Design and implementation of a distributed file directory

for mobile peer-to-peer.

Helsinki University of Technology Thesis Abstract

Author: Victor Hugo Morales Reyes
Design and implementation of a distributed file
Title of the Thesis:
directory for mobile peer-to-peer
Date: 9t of July, 2007
Pages: ix+68 Professorship: S-38
Electrical and Communications Engineering —
Faculty:
Networking Laboratory
Supervisor: Professor Raimo Kantola
Instructor: Lic.Sc. Nicklas Beijar

The absence of a Peer-To-Peer (P2P) network designed specifically for mobile
phones, which has proven extremely popular on fixed networks, is a very
attractive topic from an academic research standpoint. This thesis begins by
exploring the work done by the scientific community thus far in the field of
mobile Peer-To-Peer. It then describes a novel approach [1] that utilizes the
Session Initiation Protocol (SIP) to carry P2P control messages. This approach is
called P2P-Over-SIP, and has several advantages over other non standard

protocols.

We then describe a software implementation using P2P-Over-SIP. Especially we
describe our implementation of a super-peer node, used to build a mobile P2P
network with an unstructured semi-centralized architecture. We detail the
results obtained from testing our implementation with realistic usage scenarios.
An analysis of our results is done and conclusions are drawn on the properties of

our network. Lastly we comment on possible future work to be done in this area.

Keywords: Peer-To-Peer (P2P); Session Initiation Protocol (SIP); IP Multimedia

Subsystem (IMS); 3¢ Generation (3G) cellular network.

ii

Tekniilinen Korkeakoulu Diplomityon Tiivistelma

Tekija: Victor Hugo Morales Reyes
Mobiilivertaisverkon hajautetun tiedostoluettelon
Tyon nimi:
suunnittelu ja toteutus
Padivamaara: 9. kesakuuta 2007
Sivuja: ix + 68 Professuuri: S-38
Osasto: Sahko- ja tietoliikennetekniikan osasto
Tyo6n valvoja: Professori Raimo Kantola
Tyon ohjaaja: TkL Nicklas Beijar

Vertaisverkot ovat osoittautuneet hyvin suosituiksi kiintedssa Internetissa.
Akateemisesta nakokulmasta mielenkiintoista on, ettd matkapuhelinverkkoa
varten suunniteltuja vertaisverkkoja ei vield ole.

Tassa diplomityossa kdymme aluksi lapi mobiilivertaisverkosta tehtyja
tutkimuksia. Taman jalkeen kuvaamme uudenlaista ldhestymistapaa, joka
kayttaa SIP (Session Initiation Protocol) -protokollaa vertaisverkon
merkinantosanomien kuljettamiseen. Tasta lahestymistavasta, joka tarjoaa useita

etuja, kiytamme nimed P2P-over-SIP.

Seuraavaksi kuvaamme mobiilivertaisverkosta tehdyn toteutuksen. Erityisesti
kuvaamme tekemdmme supersolmun ohjelmistototeutuksen, jonka avulla
puolikeskitetty jarjestamaton arkkitehtuuri muodostuu. Testaamme toteutusta
oikeudenmukaisissa skenaarioissa ja tuloksia analysoimalla teemme paatelmia
arkkitehtuurin soveltuvuudesta laajempaan kayttoon. Lopuksi pohdimme

aiheeseen liittyvia kehitysmahdollisuuksia.

Keywords: Peer-To-Peer (P2P); Session Initiation Protocol (SIP); IP Multimedia

Subsystem (IMS); 3 Generation (3G) cellular network.

iii

Acknowledgements

This work is the culmination of a lifetime of efforts from my parents Guillermo
Morales and Emma Reyes. It is to them that I dedicate it.

I want to thank my thesis instructor, Nicklas Beijar who was extremely patient
with me throughout the entire project, providing very insightful advice, I am
very grateful for that. I also want to thank Tuomo Hyyryla who helped me on
many occasions with his programming expertise.

I want to thank also the rest of my family for their support, my girlfriend Saara
Oksanen, and the many friends I now have in Finland. Your friendship and

support have been invaluable to me.

I also want to thank Professor Raimo Kantola.

This project was done for the University of Helsinki in the networking

laboratory.

May 17, 2007

Victor Hugo Morales Reyes

iv

Abbreviations

3G
3GPP
AH
AOR
API
AS
CD
CPS
CSCF
DNS
DUM
GCr
GGSN
GSM
GPRS
HSDPA
HSS
IMS
P
ISDN
MP
MP2P
MP3
MPEG

Third Generation

Third Generation Partnership Project
Ad Hoc (Latin: for this purpose)
Address Of Registry

APplication Interface

Application Server

Compact Disc

Calls Per Second

Call Session Control Function
Domain Name Service

Dialog Usage Manager

Gateway Control Protocol

Gateway GPRS Support Node
Global System for Mobile communications
General Packet Radio Service

High Speed Download Packet Access
Home Subscriber Server

IP Multimedia Subsystem

Internet Protocol

Integrated Services Digital Network
Mobile-peer

Mobile P2P

MPEG-1 Audio Layer 3

Moving Picture Experts Group

MSC Mobile Switching Center

MT Mobile Terminal

OS Operating System

pP2p Peer-To-Peer

PSTN Public Switched Telephone Network

REPRO reSIProcate PROxy

RESIP reSIProcate stack + DUM
RFC Request For Comments

RI Routing Index

RTO Retransmission Time Out
SGSN Serving GPRS Support Node
SIP Session Initiation Protocol
SQL Structured Query Language
Sp Super-peer

TCP Transmission Control Protocol
TTL Time To Live

UAC User Agent Client

UAS User Agent Server

uDP User Datagram Protocol
UML Unified Modeling Language

XML eXtensible Markup Language

vi

Table of contents

THESIS ABSTRACT
DIPLOMITYON TIIVISTELMA
ACKNOWLEDGEMENTS
ABBREVIATIONS

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

1 INTRODUCTION

1.1 BACKGROUND

1.2 PROBLEM

1.3 SCOPE

1.4 STRUCTURE OF THE THESIS

2 PEER-TO-PEER BACKGROUND

2.1 WHAT IS PEER-TO-PEER
2.2 ARCHITECTURES
2.2.1 Peer-To-Peer taxonomies
2.2.2 Centralized P2P
2.2.3 Decentralized P2P
2.2.4 Semi-centralized P2P
2.3 SEARCH ALGORITHM
2.3.1 Blind vs. informed search
2.3.2 Flooding
2.3.3 Random walks
2.3.4 Routing indices

2.3.5 P2P taxonomies and forwarding schemes summarized

3 SESSION INITIATION PROTOCOL AND THE IP MULTIMEDIA SUBSYSTEM

3.1 SESSION INITIATION PROTOCOL
32 IP MULTIMEDIA SUBSYSTEM

4 MOBILE PEER-TO-PEER

4.1 EXISTING WORK ON MOBILE PEER-TO-PEER
4.1.1 Earthlink SIPshare
4.1.2 Symella and SymTorrent

4.2 SIP BASED PEER-TO-PEER IN THE IMS

43 ARCHITECTURE OF SIP-BASED PEER-TO-PEER

5 SUPER-PEER IMPLEMENTATION

5.1 OVERVIEW

52 INTERACTION BETWEEN SUPER-PEER AND MOBILE-PEER
53 INTERACTION BETWEEN SUPER-PEERS

54 DATABASE

6 SUPER-PEER SOFTWARE

6.1 CHOOSING SOFTWARE LIBRARIES
6.2 ARCHITECTURE
6.3 RESIPROCATE

vii

I
I
v

Vil
IX
IX

—

o OO L N W

6.4 MODULE WALKTHROUGH
6.4.1 superPeer module
6.4.2 dbhandler module
6.4.3 dbutil module
6.4.4 xmlhandler module
6.5 CHALLENGES DURING SOFTWARE DEVELOPMENT
6.5.1 Learning curve
6.5.2 P2P message identifier
6.5.3 PartySIP proxy vs Repro
6.5.4 Loop detection
6.6 KNOWN BUGS
6.6.1 Input checking
6.6.2 Memory management
6.7 INSTALLING, CONFIGURING AND RUNNING THE SUPER-PEER
6.8 CONFIGURING AND USING THE MOBILE-PEER CLIENT

TESTING AND MEASUREMENTS

7.1 TESTING ENVIRONMENT

7.2 TEST CASES

7.3 PACKET CAPTURE

7.4 MEASUREMENTS

7.5 SUPER-PEER STRESS TEST
CONCLUSIONS

8.1 FUTURE WORK
APPENDICES

9.1 COMPILING HINTS FOR THE SUPER-PEER
Prerequisites for compiling the super-peer binary

9.2 INSTALLING RESIPROCATE

Installation considerations
Installation notes
9.3 RUNNING THE SUPER-PEER
Prerequisites for running the super-peer binary
9.4 DATABASE SETUP AND CONFIGURATION
Setting up MySQOL
9.5 SUPER-PEER UML DIAGRAMS
UML class diagrams
UML sequence diagrams
9.6 SIPP TEST TOOL CONFIGURATION
XML SIPp scenario file
CSV SIPp input file

REFERENCES

viii

40
40
40
41
41
42
42
42
43
43
43
43
44
44
45

46

46
46
47
50
53

55
58
59

59
59
60
60
60
61
61
62
62
63
63
64
66
66
66

67

List of Figures

FIGURE 1:
FIGURE 2:
FIGURE 3:
FIGURE 4:
FIGURE 5:
FIGURE 6:
FIGURE 7:
FIGURE 8:
FIGURE 9:

PEER-TO-PEER TAXONOMIES AND EXAMPLE APPLICATIONS

SIP SESSION SETUP EXAMPLE WITH SIP TRAPEZOID [10]

HORIZONTALLY LAYERED NETWORK ARCHITECTURE [11]

DOMAINS IN THE NETWORK CONTROL LAYER [11]

MP2P ARCHITECTURE

BASIC MESSAGE EXCHANGE BETWEEN MOBILE-PEERS AND SUPER-PEERS
XML BoDY OF A MESSAGE METHOD (USED FOR FILE UPDATES)

XML BODY OF AN INVITE METHOD (USED TO QUERY THE SUPER-PEER)
XML BODY OF A 606 RESPONSE (USED WHEN NO FILES HAVE BEEN FOUND)

FIGURE 10: XML BODY OF A 606 RESPONSE (USED WHEN FILES HAVE BEEN FOUND)
FIGURE 11: RELYING QUERIES IN THE SUPER-PEER NETWORK

FIGURE 12: ARCHITECTURE OF THE SUPER-PEER

FIGURE 13: CONFIGURATION AND USAGE OF MOBILE-CLIENT

FIGURE 14: TEST CASES

FIGURE 15: MESSAGE SEQUENCE DIAGRAM FOR TEST CASE 4

FIGURE 16: RADIAL GRAPH WITH 50 TRIALS PER TEST CASE

FIGURE 17: CUMULATIVE DELAY CHART WITH 100 DATA POINTS PER CASE

FIGURE 18: STRESS TEST SETUP

List of Tables

TABLE 1: FORWARDING ALGORITHMS FOR PEER-TO-PEER NETWORKS
TABLE 2: SIP METHODS USED IN THE MP2P NETWORK

TABLE 3: DATABASE FIELDS, TYPES AND DEFAULT VALUES

TABLE 4: C++ SIP STACK COMPARISON [16]

TABLE 5: RESIPROCATE FEATURE LIST

TABLE 6: TEST ENVIRONMENT

TABLE 7: PACKET CAPTURE FOR TEST CASE 4

ix

16
18
20
20
25
29
30
31
31
32
34
39
45
47
49
51
51
53

15
28
34
37
40
46
48

1 Introduction

1.1 Background

The Internet and the personal computer changed the way we use and acquire
music and many other digital media and services. After the advent of the
Personal Computer (PC) and the Compact Disc (CD), it soon became possible to
perfectly duplicate a CD at very little expense and with very little technical
expertise needed. Not only that but a major breakthrough came in the form of
MPEG-1 Audio Layer 3, most commonly referred to as MP3, a new encoding
format that allowed excellent reproduction of the sound file but only at a fraction

of the computer memory that an original recording needed.

Soon a revolution was inevitable. The small size MP3’s were ingeniously made
available throughout the Internet via a new file sharing system: Peer-to-Peer
(P2P) networks. These networks are overlay networks that work on top of the
Internet that enabled people to exchange all sorts of files using mainly the
resources of their own computers added together rather than downloading them
from a centralized server. By combining the resources of many computers such
as disk storage space and bandwidth, P2P networks allow for the distribution of

large digital media files such as music and movies.

At the same time the world of telephony was experiencing dramatic changes.
Fixed telephony gave way to mobility. Improvements in system characteristics
and compatibility added to stiff competition allowed widespread adoption of

mobile terminals; we went from the heavy and bulky to light and slim phones.

Standardization played a key role enabling the success of Global System for

Mobile communications (GSM) as a truly global technology.

Several new technologies allowed Internet connectivity to reach the mobile
phone. However, still today network operators have not been able to successfully
market these technologies and relatively few people use them. The 3 Generation
(3G) Mobile Network is meant to change this status quo; this new mobile phone
platform has higher bandwidth and more secure radio channels and perhaps not
surprisingly an all IP (Internet Protocol) core in the IP Multimedia Subsystem

(IMS).

The IMS is a new service platform defined by the 3¢ Generation Partnership
Project (3GPP) for packet switched services. The IMS has at its core the Session
Initiation Protocol (SIP) which has been embraced by the telecommunications

industry as the standard for session control.

SIP could potentially be used for a P2P mobile network that would operate
“natively” in the 3G core network. The advantages of such a network would be
multiple; it would give control to the network operator of such things as access
control and content restrictions. In this scenario it would be straight forward to
think of a digital media marketplace in which not all media is free of charge but
the operator could provide content for download for a given fee, and the same
could be true of any mobile-peer. But is this all possible? Are IMS and SIP
suitable for P2P?

Technology convergence is bringing the Internet, mobile telephony and Peer-To-

Peer networks closer and closer together.

According to [2] by 2010 less than one percent of European mobile users will
have a GPRS mobile phone as their primary phone, the great majority will be 3G
capable. However, the same study points out that around a tenth of today’s 3G
handset owners actually use 3G functionality. The hardships for adoption of
modern services are many ranging from national regulations to marketing and
pricing. Nonetheless there is some consensus that the main driver for
widespread 3G service adoption has to come in the form of new enticing

applications. One such application could be mobile peer-to-peer file sharing.

1.2 Problem

While the Internet is thriving on new P2P applications, their adoption on the
mobile network has not yet come. As [3] points out, the different technical
capabilities of mobile phones have to be taken into consideration when designing
such applications, many of the current P2P protocols and applications are simply

not designed with those constraints in mind.

The motivation for this work is then to create an efficient distributed file
directory that is designed specifically for mobile phones. This file directory will
forward queries for specific files in a Peer-To-Peer fashion under certain
circumstances. The reader is directed to Chapters 2, 3 and 4 for a description of

the theory behind this scheme and its possible uses in a modern mobile network.

The relevance of this project can be seen from the following factors:
1. The growing popularity of Peer-to-peer applications.
2. The impact of these applications on established business models for long
distance telephony, music/movie distribution and distributed computing.
3. The recent introduction of category 6 mobile terminals that support High
Speed Download Packet Access (HSDPA).
Growing mobile network support for 3G and HSDPA.
Growing digital media capabilities of mobile terminals (MT).

Increasing media creation and consumption.

N o o

Finally the recent surge of interest in P2P by the scientific community.

The objectives for the present work are listed below, note however that some of
these objectives are not easily verifiable, for those that are, there will be a set of

test cases and the results of those tests will be summarized in chapter 7.

General goals:
e Evaluate the feasibility of a SIP based super-peer.
e Examine the capacity of SIP based super-peer.
e Examine possible modifications and extensions to SIP signaling.

e Evaluate user perceived performance of the mobile P2P network.

In order to achieve our general goals, the choice was made of using a software
prototype implementation of the super-peer. The specific goals we set for this

application are listed below.

The software application:

e Should have sufficient documentation to facilitate maintenance.

e Could conceivably be easily integrated into a modern mobile phone
network.

e Could serve as a future basis for research work.

e Should be written in an object oriented language.

e Should be based on standardized protocol that is supported by the mobile
network.

e Could conceivably scale to answer queries in the numbers expected from a

live network.

This work is carried out in a framework of previous and ongoing research
projects at the Networking Laboratory of Helsinki University of Technology. As

such there are already some basis onto which this thesis will build.

Related specifically to this project are two papers, [1] and [4], in which the idea of
a semi-centralized P2P-over-SIP network for mobile phones is first proposed. The
implementation of the mobile client is described in [3] and [5]; this piece of

software was reused for the purposes of the present work.

The software resulting from this work will further clarify the feasibility of a full
scale implementation, the performance improvements gained by the
architectural planning of the project and finally it will produce some clues as to
which further optimizations can be made and possible future research areas to

explore.

1.3 Scope

Has the current SIP standard the necessary features to carry P2P control
messages? If so, could it be possible to implement a P2P network for mobile
phones that works directly on top of the IMS? What would be the performance of

such a network? These are the questions that we address in the present work.

This work’s focus will NOT be:

e To design software for mobile phones. It is a fortunate situation that a
suitable mobile client has already been designed and tested.

e Toimplement novel P2P forwarding algorithms. Although we do mention
such methods and comment on their improved performance over
traditional flooding, we will focus on building a platform onto which
future research can be done, possibly including improved forwarding
algorithms.

e To optimize the database. We will not delve into database optimization
details, and other such issues which could potentially improve query
performance. Our main task it to prove the feasibility of our proposed P2P

network.

1.4 Structure of the thesis

We now turn our attention to the organization of the present work. First in
Chapter 2 we go through some background information regarding Peer-To-Peer,
the reader can see some history about pioneering P2P systems and their
characteristics. We also lay down some architectural details of those systems.

Finally we describe P2P forwarding algorithms and learn about their different

characteristics. In chapter 3 we go into SIP and briefly touch on the architecture
of the IMS. In chapter 4 we put together SIP and the IMS and evaluate the
feasibility of our proposed software development project and the likelihood that

a super-peer could be set up as an Application Server(AS) within the IMS.

Chapter 5 is dedicated to describing the basic functionality of the super-peer as a
file directory. We show our design choices regarding SIP methods to use, and
how they are used. Finally, we show how mobile-peers and super-peers interact

and how super-peers interact with other super-peers.

Chapter 6 gives an overview of the software architecture and the most relevant
implementation details. Chapter 7 describes the equipment that we used and
shows the results we have obtained, by evaluating the performance of our

implementation in several test cases which are also described.

Chapter 8 gives final thoughts about the project and suggests future research

possibilities in this area.

2 Peer-to-peer background

2.1 What is Peer-to-peer

For a basic understanding of what is a P2P network the reader is refered to [3].
Summarizing, we can state a general definition as; “the sharing of computer
resources and services by direct exchange between systems”. It is an alternative
to the client-server model in which peers volunteer some of their resources and

in exchange they get resources from other peers.

In a client-server model the server is passive and waits for queries from a client,
if it receives one query it answers to it and waits indefinitely for another query to
arrive. In contrast, a P2P model could be visualized as all nodes being clients and
servers at the same time, since any one of them can initiate communication with

another.

In P2P, nodes cooperate with one another by routing messages and storing or
processing information, and in doing so, they form a network, peers can join or
leave the network at any time. When a node joins the P2P network, it brings
resources into it. When it leaves, it takes them away, thus the more peers there
are in such a network, the more “valuable” it is. If at any one time there are no
peers in the P2P network, the network itself ceases to exist because a P2P

network is entirely built on software.

2.2 Architectures

2.2.1 Peer-To-Peer taxonomies

Understanding the different taxonomies of the P2P networks is helpful in
comprehending the characteristics and architecture of our program and its

classification in the spectrum of P2P applications.

We can classify P2P networks into structured and unstructured. While the
former establishes strict rules for file placement and discovery, the latter uses a

more loose approach with arbitrary network topology, file placement and search.

Unstructured P2P networks can be implemented in a centralized, hybrid or
decentralized manner. Decentralized, also called “pure”, Peer-to-peer lacks any
centralized structure and should not be confused with ad-hoc networks.
Centralized P2P requires a server where peers learn about other’s available

resources. A hybrid P2P combines the two aspects.

2.2.2 Centralized P2P
The centralized directory is a model that was introduced by Napster. In this type

of system a peer would connect to a central directory where it publishes all the
tiles that it wishes to make available. When a node wants a file, it queries the
directory and the directory answers with the address of the node that can best
serve the request (based on several possible criteria like bandwidth, availability
or closeness to the requesting node). This method is simple and very robust but
has the disadvantage of having to maintain the centralized infrastructure, and

that possibly lacks scalability for the same reason.

The raise and downfall of Napster has been very well documented. There are
several technical downsides to Napster’s approach to P2P such as lack of
scalability, single point of failure, resiliency against attacks, etc. However, the
reason for Napster's demise was legal rather than technical; the centralized
directory structure was perceived by a court of law to mean direct responsibility
over the network’s content even when no content ever resided on that

centralized server.

2.2.3 Decentralized P2P

The distributed directory, also known as decentralized or “pure”, is a model
where all peers are equal and therefore no single point of failure exists. This is
obviously advantageous for resilience purposes but requires complex algorithms
that decide where to place what information, and also how to search for that
information efficiently. Because all nodes are equal, they have to take on some
responsibility in forwarding queries. The complexity of routing messages in such
a network is large, and that requires similarly large computing resources which
makes this kind of network unsuitable for mobile P2P (MP2P). Gnutella is an

example of a decentralized P2P network.

2.2.4 Semi-centralized P2P

The semi-centralized approach uses nodes with higher capacity to forward
queries, such nodes are called super-peers. The rest of the nodes (i.e. those that
are not super-peers) can be seen as “leaf” nodes. Leaf nodes are effectively
isolated from the rest of the P2P network; they are just limited to a one-to-one

relationship with the super-peer they are attached to, moreover, they are

10

unaware of the P2P network. There are, however some approaches like M-CAN

[8] in which one node can be attached to more than one super-peer.

Semi-centralized networks rely heavily on super-peers, they are responsible for
the forwarding of messages and are usually nodes that have greater processing
power and resources than normal peers. This arrangement places less strain on

“weaker” leaf nodes.

If a peer wants to make files available for others to download, it has to register
those files in its associated super-peer. When a peer wants a file, it queries its
associated super-peer, in the same manner as a centralized directory. If the
super-peer receives a query for which it does not have an answer in the local
database it will query other super-peers. All the super-peers together form a

pure-P2P network where queries will be forwarded.

11

2.3 Search algorithm

We now address the possible implementations of the search algorithm which is
critical to the performance and scalability of the system. There are several

approaches to the solution of this problem.

2.3.1 Blind vs. informed search

We can categorize search algorithms into blind and informed. Blind search is
performed when we do not have any information of where the files we are
looking for could possibly be located. In such a case the only possible course of
action is to forward the query to all nodes in the network or a part of them, this is
called flooding. Informed search is when a node can learn about the information
contained in other nodes then any such node can make “informed” decisions

about where a query should be forwarded.

Since we would expect the super-peers to reside in the core mobile network
where bandwidth is not as expensive as in the MT air interface, we can learn
from protocols that were not strictly designed to be used for mobile peer-to-peer,

and possibly use some of those ideas.

P2P nodes are inherently untrusted because they can be located in different
administrative domains. For the same reason, the availability of their resources
cannot be guaranteed; nodes can disconnect voluntarily at any time but also
there might be some technical impediment like availability of wireless
connection or any natural or man-made disaster. These problems are subject to
active scientific research and we will not treat them in detail. However, they will

be taken into consideration when designing the architecture of the program.

12

2.3.2 Flooding

When forwarding queries the most common solution is to just flood the network
with the request hoping that “some” node that possesses the file we are looking
for will answer, this is one example of blind search. This method is also
extremely simple and scales very well but has the downside of arguably low
efficiency because every request requires considerable network bandwidth.
Another problem with this approach is that there might be loops forming where
the request that one node sends will possibly be received by the same node. To
avoid this problem every request can have a unique identifier so that we can
identify this situation. Another solution is to have a TTL specified but this also
limits the coverage of the search. The TTL parameter is a loop-recovery
technique and does not avoid multiple receptions of the same query; it is used as

a last resort for protection against loops.

2.3.3 Random walks

If we want to still use a blind search but improve on flooding one alternative is to
use random walks. This is a method in which one specific query is only
forwarded to k neighbors chosen randomly rather than sending the query to all
of them. The most important advantage of using random walks is the reduction
in bandwidth which is k x TTL messages in the worst case. This algorithm works
by uniformly sampling the super-peer nodes, and achieves a final random state
quickly which translates intro practical network efficiency. The assumption here
is that there are no bad links or “bottle neck” hops, this assumption is necessary

for our previous assertion that convergence is fast.

Each forwarded message follows its own path, and is called “walker”. A walker

can terminate in failure either limited by a TTL or by communicating periodically

13

with the querying node and asking if the termination condition has been
satisfied. Since choosing nodes is a random process there is a positive effect of

load balancing at each node.

The disadvantage of this method is a highly variable performance since success

depends on the random path chosen and the network topology.

2.3.4 Routing indices

One methodology utilizing informed search is the Routing Index (RI), Rls are
described in [6]. Using routing indexes will save bandwidth and reduce delay by
forwarding queries only to those super-peers that are most likely to have results
for a given query. The answer to a given query will be a list of neighbor nodes
ranked by their “goodness” for that particular query. The goodness of a node
will generally relate to the number of relevant files, owned by the node, that
match the query’s criteria. We now make a very short description of how this

method could be used in our mobile peer-to-peer application.

In this scheme, once a node receives a query it does not forward it further into
the network, but rather answers with the RI for that query. The querying node
will then decide if the results reach a predefined stop condition which would be
the maximum number of files we seek. If the results are not enough (i.e. we do
not reach the stop condition) the node will then forward the query to the second

best neighbor.

In essence the RI will work as a routing table at every super-peer; telling the

querying super-peer which nodes to forward its query to according to their

14

goodness for that query. There is one special consideration to be made here; as it
is presented, the usefulness of RI will only apply to systems where files are

subdivided into categories.

2.3.5 P2P taxonomies and forwarding schemes summarized

It is clear that categorizing files in our network would be of benefit, if we query
for say, music files, we will decrease the data processing latency at each node. By
using category information to guide queries we could decrease the bandwidth
used by our network. The additional expense we incur is the memory required to
keep track of previous queries seen by any one node. We believe that
implementing categorization and exploiting it by using RIs would improve the

performance of our network in a realistic commercial grade application.

There exist other forwarding algorithms; we will summarize those that are most

relevant to us in Table 1.

Worst case #

. Breadth of search of messages
complexity delay for one query

Algorithm Worst case

Forwarding Algorithm

Flooding Very Low Limited by TTL Very High Very High
Expanding ring Low Limited by ring horizon High High
Compound Routing Index [6] Low Limited by TTL Unknown Moderate
Hop Count Routing Index [6] Moderate Limited by horizon of RI Unknown Moderate
Exponentially Aggregated Routing Index [6] Moderate Limited by TTL Unknown Moderate
ORION [7] Moderate Unknown Unknown Moderate
M-CAN [8] High Unknown Moderate Unknown
Random walks Low Limited by TTL High Low
Adaptive Probabilistic Search [9] Moderate Limited by TTL High Low

Table 1: Forwarding algorithms for Peer-To-Peer networks

15

Figure 1 shows graphically the P2P taxonomies we have discussed and places our
software application as an example of semi-centralized unstructured P2P

network.

Unstructured

[Descentralized] [Centralized] Semi-centralized
H H (Hybrid)
)
= i

Our project Gnutella

Figure 1: Peer-To-Peer taxonomies and example applications

Structured

Descentralized
(Pure)

We leave structured P2P aside because this approach requires high complexity
algorithms, and also because we perceive the loose requirements of unstructured
P2P as beneficial to practical network implementations. Furthermore, structured
P2P places strict rules on where data should be placed and does not allow

complex queries, so it is not suitable for generic searches.

The ability to make searches with incomplete file names, or even just file

extensions is one of the strengths of our unstructured P2P network.

16

3 Session Initiation Protocol and the IP Multimedia
Subsystem

In this chapter we overview the technologies on which we plan to build our test
application and indeed our P2P network. We give a brief summary of their most
important aspects, and comment mainly on those that we intend to use in our

project.

3.1 Session Initiation Protocol

Session Initiation Protocol (SIP) is an extensively used protocol, defined in RFC
3261 [10] by IETF’s network working group. It serves as means to establish,
modify and terminate media sessions in a data network. By media sessions we
can think of voice, video, data or any combination of them. SIP was later chosen
by 3GPP as its standard protocol for session control in the 3rd generation mobile

phone network.

SIP entities are called User Agents, of which we have two varieties; User Agent
Client (UAC) and User Agent Server (UAS). Normally an application that uses
SIP will contain both of them. The UAS will serve queries, that is, it will receive

incoming SIP messages, while the UAC will send outgoing SIP messages.

In order to be able to receive messages, the UAS has to be registered to a SIP
entity called SIP registrar. The SIP registrar can be collocated with the SIP proxy
whose task is to relay messages between SIP user agents. The proxy will direct
messages towards their destination since it can find out the IP address and port

combination of all registered entities by querying the SIP registrar.

17

SIP itself is similar to P2P in the sense that very little intelligence remains on the
proxy and registrar servers; SIP is then just the means by which peers are able to

communicate and exchange session parameters.

Let’s now review how a SIP call is made and which SIP entities are involved. We
point out at this time that this example of SIP usage abides to the SIP standard.
When developing our application we use SIP for transporting P2P control
messages and, as it stands, this is not a standardized usage of SIP. However,
since SIP is an evolving standard, it is conceivable that in the future we could see

SIP extensions for P2P usage.

INVITE
INVITE
100 TRYING —
i« 100 TRYING INVITE
180 RINGING
180 RINGING
180 RINGING 200 OK
200 OK
200 OK
1
ACK R
Ld
H Media Session i
BYE
200 OK N

Figure 2: SIP session setup example with SIP trapezoid [10]

Figure 2 shows how a session is established using SIP, Alice is registered on the
atlanta.com proxy and initially forwards messages to her proxy because she does
not know Bob’s IP address. SIP is the means by which she learns Bob’s IP

address, and other session parameters, for instance if we assume that this is a

18

voice call, Alice’s phone has to learn which voice codecs Bob’s phone can handle,

and agree on one to be used for the duration of the session.

There is much to be told about SIP, but we only need to know the basic
functionality to understand how we can use SIP for P2P. The reader should
consult the appropriate RFC if interested on a detailed description of SIP. SIP has
been supported by many companies who are themselves involved in the

standardization and development effort.

3.2 IP Multimedia Subsystem

3GPP is the standards organization responsible for the further development of
the highly successful 2nd generation GSM and the new 3rd generation UMTS.
But the 3rd generation mobile phone network has been implemented differently
to GSM. A redefinition of the architecture within the network itself was deemed

necessary, and so it was split in horizontal layers as Figure 3 shows.

19

APplicatiLon serv_erls ilil ContTt/ servers
& ilil)lication layi,‘/"@

f
wd

GCP

-

1
1
1]
' GeP i
v v

:
\

Figure 4: Domains in the network control layer [11]

This change in architecture required changes in the network nodes. Within the

network control layer there are several “domains”. These are shown in Figure 4.

20

Each domain has a server or servers within the network control layer that
implement its functions. The circuit switched domain has the MSC server
(Mobile Switching Center), the Packet switched domain has the SGSN server
(Serving GPRS Support Node), and the IP multimedia domain has the CSCF
server (Call Session Control Function). As we can observe from the figure the
network control layer has APIs that define interfaces towards the application
layer, and it uses Gateway Control Protocol (GCP) to connect with the
connectivity layer. The Home Subscriber Server (HSS) will interact with all

domains by storing and providing user information on request.

The IP multimedia domain is in fact the IP Multimedia Subsystem (IMS). IMS
inner workings are beyond the scope of this work; suffice it to say that inside it
SIP is used as the main protocol for establishing multimedia sessions between

peers.

21

4 Mobile Peer-to-Peer

Mobile P2P is not new to scientific research, several projects have dealt with the
subject, here we name the most relevant to our project and describe their work to
some extent. We then lay out the theoretical background of our proposed mobile
P2P network, afterwards we take a look at the state of the MP2P project when
this thesis was started. Finally, we describe the MP2P architecture we intend to

use.

4.1 Existing work on mobile Peer-To-Peer

4.1.1 Earthlink SIPshare

Earthlink is one of the largest Internet service providers in North America.
Earthlink Research and Development (R&D) developed a proof of concept
application known as SIPshare [12] which implements P2P over SIP using a Java

application and an implementation of the JAIN SIP stack specification [13].

This is an interesting project and some of their ideas are valuable, for instance the
peer discovery process through SUBSCRIBE/NOTIFY SIP methods. However,
this application is only a proof of concept, because of this, SIPshare does not
implement any functionality for MP2P nor does it consider a mobile client
application. One aspect worth considering is that many new smart phones
provide support for Java, however we did not test their program so we are not
able to verify that their client program indeed works on a mobile platform. We
must also point out that the developers do not make any claim regarding the

suitability of SIPshare for mobile environments.

22

4.1.2 Symella and SymTorrent
Symella [14] and SymTorrent [15] are applications developed for the Symbian

S60 platform and are designed to enable mobile phones to download files from
Gnutella and BitTorrent, respectively. Although these programs partially inter
operate with the above mentioned P2P file sharing systems, they do not allow
the user to share content available from the MT. As such, these programs are
used as file fetching utilities. A user wishing to share some file would first have
to make it available through a Personal Computer (PC). Because of these reasons

we do not consider Symella nor SymTorrent to be MP2P applications.

4.2 SIP based Peer-To-Peer in the IMS

From the background information presented for SIP and the IMS we can infer the

possibility of a peer-to-peer network that operates “natively” in the IMS core.

Although SIP has not been specifically designed for peer-to-peer file sharing, this

project shows the feasibility of such a network.

When the present work was started, there was already a working mobile client
and a super-peer python script prototype was developed to mimic the behavior

of the super-peer, which used an in-memory database.

There was, however, one obstacle that prevented direct TCP connections
between mobile-peers; the mobile operator has in place a firewall that prevents
the direct connection needed to achieve the download. Only outgoing TCP
connections to the Internet are allowed from a mobile terminal. In order to

bypass this restriction, a TCP relay was developed. The relay will thus match two

23

incoming TCP connections and relay the file as originally intended. One would
expect that this relay will no longer be needed when a terminal is operating in an

IMS network.

As such, the mobile-peer to super-peer connection was working as expected;
relaying information from the registered users in the super-peer to those mobile-
peers that sent queries. The objective was then to design a new super-peer which
would increase the functionality of the previous implementation by relaying
queries between super-peers in a peer-to-peer fashion when no matching files
were found in the local database. What was also important was to evaluate the
feasibility of using a standards compliant SIP stack without any modifications

made to suit our project.

Also worth noting is that there is ongoing research that analyzes the possibility

of implementing security features in this network.

4.3 Architecture of SIP-based Peer-To-Peer

Here we present our intended architecture for use in MP2P. This architecture
was first proposed in [4] and was further elaborated in [1]. Figure 5 details this

architecture.

24

l.. M

GPRS Network

MP2P download [i
[N RN NN NN @)
i
Mobile client Mobile client

Figure 5: MP2P architecture

From the MP2P network point of view the mobile GPRS network is transparent,
indeed the MP2P network does not make any special provision for accepting
connections from different networks because SIP itself deals with Address Of
Registry (AOR) as means of identification. The underlying protocols use IP
addresses and UDP/TCP ports.

We depict the MP2P network as a separate network only for clarity reasons.
MP2P network nodes can be deployed alongside GPRS nodes, and therefore
reside within the mobile network itself, network operators can take advantage of
this configuration to place control restrictions on which content is available for
download. Another positive aspect of our proposed configuration is that
network operators can place content available for download for a given price,
they are in an ideal position to market such services and use MP2P flexibility for

minimal configuration requirements.

25

Another aspect to consider is that 3G mobile network standards establish a
“cleaner” interface to mobile network services; we described this interface in
Section 3.2. It is possible then to implement the MP2P network as a mobile
network service and take advantage of the available interfaces and control
mechanisms in 3G. In such a scenario MP2P network nodes would become

Application Servers (AS).

Finally, we note that our figure shows firewalls between the MT and the SGSN.
This firewall is placed by the network operator and restricts the MT to only
outgoing TCP connections. To bypass this restriction a TCP relay was developed
to “bind” two outgoing TCP streams together, and in this way make the direct

MT to MT file download possible.

26

5 Super-peer Implementation

In this Chapter we describe the high level implementation details of the super-
peer which is an essential node to the MP2P network. We show the interaction
between network entities in our network. Finally, we describe some aspects of

our database.

5.1 Overview

The primary function of the super-peer is to interact with mobile-peers by:
e Updating and maintaining a file share database according to messages
received from the mobile-peers.
e Answering queries from the mobile-peers.
e Forwarding queries to other super-peers in the case that the local database

has no files matching the specified criteria.

The current implementation of the client software on the Symbian platform
served as a reference model, as such, specifics about the interface were known
beforehand. There were however several decisions to be made regarding the

architecture and choice of software.

Some important considerations are worth mentioning. The use of SIP as the
signaling protocol for this project is justified on the grounds of compatibility
with existing and future 3G networks which use IMS as their packet service
delivery platform. When analyzing the viability of this project from the

perspective of network operators we can further support our choice by noting

27

that in using SIP we can directly allow a more thorough supervision of the

content that is allowed into the network.

This peer-to-peer mobile system uses only a subset of all SIP methods. Table 2
summarizes not only those methods used but also some error messages that can

be seen during our network’s operation.

SIP method or

response code Direction Type Usage Content type
MP—proxy
REGISTER request Registration to proxy
SP—proxy
MESSAGE MP—SP request Content update to super-peer Text/xml
MP—SP
INVITE request Query to super-peer Text/xml
SP—SP
proxy—MP)
OK response Proxy response to register
proxy—SP
ACK SP—-SP response Stack response to invite
606 SP—SP response Query response Text/xml
408 SP—SP response Proxy response “query timed out”
480 SP—SP response Proxy response “temporarily unavailable”
482 SP—-SP response Super-peer found a loop Text/xml

Table 2: SIP methods used in the MP2P network

We point out several things from this table. The direction of the SIP method is
just an indicator of its intended destination. Even when there is a label indicating
direct communication between super-peers all messages go through our proxy
server. Another important point is that the super-peer should handle all error
messages and reply to the mobile-peer either by including the files found or by
stating that no files were found. Our mobile client software does not distinguish

between SIP error codes.

5.2 Interaction between super-peer and mobile-peer

Upon start up every SIP peer has to perform a registration procedure. The super-

peer does so automatically while the client software needs to be setup

28

appropriately with the AOR of the proxy. Registration consists of sending a
REGISTER message to our SIP proxy and if the proxy accepts the registration, we
will get an OK message back. After that, communication can begin between the
registered entities. Registration expires after 70 seconds have elapsed; then it has

to be refreshed in the same manner as the original process.

Database

......
.. .
............
.....

.

x &/ ¥
;,’ v& 4l
08 . 1%
g h 8

Mobile client

Figure 6: Basic message exchange between mobile-peers and super-peers

In Figure 6 we indicate this registration procedure with a continuous dashed line.
Once registered, the mobile client will send MESSAGE messages to the super-
peer that has been previously specified in the configuration options. These
messages will contain XML documents in the body. Within the message body,
actions are specified in order to update database entries. In effect, this MESSAGE
constitutes a second registration in which the mobile-peer registers to the super-

peer so that it knows about it.

In Figure 7 below we can observe a basic XML document which would be

included in a MESSAGE method as part of a file update from a mobile-peer.

29

<?xml version="1.0" standalone = "yes" 7>
<contentupdate>
<clearall/>
<add>
<type>File</type>
<hash>3e8ec29cf981e55e240eb9dac11a4c98</hash>
<cluster></cluster>
<name>music.mp3</name>
<extended type="size">6220486</extended>
</add>
</contentupdate>

Figure 7: XML body of a MESSAGE method (used for file updates)

Our message shows some header information regarding XML version being used

which will be common to all our XML messages.

XML messages have a hierarchical structure; contentupdate is the “root” of this
particular XML “document”. File information is a “child” of the add tag which

itself is a “sibling” element of the clearall tag.

The file information matches the structure of the MySQL database which we
discuss in Section 5.4. For every contentupdate “element” (such as add and clearall)
indicated in the file, a corresponding SQL query will be sent to our database.

Finally, the MESSAGE method will be answered with an OK message.

Every peer will update its own file information at will since files can be added or

removed from the shared folder on the phone client at any time. Once the

MESSAGE method is processed, each client will have information about their

30

shared files uploaded to the database where they will be available for other
peers.

When looking for a file, a client sends an INVITE method to the super-peer.
Attached to the body will be an XML file that has a different structure to that
used in MESSAGE method. Searching for files once the INVITE query is
received, is done by making an SQL query looking for the given string in a file

name. An example is presented in Figure 8.

<?xml version="1.0" standalone = "yes" ?>
<request>
<name>Tkk</name>
<extended type="size">0</extended>
<extended type="date">01.01.1900-01.01.2100</extended>

</request>

Figure 8: XML body of an INVITE method (used to query the super-peer)

We specify that this is a query message using a request tag. Using XML hierarchy
we place three tags as “children” of our request. These three children tags

contain information about the file we are looking for.

The answer is straight forward, in the case there is no file found in the database

the answer will be that in Figure 9.

<?xml version="1.0" encoding="S0O-8859-1"?>
<reply status="Not found">
</reply>

Figure 9: XML body of a 606 response (used when no files have been found)

We observe that “Not found” is not a tag but an attribute of our “reply” tag.

31

And when there is one or more matches to the query there will be an answer

with a structure similar to the one shown in Figure 10.

<?xml version="1.0" encoding="ISO-8859-1"?>
<reply status="OK">
<content type="File">
<hash>a796b38702ffe56e22ae20674ee05061</hash>
<name>TkkSept.jpg</name>
<extended type="size">26770</extended>
<cluster></cluster>
<location>
<username>sip:kenny@mp2p.netlab.hut.fi</username>
<ipaddress>130.233.154.182</ipaddress>

</location>

</content>

</reply>

Figure 10: XML body of a 606 response (used when files have been found)

We note that the status attribute is OK which means the super-peer found files
matching our search criteria, also note how there are several levels of XML

hierarchy in this response.

Once the user decides to download one file, it is done by just selecting the name
of the file from the different files shown that are available for download. The
download process is indicated in Figure 6 by a thick solid line. In practice
however, there is one glitch that has to be overcome; the mobile network
provider that was used for the trial has a firewall that prevents direct TCP
connections between the mobile phones. For this reason a relay script was
previously developed to link together outgoing TCP links to the relay matching

connections by checking the hash of the file being exchanged.

32

5.3 Interaction between super-peers

The basic functionality section above describes how peers interact between them
when they are registered to the same super-peer. However, when there is a query
that does not find a match in the local super-peer database it is then forwarded to
other super-peers. The super-peers form together a peer-to-peer network for

relaying these queries.

What was shown in Figure 6 as a super-peer / database pair will, from here
onwards, be shown only as one entity; namely the super-peer. It is possible to
have several super-peers share the same database or even have the database in a
separate node, however from a Peer-To-Peer stand point there is no distinction
between these alternatives. The proxy server can also be collocated with the
super-peer, this is the configuration we used to avoid using additional resources,
however this will not necessarily be a good choice for a “live” super-peer
because we have to consider that the proxy may not only handle MP2P messages
but also regular SIP messages. For practical reasons we no longer show neither

the proxy nor the registrations to it in our diagrams.

Figure 11 shows how a super-peer would forward queries to its neighbor super-
peers when it finds no matching file in its local database to a specific query. In
such a situation the final 606 answer to the mobile client would have to wait until
answers from all neighbor super-peers have been received. Note that there are
mobile-peers that are shown nearby super-peers 1 and 2. These mobile-peers do
not take an active role in answering queries because their shared file’s

information is already stored in their respective super-peer’s database.

33

If there are files found for a given query, the querying mobile-peer can initiate
download of the file it desires by establishing a TCP connection to the mobile-

peer that owns it.

Super peer
Network

606 Not acceptable

Mobile client

Figure 11: Relying queries in the super-peer network

5.4 Database

One of the most important aspects that is key to the performance and scalability
of the super-peer is the database. Table 3 shows the basic structure of our

database table.

Table field MySQL type ‘ Default value
Name Varchar (50) None

size Mediumint unsigned None

aor Varchar (50) None
time Timestamp Current_timestamp
hash Char(32) None

Table 3: Database fields, types and default values

This table has the minimal information required for our network’s operation. The

name is a variable length field with up to 50 characters. Size is an unsigned

34

medium size integer, its value can be up to 16777215, and since this value is
intended to represent the file size in Kilo Bytes (KB) we considered it to be large
enough for our purposes. AOR is our SIP identifier; it is of the same type as the
name field. Time is a timestamp field that will tell the super-peer the date and
time any file information was last updated. The time and date will automatically
be assigned by the database at the time a transaction is executed; this is made
possible using the current_timestamp default value for this field. The last field is
the file hash, this is a 32 character long field that uniquely identifies a file in the
MP2P network. However, because we wish to allow the same file to be available
from two or more different MTs we will use two fields as the “primary key” for
our database. Those two fields are the file hash and the AOR of the mobile-peer

that owns that file.

The database itself can be used on the same physical node or operated remotely

as the MySQL API used allows it.

35

6 Super-peer software

In this chapter we discuss our software library selection, we then proceed to
elaborate on our software architecture, and also comment on each of our
software modules. Finally, we detail the major difficulties we faced during code

development.

6.1 Choosing software libraries

The initial programming language of choice was C++. Also the test platform that
was already operating used a Linux host; we continued working on that platform
for this project. The need then was to find a suitable C++ SIP stack that was open
source and that provided a stable platform onto which we could build the
application. Several stacks were considered, an important consideration was that
the code should be stable enough for our purposes and that there was enough
usage of the stack so that we could find appropriate support when needed. One

short document which considers several stacks and compares them is [16].

36

Features Sofia-SIP oSIP reSIProcate sipX [o]E]l Vocal

Win32 * v v v v X

Linux N N N N V N

TCP v * v v v v

uppP v * v v v v

TLS v * v * v ?

Footprint <500KB ~400KB <2.5MB <4MB ? ?
License LGPL LGPL Vovida LGPL MPL Vovida

Table 4: C++ SIP stack comparison [16]

Table 4 shows the SIP stacks we considered for our project. Below we detail the
meaning of the features (rows):
e Win32 and Linux: indicate which stacks are available on each platform.
e TCP/UDP/TLS: indicate the available transport options each stack
provides.
e Footprint: shows the RAM memory consumption of each stack during
normal operation.

e License: shows the license under which each stack is distributed.

After considering our options we decided on reSIProcate(resip) [17]. Resip
complies with most relevant RFCs and can be compiled under Windows or
Linux among other platforms. Resip has the advantage of a relatively active

mailing list where we could find support about specifics of its usage.

The client software uses XML to specify the contents of information to be
exchanged between peers. For that purpose Tiny XML parser [18] was chosen
mainly because of its small memory footprint and ease of use. Tiny XML is also

open source software and is distributed under zlib/libpng license.

37

The consideration of implementing an in memory database as it was done in the
preliminary version of the super-peer was further discussed and a decision was
taken to use a more robust implementation that could scale to host a large
number of client terminals. It was very straight forward to select MySQL [19]
since there is already one C++ API for interfacing with our super-peer, MySQL++

[20].

6.2 Architecture

The software is divided into three modules. The main module owns all the SIP
stack processes and communication states. The main module interacts with the
data base handler (second module) which provides the interfaces needed to store
and access data file information into a previously set up database. The database
is initially designed for simplicity but further optimizations that would require
changes in both the MySQL database and the super-peer code are both possible

and desirable if we are to look for optimum performance.

The third module will handle communications between super-peers in order to
relay queries for which local peers (the ones attached to a common super-peer)
do not have relevant files. It is in this module that actual peer-to-peer

functionality is implemented.

38

TinyXML main superPeer

MySQL

xmlHelper—dbHandler| I database

| MySQL++ API §

| reSIProcate |
| UDP |
| IP |
| Physical Layer |

Figure 12: Architecture of the super-peer

Figure 12 shows the relationships between modules and how they are related to

each other and to the SIP stack.

The main module interacts with most other modules in some way and is shown
as a dashed line. The second module is the database handler shown in yellow,
the xmlHelper and TinyXML are related to, and assist the database handler. The

third module is embedded into the message handling code, shown in purple.

39

6.3 reSIProcate

This high performance SIP stack was chosen for our implementation. Table 5

shows some features of the reSIProcate project.

Stack features

> 1000 TPS

< 500 KB memory footprint
Good security

Multi platform

Test framework

Support for most relevant RFCs
Active newsgroup

Active development

Dialog Usage Manager (DUM)
Repro (SIP proxy/registrar)
Rutil (various utilities)

Table 5: reSIProcate feature list

At the time of this writing resip is very much alive, during the course of the
present work there were two major releases and two minor ones. Additionally
there is some ongoing discussion about the possibility to include reSIProcate as a

standard Linux Debian package, which makes it even more compelling.

6.4 Module walkthrough

The super-peer program consists of several modules, what follows is an

overview of the functionality implemented in each of them.

6.4.1 superPeer module

It is the main module which includes all other modules. It implements the
superPeer class. In this module the needed stack and DUM components will be

instantiated and initialized as required.

6.4.2 dbhandler module

It is the main interface to the MySQL database, and contains all the classes

needed to use, execute and store queries. It also contains the query templates that

40

will be completed and used at execution time. This module uses the MySQL++

library.

This module implements the dbHandler class which will be instantiated by the
super-peer. Adding functionality to this class is straight forward due to the
flexibility provided by SQL. Storing and retrieving file information is done by
using this module’s functions, for instance, looking for a file can be done using

the searchByName function.

There are other functions that can serve for debugging purposes; if we wanted to
print all the database contents to the screen we could do so by using getAll and

printResult functions.

6.4.3 dbutil module

This module contains some SQL result printing functions and also the vital

connection function that will communicate with the database. This module uses

the MySQL++ library.

6.4.4 xmlhandler module

This handler contains the functions necessary to parse the XML body contained
in the SIP messages. This module will include the dbhandler and dbutil modules

in order to execute required transactions on the database.

Specific functions within the xmlHandler class are aimed to parse incoming
content updates and store the given file information in the MySQL database.

Correspondingly, there will also be functions to parse queries and replies.

41

6.5 Challenges during software development

6.5.1 Learning curve

Every software development effort faces difficulties, in our case there was a
specific need to use open source software. It is a well known fact that many open

source projects lack in the quantity and quality of the documentation provided.

The main challenge we were faced with was to understand the inner workings of
the resip stack. Many hours were spent browsing and reading the stack’s source
code. The project’s newsgroup is a good source of information. The main tasks a
developer faces when learning resip is the correct usage of message handlers and
dialogs, which are the way the stack handles SIP messages. This was the steepest

learning curve we faced.

6.5.2 P2P message identifier

When forwarding a query message throughout the P2P network we need to have
a unique message identifier that will help with message processing and loop
detection; it would be desirable that such identifier is carried as a message
header. The standard SIP header Call-ID is very well suited for this purpose
since the SIP standard specifies that the value of this header must be globally
unique.

We learned the hard way that the Call-ID cannot be copied directly from one
message to another if they do not belong to the same dialog, the result of such
transgression is that the stack will discard the message response as a stray
response. It was thus necessary to add a user defined header as this is allowed by
the SIP standards. In this user defined header we just copied the original Call-ID,
so that any query traversing the P2P network has two identifiers; the Call-ID

which has only local significance between two super-peers involved in

42

forwarding a message, and the user defined Message-ID which carries the Call-
ID that identifies the original transaction between the MT and its associated

super-peer.

6.5.3 PartySIP proxy vs Repro

Another lesson learned was that not all open source SIP proxies are standards
compliant. For historical reasons we used PartySIP as our proxy since this was
the one that was used for the old super-peer prototype. However as stated in
Section 6.5.2 we require a user defined header to be carried in all P2P messages.
PartySIP did not work as expected; it was dropping our user defined header,
contrary to the SIP specification [21]. We then tested repro, and it proved to be a
good alternative which was quite easy to set up and manage, and does not alter

our packets in any way.

6.5.4 Loop detection

During development of the software we had a problem when loop detection was
not finalized; the problem manifested itself when forwarding a query for which
none of the nodes had a matching file, in such a situation the query went on from
one super-peer to the next going round in an infinite loop precisely because loop

detection was not correctly implemented at that point.

6.6 Known bugs

There are a number of known “weaknesses” in the super-peer software at this

stage of development.

6.6.1 Input checking

The input checking of the software is quite scarce. It can be made to crash by
forwarding queries with non alphanumeric characters and line termination

characters at the beginning of the query. This kind of crash is possibly related to

43

the mysql++ library but this has not been confirmed. Additionally, the input is

not checked for SQL sequences which pose a security threat.

6.6.2 Memory management

The program contains several tables that are stored in dynamic memory because
it is thought that the performance of the super-peer would be greater this way.
However, the performance of these tables should be compared to having these
tables stored in a MySQL database. If a super-peer would need to manage
mobile-peers in large numbers, the memory consumption and performance of

the tables could change. Further testing is needed to verify these scenarios.

6.7 Installing, configuring and running the super-peer

Several preparations need to be done before running the super-peer software. In
our case we used a Linux Debian server. First we need to install the required
libraries for running our SIP stack. Then we should download the SIP stack from
[17] , and proceed to unzip the package, run the configuration script and compile
it. We then need to make sure the resip libraries are up and running. Finally we

need to compile and configure the super-peer program.

Additionally, we need to install and set up the MySQL database. Many Linux
distributions come with MySQL installed or can be easily configured to install it

during OS installation.

We provide instructions for many of these tasks in the Appendices.

44

6.8 Configuring and using the mobile-peer client

We provide a sequence of screenshots that detail the client’s configuration and
use. Figure 13 shows the initial screen and, following the arrows takes us through
the configuration procedure and registration to the SIP proxy. We can observe
from the second screen in the sequence that the TCP relay must also be
configured here. Additionally, the download folder and the shared folder must
be specified. The screens from the second row show a search for all files
containing the sequence “jpg”. When we press OK in this screen the mobile-peer
client sends the super-peer our query and the next screen shows that we got
some results back. Now we can choose which one we want to download. The
download process is shown in the last screen with a progress report. Lastly, the
screen also shows the time it took from the point we sent the query to the time

we received the answer.

ﬂ |
SuperPee URI
Mobile P2P Client (Register
© TH & JL 2005-2006 .. TCP Proxy Status
Configure

.. Download Folder RESET

E:\Donloads\

Options =

5 Mobile P2P Client
01.01.1900 - - © TH & JL 2005-2006
Registered! 4 Before 01.01.2100 042B - ecad0696b a7 Search took 859ms

6 1DL:32%
“cancel - ancel options

Figure 13: Configuration and usage of mobile-client

45

7 Testing and measurements

7.1 Testing environment

Table 6 shows a breakdown of how the super-peers were set up for the testing
phase of this work and also some information about the mobile-peers and the

equipment they were running on.

Entity AOR hardware software
Proxy Server my.domain.fi Computer 2 Linux Debian 3.1
Super-peer Zero sip:spzero@my.domain.fi Computer 1 VMware server with Linux Fedora Core 5
Super-peer One sip:spone@my.domain.fi Computer 2 Linux Debian 3.1
Super-peer Two sip:sptwo@my.domain.fi Computer 1 VMware server with Linux Fedora Core 5
Mobile-peer Karl sip:karl@my.domain.fi Phone 1 Symbian 8.0
Mobile-peer Kenny sip:kenny@my.domain.fi__Phone 2 Symbian 8.0

Table 6: Test environment

The following is a list of additional tools that were used during software
development:
e Eclipse SDK environment [22] with plugins for C++ was used as
development environment.
e WinCVS [23] was used for version control.

e Wireshark [24] was used for packet capture and analysis.

7.2 Test cases

For this test we decided on four basic test cases which show the functionality of
the super-peer. These test cases are shown in Figure 14. Test case one and two
show the very basic operation of the super-peer; answer queries on its own and
relay to other super-peer when it cannot find a match in the local database for a
query. Test case three and four show how the complexity increases when there
are more super-peers present; super-peer zero must wait for the messages to be

flooded to the network and for all answers to arrive in order to answer the

46

original query. Note that in test case four there is a loop. Loop detection is an

important part of the flooding algorithm.

query (1)

Test case 1

a

response (2) 0

A

response (4) ' response (3)

query (1)

Test case 3

query (1) = sp query (2)
Test case 2 o

response (6)

ey .
query (1) ® g1
Test case 4 |ev- =@ :s"o il {
w '\-U .
response (10) ~ 3 \G?, O v
NoaS

Figure 14: Test cases

By measuring performance of these test cases we can get some idea of the end
user experience when using our application. One modification was required of
the client software; we needed to set up some timer in the user interface module

in order to measure end user delay.

7.3 Packet capture

To better exemplify the behavior of our super-peer let us analyze a real-time
packet capture sample that we took when testing the application. This packet

capture is shown in Table 7 and was taken using test case 4 configuration.

47

Time

Source

Destination

Info

Extended Info

. sip:sptwo@199.299.154.52:12005;
14.74368 199.299.154.182 199.299.154.52 Request: INVITE rinstance=8ebf455f4f8c925f

. sip:spzero@199.299.154.36:12005;
14.88827 199.299.154.182 199.299.154.36 Request: MESSAGE rinstance=Ff419af90789d179
14.92697 199.299.154.52 199.299.154.182 Request: INVITE sip:spzero@my.mp2p.domain.fi

. sip:spzero@199.299.154.36:12005;
14.93014 199.299.154.182 199.299.154.36 Request: INVITE rinstance=Ff419af90789d179
14.98232 199.299.154.52 199.299.154.182 Request: INVITE sip:spone@my.mp2p.domain.fi
15.01716 199.299.154.36 199.299.154.182 Status: 200 OK
15.02745 199.299.154.36 199.299.154.182 Request: INVITE sip:spone@my.mp2p.domain.fi

. sip:spzero@199.299.154.36:12005;
15.06277 199.299.154.182 199.299.154.36 Request: INVITE rinstance=Ff419af90789d179
15.06553 199.299.154.182 199.299.154.36 Status: 482 Loop Detected
15.06756 199.299.154.36 199.299.154.182 Request: ACK sip:spone@my.mp2p.domain.fi
15.06763 199.299.154.36 199.299.154.182 Status: 606 Not Acceptable

. sip:spzero@199.299.154.36:12005;
15.07049 199.299.154.182 199.299.154.36 Request: ACK rinstance=f419af90789d179
15.07050 199.299.154.182 199.299.154.52 Status: 606 Not Acceptable
15.12129 199.299.154.52 199.299.154.182 Request: ACK sip:spzero@my.mp2p.domain.fi
15.12523 199.299.154.36 199.299.154.182 Status: 482 Loop Detected

. sip:spzero@199.299.154.36:12005;
15.12792 199.299.154.182 199.299.154.36 Request: ACK rinstance=Ff419af90789d179
15.13424 199.299.154.182 199.299.154.52 Status: 606 Not Acceptable
15.17385 199.299.154.52 199.299.154.182 Request: ACK sip:spone@my.mp2p.domain.fi
15.17392 199.299.154.52 199.299.154.182 Status: 606 Not Acceptable

. sip:sptwo@199.299.154.52:12005;
15.17655 199.299.154.182 199.299.154.52 Request: ACK rinstance=8ebf455f4f8c925f

Table 7: Packet capture for test case 4

This table illustrates how the message sequence takes place when a node queries
for a file that is not found in any super-peer of the MP2P network. From this
sequence there is only one message (the second one) that does not correspond to
the query process. The MESSAGE method is sent periodically by the MT to keep
alive its connection state at the mobile network operator’s firewall. The

MESSAGE is answered with an OK method which is sent by our proxy.

We illustrate the same packet capture in Figure 15 below. What is important from

this figure is that we can observe how the flooding and the loop detection take

48

place. The vertical axis represents time, so we can also draw some conclusions

about how the actual message sequence takes place.

KENNY
INVITE)
f INVITE R
>
INVITE
INVITE
INVITE
482
¢ ACK
606
ACK R
y 482]
ACK R
le 606
ACK >
606
F ACK

Figure 15: Message sequence diagram for test case 4

Kenny (MT) has already registered to super-peer 2 (SP2) by sending a MESSAGE
(not shown in the diagram), he then decides he wants to look for some file, this is
done by sending an INVITE to its associated super-peer (super-peer 2 in our
case). SP2 parses the query and searches its local database looking for the file
Kenny wants. In this instance SP2 does not find any matching file so it queries
SPO first and then SP1 by sending a similar INVITE to the original it received
from Kenny. The reason SP2 forwarded the query to both SPO and SP1 is because
both are defined statically in a super-peer table at SP2, that is, SP2 is a neighbor

super-peer of SP0 and SP1.

49

Independently SPO and SP1 look for the file and realize there are no matching
files in their local databases. SP0O forwards the query to all its neighbors except
the one it received the query from, in this case SP1. Note that SP0O has no idea
that SP1 already received that same query. Using the same reasoning SP1
forwards the query also to SPO. SP1 informs SPO that a loop was found by

sending a 482 (loop detected) message. SP0O answers with an ACK message.

At this point SPO has run out of neighboring super-peers and replies SP2 with a
606 message stating that no files were found, the message body corresponds to
that shown in Figure 9, SP2 acknowledges by sending an ACK message back to
SPO. Then the same sequence takes place at SP1 first a 482 message for loop

detection followed by another 606 message sent to SP2.

Now SP2 “knows” that the file Kenny is looking for is not available in any of the
super-peers of the network, and replies with a 606 message informing Kenny of

that fact.

7.4 Measurements

The measurements we made are shown in Figure 16 and Figure 17 below. While
in the first graph we differentiate between queries that resulted in a file found
and queries whose result was empty, in the second graph we take them as a
whole set of trials for every test case (i.e. no differentiation between queries that

returned results and those that didn't).

50

case 4 Found

—0— case 4 Not found
—o—case 3 Found

case 3 Not found

—o—case 2 Found

—o— case 2 Not found

—e—case 1 Found

—o—case 1 Not found

Radial graph with 50 trials per test case

Figure 16

2.1 22 23 24 25 26 27 28 29 3

1.2 1.3 14 15 16 1.7 1.8 1.9 2

1.1

1

0.5 0.6 0.7 0.8 09

delay chart with 100 data points per case

ive

Cumulat

Figure 17

51

From Figure 16 we can observe that the great majority of trials made return an answer
within 1.5 seconds from the time the query was sent. We would like to emphasize here
that this measured delay is in fact end user delay, as measured from the MT and
includes processing delay in the client, transfer delay within the mobile network and of

course processing delay at the super-peer and transfer delay within the P2P network.

One more thing we can notice from the radial graph is that because the trials are shown
in the order they were made there is a clear correlation between queries that took more
than 1.5 seconds to complete, that is, if one query takes more than 1.5 seconds to return
an answer then it is likely that the next one will also take 1.5 seconds or more to
complete if it is done immediately after the first one. This is probably due to mobile

network congestion at those specific moments in time.

Figure 17 shows interesting figures for the delay in every test case. We observe that
around 90% of the queries get an answer before 0.9, 1.1, 1.3 and 2 seconds for the 1%, 2n4,
3, and 4% test cases respectively. Also worth noting is that when our P2P network
grows in complexity our curve gets more distorted because transfer delays between

super-peers are more prominent in the overall delay.

These are quite reasonable performance figures; we can comment that, from a user’s

perspective, the delay at the MT is acceptable.

52

7.5 Super-peer stress test

In addition to the testing of the network as described in previous sections of this chapter
we tested the super-peer in an attempt to find out whether it scales to answer many
consecutive queries. For this purpose we used SIPp [25]. SIPp is an open source SIP call

generator software that is perfectly suited for stress testing SIP implementations.

For the purposes of this test we set up two new virtual machines running Linux Debian
4.0. We disabled the peer-to-peer functionality of the super-peer and also the
registration process. We then generated a comma separated value (CSV) file which
includes more than 750 unique names and query words. The names and words were
chosen randomly from a database and placed in the CSV file. We then configured SIPp
to send queries at different call rates. Figure 18 shows our setup. In the Appendices we

include the input files needed by SIPp to run this scenario.

+750
unique
uris

SIPp
test tool

+750
unique
files

response

+750
unique
queries

Database

Figure 18: Stress test setup

We found the performance of the super-peer to be low for our current setup. Our

results indicate a maximum of 10 Calls Per Second (CPS).

A lot of effort went into finding the root cause of the performance problem. Since the

stack is capable of greater than 1000 CPS, and several benchmarks show MySQL to

53

achieve very high performance, we inferred that a problem was present either in our

source code or in the stack.

The problem manifests when going higher than 10CPS which triggers retransmissions
of 606 messages. These retransmissions get more and more frequent the higher call rate
is, finally “drowning” the super-peer in them. In this state it is no longer possible for the
super-peer to return answers to the queries because all the time is spent retransmitting

previous 606 messages.

At the SIPp test tool these 606 retransmissions are discarded as “out of band” messages,
and rightfully so, since the SIP dialogue was terminated once the ACK message is sent
in response to a 606. The problem solution then lies in determining why the ACK
messages seen on the wireshark trace arriving at the super-peer machine are not
processed correctly and are being silently dropped (no error messages appear in debug

level logs).

It was initially assumed that the reason for not processing the acknowledgments in time
was that the higher call rates would generate a heavier load on the super-peer since
they have to be processed sequentially because of our software design. The ACKs
would then have to wait in the stack queue for longer than 500 ms which is the default
T1 timer that determines, among other things, the retransmission timeout (RTO). This
was not the case however, since we recompiled the stack with a T1 timer set to 1000 ms

with the exact same results.

One possible reason for our problem that was suggested by one of the stack’s
developers was that the 606 could somehow be processed wrongly by the stack since
6xx messages are not commonly used in normal circumstances and he recommended

against their use. In any case this issue deserves more time and effort to find a solution.

54

8 Conclusions

Nowadays mobile phone users who want Internet connectivity have several options.
They can use GPRS or EDGE connectivity paying premium rates if they want fast access
or be content with low bitrates and high delays. 3G, IMS and more recently HSDPA are
promising to change all this with high bitrates and always-on Internet connectivity.
However, there are steep costs for network operators to upgrade their networks and the
users themselves have to be willing to pay substantial amounts of money for a 3G
handset. Mobile Peer-To-Peer (MP2P) is the mobile counterpart of P2P networks that
have proven highly successful for PCs. MP2P could potentially be a driving force for 3G

service adoption by providing new media for end user consumption.

The present work was devised as a means to prove the feasibility of a new type of MP2P
network based on the Session Initiation Protocol (SIP) standard that is supported in
modern 3G mobile networks. This MP2P network works by relaying P2P control

messages using SIP; this approach is called P2P-Over-SIP.

By combining P2P-Over-SIP and a semi-centralized P2P architecture we achieve
compatibility with 3G networks and relieve MTs of having to route MP2P messages
with the associated costs in battery, memory and bandwidth consumption.

In a semi-centralized architecture MTs are not involved in routing P2P traffic but
instead only specialized peers (super-peers) with more resources are given this task. In
this way we transfer the MP2P traffic from the expensive Mobile Terminal-Radio Access
Network (MT-RAN) air interface to the mobile core network where bandwidth is

cheaper.

55

The present work centers around the software development of the super-peer MP2P
network node which is tasked firstly with maintaining state of a subset of the mobile-
peers and handling their queries, and secondly with forwarding any query for which an
answer in the local database is not found. The fundamental concepts and system
architecture for this project were defined during previous research projects at Helsinki
University of Technology’s Networking laboratory. A Symbian mobile client had

already been developed and the present work utilized this code mostly unchanged.

When forwarding queries between super-peers we do so using P2P forwarding
algorithms. In our case we used flooding for its simplicity but other algorithms could
easily be implemented. We discussed several of those algorithms and identified Routing

Indexes as a viable alternative to flooding.

We detailed the software architecture design of the super-peer and described its main
components. Finally, we tested our application on four different test cases and
performed delay measurements for all of them. The super-peer software developed for
these tests functioned as expected. We tested the application with two mobile clients
querying each other’s contents repeatedly and changing the point of attachment to the
MP2P network by changing the super-peer settings on the client software. The results
were satisfactory since the end user’s perceived delay was quite low for most requests

(below 2 seconds for the selected network configurations).

The stress test we performed revealed some performance issues that need deeper
investigation. The current performance limit of our super-peer was shown to be 10 CPS.
However we feel that given the proven performance of the reSIProcate SIP stack of
greater than 1000 CPS and the high performance of MySQL (especially for the relatively

small table sizes we use), are indications that much higher performance is possible.

56

Regardless of these issues, we feel that this work has proven the feasibility of a P2P-

over-SIP network for mobile terminals.

From our accumulated delay results we can see an inflexion point at around 80 percent
of all messages for every case. We observe a difference of approximately 0.8 seconds
between first and last test cases at this point. We can extrapolate this result and predict
that a network with ten to twenty nodes using our current configuration would still

yield reasonable delays below 10 seconds for most queries.

Further performance improvements gained from wusing improved forwarding
algorithms could be of at least an order of magnitude in mean convergence delay. We
expect our server to perform 1000 CPS once the performance issues are resolved. This
means that we consider the SIP stack to be the performance bottleneck of the whole
MP2P system. We could again extrapolate this to assume one super-peer would be able
to serve at least 5000 clients, considering that the transactions will not only be direct

queries from mobile-peers but also P2P transactions between super-peers.

With these numbers we can claim that a city the size of Helsinki with around 1 million
inhabitants and a mobile phone penetration of around 100% could be served at least
initially by our MP2P network if we assume that less than 10% of its mobile subscribers
are interested in the service. This means that around 100,000 MP2P clients could be
served by around 20 super-peers located strategically in the mobile network. A “live”

trial would be ideally suited to verify these claims.

57

8.1 Future work

Since our goal was to implement a prototype, some optimizations and features were

excluded. Several improvements to the super-peer program are feasible and reasonably

straight forward.

Memory management of mobile-peer, super-peer, ongoing-queries and ready-
answers tables could be improved.

Some basic database optimization could be done to improve the query
performance of the super-peer. For example the fields could be sorted so that
lookup is faster.

Improved forwarding should be considered, Routing Indexes (RI) seem to be a
good and simple enough option but there are many other options. The tradeoff is
simplicity and speed against complexity and improved resiliency. If Rls are used
the database must be categorized and split into several database tables. The
simplest categorization could be; music, video, pictures, pdf files, etc.

Computing resources of the super-peer should be taken into account, and effects
of disk and memory access performance against heavy load, should be studied.
Security features could be implemented. There are ongoing research projects at
Helsinki University of Technology — Networking Laboratory that investigate this
topic.

The performance issues we encountered should require relatively low effort to be
resolved. In resolving these issues more testing is needed as well as revising the
super-peer’s queries and answers table’s performance and possibly redesigning
those could be necessary. Also an important source of assistance is the

reSIProcate developer’s mailing list.

58

9 Appendices
9.1 Compiling hints for the super-peer

Prerequisites for compiling the super-peer binary

The following libraries were compiled and configured in the testing platform.
a. ARES
b. Resiprocate 1.1
c. MySQL 5.0.22 (server and client)
d. MySQL++2.2.2
e. Standard development libraries (gcc, g++, etc.)
Note:
Ares comes with resiprocate distribution.
MySQL++ needs the client and development libraries installed.
Both gcc and g++ are needed to compile resiprocate. In Debian there is a dummy library
that depends on the versions installed of each of them. These dummy packages need to

be installed as well.

59

9.2 Installing reSIProcate

Installation considerations

We need to have ARES DNS library installed.
We need gperf library.
We need to have openssl library installed and its development package also
installed. (Note: In Fedora Core 5 development package is called openssl-devel
while in Debian it is called libssl-dev)
We need to have popt library installed and its development package.
We need to have db4 installed and its development package . (Note: in file
repro/BerkleyDb.hxx, we need to change #include db4/db_cxx.h to #include
db_cxx.h)
After installing all required libraries we can type:

o ./configure

o make

o make install

Installation notes

The test subdirectories are not compiled when typing make. After doing make install

we need to create etc/ld.so.conf including the line /usr/local/lib, and then do ldconfig.

60

9.3 Running the super-peer

Prerequisites for running the super-peer binary

For the super-peer program to work we need to take care of the following items:

1. A SIP proxy server needs to be set up and running before the super-peer is
started so that it is able to register to it. The super-peer contains the setup
information in the superPeer class constructor; it will register to the host that has
the same name as the host part of its own AOR.

2. The relay script should be running, this will allow for the TCP connection needed
to download the files.

3. We need to configure the client phone with the following parameters:

a. SuperPeer URI including the scheme and a colon.
b. TCP Proxy is the machine that will serve as relay.
4. The database needs to be set up and the appropriate tables need to be created.
5. Appropriate access and modification rights to the database should be granted to

the super-peer account.

61

9.4 Database setup and configuration

Setting up MySQL
Setting up the MySQL database requires the following commands on our Fedora Core 5

test platform, they may differ if other linux distribution is used.

On the command line:

To start MySQL daemon on OS startup (only for Fedora Core distribution)

chkconfig —levels 235 mysqld on (two consecutive dashes)

To use super-peer account on MySQL

mysql —u sp —p (and type the password when prompted)

On the MySQL prompt:

To show current usernames

SELECT user,host FROM mysql.user;

To add a new user

INSERT INTO mysql.user(Host,User, Password) VALUES('localhost’,’sp’,password(’superpeer’));

To activate new account we need to restart the MySQL daemon or type

FLUSH PRIVILEGES;

To secure root account on new install by adding password (also done for super-peer)
SET PASSWORD FOR ‘root’@’localhost’ = PASSWORD(“3wRkzpu6’);

To grant privileges to super-peer account

GRANT ALL PRIVILEGES ON *.* TO ‘sp’@’localhost’ IDENTIFIED BY ‘superpeer’ WITH GRANT OPTION;
Or alternatively

GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP on shares.* to ‘sp’@’localhost’” identified by
‘superpeer’;

To create the database

CREATE DATABASE shares;

To create the table

CREATE TABLE files (name varchar(50), size mediumint unsigned, aor varchar(50), time timestamp DEFAULT
current_timestamp, hash char(32) ASCII, PRIMARY KEY (hash, aor));

62

9.5 Super-peer UML diagrams

UML class diagrams

superPeer
-uasAor: NameAddr [1]
-uasPasswd: Data [1]
-stackUas: SipStack [1]
-dumUas: DialogUsageManager [1]

prnf:aul.ln(}:lnhger

63

register ToProxy():Integer
M
DialogUsageManager superPoerServerMessageHandler
perPeerServerMessageHandler: ServerPage Handler [1] | -dbStore: xmiHelper [1
- ﬁmﬂglliel-lrandal:' mlmﬂ.ng] er [1]) xmielper [1
-superPeerl andler: uasPeerinviteHandler onMessageArrived(ServerPagerMessageHandle, SipMessage&
-testAppDialogSet: AppDialogSet [1] s !
setPagerMessageHandler(}
seiClientRegistrationHandle
setinviteSessionHandler()
setAppDialogSetFactory()
M
xmiHelper
-callSeq : Catagory [1
uasPeerinviteHandler 4B anmrﬁ?aq 1
-dbSearch: xmiHalper [1] -angwer: TXmiDocument [1]
. W | -fromipAddress: string [1]
mmwmwmnzﬂmu. smMes;ml) -fromAor: string [1]
onready (o, SipMessaga) processMessage(const SipMessaged,)
parseQuery(const SipMessage&)
attachAnswer(SipMessage&)
dbHandler
-MySQLdb: string [1]

-MySQLtable: string [1]

-MySQLhestname: string [1
-myysmuamm:ﬂrhg 1]
-MySQLpassword: string [1]

clearAllIFromClient{string)
searchByName(slring, string)
InsertRowQuery(string,int,string,string}

UML sequence diagrams

dB
dbHandler
 pocesdtossage
geiContents
[|' |
Doc
-TiXmiDocument
oad)
|
1
1
mmmmm

{:TXmiElemant}

Spleh
‘InvitaSessionHandler
—>
dbSearch
xmiHan
.

-SipMessage)

loop) [for

each child element]

alt

| clearAllFromClient

[element value == "clearall"]

[element value == "add"]

inseriRowQuery >

Eae

(:string)

ment value == “request’]

X

X

64

Spish dbSearch
:InvitaSessionHandler .meHnndler

onReadyToSend J_
[SpMessage] attachAnswer l
— TR
(:SipMessage)

oisertoprany o |

newSuperPeer | | dumUas
:superPeer :DialogUsageManager
1

send
{:SipMessage) 3

K X

newSuperPeer stackUas dumUas
:suparPeer :SipStack :DialogUsageiManager|
processUas 3

65

9.6 SIPp test tool configuration
XML SIPp scenario file

<?xml version="1.0" encoding="1S0O-8859-1" ?>
<scenario name="super-peer stress test UAC">
<send start_rtd="1">

<![CDATA[

INVITE sip:spzero@[remote ip]:[remote port] SIP/2.0

Via: SIP/2.0/UDP [local ip]:[local port];branch=[branch]
Max-Forwards: 70

Contact: <sip:[fieldl]@[local ip]:[local port]>

To: spzero <sip:spzero@[remote ip]:[remote port]>

From: [fieldl] <sip:[fieldl]@[local ip]:[local port]>;tag=[call number]
Call-ID: [call id]

CSeqg: [fieldO] INVITE

Allow: INVITE, ACK, MESSAGE

Content-Type: text/xml

Content-Length: [len]

<?xml version="1.0" encoding="IS0O-8859-1" 72>
<request>
<name>[field3]</name>
<extended type="size">0</extended>
<extended type="date">01.01.1900-01.01.2100</extended>
</request>
1>
</send>
<recv response="100" optional="true" />
<recv response="606" rtd="1" />

<send>
<I[CDATA[
ACK sip:spzero@[remote ip]:[remote port] SIP/2.0
[last Via:]
To: spzero <sip:spzero@[remote ip]:[remote port]>[peer tag param]

From: [fieldl] <sip:[fieldl]@[local ip]:[local port]>;tag=[call number]
Call-ID: [call id]

CSeqg: [fieldO] ACK

Content-Length: 0

11>
</send>
</scenario>

CSV SIPp input file

SEQUENTIAL

l;valiant;Don't Lie;Loo;

2;korene;19 de noviembre;Dru;

3;rubaina;Shut Up and Dance;Kin;

4;barras;Alicia Villareal - Las cuentas claras;Libertad;
5;hades;Hasta Que Amanezca;ahora;

6;mali;Carta;Boy;

7;adeline;A Perfect Teenhood;Tim;

8;buddy;Kill You;Fee;

9;cady;Sideways;soledad;

755;hop;Valon juuri;Sient;

66

10 References

[11 Marcin Matuszewski, Nicklas Beijar, Juuso Lehtinen, Tuomo Hyyrylainen, Content
sharing in mobile P2P networks: myth or reality?, Mobile Network Design and
Innovation, Vol.1 Nos. 3-4, 2006.

[2] Telemedia, 3G will become a dominant technology, 2006.

http://www.wtmag.co.uk/newsitem.asp?docid=689, Referenced: 27/03/2007

[3] Juuso A. Lehtinen, Design and Implementation of Mobile Peer-to-Peer
Application, Networking Laboratory, Helsinki University of Technology, 2006

[4] Nicklas Beijar, Marcin Matszewski, Juuso Lehtinen, Tuomo Hyyryldinen, Mobile
Peer-to-Peer Content Sharing Services in IMS, Helsinki University of Technology,
2006

[5] Tuomo Hyyryldinen, Mobile P2P client implementation on Symbian, Networking
Laboratory, Helsinki University of Technology, 2006.

[6] Arturo Crespo, Hector Garcia-Molina, Routing Indices for Peer-to-Peer systems,
Standford University.

[71 Alexander Klemm, Christoph Lindemann, and Oliver P. Waldhorst, A Special-
Purpose Peer-to-Peer File Sharing System for Mobile Ad Hoc Networks, Dortmund
University, 2003.

[8] Gang Peng, Shanping Li, Hairong Jin, Tianchi Ma, M-CAN: A lookup protocol for
mobile peer-to-peer environment, Zhejiang University, 2004.

[9] Dimitrios Tsoumakos, Nick Roussopoulos, Adaptive Probabilistic Search for Peer-
to-Peer Networks, Maryland University, 2003.

[10] J. Rosenberg et al, SIP: Session Initiation Protocol, IETF, 2002,RFC 3261.

[11] Andreas Witzel et al, Control servers in the core network, Ericsson review 4/2000.

[12] EarthLink. SIPshare: SIP-based P2P Content Sharing Prototype. 2005.

http://www.research.earthlink.net/p2p/, Referenced: 26/03/2007

67

[13] JAIN specification. http://www.jcp.org/about]ava/communityprocess/final/jsr032/

Referenced: 26/03/2007
[14] Symella, http://www.aut.bme.hu/Portal/ Symella.aspx, Referenced: 27/03/2007

[15] SymTorrent, http://www.aut.bme.hu/Portal/SymTorrent.aspx, Referenced: 27/03/2007

[16] Martin van den Berg, Open Source SIP stacks compared,
http://www.enseirb.fr/~kadionik/sip/stacks.pdf, Referenced: 27/03/2007

[17] Open Source Community, reSIProcate, http://www.resiprocate.org/Main Page,

Referenced: 27/03/2007

[18] Lee Thomason, TinyXML, http://www.grinninglizard.com/tinyxml/, Referenced:
27/03/2007
[19] David Axmark, Allan Larsson, Michael Widenius, MySQL, http://www.mysql.com,

Referenced: 27/03/2007
[20] Kevin Atkinson, MySQL++, http://tangentsoft.net/mysql++/, Referenced: 27/03/2007

[21] D. Willis, B. Hoeneisen, Session Initiation Protocol (SIP) Extension Header Field for

Service Route Discovery During Registration, IETF, 2003,RFC 3608.

[22] Eclipse, http://[www.eclipse.org/, Referenced: 27/03/2007
[23] WinCVS, http://www.wincvs.org/, Referenced: 27/03/2007

[24] Wireshark, http://www.wireshark.org/, Referenced: 27/03/2007

[25] SIPp, http://sipp.sourceforge.net/, Referenced: 17/05/2007

[26] Dejan S. Milojicic, Peer-to-Peer Computing, HP Laboratories Palo Alto, July 2003
[27] Kalman Marossy, Peer-to-Peer content sharing in wireless networks, Budapest

University of Technology and Economics

68

