sisting of various different sounds ranging from real acoustic instruments to electronic
instruments and sounds from nature. Therefore, the music synthesis system requires
careful sound design. In this thesis, sound design rules for imitation of various sounds
using the computationally efficient synthesis techniques are presented. In addition, the
effects of the parameter variation for the design of sound variants are presented.
Keywords: sound synthesis, computer music, computational efficiency, synthesis algo-
rithms, sound effects, sound design.
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Osasto: Sähkö- ja tietoliikennetekniikka
Professuuri: S-89

Työn valvoja: Professori Vesa Välimäki
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Tässä diplomityössä esitetään musiikkisyntetisaattorin suunnittelua systeemille, jonka
laskentateho ja muistikapasiteetti ovat rajoitettuja. Ensiksi kerrataan mahdollisia syn-
teesitekniikoita sekä arvioidaan niiden käyttökelpoisuutta laskennallisesti tehokkaas-
sa musiikkisynteesissä. Käytännössä käyttökelpoiset tekniikat ovat lisäävä ja lähde-
suodinsynteesit, ja erikoistapauksissa taajuusmodulaatio-, aaltotaulukko- ja samplaus-
synteesit.

Tämän jälkeen käyttökelpoisten tekniikoiden rakenteiden suunnittelua esitetään tarkem-
min, sekä esitetään näiden rakenteiden ominaisuuksia ja suunnitteluongelmia. Suurin
ongelma kohdataan digitaalisessa lähde-suodinsynteesissä, jossa klassisten aaltomuoto-
jen, kuten saha-aallon käyttö lähdesignaalina on ongelmallista laskostumisen takia, jo-
ka johtuu aaltomuodossa olevista epäjatkuvuuksista. Olemassa olevia kaistarajoitettuja
aaltomuotosynteesimenetelmiä kerrataan, ja polynomimuotoiseen kaistarajoitetuun as-
kelfunktioon perustuvaa menetelmää esitellään tarkemmin antamalla suunnittelusään-
töjä käyttökelpoisille polynomeille. Menetelmää testataan lisäksi kahdella kolmannen
asteen polynomilla. Nämä polynomit vähentävät laskostumista korkeilla taajuuksilla
enemmän verrattuna ensimmäisen asteen polynomiin, mutta pienillä taajuksilla ensim-
mäisen asteen polynomi tuottaa parempia tuloksia. Lisäksi kerrataan muita mahdolli-
sia ääniefektialgoritmeja ja arvioidaan niiden käyttökelpoisuutta laskennallisesti tehok-
kaassa musiikkisynteesissä.

Useasti äänisynteesisysteemin täytyy pystyä generoimaan musiikkia, jossa käytetään
monia erilaisia ääniä, jotka ulottuvat oikeista akustisista soittimista elektronisiin soitti-
miin ja luonnon ääniin. Siksi tällainen systeemi tarvitsee huolellista äänten suunnitte-
lua. Tässä diplomityössä esitetään suunnittelusääntöjä erilaisten äänien imitoimiseksi.
Lisäksi esitellään synteesimenetelmien parametrien vaikutus äänivarianttien suunnitte-
luun.
Avainsanat: äänisynteesi, tietokonemusiikki, laskennallinen tehokkuus, synteesialgorit-
mit, ääniefektit, äänisuunnittelu.
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Chapter 1

Introduction

1.1 Background

Despite the continuously increasing computing power of microprocessors, there are still
applications where the efficiency of a real-time sound synthesis algorithm is a major issue.
This issue is raised for example in gaming and mobile phone industry, where either the
allocated computing time of the synthesis algorithm or the computing power is limited. In
addition, the memory capacity of the system may be limited, and this limitation must also
be taken into account.

Since many of the applications are generating polyphonic music, i.e., multiple sounds are
played at same time, the limitations become even stricter. An example of this can be found
in the generation of ring tones for mobile phones, which is based on some version of the Mu-
sical Instruments Digital Interface (MIDI) format [1]. Most commonly the MIDI version
used is either General MIDI Lite (GM-LITE) or Scalable Polyphony MIDI (SP-MIDI).
In GM-LITE the sound generating system must be capable to play 16 notes simultaneously,
while in SP-MIDI the polyphony can be scaled depending on, e.g., the device model and
overall power consumption of the device.

In MIDI specification, the sounds that a MIDI compatible system must be capable of pro-
ducing are also defined [1]. For instance, in General MIDI Level 1 (GM-1) specification,
which the SP-MIDI and GM-LITE are based on, there are 128 different melodic sounds
in total. In addition, the specification defines one percussion set, containing 47 different
percussion sounds. General MIDI Level 2 (GM-2) specification extends the GM-1 speci-
fication further by introducing mostly variants to the GM-1 sounds, defining 256 melodic
sounds in total. GM-2 also extends the GM-1 percussion set and defines eight additional

1



CHAPTER 1. INTRODUCTION 2

sets.

All of the abovementioned MIDI specifications define the sound set requirements for the
system, but the implementation of the sounds is left to a sound designer. The specifications
do not specify the sound synthesis technique to be used, and therefore the designer can
choose a method that suits best for the application. In addition, the MIDI specifications
do not specify how the instruments should actually sound like, and the definition is there-
fore also left to the designer. However, many of the specified sounds are based on a real
acoustical instrument, while some of the sounds are from the nature. In addition, some of
the specified sounds have no real world counterparts, and the implementation is therefore
left to the designers imagination. Therefore, the overall problem is to find the synthesis
techniques, with which the desired sounds can be synthesized with minimal redundancy. In
other words, the sounds that have real world counterparts should sound like their original
models, and the other sounds should match the impression that the verbal description found
from the specification gives.

When designing the sound synthesis for a system with restricted computing abilities, the
design problem becomes more difficult. While some sounds can be implemented with
good quality using only a certain synthesis technique, the implementation of some other
sounds can be difficult or computationally inefficient with that specific technique. This
forces the designer to implement some sounds with reduced quality, or the system must
be capable of produce sounds with a few different synthesis techniques. Both of these
issues, computationally efficient synthesis techniques and sound design, are addressed in
this thesis.

1.2 Outline of the Thesis

This thesis is structured as follows. In Chapter 2, various sound synthesis techniques and
their properties are reviewed. In addition, the use of the presented synthesis methods in
computationally efficient music synthesis is discussed. Chapter 3 takes a closer look to the
presented synthesis techniques by examining what methods their implementation requires.
The properties and design issues of the methods are discussed in detail. In Chapter 4, design
rules for sounds of different timbres are discussed. In addition, the effects of synthesis
parameter variations are presented. Finally, Chapter 5 concludes this thesis and points the
directions of possible future studies.



Chapter 2

Sound Synthesis Techniques

In this chapter, various sound synthesis methods are introduced. In addition, their properties
and applicability in computationally efficient music synthesis are discussed. In Section 2.1,
synthesis techniques based on table look-up are presented. Section 2.2 presents techniques
based on spectral modelling. In Section 2.3, methods based on modulation of the signal are
presented. Section 2.4 presents techniques based on physical modeling of the instruments.
Section 2.5 concludes the presented methods and discusses their properties and applicability
for practical computationally efficient music synthesis.

2.1 Table Look-up Synthesis

Techniques which involve reading data values from a memory are commonly called as table
look-up synthesis. The data to be read is usually the values of the pressure function of the
desired sound, and the data is called a wavetable. The sound is therefore produced by
playing back the wavetable in appropriate way. Section 2.1.1 presents sampling, probably
the simplest implementation of table look-up synthesis. In Section 2.1.2 a general form of
table look-up synthesis, wavetable synthesis, is presented.

2.1.1 Sampling

The most intuitive sound synthesis method is to play back digital recordings, sample waveta-
bles, from the memory. This synthesis technique is called sampling. The sampling devices,
samplers, are designed to play these prerecorded sounds, shifted to the desired pitch. The
sample wavetables contain thousands of individual cycles of the sound, thus producing a
rich and time-varying sound. The length of the sample wavetable can be arbitrarily long,

3



CHAPTER 2. SOUND SYNTHESIS TECHNIQUES 4

limited only by the memory capacity [2]. Figure 2.1 presents high level block diagram of a
sampling synthesizer.

...
...

Prerecorded sounds

Sample 1

Sample 2

Sample n

Sound generator unit

Tone controller

Sample
selector

Pitch-shifter
(optional) Looping Output

Figure 2.1: Block diagram of a sampling synthesizer.

When using sampling synthesis, issues of pitch-shifting, looping and data reduction must
be addressed. By pitch-shifting a smaller set of sample wavetables can be used and the in-
termediate pitches are obtained by shifting the pitch of the nearest stored sample wavetable.
Looping means extending seamlessly the duration of the sampled sound until the sound
reaches its release phase. In data reduction, the memory size that a sample wavetable re-
quires is reduced, or the data is compressed [2].

Pitch-shifting is implemented either by varying the clock frequency, i.e., the sampling fre-
quency of the output of a digital-to-analog converter, or by keeping the sampling frequency
constant through the whole system and by utilizing re-sampling of the signal. The first
method can be implemented with only one converter, which must then operate at wide
ranges, or with several different converters, which are used only at certain operation ranges.
In the latter method, the sample-rate of the signal is altered in the digital domain, and it
needs only one digital-to-analog converter. However, the re-sampling process adds little
noise to the signal and it may cause aliasing if it is not carefully designed. In addition,
the re-sampling shift also the spectrum variations such as vibrato and tremolo by the same
shifting amount, which is often not desirable [2].

Looping is implemented using a special loop beginning and ending points, in between
which the sound is played repetitively until the release phase is triggered. This is usu-
ally contolled by a musician via a musical keyboard, and the trigger to the release phase
is given by releasing the key. The looping can be unidirectional, i.e., the loop is always
played back from the beginning point to the ending point, or it can be bidirectional, i.e., the
playback changes its direction at the looping points. By bidirectional looping a smooth loop
is produced, in which vibrato and other variations in the signals are more realistic sounding
[2].
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In order to reduce the memory consumption, data reduction or compression of the sample
wavetables is needed. In data reduction, non-essential data is omitted, in practice by reduc-
tion in sample resolution or quantization. In addition, perceptual analysis of the sounds can
also be utilized to reduce, e.g., masked partials. In data compression, redundancies in the
data are used in coding it [2].

The sound quality of sampling synthesis is excellent, if the memory consumption is not
an issue. However, the sound quality is sort of mechanistic, and since the naturalness and
realism are usually the judging criteria, this synthesis technique is probably not the best.
In addition, the sound quality depends on the instrument to be recorded, since the playing
style affects the resulting sound quality. However, also the recording technique affects the
sound quality [2].

2.1.2 Wavetable Synthesis

Since most musical sound waves are repetitive, a fact that is reflected to the notions of fre-
quency and pitch, an efficient synthesis method is to store the values of a single period of
a tone into memory, to a so called wavetable. In order to produce the same tone, the stored
wavetable is read in unidirectional loop sample by sample again and again. A sound synthe-
sis technique implementing these procedures is called wavetable synthesis [2, 3, 4], and it
can be understood as an extension of sampling synthesis. The block diagram of a wavetable
synthesis is similar to block diagram of sampling synthesis. It can be obtained from Figure
2.1 by replacing samples with wavetables and using a wavetable selector instead of sample
selector. In looping the wavetable is read through in whole, not in just some short range.

To produce tones of different pitch, the sample increment for the table look-up must be
changed. The sample increment ∆N can be calculated by

∆N = f0
L

fs
, (2.1)

where f0 is the fundamental frequency of the tone in Hertz, L is the length of the wavetable
in samples, and fs is the sampling frequency in Hertz [2]. Since the fundamental frequency
f0 can be arbitrary, the sample increment ∆N is not always an integer. There are several
solutions to overcome this problem.

First, the sample increment can be truncated to its integer part, but this produces table-look-
up noise. By using a larger wavetable the table-look-up noise can be decreased. On the
other hand, the larger wavetable consumes more memory. Another solution to decrease the
table-look-up noise is to round the increment instead of truncation. Secondly, by changing
only the sampling frequency different pitches can be produced. This can be implemented
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by varying the clock frequency of the output of the digital-to-analog converter or by re-
sampling, as in sampling synthesis (see Section 2.1.1) [2].

The best solution to the non-integer sample increment is to interpolate the wavetable value
at the obtained position. With interpolation smaller wavetables than without interpolation
can be used to obtain the same sound quality. Yet, depending on the interpolation method,
a good sound quality is obtained with a wavetable of different lengths [2, 3]. The simplest
interpolation technique is linear interpolation, in which the value is assumed to be on the
straight line between the adjacent samples of the wavetable. However, more sophisticated
interpolation methods exist, such as sinc interpolation, in which no aliasing is produced
[5, 6]. Interpolation can be implemented efficiently with fractional delay filters [7, 8, 9].

Although the wavetables are usually small in size, a large number of different waveta-
bles can consume much memory. Therefore data reduction and compression issues must
be addressed also in wavetable synthesis. Most commonly the data compression is im-
plemented by differential coding, where only the difference between adjacent samples is
stored [10, 11]. However, other coding methods have been proposed, e.g., a parametric
representation of the wavetable instead of direct sample values. The parametrization can
be implemented with a model where the signal is divided into transient, sinusoid and noise
components [12].

In order to produce time-varying timbres, some modifications to the wavetable synthe-
sis technique can be implemented. In wavetable crossfading, the synthesizer crossfades
between two or more wavetables over the course of an event instead of scanning only
one wavetable. In wavetable stacking, a set of wavetables are mixed with their corre-
sponding envelope functions [2, 3]. Alternatively, the wavetable look-up can be from
three-dimensional ”wave surfaces” [2], or the look-up can be an interpolation between two
or more wavetables for different notes [3]. In addition, a combination of sampling and
wavetable synthesis can be utilized. Sampling is used for the attack, and wavetable synthe-
sis is used in the tone’s decay phase [13].

Wavetable synthesis with good sound quality is obtained by finding wavetable spectra and
the associated amplitude envelopes which provide a close fit to an original time-varying
spectrum. This can be done with Genetic Algorithm or with Principal Components Analysis
methods [14, 15], or by grouping the harmonics of the signal into separate wavetables [16].
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2.2 Spectral Modeling Synthesis

In spectral modeling, the sound synthesis is designed to match the spectrum of the reference
signal at every time instant. Every signal can be decomposed to deterministic and stochastic
components, which correspond to sinusoids and noise, respectively [17, 18]. Therefore it is
possible to build a synthesis model where the signal is represented with periodic waveforms
and an added noise component. Section 2.2.1 presents a synthesis method called additive
synthesis, in which the deterministic component is modeled with a sum of sinusoids. In
Section 2.2.2, a wavelet extension to additive synthesis, granular synthesis, is presented.
Section 2.2.3 presents a synthesis method called source-filter synthesis, in which the deter-
ministic component is modeled with a single filtered waveform.

2.2.1 Additive Synthesis

Additive synthesis, as its name suggests, is based on summation of sinusoidal components
to generate a spectrally more complex waveform [2]. The output signal y[n] of an additive
synthesis sound generator can be represented by

y[n] =
M∑

k=1

Ak[n] sin(ϕk[n]) + v[n], (2.2)

where M is the number of signal components, Ak[n] is time-varying amplitude of the kth

component, and ϕk[n] is instantaneous phase of the kth component. In addition, the gener-
ator may add colored noise v[n] to the resulting signal. The instantaneous phase ϕk[n] can
be decomposed into two parts by

ϕk[n] = ωk[n] + φk[n], (2.3)

where ωk[n] is possibly time-varying angular frequency of the kth component and φk[n] is
possibly time-varying phase shift of the kth component.

From Equations (2.2) and (2.3) three control functions can be gathered; amplitude, fre-
quency and phase. The impact of the components to the output signal are determined by
the amplitude functions. With the frequency functions the timbre of the output signal can
be varied. The phase is an issue, which can be significant depending on the context. A
variation of a component phase does not usually affect the perceived sound, but it changes
the visual appearance of the waveform. In short attacks and transients the perception of the
phase relationships becomes more relevant [2]. In Figure 2.2, block diagram of an additive
synthesis synthesizer is presented.
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Figure 2.2: Block diagram of an additive synthesizer with filtered noise.

The control functions can be obtained with several procedures. First, the function shapes
can be arbitrary, inspired by for instance sky lines of a town or by the shape of a mountain.
Secondly, analysis can be applied to recorded instrument sounds. The analysis can be
performed with Short-Time Fourier Transform (STFT) [2], phase vocoder [19, 20, 21],
or McAulay-Quatieri algorithm [22]. In STFT, the components of the signal are mapped
to peaks of short-time spectra from which they are picked to form the control functions of
a signal component [2].

In phase vocoder, the signal is presented in multiple parallel channels each describing the
signal in a specific frequency band, which allows predictable signal alternations, such as
time scaling without pitch changes and pitch shifting without changing the temporal evolu-
tion of the signal [19, 20]. When altering the time scale of the sound, effect of ”phasiness” is
introduced to the signal, and it can be overcome using phase synchronization in the altering
stage [23]. Phase vocoder can be implemented efficiently using STFT [24].

McAulay-Quatieri algorithm is an extended version of phase vocoder with peak tracking.
The signal is first windowed using a zero-phase window, and STFT is calculated in polar
coordinates for the zero-phase signal. Peak detection is applied to the magnitude spectrum
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to separate the most prominent signal components, and peak continuation tracking is ap-
plied to these peaks. If the frequency of a peak is within certain range, new amplitude,
frequency and phase trajectory values for that peak are passed to the following frame. In
the contrary case, zero amplitude, same frequency and shifted phase are passed forward.
In addition, if there is no preceding trajectory for a component, a new trajectory is created
[22].

One interesting method for implementing an additive synthesizer is Inverse FFT synthesis
(FFT−1) [25, 26]. The signal components are composed in frequency domain from consec-
utive STFT frames, from which the actual signal is constructed by calculating the inverse
Fast Fourier Transform (FFT) of each frame, and the consecutive frames are attached to
each other with overlap-add method. In addition, adding the colored noise component is
straightforward in the frequency domain representation [18].

As from Equations (2.2) and (2.3) can be seen, the analysis data takes many times more
memory space than the original analysis signal, and therefore the issue of data reduction
must be addressed. In data reduction, the signal is first analyzed using one of the above-
mentioned techniques, and then an algorithmic transformation is performed to the data in
order to obtain a more compact representation. The amount of sinusoids can be decreased
by performing Principal Components Analysis, in which the sinusoids are weighted accord-
ing to their fit to the original signal [2]. On the other hand, the amplitude, frequency and
phase trajectories can be smoothed using piece-wise approximations, in which the trajec-
tories are replaced with piecewise curves which approximate the trend of the trajectories
[2, 27]. Alternatively, the trajectories of adjacent frames can be interpolated in order to ob-
tain smoother transitions. The analysis data is reduced by grouping the common transition
paths of the sinusoids and by defining transition ramps between different spectra. However,
this procedure has difficulties in processing the attacks of the sound [2].

2.2.2 Granular Synthesis

Granular synthesis is based on representing the sound signal with ”sound atoms” or grains.
The grains can be basically anything, e.g. windowed or distorted sinusoids or even sample
wavetables, and their durations can be anything between one millisecond and hundreds
of milliseconds [28]. Therefore granular synthesis can be seen as a wavelet extension of
additive synthesis, and the sinusoids of the additive synthesizer are replaced with the grains,
i.e.,

y[n] =
M∑

k=1

Ak[n]gk[n], (2.4)
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where gk[n] is the kth grain component.

Depending on how the grains are obtained from the signals, the granular techniques can be
divided into two categories, asynchronous and pitch synchronous. In asynchronous granular
synthesis, the sound grains are scattered statistically over a region in time-frequency plane
[28]. These regions, clouds, form the elementary units, and they have the several parame-
ters: start time and the duration of the cloud, grain duration, density of grains, amplitude
envelope and bandwidth of the cloud, waveform of each grain, and spatial distribution of
the cloud. The grains of a cloud can have arbitrary waveforms, similar to each other or
composing a random mixture, and the waveform of each single grain can be time-varying.
The bandwidth of a grain is affected by its duration, and therefore a rich variety of timbres
can be obtained by varying the grain durations. Asynchronous granular synthesis can pro-
duce effectively sound events, which can not be easily produced with musical instruments,
but simulation of real world sounds are extremely hard to produce.

In pitch synchronous granular synthesis, the grains are obtained via STFT, and the sig-
nal to be analyzed is assumed to be nearly periodic. The fundamental frequency of the
signal is estimated and the estimate is used in synchronous windowing with rectangular
window, hence minimizing the side effects of windowing. After windowing, each grain
is set to correspond one period of the signal, and from these grains the impulse responses
corresponding prominent content in the frequency domain representation are derived. This
estimation is obtained using Linear Predictive (LP) coding or interpolation of the frequency
domain representation of a grain. The synthesized sound is obtained by driving a set of par-
allel Finite Impulse Response (FIR) filters having the analyzed impulse responses by a train
of impulses with the period corresponding to the estimated fundamental frequency [28].

2.2.3 Source-Filter Synthesis

In source-filter synthesis, as the name suggests, the sound waveform is obtained by filtering
a source signal, which can be generally be an arbitrary waveform or noise. Quite often
source-filter synthesis is called subtractive synthesis, since in this synthesis method the
source signal is usually a broadband signal or a harmonically rich waveform which is then
filtered to obtain the desired sound, which is the opposite to additive synthesis approach.
Source-filter synthesis has been used in speech synthesis for a long time, but it has musical
applications too [29, 27].

In theory, the source signal can be arbitrary, but since any periodic waveform can be gen-
erated from an impulse train by applying appropriate filtering, the source-filter synthesis
synthesizer block diagram can be simplified to be as simple as it is presented in Figure 2.3.
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However, in many cases the impulse train generator is replaced with a simple waveform
oscillator which produces a complex waveform, for example the sawtooth or rectangular
pulse wave. By using these complex waveform oscillators, the filter can be of lower order
and the whole synthesis structure becomes more simplified and efficient. In addition, the
source signal can be composed of several different signals.

RAND(N)

Impulse Train
Generator

Time-varying

Time-varying

filter

filter parameters

y[n]

Figure 2.3: Block diagram of a source-filter synthesizer.

The use of source-filter synthesis requires two analysis stages to implement. First, a pitch
detection must be utilized to determine the period of the waveform. If a fundamental fre-
quency can be detected, the source is then set to be the impulse train with that specific
frequency. In the opposite case, the noise source is used. The pitch detection can be imple-
mented with various different methods, and it has been studied extensively. The methods
can be divided into five categories, time-domain methods, autocorrelation-based methods,
adaptive filtering methods, frequency-domain methods, and methods which utilize the mod-
els of human ear [2].

Secondly, the filter parameters must be determined. Quite often the filter is a recursive
filter, and for such filters there are efficient filter coefficient estimation techniques. One
of the most commonly used coefficient estimation techniques is to apply linear predictive
(LP) analysis to the signal [30]. In LP, the basic idea is to match the magnitude response
of an all-pole filter to the analysis signal. Opposed to STFT, where the exact magnitude
and phase responses on a large number of equally spaced frequencies is produced, in LP
only the magnitude spectrum envelope is in interest. In addition, since LP is a parametric
method, it provides the best match in minimum-squared-error sense.

By choosing appropriate source signals and filters, a rich variety of individual sounds can be
produced with source-filter synthesis. However, it is not a robust technique for producing
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generic wideband audio signals. Yet, in many cases the source-filter synthesis method and
its variants are efficient techniques, and therefore it is widely used.

2.3 Modulation Synthesis

In modulation synthesis, the desired sound is produced by performing a transformation to
another signal. The transformation can in principle be arbitrary, but there are some simple
special cases which are commonly used. One of these simple cases is amplitude modulation,
presented in Section 2.3.1, in which the signals amplitude is varied by another signal. In
Section 2.3.2 is presented another simple transformation called frequency modulation, in
which the frequency of a signal is varied by another signal. Finally, Section 2.3.3 presents
a general modulation synthesis technique called waveshaping synthesis, in which a signal
is modified with a nonlinear shaping function.

2.3.1 Amplitude Modulation

Amplitude Modulation (AM) was first developed for radio transmission in the early 20th

century [31], and it is not conventionally expressed as an individual sound synthesis tech-
nique. However, it is widely used as an additional sound effect, and it can be used to create
variants of an existing sound.

The basic idea of AM is that the amplitude a sound signal follows a unipolar modulator
signal, i.e., the amplitude of the sound signal is multiplied with positive modulator value at
each time instant. This can be expressed with

y[n] = (C[n] + m(n, ϕm[n]))w(n, ϕw[n]), (2.5)

where m(n, ϕm[n]) is the modulator signal with instantaneous phase ϕm[n], and w(n, ϕw[n])
is the original sound waveform with instantaneous phase ϕw[n]. C[n] is possibly time-
varying constant by which the modulation is kept unipolar. If the modulator signal is bipo-
lar, i.e., it has both positive and negative values, the modulation technique is called Ring
Modulation (RM) [2]. Block diagram of a AM/RM synthesizer is presented in Figure 2.4.

In AM, the components of m(n, ϕm[n]) spread around the components of the modulated
waveform w(n, ϕw[n]), while in RM the components of the modulated waveform are miss-
ing, and their energies are transformed into the sidebands. This can be derived by in-
vestigating simple AM with sinusoids. In the simplest case, C[n] = c, m(n, ϕm[n]) =
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Am[n]

ϕm[n]

m(n, ϕm[n])

C[n]

ϕw[n]

w(n, ϕw[n])

y[n]

Figure 2.4: Block diagram of a AM/RM synthesizer.

a sin(ωm[n]) and w(n, ϕw[n]) = sin(ω0[n]), with which Equation (2.5) can be rewritten as

y[n] = (c + a sin(ωm[n])) sin(ω0[n])

= c sin(ω0[n]) +
a

2
(sin(ω0[n] + ωm[n]) + sin(ω0[n]− ωm[n]))

using the properties of trigonometric functions. Since an arbitrary signal can be modeled
with a sum of sinusoids (see Section 2.2), the derived result can be extended to any kinds of
signals. In both AM and RM, the additional frequencies generated by the modulation are,
in general, in inharmonic relation to the partials of the modulated signal. In addition, RM
has characteristically metallic sound [32].

2.3.2 Frequency/Phase Modulation

Frequency Modulation (FM) was also first developed for radio transmission in mid 1920s
[31]. FM was not applied to audio frequencies and sound synthesis purposes until late
1960s [33]. In FM synthesis, the instantaneous phase of a sound signal is varied with
a modulator signal, i.e., the frequencies of the original waveform oscillate around their



CHAPTER 2. SOUND SYNTHESIS TECHNIQUES 14

nominal values along the modulator signal. Recalling Equation (2.3), the instantaneous
phase ϕ[n] of a waveform can be decomposed to frequency and phase parts. Therefore a
related modulation technique called Phase Modulation (PM) can be understood as a special
case of FM, or other way round. In practice, there is no other difference between FM and
PM than the synthesis parameter values, since in the FM the signal phase is varied with the
integral of the modulating signal [31].

The output of a FM/PM synthesizer is given by

y[n] = w(n, ϕ0[n] + β[n]m(n, ϕm[n])), (2.6)

where ϕ0[n] is the instantaneous nominal phase and β[n] is possibly time-varying FM/PM
deviation parameter. In Figure 2.5, block diagram of a FM/PM synthesizer is presented.

Am[n]

ϕm[n]

m(n, ϕm[n])

β[n]

ϕ0[n]

Aw[n]

w(n, ϕw[n])

y[n]

Figure 2.5: Block diagram of a FM/PM synthesizer.

With FM, rather complex audio spectra can be obtained using only two sinusoidal oscilla-
tors. In this case, when the phase shifts are omitted, Equation (2.6) becomes

y[n] = A[n] sin(ω0[n] + β[n] sin(ωm[n])),

which can be rewritten

y[n] =
∞∑

k=−∞
Jk(β[n]) sin(ω0[n] + kωm[n]), (2.7)
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where Jk(τ) is the Bessel function of order k [33]. Since an arbitrary signal can be modeled
with a sum of sinusoids (see Section 2.2), the derived result can be extended to any kinds
of signals [34].

The simple FM synthesis of Figure 2.5 suffers from some control problems. From Equa-
tion (2.7) can be seen, that FM produces symmetric spectra around the frequencies of the
modulated signal. However, the symmetries of the spectra can be controlled via additional
control parameter [35]. In addition, by using two or more, simple or complex modulator
signals, the resulting spectrum can be modified [36]. The resulting timbre is also affected
by the phase relation between the modulator and the modulated signal [37] and the imple-
mentation of the FM algorithm [38].

In a simple FM synthesizer implemented as in Figure 2.5, the amplitude ratios of the newly
generated signal components vary unevenly when the deviation parameter β is varied. This
problem can be overcome by using feedback FM [39]. In a simple feedback FM syn-
thesizer, the frequency of single oscillator is modulated according to its output. In two-
oscillator feedback FM synthesizer, the feedback is used to drive the modulator oscillator.

2.3.3 Waveshaping Synthesis

In waveshaping synthesis, a signal is modified with a nonlinear shaping function [40, 41].
The output of a waveshaping synthesizer is the instantaneous value of a source signal
w(n, ϕw[n]) is processed with a shaping function F (τ), given by

y[n] = F (w(n, ϕw[n])). (2.8)

If the shaping function F (τ) is linear, it does not alter the source signal waveform but scales
the amplitude. If the shaping function is nonlinear, it introduces new frequency components
to the output with respect to the source signal. An example of a nonlinear shaping function
is given by Equation (2.6), where m(n, ϕm[n]) is the source signal and the shaping function
is w(n, ϕw[n]). In Figure 2.6, two examples of waveshaping functions and their respective
outputs to sinusoid source signal, plotted with dashed line on the right pane, are presented.

The shaping function should not contain any discontinuities nor sharp edges, since they
produce unlimited number of additional harmonic frequencies, which causes aliasing. Ban-
dlimiting is also difficult when the source signal w(n, ϕw[n]) has a complex waveform.
Therefore it is usually sinusoidal. In addition, the the signal obtained by waveshaping can
be postprocessed, e.g., by another shaping function.

Most commonly the shaping function F (τ) is a polynomial, due to many useful properties
of polynomials. First, any smooth curve can be approximated well with a polynomial,
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Figure 2.6: Examples of waveshaping functions and their respective outputs to a sinusoid
source signal.

and therefore huge amount of shaping functions can be represented with them. Secondly,
the order of the polynomial defines the highest produced harmonic when the input signal
is sinusoidal. Thirdly, the amplitude relations between the produced harmonics can be
adjusted with the polynomial coefficients. In addition, dynamic behavior of the produced
harmonics can be adjusted with the amplitude of the source sinusoid [40, 41].

Most commonly polynomial waveshaping is implemented with Chebychev polynomials. A
Chebychev polynomial of order k, Tk(x), can be calculated recursively with

T0(x) = 1,

T1(x) = x,

Tk(x) = 2xTk−1(x)− Tk−2(x),

and such polynomials have a property that makes them interesting. If Tk(x) is applied to a
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sinusoid of frequency f0, the output is a sinusoid with frequency of kf0, i.e.,

Tk(cos(α)) = cos(kα).

Therefore a desired shaping function can be obtained by combining a set of Chebychev
polynomials of desired orders and desired weights, and the resulting signal can be main-
tained bandlimited [40, 41].

Chebychev polynomials are the most commonly used, but there are also other possible
polynomial waveshaping functions. Interesting shaping functions can be obtained using
cubic Bezier curves [42]. By modulating the control points of the Bezier curve, the resulting
sound can mimic the sound of AM or FM synthesizer.

2.4 Synthesis by Physical Modeling

While all of the previously presented synthesis techniques attempt to model the produced
sound, physical modeling synthesis techniques have totally opposite approach. Physical
modeling synthesis attempts to imitate the sound production events of a musical instru-
ment, e.g., string vibration. Physical modeling is based on either solving numerically for-
mulas and differential equations derived from the physics of the structure of the instrument
or designing a model which behaves as the original instrument [43, 44, 45]. In modal syn-
thesis, presented in Section 2.4.1, the imitation of the sound production mechanism of an
instrument is modeled with a rather small set of resonators which are excited by some sig-
nal to produce the desired sound. Section 2.4.2 presents digital waveguide modeling which
attempts to duplicate the behavior of the instrument, and it implements a physical model of
the sound production.

2.4.1 Modal Synthesis

Modal synthesis is based on assumption that any sound-producing object can be modeled
with a set of resonators, which imitate the behavior, modes, of vibrating substructures of
the object. The substructures are coupled and they can respond to external excitations. The
substructures are typically bodies and bridges, bows, acoustic tubes, membranes and plates,
and bells of a musical instrument. The modal synthesis algorithm attempts to simulate each
of the substructures and their interconnections [46].

The modal data for a resonator is formed of the resonance frequencies, damping coefficients
and the shape of the resonant modes. The modes are excited at a given point of the object
by an external force, and the energy of the excitation is distributed to the modes depending
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on the type of the excitation. Since a vibration pattern is a sum of infinite series of vibrating
modes, computationally realizable synthesis requires a finite set of spatially divided points,
in which the system is evaluated. If the number of points is N , N modes can be represented
with a so called shape matrix Φ, which describes the relative displacements, i.e., the rela-
tive amplitude, of the points in each mode. The modes can be presented as second-order
resonators in parallel [46].

The modal data for simple structures can be obtained analytically from the differential equa-
tions representing the vibration of the structure. However, for complex structures analytical
approach is not possible, and therefore analysis from measurement experiments must be
utilized. Once the modal data is obtained, it can be used in sound production in straightfor-
ward manner, since in modal synthesis all vibrating systems can be described using same
equations, which describe the response to the excitation at a given point. The velocities of
the modes can be calculated using the equations if all instantaneous excitations are known.
However, only the excitation forces are usually known, and the forces implementing the
nonlinear substructure coupling must be determined [46].

The resonator-based structure scheme can also be obtained by modeling acoustical sys-
tems with simple ideal mechanical elements, i.e., point masses, springs and dampers. With
simplifications of treating each element one-dimensional and modeling interactions with an
adjustable conditional link, the generated mass-spring network can be expressed with rather
simple equations, which lead to structure resembling the structure generated by the modal
synthesis [47].

2.4.2 Digital Waveguide Modeling

The fundamental idea of digital waveguides is to model the physics of the sound production
of the acoustic waveguides existing in many acoustic instruments. The digital waveguide
modeling resembles the finite-difference method, in which the sound production mechanism
is modeled by discretizing and solving the differential wave equations representing the in-
vestigated system. Since the computation of the finite-difference is quite heavy, the digital
waveguides offer a more efficient approach for the synthesis purposes [48, 49, 50, 51].

For instance, the differential wave equation for a one-dimensional vibration is given by

∂2y

∂t2
= c2 ∂2y

∂x2
,

and the d’Alembert’s solution to this equation is an arbitrary function of form

y(x, t) = yl

(
t− x

c

)
or y(x, t) = yr

(
t +

x

c

)
,
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where the functions yl

(
t− x

c

)
and yr

(
t + x

c

)
can be interpreted as traveling waves going

left and right, respectively. The general solution is a linear superposition of these two trav-
eling waves. When the solution is discretized, the resulting signal can be interpreted as
superposition of delayed input signal traveling in two directions, which gives the mathe-
matical description of the digital waveguide [48, 49, 50, 51].

The digital waveguides can be extended to model the vibration of a two- of three-dimensional
objects by performing similar analysis to the higher order wave equation. The higher order
digital waveguides are practically sets of one-dimensional waveguides connected to each
other with appropriate scattering criteria [52, 53, 54]. The digital waveguide approach also
allows the model to be modified using rather simple additional processing in the waveguide,
e.g., dispersion is implemented by inserting an allpass filter before each observation point.
In addition, interaction between different parts of the system can be modeled using digital
waveguides in series, e.g., the model of a sound box of a guitar can be connected to the
model of vibrating string [55].

The problem of using two delay lines in the one-dimensional digital waveguide can be
overcome by performing a formulation of the transfer functions describing the bidirectional
digital waveguide. By rearranging the system using these transfer functions, a single-delay-
loop version of the digital waveguide can be obtained [56]. When the bidirectional models
of the instrument parts are transformed into single-delay-loop versions, the order of the
parts can be changed without altering the resulting sound. This operation, commutation,
means that for example the string model of the guitar can be excited using the response of
the guitar body [57, 58]. By this the synthesis system can be simplified, and no additional
excitation signal is needed to excite the system.

When the model of an instrument has been constructed, the model parameters must be
derived in order to obtain natural sounding output of the model. This is usually performed
by analyzing acoustic measurements, which are usually recorded anechoic in order to avoid
the side effects of the recording environment, such as noise and room reverberation. The
parameters are obtained by performing, e.g., sinusoidal modeling for the signal partials
[59].

2.5 Practical Computationally Efficient Synthesis Techniques

The sound synthesis techniques reviewed in the previous sections have originally been de-
veloped for different types of purposes, and therefore they have different characteristics
which define their applicability in computationally efficient music synthesis. While some
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technique may produce the best sounding results, some other technique may be more effi-
cient in the sound production. Therefore, the evaluation of these techniques is not straight-
forward, since both of these aspects, computational efficiency and the resulting sound qual-
ity, must be considered.

In Table 2.1, a summary of the applicability of the reviewed synthesis techniques in compu-
tationally efficient music synthesis is given. The evaluation is divided into two categories,
implementation and parameter behavior1 [60]. These categories are used to judge the over-
all rating of the synthesis technique from the viewpoint of computationally efficient sound
synthesis. The computational efficiency (Comp) is determined directly by the number of
operations required to produce single sample of the resulting sound. As stated in Chapter
1, the memory consumption (Mem) of the algorithms plays an important role for some im-
plementations. The memory consumption is rated by the number of state variables in the
synthesis technique implementation and the required memory space for the control data. In
addition, the controllability (Contr) of the synthesis technique provides additional expres-
sions and liveliness to the resulting sound. The rating of the controllability is determined
by the system update rate.

Since some sounds can be implemented efficiently using only a certain synthesis technique
while the implementation some other sound is difficult or computationally inefficient, there
is a tradeoff between the sound quality and the number of synthesis techniques which must
be implementable in that specific system. Therefore the evaluation of the synthesis tech-
niques require inspection of the generality (Gen), which is ranked by the number of different
kinds of sounds the technique can generate. Besides the generality, the usability of the syn-
thesis parameters are also considered. This means that if a synthesis parameter is changed,
it should produce a proportional and easily predictable change in the resulting sound, and
the identity of the sound should retain. In addition, if the resulting change is barely audible
or it is too drastic, the design of different sounds is hard and not intuitive at all. These
aspects are judged by the intuitivity (Int) and linearity (Lin) of the parameter use, respec-
tively. The synthesis parameter correspondence to some physical quantities of a real-world
instrument is also judged (Phys).

By examining Table 2.1 one can conclude, that no one method is clearly better than some
other. If the technique is computationally efficient, usually the parameter control is quite
tricky. On the other hand, if the parameter control of the technique is easy, it usually
is computationally inefficient. In addition, when the synthesis technique provides good
generality and easy parameter control, it usually is quite memory intensive. Therefore,

1The rating of the parameter behavior is left out for table look-up synthesis techniques since they do not
provide any parameters to control.
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Table 2.1: Comparison of the reviewed synthesis methods, adapted from [61].

Synthesis Implementation Parameter Behavior Overall
Technique Comp Mem Contr Gen Int Phys Lin Rating
TABLE LOOK-UP SYNTHESIS

Sampling Good Poor Good Good – – – Poor

Wavetable Fair Poor Good Good – – – Poor

SPECTRAL MODELING SYNTHESIS

Additive Fair Fair Fair Fair Fair Poor Good Fair

Granular Fair Poor Poor Good Poor Poor Good Poor

Source-Filter Fair Fair Fair Fair Fair Fair Poor Fair

MODULATION SYNTHESIS

AM Fair Fair Fair Poor Poor Fair Good Poor

FM Good Good Good Good Poor Poor Poor Fair

Waveshaping Fair Good Good Fair Fair Poor Fair Fair

SYNTHESIS BY PHYSICAL MODELING

Modal Fair Poor Good Fair Fair Good Good Poor

Waveguide Fair Poor Fair Fair Good Good Good Poor

there is a trade off between the controllability and computational efficiency and memory
consumption.

Using these criteria, the physical modeling techniques have to be left out. In spite of good
generality and sound quality, their memory consumption is rather high, which is one of the
main factors in the determination of the applicability. In addition, the table look-up tech-
niques and granular synthesis in general are not desirable, since their memory consumption
is high. However, if some sounds can be problematic to generate using other methods,
these may provide an intermediate solution. Especially a combined technique of wavetable
synthesis and source-filter synthesis may provide quite efficient and good solution to these
problematic sounds. If anything else can not be done, sampling of a single sound can be
used.

Now, the practical synthesis techniques are limited to additive synthesis, source-filter syn-
thesis, FM synthesis and waveshaping synthesis. From these, additive synthesis and source-
filter synthesis provide a reasonable balance between the implementation and parameter
control, and therefore they are quite good candidates. However, if the parameters of FM
synthesizer can be adjusted correctly, it provides computationally the best approach. This,
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in fact, is quite hard. The waveshaping synthesis in turn can be in general quite simple and
efficient, but its computational load is dependent on the spectrum to be generated. If the
spectrum contains only a small number of harmonic components, the computational load is
quite low. If the spectrum is more complex and contains inharmonic components, the com-
putational load is increased and is with complex spectra high. Therefore the waveshaping
synthesis is rarely used.

However, the technique to be used is ultimately defined by the sound to be modeled. In
addition, in many cases the sound design may use some additional synthesis technique as
an effect for producing some characteristic phenomena of that specific sound. These two
notes are illustrated more thoroughly in the design cases presented in Chapter 4.



Chapter 3

Design of a Synthesizer

In this chapter, the design of the synthesizers implementing the applicable synthesis tech-
niques presented in Chapter 2 is discussed. In addition, the design problems confronted
in the implementation design are examined and the respective solution candidates are pre-
sented. In Section 3.1, oscillator algorithms for generating the desired fundamental wave-
forms are presented. Section 3.2 presents the design of the filters used in the sound synthe-
sis. Generation of time-varying control signals and their use in sound synthesis is discussed
in Section 3.3. In Section 3.4, additional sound effects used in music synthesis are pre-
sented.

3.1 Oscillators

Recalling from Chapter 2, the synthesis methods require oscillators in order to produce
the desired waveforms. The waveforms needed are sinusoids, random noise, and classic
waveforms, such as the sawtooth, the rectangular pulse and the triangular pulse wave. In
Section 3.1.1, algorithms for generating sinusoidal oscillation are presented. Section 3.1.2
discusses the problem of generating random noise signals. In Section 3.1.3, the issues of
classic waveform synthesis are addressed.

3.1.1 Sinusoidal Generators

Most commonly the sinusoids are generated in a microprocessor with a special on-chip
integrated wavetable, in which the values of a sine function are stored using rather high
number of samples, and the desired value is interpolated from the table values. However,
the sinusoids can also be generated algorithmically. The algorithmic approaches can be

23
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categorized to polynomial form, direct form, coupled form, modified coupled form, and
normalized waveguide form approaches.

In the polynomial form approach, the sinusoid is approximated using an appropriate poly-
nomial, e.g., series or infinite product. The series form approximation can be based, for
example, on Taylor series. The Taylor series of the sine and cosine functions near origin are
given by [62]

sin(ω[n]) =
∞∑

k=0

(−1)k ω[n]2k+1

(2k + 1)!
and cos(ω[n]) =

∞∑
k=0

(−1)k ω[n]2k

(2k)!
. (3.1)

The sine and cosine functions can also be expressed as infinite products obtained by Weier-
strass factorization [63], given by

sin(ω[n]) = ω[n]
∞∏

k=1

(
1− ω[n]2

π2k2

)
and cos(ω[n]) =

∞∏
k=1

(
1− ω[n]2

π2
(
k − 1

2

)2
)

. (3.2)

The approximation is obtained by calculating only finite amount of terms in order to make
the realization computationally realizable. However, the accuracy of the approximation is
reduced by the truncation at points further from the origin. For this reason, the polynomial
form approach is not practically used.

In the direct form approach, the sinusoid generator algorithm is obtained using the proper-
ties of sine and cosine functions. The direct form oscillator can be expressed as

y[n] = 2 cos(ω[n])y[n− 1]− y[n− 2], (3.3)

where the desired waveform is replaced with y[n]. With initial states y[−1] = − sin(ω[0])
and y[0] = 0, this equation implements a sine oscillator, and with y[−1] = cos(ω[0]) and
y[0] = 1 a cosine oscillator. If the frequency of the oscillator is changed via the coefficient
2 cos(ω[n]) after the oscillator has been running for a while, the amplitude of the oscillator
will deviate from unity. This is due to the fact that the algorithm uses two previous values
of the waveform which together set the amplitude of the oscillation, and it can be overcome
by updating the state variables [64].

The coupled form is also obtained using the properties of sine and cosine functions, and it
is given by

y1[n] = cos(ω[n])y1[n− 1] + sin(ω[n])y2[n− 1] and (3.4)

y2[n] = cos(ω[n])y2[n− 1]− sin(ω[n])y1[n− 1], (3.5)

where y1[n] and y2[n] outputs sine and cosine, respectively, with initial states y1[0] = 0
and y2[0] = 1. This approach is also applicable in cases when the frequency of the sinusoid
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is varied via the coefficients sin(ω[n]) and cos(ω[n]). The resulting waveform does not
suffer from the amplitude deviation at the instant of frequency change, since it uses only
the previous waveform values [64].

The coupled form oscillator can be modified in two steps. First, when the desired frequency
is small with respect to the sampling frequency, the coefficient term cos(ω[n]) is close
to unity, and it can be approximated to be one. With this approximation, so called first
modified coupled form oscillator is obtained, in which the amplitude of the oscillation will
clip. In addition, the approximation restricts the frequency to be less than a fourth of the
sampling frequency [64].

The limited applicable frequency range of the first modified coupled form oscillator can be
extended by using the current value of cosine in the calculation of sine. In addition, by
changing the coupling coefficient slightly the applicable frequency range spans from 0 Hz
to half of the sampling frequency. This second modified coupled form is given by

y1[n] = 2 sin
(

ω[n]
2

)
y2[n] + y1[n− 1] and (3.6)

y2[n] = y2[n− 1]− 2 sin
(

ω[n]
2

)
y1[n− 1], (3.7)

where y1[n] and y2[n] outputs sine and cosine, respectively, with initial states y1[0] = 0 and
y2[0] = 1. As with the direct form, the amplitude of the oscillator will adjust itself to a new
value when the frequency is changed [64].

In the normalized waveguide form, the derivation of the oscillator algorithm is based on a
second-order waveguide filter derived from two lossless acoustic tube sections with differ-
ent cross-sectional areas and appropriate ideal terminations and in which a standing wave
is formed [65]. The frequency of the oscillation is determined by the cross-sectional areas,
but at change of frequency the amplitude is also changed. This can be overcome using
normalization in which the state variables are updated using an additional amplitude scale
factor. The normalized waveguide form is given by

y1[n] = cos(ω[n])y1[n− 1] + G[n](1 + cos(ω[n]))y2[n− 1] and (3.8)

y2[n] = (cos(ω[n])− 1)y1[n− 1] + G[n] cos(ω[n])y2[n− 1], (3.9)

where y1[n] and y2[n] outputs cosine and sine, respectively, with initial states y1[0] = 1 and
y2[0] = 0. G[n] is the amplitude scale factor, given by

G[n] =
tan

(
ω[n]
2

)
tan

(
ω[n−1]

2

) ,
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which deviates from unity only at the occurrence of frequency change.

All of the these algorithms require two state variables, except for the direct form in which
both sine and cosine generation require two state variables each. All algorithms are robust
in terms of coefficient quantization, and only the normalized waveguide form oscillators
is always stable in terms of signal quantization. The direct form oscillator may become
unstable, the coupled form oscillator may decay or clip depending on the polarity of the
quantization error, and the modified coupled form oscillators need built-in saturation in
order to avoid clipping [64]. The quantization also introduces some noise in all approaches,
but it is quite low except in the direct form oscillator, and it can be decreased by utilizing
error feedback [66, 67].

Alternatively, the sinusoid can be generated using a resonant filter with maximum reso-
nance, with which the filter starts to oscillate. Some practical filters, which can be used to
implement this approach, are presented in Section 3.2.

3.1.2 Random Number Generators

The random numbers are needed in generation of noise component used for instance in
source-filter synthesis. The random numbers can be generated using either amplified noise
generated by a physical process, such as thermal noise of the electronic components, or
with special algorithms which approximate the properties of random numbers and produce
periodic pseudorandom noise [68]. All algorithmic approaches can be expressed with an
iterative equation

r[n] = g(r[n− k]), (3.10)

where r[n] is the random number sequence, and g(τ) is the iterative function according
which the random numbers are calculated [69]. The random number sequence must be
initialized by choosing an initial seed r[0], which then sets the random sequence together
with the iterative function g(τ).

The iterative function g(τ) is often a linear function of the previous random number [69, 70]
or it performs a bitwise operation to two previously outputted generated numbers [71].
In both approaches, the maximum period of the random numbers can be adjusted, and
it is determined linearly on the function parameters. There exist extensions to these two
fundamental approaches, such as nonlinear relation between adjacent random numbers [72]
and bit twisting of the result of the bitwise operation [73, 74], and these extensions extend
the maximum period of the random numbers.

All pseudorandom number generator algorithms are rather simple to implement, but their
memory consumption varies. For instance, when the linear relation is used, the algorithms
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requires only one multiplication and addition, and it requires only one state variable. On the
other hand, the bitwise operations are extremely fast to implement, but a large output value
buffer is needed in order to achieve long period. Therefore, when the memory consumption
is the determining factor, the linear relation provides the most efficient solution.

3.1.3 Classic Waveform Synthesis

Any periodic waveform can be used in source-filter synthesis in order to produce a spectrum
with harmonic structure. The shape of the source signal waveform determines the amplitude
relations of the harmonics, and usually the source signal used is one of the spectrally rich
classic waveforms generated with analog circuits. These classic waveforms are sawtooth
wave, rectangular pulse wave and triangular pulse wave [75], and they are plotted in Figure
3.1.
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(a) Sawtooth wave

A
m

p
li
tu

d
e

Sample

0

0 500 1000 1500 2000 2500 3000 3500 4000

−1

−0.8

−0.6

−0.4

−0.2

0.2

0.4

0.6

0.8

1

(b) Triangular pulse wave
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(c) Rectangular pulse wave, duty cycle 50%
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(d) Rectangular pulse wave, duty cycle 20%

Figure 3.1: Classic waveforms used in source-filter synthesis.

Since the sawtooth and rectangular pulse waveforms contain discontinuities in their wave-
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form, their spectral envelopes are approximately inversely proportional to the frequency,
i.e., the amplitude of the harmonics decay 6 dB per octave. In the triangular pulse wave
the discontinuity is in the derivative of the waveform, and hence the spectral envelope is
approximately inversely proportional to the square of the frequency, i.e., the amplitude of
the harmonics decay 12 dB per octave. Due to such low spectral tilts, the trivial sampling
of the continuous time waveform causes harsh audible aliasing especially at high funda-
mental frequencies [76, 77, 78]. This is illustrated in Figure 3.2 with a sawtooth wave with
high fundamental frequency of 0.09 × fs. The harmonics below the half of the sampling
frequency are indicated with markers.
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Figure 3.2: Spectrum of a trivially sampled sawtooth wave with fundamental frequency of
0.09× fs.

The aliased components in Figure 3.2 are clearly audible, and therefore the use of the classic
waveforms in digital subtractive synthesis requires removal of the aliased components. This
is implemented with a waveform synthesis algorithm, which should reduce the aliasing
below an audible level. There are basically three approaches to this problem, which can be
categorized as follows [79, 80, 81]:

1. Strictly bandlimited methods in which only the harmonics up to the half of the sam-
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pling frequency are generated,

2. Quasi-bandlimited methods in which some aliasing is allowed mainly at high fre-
quencies,

3. Alias-suppressing methods in which aliasing is allowed in the whole frequency band,
but it is sufficiently suppressed at low and middle frequencies using spectral tilt mod-
ifications.

Next, these approaches are explained more thoroughly.

Strictly Bandlimited Waveform Synthesis

In strictly bandlimited waveform synthesis, only the harmonics up to the half of the sam-
pling frequency are generated. This can be obtained by the means of additive synthesis
or wavetable synthesis explained in Sections 2.2.1 and 2.1.2, respectively, or using closed
form formulas which describe the bandlimited form of the waveform. In all of these ap-
proaches, the amplitudes and phases of the harmonics should remain the same as they are
in the respective continuous-time waveforms.

The use of additive synthesis, or any related synthesis technique, is straightforward, since
the amplitudes and phases can be generated as accurately as the implementation platform
allows. The parameters are obtained from the Fourier series expansions describing the spec-
trum of the continuous-time waveforms [82]. However, the computational load of additive
synthesis approach is inversely proportional to the fundamental frequency, i.e., the number
of required oscillators increase as the fundamental frequency decreases. The computational
load can be decreased by using a mixed approach of additive synthesis and trivial sampling,
since at low fundamental frequencies the aliasing of trivial sampling approach is quite small.
In this mixed approach, the method to be used is changed when the fundamental frequency
passes a certain value. However, this requires additional bookkeeping, and therefore this
approach provides practically no benefit at all.

Multirate additive synthesis technique, in which the sinusoidal oscillators are run at slow
speed using decimation and interpolation operations [82], provides also better computa-
tional efficiency. However, if the fundamental frequency is time varying, the swapping of
oscillators from one subband to another is inconvenience, and therefore the computational
efficiency of this approach is in general not good.

Alternatively, the computational load can be decreased by reducing the number of sinu-
soidal oscillators using closed-form summation formulas, which describe a sum of finite
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number of sine and cosine functions that are harmonically related [83, 84]. In practice,
these formulas generate waveforms in which the amplitude of the sinusoidal components
are not exactly the amplitudes of any classic waveform, but they can be approximated by
applying appropriate filtering to the produced waveform. The computational load of this
approach is less than in additive synthesis approach, but it requires a division per sample,
which may lead to numerical errors especially when the denominator is close to zero.

Yet, in cases when the even harmonic components are in same or opposite phase compared
to odd harmonics, the waveshaping synthesis technique presented in Section 2.3.3 may
also provide savings in the computational load at high fundamental frequencies. By using
Chebychev polynomials the weights of the kth order polynomial is directly the amplitude
of the kth harmonic of the desired waveform. However, when the fundamental frequency
is time-varying, the algorithm must be capable of scaling the number of harmonics to be
produced, which leads to reduced efficiency.

The use of wavetable synthesis in the waveform generation is rather straightforward, since
all the desired number of sinusoidal components can be calculated and stored in memory
beforehand [4]. In addition, wavetable synthesis allows any waveshape to be stored, so a
waveform of a certain analog synthesizer can be used. The use of wavetable synthesis re-
duces the computational load much, but it is traded off against high memory consumption.
The memory consumption can be decreased using method presented in Section 2.1.2, or
using group additive synthesis, in which the harmonics are distributed in different waveta-
bles and the desired waveform is produced as a mix of the wavetables [85]. However, the
group additive synthesis suffers from poor signal-to-noise ratio, which can be improved by
reducing the peak amplitude of each wavetable [86].

The use of strictly bandlimited waveform synthesis is bound to the trade off between com-
putational complexity and memory consumption. While the additive synthesis approach
consumes only a small amount of memory, for general purpose it is computationally heavy.
On the opposite, the wavetable synthesis approach is computationally extremely simple, but
it consumes much memory. Therefore these approaches are practically not used in actual
implementations, but they provide great support in the evaluation of other methods.

Quasi-Bandlimited Waveform Synthesis

In quasi-bandlimited waveform synthesis, some aliasing is allowed mainly at high frequen-
cies where the human hearing is more insensitive. This is done by filtering the continuous-
time waveform to attenuate the frequencies above the half of the sampling frequency to be
used. The evaluation of the bandlimited waveform is not straightforward in general case,
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but with geometric waveforms, such as the abovementioned classic waveforms, the evalua-
tion can be done in closed form. The generation of the quasi-bandlimited classic waveforms
can be divided into two approaches, integration of bandlimited impulses or summation of
bandlimited step functions.

Bandlimited Impulse Train The approaches based on integration of bandlimited im-
pulse train begin with the fact that the classic waveforms can be generated by applying an
appropriate integration to an impulse train [87]. This can be seen from the derivative of the
waveforms, or the second derivative in case of triangular pulse wave, since the discontinu-
ities in the waveform are mapped as impulses in the derivative signal.

A bandlimited impulse train (BLIT) is obtained by lowpass filtering the continuous-time
impulse train, which means that the impulses are replaced with impulse response of a low-
pass filter [87]. In practice, the lowpass filter is taken to be an ideal lowpass filter with
cutoff frequency fc, which has impulse response given by

hi(t) = sinc(2fct) =
sin(2πfct)

2πfct
. (3.11)

Discrete time bandlimited impulse train is obtained by evaluating the bandlimited continuous-
time train at time instants n

fs
, which yields

y[n] =
∞∑

k=−∞
sinc

(
2
fc

fs
(n− kP )

)
, (3.12)

where P is the period in samples.

From Equation (3.12) can be seen, that the value of BLIT at each time instant requires
summation of infinitely many sinc-function values, which is impossible in practice. In
order to implement this, the summation must be expressed in some other form. An efficient
approach is obtained by summing windowed sinc-functions (BLIT-SWS), in which the
bandlimited impulse train is generated by summing the values of windowed sinc-functions,
and from which the desired waveform is integrated [87].

However, the windowing causes the transition band of the filter to spread, which in turn
causes errors in the bandlimitation of the impulse train. If the cutoff frequency is close to
the half of the sampling frequency, the windowing causes some aliasing, which depends on
the window type and its length. In addition, the amplitudes of the harmonics near the cutoff
frequency will not retain exactly the amplitude values of the continuous-time waveform
[87].

In addition, since the windowed sinc-functions have non-zero samples before the actual im-
pulse instant, the algorithm must start outputting the appropriate values before the impulse
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instant. This leads to additional control logic, implementation of which can be in general
case computationally heavy. However, if the number of windowed sinc-functions to be
integrated is limited, the control logic can be implemented more efficiently. However, the
limitation restricts the highest possible fundamental frequency the system can produce with-
out decreasing the alias reduction performance. This limit for the fundamental frequency is
set by the window length and the number of windowed sinc-functions in use [87].

Bandlimited Step Function The methods based on summing of bandlimited step func-
tions (BLEP) can be understood as an extension to BLIT. While in BLIT the waveform
synthesis is based on integration of an impulse train, in BLEP the amplitude changes at the
discontinuities are generated with bandlimited step functions. A bandlimited step function
is obtained from a bandlimited impulse by integration and scaling the step function to sat-
urate to unity. In other words, in BLEP the integration of the impulse train is performed
in advance as compared to BLIT, and the resulting bandlimited step functions are then
summed appropriately in order to produce the desired waveform [88].

Yet again in the ideal case, the resulting sum adds up an infinite number of integrated
sinc-functions, which is not implementable. Integrated windowed sinc-functions can be
use, and that approach sets same requirements to the control logic as the BLIT-SWS
method. However, the look ahead of the control logic can be easily reduced in BLEP by
performing phase reduction to the bandlimited impulse. The phase reduction changes the
phase response of the impulse, but it retains the amplitude response. The phase reduction
is performed for instance in Minimum-Phase BLEP (MINBLEP), where the integral of
a minimum phase windowed sinc-function is used as the source signal for the waveform
summation unit [88].

The look ahead in MINBLEP is reduced greatly compared to the approach without phase
reduction [88], but it is not eliminated completely [81]. The look ahead would be eliminated
completely only if a zero phase sinc-function is integrated, but the implementation of a zero-
phase sinc-function is in general hard, since the algorithm should then require information
of the signal period. However, the look ahead is only a few samples when the minimum
phase sinc-function is used, and therefore it is usually neglected. This causes a slight delay
in the resulting waveform, but since phase differences are usually inaudible, the minimum
phase function practically eliminates the look ahead. In addition, the use of minimum phase
function is more practical, since the control logic can be implemented more efficiently, since
it does not require the information of the signal period.

Both the BLIT-SWS and the MINBLEP approaches reduce the aliasing greatly compared
to the trivial sampling approach even when short windows are used, and the remaining



CHAPTER 3. DESIGN OF A SYNTHESIZER 33

aliased components are almost inaudible. However, in BLIT-SWS approach the resulting
waveform has quite much aliasing also at low frequencies. This should be noted, since
the human hearing processes the frequencies of the audio band in logarithmic manner so
that 1000 Hz is approximately in the middle of the perceived audio band. Therefore the
aliased components at low frequencies are more clearly audible, and MINBLEP approach
produces better results than BLIT-SWS. This is due to the integration before the sampling,
which implements inherent 6 dB per octave lowpass filtering.

Despite good alias reduction performance, the implementation of both BLIT-SWS and
MINBLEP approaches requires memory in which the bandlimited signals are stored. The
memory consumption can be decreased by using shorter window, but it trades off with alias
reduction performance. Therefore the use of these approaches requires a reasonable balance
between the alias reduction performance and memory consumption. However, the memory
requirement can be eliminated completely by evaluating the bandlimited transitions with a
polynomial. This approach is called Polynomial Bandlimited Step function (POLYBLEP),
in which the bandlimited impulse is first approximated using closed-form formulas, which
is then integrated and used as the bandlimited step function [81].

Polynomial Bandlimited Step Function approximation The transitions at the discon-
tinuity of a classic waveform are usually positioned between two sampling instants. In
quasi-bandlimited waveform synthesis approaches, the neighbouring sample values of the
transitions are practically manipulated in order to obtain the bandlimitation effect. In POLY-
BLEP, the fundamental idea is to perform the manipulation with piecewise continuous
polynomials, with which the required residual, i.e., the difference from the trivially sampled
waveform, can be calculated in closed form. Next, the requirements for the polynomials are
given, and design rules for applicable polynomials are presented.

POLYBLEP is formulated in interval t ∈ [−N,N ] by piecewise continuous polynomi-
als. Outside that interval the overall polynomial, p(t), gets the value zero. The piecewise
polynomials are designed to approximate the bandlimited impulse, i.e., the sinc function
of Equation (3.11). This leads to the following criteria, which are used in the polynomial
design:

1. p(−t) = p(t),

2. max p(t) = p(0) = 1.

The desired formulas for POLYBLEP residual calculation are obtained by integrating p(t)
and subtracting step function from the result.
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In general, the polynomials can be of any form, but in order to achieve the best alias reduc-
tion performance, the polynomials should form as smoothly continuous integrated p(t) as
possible. The performance is reduced by discontinuities of p(t), as a discontinuity at nth

derivative of p(t) cause the aliased components decay 12 + 6n dB per octave. However,
the decay of 18 dB per octave produces quite good performance, so the polynomials can be
quite simple. In practice, the interval in which the polynomials are defined is wise to span
few sampling instants, and the polynomials are defined in between the sampling instants.
These two notes lead to computationally more efficient implementation of the algorithm.

The computationally simplest approach is to use one low order polynomial to alter the sam-
ple values before and after the transition, i.e., N = 1/fs. In addition, the implementation
of the POLYBLEP algorithm becomes more efficient when fc = fs/2 in Equation (3.11).
When the polynomial is designed, one should remember that a nth order polynomial re-
quires n + 1 criteria, which define the coefficients of the polynomial. Since the polynomial
values at zero and at the interval end point are given (see the overall design criteria above),
the choice of the rest n − 1 criteria becomes a design issue of its own. This is illustrated
with two third-order polynomials, which are based on spline and Lagrange interpolations.

In the third-order spline interpolation, all criteria for the polynomial are given at the end
points of its definition interval. At the end points, the spline polynomial has the function
values and the derivative of the polynomial has the derivative values of the function. Since
the function to be approximated is the sinc function, the derivative values are given by

d
dx

sinc(x) =
1
x

(cos(πx)− sinc(x)),

which is zero at the origin. With these criteria, the overall polynomial is given by

psp(t) =


−t3 − 2t2 + 1, −1 ≤ t ≤ 0,

t3 − 2t2 + 1, 0 < t ≤ 1,

0, elsewhere,

(3.13)

from which the polynomial bandlimited step function is obtained by integration, given by

Psp(t) =


0, t < −1
− 3

14 t4 − 4
7 t3 + 6

7 t + 1
2 , −1 ≤ t ≤ 0,

3
14 t4 − 4

7 t3 + 6
7 t + 1

2 , 0 < t ≤ 1,

1, t > 1,

(3.14)

where constants are due to continuity. By subtracting the unit step function, given by

µ(t) =

{
1 t ≥ 0
0 t < 0
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the POLYBLEP residual is obtained,

rsp(t) =

{
− 3

14 t4 − 4
7 t3 + 6

7 t + 1
2 , −1 ≤ t ≤ 0,

3
14 t4 − 4

7 t3 + 6
7 t− 1

2 , 0 < t ≤ 1.
(3.15)

In Figure 3.3, the resulting polynomial is compared to the sinc function.
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Figure 3.3: POLYBLEP approximation of sinc function (dashed line) with third-order
spline (solid line).

The polynomial approximation can also be based on Lagrange interpolation polynomials.
The practical Lagrange polynomials are of odd order, which yields more accurate approx-
imation of the sinc function. In addition, if only the interval [0, 1/fs] is approximated, the
desired polynomial is one of the polynomials obtained for the interpolation. For instance,
the third-order Lagrange interpolation polynomial, which is applicable in POLYBLEP is
given by

pl3(t) =


−1

2 t3 − t2 + 1
2 t + 1, −1 ≤ t ≤ 0

1
2 t3 − t2 − 1

2 t + 1, 0 < t ≤ 1
0, elsewhere,

(3.16)
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which yields the polynomial bandlimited step function

Pl3(t) =


0, t < −1
− 3

26 t4 − 4
13 t3 + 3

13 t2 + 24
26 t + 1

2 , −1 ≤ t ≤ 0
3
26 t4 − 4

13 t3 − 3
13 t2 + 24

26 t + 1
2 , 0 < t ≤ 1

1, t > 1.

(3.17)

The POLYBLEP residual is given by

rl3(t) =

{
− 3

26 t4 − 4
13 t3 + 3

13 t2 + 24
26 t + 1

2 , −1 ≤ t ≤ 0
3
26 t4 − 4

13 t3 − 3
13 t2 + 24

26 t− 1
2 , 0 < t ≤ 1.

(3.18)

In Figure 3.4, the resulting polynomial is compared to the sinc function.
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Figure 3.4: POLYBLEP approximation of sinc function (dashed line) with third-order La-
grange interpolation polynomial (solid line).

In Figure 3.5, comparison of the bandlimiting performance between the presented third-
order polynomials and the first-order polynomial is presented with the magnitudes of the
harmonics indicated with markers. The fundamental frequency used was 0.057 × fs. As
from the figure can be seen, the third-order polynomials decrease the aliasing slightly more
at high frequencies compared to the first-order polynomial. However, they have more alias-
ing at low frequencies, where the human hearing is more sensitive. Yet, the remaining
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aliased components are almost inaudible, so the use of these higher order polynomials re-
quire careful design. In addition, the use of more than two neighbouring samples may lead
to better results.
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Figure 3.5: Comparison of the bandlimiting performance between first-order polynomial
(top pane), third-order spline interpolation polynomial (middle pane), and
third-order Lagrange interpolation polynomial (bottom pane).

Alias-Suppressing Waveform Synthesis

In alias-suppressing waveform synthesis, some aliasing is allowed in the whole frequency
band, but it is sufficiently suppressed at low and middle frequencies. The alias-suppressing
is obtained by rendering the slope of the spectrum to be steep before sampling and restoring
the spectral tilt with a digital filter. The spectral tilt is modified by applying a exponential
decay function to the harmonic amplitudes. However, all components above the half of the
sampling frequency are reflected to the audio band, but their amplitudes are reduced with
respect to the original amplitudes.

The simplest alias-suppressing approach is to use trivial sampling approach with quite high
oversampling [25]. The oversampling reduces the aliasing at the audio band, since the
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aliased components are reflected around higher frequency. However, in order to meet cer-
tain specifications of allowed aliasing, the oversampling factor must be large when the
desired fundamental frequency is high. In addition, the alias rejection filters needed for the
re-sampling to the desired sampling frequency should meet quite strict specifications, which
leads to computationally inefficient implementation. Therefore the oversampling approach
is not practical in computationally efficient music synthesis.

The spectral tilt modification can be done by filtering a heavily distorted sinusoid. For
instance, the distortion can be obtained by full-wave rectifying a sine wave. The distortion
adds harmonic components to the signal, and by filtering the amplitudes of the harmonics of
the classic waveforms can be approximated. However, the filter must be capable of correct
both the spectral tilt and suppress the aliased components. These are obtained by first-order
infinite impulse response filter and any desired lowpass filter, respectively [89]. However,
the lowpass filtering suppresses also the higher harmonics of the signal, which leads to only
a rough approximation of the desired waveform.

One interesting and efficient approach in synthesis of the sawtooth wave is obtained by
differentiating a piecewise parabolic waveform. In this approach, Differentiated Parabolic
Waveform (DPW), the piecewise parabolic waveform is obtained by squaring the bipolar
trivially sampled sawtooth waveform. When this parabolic waveform is differentiated, a
waveform similar to the sawtooth wave is obtained which differentiates from the original
only by one sample in each period. However, the amplitude of the resulting waveform de-
pends on the fundamental frequency, and therefore the waveform must be scaled in order
to generate a waveform with normalized amplitude. This scaling factor requires a division,
which makes the implementation of this approach slightly tricky. In addition, this method
may produce beating when the fundamental frequency is quite high, since the amplitudes of
the first aliased components are not greatly decreased. This can be overcome by implement-
ing a multirate version, where with decimation filter the amplitudes of the highest aliased
components can be reduced [90]. The rectangular pulse wave can be generated with DPW
by using two sawtooth waves with appropriate phase shift [80] or by filtering one sawtooth
wave with a FIR comb filter [91]. The triangular pulse wave can be generated with slight
modifications to the basic algorithm of DPW [80].

3.2 Filters

As concluded in Section 2.5, some of the practical synthesis techniques require filters with
which the source signal is modified in order to produce the desired sound. The design of
these filters differ from the traditional digital filters which are designed to fulfill given pass-
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band and stopband specifications. The applicable filters are designed to provide easy control
over the desired cutoff frequencies and resonances. Especially the filters used in classical
analog synthesizers have been under intensive research due to their sonically pleasing char-
acteristics. In Section 3.2.1, the design issues of musical resonant filters are presented, and
some simple practical filter designs are also given. Section 3.2.2 presents the model of one
classical analog synthesizer filter, the Moog ladder filter.

3.2.1 Musical Resonant Filters

The filters used in digital subtractive synthesis differ from the traditional filters used in dig-
ital signal processing in mainly three ways. First, the requirement for certain passband and
stopband specifications is released, and the order of the filter is predetermined. Secondly,
the filter is quickly time-varying, i.e., the filter parameters are changed at rapid rate. Thirdly,
the applicable filter has a controllable resonant peak near its cutoff frequency, which is usu-
ally not desirable in digital filter design [79, 80].

These applicable musical resonant filters are usually of second or fourth order, and they are
designed based the following criteria [79, 80]:

1. The coefficients of the filter should be updated fast, preferably on per-sample basis
[92].

2. The cutoff frequency and the resonance controls should be separate, change in one
should not affect the other.

3. When the parameters are within allowed ranges, the filter should be unconditionally
stable.

4. With a certain resonance parameter, the filter should be capable of self-oscillating.

5. The filter should imitate the response of an existing analog resonant filter, and the
characteristics of the analog filter should be emulated if possible.

The most obvious approach is to replace the components of the analog filter by their digital
counterparts, which leads to digital state variable filter. An example of the result of this
approach is given in Figure 3.6 [25]. With this filter, different kinds of filtering operations
can be performed separately, as it outputs lowpass filtered input signal x[n] with y1[n],
highpass filtered with y2[n], bandpass filtered y3[n], and notch filtered y4[n]. The mapping
between the filter parameters and coefficients is simple, and they are given by

g =
1
Q

and f = 2 sin
(

πfc

fs

)
. (3.19)
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x[n] y1[n]

y2[n] y3[n] y4[n]
−

−

z−1

z−1

f [n]f [n]
g[n]

Figure 3.6: Flow diagram of a state variable filter, after [25].

The resonant filter design can be based on fact that the radius of a pole sets the height
of the peak in filter magnitude response. In addition, the angle of the pole in turn sets
the frequency of the peak [93]. Using appropriate approximations, a second-order all-pole
resonator with peak frequency fp and −3 dB bandwidth ∆f is obtained,

H(z) =
A0

1− 2R cos(θ)z−1 + R2z−2
, (3.20)

where A0 is the gain compensation factor,

R = 1− π
∆f

fs
and

cos(θ) =
2R

1 + R2
cos
(

2π
fp

fs

)
.

However, the bandwidth of this resonator becomes wider when the peak frequency is low.
This can be compensated using an additional zero at zero frequency [94], when the filter
becomes a bandpass filter.

Alternatively, the filter design can be based on digitization of an analog resonant filter by
means of transformation from analog to digital domain. Different transformations provide
different results, and an example of their use is given in Section 3.2.2 for the Moog Ladder
filter.

3.2.2 Moog Ladder Filter

One of the most influential filters in the history of electronic music is the voltage-controlled
filter designed by Robert Moog [95, 96]. This filter was constructed using a transistor
ladder circuit, which consisted of four stages of a transistor pair and a capacitor. Each stage
formed a nonlinear one-pole lowpass filter, and the resonance of the filter was controlled
with a global negative feedback.
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The discretization of the Moog Ladder filter with traditional transform techniques from ana-
log to digital domain lead to delay-free loop, which requires insertion of a delay into the
feedback loop in order to be implementable. Unfortunately, this leads to coupled control of
cutoff frequency and resonance. This can be overcome by introducing an additional sepa-
ration table, with which the parameters can be decoupled. Alternatively, the controls can
almost be decoupled by introducing a zero at z = −0.3 for each lowpass stage. With this
approach, the controls are separate at frequency range [0, fs/4] [97]. However, the cutoff
frequency will then deviate from the desired value, and must be therefore compensated [80].

The nonlinearity of the filter has been modeled by analyzing one lowpass filter stage. It
has turned out, that the nonlinearity can be implemented by using the tanh-function. Each
filter uses as input the tanh of the output of the previous stage, and this value is used by the
previous stage in calculation of next sample [98]. This leads to five tanh calculations per
sample, which may sometimes be computationally too heavy. In addition, oversampling by
factor of at least two is required. The nonlinearity of each stage can be approximated with
only one global nonlinearity, which decreases the computational load of the nonlinearity
implementation [79, 80].

The Moog filter can be used as lowpass, highpass, bandpass and notch filter by mixing the
outputs of each filter stage appropriately. In addition, the passband gain drop of the filter
can be compensated by subtracting a fraction of the input signal from the feedback signal
before the resonance parameter multiplier [79, 80].

3.3 Control Signals

Since many real world sound exhibit time-varying characteristics, the applicable sound
synthesis techniques concluded in Section 2.5 will be inadequate without the possibility
of time-varying implementation. In order to realize these time-varying characteristics, the
sound synthesis techniques require additional control signals, with which the time-varying
behavior of the real world counterparts can be modeled. The control signals can be catego-
rized as envelopes, with which the continuous and smooth fluctuations of sound character-
istics can be described, and low frequency oscillation, which in turn describe the repetitive
fluctuations. The issues of envelope signal design are addressed in Section 3.3.1, and the
use of low frequency oscillation is discussed in Section 3.3.2.
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3.3.1 Envelope Generators

In numerous cases, the sound produced by an acoustical instrument contains continuously
and smoothly time-varying sound characteristics, which make the timbre of the instrument
unique and quite easily recognizable. In order to synthesize these instruments using the syn-
thesis techniques practical for computationally efficient music synthesis, the time-varying
behavior must be modeled somehow. This is done with envelope generators, which formu-
late the model of the characteristic fluctuations.

The simplest approach for modeling transitions from one value to another of the fluctua-
tion is obtained with piecewise linear envelope [77, 78]. A piecewise linear envelope is
computationally easy to implement, and the design problem is then to determine the con-
trol points between which the linear approximations are made. If these control points are
placed densely, the model of the fluctuation becomes more accurate. However, the amount
of control data is then increased, which increases the requirement for memory usage for the
instrument definition data. Therefore, the balance between model accuracy and memory
consumption must be carefully designed when the piecewise linear envelope is used.

In nature, almost all physical transitions between two stages exhibit exponential behavior,
a practical approach is obtained by approximating the transitions with an envelope which
contains exponential growths and decays [78]. In addition, the exponential behavior can
be found also from the first sound synthesizers, which were constructed using analog elec-
tronics. This exponential envelope approach is also rather easy to implement, and control
data requires also the information of the speed of each transition. However, the amount of
control data is reduced greatly compared to the piecewise linear envelope approach, since
the same accuracy can be obtained with more sparse control point positioning. Therefore,
the exponential envelope approximation is better both in terms of accuracy and memory
consumption.

In general, the fluctuations can be as complex as possible, when the modeling of them be-
comes a synthesis problem of its own. However, the fluctuations are usually quite simple,
including only transitions from one value to another, which simplifies the modeling prob-
lem quite much. In such cases, the envelope generator can be designed to model transitions
between values in range from zero to one, and by appropriate scaling any transitions can
be modeled. Quite often the fluctuations can be decomposed into attack, decay, sustain,
and release phases. Sometimes the fluctuation has after the attack phase a hold phase,
during which the envelope holds its value. The respective envelopes are called Attack-
Decay-Sustain-Release envelope (ADSR) and Attack-Hold-Decay-Sustain-Release enve-
lope (AHDSR), and they are illustrated in Figure 3.7 using exponential approximation.
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Figure 3.7: Commonly used envelope functions.

In addition, the modeling of continuous fluctuations may not always be possible using only
one envelope generator. In such cases the overall envelope function can be composed of two
or more envelopes. The decomposition of the overall envelope function may be a difficult
task, and the composite envelopes are usually obtained by trial. However, if a similar overall
envelope function is obtained form the analysis of various instruments, it would be good
idea to implement a stand-alone envelope generator for that envelope function. Yet, one
should carefully test the computational load of the generation of this new envelope function,
and if its implementation is inefficient, a less accurate approximation should then be used.

3.3.2 Low Frequency Oscillators

The fluctuations of sound characteristics can also be repetitive, and the approximation of
such fluctuations is computationally inefficient using the envelope functions discussed in
Section 3.3.1. However, a highly efficient approach is to model the repetitive fluctuations
with oscillators, which can be mixed with envelope generators in order to model the fluctu-
ation in whole. Now, the design problem is to determine the type and the characteristics of
the oscillator. The frequency of the oscillator is usually quite small, less than 20 Hz, a no-
tion that leads to term Low Frequency Oscillator (LFO). The frequency variations of a LFO
are usually extremely small, and therefore usually omitted, and therefore the amplitude of
the oscillation is left to be determined.

The cycles found in nature are quite often sinusoidal, and therefore the sinusoidal LFOs
are most commonly used in different sound synthesizers. However, any waveform can be
in general be used, and in electronic instruments and synthetic sounds other waveforms are
sometimes used. In addition, in many daily used electronic devices, such as telephones, the
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produced sound may contain a LFO with, e.g., the rectangular pulse wave. Again, the over-
all LFO may be composed of several different oscillators. Therefore, the decomposition of
the LFO can be performed using the sound analysis tools presented in Chapter 2.

3.4 Effects

The sound produced by real instruments is sometimes considered quite dull and dry. There-
fore the sound is usually processed with additional sound effects, which brings liveliness
to the plain instrument sound. There are numerous different effects designed for creat-
ing different kinds of expressions. However, the most commonly used effects are Chorus,
Flanger, Phaser, Reverb, and Distortion. The design of Chorus, Flanger and Phaser effects
is presented in Section 3.4.1. In Section 3.4.2, different algorithms for Reverb effect are
presented. The use of Distortion effect is discussed in Section 3.4.3.

3.4.1 Chorus, Flanger and Phaser

With Chorus, an illusion of multiple simultaneous sounds is attempted to create [99]. The
its simplest it means doubling, where a copy of the sound signal is added to the original.
This can be repeated multiple times, with which a more realistic Chorus effect is obtained.
In order to create the illusion of two or more sound playing at the same time, the sounds
should not be exactly in synchrony. This leads to adding the copies with slightly delayed,
which is practically the same as filtering the original with a set of FIR comb filters. If
the delay is slowly time-varied, a more realistic sounding doubling effect is obtained. In
addition, with the modulated delay the multiple parallel doubling units can be approximated
by feeding back a fraction of the delayed signal, which reduces the number of needed state
variables.

The Flanger was originally implemented using two tape players playing the same song
in synchrony, and the flange of the other player was pressed in order to obtain a delayed
version of the sound signal [99]. Therefore, the Flanger is essentially similar to doubling,
but the interaction between the flange press and the tape player made the delay to be time-
varying. This leads to a filter structure similar to the Chorus, and these two effects are
usually implemented with the same filter by changing the filter coefficients.

The Phaser effect was created when the Flanger effect was tried to be imitated with elec-
tronic circuits. The notches of the filter resulting from the delay line were created using
analog allpass filters, which lead to a slightly different sounding effect. In addition, the
notches were usually spaced logarithmically in frequency, while in the Flanger effect they
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are equally spaced. The digital Phaser is then implemented by using second-order allpass
filters in cascade, and with each filter one notch is created [100].

Despite the computationally efficient filter structure, the implementation of the Chorus and
Flanger effects require a rather long delay line, which becomes a problem in memory lim-
ited systems. On the other hand, the Phaser effect is slightly more complex in terms of
number of operations, and the desired number of notches determine the number of required
state variables. Therefore these effects are not used in systems with limited memory capac-
ity.

3.4.2 Reverb

With Reverb, the interaction between the produced sound and the surrounding space is
emulated. The room colors the spectrum of the sound by adding delayed versions of the
sound that are reflected from the walls and object found in the space. The reflected sounds
cause comb filtering, but since there are numerous almost simultaneous reflections coming
from all directions, the resulting filter is more or less like an allpass filter. However, the
impulse response of the space usually contains early and late reflections, from which the
first ones are louder and rather sparsely spaced in time, while the latter ones are more quiet
and really densely spaced. With this information, the Reverb algorithm can be simplified.

The Reverb algorithms can be divided into two categories, physical and perceptual [101,
102]. The algorithms of physical approach try to simulate exactly the propagation of the
sound from the source to the listener. This can be done by filtering the sound with the
binaural impulse response of the space, or by rendering the reflections from the walls and
objects when the space does not exist. The binaural impulse responses are always measured
from one point to a certain listening position with certain head positioning, and they are
exactly applicable only for the measurement person, so they are not practically used. The
latter method is computationally heavy, requiring several days of calculation even with
a modern highly efficient computer. Therefore, also this approach is not applicable for
computationally efficient purposes.

The perceptual Reverb algorithms try to model the room with a rather small set of parame-
ters, which represent the space with perceptually relevant accuracy [101]. These algorithms
are much simpler than those of physical approach, and ideally with one algorithm all spaces
can be simulated. Usually the perceptual algorithms contain a set of interconnected comb
and allpass filters, with which the reverberation is modeled [101, 102]. Since the reverber-
ation is a complex structure, generation of close model of it requires large number of these
elements. Therefore, the practical models for computationally efficient purposes contain
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only one or two comb or allpass filters, which require only a short delay line. With these
filters, the resulting effect sounds clearly artificial.

3.4.3 Distortion

Distortion is an important effect in some music styles, especially in guitar playing. The
Distortion is obtained by processing the dry sound with a nonlinear process, in which new
signal components are generated [102]. This is implemented by the same means as the
waveshaping synthesis explained in Section 2.3.3, but now the input is a broadband signal
produced by the instrument. This means that the problems of waveshaping synthesis are
also found in Distortion generation.

First, the nonlinear function according to which the signal is distorted is usually smooth
curve, which releases the problem of aliasing caused by the nonlinearity. Distortion that
is most commonly rated the most pleasing is obtained from a guitar amplifier built with
electronic tubes [102]. Therefore, the ideal function would simulate the distortion produced
by an electronic tube. The nonlinear curve can be approximated with some trigonometric
function such as tanh, or with a polynomial.

Secondly, the broadband signal used as an input may cause aliasing, which causes the dis-
torted signal sound like nothing like desired. The simplest solution for alias reduction is
to perform the waveform shaping using a higher sampling frequency, and decimate back
after the operation [102]. However, this increases the computational load of the algorithm,
which may be not desirable. Therefore, in order to decrease to computational load, the al-
gorithm should first lowpass filter the input signal, and perform the nonlinear shaping after
the filtering [102].



Chapter 4

Sound Design

In this chapter, design rules for creating sound with different timbres are presented. In
addition, the effect of the synthesis parameter variations in producing sound variants are
presented. In Section 4.1, the use of computationally efficient sound synthesis techniques in
imitation of different sounds are presented. Section 4.2 presents design rules for the sound
variants, and their mapping to the parameters of the sound synthesis techniques generating
the respective fundamental timbre is given.

4.1 Design Rules for Imitation of Different Timbres

The use of the sound synthesis techniques in music synthesis requires sound design, with
which different timbres are obtained. The design of a sound differs from one technique to
another, and the applicability of the techniques is ultimately determined by the sound to be
imitated. Therefore, the imitation of a timbre can be implemented efficiently with a certain
technique, while with the others it may be inefficient. Next, some practical design rules for
different timbre categories are given.

In Section 4.1.1, design principles for creating timbres of string instruments are given. Sec-
tion 4.1.2 presents design rules for imitation of pipe, brass and reed instruments. In Section
4.1.3, design principles for imitation of organ, mallet and bell sounds are given. Section
4.1.4 addressed the problem of creating electronic and synthetic sounds. In Section 4.1.5,
design rules for drums and other percussion instruments are presented. Section 4.1.6 ad-
dresses the problem of designing sound effects.

47
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4.1.1 String Instruments

The vibration of the string causes the spectrum of a string instrument have a harmonic struc-
ture, and the spectral envelope is determined by the string excitation, string material, and
the instrument soundbox, which amplifies the sound generated by the string vibration. The
spectral envelopes make the instrument sounds unique and quite easily separable. There-
fore, the most prominent solution to the synthesis of string instruments is source-filter syn-
thesis, in which harmonic spectrum is easily generated using periodic waveforms and the
desired spectral envelope is easily controlled with the filter. The focus in the sound design
of string instruments is in generating the desired spectral envelope.

The timbres of stringed instruments may be quite complex, and they often exhibit modu-
lation either in frequency or amplitude, or in some cases in both. Good examples of such
instruments are the violin and the acoustic piano. The violin timbre exhibits frequency
modulation caused by the interaction between the bow and the string. Each acoustic piano
tone is generated with two or three strings that are slightly mistuned with respect to each
other, which leads to amplitude modulation of each harmonic separately. Therefore, the
sound design of string instruments should also consider these instrument specific aspects.

4.1.2 Pipe, Brass and Reed Instruments

The sound production mechanism in pipe, brass and reed instruments is based on standing
wave in a tube, and the standing wave has spectrum in which includes only odd harmonics.
Therefore the source-filter synthesis is again the most prominent solution, and the design of
these instruments is again focused on finding the spectral envelope of the instrument. The
source signal can be chosen from all classical waveforms, with a rectangular pulse wave
having a duty cycle of 50%, in order to obtain the desired spectral tilt.

However, in many of these instruments the sound includes much modulation due to turbu-
lent airflow, and therefore the sound design requires the use of FM synthesis. In some cases,
the frequency modulation is pronounced, and it would be better to use only FM synthesis
in the sound generation. The parameter analysis of complex FM is quite hard, but when the
correct parameters are obtained, the resulting sound imitates the desired one closely.

4.1.3 Organs, Mallets, and Bells

Organs, mallets and bells are good examples of instruments, which have simple spectra
containing only a few components. Therefore the synthesis of these instruments is easily
done by means of additive synthesis, and the design of these sounds is quite straightforward.
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This is illustrated next with a marimba tone.

Figure 4.1: Spectrogram of a recorded marimba tone.

In Figure 4.1, the spectrogram of a marimba tone C5 is given. As from the figure can be
seen, the tone has only three components, which are quite sparsely positioned. The two
higher components are four and ten times higher than the fundamental frequency. The
components have different weights in the resulting timbre, and the weights for the two
higher components are tone dependent, as the higher pitched tone exhibits smaller weights.
The fundamental frequency is the strongest, the highest component is the second strongest.

Each component has own amplitude envelope, which are piecewise linear on the dB scale.
The amplitude envelopes of the higher components have a short attack, while the attack of
the fundamental frequency is much longer. The fundamental frequency decays quite slow,
and the highest component decays quickly. The second component has an envelope that
is composed of two parts, slowly and fast decaying. The slowly decaying envelope is the
same as the envelope of the fundamental frequency, and the fast decaying is slightly slower
decaying than the envelope of the highest component. In addition, the decay rates for the
two higher frequencies are also tone dependent, as a higher pitched tone exhibits faster
decays.
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4.1.4 Electronic Instruments and Synthetic Sounds

Electronic instruments and synthesis sounds form a heterogeneous group, where the sound
production have been traditionally obtained by the synthesis technique used in the syn-
thesizer. Mainly the technique is either sampling, wavetable, additive, subtractive or FM
synthesis, but there are also synthesizers which exploit physical modeling. However, the
most familiar electronic and synthetic sounds are generated using either subtractive or FM
synthesis, due to the huge success of synthesizers exploiting these techniques. Therefore,
no general sound design rules can be given for electronic instrument and synthetic sound
imitation.

4.1.5 Percussion Instruments

Percussion instruments are as a group similar to electronic instruments and synthetic sounds
as they produce a wide variety of sounds. The sounds range from simple clicks of wooden
sticks to extremely complex cymbal sounds. Therefore, the sound design of these instru-
ments can not be generalized into use of one synthesis technique. However, quite often the
sounds have a noise-like spectrum with few additional sinusoidal components, and in these
cases the design is based on finding the appropriate noise coloring filter and the parameters
for the sinusoidal components. This is illustrated with a low tom tone.

In Figure 4.2, the spectrogram of a low tom tone is given. As from the figure can be seen, the
tone is noise-like, and it contains few sinusoidal components which are low in frequency.
The sinusoidal components are harmonically related, and the spectral tilt is steep. This can
be obtained by using a triangular pulse wave. The noise shape of this tone can be obtained
with a lowpass filter, the cutoff frequency of which is approximately twice the frequency of
the triangular pulse wave.

The spectrum has a sharp resonance, and the higher frequencies are decaying faster than
the lower frequencies. The decay characteristics can be obtained with an envelope, which is
quickly decaying. In addition, the fundamental frequency of the triangular pulse wave has
similar variation, so the frequency modulation is the same in both filter cutoff frequency and
fundamental frequency. The overall amplitude of the tone has fast attack, and it is quickly
decaying, which is typical for drum tones.

4.1.6 Sound Effects

Sound effects form yet another group in which the sounds can be similar or completely
dissimilar. The sound effect used in music vary from sounds from the nature to human
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Figure 4.2: Spectrogram of a recorded low tom tone.

manufactured machines, so the generality of the sound design is minimal. However, many
sounds have again a noise-like spectrum, which can be imitated with appropriately colored
noise and additional tricks. In addition, they may contain single sinusoidal components,
which are frequency modulated. Therefore, the focus of sound effect design is in finding
the methods and tricks with which the desired timbres can be generated.

4.2 Parameter Variation in Generation of Sound Variants

The timbres found from synthesizers usually have quite many similar instrument definitions,
which differ slightly from each other. For instance, the selection of piano sounds include
the grand piano, the upright piano, the bright piano and various electric pianos to name
few. Therefore the sound design is not just limited to finding the methods and parameters
with which one instrument version can be generated. However, the sound variant design is
usually reduced to simple parameter variations, with which clearly different but still similar
sounds are obtained. This is illustrated next with a few commonly used instrument variants.

In Section 4.2.1, parameter variation rules for the generation of instrument variants with
brighter timbres are given. Section 4.2.2 presents rules for generation of instruments with
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wider timbre. Methods for increasing tone power is given in Section 4.2.3. In Section
4.2.4, methods for the generation of instrument variants with more reverberant timbres are
presented.

4.2.1 Changing the Brightness

Brightness is a subjective measure of a sound, which is quite closely related to the spectral
centroid, as a higher spectral centroid is perceived as brighter timbre. The spectral centroid
can be shifted easily in additive and source-filter syntheses. In additive synthesis, the shift is
done by changing the weight of the higher components, in practice by quite small amount
in order to avoid too drastic changes. In source-filter synthesis, the same is obtained by
shifting the cutoff frequency of the filter according to the desired change. The brightness
control is illustrated next with two piano tones.
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Figure 4.3: Comparison between synthesized Acoustic Grand Piano (dashed line) and
Bright Acoustic Piano (solid line) spectra.

In Figure 4.3, the spectra of two piano tones played with an acoustic grand piano and a
bright acoustic piano are presented. The grand piano tone is plotted with the dashed line
in the front and the bright piano tone is given with the solid line in background. As can
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Figure 4.4: Comparison between synthesized marimba (dashed line) and wider marimba
(solid line) spectra.

be seen in the figure, the higher harmonics of the bright piano tone are louder compared to
the higher harmonics of the grand piano. This is obtained by doubling the cutoff frequency
of the filter, and the resulting sound is clearly brighter but still recognizable to be a piano
tone.

4.2.2 Widening of the Timbre

Wideness of a timbre is also a subjective measure, and it is related to the perceived sustain of
the sound. However, the objective sustain of the sound is not changed at all, or it is changed
only by a small amount. This can be obtained easily in additive and subtractive syntheses
by increasing the decay rate of the higher components. Next, an example of widening of a
marimba tone is given.

The spectra of a marimba and a wider marimba tone are given in Figure 4.4. The marimba
tone is plotted with dashed line in the front, and the wider marimba tone is given with
the solid line in the background. From the figure can be seen similar behavior as from
Figure 4.3, and the wider timbres have similar characteristics as the brighter timbres. In
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fact, a wider timbre can be obtained by increasing the brightness slightly. However, while
in brighter timbres the decay rate of the higher components is the same as in the original,
in wider timbres the higher components decay slightly slower. In Figure 4.4, the wider
timbre is obtained by three times slower decay rates for the two higher components, and by
increasing the weights of the second component by 35% and the third component by 7%.

4.2.3 Adding Power

The power of a tone is not trivially obtained by scaling the tone amplitude. It is related
to energy concentration at the beginning of the tone, which can be obtained by increasing
the hold time in the amplitude envelope. However, envelope must be carefully designed,
since trivial addition of the hold phase to the envelope produces a sound that has electronic
characteristics. This problem is addressed next with an example of a tom tone.
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Figure 4.5: Comparison between synthesized tom (dashed line) and power tom (solid line)
tones.

In Figure 4.5, time responses of tom and power tom tones are presented. The tom tone is
plotted with dashed line and the power tom tone with solid line. Two observations can be
made from the figure. First, the power tom tone decays faster than the tom tone. Secondly,
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the power tom has more energy at the beginning of the tone. These two aspects are obtained
by increasing a short hold phase after the attack, which is transformed to a decay phase by
multiplying it with another envelope. The use of another envelope eliminates the electronic
characteristics. The fast overall decay gives a sensation of more powerful sound, since now
more energy is concentrated at the beginning of the tone.

4.2.4 Adding Reverberation

A reverberant sound is easily obtained by filtering the original sound with a reverb algo-
rithm, but as in Section 3.4.2 is concluded, the use of traditional reverberation algorithms
in computationally efficient music synthesis is problematic due to large delay lines required
for good reverb modeling. Therefore, the generation of reverberant sounds requires tricks,
and it is presented next with a tom tone.
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Figure 4.6: Comparison between synthesized tom (dashed line) and room tom (solid line)
tones.

The time responses of tom and room tom tones are given in Figure 4.6. The tom tone is
plotted with dashed line and the room tom tone with solid line. The room tom tone is again
faster decaying, but the actual influence of the reverberation can be seen from its amplitude



CHAPTER 4. SOUND DESIGN 56

behavior. The amplitude is modulated with a LFO, the frequency of which is quite high.
In this case, the desired modulation is obtained with a 16 Hz triangular pulse wave, which
varies the amplitude by 30%.



Chapter 5

Conclusions and Future Work

5.1 Main Results of This Thesis

The design of a music synthesizer for systems suffering from limited computing power and
memory capacity was presented. Such systems are widely used in mobile devices, where
power consumption of the device should be as small as possible. For example, these limita-
tions can be found in the ring tone generation of mobile phones. Therefore, the synthesizer
should be capable of generating sounds with simple calculations and minimal memory us-
age. Different possible synthesis methods are reviewed in this thesis, but with these limi-
tations, the applicable sound synthesis techniques are limited to additive and source-filter
syntheses, and in special cases to frequency modulation, wavetable and sampling synthe-
ses. However, the synthesis technique to be used is ultimately determined by the sound to
be imitated, and it may utilize a combination of applicable techniques.

The applicable synthesis techniques are obtained from interconnected oscillators and fil-
ters, which are often driven with some control signals. Sometimes the resulting sound is
processed using a special sound effect, which transforms the often dull and dry timbre into
more lively sound. Each of these synthesizer unit requires careful design, especially when
the system sets limitations to the computations. Some existing methods for each unit is
evaluated in this thesis with emphasis on computational efficiency and memory usage.

The largest design issue is raised in digital source-filter synthesis, where the use of classic
waveforms, such as the sawtooth wave, is problematic due to aliasing caused by waveform
discontinuities. A quasi-bandlimited waveform synthesis method based on the polynomial
bandlimited step function approximation is presented in detail, and design rules for appli-
cable polynomials are given. In addition, comparison between the first-order polynomial

57
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and two different third-order polynomials are given. The third-order polynomials reduce
aliasing more at high frequencies, but they exhibit more aliasing at low frequencies. There-
fore, the use of higher order polynomials require careful design, and further analysis of the
results are left for future work.

In addition, this thesis discusses the use of computationally efficient synthesis techniques
in the imitation of different timbres, and presents design rules for the generation of sound
variants and mapping of them to synthesis parameters. The design of a sound is based on the
timbre characteristics, which can be modeled quite often with a single synthesis technique.
However, in many cases the timbre is non-stationary, which yields the use of additional
modulation techniques. In addition, the timbre may consist of special components, which
must be generated separately. Variants of a sound can be generated by a small change in
synthesis parameters of the original sound, and in many cases there are simple methods
with which quite complex variants can be obtained without increasing the computational
load.

5.2 Future Work

The most versatile sound synthesis technique in computationally efficient music synthesis is
the source-filter synthesis, which offers only a mediocre sound quality. However, since the
source-filter synthesis utilizes time-varying recursive filters and relatively simple source
signals, which are also utilized in speech synthesis and coding, the methods derived for
speech purposes could be used for the analysis of source-filter synthesis data. The filter
coefficient estimation from speech data by using advanced LP techniques with emphasis on
low and middle frequencies could be directly exploited. With these analysis techniques, the
source-filter could model the timbre more accurately.

The excellence of speech coding is also based the efficient coding techniques for the resid-
ual, i.e., the source contribution. Therefore, the further development of source signal syn-
thesis is justified. Especially further analysis of POLYBLEP waveform synthesizer is re-
quired. The reasonable balance between the polynomial type, order and computational
complexity must be considered, and the bandlimiting results for different types and orders
should be analyzed more. In addition, since many acoustical instruments have slightly in-
harmonic spectrum, the source-filter synthesis technique can not fully imitate these instru-
ments. Therefore, the methods for inharmonicity control with the antialiasing waveform
synthesis algorithms could be investigated.

Since most real world instruments include fluctuations of the tone characteristics, such



CHAPTER 5. CONCLUSIONS AND FUTURE WORK 59

as fundamental frequency and amplitude, over time, further analysis of them using time-
varying signal statistics would improve the liveliness of the synthesized tones, since the
time-varying phenomena, such as beating and flutter, could be reproduced. By utilizing
pseudo-random repetition of the variations, the synthesis of arbitrarily long tones in time
could be possible by extending the tone decay with the repetition.

In all of the abovementioned research cases it would be necessary to conduct psychoacous-
tic modeling and listening test, with which evaluation of the algorithm development could
be given. In addition, they would lead to the optimal usage of computing power for produc-
ing acoustic features that are perceptually relevant. Furthermore, the source-filter synthesis
algorithm would be extended for accurate imitation of single musical tones, which leads to
greatly improved sound quality comparable to sample-based techniques.

In addition, since the use of sound effects in music is common, the reduction of required
delay line elements is required. This could be possible with a delay filter, which produce
larger delays than the number of delay elements in the filter. However, the produced delay
is non-uniform for all frequencies, especially when the desired delay is much larger than the
filter order. Therefore, different delay filter designs could be evaluated and possible delay
correction methods investigated.
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Appendix A

Synthesis System Notation

In Figure A.1, an adapted version of MUSIC block notation is presented, and this notation
is used in this thesis. An oscillator can produce arbitrary waveforms, and the waveform is
explicitly given in the oscillator block. The oscillator has two controllers, amplitude and
instantaneous phase, A and ϕ, respectively. A filter can be of any type, and the filter type is
explicitly given in the filter block. The filter can have two controllers, the cutoff frequencies
and resonance parameters, Fc and Q, respectively.

An adder output the sum of its input, and a multiplier outputs the product of its inputs. A
special process implements certain process to its input, and the process is possibly con-
trolled with process control parameter PC. A random number generator produces white
noise signal, either Gaussian or equally distributed. An envelope generator produces a
time-varying function, and the function is either given explicitly in the envelope genera-
tor block. An external input converts an external signal, e.g., from memory into a signal
processed the synthesis system.
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A ϕ

OSC

(a) An oscillator

Fc Q

FILTER

(b) A filter (c) An adder

(d) A multiplier

PC

PROCESS

(e) A special process

z
−1

(f) A unit delay block

RAND(N)

(g) A random number generator

ENV

(h) An envelope generator

INPUT

(i) An external input

Figure A.1: Synthesis notation used in this thesis.



Appendix B

Summary of MIDI specifications

MIDI was first introduced as an interface protocol between different keyboard and sound
module, but it has been expanded to allow transfer control messages between any sound
generation devices. The control messages can be definitions of the instrument to be used, or
control parameters which modify the timbre produced by the system. However, the control
messages which are most commonly transferred are the instrument definitions, and they
form the biggest sound design problem in creation of a MIDI compatible implementation.
Depending on the version of MIDI specification, different requirements for simultaneous
notes and overall timbre collection are set, and these are summarized next.

There exist four different MIDI specifications, which are used in different applications. In
General MIDI Level 1 (GM-1), the implementation system must be capable of playing
at least 24 simultaneous notes produced by 16 MIDI channels. The MIDI channels are
allocated to different instruments, of which one can be percussion set. General MIDI Lite
(GM-LITE) sets the simultaneous note limit to 16, and they are allocated to 15 melodic in-
struments and one percussion set. In Scalable Polyphony MIDI (SP-MIDI), the polyphony
can be scaled depending, e.g., device model or power consumption, according to MIDI
channel priorities. The channel definitions are the same as in GM-LITE. General MIDI
Level 2 (GM-2) extends the GM-1 by requiring at least 32 simultaneous notes produced
by 16 channels, of which all can be allocated to melodic instruments, and up to two to
percussion sets.

GM-1 compatible system must provide 128 different melodic and 47 drum sounds, which
are required also in GM-LITE and SP-MIDI specifications. GM-2 specification extends
the sound sets of GM-1 by introducing 128 additional melodic sounds incorporated from
Yamaha XG format, and extending the GM-1 percussion set with 14 additional sounds and
introducing eight additional drum sets incorporated from Roland GS format. The melodic
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sound and percussion sets of GM-2 compatible system are presented in Tables B.1 and B.2,
respectively. The melodic sound for GM-1, GM-LITE and SP-MIDI compatible systems
are obtained from GM-2 sounds at bank 00, and only percussion set Standard with keys
35–81 are used.

Table B.1: Melodic sound patches of the General MIDI Level 2 specification.

(a) Piano

Prog Bank Name
001 00 Acoustic Grand Piano

01 Acoustic Grand Piano
(wide)

02 Acoustic Grand Piano
(dark)

002 00 Bright Acoustic Piano
01 Bright Acoustic Piano

(wide)
003 00 Electric Grand Piano

01 Electric Grand Piano
(wide)

004 00 Honky-tonk Piano
01 Honky-tonk Piano (wide)

005 00 Electric Piano 1
01 Detuned Electric Piano 1
02 Electric Piano 1 (velocity

mix)
03 60’s Electric Piano

Prog Bank Name
006 00 Electric Piano 2

01 Detuned Electric Piano 2
02 Electric Piano 2 (velocity

mix)
03 EP Legend
04 EP Phase

007 00 Harpsichord
01 Harpsichord (octave mix)
02 Harpsichord (wide)
03 Harpsichord (with key off)

008 00 Clavi
01 Pulse Clavi

(b) Chromatic Percussion

Prog Bank Name
009 00 Celesta
010 00 Glockenspiel
011 00 Music Box
012 00 Vibraphone

01 Vibraphone (wide)
013 00 Marimba

01 Marimba (wide)

Prog Bank Name
014 00 Xylophone
015 00 Tubular Bells

01 Church Bells
02 Carillon

016 00 Dulcimer
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Table B.1: Melodic sound patches of the General MIDI Level 2 specification. Continued.

(c) Organ

Prog Bank Name
017 00 Drawbar Organ

01 Detuned Drawbar Organ
02 Italian 60’s Organ
03 Drawbar Organ 2

018 00 Percussive Organ
01 Detuned Percussive Organ
02 Percussive Organ 2

019 00 Rock Organ
020 00 Church Organ

01 Church Organ (octave mix)
02 Detuned Church Organ

Prog Bank Name
021 00 Reed Organ

01 Puff Organ
022 00 Accordion

01 Accordion 2
023 00 Harmonica
024 00 Tango Accordion

(d) Guitar

Prog Bank Name
025 00 Acoustic Guitar (nylon)

01 Ukulele
02 Acoustic Guitar (nylon +

key off)
03 Acoustic Guitar (nylon 2)

026 00 Acoustic Guitar (steel)
01 12-Strings Guitar
02 Mandolin
03 Steel Guitar with Body

Sound
027 00 Electric Guitar (jazz)

01 Electric Guitar (pedal steel)
028 00 Electric Guitar (clean)

01 Electric Guitar (detuned
clean)

02 Mid Tone Guitar

Prog Bank Name
029 00 Electric Guitar (muted)

01 Electric Guitar (funky cut-
ting)

02 Electric Guitar (muted
velo-sw)

03 Jazz Man
030 00 Overdriven Guitar

01 Guitar Pinch
031 00 Distortion Guitar

01 Distortion Guitar (with
feedback)

02 Distorted Rhythm Guitar
032 00 Guitar Harmonics

01 Guitar Feedback
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Table B.1: Melodic sound patches of the General MIDI Level 2 specification. Continued.

(e) Bass

Prog Bank Name
033 00 Acoustic Bass
034 00 Electric Bass (finger)

01 Finger Slap Bass
035 00 Electric Bass (pick)
036 00 Fretless Bass
037 00 Slap Bass 1
038 00 Slap Bass 2
039 00 Synth Bass 1

01 Synth Bass (warm)
02 Synth Bass 3 (resonance)
03 Clavi Bass
04 Hammer

Prog Bank Name
040 00 Synth Bass 2

01 Synth Bass 4 (attack)
02 Synth Bass (rubber)
03 Attack Pulse

(f) Strings & Orchestral Instruments

Prog Bank Name
041 00 Violin

01 Violin (slow attack)
042 00 Viola
043 00 Cello
044 00 Contrabass

Prog Bank Name
045 00 Tremolo Strings
046 00 Pizzicato Strings
047 00 Orchestral Harp

01 Yang Chin
048 00 Timpani

(g) Ensemble

Prog Bank Name
049 00 String Ensembles 1

01 Strings and Brass
02 60s Strings

050 00 String Ensembles 2
051 00 Synth Strings 1

01 Synth Strings 3
052 00 Synth Strings 2
053 00 Choir Aahs

01 Choir Aahs 2

Prog Bank Name
054 00 Voice Oohs

01 Humming
055 00 Synth Voice

01 Analog Voice
056 00 Orchestral Hit

01 Bass Hit Plus
02 6th Hit
03 Euro Hit
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Table B.1: Melodic sound patches of the General MIDI Level 2 specification. Continued.

(h) Brass

Prog Bank Name
057 00 Trumpet

01 Dark Trumpet Soft
058 00 Trombone

01 Trombone 2
02 Bright Trombone

059 00 Tuba
060 00 Muted Trumpet

01 Muted Trumpet 2
061 00 French Horn

01 French Horn 2 (warm)

Prog Bank Name
062 00 Brass Section

01 Brass Section 2 (octave
mix)

063 00 Synth Brass 1
01 Synth Brass 3
02 Analog Synth Brass 1
03 Jump Brass

064 00 Synth Brass 2
01 Synth Brass 4
02 Analog Synth Brass 2

(i) Reed

Prog Bank Name
065 00 Soprano Sax
066 00 Alto Sax
067 00 Tenor Sax
068 00 Baritone Sax

Prog Bank Name
069 00 Oboe
070 00 English Horn
071 00 Bassoon
072 00 Clarinet

(j) Pipe

Prog Bank Name
073 00 Piccolo
074 00 Flute
075 00 Recorder
076 00 Pan Flute

Prog Bank Name
077 00 Blown Bottle
078 00 Shakuhachi
079 00 Whistle
080 00 Ocarina

(k) Synth Lead

Prog Bank Name
081 00 Lead 1 (square)

01 Lead 1a (square 2)
02 Lead 1b (sine)

082 00 Lead 2 (sawtooth)
01 Lead 2a (sawtooth 2)
02 Lead 2b (saw + pulse)
03 Lead 2c (double sawtooth)
04 Lead 2d (sequenced ana-

log)

Prog Bank Name
083 00 Lead 3 (calliope)
084 00 Lead 4 (chiff)
085 00 Lead 5 (charang)

01 Lead 5a (wire lead)
086 00 Lead 6 (voice)
087 00 Lead 7 (fifths)
088 00 Lead 8 (bass + lead)

01 Lead 8a (soft wrl)
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Table B.1: Melodic sound patches of the General MIDI Level 2 specification. Continued.

(l) Synth Pad

Prog Bank Name
089 00 Pad 1 (new age)
090 00 Pad 2 (warm)

01 Pad 2a (sine pad)
091 00 Pad 3 (polysynth)
092 00 Pad 4 (choir)

01 Pad 4a (itopia)

Prog Bank Name
093 00 Pad 5 (bowed)
094 00 Pad 6 (metallic)
095 00 Pad 7 (halo)
096 00 Pad 8 (sweep)

(m) Synth SFX

Prog Bank Name
097 00 FX 1 (rain)
098 00 FX 2 (soundtrack)
099 00 FX 3 (crystal)

01 FX 3a (synth mallet)
100 00 FX 4 (atmosphere)
101 00 FX 5 (brightness)

Prog Bank Name
102 00 FX 6 (goblins)
103 00 FX 7 (echoes)

01 FX 7a (echo bell)
02 FX 7b (echo pan)

104 00 FX 8 (sci-fi)

(n) Ethnic Misc.

Prog Bank Name
105 00 Sitar

01 Sitar 2 (bend)
106 00 Banjo
107 00 Shamisen
108 00 Koto

01 Taisho Koto

Prog Bank Name
109 00 Kalimba
110 00 Bag Pipe
111 00 Fiddle
112 00 Shanai

(o) Percussion

Prog Bank Name
113 00 Tinkle Bell
114 00 Agogo
115 00 Steel Drums
116 00 Woodblock

01 Castanets
117 00 Taiko Drum

01 Concert Bass Drum
118 00 Melodic Tom

01 Melodic Tom 2

Prog Bank Name
119 00 Synth Drum

01 Rhythm Box Tom
02 Electric Drum

120 00 Reverse Cymbal
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Table B.1: Melodic sound patches of the General MIDI Level 2 specification. Continued.

(p) Sound FX

Prog Bank Name
121 00 Guitar Fret Noise

01 Guitar Cutting Noise
02 Acoustic Bass String Slap

122 00 Breath Noise
01 Flute Key Click

123 00 Seashore
01 Rain
02 Thunder
03 Wind
04 Stream
05 Bubble

124 00 Bird Tweet
01 Dog
02 Horse Gallop
03 Bird Tweet 2

125 00 Telephone Ring
01 Telephone Ring 2
02 Door Creaking
03 Door
04 Scratch
05 Wind Chime

Prog Bank Name
126 00 Helicopter

01 Car Engine
02 Car Stop
03 Car Pass
04 Car Crash
05 Siren
06 Train
07 Jetplane
08 Starship
09 Burst Noise

127 00 Applause
01 Laughing
02 Screaming
03 Punch
04 Heart Beat
05 Footsteps

128 00 Gunshot
01 Machine Gun
02 Lasergun
03 Explosion
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Table B.2: Percussion sets of the General MIDI Level 2 specification.

(a) #01 Standard Set

Key Name
27 High Q
28 Slap
29 Scratch Push
30 Scratch Pull
31 Sticks
32 Square Click
33 Metronome Click
34 Metronome Bell
35 Acoustic Bass Drum
36 Bass Drum 1
37 Side Stick
38 Acoustic Snare
39 Hand Clap
40 Electric Snare
41 Low Floor Tom
42 Closed Hi-hat
43 High Floor Tom
44 Pedal Hi-hat
45 Low Tom
46 Open Hi-hat
47 Low-Mid Tom

Key Name
48 High-Mid Tom
49 Crash Cymbal 1
50 High Tom
51 Ride Cymbal 1
52 Chinese Cymbal
53 Ride Bell
54 Tambourine
55 Splash Cymbal
56 Cowbell
57 Crash Cymbal 2
58 Vibra-Slap
59 Ride Cymbal 2
60 High Bongo
61 Low Bongo
62 Mute Hi Conga
63 Open Hi Conga
64 Low Conga
65 High Timbale
66 Low Timbale
67 High Agogo
68 Low Agogo

Key Name
69 Cabasa
70 Maracas
71 Short Whistle
72 Long Whistle
73 Short Guiro
74 Long Guiro
75 Claves
76 Hi Wood Block
77 Low Wood Block
78 Mute Cuica
79 Open Cuica
80 Mute Triangle
81 Open Triangle
82 Shaker
83 Jingle Bell
84 Bell Tree
85 Castanets
86 Mute Surdo
87 Open Surdo

(b) #09 Room Set

Key Name
41 Room Low Tom 2
43 Room Low Tom 1

Key Name
45 Room Mid Tom 2
47 Room Mid Tom 1

Key Name
48 Room Hi Tom 2
50 Room Hi Tom 1

(c) #17 Power Set

Key Name
36 Power Kick Drum
38 Power Snare Drum
41 Power Low Tom 2

Key Name
43 Power Low Tom 1
45 Power Mid Tom 2
47 Power Mid Tom 1

Key Name
48 Power Hi Tom 2
50 Power Hi Tom 1
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Table B.2: Percussion sets of the General MIDI Level 2 specification. Continued.

(d) #25 Electronic Set

Key Name
36 Electric Bass Drum
38 Electric Snare 1
40 Electric Snare 2
41 Electric Low Tom 2

Key Name
43 Electric Low Tom 1
45 Electric Mid Tom 2
47 Electric Mid Tom 1
48 Electric Hi Tom 2

Key Name
50 Electric Hi Tom 1
52 Reverse Cymbal

(e) #26 Analog Set

Key Name
36 Analog Bass Drum
37 Analog Rim Shot
38 Analog Snare 1
41 Analog Low Tom 2
42 Analog CHH 1
43 Analog Low Tom 1
44 Analog CHH 2

Key Name
45 Analog Mid Tom 2
46 Analog OHH
47 Analog Mid Tom 1
48 Analog Hi Tom 2
49 Analog Cymbal
50 Analog Hi Tom 1
56 Analog Cowbell

Key Name
62 Analog High Conga
63 Analog Mid Conga
64 Analog Hi Conga
70 Analog Maracas
75 Analog Claves

(f) #33 Jazz Set

Key Name
35 Jazz Kick 2

Key Name
36 Jazz Kick 1

(g) #41 Brush Set

Key Name
35 Jazz Kick 2
36 Jazz Kick 1

Key Name
38 Brush Tap
39 Brush Slap

Key Name
40 Brush Swirl

(h) #49 Orchestra Set

Key Name
27 Closed Hi-hat 2
28 Pedal Hi-hat
29 Open Hi-hat 2
30 Ride Cymbal 1
35 Concert BD 2
36 Concert BD 1
38 Concert SD
39 Castanets
40 Concert SD

Key Name
41 Timpani F
42 Timpani F#
43 Timpani G
44 Timpani G#
45 Timpani A
46 Timpani A#
47 Timpani B
48 Timpani c
49 Timpani c#

Key Name
50 Timpani d
51 Timpani d#
52 Timpani e
53 Timpani f
57 Concert Cymbal 2
58 Concert Cymbal 1
88 Applause
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Table B.2: Percussion sets of the General MIDI Level 2 specification. Continued.

(i) #57 SFX Set

Key Name
39 High Q
40 Slap
41 Scratch Push
42 Scratch Pull
43 Sticks
44 Square Click
45 Metronome Click
46 Metronome Bell
47 Guitar Fret Noise
48 Guitar Cutting Noise Up
49 Guitar Cutting Noise Down
50 String Slap of Double Bass
51 Flute Key Click
52 Laughing
53 Scream
54 Punch

Key Name
55 Heart Beat
56 Footsteps 1
57 Footsteps 2
58 Applause
59 Door Creaking
60 Door
61 Scratch
62 Wind Chimes
63 Car-Engine
64 Car-Stop
65 Car-Pass
66 Car-Crash
67 Siren
68 Train
69 Jetplane
70 Helicopter

Key Name
71 Starship
72 Gun Shot
73 Machine Gun
74 Lasergun
75 Explosion
76 Dog
77 Horse-Gallop
78 Birds
79 Rain
80 Thunder
81 Wind
82 Seashore
83 Stream
84 Bubble
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