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Päivämäärä: 4.6.2007 Kieli: Englanti Sivumäärä: 8+92
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FDTD on eksplisiittinen aika-alueen differenssimenetelmä, joka ratkaisee Max-
wellin yhtälöt numeerisesti. Tämän diplomityön tarkoituksena on selvittää
FDTD-menetelmän soveltamista tukiasema-antennin säteilylle altistumisen
arvioimisessa. Radiotaajuuksilla sähkömagneettiselle säteilylle altistumista
mitataan niin sanottujen SAR-arvojen (specific absorption rate) kautta, jotka
kertovat sähkömagneettisesta häviötehosta kudoksissa ja ovat yhteydessä säteilyn
mahdollisiin haitallisiin terveysvaikutuksiin.

Motivaatio tälle tutkimukselle on tukiasema-antenneihin liittyvässä standardoin-
nissa. Radioaaltoalueen koko kehon tehtävissä FDTD-menetelmä on yleisesti
käytetyin menetelmä, ja on tärkeää tietää, kuinka luotettavasti säteilyannoksia
saadaan arvioitua, ja mitkä tekijät vaikuttavat tulosten tarkkuuteen.

Työn pääpaino on FDTD SAR-laskennassa tarvittavissa menetelmissä, niiden
epävarmuuksissa ja virhetekijöissä. Erityisenä tutkimuskohteena on FDTD:n
diskretoinnin resoluution vaikutus SAR-arvoihin. Lisäksi paneudutaan muun
muassa materiaalien mallintamiseen FDTD:ssä sekä absorboivien reunaehtojen
toimivuuteen SAR-laskennassa. Lopputulosten kannalta on myös tärkeää, miten
SAR-arvot on itse asiassa laskettu. Työssä esitelläänkin joitakin vaihtoehtoisia
tapoja laskea SAR-arvoja, ja tutkitaan näiden vaikutusta tuloksiin.
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application of the FDTD method in the assessment of the human exposure to base
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Symbols and notational conventions

List of symbols

Electromagnetics

D the domain of the electromagnetic fields, D ⊂ R3

B Magnetic flux density [Vs/m2]
D Electric flux density [As/m2]
E Electric field strength vector [V/m]
H Magnetic field strength vector [A/m]
J Current density [A/m2]
Jm Magnetic current density [V/m2]
c0 Speed of light in vacuum (≈ 2.9979 · 108 m/s)
f Frequency [Hz]
s Power loss density [W/m3]
S Power density [W/m2] (Poynting vector amplitude)
ε Permittivity [As/Vm]
εr Relative permittivity
ε0 Permittivity in vacuum (≈ 8.8542 · 10−12 As/Vm)
µ Permeability [Vs/Am]
µr Relative permeability
µ0 Permeability in vacuum (= 4π · 10−7 Vs/Am)
ω (Angular) frequency (= 2πf) [rad/s]
ρ Density [kg/m3]
σ Electric conductivity [S/m]
σm Magnetic conductivity [Ω/m]

FDTD

I the index set, r(I) ≈ D
(i, j, k) x, y and z indices
p p = (i, j, k) ∈ I, the index vector in the FDTD lattice
r(p) r(p) = (x(i), y(j), z(k)) ∈ D, the discretized location vector
∆u Cell width in u direction
∆ Cell width in a cubical grid (∆ ≡ ∆x ≡ ∆y ≡ ∆z)
n Time step index
∆t Time step
Xn(·) X(·, t = n∆t), where X is any quantity
X(p) Short for X(r(p)), where X is any quantity (with domain D)
Kx, Ky, Kz Sizes of the FDTD lattice in x, y and z directions, respectively
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Other symbols and notation

r r = (x, y, z) ∈ D, the location vector
uv unit vector in v direction
j imaginary unit
F Fourier transform
F−1 inverse Fourier transform
· ∗ · convolution
∅ empty set
∪ union
∩ intersection
\ set difference
# number of elements (in a set)
× Cartesian product (of sets), or cross product (of vectors)
| · | absolute value (scalars) or Euclidian norm (vectors)

Abbreviations

ABC Absorbing Boundary Condition
BSA Base station antenna
CFS Complex-frequency shifted (tensor)
CPML Convolutional PML
FDTD Finite-difference time-domain (method)
PEC Perfect Electric Conductor
PML Perfectly Matched Layer
rms root-mean square
SAR Specific Absorption Rate
UPML Uniaxial PML or Unsplit PML
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1 Introduction

Finite-difference time-domain (FDTD) method is the most popular method for the
numerical assessment of human exposure to base station radiation. The exposure to
such radio-frequency fields is measured in terms of specific absorption rate (SAR),
which is a unit of electromagnetic power loss in tissues. The main objective of this
thesis is to investigate and analyze the methods which are needed in FDTD SAR
calculations.

This thesis begins with a detailed description of the FDTD method, starting from
the very derivation of the finite-difference update equations. A particular focus will
be on the modeling of dielectric materials, such as body tissues. Convolutional
perfectly matched layer (CPML) absorbing boundary conditions are thoroughly ex-
amined, and their performance in SAR calculations is verified.

Modeling human anatomies and base station antennas is described at a general
level. Several aspects of antenna modeling in FDTD will be presented, but we
will not go into details of modeling specific antennas. Some available human body
models are presented and their properties are discussed, but constructing human
body models is out of the scope of this work.

A purely electromagnetic perspective is assumed in the exposure analysis. Name-
ly, we are assessing the exposure only in terms of electromagnetic power loss.
Whether or not this causes too much heating of tissues, or consequently, adverse
health effects, is not in the scope of this thesis. The focus is on the SAR calculation
methods. However, some information on the exposure standards and recommenda-
tions by international organizations, i.e. the restrictions on SAR to prevent adverse
health effects, is presented.

A large number of numerical results is included, most of which will be more or less
simplified tests. The objective of the presented results is to illustrate the accuracy
and uncertainties of the methods used in FDTD SAR calculation. Finally, some
results involving a human body model near a base station antenna are presented.

The structure of this thesis is the following. Sections 2–5 describe the theory
of the methods which are needed in the FDTD assessment of exposure to base
station radiation. A large number of numerical results, which illustrate the presented
methods, is contained in Section 6. Discussion of the results is found in Section 7,
and finally, the conclusions are in Section 8.
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2 Finite-difference time-domain method

The finite-difference time-domain method (FDTD) is a numerical technique for solv-
ing electromagnetic problems. The space is divided into small, rectangular voxels
(cells) in which the time-domain fields are solved using an explicit finite-difference
update scheme. Explicity means that no linear algebra is needed, which allows
electrically large problems.

FDTD is proven to be suitable for a wide range of applications, some examples
of which can be found in [1]. Modeling various kinds of heterogenous dielectric
materials or antenna structures is not a problem in FDTD. Consequently, FDTD
is the method of choice in the assessment of human exposure to radio frequency
electromagnetic fields of a base station antenna.

2.1 Yee algorithm

The foundation of the FDTD method is the Yee algorithm, which is a finite-difference
update scheme for the electromagnetic fields, named after K. Yee who first intro-
duced it in 1966 [2].

Assume a rectangular volume D, surrounded by PEC, and filled with isotropic
material. D does not include any sources.

D = {(x, y, z) : x ∈ [xmin, xmax], y ∈ [ymin, ymax], z ∈ [zmin, zmax]} (1)

The Maxwell’s equations in D are

∂

∂t
B = −Jm −∇× E (2)

∂

∂t
D = −J +∇×H. (3)

If the material is nondispersive, i.e. material parameters are independent of the
frequency1, the equations can be written in the form

∂

∂t
H = −σm

µ
H− 1

µ
∇× E (4)

∂

∂t
E = −σ

ε
E +

1

ε
∇×H. (5)

Write a central difference approximation (second order) for the time derivate in
(5) at t = tn+1/2 = (n + 1/2)∆t:

En+1 − En

∆t
≈ −σ

ε
En+1/2 +

1

ε
∇×Hn+1/2. (6)

On the right side

En+1/2 ≈ En+1 + En

2
. (7)

1This assumption is not realistic, because the material parameters of the human tissues are in
fact frequency dependent. However, this assumption is justified in Section 2.3.2.
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Inserting (7) into (6) and rearranging terms yields

En+1 ≈ 2ε− σ∆t

2ε + σ∆t
En +

2∆t

2ε + σ∆t
∇×Hn+1/2. (8)

Denoting

Ca =
2ε− σ∆t

2ε + σ∆t
and Cb =

2∆t

2ε + σ∆t
, (9)

equation (8) becomes
En+1 ≈ CaE

n + Cb∇×Hn+1/2. (10)

Similarly, for the magnetic field, starting from (4) and writing a central difference
approximation at t = tn = n∆t, we get:

Hn+1/2 ≈ DaH
n−1/2 −Db∇× En, (11)

where

Da =
2µ− σm∆t

2µ + σm∆t
and Db =

2∆t

2µ + σm∆t
. (12)

Equations (10) and (11) are the update equations for the electric and magnetic
fields in a continuous space and sampled time. The next step is to apply spatial
discretization into the equations.

Divide [xmin, xmax], [ymin, ymax] and [zmin, zmax] into Kx, Ky and Kz parts, respec-
tively, and denote

xmin = x(0) < x(1) < . . . < x(Kx − 1) < x(Kx) = xmax

ymin = y(0) < y(1) < . . . < y(Ky − 1) < y(Ky) = ymax

zmin = z(0) < z(1) < . . . < z(Kz − 1) < z(Kz) = zmax.
(13)

As a result, D is divided into KxKyKz rectangles (cells). Define the “half-indices”,
which mark the center points of the cells, by

u(l − 1

2
) =

u(l − 1) + u(l)

2
, l ∈ {1, 2, . . . , Ku}, u ∈ {x, y, z}. (14)

The cell widths ∆x, ∆y and ∆z are defined

∆u(l) = u(l +
1

2
)− u(l − 1

2
), l ∈ {1

2
, 1, . . . , Ku − 1, Ku −

1

2
}, u ∈ {x, y, z}. (15)

The spatial locations of the discretized field components are chosen in a divergen-
ce-free nature, as shown in Figure 1. This choice of the positions of the field com-
ponents is the main insight of [2]. Every electric field component is surrounded by
circulating magnetic field components and vice versa, and no two field components
are positioned in the same grid point. Denote the set of indices in which the dis-
cretized fields are defined by IEx for Ex, IEy for Ey and so on. The index sets then
become:

IEx =
{
(i− 1

2
, j, k) : i = 1, . . . , Kx; j = 0, . . . , Ky; k = 0, . . . , Kz

}
IEy =

{
(i, j − 1

2
, k) : i = 0, . . . , Kx; j = 1, . . . , Ky; k = 0, . . . , Kz

}
IEz =

{
(i, j, k − 1

2
) : i = 0, . . . , Kx; j = 0, . . . , Ky; k = 1, . . . , Kz

}
IHx =

{
(i, j − 1

2
, k − 1

2
) : i = 0, . . . , Kx; j = 1, . . . , Ky; k = 1, . . . , Kz

}
IHy =

{
(i− 1

2
, j, k − 1

2
) : i = 1, . . . , Kx; j = 0, . . . , Ky; k = 1, . . . , Kz

}
IHz =

{
(i− 1

2
, j − 1

2
, k) : i = 1, . . . , Kx; j = 1, . . . , Ky; k = 0, . . . , Kz

}
(16)
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(i, j, k) (i + 1, j, k)

(i + 1, j + 1, k)

(i + 1, j + 1, k + 1)(i, j + 1, k + 1)

(i, j, k + 1)

z y

x

Ez

Ez

Ez

Ey

Ey

Ey

Ex

Ex

Ex

Hy

Hx

Hz

Figure 1: The locations of the field components in a single cell (Yee cell).

Here the indices p = (i, j, k) correspond to points r(p) = (x(i), y(j), z(k)) ∈ D,
where x(i), y(j) and z(k) are defined in (13). Notice that the index sets are disjoint

IX ∩ IY =

{
∅, X 6= Y
IX , X = Y

X, Y ∈ {Ex, Ey, Ez, Hx, Hy, Hz}.

We denote

I =

{
(i, j, k) : i = 0,

1

2
, . . . , Kx; j = 0,

1

2
, . . . , Ky; k = 0,

1

2
, . . . , Kz

}
, (17)

which is the set of all possible indices, including the half-indices.
Define

I0 = {(i, j, k) ∈ I : i ∈ {0, Kx} ∨ j ∈ {0, Ky} ∨ k ∈ {0, Kz}} , (18)

which means the set of indices which are located on the outer PEC boundaries.
Next, we will discretize the curl operator, which can be rewritten as

∇× =

 0 − ∂
∂z

∂
∂y

∂
∂z

0 − ∂
∂x

− ∂
∂y

∂
∂x

0

 . (19)

The spatial derivates in (19) are replaced with their central-difference approxima-
tions

∂

∂x
F (i, j, k) ≈

F (i + 1
2
, j, k)− F (i− 1

2
, j, k)

∆x(i)
(20)
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∂

∂y
F (i, j, k) ≈

F (i, j + 1
2
, k)− F (i, j − 1

2
, k)

∆y(j)
(21)

∂

∂z
F (i, j, k) ≈

F (i, j, k + 1
2
)− F (i, j, k − 1

2
)

∆z(k)
. (22)

If the grid is uniform (∆x, ∆y and ∆z are constant), these approximations are
second-order (O(∆2)) accurate. With nonuniform grid, they are only first-order
accurate at some indices (see next section). Denote the resulting discrete curl-
operator by ∇⊗.

Equation (10) becomes Ẽn+1
x (px)

Ẽn+1
y (py)

Ẽn+1
z (pz)

 =

 Ca(px)Ẽ
n
x (px)

Ca(py)Ẽ
n
y (py)

Ca(pz)Ẽ
n
z (pz)

+

 Cb(px) 0 0
0 Cb(py) 0
0 0 Cb(pz)

∇⊗
 H̃

n+1/2
x (px)

H̃
n+1/2
y (py)

H̃
n+1/2
z (pz)

 ,

(23)
where px ∈ IEx\I0, py ∈ IEy\I0 and pz ∈ IEz\I0. For brevity, we have denoted
Ca(p) = Ca(r(p)) and Cb(p) = Cb(r(p)).

Equation (11) becomes H̃
n+ 1

2
x (px)

H̃
n+ 1

2
y (py)

H̃
n+ 1

2
z (pz)

 =

 Da(px)H̃
n− 1

2
x (px)

Da(py)H̃
n− 1

2
y (py)

Da(pz)H̃
n− 1

2
z (pz)

−
 Db(px) 0 0

0 Db(py) 0
0 0 Db(pz)

∇⊗
 Ẽn

x (px)

Ẽn
y (py)

Ẽn
z (pz)

 ,

(24)
where px ∈ IHx\I0, py ∈ IHy\I0 and pz ∈ IHz\I0. Again, we have used the shorter
notation Da(p) = Da(r(p)) and Db(p) = Db(r(p)). Notice that the fields are not
updated in I0, where the fields are zeros.

In the equations, we have not taken into account the possibility of dielectric or
magnetic material boundaries. The field components and material parameters at
such boundaries need to be given a special treatment, which is described in Section
2.3.3.

Equations (23) and (24) are the update equations for the Yee’s algorithm in an
isotropic medium. In the equations, we denoted the discretized fields with tildes.
In what is to follow, it should be clear from the context whether we mean the
accurate fields (solutions of (4), (5)) or the discretized fields, so the tildes are left
out. Additionally, we will implicitly assume the notation X(p) = X(r(p)) for any
nondiscretized quantity X : D → R.

The algorithm can be summarized as follows. The Ex component is used as an
example, and other field components are treated similarly. The accurate field

Ex : D × R+ → R,

which is the solution for the Maxwell’s equations (4) and (5), is approximated by
the discretized field

Ẽx : IEx × {0, 1, . . .} → F, (25)

5



such that
Ex(r(p); tn) ≈ Ẽn

x (p), p ∈ IEx ,

where Ẽn
x (p) is calculated at each time step using (23) and (24). In (25), F de-

notes the floating-point numbers. In this work, 4-byte floating-point numbers are
used in the numerical calculations. However, in the following theory sections, exact
arithmetic is assumed.

If the material is nonpermeable (µr ≡ 1, σm ≡ 0), as is usually assumed in human
exposure calculations, equation (24) is simplified. In such a case, the coefficients Da

and Db are constants (specially: Da ≡ 1). From now on, that is assumed in this
work.

2.2 Accuracy and stability

In the case of nonuniform grid, the spatial-difference approximations (20)–(22) are
locally only first-order accurate at “full” indices (that means the spatial derivates
of the magnetic field). E.g. substituting definitions (14) and (15) into (20), when
i ∈ {1, 2, . . . , Kx − 1}, gives

F (i + 1
2
)− F (i− 1

2
)

∆x(i)
=

F (i + 1)− F (i− 1)

∆x(i + 1
2
) + ∆x(i− 1

2
)

=
∂

∂x
F (i)+O(∆x(i+

1

2
)−∆x(i−1

2
)).

If i ∈ {1
2
, 3

2
, . . . , Kx − 1

2
}, this approximation would be second order. However, as

proven in [3], the global accuracy is still second order, regardless of the first-order
local accuracy (Yee’s algorithm is supra-convergent). Thus, when the quotient ∆t/h,
where h = max(∆) is the greatest spatial step, is kept constant, the discretization
error (in a discrete L2-norm) behaves as:

error ≤ C(tn + 1)h2, (26)

where C is some constant and tn = n∆t.
A common rule of thumb for the mesh resolution is the “λ/10 rule”: cell size

should not be larger than one tenth of the wavelength. The wavelength is shorter
inside dielectric materials, so consequently, the mesh should be finer there.

Yee’s algorithm is an explicit finite-difference method, and its stability is condi-
tional. A necessary condition for the stability is that the time step ∆t must satisfy
the Courant-Friedrichs-Lewy (CFL) condition

∆t ≤ 1

c0

√
1

min (∆x2)
+ 1

min (∆y2)
+ 1

min (∆z2)

= CFL. (27)

Essentially, equation (27) means that the domain of dependence of the discretized
problem must include the domain of dependence of the continuous problem.

Usually, the time step ∆t is chosen to be some quotient of the CFL condition.
E.g. in this work, unless otherwise stated, the time step will be

∆t = 0.99 CFL.
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2.3 Materials in FDTD

In Yee algorithm, the space is essentially divided into a finite number of rectangles.
It is obvious that modeling curved structures cannot be done accurately using the
standard algorithm. The simplest approximation, the staircase approximation, just
discretizes material objects so that they fit into the FDTD lattice.

There are numerous methods presented in the literature to improve the approx-
imation of curved boundaries. In this work, however, only the staircase approxima-
tion will be focused on. This is mainly the case because most human voxel models
for FDTD SAR calculations are staircase models.

2.3.1 PEC and PMC

Structures consisting of perfect electric or magnetic conductors can be easily modeled
in FDTD. For example, if we want to model a PEC structure, such as an antenna,
find indices IPEC ⊂ I (17) which belong to tangential electric or normal magnetic
fields on the PEC boundaries. Then add these indices into I0 (18).

After updating the fields with (23) and (24), the field components the indices of
which are in IPEC will be set to zeros. Alternatively, one could set σ = ∞ inside
the PEC structures as described in Section 2.3.3, but this approach does not allow
thin sheets or wires.

2.3.2 Frequency-dependent materials

It was assumed in the derivation of the FDTD update equations that the mate-
rial parameters were independent of the frequency. Unfortunately, this assumption
does not hold with the material parameters of human tissues, which are frequency
dependent (see Section 2.3.6).

In this section, we will briefly describe how dispersive materials could be included
in FDTD simulations. It will also be shown that modeling the dispersion is not
usually needed. A time dependence ejωt is assumed in the following.

For linear-dispersive media, the (complex) permittivity (ε̂) can be written in the
frequency domain as

ε̂ = ε̂(ω) = ε0(ε∞ + χe(ω)) = ε′(ω)− jε′′(ω), (28)

where χe is the (complex-valued) electric susceptibility function, and ε∞ is the per-
mittivity when ω →∞.

The electric flux in the frequency domain is thus

D(ω) = ε0(ε∞ + χe(ω))E(ω). (29)

In time domain this becomes

D(t) = ε0[ε∞E(t) + (χe ∗ E)(t)], (30)

where ∗ denotes convolution.
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The special case of nondispersive materials, as assumed in Section 2.1, is

ε∞ = εr

χe(ω) =
σ

jωε0

.

In this case, the calculation of the convolution is avoided, as 1/jω means integration
in the time domain.

Including the convolution in (30) in the FDTD update equations can be done
using the recursive-convolution (RC) technique (see e.g. [1]). Section 3.5 contains
an example of the usage of the RC technique (for absorbing boundary conditions).

Basically, using the RC method would result in inserting recursive accumulator
terms {ΨuE

n} into each of the update equations (23). Each of these terms would
have their own update equations which would depend on the dispersion models of
the materials. This would essentially double the memory requirements of storing
the electric fields {Eu}, as each component would require their own {ΨuE

n}, re-
spectively.

Fortunately, the above approach is not needed if we are only interested in the
fields at a certain fixed frequency ω0. If the materials are assumed to be linear2, the
solutions of the Maxwell’s equations at the fixed frequency ω0 do not depend on the
solutions of the other frequencies.

Setting the material parameters to nondispersive

ε ≡ ε′(ω0) = Re{ε̂(ω0)}, (31)

and
σ ≡ ω0ε

′′(ω0) = −ω0Im{ε̂(ω0)}, (32)

will give the correct solution at ω = ω0. The solutions at other frequencies will
most likely be incorrect. Thus, unless the time dependence of the fields is strictly
sinusoidal (frequency ω0), the time-domain fields will also be unrealistic.

This somewhat justifies the initial assumption of nondispersive materials. Namely,
the solutions at fixed frequencies are the main interest in this work.

2.3.3 Modeling material objects

One of the most important features of FDTD is the ease with which heterogeneous
dielectric and/or conducting objects can be included in calculations. Basically, there
are two ways how dielectric materials can be included: the material may be posi-
tioned either in E cells (an example of an E cell is shown in Figure 1) or in H cells.
The cells are indexed by their center points, resulting in index sets

IE =

{
(i− 1

2
, j − 1

2
, k − 1

2
) : i = 1, . . . , Kx; j = 1, . . . , Ky; k = 1, . . . , Kz

}
(33)

2Permittivity and conductivity do not depend on the field strengths. This assumption does not
necessarily hold in reality.
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for the E cells, and

IH = {(i, j, k) : i = 0, . . . , Kx; j = 0, . . . , Ky; k = 0, . . . , Kz} (34)

for the H cells.
Each cell p ∈ IE or p ∈ IH is given material parameters ε(p) and σ(p). The

material parameters are assumed to be constant inside a single cell.
When using the E cells, the electric field (E) components are located on the cell

edges, and are thus tangential to material boundaries. When the H cells are used,
the magnetic field (H) components are positioned on the cell edges, which results
in the electric field components being located on the cell faces, normal to material
boundaries. On the boundaries of dissimilar materials, effective material parameters
need to be used when calculating the coefficients (9). Also, the field components on
the boundaries must be interpreted differently.

In the following, the fields are assumed complex and time harmonic as in Section
2.3.2. Similarly to that section, the complex permittivities (28) are denoted with
hats (ε̂), and the nondispersive permittivity (31) and conductivity (32) are denoted
without hats.

The boundary conditions for the electric field and the electric flux density on
material boundaries are

n× E1 = n× E2 (35)

n ·D1 = n ·D2 (36)

where n is the normal vector of the boundary. These conditions result in electric
flux density tangential component being discontinuous on a boundary. And similarly,
electric field normal component is discontinuous.

The electric field tangential component and the electric flux density normal com-
ponent are well defined in a physical sense. The other components, i.e. the electric
field normal component or the electric flux density tangential component, are “effec-
tive” in nature. On a boundary, they are defined as a linear average of the (physical)
fields on the two sides of the boundary.

The effective material parameter ε̂eff is defined

D = ε̂effE, in IEx ∪ IEy ∪ IEz , (37)

such that it links the effective and the physical field.
The effective parameters at an arbitrary location p ∈ (IEx ∪ IEy ∪ IEz) can be

defined as follows.
Figure 2 shows the location of an electric field component when the materials

are positioned in E cells. The electric field is tangential to the material boundaries.
Thus the electric field is the actual physical field, and the electric flux density is an
effective field.

In the figure, the (complex) permittivities of the four cells are ε̂1, ε̂2, ε̂3, and ε̂4.
The electric field E is tangential to the interface of the materials, and by continuity,
it is the same in all four cells. The physical electric flux density tangential component

9



εeff = 1
4 (ε1 + ε2 + ε3 + ε4)

ε1 ε2

ε3ε4

Figure 2: The location of an electric field component and the effective permittivity
in the E-cell case.

Dl in each cell l is then Dl = ε̂lE, and the effective electric flux D at the marked
edge is the average of these. The effective permittivity at the edge can be calculated

ε̂effE = D =
1

4
(D1 + D2 + D3 + D4) =

1

4
(ε̂1E + ε̂2E + ε̂3E + ε̂4E)

⇒ ε̂eff =
1

4
(ε̂1 + ε̂2 + ε̂3 + ε̂4) . (38)

In the case of nondispersive media as in (31), (32), the material parameters on the
edge are thus

εeff =
1

4
(ε1 + ε2 + ε3 + ε4)

and

σeff =
1

4
(σ1 + σ2 + σ3 + σ4) ,

where {εu} and {σu} are the respective nondispersive material parameters of the
four cells.

εeff = 2ε1ε2
ε1+ε2

ε1 ε2

Figure 3: The location of an electric field component and the effective permittivity
in the H-cell case.

The situation in which the materials are in H cells is illustrated in Figure 3. The
electric field component is normal, so the electric flux density is the actual physical
field, and the electric field is an effective field.
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The effective electric field E on the side is the linear average of the physical
electric fields E1 and E2 of the two neighboring cells. By continuity, the electric flux
density normal component D is the same in both cells, so ε̂1E1 = ε̂2E2 = D. The
effective permittivity can then be calculated

D = ε̂effE = ε̂eff
1

2
(E1 + E2) = ε̂eff

1

2

(
D

ε̂1

+
D

ε̂2

)

⇒ ε̂eff =
2ε̂1ε̂2

ε̂1 + ε̂2

. (39)

The case of nondispersive media, as in (31), (32), is a little more complicated than
in the E-cell case. Generally, the effective permittivity on the boundary will become
dispersive, even if the two materials are nondispersive. The nondispersive material
parameters are thus

εeff = Re{ε̂eff} ≈
2ε1ε2

ε1 + ε2

,

and

σeff = −ω0Im{ε̂eff} ≈
2σ1σ2

σ1 + σ2

.

The approximations usually seem to give values very close to the accurate values,
and they are used in this work instead of the accurate values.

In the H-cell case, the electric field of the FDTD algorithm is an effective field.
Postprocessing the results, such as calculating power loss, requires the physical elec-
tric field, which can be calculated as follows (in both time and frequency domain).
Assume we know the (effective) electric field normal component E = ε−1

eff D on the
side in Figure 3. Then the actual physical electric field normal components E1 and
E2 in the respective cells are obtained by

E1 =
1

ε1

D =
εeff

ε1

E

E2 =
1

ε2

D =
εeff

ε2

E. (40)

If there were permeable materials, the effective permeability µeff would have to
be used. By analogy, it would be calculated similarly to the effective permittivity
above by swapping E ↔ H, D ↔ B, and ε ↔ µ. In the E-cell case, the magnetic
field of the FDTD simulation would be an effective field, and in the case of H cells,
the magnetic field would be the actual physical field.

In summary, in the H-cell case, the actual physical unknowns are the magnetic
field and the effective electric field which is closely related to the physical electric
flux density by (37).

The E-cell case, which is the “usual” approach used in literature, is treated anal-
ogously. In this case, the physical unknowns are the electric field and the magnetic
flux density. If the materials are nonpermeable, then the magnetic flux density B
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is essentially the same as the magnetic field H (specifically: B = µ0H), and both
the electric and magnetic fields of the FDTD simulation are the actual physical
quantities.

The E-cell and H-cell approaches generally give slightly different results, and
their effect on the SAR values will be studied in the latter sections. The H-cell
approach may seem awkward compared to the usual E-cell approach, but one cannot
say the E-cell approach is strictly better. In fact, as will be shown in Section 6.2,
both approaches may give good or bad results depending on the situation. Also,
when magnetic materials are included in the simulation, both approaches are equally
“good”.

2.3.4 Staircase approximation

Staircase approximation is the simplest way to approximate curved material bound-
aries. In this work, the staircase approximation is done in the following way.

Assume an object A ⊂ D consisting of some material in the calculation region.
The discrete location vector is defined by

r : (i, j, k) 7→ (x(i), y(j), z(k)), (i, j, k) ∈ I, (41)

where x, y and z are as defined in (13) and (14). Assuming that the material cells
are X cells, where X ∈ {E, H}, we get the staircase approximation IA ⊂ IX of the
object A by

IA = {p ∈ IX : r(p) ∈ A} . (42)

This means that the cell belongs to the object, if the location of the center point of
the cell is within the object. We can now set the material parameters of the cells
accordingly.

For example, the staircase approximation of a sphere centered in r0 ∈ D with
radius a is done in the following way. For a cell p ∈ IX , X ∈ {E, H} (center point
r(p)): If the inequality

|r(p)− r0| < a (43)

holds, then the cell belongs to the sphere. This is illustrated in Figure 4, which
shows the staircase approximation of two equicentric spheres with different radii.
The grid in the figure may be either E or H grid.

2.3.5 Packed coefficients

In many applications, there are only a relatively small number of distinct materials
in the computational domain, e.g. this is the case with most human voxel models.
In such a case, the memory requirements of storing the coefficients Ca and Cb can
be reduced.

Assume there is N number of different media in the calculation domain (N
includes the number of effective materials at voxel edges and sides). Then the
coefficients Ca and Cb will only have N distinct values.
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Figure 4: Staircase approximation of two equicentric spheres with different radii.

Defining a mapping

Mu : IEu → {1, . . . , N} , u ∈ {x, y, z} (44)

and C̃a and C̃b so that

Ca(p) = C̃a(Mu(p))

Cb(p) = C̃b(Mu(p))
p ∈ IEu , u ∈ {x, y, z} (45)

we only need to store vectors C̃a and C̃b, and the three material tables Mu. The
memory requirements are thus two vectors of length N and three integer tables,
with a total number of elements

#(IEx) + #(IEy) + #(IEz) ≈ 3KxKyKz.

Without the above approach, we would have to store floating-point tables Ca and
Cb, totaling

2#(IEx ∪ IEy ∪ IEz) ≈ 6KxKyKz

elements.
For example, assuming 4 byte floating point numbers and 2 byte integer numbers,

the packed-coefficients approach would cut the memory requirements of storing the
material information to one fourth.

With packed coefficients, the H-cell approach presented in the previous section
is a little better than the traditional E-cell approach. The total number of different
effective material parameters N will be smaller, because the effective parameters
of the H-cell case are combinations of the parameters of two neighboring cells, and
with the E cells, they are combinations of four.
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2.3.6 Human body models in FDTD

Usually human body models for FDTD consist of a three-dimensional table, which
tells the tissue type in each cell. There are usually only a few dozen tissue types, each
of which has a (frequency dependent) permittivity and conductivity, and density.
This kind of structure is ideal for the packed-coefficients approach, as described
in Section 2.3.5. For example, if we want the material parameters for a different
frequency, we only need to change the vectors C̃a and C̃b accordingly. Everything
else stays the same.

In this work, the material parameters of tissues at different frequencies are de-
termined as presented in [4], [5], [6], and calculated using a web resource [7].

Resolutions of available human voxel models typically range from 0.5 mm to
10 mm. In the frequency range used by mobile communications (900 MHz–2140 MHz),
the resolutions need to be finer than 4 mm–1.8 mm in order to satisfy the λ/10 rule
inside the body.

In addition to producing a larger discretization error (26), too coarse resolutions
may fail to model the important anatomical details of the body. One of the most
significant of these is the skin. An adult has usually a skin thickness of 2–3 mm. If
the resolution is coarser than this, the skin will be thicker (1 cell), or there will be
areas without skin. This may have a large impact on the energy absorption inside
the body at least at higher frequencies, when the penetration depth is smaller.

Various human body models of different sizes and shapes have been developed.
Visible man [8] (based on data from the Visible Human Project [9]), Norman [10]
and Zubal [11] voxel models will be used in this work. Their measures are presented
in Table 1. The masses of the models depend on the choice of the density of the
tissues. The densities used in this work are presented in Table 2. They are similar
to the densities used in [8].

The resolutions of the models range from 1 mm (Visible man) to 3.6 mm (Zubal),
and are also presented in Table 1. Anatomical resolution means the resolution with
which the models are constructed from anatomical data (by whatever means). The
resolution can be increased to get a smaller discretization error e.g. by the method
presented in Section 6.5.1.

The physiques and postures of the three models are illustrated in Figure 5. The
figure is only suggestive: The models in the figure might be slightly out of scale in
relation to each other, and the coloring of one model does not necessarily match the
coloring of the other models. Zubal and Visible man have their arms angled in front
of the body, and Norman’s arms are positioned along the body sides.

The International Commission on Radiological Protection (ICRP) reference man
[12] has weight and height 73 kg and 176 cm, respectively. Of the three models used,
Norman is the closest to the reference, and can be made to match the measures of
the reference man almost exactly with a slight scaling. Norman is the only model
which has normal weight, while Zubal is overweight, and Visible man is obese3.

3By the Body-mass index (BMI)
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Table 1: Heights and weights of human body models used in this work. The densities
of the tissues are presented in Table 2. The resolution of the Norman model is scaled
slightly to produce the height and weight of the ICRP reference man.

Model (Anatomical) resolution Height Weight
Visible man 3 mm 186 cm 105.4 kg
Visible man 1 mm 186 cm 105.3 kg

Norman 2.022 mm 176 cm 73.0 kg
Zubal 3.6 mm 176 cm 81.9 kg

Figure 5: Norman (left), Zubal and Visible man
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Table 2: Tissue densities used in this work.
Tissue Density [g/cm3]
Bile 1.0100

Bladder 1.0300
Blood 1.0580

Blood vessel 1.0400
Body fluid 1.0100

Bone (cancellous) 1.9200
Bone (cortical) 1.9900
Bone marrow 1.0400

Cartilage 1.0970
Cerebellum 1.0380

Cerebral spinal fluid 1.0072
Eye (cornea) 1.0760
Eye (lens) 1.0530

Eye (sclera/wall) 1.0260
Fat 0.9160

Gall bladder 1.0300
Glands 1.0500

Gray matter 1.0380
Heart 1.0298

Intestine 1.0425
Ligaments 1.2200

Liver 1.0300
Lung (inner) 0.2600
Lung (outer) 1.0500

Lymph 1.0400
Muscle 1.0469

Muscous membrane 1.0400
Nails (toe and finger) 1.0300

Nerve (spine) 1.0380
Pancreas 1.0450

Skin/dermis 1.1250
Spleen 1.0541

Stomach 1.0500
Testicles 1.0440
Tooth 2.1600

White matter 1.0380
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3 Absorbing boundary conditions

As available memory for computation is finite, modeling of unbounded domains
must be done by using special absorbing boundary conditions (ABCs) to terminate
the FDTD lattice. These boundary conditions simulate an infinite region by making
the reflection from the boundary as small as possible.

A number of analytical ABCs have been used (see e.g. [1]). Today, the most com-
monly used absorbing boundary conditions are the perfectly matched layer (PML)
absorbing boundary conditions, first introduced by Bérenger in 1994 [13]. These
include Bérenger’s original split-field PML, uniaxial (or unsplit) PML (UPML) [14]
and convolutional PML (CPML) [15]. Only the CPML absorbing boundary con-
ditions are studied in this work. The advantages of PML over analytical ABCs
include: the studied structures can be very close to the ABC, and PML is better
suited for parallel computing [16].

The basic idea of PML is impedance matching between the PML region and free
space, which makes the reflection from the PML boundary as small as possible (zero
in the continuous situation) for all incident angles and frequencies. Additionally,
the PML material is a “lossy” material, so the traveling waves are attenuated inside
the PML, and the FDTD lattice can be terminated with PEC when the wave has
decayed enough. These properties allow the PML to absorb incoming waves nearly
“perfectly”.

3.1 PML equations

Here we will derive some properties of PML materials, using the “coordinate stretch-
ing” approach, which was first introduced by Chew and Weedon in 1994 [16].

Introduce a change of variables

x̃(ω) =

∫ x

0

sx(ω, x′)dx′; ỹ(ω) =

∫ y

0

sy(ω, y′)dy′; z̃(ω) =

∫ z

0

sz(ω, z′)dz′, (46)

where {su} are the coordinate stretching variables, which may be complex. The ∇
operator in these coordinates4 can be written

∇̂s = ux
∂

∂x̃
+ uy

∂

∂ỹ
+ uz

∂

∂z̃
= ux

1

sx

∂

∂x
+ uy

1

sy

∂

∂y
+ uz

1

sz

∂

∂z
. (47)

Next, we write the Maxwell’s equations in frequency domain in the coordinates
(x̃, ỹ, z̃). A time-dependence ejωt is assumed.

jωεE = ∇̂s ×H (48)

−jωµH = ∇̂s × E (49)

In a homogeneous and isotropic medium with material parameters ε and µ, a
general, homogeneous plane wave has the form

E = E0e
−jk·r, H = H0e

−jk·r, (50)

4Here the hatted nabla (∇̂) means that the operator is in frequency domain.

17



where
k = uxkx + uyky + uzkz. (51)

Substituting (50) into the modified Maxwell’s equations (48) and (49) yields

ks × E = ωµH (52)

ks ×H = −ωεE, (53)

where

ks = ux
kx

sx

+ uy
ky

sy

+ uz
kz

sz

. (54)

Substituting (53) into (52) gives

ω2µεH = −ks × ks ×H = −ks(ks ·H) + H(ks · ks). (55)

As ks ·H = 0 due to (52), this gives the dispersion relation in PML:

ω2µε = ks · ks =
k2

x

s2
x

+
k2

y

s2
y

+
k2

z

s2
z

. (56)

3.2 Reflection from PML interfaces

Assume a plane wave incident on the boundary of two homogeneous and isotropic
materials. The angle of incidence and the polarization of the wave are arbitrary.
The situation is shown in Figure 6.

1
2

z

z = 0

ε2, µ2

ε1, µ1

ki

kr

kt

Figure 6: The wave numbers k when an incident plane wave reflects from the inter-
face of materials 1 and 2.

Region 1 (z < 0) has material parameters ε1 and µ1, and coordinate stretching
variables {s1u}. Incident plane wave is notated with superscript ‘i’, and the reflected
wave with ‘r’.

Region 2 (z > 0) has material parameters ε2 and µ2, and coordinate stretching
variables {s2u}. Transmitted wave is notated with a superscript ‘t’.

In half space 1 (z < 0), the total electric field is of the form

E1(r) = Eie−jki·r + Ere−jkr·r (57)
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and in half space 2 (z > 0)
E2(r) = Ete−jkt·r. (58)

Magnetic fields in both regions can be acquired using plane wave condition (52):

H1 =
ki

s

ωµ1

× Eie−jki·r +
kr

s

ωµ1

× Ere−jkr·r (59)

and

H2 =
kt

s

ωµ2

× Ete−jkt·r. (60)

On the interface z = 0, denote the coordinate vector ρ = xux + yuy. It follows
from (48) (similarly to standard Maxwell equations; {su} are assumed to behave
“well enough”) that the electric and magnetic field tangential components are con-
tinuous across interfaces. Here we denote the tangential components of the fields on
the interface by subscript ‘tan’. Thus, on the interface, for all ρ

E1tan = E2tan

⇔
Ei

tane
−jki·ρ + Er

tane
−jkr·ρ = Et

tane
−jkt·ρ.

(61)

As the above must hold for all ρ, that implies

ki
tan = kr

tan = kt
tan, (62)

which is the Snell’s Law (unchanged from the standard Maxwell’s equations), and

Ei
tan + Er

tan = Et
tan. (63)

From the dispersion relation (56) in region 1 and Snell’s Law (62) follows (kr
z)

2 =
(ki

z)
2. Choose kr

z = −ki
z and define

k1z = kr
z = −ki

z

k2z = kt
z.

(64)

The continuity of the magnetic field tangential component gives, using (59) and
(60), (

ki
s

µ1

× Ei +
kr

s

µ1

× Er

)
tan

=

(
kt

s

µ2

× Et

)
tan

, (65)

where {kv
s : v = i, r, t} are defined as in (54), using the coordinate stretching vari-

ables {s1u} for ki
s and kr

s; and {s2u} for kt
s.

A plane wave can be decomposed into a sum of TEz and TMz polarized compo-
nents, for which either the electric (TEz) or magnetic (TMz) fields are transverse to
the normal of the interface (uz). First, we will only consider the TE polarization.

Substitute (63) into (65), which gives(
ki

s

µ1

× Ei +
kr

s

µ1

× Er

)
tan

=

(
kt

s

µ2

× (Ei + Er)

)
tan

. (66)
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As the electric field is transversal to z direction, rearranging terms, taking the
tangential components and substituting (54) and (64) into the above equation gives(

k1z

µ1s1z

− k2z

µ2s2z

)
(uz × Ei) =

(
k1z

µ1s1z

+
k2z

µ2s2z

)
(uz × Er) (67)

The reflection coefficient RTE is thus

RTE =
|Er|
|Ei|

=
k1zs2zµ2 − k2zs1zµ1

k1zs2zµ2 + k2zs1zµ1

. (68)

For TM polarization, the reflection coefficient can be acquired similarly, and the
result is

RTM =
|Hr|
|Hi|

=
k1zs2zε2 − k2zs1zε1

k1zs2zε2 + k2zs1zε1

. (69)

Now choose the material parameters

µ1 = µ2 = µ
ε1 = ε2 = ε

s1x = s2x = sx

s1y = s2y = sy.

(70)

From the dispersion relation (56) and Snell’s Law (62), we get a relation for k1z and
k2z

k1z

s1z

=

√
ω2µε− k2

x

s2
x

−
k2

y

s2
y

=
k2z

s2z

(71)

Substituting (70) and (71) into the expressions for reflection coefficients (68) and
(69), we obtain

RTE = RTM = 0.

This holds for all frequencies and angles of incidence of the plane wave. Here the
incident plane wave was assumed to be homogeneous, but the above also holds for
general nonhomogeneous plane waves [17].

The above holds for arbitrary s1z and s2z. For example, if region 1 is air (
s1z = 1), and we choose s2z to be a complex number, it follows from (56) that the
corresponding k2z will also be complex, and the wave will attenuate in the direction
of the z axis in region 2.

3.3 PML equations in time domain

∇̂s-operator inside the PML in the frequency domain was

∇̂s = ux
1

sx

∂

∂x
+ uy

1

sy

∂

∂y
+ uz

1

sz

∂

∂z
.

Stretching coefficients {su} may depend on the frequency ω, so to express this op-
erator in time domain, calculation of convolution is (generally) necessary. In time
domain, ∇s becomes

∇s = uxF−1

(
1

sx

)
∗ ∂

∂x
+ uyF−1

(
1

sy

)
∗ ∂

∂y
+ uzF−1

(
1

sz

)
∗ ∂

∂z
. (72)
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3.4 Complex frequency-shifted tensor

The so-called complex frequency-shifted tensor (CFS) coefficient has proven to be a
“good” choice for the stretching coefficients {su}

su = κu +
σu

au + jωε0

, u ∈ {x, y, z}, (73)

where σu and au are non-negative real numbers and κu ≥ 1. This choice of coordinate
stretching parameter holds Berenger’s original PML as a special case (κu = 1, au =
0).

Performing an inverse Fourier transform to the CFS parameters {su} gives

F−1

(
1

su

)
(t) = F−1

(
1

κu + σu

au+jωε0

)
(t) =

δ(t)

κu

− σu

εκ2
u

e−(σu
κ

+au) t
ε Θ(t) =

δ(t)

κu

+ζu(t),

(74)
where Θ(t) denotes the unit step function.

Substituting above to the ∇s in (72) gives

∇s = ∇κ +∇∗ (75)

where

∇κ = ux
1

κx

∂

∂x
+ uy

1

κy

∂

∂y
+ uz

1

κz

∂

∂z
(76)

∇∗ = uxζx ∗
∂

∂x
+ uyζy ∗

∂

∂y
+ uzζz ∗

∂

∂z
, (77)

where
ζu(t) = − σu

εκ2
u

e−(σu
κ

+au) t
ε Θ(t), u ∈ {x, y, z} (78)

3.5 Convolutional PML

Convolutional PML (CPML) is an efficient implementation of the CFS-PML pre-
sented in the previous section. CPML was introduced by Roden and Gedney in 2000
[15].

Whereas Bérenger’s original split-field-PML and UPML implementations try to
avoid calculating convolution, it is calculated in CPML. The convolution is calcu-
lated using the recursive-convolution (RC) technique [18].

Using the notation from the previous section, we can write the modified Maxwell’s
equations (48) and (49) in time domain in the form

∂

∂t
H = − 1

µ
(∇κ × E +∇∗ × E) (79)

∂

∂t
E = −σ

ε
E +

1

ε
(∇κ ×H +∇∗ ×H) , (80)

where ∇κ and ∇∗ are defined in (76) and (77).
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We see that ∇κ× can be discretized similarly to the regular ∇×-operator (19):
The cell widths {∆u} in the denominators of the finite difference approximations
(20)–(22) are multiplied by {κu}. Here {κu}-parameters can be interpreted to just
stretch the cell sizes in spatial coordinates. We denote the discretized operator by
∇κ⊗.

Discretizing ∇∗× requires a little more work, as it is dependent on both time
and spatial location. Let us notate the required convolutions with

ΨuX(t) =

(
ζu ∗

∂

∂u
X

)
(t) =

∫ t

0

ζu(τ)
∂

∂u
X(t− τ)dτ , u ∈ {x, y, z}, (81)

where X = X(t) may be any field component.
Now, if we assume that X is piecewise constant (in time), we can approximate

the convolution at t = n∆t by

ΨuX
n =

∫ n∆t

0

ζu(τ)
∂

∂u
X(n∆t− τ)dτ ≈

n−1∑
m=0

∂

∂u
Xn−m

∫ (m+1)∆t

m∆t

ζu(τ)dτ

=
n−1∑
m=0

∂

∂u
Xn−mZm

u , (82)

where

Zm
u =

∫ (m+1)∆t

m∆t

ζu(τ)dτ = − σu

εκ2
u

∫ (m+1)∆t

m∆t

e−(σu
κ

+au) τ
ε dτ

= cu(bu)
m, (83)

where
cu =

σu

σuκu + κ2
uau

(
e−(σu

κ
+au)∆t

ε − 1
)

, (84)

bu = e−(σu
κ

+au)∆t
ε . (85)

Calculation of the sum in (82) can be done recursively. First, we rearrange the
sum, and utilize Zm+1

u = buZ
m
u and Z0

u = cu from (83).

ΨuX
n =

n−1∑
m=1

∂

∂u
Xn−mZm

u +
∂

∂u
XnZ0

u =
n−2∑
m=0

∂

∂u
X(n−1)−mZm+1

u︸ ︷︷ ︸
buΨuXn−1

+
∂

∂u
Xn. Z0

u︸︷︷︸
cu

We get

ΨuX
n = buΨuX

n−1 + cu
∂

∂u
Xn. (86)

Replacing the spatial derivates in (86) with their central difference approxima-
tions (20)–(22), we can write the discretized ∇∗× operator as

∇∗× ≈ ∇∗⊗ =

 0 −Ψz Ψy

Ψz 0 −Ψx

−Ψy Ψx 0

 . (87)
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Now, we get the FDTD update equations inside the PML by replacing the op-
erator ∇⊗ in the update equations (23) and (24) with ∇κ ⊗ +∇∗⊗. By defining
κu = 1 outside the PML region, we can use the same ∇κ⊗ in the entire calculation
region, as ∇κ⊗ ≡ ∇⊗ outside the PML. Also, σu ≡ 0 and thus ∇∗⊗ ≡ 0 outside
the PML.

The outer PEC boundaries are covered with a PML material coating as shown in
Figure 7. The motivation is that the fields penetrate into the PML without reflection,
and inside the PML, they are essentially attenuated to zero. This simulates a free-
space situation.

PEC

PML material

Studied object ⇔ Studied object

Figure 7: The principle of PML absorbing boundary conditions. The outer bound-
aries are coated with PML material which absorbs incoming waves without reflec-
tion, thus simulating a free-space case.

We need to store the quotients {ΨuX}, as their values at the previous time step
are needed in updating. However, some of these are zeros: Along the sides parallel to
x, y and z axes, only sx, sy or sz is nonunity, respectively. Thus for example Ψx = 0
and Ψy = 0 along the z boundaries. In the edges or corners of the calculation region,
two or three of the coefficients {su} are nonunity.

A total of 12 quotients need to be stored near the boundaries, and updated at
each time step using (86):

• ΨxEy, ΨxEz, ΨxHy and ΨxHz along the x boundary

• ΨyEx, ΨyEz, ΨyHx and ΨyHz along the y boundary

• ΨzEx, ΨzEy, ΨzHx and ΨzHy along the z boundary

In the latter sections, the performance of CPML will be tested in simulations,
and its applicability in FDTD SAR calculations will be verified.

3.6 Scaling of the CFS parameters

While the reflection from PML was proven to be zero in a continuous space in Section
3.2, the discretization error of space causes reflection in practical simulations (see
e.g. [1], [19]).
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In order to make this reflection smaller, the contrast in air-PML and PML-PML
interfaces needs to be made smaller. Thus we cannot set the PML conductivities
{σu} arbitrarily large, which would absorb the incident waves arbitrarily well, using
only arbitrarily thin PML regions on the outer boundaries of the calculation domain.

In practice, PML regions will have to be thicker than 1 cell for them to be of
any use. Thicker PML allows “smoother” transition of parameters, and also, the
attenuation is increased.

Assume that the PML regions have a thickness d in E cells. Choose the coordi-
nates for representing the scaling as shown in Figure 8.

PEC

k = 1 k = 3
2

k = d + 1

σu

au

k = d + 1
2

Figure 8: Scaling of the CFS parameters au and σu inside the PML.

Parameters {σu} in (73) represent “conductivity” within the PML. They are
scaled so that they are small near the air-to-PML boundary, and increase when
closing in to the outer PEC boundaries. In this work, a polynomial grading is used.
It has the form

σu(k) =

(
k − 1

d

)m

σmax, k = 1,
3

2
. . . , d, d +

1

2
(88)

Here m is the order of the polynomial grading, k means the coordinate indices and
σmax is the maximum value. A good choice for σmax has proven ([1],[15]) to be

σmax = σopt(m, ∆) ≈ m + 1

150π
√

εr∆
. (89)

{κu} can be interpreted to stretch the cells in the PML, which can increase
absorption. Usually, they use a similar scaling to {σu}

κu(k) = 1 +

(
k − 1

d

)m

(κmax − 1), k = 1,
3

2
. . . , d, d +

1

2
(90)

Parameters {au}, the meaning of which is to prevent reflection of evanescent
waves from the PML interfaces, are scaled contrary to the other parameters. In fact,
they make the PML perform poorer by reducing the attenuation [19]. Otherwise,
evanescent waves would attenuate too quickly inside the PML and cause numerical
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reflection due to the discretization error [17]. {au} should be large near the air-PML
interface and reduce to zero at the outer boundaries

au(k) =

(
d− k + 1

d

)ma

amax, k = 1,
3

2
. . . , d, d +

1

2
. (91)
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4 Sources and excitation signals

In the previous sections, we have described the actual FDTD algorithm, modeling
materials in FDTD, and absorbing boundary conditions. The only piece missing is
the modeling of sources which excite the fields.

In this section, we will cover discrete sources and the plane wave source, as well
as different excitation signals: sinusoidal excitation and pulse (transient) excitation.
Finally, some aspects of modeling base station antennas are presented.

4.1 Discrete sources

A discrete port is one of the simplest ways to excite the fields in a FDTD simulation.
It is basically a voltage source Vg with an inner resistance Rg, as shown in Figure 9.

Rg

Vg

+

−
Uz

Iz

Figure 9: Voltage source Vg with an inner resistance Rg.

(i0, j0, k0)

(i0, j0, k0 + 1)

Uz

Figure 10: The voltage source in the FDTD lattice.

Assume the source is positioned in z direction at the marked edge in Figure 10.
Thus the voltage Uz over the edge at t = n∆t is given by

Un
z ≈ −En

z ∆z, (92)

where the spatial index of the electric field is (i0, j0, k0 + 1
2
). The current In

z through
the source is

In
z =

−Un
z + V n

g

Rg

. (93)
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Thus, the source current density Jn
s is given by

(Jn
s )z ≈

In
z

∆x∆y
≈ ∆z

Rg∆x∆y
En

z +
V n

g

Rg∆x∆y
. (94)

On the right hand side, the first term is the form conductivity times electric field.
Ampere’s Law (5) in a domain which includes the source current density Js is

∂

∂t
E = −σ

ε
E +

1

ε
∇×H− 1

ε
Js. (95)

Discretizing this yields a slightly different update equation for Ez at (i0, j0, k0 + 1
2
).

To calculate the average net input power from the discrete source, one needs the
amplitudes and phases of the (complex) current Iz and voltage Uz. The method for
getting these from the time-dependent values is presented in the next section for
the case of sinusoidal excitation. Then the net input power (rms) from the discrete
source can be calculated by

Pnet(ω) =
1

2
Re{UzI

∗
z} (96)

where ∗ means the complex conjugate. The net input power means the power which
is fed into the simulation by the discrete source. It may either radiate away (absorb
into the absorbing boundaries), or be absorbed in conducting media or other discrete
sources.

The gross input power — the total power fed by the voltage source Vg, which
includes the resistive loss in the inner resistance Rg — can be calculated by

Pgross(ω) = −1

2
Re{VgI

∗
z}. (97)

4.2 Plane-wave source

A plane-wave source can be easily implemented in FDTD using the so-called total-
field/scattered-field (TF/SF) technique (see e.g. [1]).

Assume the studied object is exposed to an arbitrary primary field Ep (here:
plane wave). Then the total electric field E can be decomposed into the known
primary field Ep and an unknown scattered field Es

E = Es + Ep, (98)

where the primary field satisfies the homogeneous Maxwell’s equations in free space5.
The basic idea is to divide the calculation region into two regions as shown in Figure
11.

In the TF region, the total field is calculated, and in the SF region, only the
scattered field is solved. Denote these fields in TF and SF regions by E1 and E2,
respectively:

E1 = Es + Ep (99)

5We assume the absorbing boundaries are perfect, so the situation is essentially a free space
case.
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Scattered field (SF)

Absorbing boundary

Total field (TF)

Figure 11: Total field-scattered field technique: the domain is divided into two
regions. In reality, the TF/SF boundary would be closer to the absorbing boundary.

E2 = Es. (100)

Thus, on the TF/SF-boundary

E1 = E2 + Ep. (101)

Both E1 and E2 satisfy the Maxwell’s equations, and Yee’s algorithm can be
utilized to solve these separately in both regions. The update equations over the
TF/SF boundary are altered according to (101). The details of this slight alteration
are quite simple, and are not presented here. In the altered update equations, we
need to know the values of the primary field on the boundary at each time step.

The case in which the primary field is a homogeneous plane wave (or a combina-
tion of those) is simple to implement. The values of the primary field on the TF/SF
boundary can be computed by performing a 1D-FDTD simulation along with the
actual simulation. The 1D simulation is excited by a “discrete source”, the mate-
rial parameters are constant (air), and the calculation domain is terminated with
absorbing boundaries. The 1D solution is then easily extended to 3D because (by
homogenity) the fields are constant on the planes perpendicular to the direction of
propagation.

If the fields are sinusoidal with frequency ω0, the electric field of a linearly po-
larized plane wave propagating in the k direction will be of the form

E(r; t) = uE0 sin(k · r− ω0t),

where u is perpendicular to k.
The (rms) power density S [W/m2] of such a plane wave is

S =
1

2η
|E0|2, (102)

where η is the wave impedance of the medium (in air η = η0 ≈ 376.73).
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4.3 Sinusoidal excitation

Assume that all sources (plane wave, discrete sources) have a sinusoidal time depen-
dence with the same frequency ω0. For example, applying the sinusoidal excitation
to a discrete source gives the time dependence for the voltage

Vg(t) = Vg0 sin (ω0t + ϕ), t ∈ R.

When all the sources are sinusoidal and have the same frequency ω0 = 2πf0, all
field quantities X will also be sinusoidal for all r ∈ D

X(r, t) = X0(r) sin

(
2π

T
t + ϕ(r)

)
, (103)

where T = 1/f0 is the period. As can be easily verified, the amplitude X0(r) can be
presented in the form

X0(r) =

√
X(r, t)2 + X(r, t− T

4
)2. (104)

Equation (104) can be utilized to extract the amplitudes of the fields from FDTD
simulations. Especially, for SAR calculation, this means the electric field amplitude.

The phase ϕ(r) can be calculated

ϕ(r) = − tan−1

(
X(r, t)

X(r, t− T
4
)

)
, (105)

where one must pay attention to the proper choice of the arcustangent branch.
When the fields are of the form (103), there is no need to model the frequency

dependence of the materials, because the spectrum will only contain one frequency.
The initial assumption of nondispersive material parameters in Section 2.1 was done
with this in mind.

In FDTD simulations, the fields are initialized to zeros. That means, the sources
are turned on at t = 0, and they are all zeros before that. Thus the sources are not
strictly sinusoidal, and the fields will not generally be of the form (103). However,
when the simulation has run long enough, the fields may (usually: will) eventually
converge to (103). To determine a “long enough” simulation time, a steady-state
criterion, which measures how well the solution has converged, is used.

Using (104) and (105) in FDTD requires the following two conditions to be met:
Firstly, time steps per period must be an integer and divisible by four. Secondly,
steady state must have been reached. Specifically, the time dependence of the fields
has to be of the form (103). The first condition can be easily satisfied by choosing
the time step length correctly before the simulation. The second condition will be
satisfied when the simulation has run long enough, so that the steady-state criterion
holds.

The convergence to the steady state can be made quicker by tapering the input
sine signal, which means starting the input signal at zero amplitude and increasing
the amplitude to its final value gradually over a few periods. This is discussed in
Section 6.4.1.
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4.4 Pulse excitation

The pulse excitation is an alternative for the sinusoidal excitation. The excitation
signal is not an “infinite” sinusoidal signal but instead a pulse which has a finite
duration.

Simplified, the approach can be written as follows:

1. Excite the sources using a pulse (usually a modulated Gauss pulse)

2. At 1/F intervals, record the desired quantities. F is the sampling frequency
for the discrete Fourier transform, and is usually lower than 1/∆t.

3. Repeat until energy has vanished from the system. This “energy criterion” is
analogous to the steady-state criterion of the sinusoidal excitation.

4. Calculate a discrete Fourier transform for the desired quantities (in reality,
this is done real time at step 2).

In theory, the results for a wide range of frequencies can be acquired by just one
simulation. For large human-SAR computations, however, wide frequency range
has limited practical benefits. Since the body’s material parameters are frequency
dependent (see Section 2.3.6), modeling them accurately would require calculating
convolution and discrete Fourier transform, which would be a great computational
burden. This was briefly discussed in Section 2.3.2.

If the frequency dependence of the materials is not taken into account, but the
material parameters are fixed, as in (31) and (32), so that they are correct at a
certain frequency, pulse excitation will only give the correct result at that single
frequency. Other frequency components in the spectrum will be incorrect. In that
sense, pulse excitation is not different from the sinusoidal excitation; both give the
solution at a single frequency.

The pulse excitation is somewhat more complicated to implement than the si-
nusoidal excitation. Consequently, there seems to be little sense in using the pulse
excitation instead of the sinusoidal excitation unless the frequency dependence of
the materials is modeled.

4.5 Modeling base station antennas

Antenna structures consist of metal and possibly dielectric objects. The description
of these can be found in Sections 2.3.1 and 2.3.3. Here, we assume the feed of the
antennas are modeled as discrete sources, as described in Section 4.1.

Many base station antennas are array antennas6 of several smaller array elements.
The elements are similar in geometry, but their feeds may have different amplitudes
and phases. A single element can be simple, because the radiating properties of the
array are based more on the number, rather than the properties, of the elements.

6Not in the theoretical sense, because the array elements interact with each other.
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The FDTD modeling of two common element antenna types, dipole and slot
antennas, is described here. The whole base station antenna can be then modeled
by replicating these and adding PEC reflector plates or other objects.

The total radiated power Prad of an antenna with N discrete sources is given by

Prad =
N∑

k=1

Pk,net, (106)

where {Pk,net} are the net input powers (96) of the sources. The amplitude distri-
bution of an array antenna is the distribution of the square roots of the net input
powers.

The SAR results are often normalized with respect to the total radiated power
Prad. The term “radiated power” is a little misleading, as this power includes the
power which is absorbed in lossy materials (tissues), as well as the radiated power
which actually is radiated away (absorbed in absorbing boundaries).

Directivity is a commonly used antenna parameter, which measures the antenna’s
ability to radiate power in a given direction. Directivity D in the direction ur is
defined as

D(ur) =
W (ur)
1
4π

Prad

, (107)

where W is the radiated power per solid angle in the given direction, and 4π is
the total solid angle. The radiated power per solid angle W can be calculated by
performing a near-to-far-field transformation, see e.g. [1].

“Directivity” often means the maximum directivity

Dmax = max
ur

D(ur).

In this work, we assume a following definition for the main lobe direction of the
antenna: A main lobe direction is a direction in which the directivity has a global
maximum. This needs not be unique, but with practical base station antennas it is.
Exceptions are the so-called omnidirectional antennas.

Far from the antenna, the radiated field of the antenna can be approximated
by a spherical wave. The directivity is linked to the power density S (102) of the
spherical wave by

S(r) = D(ur)
Prad

4πr2
, r large. (108)

Table 3 shows the wavelength in free space at the frequencies commonly used in
mobile communications. The λ/10 rule requires resolutions finer than 14 mm, which
is easily satisfied. All practical resolutions for the human body modeling, which are
finer than 4 mm, should be sufficient for modeling antennas.

Naturally, finer details than the resolution cannot be modeled, but that is usually
not necessary. Safety assessment of typical, generic base station antennas is often
the main interest, so the fine geometric details of specific antennas do not matter.
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Table 3: Wavelength in air
Frequency Wavelength
900 MHz 33.3 cm
1800 MHz 16.7 cm
2140 MHz 14.0 cm

4.5.1 Antenna elements

A dipole antenna consists of two thin cylindrical conductors, in between which is
the antenna feed. A sketch of a dipole antenna is shown in Figure 12.

Figure 12: A sketch of a cylindrical dipole antenna

Figure 13 illustrates the FDTD implementation of the dipole using the staircase
approximation. A discrete source (4.1) is placed at the center.

Figure 13: Staircase approximations of a dipole antenna

The most common dipole has a total length of half a wavelength. The directivity
(maximum) of an ideal thin half-wavelength dipole is approximately D = 1.64, or
2.15 dB. There might be a reflector structure behind a dipole antenna, so that the
dipole radiates in the desired direction, and thus the directivity is increased.

A dual case for the dipole antenna, a slot antenna, is a thin aperture on a metal
surface. The radiating characteristics of a slot antenna closely resemble those of a
dipole antenna of the same length. A sketch of a slot antenna is shown in Figure
14. The antenna is fed at the center of the slot. A slot antenna is seemingly
easier to accurately implement in FDTD than the dipole antenna, because the slots
are rectangular, and thus they fit into the FDTD lattice without changing their
geometry.

4.5.2 Modeling the antenna feeds

It was assumed that the antenna feeds were simple discrete sources with inner resis-
tances. In reality, the feeds would be more complex, which is illustrated in Figure
15. In the following, it is assumed that there is only a single discrete source per
element, and sinusoidal excitation is used.

Most antennas are designed to work in environments where there are no objects
in front of them hindering radiation. When a human body model is brought into
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Figure 14: A sketch of a slot antenna

Rg

Vg1

+

−
U1I1

≈
U1I1

Rg

Vg2

+

−
U2I2U2I2

C

Figure 15: Modeling the feed of a two-element antenna; the voltage sources with
inner resistances are an approximation of the circuit C.

the vicinity of an antenna, it is an unusual situation, and the antenna matching will
change due to reflections. How much the matching will change, or how the change
will affect SAR results, depends not only on the position of the body model, but
also on the circuit model of the antenna. Regardless of the circuit model, the total
radiated power is calculated using (106) and (96).

In the case of discrete sources, it feels natural that identical elements should have
the same inner resistances Rg. Thus the possible amplitude (and phase) distribution
should be taken into account in the voltage sources Vg. In free space, if there is little
coupling between the elements, the amplitude of each source is directly proportional
to the amplitude of the voltage source. If the net radiated powers (96) of the
elements follow a given distribution in free space, the distribution of the net radiated
powers will (generally) change in the vicinity of a human body model. How the final
distribution will turn out depends on the values of Rg, or generally, the circuit model
of the antenna.

In this work, most base station exposure results are given normalized with respect
to a constant total radiated power Prad (106). When examining these results, one
should take into account that in reality the total radiated power will most likely
be different at different body-antenna distances. If the antenna is matched to free
space situation (as it should), the radiated power will become smaller near a body
model. In such case, assuming the total radiated power to stay constant in all
situations will very likely produce overestimation for the exposure. However, if the
inner resistances of the sources are chosen incorrectly, the matching may actually
become better near a human body model.
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When a human body model is positioned near an antenna, the circuit model of
the antenna does have an effect on the normalized (with respect to the total radi-
ated power) SAR values (see the results in Section 6.4.4). Approximating the circuit
model by simple discrete sources might cause some uncertainties in the results. For-
tunately, the focus of the antenna modeling in this thesis is on the modeling of
“typical” antennas, and the discrete source approximation is assumed to be suffi-
cient. The choice of the inner resistances Rg is thus based on making an “educated
guess”, and hoping that the behavior of the antenna is somewhat realistic and fit
for a typical antenna.
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5 Specific absorption rate

Specific absorption rate (SAR) is the unit for energy absorption in human tissue. It
has a dimension power per mass (W/kg). Local SAR is defined in [20] by

SAR =
d

dt

(
dW

dm

)
=

dP

ρdV
(109)

which can be written in the form

SAR =
s

ρ
, (110)

where s is the power loss density [W/m3].
The power loss density s can be defined as

s(t) = J(t) · E(t), (111)

where J is the current density. If the fields are time harmonic with time-dependence
ejω0t, the rms-value (denoted without the time dependence) for the power loss density
is

s =
1

2
σ|E|2, (112)

where E (without the time dependence) is the amplitude of the electric field, and
σ = σ(ω0) is the conductivity. Pointwise SAR is thus relative to the square of the
electric field amplitude by

SAR =
1

2

σ|E|2

ρ
. (113)

SAR is a power quantity, and in the case of base station antenna exposure, it is
thus directly proportional to the total radiated power Prad (106), which is the sum
of the net input powers of all discrete sources of the antenna. In the plane wave
case, SAR is directly proportional to the power density S of the plane wave. After
calculating the SAR for one power, we thus get the SAR for an arbitrary power by
just scaling, assuming the situation remains the same otherwise.

Additionally, assuming “ideal” nonthermodynamic circumstances [21], SAR is
related to change of temperature at any point by formula

SAR =
c∆T

∆t
(114)

where ∆T is the change of temperature [K] during an exposure of duration ∆t [s]
and c is the specific heat capacity of the tissue [Jkg−1K−1]. Generally, the actual
heating caused by SAR is a separate, nontrivial problem.

5.1 Averaged SAR

Several international and European standards and recommendations limit the max-
imum local spatial-averaged SAR or the whole-body-averaged SAR. These include
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the basic restriction limits by International Commission on Non-Ionizing Radia-
tion Protection (ICNIRP, [22]) and Institute of Electrical and Electronic Engineers
(IEEE, [20] and [21]). European Council recommendations [23] follow the ICNIRP
guidelines [22].

The averaged SAR required by the limits can be calculated from the rms value
of the local SAR (113). Averaging can be done in two ways, either by volume
averaging, or by mass averaging. Volume averaging of SAR is done by

SARavg =

∫
V SARdV ′∫

V dV ′ =
1

V

∫
V

s

ρ
dV ′, (115)

where V is the averaging volume with volume V (this can be the whole body, for
example).

Mass averaging is done by

SARavg =

∫
V sdV ′∫
V ρdV ′ =

P

m
, (116)

where P is the total power absorbed in V and m is the total mass of V . Notice that
when the density ρ is constant, these two methods give the same results.

Both the standards by ICNIRP [22] and IEEE [21] require the volume-averaging
method, if they are interpreted literally (e.g. [21]: “When averaging SAR over a 1 g
volume of tissue. . . ”). The averaging masses for spatial-averaged SAR are 10 g for
[22] and [23], and 1 g (in the body) or 10 g (in the extremities) for [20].

According to [22], the averaging volume can be “any 10 g of contiguous tissue”
with no defined shape, which leads to an infinite amount of possible averaging vol-
umes. The SAR value used for exposure assessment should be the maximum of
averaged SAR over these volumes. This kind of averaging is naturally extremely
hard to implement in practical FDTD simulations. However, European Council
[23] (provided the SAR values are conservative) and IEEE recommendations [21]
allow cubical averaging volumes, which is easy to implement in FDTD grids. This
approach is used in this study.

Despite that the standards can be interpreted to require the volume-averaging
method (115), the mass-averaging method (116) will be used in this study. It is
shown in [24] that the mass-averaging approach is a better representation of the
effect of the fields on the tissue. This can be made clearer by simplified physical
arguments: Average temperature in a volume is acquired by mass averaging; because
the temperature rise is related to SAR by (114), mass averaging is the correct choice
for the SAR.

The differences in the whole-body SAR calculated with the two averaging meth-
ods (mass/volume) are studied in Section 6.3.3.

5.2 Power loss density in FDTD

Determining the local power loss density from an FDTD solution can be trickier
than one would think. In the following, all fields are amplitudes. In the case of
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sinusoidal excitation, they can be extracted from the time-dependent values using
(104).

From (112), the pointwise power loss density s in r ∈ D can be written as

s(r) =
1

2
σ(r)|E(r)|2 =

1

2
σ(r)

(
Ex(r)

2 + Ey(r)
2 + Ez(r)

2
)

where the electric fields (without the time dependence) are amplitudes.
The total power loss density of a cell p ∈ IX , X ∈ {E, H} can be written as an

integral

s(p) =
1

2

σ(p)

Vol(p)

∫
V(p)

|E|2dV ′ =
1

2

σ(p)

Vol(p)

∑
u=x,y,z

(∫
V(p)

E2
udV ′

)
, (117)

where E is the (continuous) electric field with components {Eu}, V(p) ⊂ D is the
set

V(p) = [x(i− 1

2
), x(i +

1

2
)]× [y(j − 1

2
), y(j +

1

2
)]× [z(k − 1

2
), z(k +

1

2
)], (118)

where p = (i, j, k), and

Vol(p) =

∫
V(p)

dV ′ = ∆x(i)∆y(j)∆z(k). (119)

There are several ways to approximate the integrals in the sum in (117). Here,
we use the trapezoid rule and the midpoint rule. In one dimension, they can be
written as follows. The trapezoid rule is

1

∆

∫ ∆

0

f(x)dx =
1

2
(f(0) + f(∆)) + O(∆2), (120)

and the midpoint rule is

1

∆

∫ ∆

0

f(x)dx = f

(
∆

2

)
+ O(∆2). (121)

Both methods have an accuracy O(∆2), so, when the cell size ∆ of the simulation
is small enough, they will give similar results.

As discussed in Section 2.3.3, the material cells may be either E or H cells. In the
E-cell case, we know twelve electric field tangential components on the cell edges,
and in the case of H cells, we know six normal components on the cell sides. These
situations are illustrated in Figures 16 and 17, respectively.

The E-cell case is illustrated in Figure 16. Assuming that the field components
are constant in their parallel direction, using the trapezoid rule in two dimensions
gives

1

Vol(p)

∫
V(p)

E2
udV ′ ≈ 1

4

(
E2

u1 + E2
u2 + E2

u3 + E2
u4

)
. (122)
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Figure 16: The locations of the electric field components in an E cell.
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Ez1

Ez2

Figure 17: The locations of the electric field components in an H cell.

The power loss density is thus

s ≈ σ

8

∑
u=x,y,z

(
E2

u1 + E2
u2 + E2

u3 + E2
u4

)
. (123)

Utilizing the midpoint rule requires the value at the center point of the cell, but
this is not readily available. If we assume the fields are linear (or bilinear) inside the
cell, we may use a linear average of the fields on the cell edges/sides. In the E-cell
case, if we assume the bilinearity of the electric field components, the midpoint rule
gives:

s ≈ σ

32

∑
u=x,y,z

(Eu1 + Eu2 + Eu3 + Eu4)
2 . (124)

If the materials are in H cells, we must take into account the effective nature of
the electric field of the FDTD simulation, as discussed in Section 2.3.3. The physical
electric field can be calculated from the FDTD electric field values using (40).

The H-cell situation is illustrated in Figure 17. If we assume the field is constant
in transverse directions, the situation reduces to a one dimensional case, and the
trapezoid rule gives

s ≈ σ

4

∑
u=x,y,z

(
(
εu1

ε
Eu1)

2 + (
εu2

ε
Eu2)

2
)

, (125)
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where {Eu1} and {Eu2} are the (effective) electric fields of the FDTD simulation,
{εu1} and {εu2} are their respective effective permittivities, and ε is the permittivity
of the cell.

Similarly, utilizing the midpoint rule and assuming linearity, we get

s ≈ σ

8

∑
u=x,y,z

(εu1

ε
Eu1 +

εu2

ε
Eu2

)2

. (126)

In the trapezoid case, the power loss density can thus be written (for both cell
types) as

s =
1

2
σ(|E|2)ave =

1

2
σ
∑

u=x,y,z

(E2
u)ave, (127)

where the subscript ‘ave’ means the linear average to the center point of the cell. In
the H-cell case, this includes the transformation (40) from the effective electric field
to the physical electric field.

The midpoint case can be summarized similarly

s =
1

2
σ|Eave|2 =

1

2
σ
∑

u=x,y,z

((Eu)ave)
2. (128)

The midpoint approach resembles the SAR calculation method presented in [25].
In the case of E cells, we take a linear average of the twelve electric field components
on the cell edges, and take the square. This is exactly the same as the twelve-
components approach in [25]. The H-cell case, in turn, resembles the six-components
approach presented in that paper.

Of course, the above are based on the approximations of the integrals

1

Vol(p)

∫
V(p)

E2
udV ′

in (117) by the two integration techniques. If the electric field is assumed to be
(bi)linear inside the cell, this integral can also be calculated “accurately”. In the
E-cell case, such an integration gives, using the notation from Figure 16,

1

Vol(p)

∫
V(p)

E2
udV ′ =

1

18

(
2E2

u1 + 2E2
u2 + 2E2

u3 + 2E2
u4 + 2Eu1Eu2 + 2Eu1Eu4 . . .

+2Eu2Eu3 + 2Eu3Eu4 + Eu1Eu3 + Eu2Eu4

)
.

(129)
Fortunately, this is approximately7 the same as

≈ 20

27
((Eu)ave)

2 +
7

27
(E2

u)ave.

The H-cell case is simpler

1

Vol(p)

∫
V(p)

E2
udV ′ =

1

3

(εu1

ε
Eu1

)2

+
1

3

εu1

ε
Eu1

εu2

ε
Eu2 +

1

3

(εu2

ε
Eu2

)2

, (130)

7The cross terms are slightly different.
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which equals

=
2

3
((Eu)ave)

2 +
1

3
(E2

u)ave.

So the “accurate” power loss density values can be received from the trapezoid
and midpoint method values by simply taking a weighted average. Thus, only the
trapezoid and midpoint methods are studied in this work.

In Section 6.3.1, several other methods for calculating the local power loss density
will be presented. It will turn out that, for the E cells, the midpoint rule is the
preferred method, and, for the H cells, the trapezoid rule is preferred. Thus, unless
otherwise stated, the midpoint rule is used for the E cells (124), and the trapezoid
rule for the H cells (125).

5.3 Calculation of averaged SAR in FDTD

In the discretized case, the total power loss over an arbitrary index set (volume)
V ⊂ IX , X ∈ {E, H} is calculated

P (V) =
∑
p∈V

s(p)Vol(p), (131)

where s is the power loss density calculated as described in the previous section, and
Vol(p) is defined in (119). Applying (116) to the discretized case, the mass-averaged
SAR is given by

SARavg(V) =
P (V)

m(V)
, (132)

where m is the mass of the averaging volume

m(V) =
∑
p∈V

ρ(p)Vol(p). (133)

The whole-body-averaged SAR is calculated using (132)

SARwb = SARavg(Ibody), (134)

where Ibody ⊂ IX , X ∈ {E, H}, is the index set of the body.
Calculating the spatial-averaged SAR is a rather complex procedure. In this

work, the spatial averaging is done by following the recommendations in IEEE Stan-
dard C95.3 [21] Annex E. Additionally, sizes of the averaging cubes are “fine tuned”
using the methods presented in [25].

In the following, Ibody ⊂ IE or IH denotes the cells which contain tissue (ρ > 0).
The voxels are assumed to be cubical so that ∆x = ∆y = ∆z. The averaging mass
(usually 10g or 1g) is denoted by mavg.
For each cell p ∈ Ibody

1. Build a sequence of cubes centered at p, notated {Cl(p)}l, with sizes (2l+1)×
(2l + 1)× (2l + 1) voxels.
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Figure 18: Determining the size of a SAR averaging cube in cell p ∈ Ibody. The
cube with the dashed contour should have a mass mavg.

2. Search the largest l for which m(Cl) < mavg, thus m(Cl+1) ≥ mavg.

• If for any n ∈ {1, . . . , l + 1}, cube Cn has a face entirely in the air, mark
the cell ‘invalid’, and take the next cell. Denote the index set of ‘invalid’
cells by Iinvalid ⊂ Ibody.

• Otherwise, continue.

3. In order to get a cube with mass exactly mavg, we need to add a fraction of
the layer Ll = Cl+1\Cl, with a mass mavg − m(Cl). The layer Ll has a mass
m(Ll) = m(cl) + m(el) + m(sl), where cl, el and sl are the sets of 8 corners,
12 edges and 6 sides, respectively. We then get the required fraction f ∈ (0, 1]
by solving a cubical equation

m(cl)f
3 + m(el)f

2 + m(sl)f = mavg −m(Cl). (135)

4. Now, calculate the mass-averaged SAR of the cell using (132)

SARmavg(p) =
1

mavg

(P (Cl) + f 3P (cl) + f 2P (el) + fP (sl)) (136)

Next, define the SAR in the invalid cells Iinvalid.
For each invalid cell p ∈ Iinvalid

1. Find the cells, the averaging cubes of which include the invalid cell p. This
neighborhood of the invalid cell is the index set

N (p) = {q ∈ Ibody\Iinvalid : p ∈ Cl+1(q), m(Cl(q)) < mavg ≤ m(Cl+1(q))} .
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Figure 19: Examples of valid averaging cubes

Figure 20: Some examples of invalid averaging cubes

2. If N (p) = ∅, i.e. the cell is not used in any valid averaging cube, mark the
cell ‘unused’. Denote the set of unused cells by Iunused ⊂ Iinvalid. Otherwise,
set

SARmavg(p) = max
N (p)

{SARmavg}.

SAR is now defined in all tissue cells, except in Iunused. These cells are treated by
the following:
For each unused cell p ∈ Iunused

1. Begin expanding six cubical volumes in six directions (+x,−x, +y,−y, +z,−z),
so that cell p is the center cell of one cube face. In building these cubes, follow
the same kind of guidelines as presented above, but without the “face in the
air”-criteria.

Figure 21: Example of an unused cell: The marked cell does not belong to any valid
averaging cube
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2. In the smallest of these cubes containing the desired mass, calculate the SAR
using (132).

Now we have defined the spatial-averaged SAR for all cells p ∈ Ibody. Notice that if
we are only interested in the maximum value of mass-averaged SAR, we may omit
the phase in which we determined SARmavg for the cells Iinvalid\Iunused.

5.4 Exposure recommendations and limits

ICNIRP [22] and IEEE [20] have issued basic restriction limits, below which there
will be no adverse health effects.

At radio frequencies, the basic restrictions consist of limits for both whole-body
and local spatial-averaged SAR, either of which must not be exceeded. The numeri-
cal values of the basic restriction limits are presented in Table 4. There are limits for
both occupational and general public exposure, the latter of which includes children,
sick and elderly and is thus more restrictive. The European Council recommenda-
tions [23] are the same as the ICNIRP limits for general public exposure.

Table 4: SAR basic restriction limits in the frequency range used by mobile com-
munications

Head/trunk Limbs
Time of
averaging
[min]

Whole-
body SAR
[W/kg]

Averaging
mass [g]

Localized
SAR
[W/kg]

Averaging
mass [g]

Localized
SAR
[W/kg]

ICNIRP,
General public 6 0.08 10 2 10 4
ICNIRP,
Occupational 6 0.4 10 10 10 20
IEEE,
General public 30 0.08 1 1.6 10 4
IEEE,
Occupational 30 0.4 1 8 10 20

The magnitudes of the electromagnetic fields of an antenna decrease rapidly
when the distance to the antenna increases. In the safety assessment of exposure to
the fields of an antenna, it is thus useful to determine a volume around the antenna
outside of which there is no risk of exceeding the basic restriction limits (Table 4).
The boundary of such a volume is called the compliance boundary. In this work, we
are mostly interested in the distance of the compliance boundary in the main lobe
direction.

The compliance distance of an antenna is defined in the following way: it is the
minimum distance of a human body from the antenna in the main lobe direction
which guarantees the given restriction limits will not be exceeded. Naturally, the
compliance distance depends on antenna input power. That is, larger input powers
will produce shorter compliance distances, and vice versa.

43



6 Results

This section contains relevant numerical results related to the methods and models
presented in the four preceding theory sections 2–5. This section is arranged so that
each subsection is related to a corresponding theory section:

• Absorbing boundary conditions (Section 3): 6.1

• Results related to the accuracy of the FDTD method, material modeling and
staircase approximation (Section 2): 6.2

• SAR calculation methods (Section 5): 6.3

• Modeling antennas and excitation signals (Section 4): 6.4

• Finally, SAR results involving realistic human body models (which are related
to the all theory sections) are found in 6.5.

Calculations were performed with three different FDTD programs

• An own FDTD code written in Matlab using MEX functions, which allows
quick and easy modifications for testing and validation purposes. This code
was used in the “canonical” cases involving spheres and rectangles.

• A parallel-FDTD code written by Sami Ilvonen in the TKK Electromagnetics
laboratory for the EMSOFT project. The code is written in Fortran95 and
parallelized using MPI (Message passing interface) library, which allows solving
of electrically huge problems in massively parallel supercomputers. This code
is used for the results involving human body models. The principles, such as
the FDTD update equations and CPML absorbing boundary conditions, were
basically the same in this code and in the own code.

• Microwave Studio, a commercial software by CST. This program was used for
antenna modeling and verification of the other codes. Unlike the other two
codes (which use sinusoidal excitation and CPML), Microwave Studio uses
pulse excitation and split-field PML. Strictly speaking, Microwave Studio does
not use the FDTD method, but FIT (Finite integration technique) method,
which is a close relative to FDTD.
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6.1 Absorbing boundary conditions

Several recent papers have discussed the applicability of PML absorbing boundary
conditions in FDTD SAR calculation. It was reported in [26] that uniaxial PML
(UPML) absorbing boundary conditions may cause significant error in whole-body
SAR values in a homogeneous muscle sphere. It was concluded that a thick free-
space region between the numerical phantom and the UPML boundaries is required
for accurate whole-body SAR results. In [27], Norman phantom and split-field PML
was studied. There was little variation in whole-body-averaged SAR values when the
distance between the voxel phantom and PML-ABC’s was varied. Also, increasing
the PML width above 6 cells was shown to have little effect on the SAR values.

In this work, convolutional PML absorbing boundary conditions (as described
in Section 3) are employed for SAR calculation. The objective of this section is to
verify the performance of CPML and also find good CPML parameters for SAR
calculation.

The following method is utilized to test the performance of CPML:

• A phantom (sphere/box/human voxel model) is exposed to a plane wave. The
incident wave is linearly polarized, with the polarization direction parallel to
a coordinate axis.

• The distance from the phantom to CPML is varied, and SAR is calculated for
each distance.

• If the ABC’s were ideal, changing the distance would not affect the results.
Thus, the smaller the variation in SAR, the better the ABC’s.

The minimum possible phantom-CPML distance was 2 cells, as the total-field/scat-
tered-field boundary was positioned one cell away from the CPML.

From a large number of various test simulations8 the following parameters have
proven to be effective:

• σmax = σopt(m, ∆) as in (89)

• κmax = 5 in (90)

• amax = 0.05 in (91)

• Polynomial grading of CPML parameters is used. Grading order is m = 3 for
{σu} and {κu} in (88) and (90)

• The grading order ma = 1 for {au} in (91)

From now on, these are cited as the “good” CPML parameters. This good choice of
parameters is verified in the following subsections. Further, unless otherwise stated,
this set of parameters is used.

8The parameters σmax, κmax, amax, m, and ma were swept, and the whole-body SAR in a small
muscle sphere was calculated for ten sphere-CPML distances for each parameter combination.
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6.1.1 Small muscle sphere

The studied situation consists of a 2/3-muscle sphere, with a radius of 2.5 cm, in free
space, exposed to a plane wave with amplitude 1 V/m. The material parameters
of the sphere can be found in Table 5. The mesh resolution is 2 mm, and the
investigated frequencies are 1 GHz and 2 GHz.

d

d

CPML boundary

Sphere

a = 2.5 cm

Plane wave direction

Figure 22: The CPML test setup for a small muscle sphere. The distance to the
CPML boundary is d.

Table 5: Material parameters of the muscle sphere
Frequency σ [S/m] εr ρ [kg/m3]

1 GHz 0.65 36.5 1000
2 GHz 1.00 37.3 1000

Figures 23 and 24 show the relative error of whole-body-averaged SAR as a
function of the distance from the CPML for four different parameter sets, at the
investigated frequencies. The error is calculated relative to the situation where the
CPML is thick and is located far (> 100 cells) from the sphere9.

When the CFS functionality is disabled (a = 0, κ = 1), the error increases
when the sphere-CPML distance decreases. This does not happen when the CFS is
enabled (a > 0, κ > 1). Also, as can be seen in the figures, increasing the width of
the CPML by just one layer reduces the error significantly. The variation of local
SAR (not in the figures) followed the variation of whole-body SAR closely. The error
seems to vary somewhat sinusoidally with the distance from the CPML, similarly
to [26], but the error is much smaller.

The width of the CPML was relatively small in the above calculations, and it
could be easily increased, which would make the error even smaller. It is quite

9The error is positive if the calculated SARwb is greater than the SARwb,far. Otherwise, it is
negative.
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Figure 23: The relative error of whole-body-averaged SAR in a small muscle sphere
at 1 GHz
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Figure 24: The relative error of whole-body-averaged SAR in a small muscle sphere
at 2 GHz

obvious from the results that, when the CPML parameters are chosen correctly, the
error caused by the ABC’s is small. In many practical calculations, 4 or 5 cell thick
CPML is sufficient.

As can be seen in Figure 23, the error caused by low-performance PML may
cause both over- or underestimation in the evaluation of the whole-body SAR.
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6.1.2 Box phantom

The performance of the CPML was further tested using a rectangular box phantom
and various mesh resolutions. This time, the width of the CPML is 6 cells, the
“good” CPML parameters were used, and the resolutions are 1 mm, 2 mm and
3 mm. The box dimensions are 6 cm × 12 cm × 12 cm, that is 60 × 120 × 120
cells when the resolution is 1 mm. The material of the box is 2/3 muscle, the details
of which can be found in Table 5. The propagating direction of the incident plane
wave is parallel to the short axis of the box, and the frequency is 2 GHz.

2/3 muscle
εr = 37.3
σ = 1.00 S/m

PML Air

6 cm

12 cm

Plane wave direction

Figure 25: The CPML test setup for a muscle box.

The situation with the 1 mm resolution is illustrated in Figure 25. As can be seen
in the figure, when the CPML-box distance is 2 cells, the box fills the calculation
domain almost entirely. Still, as the results below show, the situation looks like the
box was positioned in free space.

The difference in the maximum pointwise SAR as a function of the distance to
CPML is shown in Figure 26. The difference is calculated relative to the furthest-
distance SARmax value (for each resolution separately). From the figure, it seems
that the CPML performs “perfectly” with the 2 mm and 3 mm resolutions. With the
1 mm resolution, however, the performance is not as good. This happens because
the CPML parameters are dependent on the mesh resolution, and apparently the
parameters perform better with the lower resolutions. Additionally, the CPML-box
distance is greater (in units of length) for the lower resolutions, but this cannot fully
explain the poorer performance with the high resolution. On the other hand, the
SARmax calculated with the 1 mm resolution is ≈3.5 % and ≈8.8 % higher than the
2 mm and 3 mm resolution SARmax, respectively. Compared to the error shown in
the figure, this is much larger.

The difference in whole-body-averaged SAR was smaller than the difference in
SARmax; between the closest- and furthest-distance SARwb-values, it was less than
0.25% for the 1 mm resolution, and nonexistent for the other resolutions. The
SARwb value calculated with the 1 mm resolution was ≈3.0 % and ≈8.7 % higher
than with the 2 mm and 3 mm resolutions, respectively.

These results further verify the choice of “good” CPML parameters for SAR
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Figure 26: Difference in maximum pointwise SAR as a function of distance to CPML
in the muscle box illustrated in Figure 25.

calculation. Even though the error became larger for small CPML-box distances
with the 1 mm resolution, it was still extremely small.

6.1.3 Norman voxel phantom

Some test were carried out with the Norman phantom to verify the results presented
in [27]. The resolution is 2 mm × 2 mm × 2 mm10, and the width of the CPML is
6 cells. The frequency and power density of the incident vertically polarized plane
wave are 2140 MHz and 1 W/m2, respectively.

The results are presented in Tables 6 and 7. The variation in both the whole-body
and the 10 g spatial-averaged SAR are very small. The nonperfect (see Section 6.1.1)
CPML parameters give as accurate results as the “good” parameters. As said, the
nonperfect parameters used here correspond to the standard split-field PML. These
results are in line with [27].

Table 6: Whole-body-averaged SAR in Norman phantom for various CPML-
phantom distances.

Distance a = 0.05, κ = 5 a = 0.00, κ = 1
[cell] SARwb [mW/kg] % SARwb [mW/kg] %

3 6.5041 99.99 6.5016 99.95
9 6.5015 99.95 6.5006 99.94
15 6.4972 99.89 6.4969 99.88
21 6.5047 100.00 6.5047 100.00

10In other simulations involving Norman, the resolution was 2.022 mm
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Table 7: The maximum 10g-averaged SAR in Norman phantom for various CPML-
phantom distances.

Distance a = 0.05, κ = 5 a = 0.00, κ = 1
[cell] SAR10g [mW/kg] % SAR10g [mW/kg] %

3 99.158 99.95 99.704 100.23
9 99.119 99.91 99.537 100.06
15 99.049 99.84 99.378 99.91
21 99.212 100.00 99.472 100.00

The conclusion of this section is that the error on the SAR results due to a
properly implemented CPML absorbing boundary is very small. This error may
be made even smaller by increasing the thickness of the CPML layer or tuning the
CPML parameters. Additionally, it seems that the SAR values in human body
models such as Norman are quite robust in the sense that using nonperfect CPML
parameters does not change the results much.
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6.2 Effects of material cells and staircase approximation

The discretization error (26), the size of which is affected by the choice of the material
cell type (2.3.3), and the consistency error due to the staircase approximation (2.3.4)
both have some effects on the results of a FDTD simulation. In this section, their
effects on the SAR values in spheres are studied.

One important benefit of using spheres is that there is an analytical solution,
the Mie theory solution, which can be used as a reference for the FDTD results.
Thus, sphere simulations are often used in verification and testing of FDTD codes.
The results in this section will help analyze several important factors affecting the
accuracy of such tests.

Also, a small object in free space might not always be completely unrealistic.
The material contrasts inside a human body may be as big as the contrast between
air and a 2/3-muscle sphere. For example, at 1800 MHz, the permittivity and
conductivity of the fat tissue are approximately εr = 5.3 and σ = 0.078 S/m. On
the other hand, the material parameters of muscle are approximately εr = 53.5 and
σ = 1.34 S/m, which is quite a contrast. And there are a lot of small (somewhat
sphere-like) details which involve these materials in a human body.

The following methods are used in all the simulations of this section

• The situation consists of a homogeneous 2/3-muscle sphere in free space.

• The studied frequencies are 1 GHz and 2 GHz.

• The sphere is exposed to a sinusoidally excited linearly polarized plane wave
with an amplitude (peak) of 1 V/m.

• The material parameters of the sphere at the studied frequencies can be found
in Table 5. The density was assumed to be constant 1000 kg/m3.

• The staircase approximation of the spheres is done as described in Section
2.3.4.

• Six cell thick CPML absorbing boundaries with the “good” CPML parameters,
as described in Section 3 and 6.1, are used. The sphere-CPML distance is ≈
3 cells.

• SAR calculation is done using the methods presented in Section 5. The mid-
point rule is used for the E cells, and the trapezoid rule for the H cells.

The simulation setup is shown in Figure 27.

6.2.1 Effects of the material cell type on SAR

The effects of the material cell types and the staircase approximation on whole-body
SAR were studied by staircase approximating muscle spheres of varying radii with
a constant 2 mm mesh resolution. The error due to the staircasing should be larger
for small spheres and smaller for large spheres. The Mie-theory solutions are used
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Figure 27: The simulation setup

as a reference. The simulations were done for the both material cell types: E and
H cells.

Whole-body SAR in the sphere at 1 GHz is plotted as a function of the sphere
radius in Figure 28. The hypothesis that increasing the ball size would reduce the
difference to the Mie-theory solutions seems not to be quite correct: at certain ball
sizes the error becomes larger with a certain cell type, while smaller radii may give
more accurate results.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40

50

60

70

Radius [m]

S
A

R
w

b [µ
W

/k
g]

 

 

Mie series
FDTD: E cell
FDTD: H cell

Figure 28: Whole-body SAR in a muscle sphere as a function of sphere radius at 1
GHz. The simulation setup is shown in Figure 27.

The two visible peaks in SAR correspond to the lowest TEr and TMr resonances
of the sphere (see e.g. [28]). At these resonances, the radial component of either
electric (TEr) or magnetic (TMr) field is zero.

Near the TEr-resonance radius, the H-cell approach fails to give accurate results,
whereas the E cells give an almost perfect match with the Mie-theory solution. On
the contrary, the E cells fail near the TMr resonance, and the H cells give very
accurate results. For very small radii, the H cells seem to give quite good results,
whereas the E-cell approach seems broken.
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The second lowest TEr resonance happens at a ≈ 4.9 cm, and the TMr at
a ≈ 6.0 cm. These are also visible in the figure, but there does not seem to be such
a clear difference between the two material cell approaches.

The sphere radius looks slightly too large for the H cells: If we shift the H-cell
curve 0.35 mm to the left, we get a better match with the Mie-theory solutions.
However, this is not enough to explain the different magnitudes of SAR at the
“resonant radii”.

The situation is basically the same in the higher frequency case. This is seen in
Figure 29, which shows the same curve as in Figure 28 at 2 GHz. The shape of the
curve is the same as in the 1 GHz case, but the resonant radii are approximately
halved. Again, the H-cell curve is shifted approximately 0.35 mm to the right.
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Figure 29: Whole-body SAR in a muscle sphere as a function of sphere radius at 2
GHz.

Based on these results only, it is hard to say which part of the error is due to
the staircase approximation and which is due to the other factors, like the choice
of the material cell. However, it seems the differences due to the different material
cells are more significant than the error due to staircasing.

6.2.2 Error estimate of the staircase approximation

The staircasing algorithm presented in Section 2.3.4 produces slightly different sphe-
res, depending on the location of the midpoint of the sphere in the FDTD grid.
Figure 30 shows an example of this. In the figure, the midpoint of a sphere is
slightly shifted from one location to another, which produces two clearly different
staircase approximations of the same sphere.

Here, we will employ the following two options for the staircasing:

Corner: the midpoint of the sphere is located in a corner of a cell (“corner-centered”).
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Figure 30: Alternative staircasings of a sphere. The sphere with the solid contour:
grey. The sphere with the dashed contour: dense grid.

Center: the midpoint of the sphere is the center point of a cell (“center-centered”).

If we compare the SARwb results in the same sphere staircased with the two different
methods, we get a rough estimate of the magnitude of the error due to the staircase
approximation:

error ≈ 2 max
E,H

∣∣∣∣SARcorner
wb − SARcenter

wb

SARcorner
wb + SARcenter

wb

∣∣∣∣ , (137)

where the maximum is taken over the two cell types. This formula will give quite
reasonable values, as will be seen in the results. For an accurate staircase error,
we would need to take the maximum difference in SAR values over all possible
staircasings of the sphere.

In Figures 28 and 29 in the previous section, the location of the midpoint of
the sphere was not constant. Instead, every second sphere was corner-centered,
and every other center-centered. There seems to be no clear “zigzagging”, so the
difference between the two options apparently is not very large. Figure 31 shows
the staircase error estimate (137) for the 1 GHz case in Figure 28. Clearly, the
radius of the sphere has a large impact on the staircase error. It seems that a radius
larger than 2.8 cm (14 cells) is almost (exclude the peak at a = 3.7 cm) sufficient to
guarantee that the estimated staircase approximation error is smaller than 1 %.

There are several peaks and dips within the interval [2.0 cm , 4.0 cm] in the
curve. The dips correspond to the local minima or maxima in Figure 28, and the
peaks seem to correspond to the radii where the rate of change of SARwb is large.
Thus the staircase error seems to be proportional to the derivate of SARwb. This
observation feels quite natural: When the derivate is large, a small change in the
sphere shape or size, which happens in the staircasing process, may cause a larger
change in SARwb. And when the derivate is close to zero, a small change in radius
will only cause small change in SARwb.
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Figure 31: Estimate of the staircase approximation error. Small muscle spheres of
varying radii are exposed to a plane wave at frequency 1 GHz. Mesh resolution is
constant 2 mm.

In the next section, the estimates of staircase approximation errors are included
in Tables 8–12 for different radii and various mesh resolutions. The SAR values in
the tables are calculated with center-centered spheres.

6.2.3 Convergence test for small spheres

Looking at the Figures 28 and 29, one can find several interesting radii. For example,
the following (frequency 1 GHz):

a = 0.65 cm, very small sphere: For very small spheres, the H cells seem to give
fairly good results — taking into account how nonspherical the sphere actually
is due to the staircasing. E cells, however, do not give reasonable results.

a = 2.35 cm, TE resonance: At this radius, the E-cell approach gives very accurate
results, while the H-cell approach produces large error.

a = 2.50 cm, between the resonances: At this radius, the both cell types seem to
give highly accurate results.

a = 3.35 cm, TM resonance: The dual case for the TE resonance.

a = 2.50 cm, after the resonances (frequency 2 GHz): After the two first resonance
peaks, the E- and H-cell solutions begin to converge to the same solution when
the radius becomes larger. Both methods seem to give quite accurate SAR
values.
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These cases are studied further by gradually increasing the resolution of the FDTD
mesh in each of these cases. That should reduce the error due to the staircase ap-
proximation and discretization, and the results should converge to the Mie-theory
solutions. The staircasing of the spheres was done using the center option, as de-
scribed in the previous section.

The simulation results are presented in Tables 8–12. A more illustrative represen-
tation of the tables is shown in Section 6.3.1 in Figures 34–38. Several observations
can be made based on the tables:

a = 0.65 cm, very small sphere: results are presented in Table 8. In this case, the E
cells have poor accuracy for all resolutions. The H-cell SAR values are much
better in line with the Mie theory, but they are not quite as accurate as the
results of the other situations presented here.

At the lower mesh resolutions, a large part of this error is due to the staircase
approximation, as the estimate for the staircase approximation error shows.
For example, with the 4 mm resolution, the studied object hardly resembles a
sphere. However, all of the error cannot be explained by the error due to the
staircasing; the 0.5 mm and 0.25 mm resolutions should be sufficient for the
staircase approximation. Still, the error with the E cells is more than 8 % at
0.25 mm.

a = 2.35 cm, TE resonance: Table 9. E-cell approach gives accurate SAR even at
low resolution, and changing the resolution has little effect on SAR. In turn,
H cells produce large error with the coarser resolutions, and increasing the
resolution causes the H-cell results to slowly converge towards the Mie-theory
result.

The staircase-error estimate seems to be relatively small, which implies that
the difference in E- and H-cell results can not be fully explained by the staircase
error.

This seems like the best case for the E cells, and at the same time, the worst
case for the H cells.

a = 2.50 cm, between the resonances: Table 10. In this case, both cell types give
quite accurate results. Only the 4 mm resolution seems insufficient. H-cell
solution is slightly closer to the Mie theory than the E-cell solution.

It seems that the results of the both cell types converge to the same value,
but this value seems to be very slightly (≈ 0.4 %) larger than the Mie-theory
SAR.

The staircase-error estimate is larger than in the other cases (excluding the
very small sphere case) presented here. Apparently, this has to do with the
derivate of the whole-body SAR in Figure 28, which is large at radius a = 2.50.

a = 3.35 cm, TM resonance: Table 11. This case is very similar to the TE case.
This is the worst case for the E cells (excluding the very small sphere case),
and the best case for the H cells.
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The staircase error is small for all the resolutions, because the sphere is rela-
tively large, and the radius is near a local maximum of SAR, so the derivate
of the SAR is near zero.

a = 2.50 cm, after the resonances (frequency 2 GHz): Table 12. With the higher
frequency, the 4 mm resolution does not satisfy the “λ/10” criterion for the
smallest mesh step. Thus, the SAR result is not very accurate with that
resolution. Otherwise, both cell types give fairly accurate results, the H-cell
solution being slightly closer to the Mie theory.

The staircase error is approximately only half of the error of the 1 GHz case.
This might be due to the smaller derivate of the SAR.

Clearly, all the presented results seem to converge towards the Mie-theory reusult
with the resolution. The material cell type, be it E cells or H cells, may have a
large effect on the accuracy and the convergence speed, depending on the radius
of the sphere. Both material cell approaches converge to the same solution when
the resolution is increased. However, the convergence speed and the direction of
convergence are different. For example, at the resonant radii, the convergence of
one cell type solution is immediate, whereas the solution of the other cell type
converges slowly.

This seems to implicate that the difference between the E-cell and H-cell values
could be used as an error estimate for the SAR. In all results presented in this
and in Section 6.2.5, excluding the 2.5 cm radius sphere with the 4 mm resolution,
the difference between the E- and H-cell SAR values was a decreasing function of
the resolution. An observation can be made based on the results: the smaller the
difference between the two solutions, the more accurate the solution.

In the “good” cases presented here, changing the resolution had little effect on
the whole-body SAR. On the other hand, in the “bad” cases, the resolution had a
major impact on the SAR results. This implies: if the SAR results stay the same
when the resolution is increased, they are accurate. This conclusion is quite natural
when taking into account the estimate for the discretization error (26).

In most cases presented here, the E-cell solution approached the Mie theory from
above, and the H-cell solution from below. This is not generally true, and both the
E and H cells may produce either over- or underestimation for the SAR.

A radius of 13 cells produced a staircase error less than 1 % in all five cases
presented here. This is in line with the estimate of 14 cells, which was based on
Figure 31. Also, the observation that the staircase error is proportional to the
derivate of the SARwb seems to hold.

In most cases, the material cell type seemed to have a bigger impact on the SAR
values than the staircase approximation. Thus it is quite clear that the differences in
the whole-body SAR values between the two material cell types cannot be explained
by the staircase error.
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Table 8: SAR in the muscle sphere. Very small sphere: a = 0.65 cm. The plot of
these values is included in Figure 34.

E cell H cell Staircase
Resolution SARwb [µW/kg] % Mie SARwb [µW/kg] % Mie error [%]

4 mm 5.7084 224.57 1.6667 65.57 38.42
2 mm 4.2394 166.78 2.5222 99.23 11.65
1 mm 3.3194 130.59 2.5854 101.71 2.23

0.5 mm 2.9552 116.26 2.5974 102.18 0.39
0.25 mm 2.7525 108.29 2.5833 101.63 0.14
Mie-series 2.5419

Table 9: SAR in the muscle sphere. The TE-resonance case: a = 2.35 cm. The plot
of these values is included in Figure 35.

E cell H cell Staircase
Resolution SARwb [µW/kg] % Mie SARwb [µW/kg] % Mie error [%]

4 mm 67.310 98.78 55.862 81.98 4.69
2 mm 68.020 99.82 63.526 93.23 0.66
1 mm 68.040 99.85 65.959 96.80 0.12

0.5 mm 68.037 99.85 67.038 98.38 0.03
Mie-series 68.141

Table 10: SAR in the muscle sphere. Between the resonances: a = 2.50 cm. The
plot of these values is included in Figure 36.

E cell H cell Staircase
Resolution SARwb [µW/kg] % Mie SARwb [µW/kg] % Mie error [%]

4 mm 60.030 97.75 58.790 95.74 4.83
2 mm 62.600 101.94 61.938 100.86 0.94
1 mm 61.638 100.37 61.521 100.18 0.93

0.5 mm 61.667 100.42 61.628 100.36 0.15
Mie-series 61.409

Table 11: SAR in the muscle sphere. The TM-resonance case: a = 3.35 cm. The
plot of these values is included in Figure 37.

E cell H cell Staircase
Resolution SARwb [µW/kg] % Mie SARwb [µW/kg] % Mie error [%]

4 mm 46.288 111.04 41.308 99.09 0.90
2 mm 44.445 106.62 41.760 100.18 0.09
1 mm 43.076 103.33 41.721 100.08 0.20

0.5 mm 42.365 101.63 41.723 100.09 0.01
Mie-series 41.687
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Table 12: SAR in the muscle sphere. Frequency 2 GHz, a = 2.5 cm. The plot of
these values is included in Figure 38.

E cell H cell Staircase
Resolution SARwb [µW/kg] % Mie SARwb [µW/kg] % Mie error [%]

4 mm 45.741 95.77 45.511 95.29 3.57
2 mm 49.168 102.94 48.053 100.61 0.56
1 mm 48.625 101.81 47.872 100.23 0.52

0.5 mm 48.285 101.09 47.857 100.20 0.09
Mie-series 47.762
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6.2.4 Convergence test for large spheres

This section is a continuation of the previous section, which studied the effects of
resolution in small spheres. Here, the sphere radius a = 10.00 cm, which corresponds
to a head size, and this situation seems thus somewhat more “realistic”. However,
a large homogeneous object such as this might not necessarily be any more realistic
than a smaller sphere with a high contrast to the surrounding background material
— human head is hardly homogeneous, but there are plenty of small high-contrast
details in a human body.

The SAR in the sphere was studied for two frequencies: 1 GHz and 2 GHz. All
assumptions are similar to the previous sections. The results are presented in Tables
13 and 14 for the 1 GHz and 2 GHz cases, respectively.

It seems clear that for large spheres, the staircase error estimate is small even at
coarse resolutions. In both cases, the H cells seemed to give slightly more accurate
results than the E cells, but this might be coincidence.

Unsurprisingly, the 8 mm resolution results at 2 GHz are very inaccurate, which
is due to the fact that the 8 mm resolution corresponds to approximately 3.4 cells
per wavelength. It seems that 4 mm is a sufficient resolution at 1 GHz, and 2 mm
is sufficient when the frequency is 2 GHz, as both cell types give accurate results
at these resolutions. At coarser resolutions, such as 8 mm resolution when the
frequency is 1 GHz, and 4 mm resolution when the frequency is 2 GHz, H cells seem
to give quite accurate results, unlike the E cells. This is likely only coincidence.

Table 13: SAR in the muscle sphere at 1 GHz. A “head-sized” sphere: a = 10.0 cm.
The plot of these values is included in Figure 39.

E cell H cell Staircase
Resolution SARwb [µW/kg] % Mie SARwb [µW/kg] % Mie error [%]

8 mm 9.0631 94.81 9.4713 99.08 0.36
4 mm 9.6782 101.25 9.6292 100.73 0.47
2 mm 9.6928 101.40 9.6140 100.57 0.10
1 mm 9.6418 100.86 9.5897 100.32 0.02

Mie-series 9.5592

Table 14: SAR in the muscle sphere at 2 GHz. A “head-sized” sphere: a = 10.0 cm.
The plot of these values is included in Figure 40.

E cell H cell Staircase
Resolution SARwb [µW/kg] % Mie SARwb [µW/kg] % Mie error [%]

8 mm 4.0822 52.31 6.7449 86.42 1.76
4 mm 7.3310 93.93 7.8869 101.06 0.05
2 mm 7.8454 100.52 7.9028 101.26 0.02
1 mm 7.8831 101.01 7.8676 100.81 0.01

Mie-series 7.8045
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6.2.5 Muscle piece

The effects of mesh resolution were tested in the previous sections for spheres, the
results of which verified the convergence to Mie-theory solutions. However, those
simulations also included the error due to the staircasing in addition to the dis-
cretization error due to the mesh resolution. In this section, the effects of mesh
resolution on SAR are studied further by exposing a rectangular muscle object, the
geometry of which is independent of the resolution, to a plane wave.

The muscle piece illustrated in Figure 32 was exposed to a linearly polarized plane
wave. The frequency and amplitude of the plane wave were 2 GHz and 1 V/m, and
the direction of propagation was perpendicular to the skin. SAR was calculated for
several mesh resolutions. The dimensions of the object were chosen in such a way
that the resolution did not have any effect on the geometry.

Skin

2/3 Muscle

σ = 1.2654 S/m
εr = 38.568

σ = 1.00 S/m
εr = 37.3

12 cm

12 cm

6 cm

4 mm

Figure 32: Muscle piece

Figure 33 shows the calculated power loss density in the E-cell case on a line
parallel to the short axis of the piece, positioned in the middle of the piece. The
4 mm resolution is clearly insufficient, and the results of the 2 mm resolution are
correct at least at a qualitative level. Increasing the resolution further makes the
peaks in the local SAR higher.

Table 15 shows the calculated whole body and maximum local SAR’s in the
piece. In calculating these, we assumed a constant density of 1000 kg/m3. Again,
the 4 mm resolution seems insufficient.

Table 15: SAR in the muscle piece
E cell [µW/kg] H cell [µW/kg]

Resolution SARwb SARmax SARwb SARmax

4 mm 16.79 184.37 17.76 223.33
2 mm 19.30 210.04 19.54 221.18
1 mm 19.97 220.08 20.01 222.80

0.5 mm 20.16 227.02 20.17 227.46

The wavelength at 2 GHz inside the muscle is λ ≈ 2.5 cm. According to the
results, the λ/10 rule seems to hold: 4 mm resolution — which doesn’t satisfy
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Figure 33: Local power loss density inside the muscle piece for various resolutions
in the E-cell case.

the rule — fails to give good enough results, while higher resolutions seem to give
reasonable results.

Comparing the results with the similar results for spheres (Sections 6.2.3 and
6.2.4), we see that the variation in SAR is of the same magnitude. The 2 mm
resolution results seem to be slightly less accurate than the sphere results at 2 GHz
in Tables 12 and 14. The results of the both cell types approach the correct(?)
SAR from below, and the H cells seem to give slightly better SAR than the E cells.
However, the difference between the convergence speeds and the accuracies of the
SARwb’s of the two cell types is smaller than in the sphere cases.

When the E-cell approach is used with the sphere, increasing resolution reduced
the calculated SAR, and in the present case, the SAR is increased when the reso-
lution is increased. Thus we cannot generally say if insufficient resolution produces
an over- or underestimation for the exposure.
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6.3 SAR calculation methods

In the end, the SAR results naturally depend on how the SAR actually is calculated.
This section deals with several methods which are utilized in determining SAR from
the results of a FDTD simulation.

6.3.1 Power loss density calculation method

In Section 5.2, methods for determining the power loss density in FDTD grid were
presented. They were based on simple numerical integration techniques, namely
trapezoid and midpoint rules. Similarly to that section, all fields are amplitudes
in the following. In the case of sinusoidal excitation, they can be calculated using
(104).

Midpoint rule yielded

s =
1

2
σ|Eave|2 =

1

2
σ
∑

u=x,y,z

((Eu)ave)
2. (138)

The precise equations for the E-cell and H-cell cases are presented in Section 5.2.
Let this method be called ‘Eave’ method.

Another option in calculating the power loss density was the trapezoid rule,
which gave

s =
1

2
σ(|E|2)ave =

1

2
σ
∑

u=x,y,z

(E2
u)ave. (139)

Let’s call this ‘(E2)ave’ method.
When the material cells are H cells, one can derive an alternative method for

calculating the local power loss density. This method employs the effective con-
ductivities as described in Section 2.3.3. In the following, we assume the fields are
amplitudes, and J denotes the amplitude of the conductivity current density, not
the amplitude of the complex current density. Also, the (effective) electric field of
the FDTD simulation is denoted by Eeff , contrary to the notation used before in
Sections 2.3.3 and 5.2 (in which it was simply E).

Assume that the physical conductivity current density J can be calculated from
the effective electric field Eeff by

J = σeffEeff .

By (111), the rms value for the local power loss density is thus

s =
1

2
J · E, (140)

where E is the physical electric field, calculated from Eeff by (40).
Utilizing the midpoint rule, and assuming both E and J linear, the power loss

in an FDTD cell p ∈ IH can be calculated by

s(p) =
1

2
(Jave · Eave)(p), (141)
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where ‘ave’ means taking average to the center point of the cell p. Let’s call this
approach the ‘JaveEave’ method.

Using the notation from Figure 17, this can be written

s =
1

2

∑
u=x,y,z

(Ju)ave(Eu)ave =
1

8

∑
u=x,y,z

(σu1Eu1 + σu2Eu2)(
εu1

ε
Eu1 +

εu2

ε
Eu2), (142)

where the notation is similar to (125), and {σu1} and {σu2} are the effective con-
ductivities on the respective sides.

Another possibility is to utilize the trapezoid rule: calculate the power loss on
each side, and take the average of these

s =
1

2

∑
u=x,y,z

(JuEu)ave =
1

4

∑
u=x,y,z

(σu1
εu1

ε
E2

u1 + σu2
εu2

ε
E2

u2). (143)

Let this be called ‘save’ method.
In E cells, there is no point in using the above approaches, because the current

density calculated using the effective conductivity is an effective field.
The following table summarizes the four power loss density calculation methods

presented above.

Table 16: Power loss density calculation methods
Method Equation Summary Integration method Cell types

Eave (138) 1
2
σ|Eave|2 Midpoint E and H

(E2)ave (139) 1
2
σ(|E|2)ave Trapezoid E and H

JaveEave (142) 1
2
Jave · Eave Midpoint H

save (143) 1
2
(J · E)ave Trapezoid H

The methods presented in the Table 16 were then tested by applying them to
the simulations presented in Sections 6.2.3 and 6.2.4. The whole-body SAR results
are plotted in Figures 34–40. The values are given as percentages to the accurate
Mie theory values.

Several observations can be made based on the figures: There are significant dif-
ferences in the whole-body SAR values calculated with either trapezoid or midpoint
rules. This difference was sometimes as big as the difference due to the material cell
types, and it was especially large when the resolution was insufficient, not satisfying
the λ/10 rule. Examples of this are seen in the last three figures. As the resolution
was increased, both the trapezoid and midpoint results converged to the same value.

For the E-cell case, the method utilizing the midpoint rule always gave seemingly
better results than the trapezoid-rule method. For example, in the TE-resonance
case in Figure 35, the midpoint rule SARwb stays almost constant with the reso-
lution. The trapezoid-method result is worse at a coarse resolution, and converges
to the midpoint result when the resolution is increased. On the other hand, the
trapezoid-rule methods seemed to give somewhat better results in the H-cell case.
This can be seen particularly well in Figures 37–40.
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Theoretically, there should be no fundamental reasons why one method would be
worse or better than the other. Thus we can choose: in the E-cell case, the midpoint
rule is used, and in the H-cell case, the trapezoid rule is used.

The JaveEave and save methods always gave results very similar to the (E2)ave

and Eave methods, respectively. This is natural when comparing the formulae of the
methods. However, there are some facts that make the Eave and (E2)ave methods
slightly preferred in SAR calculation.

In the cells that are surrounded by cells of higher conductivity, the JaveEave and
save methods will generally give higher power loss density than their Eave and (E2)ave

counterparts. In the cells surrounded by smaller conductivity cells, they will give
smaller power loss density. And in a homogeneous situation, the JaveEave and save

methods will give the same values as Eave and (E2)ave methods.
So, in a situation such as the sphere cases studied here, the Eave and (E2)ave

methods will always give greater power loss values than their JaveEave and save coun-
terparts (There are more (non-air) cells whose neighbors have lesser conductivities
than there are cells whose neighbors have higher conductivities). In a heterogeneous
situation, such as a human body model, the situation is more complicated, as there
are both kinds of cells. However, it can be assumed that most likely whole-body-
averaged SAR will be higher using Eave and (E2)ave methods, because the body is
surrounded by air. Slight overestimation such as this is not necessarily a bad thing
in SAR assessment.

This — and slightly easier implementation — makes the Eave and (E2)ave meth-
ods preferred over the JaveEave and save methods.
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Figure 34: SARwb in a muscle sphere of radius a = 0.65 cm at 1 GHz.
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Figure 35: SARwb in the 1 GHz TE-resonance muscle sphere, a = 2.35 cm.
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Figure 36: SARwb in a muscle sphere at 1 GHz, a = 2.5 cm
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Figure 37: SARwb in the 1 GHz TM-resonance muscle sphere, a = 3.35 cm.
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Figure 38: SARwb in a muscle sphere at 2 GHz, a = 2.5 cm
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Figure 39: SARwb at 1 GHz in a large muscle sphere of radius a = 10.0 cm.
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Figure 40: SARwb at 2 GHz in a large muscle sphere of radius a = 10.0 cm.
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6.3.2 Simplified local spatial-averaged SAR calculation method

A simpler method of linear interpolation for the local spatial-averaged SAR calcu-
lation presented in Section 5.3 was proposed in [25].

Using the linear interpolation, the corresponding equations in steps 3 and 4 in
the algorithm in page 40 are replaced with

f =
mavg −m(Cl)

m(Ll)
(144)

and

SARavg(p) =
P (Cl) + fP (Ll)

mavg

. (145)

Table 17 shows the maximum difference in averaging cube masses calculated
with (144) compared to the accurate method for the Norman phantom. IEEE rec-
ommendations [21] allow a 5 % variation in averaging cube masses, and the 10 g
cubes calculated with (144) satisfy this.

Table 17: Maximum difference in the masses of the averaging cubes calculated with
the linear method compared to the accurate method for Norman.

Averaging mass Difference
10 g 4.58 %
1 g 19.2 %

The averaging cubes calculated above were used to evaluate the averaged SAR
in an example simulation. Norman was placed 30 cm in front of a base station
antenna at frequency 900 MHz. Table 18 shows the difference in calculated SAR for
(145) and the accurate method. The local differences may be large for extremely
small SAR values, as can be seen in the second column of the table. These are
rarely of interest. More importantly, as the third column shows, the difference in
the interesting maximum SAR values is small. Thus, the simpler method of linear
interpolation may often be sufficient in practice.

Table 18: Differences in the spatial-averaged-SAR values between the linear and the
accurate method for Norman.

Averaging mass max(∆SARavg) ∆ max(SARavg)
10g 23.4 % 0.30 %
1g 61.8 % 0.25 %

6.3.3 Whole-body SAR averaging method

Two SAR averaging methods were presented in Section 5.1, namely the volume-
averaging (115) and the mass-averaging (116) methods. The standards by IEEE
and ICNIRP can be interpreted to require the volume-averaging method, while
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intuitively (and as shown in [24]) the mass-averaging method seems more reasonable.
For homogeneous cases, these two methods will give the same values, but in a
hetoregenous human body model, their results will generally be different.

Table 19 shows an example how the two averaging methods affect the whole-
body-averaged SAR values. The simulation setup and notation is the same as in
Table 23 in Section 6.5.1. The percentage values are the differences of the volume-
averaged SAR relative to the mass-averaged SAR.

Table 19: The difference in the whole-body-averaged SAR calculated with mass and
volume averaging.

900 MHz 1800 MHz
Resolution E cell H cell E cell H cell

3.6 mm 1.70 % 2.99 % -1.23 % 0.65 %
1.8 mm 1.94 % 2.81 % -0.81 % 0.63 %

It seems that the difference between the two methods may be at least up to 3 %,
so it is not completely negligible. Also, both methods may produce higher or lower
values than the other.
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6.4 Modeling sources and base station antennas

Several relevant results associated with Section 4 are presented in this section.

6.4.1 Steady-state convergence

When the sinusoidal excitation is used, as described in Section 4.3, the simulation
must be run long enough so that the steady state has been reached. The convergence
to the steady state can be made quicker by tapering the input sine signal, which
means starting the input signal at zero amplitude and increasing the amplitude to
its final value gradually over a few periods.

Assume the time dependence of the electric field of the sources is of the form

Esource(t) = A(t)E0 sin(2πft), t ∈ R, (146)

where A(t) is the tapering function. In a continuous time-harmonic case, the taper-
ing function would be constant A(t) ≡ 1. In an FDTD simulation, the fields are
initialized to zeros, and the sources are turned on at t = 0, so the tapering function
is zero for t < 0. The most simple A(t) for FDTD is a unit step function, which in
the following refers to “no tapering”. Using a smoother tapering function may make
the starting transients smaller and speed up the convergence to the steady-state, and
thus decrease the CPU time needed for the simulation.

The effects of using a tapering function were tested in a simulation which con-
sisted of the Visible man model in free space. The resolution of the model was 1 mm,
and it was exposed to a vertically polarized plane wave, the frequency of which was
1.8 GHz. In this case, the tapering function A(t) was a sigmoid function

A(t) =
1

1 + e
t0−t

τ

, (147)

where t0 and τ are constants. The time signals of the incident plane wave are shown
in Figure 41, with and without tapering.

The maximum of the electric field amplitude on a horizontal cross-section of the
head (includes the surrounding air) is shown in Figure 42 as a function of time.
Without tapering, the amplitude reaches the vicinity of its final value fast, but
oscillates around it. The magnitude of the oscillation is initially approximately 2 %
of the final value, and decays slowly. With tapering, the convergence to the final
value is slower, but the oscillation is nearly nonexistent.

There is a “biological” explanation for the oscillation of the electric field am-
plitude. The slow variation of the amplitude of the electric field has a period of
approximately 30 times the original period. Thus the frequency of the variation is
≈ 60 MHz. This is very close to the whole-body resonant frequency for vertically
polarized fields: According to [29], the whole-body resonance happens when the
body length is approximately 0.38λ–0.40λ, where λ is the wavelength in free space.
At ≈ 60 MHz, this is ≈ 190–200 cm, which corresponds to the height of the Visible
man.
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Figure 41: Incident plane wave amplitude
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Figure 42: Maximum electric field amplitude on a horizontal cross-section of the
head. The amplitude is calculated using (104).

In summary, it is useful to utilize tapering to reduce the magnitude of the slowly
vanishing low-frequency whole-body resonances, i.e. to make the whole-body reso-
nant frequency component in the excitation signal spectrum as small as possible.

6.4.2 Modeling dipole antennas

An important part of modeling base station antennas is the modeling of individual
elements. This section describes and tests some possible ways to model dipole
antennas.
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Four different dipole models were studied. The sketches of the models are shown
in Figure 43, which shows one half of the dipoles and the location of the discrete
source. The length of the discrete source is 3 mm in all models, except in model

(a)

(b)

(c)

(d)

L

Figure 43: Modeling a dipole antenna in FDTD: (a) 3 mm resolution rectangular
dipole, (b) 3 mm resolution thin wire dipole, (c) 3 mm diameter cylindrical dipole
with non-uniform resolution and curved boundary approximation, and (d) 1 mm
resolution rectangular dipole

(d), in which the length is 1 mm. The frequency is 2140 MHz, and the length of
the dipole half L is 33 mm, which means the total length of the dipole including the
source is 0.492λ in models (a)–(c), and 0.478λ in model (d). Notice the position of
the discrete source in models (a) and (d).

Table 20 shows the calculated directivities in two directions at 2140 MHz. The
“front” and “back” directions mean the front and back sides of the dipoles as they
are shown in Figure 43, respectively.

The directivities match very well, which is natural, as the far fields of thin dipole
antennas should not depend on the thickness or the shape of the cross-section of the
wires.

Table 20: The calculated directivity at 2140 MHz for the different dipole antenna
models

Directivity (back) Directivity (front)
Model (a) 1.671 1.683
Model (b) 1.668 1.668
Model (c) 1.666 1.666
Model (d) 1.651 1.657

Figure 44 shows the calculated electric field amplitude on a line in “front” of the
dipole. The radiated power was the same for all dipoles. The difference in electric
field amplitude is less than 1 % for distances larger than 30 mm.

From now on, models (a) and (d) are used in this work. The results presented
here suggest that they are good enough approximations for dipole antennas, and
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Figure 44: Normalized electric field amplitude in decibels (20 log(|E|) dB) at
2140 MHz

there seems to be no need to refine the mesh near the antennas. (a) and (d) gave
similar results, so the antenna models should be sufficiently equivalent when com-
paring the BSA-body model results calculated with different resolutions.

6.4.3 Radiated power calculation method

The SAR results are often normalized with respect to the total radiated power11

Prad of the antenna. Consequently, the SAR results are affected by the calculation
method of Prad.

There are at least two ways to calculate the total radiated power:

Circuit-parameters method: Summing the net powers as in (106), where the net
powers are calculated using the currents and voltages over the discrete sources
by (96).

Huyghens-surface method: Recording Poynting vector normal component along
a surface which encloses the sources and no lossy materials, and integrating to
get the total power radiated through the surface.

In theory, these two methods should give the same radiated power. In practice,
the circuit parameters method is preferred, as it is much simpler and cheaper to
implement.

The radiated powers of the four dipole antenna models of the previous section
were calculated with both methods. The results are presented in Table 21. They
are normalized with respect to the circuit-parameters method radiated power (sep-
arately for each model). The radiated powers are very similar. With models (c)

11The net power which is fed into the FDTD-computation domain by the antenna.
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and (d), the two methods match a little better than with the models (a) and (b).
This might be related to the fact that models (c) and (d) had finer resolutions than
(a) and (b), and thus the interpolation errors in the Huyghens-surface method are
smaller. Based on these results, calculating the total radiated power with the circuit
method (106) appears to be well justified.

Table 21: Radiated power calculated with the two methods for the dipole antennas
of Section 6.4.2

Circuit [W] Huyghens [W]
Model (a) 1.0000 1.0147
Model (b) 1.0000 1.0167
Model (c) 1.0000 1.0020
Model (d) 1.0000 1.0042

6.4.4 Effects of antenna feed modeling on SAR

It was discussed in Section 4.5.2 that modeling the antenna feeds, i.e. the choice of
the inner resistances of the discrete sources, has a variety of effects which may affect
the calculated SAR values. The dependence of the radiated power and SAR values
on the inner resistances is studied in this section by exposing a box phantom to a
small base station antenna.

A two-element base station antenna was placed in front of a rectangular phantom
the size of which was 36 × 21 × 6 cm3. The situation is illustrated in Figure 45.
The material of the phantom was 2/3 muscle, with εr = 37.18 and σ = 1.056 S/m.
The studied frequency was 2140 MHz, and the dipole lengths were approximately
λ/2. The mesh resolution was approximately 3 mm. The dipole feeds were discrete
sources with inner resistances, as described in Section 4.1, and the values of the
inner resistance Rg were the same for both discrete sources.

The phantom-antenna distance and the value of the inner resistance Rg were
varied, and whole-body SAR and the maximum of the local power loss density
were recorded for each distance-resistance combination. Two different amplitude
distributions of the antenna were studied: Firstly, a uniform distribution, in which
the amplitudes of the voltage sources of the both elements were the same. And
secondly, a nonuniform distribution, in which only the upper dipole in Figure 45 is
excited, and the amplitude of the lower element is set to zero.

It was observed in Section 4.5.2 that the total radiated power depends the dis-
tance to the phantom. Here, this dependence is studied for several values of the inner
resistance Rg. For each value of Rg, the gross input power (97) is chosen so that the
total (net) radiated power is 1 W in free space. The antenna-phantom distance is
varied, keeping the gross power constant. This is done using five different values for
the inner resistances of the antenna. Figure 46 shows the total (net) radiated power
of the antenna as a function of distance from the phantom in the case of the uniform
amplitude distribution. It seems that the inner resistance Rg = 150 Ω is the most
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Figure 45: The two-element antenna and the rectangular phantom. The position of
the phantom in the direction of the long axis of the antenna is shifted 6 cm upwards,
so the situation is not symmetric.

realistic value, because the radiated power is an (almost) increasing function of the
antenna-phantom distance.

Next, the effects of the inner resistance on the normalized (Prad = const.) SAR
values are studied. Figures 47 and 48 show the differences due to the inner resistances
in the normalized whole-body SAR and local power loss density, respectively. At
each distance, the differences are calculated with respect to the normalized SAR
values when the inner resistance Rg = 150 Ω. Both the uniform and the nonuniform
amplitude distributions are used.

With the uniform amplitude distribution, the differences due to the inner resis-
tances were up to 1 % in whole-body SAR, and up to 2 % in the maximum local
power loss density. Nonuniform amplitude distribution produced larger differences;
up to 2.5 % in whole-body SAR and 6 % in the maximum local power loss density.

As a conclusion, it is clear that the choice of the inner resistances does have
an effect on the normalized SAR values. However, the discrete sources are merely
approximations, and in a realistic antenna the sources would be more complicated
than just a resistance and a voltage source. Modeling the sources accurately would
require an accurate circuit model of an antenna, which is out of scope of this work.
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Figure 46: Normalized radiated power as a function of antenna-phantom distance.
Gross input power (97) is constant, such that the radiated power is 1 W without
the phantom.

0 20 40 60
97

98

99

100

101

102

103

Distance [cm]

[%
]

Uniform

0 20 40 60
97

98

99

100

101

102

103

Distance [cm]

[%
]

Nonuniform

 

 

R
g
=50Ω

R
g
=100Ω

R
g
=150Ω

R
g
=200Ω

R
g
=250Ω

Figure 47: The difference in the normalized (Prad = const.) whole-body-averaged
SAR as a function of antenna-phantom distance for the uniform (left) and the
nonuniform (right) amplitude distributions.
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loss density as a function of antenna-phantom distance for the uniform (left) and
the nonuniform (right) amplitude distributions.
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6.5 SAR calculations in human body models

6.5.1 Effects of resolution in human body models

The accuracy of the FDTD method in SAR calculation was studied in Section 6.2
for canonical cases, such as spheres or rectangles. The objective of this section is to
study if similar results can be obtained for human body models. They are large and
heterogeneous — quite different from small homogeneous spheres or rectangles.

Even though the models are more complex, the algorithm stays the same —
Yee’s algorithm is second order accurate, and increasing the resolution will reduce
the discretization error. In addition to this, the mesh resolution affects the accuracy
of the anatomical modeling.

Several papers have discussed the effects of resolution in human-SAR calcula-
tions, for example the following. In [8], 3 mm and 5 mm Visible man models were
exposed to a plane wave. It was concluded that the resolution had “very little” (up
to 8 % at 2 GHz) influence on the whole-body SAR. Whole-body SAR in Norman
exposed to a plane wave was studied in [29] at resolutions up to 2 mm. Conclu-
sion was that the whole-body SAR is a robust quantity with respect to the model
resolution (at frequencies up to 1 GHz).

The available body models in this work were Visible man with two resolutions,
Zubal and Norman, as described in Section 2.3.6. In order to study the effects
of resolution, higher-resolution models can be created by splitting each voxel into
eight new voxels, which is illustrated in Figure 49. This kind of artificial increase in
resolution does not improve the accuracy of anatomical modeling, but reduces the
discretization error of the Yee algorithm. This method was utilized to create Norman

Figure 49: Increasing the resolution of a human voxel model by splitting each cell
into eight (here: four) smaller cells.

model with a 1.011 mm resolution, and Zubal model with a 1.8 mm resolution. As
a result, we have a total of six models. They are listed in Table 22.

The effects of resolution on the whole-body-averaged and localized SAR values
were studied by exposing each phantom to a vertically polarized plane wave with
power density 1 W/m2. The propagation direction of the wave was towards the face
of the phantom. The studied frequencies were 900 MHz, 1800 MHz and 2140 MHz,
which correspond to frequencies commonly used in mobile communications.

Tables 23, 24 and 25 show the SAR results for the two resolutions of Zubal,
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Table 22: The resolutions of the available human body models. # of cells denotes
the size of the box including the model.

Resolution
Model FDTD Anatomical # of cells
Zubal 3.6 mm 3.6 mm 87× 147× 493
Zubal 1.8 mm 3.6 mm 174× 294× 986

Norman 2.022 mm 2.022 mm 148× 277× 871
Norman 1.011 mm 2.022 mm 296× 554× 1742

Visible man 3 mm 3 mm 109× 190× 625
Visible man 1 mm 1 mm 326× 568× 1877

Norman and Visible man, respectively. The Zubal model was simulated for both
the E-cell and H-cell cases, while Norman and Visible man models were always posi-
tioned in the E cells. The difference column tells the difference of the lower-resolution
result with respect to the more accurate high-resolution result. Comparison of the
Norman and Visible man results in these tables can be found in Table 30 in the next
section.

Table 23: The whole-body and the maximum 10 g SAR values in Zubal at plane-
wave exposure. The maximum of the 10 g SAR is located in the hands. The units
are [mW/kg].

900 MHz 1800 MHz
Cell Resolution SARwb SAR10g SARwb SAR10g

E 3.6 mm 6.418 97.57 4.510 81.47
E 1.8 mm 6.581 111.70 4.964 87.25
Difference [%] -2.49 -12.65 -9.13 -6.62

H 3.6 mm 6.784 181.98 5.673 125.59
H 1.8 mm 6.787 163.58 5.639 123.99
Difference [%] -0.05 11.25 0.59 1.29

Table 24: Whole-body and the maximum 10 g SAR in Norman at plane-wave expo-
sure. The maximum of the 10 g SAR is located in the nose. The units are [mW/kg].

900 MHz 2140 MHz
Resolution SARwb SAR10g SARwb SAR10g

2.022 mm 6.810 84.75 6.720 99.64
1.011 mm 6.846 85.52 6.390 99.82

Difference [%] -0.53 -0.91 5.16 -0.18

Table 23 shows the SAR values in Zubal phantom at both resolutions and fre-
quencies 900 MHz and 1800 MHz. The simulations were performed both when the
materials cells were E cells, and when the material cells were H cells. The difference
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Table 25: Whole-body and the maximum 10 g SAR in Visible man at plane-wave
exposure. The maximum of the 10 g SAR is located in the hands. The units are
[mW/kg].

900 MHz 2140 MHz
Resolution SARwb SAR10g SARwb SAR10g

3 mm 5.819 97.37 4.355 93.09
1 mm 5.933 118.36 4.607 97.32

Difference [%] -1.94 -17.74 -5.48 -4.34

in the E-cell and H-cell results is large, and the H cells always gave both higher
whole-body and localized SAR. For the H cells, the whole-body SAR stayed almost
constant with the resolution for both frequencies, and for the E cells, increasing the
resolution changed the whole-body SAR more.

The difference in the maximum 10 g SAR was especially large, as the H cells
typically produced approximately 50 % higher values than the E cells. The maximum
was located in the hands for both cell types, which might explain some of the
difference. Additionally, the maximum value was highly sensitive to the resolution,
especially at 900 MHz, which implies that the geometry of the hands may be a
particularly difficult case for the FDTD method.

The difference between the E-cell and the H-cell results is so large that it makes
the validity of the H-cell approach somewhat suspected for highly heterogeneous
cases such as this. On page 11, the approximations of the real and imaginary parts
of the effective complex permittivity (39) by the simpler formulas should be reviewed.
But then, the E-cell results do not seem so good either, as they are highly sensitive
to the resolution.

The anatomical resolutions of the two resolutions of the Visible man model were
different, and the results differ quite a lot. Especially, at 900 MHz, the maximum of
the 10 g SAR is very sensitive to the resolution. However, it seems that most of this
large difference is due to the other factors than the anatomical accuracy. Namely,
the arms and hands of both Visible man and Zubal are based on the same data
[9], and the peak 10 g averaged SAR results seem to match very well (Zubal in E
cells). The sensitivity with the resolution is clear also in the SAR values of Zubal,
even though the both resolutions of Zubal have the same anatomical resolution.
Conclusion is that there were no differences which could not have been explained
by the different FDTD resolutions, and the FDTD resolution seems more significant
than the anatomical resolution.

Of the three models, the localized SAR values of Norman were the most robust
with the resolution. This might have to do with the posture of the model and the
position of the maximum SAR10g, which were different in the other models. As a
conclusion, it seems that the model and its posture may have a large effect on how
sensitive to the mesh resolution the localized SAR values are.

The ICNIRP basic restriction limits for the general public exposure are 0.08 W/kg
for whole-body SAR and 2 W/kg for the peak 10 g averaged SAR (Table 4), assum-
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ing the 10 g SAR maximum is in the head or trunk of the phantom. Actually, this
was not always the case, e.g. Visible man and Zubal had the maximum 10 g SAR
in the hands. In all the results12, the condition for the whole-body SAR is more
restrictive than the condition for the localized SAR.

Plane wave can be used as an approximation of the farfield of a base station
antenna by (108). However, based on the results, such an approximation has little
use when assessing base station exposure in practice. This is best justified by an
example.

For example, take Norman at 2140 MHz. The power density of the incident plane
wave would have to be 12.5 W/m2 in order to produce whole-body SAR values which
exceed the basic restriction limits for general public exposure (Table 4). Assume
an antenna-body distance of 5 m, which is probably too small for the plane-wave
approximation to be reasonable. For an antenna with a (high) directivity of 10 (20
dBi), producing such a power density would require an antenna radiated power of
about 400 W, which is very high. Thus it is unlikely that the basic restrictions will be
exceeded far from the antenna, where the plane wave approximation is reasonable.

12except Zubal in the H cells at 900 MHz and 3.6 mm resolution
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6.5.2 Human exposure to base station antennas

Several results involving human body model near a base station antenna are pre-
sented in this section.

A base station antenna consisting of four elements, the details of which are
presented in Table 26, was placed in front of a human body model. The available
human models were listed in Table 22. Of those, 1.011 mm Norman and 1 mm and
3 mm Visible man models are used in this section. The materials of the models
are positioned in the E cells. The position of the base station antenna with respect
to the human model was chosen such that whole-body SAR would be as large as
possible, and it is shown in Figure 50.

Table 26: Antenna properties
Frequency 2140 MHz

Length of the dipoles ≈ λ/2
Number of elements 4

Directivity 15.6 dBi
Beam width (vertical) 13.4

Beam width (horizontal) 67.0
Inner resistances Rg 50 Ω

Figure 50: Base station antenna and its position with respect to the human model.

The SAR values as a function of body-antenna distance13 using the Norman
model are presented in Table 27, and the Visible man SAR results are found in
Tables 28 and 29 for the 1 mm and 3 mm resolutions, respectively. The Visible
man results have been previously presented in [30]. The SAR values are calculated
assuming the total radiated power (106) is 1 W.

13Assuming the x axis is parallel to the main lobe direction, this distance is the difference in the
x coordinates between the outermost point of the antenna and the outermost point of the body.
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In the tables, the threshold power is calculated from the SAR results. It is
defined so that the radiated powers greater than the threshold power cause the
basic restriction limits to be exceeded. ICNIRP basic restrictions for the general
public exposure (European council recommendations) are used. For occupational
exposure, the threshold powers should be multiplied by five. The threshold power for
the 10 g averaged SAR is calculated assuming the maximum is located in the head
or trunk of the phantom (the basic restriction limits are stricter there). Actually,
the maximum of the 10 g SAR in the Visible man phantom is located in the hands,
so the threshold power should be a little higher.

Table 27: Whole-body and maximum 10 g SAR values in the 1.011 mm Norman
phantom at different body-antenna distances.

Distance SARwb [mW/kg] Threshold [W] SAR10g [mW/kg] Threshold [W]
5 cm 7.376 10.8 878.3 2.3
15 cm 6.603 12.1 516.0 3.9
30 cm 5.411 14.8 367.9 5.4
45 cm 4.595 17.4 351.5 5.7
70 cm 3.205 25.0 240.1 8.3

Table 28: Whole-body and maximum 10 g SAR values in the 1 mm Visible man
phantom at different body-antenna distances.

Distance SARwb [mW/kg] Threshold [W] SAR10g [mW/kg] Threshold [W]
15 cm 5.334 15.0 482.3 4.1
30 cm 4.080 19.6 369.7 5.4
45 cm 3.244 24.7 361.6 5.5
70 cm 2.185 36.6 272.8 7.3

Table 29: Whole-body and maximum 10 g SAR values in the 3 mm Visible man
phantom at different body-antenna distances.

Distance SARwb [mW/kg] Threshold [W] SAR10g [mW/kg] Threshold [W]
15 cm 4.833 16.6 540.1 3.7
30 cm 3.683 21.7 394.4 5.1
45 cm 2.903 27.6 321.6 6.2
70 cm 1.970 40.6 248.4 8.1

In all situations presented here, the threshold powers for the localized SAR are
lower than the threshold powers for the whole-body SAR, which means the localized
SAR limit is more restrictive than the limit due to the whole-body SAR. In the case
of plane-wave exposure, the situation was the opposite.

The threshold powers are relatively low, under 10 W for all distances and all
models. A realistic antenna might have a radiated power of 30 W, which exceeds
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the calculated threshold powers by a large margin, and the compliance distance will
most likely be well over 1 m.

The peak 10 g SAR seems to match quite well for both Norman and Visible
man with both resolutions. This might just be coincidence, because the postures
of Norman and Visible man are different, and the maxima are located in different
body parts: in the hands for Visible man, and in the penis for Norman.

The difference in both localized and whole-body-averaged SAR for the two res-
olutions of the Visible man are approximately 10 %: The lower resolution always
underestimated the whole-body SAR by 10 %, and the peak 10g SAR was under-
estimated by approximately 10 % at small distances, and overestimated equally at
larger distances. Consequently, there is no clear “saddle point” in the peak 10 g
averaged SAR at distances 30–45 cm, contrary to the 1 mm resolution. This saddle
point is also present in the Norman results.

When the SAR results of two different phantoms are compared, it seems more
reasonable to use total power loss Ploss = mbodySARwb, where mbody is the total body
mass, instead of the whole-body SAR, because the whole-body SAR seems heavily
affected by the total mass of the phantom. E.g. the whole-body SAR of Norman
is always considerably higher than the whole-body SAR of the heavier Visible man.
Table 30 shows the comparison of the SAR values between Norman and the two
Visible man models. The farfield SAR values are calculated from the plane-wave
results of the previous section.

When comparing the results for Norman and the 1 mm Visible man, several
observations can be made. When the distance to the antenna is increased, the
total power loss inside the Visible man decreases slower than the total power loss
inside Norman. This might be related to the fact that Visible man is taller than
Norman, and thus Visible man’s absorption cross section is larger. The behavior of
the 10 g averaged SAR as a function of the antenna distance was the opposite: Near
the antenna, Visible man had higher 10 g SAR values, and far from the antenna,
Norman’s 10 g SAR was higher. This is might due to e.g. the different postures of
the models.

Table 30: Visible man SAR values compared to the SAR values of Norman (Nor-
man = 100 %) at different antenna-phantom distances.

Ploss [% Norman] SAR10g [% Norman]
Distance 3 mm 1 mm 3 mm 1 mm
15 cm 104.7 93.5 105.7 116.5
30 cm 107.2 100.5 98.3 108.8
45 cm 91.5 102.9 91.2 101.8
70 cm 103.5 113.6 88.8 98.3

Farfield 98.4 104.0 93.3 97.5

Figure 51 shows the estimated compliance distances based on the ICNIRP limits
for the general public exposure. In this case, all the estimated compliance distances

84



D satisfy

D ≤ 0.1
m

W
(Prad + 1 W).

However, the amount of available results is very limited, so this formula is only
suggestive.
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Figure 51: Estimate for the compliance distance as a function of antenna radiated
power.
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7 Discussion

7.1 Calculation errors

Based on the presented results, some sources of calculation error, which affect the
accuracy of the resulting SAR values, can be itemized:

Discretization error: When the resolution satisfied ∆ < λ/10, the SAR results
usually seemed to be correct at a qualitative level. The accuracy could be
heavily affected by the material cell type (E/H), especially in the case of
small spheres or heterogeneous human phantoms. The accuracy was naturally
improved when the resolution was increased.

Absorbing boundary conditions: The error due to the approximation of free
space by absorbing boundary conditions was shown to be negligible.

Floating-point accuracy: In all the results, single-precision (4 byte) floating-
point arithmetic is used. Using double-precision (8 byte) numbers had ex-
tremely small effect on the results. This was studied by exposing a small
muscle sphere to a plane wave, as was done in Section 6.2, using both single-
and double-precision floating-point numbers. The difference in both whole-
body and the peak local SAR was of the order thousandth of percent, and is
thus truly negligible.

Staircase approximation: For large enough objects (in cells), the approximation
of curved boundaries by a staircase model can be assumed small. The results
suggest that the error in SAR values in a sphere is less than 1 % if the sphere
radius is greater than 14 cells.

Anatomical accuracy: The accuracy of the anatomical modeling can be thought
to have some effects on the SAR values. While there are still too few results
to reliably distinguish this error from the other sources of error (especially the
discretization error), it seems that, for reasonably fine mesh resolutions, this
error is considerably smaller than the discretization error.

Local power loss density calculation method: When the resolution satisfied
∆ < λ/10, the difference between the two calculation methods could be up to
5 %. Increasing the resolution naturally reduced the difference.

Antenna circuit model: This may have an effect on the SAR results. In this
work, the circuit model was approximated by discrete sources with inner re-
sistances. Based on the results in Section 6.4.4, it seems that the magnitude
of the error in SAR values due to the approximation of the antenna circuit
model might be up to several percents.

Many of the most significant sources of error become smaller as the resolution
is increased. Doubling the resolution increases the memory requirements eight-fold,
and also halves the maximum stable time step. Thus in practice, the resolution
cannot be increased very much, and we have to make do with some error.
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7.2 Other uncertainties

In addition to the calculation errors, there are several other factors which cause
uncertainty in the results. These include e.g. the choice of the human body model
and the uncertainties in the material parameters.

There can be significant differences in the base station SAR results of two differ-
ent body models — in the results presented in Section 6.5.2, the difference between
the peak spatial-averaged SAR of Norman and Visible man phantoms was up to
20 %. Similar distinction was also found in the total power losses of the two models,
producing possibly an even larger difference in the whole-body-averaged SAR val-
ues. Large differences in SAR values between different body models have also been
reported in [31], where there were up to 40 % differences in the peak spatial-averaged
SAR of Visible man and Zubal.

Using child models or changing the posture and the position of the body model
will likely cause additional differences. Child models are special compared to the
adult models, because, even near an antenna, whole-body-averaged SAR might be
more restrictive than the localized SAR — in the adult models, the localized SAR
was considerably more restrictive than the whole-body SAR. Naturally, the uncer-
tainty in SAR values due to the choice of the body model should be taken into
account when estimating the compliance distance of an antenna by introducing a
sufficient safety margin, as it is important that the basic restriction limits are not
exceeded for any individual or any posture.

One source of uncertainty is the choice of the material parameters. The effects
of material parameters on the SAR values have been discussed in e.g. [32], [8] and
[33]. It was shown in [33] that SAR values in a head may either decrease or increase
when the permittivity and conductivity values are increased. The actual anatomy
of the head model was concluded to play a key role in the SAR variation when the
dielectric values are increased.

It is shown in [34] that radio-frequency permittivity and conductivity values in
rat tissues decrease with age. The decrease in dielectric values from 30 to 70 days
old rat could be as large as 10–40 % depending on the tissue. If similar results hold
for humans, the choice of the material parameters is particularly important if SAR
is studied in child or infant models.

Naturally, the differences in tissue densities cause equally large differences in the
evaluated SAR values. For example, the material densities used in [35] are slightly
different compared to the densities used in this work (Table 2).

The antenna type and model naturally have a large impact on the SAR results.
The exposure analysis is always specific to the antenna used. Some effects of antenna
models can be found in e.g. [36] and [35].

The spatial-averaging algorithm of SAR might also have some effects. In this
work, the averaging method of [21], which used cubical averaging volumes, was used.
Taking the maximum of the localized SAR averaged over “any 10 g of contiguous
tissue”, as in [22], would produce larger values. Also, mass- or volume-averaging
methods for the SAR usually give slightly different results.
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8 Conclusions

The FDTD method was applied to human-BSA exposure problems. This required
knowledge about the method itself, modeling materials, human body models, ab-
sorbing boundary conditions, modeling antennas, and SAR calculation methods. A
large number of numerical results was presented to illustrate the sources of error
and uncertainties in FDTD SAR calculations.

Here is a summary of the conclusions that could be drawn based on the numerical
results:

• The error due to the approximation of free space by properly implemented
CPML absorbing boundary conditions is negligible. The SAR calculations in
human body models seem to be quite “robust”, so that even nonperfect ABC’s
may perform sufficiently well.

• Material cell type (E/H) may have significant effects on the SAR values espe-
cially in small spheres and heterogeneous human models. The effects of the
material cell type in small spheres have a clear connection with the spherical
TEr and TMr resonances.

• The error due to the staircase approximation is small for spheres with radii
larger than 14 cells.

• Insufficient resolution or faulty absorbing boundary conditions may cause both
over- or underestimation for the SAR.

• The λ/10 rule of thumb for the mesh resolution appears to hold well in the
sense that the resolutions coarser than this usually failed to give good results.

• Local power loss density calculation methods may have a noticeable effect on
the SAR values.

• Radiated power from an antenna can be reliably calculated from the currents
and voltages over the discrete sources.

• The choice of the inner resistances of the discrete sources may have an effect
on the SAR values.

• The choice of the body model and its posture may have a significant effect on
the sensitivity of the localized SAR values with the resolution.

• Far from the antenna, where the plane-wave approximation can be used, the
basic restriction limits for the whole-body-averaged SAR are more restrictive
than the limits for the localized SAR. However, it is unlikely that the SAR
limits would be exceeded in the far field.

• Near (≤ 0.7 m) the studied four-element base station antenna, the basic re-
striction limits for the local spatial-averaged SAR were considerably more re-
strictive than the limits for the whole-body-averaged SAR.
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• Whole-body-averaged SAR is heavily affected by the total mass of the body.
E.g. the mass of the Visible man phantom was 44 % higher than the mass of
the Norman phantom. Consequently, the whole-body SAR values of Visible
man were always significantly lower than those of Norman.
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Finnish).

[29] P. J. Dimbylow, “Fine resolution calculations of SAR in the human body for
frequencies up to 3 GHz,” Physics in Medicine and Biology, vol. 47, pp. 2835–
2846, 2002.
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