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To reduce the gap between performance of traditional speech recognition systems and 
human speech recognition skills, a new architecture is required. A system that is capable 
of incremental learning offers one such solution to this problem.  
 
This thesis introduces a bottom-up approach for such a speech processing system, 
consisting of a novel blind speech segmentation algorithm, a segmental feature extraction 
methodology, and data classification by incremental clustering. All methods were 
evaluated by extensive experiments with a broad range of test material and the evaluation 
methodology was itself also scrutinized. The segmentation algorithm achieved above 
standard quality results compared to what is found in current literature regarding blind 
segmentation. Possibilities for follow-up research of memory structures and intelligent 
top-down feedback in speech processing are also outlined. 
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Perinteiset automaattiset puheentunnistusmenetelmät eivät pärjää suorituskyvyssä 
ihmisen puheenhavaintokyvylle. Voidaksemme kuroa tämän eron umpeen, on kehitettävä 
täysin uudentyyppisiä arkkitehtuureja puheentunnistusta varten. Puhetta ja kieltä itsestään 
ihmisen lailla oppiva järjestelmä on yksi tällainen vaihtoehto. 
 
Tämä diplomityö esittelee erään lähtökohdan oppivalle järjestelmälle, koostuen 
uudenlaisesta sokeasta puheen segmentointialgoritmista, segmenttien piirteistyksestä, 
sekä menetelmistä vähittäiselle puhedatan luokittelulle klusteroinnin avulla. Kaikki 
metodit arvioitiin kattavilla kokeilla, ja itse arviontimenetelmien luonteeseen kiinnitettiin 
huomiota. Segmentoinnissa saavutettiin alan kirjallisuuteen nähden hyvät tulokset. 
Järjestelmän mahdollisia jatkokehityssuuntauksia on hahmoteltu muunmuassa 
mahdollisten muistiarkkitehtuurien ja älykkään top-down palautteen osalta.  
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1 Introduction 
 
 
 
 
Information sharing is one of the most salient features of the human race. The ability to 
communicate is like glue, binding groups of people together and making social 
organizations possible. Without a proper way of communication, information sharing 
would be very limited and it would not extend far from the practical physical aspects of 
our daily lives. As a result of evolution, our species has developed a very special 
mechanism for communication: language. In the light of current scientific knowledge, the 
development of language has in parallel evolved with our speech organs, both driving 
each other towards an optimal way to transfer information over a challenging medium, 
namely air (Fitch, 2000). Language also aids our thinking conceptually, the way we 
perceive and interpret the world around us (Gauker, 2002). Even more significantly, 
without language we could not perceive ourselves in the same way as we are doing at this 
very moment. 
 
But how do we actually learn language as infants? Do our brains have some sort of built-
in system for processing linguistic information? Current knowledge of the cognitive 
aspects of speech processing is controversial. There is strong evidence that specific brain 
areas are specialized in speech processing (Boatman, 2003; Stefanatos et al., 2007; 
Burton et al., 2000), but the same areas are also known to be involved in many other 
processes (Gazzaniga, 2002). At this moment there is no certainty if these areas are 
specialized for language, or, if their processing abilities are just exploited by language. 
Recently, Price et al. have argued that brain regions activated by speech processing are 
only harnessed by differential demands on auditory processing, and could be re-classified 
to respond to other types of stimuli (Price et al., 2005). Interestingly, this supports old 
theories of generality regarding the processing principles in the neo-cortex (Mountcastle 
& Vernon, 1978) that have been lately revised in popular science literature by Jeff 
Hawkins (2004).  
 
What is significant is that we know that the brain’s and its billions of neural connections 
obey the laws of physics and can be described by some sort of statistics. If speech 
comprehension and learning, which in practice are activation and adaptation of neurons 
for incoming auditory signals, can be described by such statistical models, then it should 
be also possible to simulate such processes by using technical computational models. On 
the other hand, developing models capable (or incapable) of imitating some aspects of 
cognitive processes can give us more insight to the real world attributes inside our heads, 
and can be used to reinforce or discard existing theories of cognitive science and 
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psychology. However, building a system that is “born” into reality without any prior 
knowledge, and that would learn to understand and communicate by interaction with its 
environment, has been so far possible only in the field of science fiction. Nonetheless, a 
continuous increase in computational capacity and relatively recent developments in 
many interesting mathematical, cognitive scientific and information technology 
applications during the last few decades has cumulated to a point where it is possible to 
start testing theories and ideas with practical simulations. Since language plays such an 
important role in our development to become members of society and the way we 
perceive the surrounding world, it is a natural choice to investigate this field further with 
computational simulations. 
 
However, before being able to understand speech, both humans and machines must first 
be able to extract meaningful information from the mere continuous stream of pressure 
variations existing in the medium. This starts as a so-called “bottom-up” process, in 
which air pressure variations are transferred through our outer and middle ear to the 
cochlea, where pressure variations then propagate in a liquid medium. However, already 
inside the cochlea the purely bottom-up process ceases and interaction between the input 
and feedback from the central neural system begins: inner hair cells in the basilar 
membrane respond to the propagating sound wave and send signals to the acoustic nerve 
leading to the auditory nuclei in the central neural system. Activation of these low-level 
processing “centers” initiates an immediate neural feedback, causing outer hair cells in 
the basilar membrane to adjust their stiffness according to the properties of the input, and 
results in a better discrimination capability for the incoming signal (Ulfendahl & Flock, 
1998). It seems evident that neural feedback mechanisms start to play an ever increasing 
role as the processing progresses towards higher-levels of cognitive functions. This 
interaction between bottom-up and top-down signaling may contain the clue to the 
mystery that surrounds our cognition as a whole. 
 
From the computational point of view, this bottom-up top-down interaction imposes an 
interesting challenge: if we want to build a system that can learn from speech, 
mechanisms for converting acoustic signals to language-like patterns are required. On the 
other hand, we need a system that knows something about the language and provides top-
down information, before we can do human-like processing (e.g., correct word 
segmentation and recognition in extremely noisy conditions). This means that instead of 
just learning the language from bits of information supplied from below, our system also 
has to learn the process of processing itself. 
 
While there is a plethora of knowledge available about the functionality of the human 
auditory system (e.g., Moore, 1995; Karjalainen, 1999), there is still much to be solved 
and understood, especially at the higher levels of processing. This leads to the question: 
how do we actually model language acquisition? How do we know what models to use to 
create some sort of memory-structure that can mediate between inputs and outputs? How 
do we know how speech should be organized in the system and what sort of feedback 
should be used at different levels? The answer is that we don’t. But in computational 
modeling and simulations we can always exploit what we already know about our 
hearing and speech processing, or we can test new methods of processing that could 
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support empirical evidence. The technological advances of our society allow us to cling 
to fundamental mechanisms of cognitive processing by using computational methods. 
 
To build a framework for a new architecture of learning for speech recognition systems, 
we need a reliable foundation on which learning can begin. This master’s thesis 
concentrates on understanding and developing methods for temporal segregation of 
continuous speech, also called segmentation, feature extraction of the segmented speech, 
and classification of the segmental data. The general perspective leans strongly to the 
cognitive aspects of human brain processing, trying to bind together some connections 
between traditional speech processing methods and cognitive science research. This work 
is intended to draft a methodological front-end basis for an interactive speech recognition 
system, which, in the near future, is able to utilize its past experience to enhance the 
quality of its pre-processing and ultimately to learn the language at hand. The 
experimental focus in the scope of this paper is on blind speech segmentation, and we 
also briefly probe into the vast world of feature extraction and data clustering to sketch 
some possible paths for future work.  
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2 Speech processing by humans and machines 
 
 
 
 
In order to extract and distinguish bits of information from speech, we humans need to be 
able to distinguish and organize different parts of the signal both temporally and by its 
amplitude (waveform). The inner ear provides us with a biological mechanism for 
processing such information, where in technical solutions there are mathematical 
transformations (e.g., the Fourier transform) that are commonly used for transforming 
time-domain information into the frequency-domain. We also need to be able to divide 
the speech signal into meaningful and coherent parts, a process that is called speech 
segmentation. Segmented speech must be further processed in order to create something 
we can define as information.  
 
Automated segmentation of speech signals has been under research for over 30 years. It 
is of much interest as an important pre-processing part in most speech processing systems 
that are intended to obtain some useful features carrying information in the auditory 
channel. It is a necessity for phonetic analysis of speech (Mermelstein, 1975), audio 
content classification (Zhang & Kuo, 1999) and many applications in the field of 
automatic speech recognition (ASR), including word recognition (Antal, 2004). Research 
in ASR aims to develop artificial systems that are able to understand1 and/or act on 
incoming speech, and in some cases like the ACORNS2 project, to also understand the 
mechanisms of human speech perception. While research in the field of speech 
recognition has been intense for decades, few real breakthrough success cases exist. The 
old challenges of artificial speech perception are still relevant and unsolved.   
 
The general idea of segmentation can be described as dividing something continuous into 
discrete, non-overlapping entities (Kvale, 1993). In speech segmentation, the basic idea 
of segmentation is to divide a continuous speech signal into smaller parts, where each of 
these segments has phonetical or acoustical properties that distinguishes it from 
neighboring segments. Segments can also be thought of as patterns, each segment 
differing from total randomness in a coherent and (statistically) perceivable manner. The 

                                                
1 The concept of understanding is ambiguous and can be defined in many ways depending on the context 
and the goals of the process. Human understanding of speech is largely based on the knowledge of the 
lexicon and the grammar of the language, even though, e.g., machines are commonly thought to 
“understand” if they are able to match incoming speech signals with predefined actions associated with the 
content of the speech.  
2 Acquisition of Communication and Recognition Skills, http://www.acorns-project.org 
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size of a segment can vary due to the purpose of its use and the nature of the 
methodology by which segments are created. Segmentation can be performed, for 
example, at the segment, phone, syllable, word, sentence or dialog turn level. 
Segmentation can be also used to distinguish different types of audio signals from large 
amounts of audio data, often referred to as audio classification. This thesis concentrates 
solely on the processing of speech signals as the entire field of research and discussion in 
automatic audio processing and segmentation is much wider in scope.  
 
Traditionally segmentation has been created manually by trained phoneticians who use 
their phonetic and linguistic knowledge with the help of some statistics, e.g., spectral and 
waveform information, to analyze and segment speech. High quality manual 
segmentation is an extremely slow and tedious task and therefore expensive to produce, 
but paired with the annotation of phonetic labels it fulfills the need for a required 
standard for segmentation quality evaluation (Toledano et al., 2003). Manually produced 
annotation is often used to train algorithms for segmentation and labeling purposes. 
Automatic, context independent and real-time speech processing systems obviously are 
not able to utilize manual annotations (since none exist), so self-sufficient (or partly 
aided) and intelligent algorithms are needed in order to process speech into smaller units. 
Their performance is then usually compared to manual segmentation(s) and quality 
indices derived to evaluate an algorithm’s performance (Toledano et al., 2003; see also 
e.g. Aversano et al., 2001 or Sarkar & Sreenivas, 2005). 
 
In practice automatic speech recognition, including automatic speech segmentation 
(ASS), face many difficult problems: in natural speech there are no pauses between 
words and many phones or even parts of words are recognized by their context. Co-
articulation often causes canonically expected phones to be modified or completely go 
missing since the speech organs (e.g., lips, tongue, etc.) are in continuous movement 
during the pronunciation of words. Loudness, pitch, duration and other possible elements 
of prosody such as voice quality all affect the physical attributes of the signal and carry 
additional linguistic and affective detail. Although all this is an ingenious and extremely 
effective way of transferring information between two or more living beings, it also 
complicates automatic recognition to a point where even today’s state-of-the-art systems 
fall far behind in error rates compared to humans (Boves et al., 2007).  
 
In this chapter some perspectives regarding human speech processing will be discussed 
followed by a brief review of some of the most common approaches that have been 
applied to speech segmentation and feature extraction. Data classification by clustering 
will be also discussed. At the end of the chapter, the use of top-down information in 
speech segmentation and its current status in the area of speech recognition research is 
examined.  
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2.1 Speech processing, a human perspective 
 
Human perception exploits prior learned and experienced information in a top-down way 
to make sense of what we hear (e.g., Norris et al., 2003). Learning is one of the most 
important capabilities of our species that allows adaptation to environmental 
requirements and iteration towards more optimal problem solving. This imposes a 
question whether it is even possible to provide accurate and consistent models of 
cognitive processes that rely only on bottom-up organized processing. In speech 
processing, segmentation is one problem where attempts have been made to find a 
solution in both bottom-up and top-down ways, although none have produced generally 
acceptable and robust results.  
 
But how do we humans actually segment speech? Or do we segment at all? Is there an 
automatic sub-cortical system for pre-processing speech sounds for further cortical 
analysis, or is everything processed in uniform manner all the way to the association 
areas and memory processes? How do we (or children) separate different phones from a 
continuous speech signal if we cannot even separate different syllables before we learn to 
read (Morais et al., 1979; 1986)? On the other hand, in the light of current scientific 
knowledge, we cannot even say for sure what is the size or nature of the units our cortex 
uses to analyze speech. Or are there different parallel processing paths with different 
architectures for processing different aspects of speech? There are several questions 
remaining unanswered in this area, and hopefully future research in speech processing 
and cognitive sciences can shed some light. A short discussion of some of the aspects of 
human speech processing that are relevant to automatic speech processing systems now 
follows. 
 

2.1.1 Speech discrimination capabilities 
 
The ability to differentiate between two stimuli carrying different meanings is as 
important for humans as it is for machines trying to make sense of speech input. All 
natural languages have evolved in a way in which larger entities, sentences, are made up 
of smaller parts, words. Every word carries a set of meanings, often of a metaphorical 
nature, which can be combined with other meanings to produce an entity that carries 
meaningful information from the producer of the sentence to the receiver. Each word in 
turn consists of smaller units called syllables, each of which are made up of phonemes. In 
theory, using the entire set of phonemes of a given language, it is possible to produce all 
possible speech messages carrying linguistic information by combining them in the 
correct order. In order to differentiate meanings of similar messages, very subtle 
acoustical differences need to be detected. In some languages, even the differentiation of 
separate phones is not enough, since the message is encoded using prosodic features, 
e.g.,intonation, stress, quantity, etc. 
  
Based on the assumption of hierarchical structure of natural languages, we can consider a 
language consisting of a series of small information chunks that can be combined for 
information transfer and split later for comprehension. Speech discrimination is then the 
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ability to a) identify these meaningful blocks in a speech stream, and b) to distinguish 
phonologically different blocks from one other. Speech segmentation is speech 
discrimination, although the term often has emphasis on temporal aspects of chunking 
continuous signals into smaller units. This division into blocks should not be taken too 
strictly however. Speech production is after all the continuous movement of speech 
organs, and the core of the message that is to be transferred is coded over entire 
utterances. The smaller the blocks that we dissect, the more significant is the effect of the 
context. Also, we do not know yet what the size of the most meaningful blocks are, or 
whether we use different parallel levels of structure for comprehension. But what can we 
actually distinguish, and do we first have to learn it? 
 
Automatic phoneme discrimination at the auditory level is essential for speech 
comprehension, keeping in mind that phonemes are usually defined as units of speech 
that distinguish different meanings from each other (Laver, 1994). Our ability to 
understand very rapid speech with divided attention, paired with limitations in the 
capacity of the working memory (Neath & Surprenant, 2003), excludes the need and the 
possibility to use conscious effort to distinguish every single phone in continuous streams 
of speech. While it is necessary to differentiate realizations of phonemes (phones) in the 
speech stream, it is not something that all people capable with normal communication can 
explicitly perform when required. Research has shown that adults are able to distinguish 
phones at the beginning and at the end of words, but for example the ability to distinguish 
syllables in the middle of words requires literacy (Morais et al., 1979; 1986). This 
suggests that while the process of phone discrimination is essential, it may not always be 
a conscious process. 
 
There is also another interesting aspect of phone recognition, in which learning has a 
central role: infants are capable in distinguishing between phones of practically any 
language (see, e.g., Blumstein et al., 1987), but as they mature, their discrimination 
abilities endure strongly only in the language(s) they continuously hear and learn 
(Trehub, 1976; Werker & Tees, 1984). Furthermore, there are several studies pointing out 
that while infants are capable of phone level discrimination, a tendency to process larger 
units of speech at a time might become dominant as the baby starts to learn language (see 
Swingley, 2004). On the other hand, children of age 6-8 need more acoustical cues for 
consonant-vowel (CV) pair discrimination than adults (Elliott et al., 1986), which may be 
due to the advantage of experience with the language that adults have. A study carried out 
by Stager & Werker (1997) suggests that infants would prefer to use more phonetic detail 
in speech perception, but use more general features in word-learning as they start to map 
the auditory stream into conceptual meanings after the age of 8 months. This supports the 
idea that the brain of an infant gathers statistical cues of the environment (including 
speech) continuously, and as they grow older, the statistical representations start to enable 
higher level structuring of the incoming information. The ability to distinguish non-
meaningful differences becomes pruned as the capacity is allocated to strengthen the 
processing of meaningful distinctions of the language.    
 
Concluding all of this from the segmentation perspective, the ability to hear differences 
between phone sized changes in words, does not necessarily dictate that incoming speech 
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is processed in phone-size units for recognition. Recognition can be also thought of as a 
pattern matching operation, where synaptic connections in several neural pathways are 
activated in a unique manner depending on the acoustical properties of the incoming 
speech. Top-down attention and expectations can be thought of to modulate this 
activation spreading and guide activation propagation to cortical areas that are specialized 
in corresponding processing. Supporting evidence for role of attention can be found, e.g., 
from studies of Toro, Sinnet and Soto-Faraco (2005), who demonstrated necessity of 
attention for word segmentation from the auditory stream. It is interesting to discern that 
the attention mechanisms and primary memory codification and retrieval are considered 
to reside in the same brain areas, in the frontal cortex, that is also activated during speech 
processing (see next subsection).   
 

2.1.2 Speech and the brain 
 
There is also a strong possibility that infants use multimodal information and motoric 
development to learn to segment their mother tongue. Also, learning to structure other 
languages in later life may be aided by visual information that supports auditory input. 
The mutual necessity of context and speech has been long known to be a prerequisite for 
small children to learn new words (Benedict, 1979). This sort of multimodal learning, 
often referred as grounded learning, has also been researched lately in the area of 
artificial speech recognition with promising results (e.g., Roy, 2005). From the 
perspective of cognitive sciences, recently discovered mirror neuron system (MNS) has 
caused substantial discussion about the way humans perceive and imitate in order to 
learn. According to current knowledge, mirror neurons work as a neural substrate that 
binds together perception and action, in which learning by imitation can be thought of as 
a forming of links between these two (see e.g., Rizzolatti & Craighero, 2004 for a broad 
description of MNS).   
 
The multimodality of speech perception is supported by various other studies. In one 
experiment it was determined that visual information of lip and jaw movement excites 
neurons at the pre-motoric cortex (Nishitani & Hari, 2002), at the very location of 
Broca’s area that is associated with speech perception and production. However, perhaps 
the most salient proof of unconscious interaction between vision and hearing is the so 
called McGurk effect: presenting conflicting visual information of mouth movements at 
the same time with an auditory phone stream causes miscomprehension of the auditory 
signal. For example, visual [ga] and auditory [ba] leads to perception of [da] (McGurk 
& MacDonald, 1976). Preliminary experiments also show that computational speech 
segmentation can be performed effectively by using a relatively low frequency 
bandwidth, containing mainly of the 1st and 2nd formants that are most visible in facial 
expression of articulation. Also, the first two “visible” formants are known to be 
sufficient for fair vowel recognition (Peterson & Barney, 1952). Based on these findings 
it is possible to even hypothesize that visual information about facial actions may help 
infants to learn to segment auditory speech into meaningful units. Unfortunately, there is 
little research available that covers the area of speech segmentation and language learning 
in blind or otherwise visually confined infants.  
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The neural substrate behind speech processing is not something that one can simply point 
out. There has been rigorous discussion whether different steps or aspects of speech 
recognition are divided into spreading activation into several different areas, or whether 
there are only a few central locations for the recognition process. The idea of signal 
specific pathway processing, i.e. processing speech sounds in separate systems, can be 
justified more easily, if one considers how sub-cortical auditory processing already leads 
to tonotopic mappings at the primary auditory cortex (A1) (Kosaki et al., 1997). Actual 
speech recognition and comprehension is believed to occur at the cortical level and 
probably in more specialized areas than A1 (Wissinger et al., 2001), but also in separate 
areas than processing of, e.g., meaningful environmental sounds or background noise (see 
Boatman, 2004). Speech-specialized and focalized cortical substrates would not only 
make more efficient processing possible (McNealy et al., 2006), but may also play a role 
in interaction with working memory and consciousness. Strengthening the importance of 
connection between memory and hearing, Boatman (2004) also showed in her lesion 
studies that the inferior frontal lobe plays a critical role in phonological processing. 
Wilson et al. (2004) confirmed this with fMRI experiments, showing that superior portion 
of the ventral pre-motor cortex activates during attended speech perception. These results 
strongly support the old motor theory of speech perception (Mattingly & Lieberman, 
1985), as inferior frontal lobes are associated with motoric actions and learning by 
activation of mirror neurons (Rizzolatti & Craighero, 2004). Locasto et al. (2004) suggest 
that frontal areas are activated for extraction of acoustic information and keeping it in 
memory for decision. On the other hand, Burton, Small and Blumstein (2000) have 
postulated that frontal activation is only a product of processing taking place at the 
auditory cortex, and may play a role only with working memory demands for further 
processing. As one can see, it may be very difficult to say where general auditory 
processing ends and language specific recognition begins. The temporal lobe, including 
the substrate for primary auditory processing, seems to be tightly integrated with frontal 
lobes that are classically associated with attention, motoric planning and memory 
encoding and retrieval.  
 

2.1.3 Conclusions of human perspective 
 
The entire literature and research on speech and cognition is too broad to review here 
conclusively. The field and its knowledge is scattered as small pieces, and extensive 
approved theories that fuse together many aspects of cognitive functioning do not either 
exist or are extremely hard to prove experimentally. Language is one of these functions 
that needs highly developed cooperation from several different, classically separated, 
cortical processes, including auditory processing, episodic memory and associations. 
Current brain imaging techniques allow us to test well defined hypotheses with limited 
accuracy, limited also to very well controlled experimental settings with a small number 
of variables under inspection. These reliability requirements rule out large-scale 
exploration of interconnected neural substrates and interacting cognitive processes lying 
beyond them, aiming to find central cause and effect relationships. The limitations of the 
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available methods and the lack of extensive knowledge in cognitive processing leave 
many aspects of our speech processing still unknown.  
 
Do we have a specialized memory for words and each of their different forms, or is there 
a system that converges a series of phones into coherent patterns that can be associated 
with something already seen or heard before? Or does the truth lie somewhere between? 
It remains to be seen what the size of speech units are that we use to understand our 
fellow beings. Hopefully, speech recognition models and simulations relying on speech 
segmentation can shed some light onto this mystery. If it were possible to build a robust 
system that is capable to recognize speech by using prescribed segmentation principles, 
then it may also be possible to learn something relevant about human speech processing.  
 
 

2.2 Methodological approaches to segmentation 
 
Automatic speech segmentation methods can be classified in many ways, but one very 
common classification is the division to blind and aided segmentation algorithms. These 
two different approaches will be discussed in more detail below. This classification can 
also be performed based on the parameters used to describe the original signal (see next 
section), often leading to a division between model-based (most relying on linear 
prediction, LP) and model-free methods (Li & Gibson, 1996). The principle idea of 
model-based methods is to fit incoming data into some existing, often polynomial based, 
models describing sections of speech to obtain a fairly small amount of parameters to 
describe the incoming signal. Model-free methods often make use of spectral and/or 
time-domain properties of the signal, mapping key values to some space using distance 
metrics and finding points of interest as a function of time. 
 
A central difference between aided and blind methods is in how much the segmentation 
algorithm uses previously obtained data or external knowledge to process the expected 
speech. Some systems can learn and adapt statistically to signals they are being fed with, 
or they can be taught beforehand with varying techniques and emphasis. The main idea of 
learning is to find some statistically relevant information from the speech that can be 
exploited to enhance the quality of the segmentation. The most common statistical 
methods in ASR and ASS are Hidden Markov models (HMMs), where key features of 
the signal are used for pattern recognition and most probable acoustic sequence 
calculation (see Knill & Young, 1997 for an extensive description).  
 

2.2.1 Blind segmentation 
 
The term blind segmentation refers to methods where there is no pre-existing knowledge 
regarding linguistic properties, such as orthography or the full phonetic annotation, of the 
signal to be segmented. Sharma & Mammone (1996) have listed such applications where 
blind segmentation can or needs to be applied: speaker verification systems, speech 
recognition systems, language identification systems and speech corpus segmentation & 
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labeling. In practice, requirements of real-time processing and speaker or language 
independency can usually be fulfilled only with systems that are able to function without 
prior external knowledge. However, this does not exclude the possibility that the system 
uses some earlier obtained knowledge about features of the speech, which usually refers 
to some sort of machine learning (see, e.g., Bishop, 2007) and the ideology of top-down 
processing outlined in many sections of this paper.  
 
Due to the lack of external or top-down information, the first phase of blind segmentation 
relies entirely on the acoustical features present in the signal. This bottom-up processing 
is usually built on a front-end parametrization of the speech signal, often using MFCC, 
LP-coefficients, or pure FFT spectrum (SaiJayram et al., 2002). These parametrization 
methods are shortly described in section 2.3. Tracking the behavior of chosen parameters 
can lead to cues for possible segment boundary discovery. The preliminary results of this 
blind bottom-up process can be improved by using sophisticated data classifying 
techniques to provide “intelligent” feedback for boundary detection.  
 

2.2.2 Aided segmentation 
 
Aided segmentation algorithms use some sort of external linguistic knowledge of the 
speech stream to segment it into corresponding segments of the desired type. Usually this 
means using an orthographic or phonetic transcription as a parallel input with the speech, 
or training the algorithm in advance with such data. Using the phonetic annotation of the 
speech stream also enables automatic segment labeling, which can be, for example, used 
to help manual annotation of large speech corpora.  Naturally, a phonetic annotation for 
an input stream is only available in a few situations since it takes plenty of time and 
money to produce accurate descriptions of speech by manual labor. Orthographic 
transcriptions are less complex to produce and therefore also less expensive to create for 
speech data, but differences in the orthography of different languages is a serious 
limitation, and orthography may not always describe the content of the acoustical signal 
faithfully.   
 
However, there are also methods for creating automatic phonetic annotations (APA), for 
example, by using the orthographic transcription and the speech signal together (see, e.g., 
Schiel, 1999). The quality3 of the annotation can vary, and such systems are usually 
language dependant and need to be trained beforehand. These methods are still useful as 
such for some applications and they can also facilitate manual phonetic annotation. The 
increasing quality of APA may also dominate the annotation of large speech corpora in 
the near future, as manual annotation is too expensive and time consuming (Greenberg, 
2003). 
 

                                                
3 Defining annotation quality is not a trivial task. Automatic annotations are often compared to manually 
created reference annotations (RA), but manual annotations are also prone to inter- and intra-subject 
variations. Often many phoneticians need to work on the same material to obtain a desired degree of 
consistency in the annotation (Cucchiarini & Strik, 2003). 
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One of the most common methods in ASR for utilizing phonetic annotations is with 
HMM-systems. Using annotated phones as models, different representations of phone 
realizations can be used to determine the optimal parameters for each model. This is 
referred to as isolated HMM training (Knill & Young, 1997). HMM-based algorithms 
have dominated most speech recognition applications since the 1980’s due to their so far 
superior performance in recognition and relatively small computational complexity (see, 
e.g., Juang & Rabiner, 2004, for the evolution of HMMs in the field of speech 
recognition). 
  
In real time applications it is naturally impossible to have any external knowledge of the 
input in advance. One common usage for semi-automatic segmentation is for example 
raw segmentation of speech corpora. Algorithms can be taught with the speech material 
in the corpus to achieve decent segmentation quality. This preliminary segmentation is 
then manually corrected by phoneticians to obtain an accurate segmentation of the 
corpus. Pre-training segmentation algorithms for specified material, e.g., a specific 
language or limited set of words or sentences, is also effective and commonly used in 
lexically or functionally limited ASR applications.  
 
 

2.3 Parametrization and feature extraction 
 
The time domain waveform of a speech signal carries all of the auditory information. 
However, keeping in mind the difference between data and information, the waveform 
can mostly only be considered as pure data. From the phonological point of view, very 
little can be said on the basis of the waveform itself. However, past research in 
mathematics, acoustics, and speech technology have provided many methods for 
converting data into something that can be considered as information if interpreted 
correctly. A large proportion of speech technology research concentrates on the 
processing of auditory signals in such a manner that essential information of the 
conveyed message can be extracted from ambiguous data, which is potentially corrupted 
by (environmental) noise and the distortional properties of the transfer medium. As a 
result of these processing operations, a number of parameters or features are created. 
 
Features can be used to depict changes in the signal as a function of time in a compact 
form and often with relatively low computational costs, which may be suitable as a basis 
for locating possible word or phone boundaries. Besides, in many ASR systems 
segmentation is only an inevitable preliminary operation for many methods. In order to 
find some statistically relevant information from incoming data, it is important to have 
mechanisms for reducing the information of each segment in the audio signal into a 
relatively small number of parameters, or features. These features should describe each 
segment in such a characteristic way that other similar segments can be grouped together 
by comparing their features, but differing segments (in terms of phonetic content) will be 
excluded. In an optimal situation, all sub-word segments that carry the same linguistic 
information would form a single group. In practice, this classification is extremely 
difficult to achieve, considering that the human auditory system is the most optimized 
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speech recognizer known so far, and even it produces classification errors at low levels of 
noise, especially for small units as phones.  
 
For feature extraction methods it seems sensible to reduce the amount of acoustic 
information by using auditory models that try to imitate the functionality of human 
hearing. However, it is still controversial whether speech recognition systems can or 
should utilize acoustic information, which is normally filtered out in our auditory system, 
in order to obtain good results (see, e.g., Hermansky, 1997 for comments about auditory 
modeling in ASR). The choice of which parameters to use also depends substantially on 
the application. For example, the effects of noise caused by the transfer medium differ 
notably on the parameters used, and therefore many special methods for speech 
parametrization in noisy conditions have been developed (e.g., RASTA-PLP, Hermansky 
et al., 1991; see the sub-section regarding linear prediction). 
 
In practice there are an enormous number of interesting and exceptional ways to describe 
the speech signal in terms of parameters. While they all have their strengths and 
weaknesses, most of them will be bypassed here, and we will concentrate only on a few 
of the most used methods. These methods for feature extraction are based on the MFCC 
spectrum and LP algorithms. Also, direct use of the FFT spectrum is possible in ASR and 
it deserves a brief review, not least because the segmentation method presented in chapter 
3 builds on it. These methods are described here in a short introductory manner, and for a 
more detailed description the reader should refer to, e.g., Rabiner & Schafer (1978) or 
Motlíček (2002). However, before going into parametrization methods, some fundamental 
properties of features will be discussed.  
 

2.3.1 Philosophy of features  
 
Classification is a process of naming a category for each entity to be classified. While we 
often refer to a description of events in the speech signal within the field of speech 
processing, a more general term called item will be used here to describe the phenomenon 
that we are trying to classify.  
 
In order to categorize an item, a comparison or a type of distance evaluation has to be 
performed with respect to the other items that are to be categorized, or, to possible pre-
defined categories available, in order to find the best categorical match for the item. 
Comparison and distance evaluation requires an estimate of the true value to compare and 
evaluate to, and the term feature is used to describe a piece of information that can be 
used for such a purpose. By comparing features we can measure the similarity (or 
difference) of two items, but as a very important distinction, only in terms of the 
categories that we are utilizing.  
 
There is also an important link between features and patterns. While features are 
something that can be detached from the larger entity for more particular examination, a 
sufficient set of features can be considered as something that defines the entity. In 
cognitive and memory research this sufficient set is sometimes referred to as defining 
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features (Neath & Surprenant, 2003). In addition, there are characteristic features that do 
not directly define the concept, but are typical to that particular subject. One should 
immediately recognize that this division to two different types of features is not a strict 
property of the concepts, and depends on the context and the recognition process that is 
taking place. What is important is that structured (non-random) combinations, or sets, of 
features can be thought of as patterns by mapping them into the time domain. Especially 
in the case of human perception, the temporal dimension becomes an important mediator 
between features and recognition. Every activation process occurring in our neural 
system is a consequence of past activations and the effects of the environment. Without 
time there are no thoughts or imagery, no perception nor sensations. Every recognition 
process is a time sequence of consecutive neural messages originating from the stimuli, a 
pattern.  
 
But what are good features for describing speech signals? Unfortunately, there is no 
universal theory or even unanimous rules of thumb for feature extraction in speech 
processing. While there have been some attempts to select a single best group of features 
for speech recognition (see, e.g., Lee & Hwang, 1996), none have proven to be feasible in 
all situations. The most central issues are with the nature of the items to be classified and 
the goal of classification that needs to be accomplished. It is also an important 
philosophical question whether to search for features that can be used to produce a 
categorization that fulfills the target expectations (based on prior knowledge), or whether 
to find features that categorize data in possibly unexpected but still systematic and 
beneficial ways. For example, in speech processing what most often is done is to make a 
separate two items that cannot be interchanged without affecting (the description of) the 
content of the signal, and at the same time, using features that are sufficient to describe 
the signal in terms of the ultimate goals. Often it is possible to exploit prior knowledge 
regarding linguistics, phonetics and audio signal processing in order to find satisfactory 
classification results that match the current conception of reality. For simplicity, this 
epistemological approach of exploiting pre-existing knowledge will be used for further 
classification discussion in this paper.  
 
So as for classification, the first premise for a good feature is its ability to differentiate 
items from each other that are considered to belong into different categories in the best 
possible way. For example, in order to define whether an animal is a cat or a dog, we may 
not want to use the color of its fur as the most salient classification criteria, neither do we 
want to classify the gender of a person by considering only height. These features may be 
statistically inclined to point to a specific category, but as such they are not sufficient for 
making classification decisions. Preferable are those features that are in terms of order 
very distant from each other between the categories, and close to each other inside the 
category. In other words, good features should be distinctive and contrasting between the 
categories.  
 
Usually in complex phenomena, one class of features is not sufficient for a desired 
classification, and therefore several different features are required. When several features 
are utilized, it is important to select the ones that contain complementary information 
concerning the classification problem. Also, when comparing features in some space with 
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specified distance metrics, the use of the mathematical term orthogonality to describe 
how much common information these features carry is preferred. Good features are as 
orthogonal as possible, meaning that they bring more information to the classification 
problem with minimum increase of complexity. By presenting more features with poor 
resolution capability to the classifier increases the complexity of the decision, and may 
hinder the overall decision quality.  
 
The human perspective of feature detection is very closely linked to feature extraction in 
computational solutions. In everyday human perception, the most salient features are 
used as cues to help in restricting the possible categories searched for recognition, but 
they rarely lead to exact recognition. In order to obtain an accurate classification of an 
item or event, smaller and smaller supporting features must be exploited in addition to the 
most obvious ones to finally come up with only one most probable explanation (or 
categorical match). Therefore, recognition is also often considered as a hierarchical 
process. Several theories of hierarchical categorical memory have been established, and 
the interested reader is suggested to see Collins and Quillian’s hierarchical model 
(Collins & Quillian, 1969), the feature overlap model (Smith et al., 1974) and Collins and 
Loftus’s spreading activation model (Collins & Loftus, 1975). 
 

2.3.2 Linear prediction 
 
Linear prediction (LP), sometimes referred to as autoregressive analysis, plays a central 
role in many speech coding, synthesis, and recognition applications. Its idea is, simply 
put, estimating filter coefficients for a filter that retains the waveform of the original or 
intended signal. LP is a model based on human speech production. It utilizes a 
conventional source-filter model, in which the glottal, vocal tract, and lip radiation 
transfer functions are integrated into one all-pole filter (see eq. 2.1) that the simulates 
acoustics of the vocal tract. 
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In the above equation G is the gain of the system and â(i) are coefficients of a p:th order 
polynomial. The filter is driven by an excitation sequence e(n) which is often referred to 
as the residual (Deller et al., 2000).  
 
Using an all-pole transfer function retains the magnitude properties of the signal but does 
not preserve phase information. While some components of speech can be better 
described with pole-zero models, motivation for using only poles comes from the formant 
structure of speech: especially in the case of vowels, the vocal tract can be considered as 
a long and relatively thin acoustic tube whose transfer function can be described 
sufficiently with an all-pole system. Resonance frequencies of the tube, referred to as  
formants in the case of speech, correspond to the LP-filter pole-pair locations in the 
frequency domain, allowing the filter to model the envelope of the frequency structure. 
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Also, the possibility to solve for the coefficients â(i) using relatively simple linear algebra 
is an advantage in all-pole systems. While the phase information of the signal is lost with 
this model, it is not usually significant since human speech perception is considered to be 
very insensitive to phase information in practice (Moore, 1995; Karjalainen, 1999). 
 
The aim of LP-analysis is to find these so called LP coefficients â(i). The core of the 
analysis can be thought of as in terms of minimizing the average mean squared error 
(MSE) 

! 

e(n)
2

= [s(n) " # s (n)]
2  in the time-domain, meaning that the difference between the 

original waveform s(n) and the waveform produced by the source-filter system s’(n) is 
minimized for each windowed frame (eq. 2.2).  
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This problem setting can be inverted so that source-filter-output system becomes the 
output-filter-source system. Now the all-pole filter in eq. 2.1 becomes a finite filter (FIR) 
of length p+1 (eq. 2.3 and fig. 2.1).  
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Figure 2.1: Inverse filter and prediction error (adapted from Deller et al., 2000) 

 
Attempts to minimize the residual ê(n) leads to p linear equations that can be solved in 
matrix form. After coefficients â(i) are determined, the gain G can be also calculated 
easily from the coefficients (see Deller et al., 2000, for a more broad description of the 
mathematical derivations). 
 
When linear predictive coding (LPC) is used for compression and transfer of speech 
signals, the residual, the gain and a few other possible parameters are packed with the 
LP-coefficients to enable reproduction of the original signal at the receiver. Signal 
reproduction (or LP-synthesis) takes place by using the above described source-filter 
system with ê(n) as the excitation signal and the â(i) as the coefficients specifying the 
filter transfer function H(z) (eq. 2.1).    
 
Since linear prediction has been found to be a generally efficient way to parametrize 
speech, more refined versions of it have also been developed. One such version is 
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Hermansky et al.’s (1991) RASTA-PLP, abbreviation of RelAtive SpecTrAl Perceptual 
Linear Prediction, that has been specially designed to address the problems associated 
with noisy conditions. In addition to the usual auditory modeling contained in PLP (e.g., 
the use of a logarithmic critical-band spectrum and equal loudness conversion; 
Hermansky, 1990), each frequency channel is band-pass filtered by a filter with a sharp 
spectral zero at zero frequency. This suppresses constants and slowly varying spectral 
components from each critical-band, decreasing the effects of linear distortions caused by 
noisy communication channels. As a result, word error rates are significantly reduced in 
difficult conditions as compared to PLP.  
 

2.3.3 MFCC  
 
The use of Mel frequency cepstral coefficients can be considered as another standard 
method for feature extraction (Motlíček, 2002). This method reduces the frequency 
information of the speech signal into a small number of coefficients that emulate the 
separate critical bands in the basilar membrane of the ear, i.e., it tries to code the 
information in a similar way as the human cochlea does. Additionaly, the logarithmic 
operation attempts to model loudness perception in the human auditory system. MFCC is 
a very simplified model of auditory processing, but it is easy and relatively fast to 
compute.  
 
Calculating MFCC coefficients consists of the following steps:  
 

1. The signal is windowed with a specific window function (often Hamming or 
Hanning) using a window length of approximately 10-20 ms and a step size of 5-
10 ms. 

2. The spectrum is calculated for each window using the FFT. 
3. The spectrum is then filtered with a special Mel-scaled filter bank to obtain 

corresponding Mel-coefficients. Single bands in the bank are usually triangular in 
shape, and overlapping each other.  

4. The logarithm of Mel-coefficients is then computed. 
5. The discrete cosine transform is used to transform into the cepstrum-space.  
6. Non-necessary (high-frequency) MFCC-coefficients are discarded if desired.  
 

The use of about 20 MFCC coefficients is common in ASR, although 10-12 coefficients 
are often considered to be sufficient for coding speech (see, e.g., Hagen at al., 2003). The 
most notable downside of using MFCC is its sensitivity to noise due to its dependence on 
the spectral form, which has kept researchers searching for more robust methods to 
describe the speech signal. Methods that utilize information in the periodicity of speech 
signals could be used to overcome this problem, although speech contains also aperiodic 
content (Ishizuka & Nakatani, 2006). 
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2.3.4 Pure FFT 
 
Despite the popularity of MFCCs and LPC, direct use of vectors containing coefficients 
of FFT power-spectrum are also possible for feature extraction. As compared to methods 
exploiting knowledge about the human auditory system, the pure FFT spectrum carries 
comparatively more information about the speech signal. However, much of the extra 
information is located at the relatively higher frequency bands when using high sampling 
rates (e.g., 44.1 kHz etc.), which are not usually considered to be salient in speech 
recognition. The logarithm of the FFT spectrum is also often used to model loudness 
perception. 
 
The benefit of using a purely FFT-based approach is its linearity in the frequency domain 
and its computational speed. While it does not discard or distort information in any 
anticipatory manner, the representation of the signal remains easily perceivable for 
further analysis and post-processing. The effects of noise in the FFT spectrum can also be 
easily comprehended. 
 
 

2.4 Data classification, a bridge to a top-down pathway 
 
Data classification, often referred to as clustering, is a conventional follow-up process to 
feature extraction in many fields dealing with pattern discovery (Jain et al., 1999). 
Clustering is often considered as a data classification problem, which can be used to 
impart understanding to complex phenomena that cannot be comprehended directly. The 
general aim of the analysis is to come up with a limited number of descriptions for the 
inspected data, which leads self-evidently to information compression and conversion.   
 
In speech recognition tasks the usual aim is to group features, each group representing 
well-defined sections of the original speech signals, into semantically (words, sentences) 
or phonologically (phones, syllables) coherent groups. Recurring events, or patterns, in 
the speech stream can then be detected by statistically tracing the connection between the 
data and the clustering process (see, e.g., Park & Glass, 2006).  
 

2.4.1 From clusters to memory 
 
Clustering can also be paralleled to biological information processing. In humans, 
experience and past learning plays a large role in classifying incoming stimuli into 
specific (semantic) categories. The so called bottom-up and top-down interaction, 
partially driven by attention, tries to organize sensory input with internal representations 
in a way that the effectiveness of processing between environmental requirements and 
internal behavior becomes optimized. While it is too early to make any far reaching 
specifications about mechanisms behind this phenomenon, the statistical re-organization 
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of neural networks can be said to work as an infrastructure that provides researchers with  
a biological version of computation needed in information processing and learning (see 
Buonomano & Merzenich, 1998 for a description of cortical plasticity). Memory 
structures, as complex as they might be in reality, can be considered as mediators for 
matching operations between new entries of information and the existing knowledge 
base.  
 
On a very abstract and conceptual level, human data processing is similar to speech data 
clustering in speech recognition systems, where finding the best or several good clusters 
for each vector is actually the process of matching new input with something already 
known. Similarly, expanding the cluster space by creating new clusters can be compared 
to learning, a process of building entries of new knowledge if they do not fit into any 
existing structure. Naturally, the clustering process may take place at several different 
levels, using different level data to build different levels of abstraction. However, in most 
of the current clustering methods used, the process is a deterministic purely bottom-up 
data analysis procedure, where all external knowledge has already been made implicit in 
the algorithm’s instructions. The clustered data remains relatively static after the method 
has achieved the desired convergence, and the classification does not interact with, e.g., 
contextual information from the subsequent data frames, or, with external information 
that might or might not correlate with the data that is being clustered, unless all of the 
information is packed into the data itself. Of course, this is not the case with human 
pattern discovery where there are several sources of information available which may not 
occur exactly at the same time, or, in which some of the “data” may be actually refined 
products of initial pattern discovery processes taking place in other functional domains.  
 
From the engineering point of view modeling dynamic and temporally divergent 
multimodal clustering operations may not even be reasonable in many cases since the 
complexity of the system may overwhelm congruent and analyzable ensembles. As has 
been done so far, it might be most practical to separate the process into several sub-
systems, where clustering is one sub-system responsible for the process of classifying 
data provided by bottom-up processing. This information can then be utilized by other 
methods for more exquisite pattern discovery. Combining several operations into one 
large dynamic classification framework should not be entirely discarded though, as the 
developing knowledge and tools in the field may make possible novel methods for data 
processing. 
 

2.4.2 Common approaches to data clustering  
 
At the most fundamental level, the principle for creating the cluster space can be divided 
into two different categories: hierarchical methods and partitional methods (Jain et al., 
1999). In hierarchical approaches, each piece of input data, which is called a data frame 
here, is classified to a specific sub-level at each node, resulting in a dendrogram (fig. 
2.2). The classification nodes may be distributed to several different levels, and each 
node can use specific distance criteria to evaluate the data. It is possible to use a different 
sub-space for each branch, or, all clusters may reside in the same n-dimensional space 
while the grouping is not performed with a direct distance metric evaluation in that space.  
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Figure 2.2: Dendrogram of hierarchical clustering.                 Figure 2.3: 2-dimensional mapping of  
    partitional clustering. 
 
In partitional clustering (fig. 2.3), the cluster space is usually created by dividing the data 
set into a number of clusters (spread around cluster centroids) by using a defined distance 
measure. The most commonly used partitional algorithm is k-means (McQueen, 1967), 
which starts with a random initial partition containing all of the data, and then reassigns 
the patterns to clusters until the convergence criterion is met. The name k-means comes 
from the squared error distance metrics, in which the final number of clusters is defined 
to be K. Formula 2.4 describes the squared error calculation for clustering 
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In the formula 
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xi
( j ) is the i:th pattern of the j:th cluster and cj is the centroid of the cluster 

(Jain et al., 1999). 
 
Another common way to classify clustering methods is division to agglomerative and 
divisive methods, hard and fuzzy methods, and to incremental and non-incremental 
methods. In agglomerative methods, each data frame is placed in a distinct cluster and 
clusters are merged unless a termination criterion is met, while in divisive methods all 
data frames start in the same cluster that is then split up into several smaller clusters. 
Hard clustering methods assign each data frame into one best choice cluster, while in 
fuzzy clustering each frame has a degree of membership and may belong to several 
different clusters.  
 
Especially in the case of ASR systems it is often important to differentiate between 
incremental and batch processing. Batch processing, in which large amounts of data are 
processed at a time, is not suitable for nearly real-time data processing as the feedback or 
results from clustering are needed before large amounts of data can be gathered. For 
bottom-up top-down interaction purposes, data classification must be performed for 
utterance size units at most, while the utterance should also be able to shape the cluster 
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space to facilitate learning. However, many of the clustering algorithms are designed to 
work with pre-existing sets of data (e.g., k-means), enabling the optimization of the entire 
cluster space when all possible information about the data is already available. This sets 
challenges for optimal classification in incremental situations where very little may be 
known about future input. However, in learning architectures like the one of which’s 
foundations are being sketched in this thesis, batch processing can be used to simulate, 
e.g., rehearsal processes that take place during non-active periods of the system. To meet 
specific needs of incremental clustering a modified clustering algorithm will be presented 
in the next chapter.  
 
 

2.5 Current approaches to top-down feedback in speech 
processing 
 
The original idea of this section was to discuss the current status of unsupervised 
segmentation and speech recognition methods exploiting prior learned information. 
However, reality has indicated that the literature available in this area is nearly non-
existent, as only very few ambitious attempts to model bottom-up top-down interaction 
through learning have been made so far. Several possible reasons for this may exist, but 
one central issue may be the sheer extent of the problem, spreading to numerous different 
fields of scientific research juxtaposed with the small quantity of real knowledge about 
effective memory and feedback processes. The first part of this section will be used for 
highlighting the importance of top-down processes. In the second part, two renowned 
computational memory models will be introduced, as they may help us to understand how 
a bridge between bottom-up processes and an intelligent learning agent could be built. 
 

2.5.1 What is top-down feedback and how can it be exploited? 
 
Motivation for the use of top-down information in segmentation is derived from human 
auditory processing. It has been shown that human speech perception combines bottom-
up and top-down processing concurrently to make the best possible interpretation of 
incoming auditory signals (Samuel, 1981). As we already know, speech signals are often 
ambiguous and distorted in several ways in their acoustical form. Air as a medium can 
also carry only a limited amount of features encoded into a signal and therefore the 
recognition of intended messages is an extremely hard problem.  
 
Top-down information can be thought to consist of two different types: the first type is 
the prior learned knowledge of the world, or in the case of speech perception, the 
grammar and lexicon of the language and the semantic framework that our working 
memory deals with. While we are listening to someone talk, our brain continuously 
analyzes the semantic content of the speech, compares the incoming signal to existing 
models of grammar, and performs word matching exploiting our lexical memory. In 
practice this appears as a good method that exhibits insensitivity to noise, to speaker 
dependent variability, and to distortions caused by the acoustic environment. It has been 
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shown that by masking entire phones using bursts of noise from otherwise semantically 
coherent sentences may not be perceived at all by test subjects (Warren, 1970). The 
defining aspects of this feedback are learning and memory, and their interaction with 
sensational processing. This is the type of processing that is usually meant when referring 
to top-down processing. 
 
A second type of top-down information flow consists of lower level (sub-cortical) 
unconscious neural feedback systems. These systems can be considered as a type of 
“species built-in systems” that are the result of normal development of the individual, 
most of them being fully or partially operational in infancy. Many of these automatic 
processes are very similar in many mammalian species, especially for general (non-
speech specific) auditory stimulae. The presence of one of these low-level feedback 
mechanisms in auditory processing can be demonstrated with otoacoustic emission 
(OAE) (Kemp, 1978). It is a phenomenon that can be observed when a short burst of 
sound is passed into the cochlea, and a faint echo of the stimulus can be heard a few 
milliseconds later. OAE is result of neural feedback and adaptation of the hair cells to the 
signal, and it is currently used to measure the health of the inner ear. Much of the 
structure of neural networks and their feedback systems in the central nervous system is 
still unknown, and there is not much knowledge about the role of sub-cortical processing 
in speech perception. However, the presence of tonotopic or even phonotopic maps in 
core areas of the auditory cortex express possibilities of some sort of discriminating 
speech processing at lower levels. These sort of low-level feedback mechanisms seem to 
be comparable to automatic control systems in engineering, where some features of the 
input signal define a group of parameters that are used to control the processing of the 
same signal (confer, e.g., Ulfendahl & Flock, 1998 for a description of effector hair cells 
that also play role in OAE). 
 
To utilize such feedback mechanisms in artificial speech recognition systems, an 
understanding is required of what kind of information can be exploited directly from the 
speech signal (low-level feedback or adaptation), and what can be obtained by applying 
statistical methods to large amounts of spoken language (high level feedback, memory 
and learning). By directly inspecting the properties of an input signal, different built-in 
adaptation techniques may be used, e.g., adjusting the gain of the amplifier or coding of 
the signal (Erdmann et al., 2000), which correspond to biological DNA-hard coded 
mechanisms aiding the perception of what the subject is provided with. For example, the 
stapedius reflex in the middle ear and other similar automated systems that generally 
facilitate processing in humans in many cases, but are not always appropriate or even 
useful in artificial systems. These sorts of mechanisms are the result of evolution and do 
not adapt to sudden changes in the environment. More importantly, this sort of simple 
input-process-adjust input -relation does not enable learning of patterns and structures 
that form language. It is merely manipulation of the form in which the data is presented.   
 
As already pointed out, the general framework for human speech recognition relies 
heavily on learning. The better human’s understand and speak different languages, the 
less problems they have in word recognition or comprehension even if the circumstances 
are not optimal (assuming the language is known). For foreign languages it is even 
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difficult to distinguish single words in utterances, but on the other hand even infants can 
rely on learned statistical cues to gain partial success in this task (Saffran et al., 1996). 
This supports the idea of hierarchical processing, where several different cues are 
combined to incrementally learn higher-level structures, in the end including grammar, 
lexicon and concepts associated with the language. As the language skills develop, 
automatic prediction and hypothesis testing become important aspects of speech 
perception. This is where bottom-up processing begins to provide cues for memory 
structures, but the information also starts to flow from top to down in order to test and 
refine these recognition hypotheses. 
 

2.5.2 Computational models of speech perception 
 
While the role of memory structures, spreading activation, and neural feedback in speech 
perception has not established a secure position in ASR, they have been of great interest 
in memory research. One well-known model attempting to model human speech 
recognition, TRACE (McClelland & Elman, 1986), blurs the line between perceptual 
processing and conceptual memory, integrating speech processing and primary memory 
into non-separable process. Despite its deficiencies, it manages to describe many aspects 
of the human speech recognition processes and effects that are central in memory 
research. It relies on small processing units extracted from the speech, which are 
interconnected with exhibitory and inhibitory connections. Units are organized into three 
separate levels, representing features, phonemes and words, respectively. Feature level 
units are produced from the speech with specific feature banks. Phonemes are then 
combined from a specific set of features, as the words become combined from phonemes. 
Horizontally connected units and vertically connected levels compete for best possible 
interpretation of the underlying utterance by using these principles, when each unit at 
each level represents a hypothesis of a corresponding unit in the speech. One major 
problem in TRACE is that it does not explain how sequences of phonemes can lead to the 
learning of new words. It relies on pre-defined structures to identify words, which in turn 
rely on hypotheses about phonemes formed by pre-defined features. Therefore, TRACE 
cannot be considered as a real high-level top-down feedback system, but as a slightly 
aided bottom-up model exploiting hierarchical spreading of activation. See Neath & 
Surprenant (2003) for a review of TRACE from the perspective of memory research.  
 
From the perspective of bottom-up and top-down interaction, another interesting model is 
MINERVA2 (Hintzman, 1984; Hintzman, 1986). It is a simulation model that 
concentrates on the functionality of episodic memory, managing to represent concepts, or 
schema-abstractions, via activation of several entities during retrieval from the memory. 
A central concept of MINERVA2 is the memory trace: a list of features, where each 
element in the list represents one feature with integer values -1, 0 or +1. The memory 
model consists of primary memory (PM), which is responsible for sending probes (which 
are also traces) to the secondary memory (SM) to invoke memory retrieval, and for 
receiving trace echoes as a result of activation. As the probe is sent from PM to SM, SM 
peforms a direct similarity comparison between the probe and each trace stored in the 
memory, and results in the so called activation for each trace (which is the cube of the 
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similarity distance to provide some nonlinearity and to increase the SNR). By calculating 
the product of the activation level and feature values for each trace, and then summing 
the feature values of all activated traces, echo content is gained. Since some of the 
activated traces contain information that was not included in the probe, the echo content 
may differ from the original probe, which simulates associative recall. It is important to 
notice that the model relies on multiple-trace theories, i.e., each input repetition creates a 
new trace to the long-term memory instead of reinforcing the existing traces. Forgetting 
is simulated through a probability that some features of a new experience will be coded 
incorrectly, e.g., 0 may revert to 1.  
 
Recently the modeling of episodic memory with the aid of MINERVA2 has been 
investigated in the area of speech recognition. Following the preliminary recognition 
work of Wade et al. (2002), Maier & Moore first used MINERVA2 for vowel recognition 
(Maier & Moore, 2005) and then for more extensive speech recognition (Moore & Maier, 
2007). In vowel recognition the model achieved better results in comparison to state-of-
the-art pattern classifiers, while the differences were not statistically significant. As for 
word recognition, the performance was found to be worse than methods using HMM. The 
authors suggests that this is due to the inability of the model to utilize temporal 
sequences, and also the effect of using MFCCs with the Euclidean distance might hamper 
the process. However, the advantage of MINERVA2 in comparison to HMMs is that it 
retains the fine phonetic details instead of averaging them out to represent single states 
(Moore & Maier, 2007). 
 
Interestingly enough, most speech recognition attempts with computational models of 
memory are working directly with features extracted from the acoustic signal. In practice 
this means that there is no pre-classification for the input, nor is there a way to capture 
temporal aspects of the signal unless the model contains built-in properties for temporal 
activation (which is not very well represented in MINERVA2). The models are working 
directly on the coefficients taken from each time window, which denies the use of context 
to help in recognition. By adding an intermediate processing level to convert acoustic 
features into sequences of segment classifications, could help to capture the temporal 
aspects of the speech, as well as the acoustical information for each meaningful unit, in 
the end improving the performance of the memory and recognition functions. One way to 
achieve this would be to use segmentation and segmental clustering as a front-end 
processing method. 
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3  Constructing the bottom-up process 
 
 
 
 
This thesis was written while developing a new architecture for speech recognition 
systems that tries to simulate the language acquisition processes of a child. Most of the 
work, methods, and results were conducted while working within an international 
research project called “Acquisition of Recognition and Communication Skills” 
(ACORNS4), funded by the European Commission. One of the main targets for the 
project is (at the time of writing) the development of methodology and tools for an 
interactive memory prediction framework where bottom-up processing is coupled with 
memory functions that can provide top-down feedback for speech recognition. Not only 
the recognition of speech as a whole, but also segmentation and classification processes 
themselves, have a large potential for improving their results when utilizing memory 
structures that may provide the algorithm with higher level information concerning the 
processed input. This information can be grammatical or lexical, it may provide clues 
extracted from the prosody of the sentence, or it may use multimodal information for 
associative pairing. In a finalized form, the system may even be able to make predictions 
regarding the incoming input. 
 
An important point in the memory-prediction framework is that the system must learn 
something before it can be used for recognition5. In humans, without learning and daily 
life experiencing there is no knowledge, language, nor memories. There are only 
genetically hard-coded mechanisms for perception (e.g., ears), for processing the sensory 
input in our brains (the neural auditory system associated with all other functions in our 
brains), and a possibility to respond to our environment with motoric actions (including 
speech production). In a similar manner, the computational speech recognition system 
under development does not “know” anything beforehand. Therefore, it will need 
mechanisms for converting the signal inputs into representational forms that can be 
processed statistically to form “memories” and ultimately enable learning. In the rest of 
this thesis, potential mechanisms for providing such bottom-up information for higher 
levels are introduced, setting the foundation for future more extensive memory-prediction 
frameworks that are currently beyond the scope of this work and awaiting further 
research.  
 

                                                
4 http://www.acorns-project.org 
5 Recognition, re+cognition, refers to the notion that some familiar semantically comprehensible item 
recurs. In other words, the external world provides sensory input that has similar properties (patterns?) to 
something already known by the observer.  
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In this chapter a novel algorithm is introduced for blind speech segmentation that does 
not exploit any prior nor external knowledge of the speech signal. Segmentation will be 
coupled with a feature extraction method in order to feed phone-level data to higher 
processing levels. To build some effective connection between the bottom-up and top-
down processes, different approaches to clustering of segmental data will be also 
reviewed. We will also shortly dwell on the evaluation methodology of these processes. 
 
All practical implementations of the algorithms and the experiments reported in this work 
were carried out in the MATLAB-programming environment6.  
 
 

3.1 Bottom-up processing of speech signals 
 
The front-end of bottom-up processing is split into two parallel processes: a blind 
segmentation of speech into phone-sized units, and a feature extraction (FE) process to 
provide descriptive data for each segment. Both methods are based on the Discrete 
Fourier transform (DFT) representations of the signal. The reason for this division lies 
with the slightly differing needs of these two processes: the segmentation algorithm needs 
to find robust and salient cues that help to estimate possible phone boundaries, while 
feature extraction has to build congruent and normalized parametric representations of 
the segments that describe each phone in some best possible manner. Making these two 
processes independent of each other also allows greater flexibility from the development 
perspective, and can be reasoned from the cognitive point of view as well, e.g., the 
spreading of stimulus based activation into several different neural networks for 
processing. 
 
The classification process of the segmental data will also be considered through the use 
of data clustering. Clustering is an important step occurring between bottom-up 
processing of raw data and the statistics that are built upon it. Two different methods with 
several variations were tested for their functionality, while the most efficient manner to 
perform clustering still remains an open question. Furthermore, the statistical 
methodologies that will be built upon clustering will impose their own requirements to 
the clustering process. To facilitate further work with this classification and pattern 
discovery problem, two different approaches to segmental data clustering will be 
presented here as potential candidates. 
 

3.1.1 Bottom-up algorithm for segmentation 
 
The segmentation method described here is a purely bottom-up blind speech 
segmentation algorithm, which does not utilize any external information besides 
parameter estimation during its development. It produces a phone-level segmentation of 
the speech signal with a probability classification for each segment boundary. The 

                                                
6 MATLAB © The MathWorks, Inc., http://www.mathworks.com 
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general principle of the algorithm is to track the spectral changes in the signal by 
comparing the cross-correlation of the FFT coefficients as a function of time, and to place 
segment boundaries at the locations where spectral changes exceed a minimum threshold 
level.  
 
Both the segmentation and feature extraction algorithms take one speech signal 
waveform at a time as an input. The signal is pre-emphasized with a typical 2nd order 
pre-emphasis FIR-filter of the form  
 
  

! 

y[n] = b
0
x[n]+ b

1
x[n "1]+ b

2
x[n " 2]    (3.1) 

 
in order to emphasize formant frequencies compared to very low and very high frequency 
information. Values for constants b0 = 0.3426, b1 = 0.4945 and b2 = -0.64 are used (see 
Appendix A for phase and frequency response). This was found to improve segmentation 
results slightly as compared to a regular 1st order FIR, which may be due to the fact that 
the 2nd order filter suppresses the effects of high-frequency spectral changes that may 
occur during, e.g., fricatives, and therefore cause insertions due to phone splitting.  
 
After pre-emphasis, the absolute value DFT is calculated from the signal using a short 6 
ms Hamming window with a 2 ms step size using the Fast Fourier transform (FFT). 
Motivation for the relatively short window stems from the properties of pitch-periods: a 
best possible spectral representation of the short-term signal is desired, so by selecting 
window sizes approximately one pitch-period in length and centering the energy of the 
glottal pulse in the central part of the window results in a good spectral contrast 
(coefficients have the largest possible deviation from zero). By using very short window 
steps (~2 ms), the window will often be in synchrony with each pitch period, and the 
complex process of tracking pitch periods to gain pitch-synchronous windowing is 
avoided  (so called pitch-synchronous analysis).  
 
The zero-crossing rate (ZCR) and a logarithm of the short-term energy (STE) of the 
signal are then calculated from each window and stored for later use. Each frame is 
further compressed in the frequency-domain with an asymmetric tanh[x]-mapping (see 
Appendix A) to emphasize the formant information in the spectrum. Also, the mean 
power of the each frame is subtracted. All spectral frames are stored into a matrix M. 
After the entire signal has been processed, a cross-correlation matrix C is calculated from 
the M (see fig. 3.1). The matrix C now represents the inner coherence (correlation) of the 
speech signal as a function of time. When visualized, bright areas represent parts of the 
speech that are highly coherent (high correlation with neighboring frames), while darker 
areas represent changes in the spectrum. The diagonal (seen as a thin white line in the 
figure) is linear with respect to time, running from the upper left corner (the beginning of 
the signal) to the bottom right corner (the end of the signal). 
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Figure 3.1: Cross-correlation matrix C calculated from spectral vectors. 

 
Next, a special 2-dimensional filter is used to obtain information from matrix C:  a square 
of size d1 x d1 and two triangles with sides of length d2 are aligned next to the diagonal of 
the matrix (fig. 3.2).  
 

 
Figure 3.2: A zoomed-in visualization of part of a correlation matrix. The 2D-filter moves along 
the diagonal. 
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As this integrator slides along the diagonal, i.e., the time-axis, from corner to corner, the 
sum of the elements under the triangles ts[m] is subtracted from the sum under square 
bs[m] at each moment in time (eq. 3.2). 
   
  

! 

s[m] = t
s
[m]" b

s
[m]        (3.2) 

 
This produces a representation s[m] of the speech signal where large negative peaks 
reflect large spectral changes and point to possible segment boundary locations (fig 3.3). 
The resolving capability of s[m] can be adjusted by changing the parameters d1 and d2, 
which is basically a trade-off between the temporal accuracy and boundary detection 
reliability.  
 

 
Figure 3.3: Signal s[m] produced by sliding integrators. 

 
The signal s[m] itself is rather noisy, so another special filter, a so called Minmax-filter, is 
used to refine the representation. As the filter passes through the signal, at each point it 
takes nmm subsequent samples from s[m] and determines the maximum vmax and minimum 
vmin values of this vector. The filter produces the difference dmax=vmax-vmin as an output to 
the point where the minimum value was located (note that deep valleys in s[m] were 
hypothesized segment boundaries). The following pseudo-code illustrates the 
functionality of the filter (see also Appendix A for a MATLAB realization of this filter): 
 

! 

dmax =max(s[m :m + nmm ]) "min(s[m :m + nmm ])

I = find(min(s[m :m + nmm ]))

s'[m + I] = dmax

          (3.3) 

 
As a result of filtering, signal s’[m] is obtained (fig 3.4), in which the estimated segment 
boundary locations are now represented as easily perceivable positive peaks. Peak heights 
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are normalized to a scalar value ranging from 0 to 1 to provide a probability classification 
for each boundary: the higher the peak, the larger the local change in the spectral 
properties and the more probable it is that a phone transition has occurred.  

 
Figure 3.4: s’[m] created by Minmax-filtering from s[m]. 

 
Especially in the case of long spectral transitions between two separate phones, there may 
be several peaks very close to each other. To further refine the segmentation accuracy 
and to avoid over-segmentation, another special non-linear method is applied to boundary 
detection: in the time domain a distance between each peak crossing the threshold pmin is 
calculated. If two or more peaks are closer than td to each other, the probability ratings of 
the peaks are compared. Only the most probable (the highest) peak is retained, while its 
location is slightly adjusted towards the removed peak(s). The new location is between 
the old peaks and directly proportional to the ratio of probability ratings of these peaks in 
question. As a result, a refined sr[m] is obtained. 
 
In theory, a list of found segment boundaries bf can then be created by choosing all of the 
peaks that cross the peak probability classification threshold pmin. In practice it is not 
usually necessary to segment the silent portions of the signal into several segments. This 
can be avoided by comparing the energy of the original signal during each peak to a 
minimum energy threshold emin. Also, the ZCR can be used in addition to the energy for 
silence (and potentially fricative) detection. After all peaks passing the thresholds are 
chosen, locations of the segments in the list are then converted back to the time domain to 
gain boundary locations in seconds.  
 
The structure of the entire segmentation process is depicted in fig 3.5 as a block diagram. 
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Figure 3.5: Structure of the segmentation algorithm. 

 

3.1.2 Algorithm for feature extraction 
 
The purpose of the feature extraction algorithm is to provide a coherent representation of 
the segments in a way which different phones have non-equivalent qualities and similar 
phones have equivalent qualities. In practice, there are numerous variations, or 
allophones, for every phoneme depending on the context and speaker, and therefore 
classification to strict phonemic categories can not be accomplished with this type of 
blind methodology. Consequently, the feature extraction algorithm creates 
representations of the segments with self-contained heuristics for spectral descriptions 
without any true knowledge of the underlying signal. Feature extraction and subsequent 
data classification will rely on the FFT representation of the segments to classify the 
speech data.   
 
The feature extraction method uses the same 2nd order pre-emphasis and 6 ms Hamming 
windowed FFT as the segmentation algorithm to produce n spectral coefficients for 
frames each 2 ms in length. In addition to the short-term energy, the variance of the 
spectral coefficients is also stored for each frame. The tilt of the spectrum is removed 
along with the average power of the signal and both are stored for later use. Finally, each 
frame vector containing the spectral coefficients is normalized to a unit vector and stored 
into a matrix F. 
 
Now a segment boundary listing bf of length Nb, provided by the bottom-up segmentation 
algorithm introduced above, is taken as the input. Using the boundary location 
information, matrix F is then divided up into Nb-1 segments. Furthermore, each segment 
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is split into onset and offset parts, the former being the first d = 40 % of the segment, 
while latter covering the last 60 % of the duration. Small (default m = 10 %) margins m1 
and m2 are assigned to the edges of the segment to attenuate the effect of small 
displacements in the segment boundaries and to avoid using very ambiguous data from 
the middle of phone transitions between two phones (fig. 3.6).  
 

First 40 % Last 60 % 
m1 Onset Offset m2 

10 % 30 % 50 % 10 % 
 

Fig. 3.6: Segment division into onset and offset parts with corresponding default values. 
 
The 40/60-division is motivated by the observation that in most voiced phones 
articulation of the phone reaches its locus, or the maximum of articulatory “purity”, 
during the first 40 % of its duration. For example, in vowels this means temporally 
relatively stable formants. After reaching the locus of the phone the articulators start to 
prepare for the following phone causing more context-dependent effects noticable in the 
spectrum, or, so called co-articulation effects (see fig. 3.7). In order to find normative but 
context-independent descriptions for segments, co-articulation effects should be avoided. 
However, for speech recognition purposes one might also require the knowledge of 
which context each phone appears in. For that purpose a spectral representation of the 
segment from the latter part is extracted. The effects of this preliminary estimate for 
segment division will be investigated in experiments described in the next chapter.  
 

 
Figure 3.7: Adjacent phones /a/ and /i/ from a Finnish speech sample “vaippa”. The green line 
indicates the location of 40 % duration of /a/, while the red borders indicate perceptual transitions 
from /v/ to /a/ and from /a/ to /i/. 

 
The next step is to create a spectral vector that represents the spectral structure of a 
segment. To gain a good representation of both parts of the segment, only spectral vectors 
containing a good spectral contrast are chosen from F. In principle, these good 
contrasting vectors are a result of a pitch-synchronous windowing. The algorithm finds 
these vectors by inspecting the variance of the spectral coefficients during each frame 
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(see fig 3.8). A maximum contrasting frame is indicated by a maximal deviation of the 
spectral coefficients from the zero level, which in this case is the frame with the highest 
local variance. Again in practice, it is possible to estimate the variance from either the 
transformed spectral coefficients or from the windowed signal before the FFT. The 
maximums are located at identical locations in both cases.  

 
Figure 3.8: Variance of the spectral coefficients calculated for each 6 ms window with 2 ms steps. 
Pitch-synchronous frames can be seen as peaks that are spaced evenly approximately 8 ms away 
from each other. 

 
The algorithm selects ns (default ns = 5) best contrasting spectral vectors for both the 
onset and offset parts of the segment, and averages them into two corresponding spectral 
vectors svon,i and svoff,i. Signal energies related to these vectors are averaged into eon,i and 
eoff,i, average variance of the spectrum over the whole segment is averaged into vari. In 
addition, voicing (or lack of it) of the segment is estimated by a standard cepstral analysis 
and presented as a binary vi = 0 / 1 using a pre-defined threshold (according to 
Ladefoged, 1982). Finally, the duration of the segment is included. Together they form an 
entity, which we shall call a feature vector fvi (fig. 3.9) that contains all the necessary7 
information about the segment. 
 
svon,i svoff,i eon,i eoff,i vari vi 

 
Figure 3.9: Feature vector fvi created from the i:th segment of the input signal. 

 
Finally, each feature vector created from the speech signal is stored into a matrix S for 
later use. Figure 3.10 shows the overall structure of the feature extraction algorithm. 
 

                                                
7 Necessary refers here to those features that can or will be utilized in the data classification problem in the 
clustering algorithm or in the analysis of the functionality of the algorithm. It does not include the 
assumption that these are the right and only features needed to provide the best possible segmental 
description for classification.  
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Figure 3.10: Structure of the feature extraction algorithm. 

 

3.1.3 Methodological approaches to clustering 
 
An important aspect in the clustering of segmental data in the framework of learning and 
interacting systems is the need for incremental processing. This sets constraints on the 
possible choices for a clustering algorithm. Several varying approaches were tested in 
order to gain a better understanding of the segmental data and the behavior and effect of 
the features used. Two relatively simple approaches were incorporated to the system 
represented in this study, and they will be introduced in this section. Their performance 
will be analyzed and discussed in the next chapter. The clustering algorithms represented 
here are considered as speaker independent without any speaker normalization.  
 
The general idea in both methods relies on the incremental construction of the cluster 
space: the cluster space starts out as empty. Once the first utterance is segmented and 
features extracted, the feature vector fv1 (see the last section for a description) is used to 
form a first cluster 

! 

" 1. Then feature vector fv2, the description of the second segment in 
the utterance, is selected and the distance cd2,1 between the spectral coefficients of the 
vector and the cluster 

! 

" 1 is calculated with a selected distance metric. If the distance is 
smaller than a merging threshold (in the case of this study, cross-correlation is larger than 
the threshold tm), and all additional criteria required for the similarity are met, then fv2 is 
merged into 

! 

" 1. In the merging process a new centroid will be calculated for the cluster 
by averaging the new feature vector into the existing cluster centroid with a weight 1/N, 
where N is the total number of vectors merged into that cluster including the currently 
incoming one. If the distance cd is too large, a new cluster centroid 

! 

" 2 will be created. 
This process will be repeated for each created segment on a one by one basis, and 
utterance by utterance as well. Appendix A contains a pseudo-code description for the 
algorithm. 
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It is important to note that once the feature vectors are merged into clusters, their detailed 
information is discarded, i.e., there are no “clusters” for several single data frames in a 
literal sense, but only the centroids of the clusters are stored. This is a practical solution 
that addresses computational limitations since the amount of data would otherwise grow 
linearly as the system processed speech; practical systems should theoretically be able to 
classify unlimited amounts of speech without running out of memory. See appendix A for 
an enlightening demonstrative calculation.  
 
The simplest principle for separating different phones from each other would be to 
compare the structure of their spectrum. Therefore, the basic distance metric used in 
clustering in this study is the cross-correlation between spectral coefficients, which can 
be easily obtained for the normalized spectral vectors by using a scalar product  
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%        (3.4) 

 
where L is the FFT window length, thereby L/2 being the number of spectral coefficients  
(recall the symmetrical properties of the spectrum). The main difference between the two 
clustering algorithms used is the nature of the cluster space: in the first method, which 
shall be called a Single-space Method, contains only one large cluster space where each 
cluster centroid is located. All feature data will be incrementally added to the existing 
clusters or used to form new ones if the merging criteria are not met. Despite the name of 
the algorithm, this single space can also be divided up into several sub-spaces by adding 
additional merging criteria. By using, e.g., a binary decision for segment voicing, it is 
possible to isolate voiced and unvoiced segments from each other. The distance from the 
vectors to the clusters is calculated by using all of the n = L/2 spectral coefficients of the 
segment.  
 
The second method, which shall be called a Multi-level Method, differs from the former 
in that it contains several hierarchical levels (fig 3.11). Each level uses a different portion 
of the spectral data as a merging criterion: one level compares the correlation of the 
spectrum in the 0-1000 Hz band, indicating mainly a location for the first formant in 
voiced segments. Another level uses the 1000-2000 Hz band as a comparison criterion, 
and the last one compares the 2000-3000 Hz band. The hierarchical order of these three 
bands is not fixed, and the performance of each combination will be evaluated in the 
experiments. The motivation behind band separation is the well known observation that 
the first two formants are usually sufficient to distinguish different vowels from each 
other (Peterson & Barney, 1952). The first formant usually lies in the frequencies below 
1000 Hz, while the second formant moves mainly between 1-2 kHz8. Therefore, 
classifying the segments by the positions of these formants can be considered reasonable.  
 

                                                
8 Parikh & Loizou (2005) used a similar division to low- and middle-frequencies in a noise analysis of 
formant recognition, differing in that they used 1-2.7 kHz for the second band.  
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Figure 3.11: Block-diagram for the Multi-level Method. 

 
In the hierarchy, there is yet again a possibility for making a division between voiced and 
unvoiced segment-spaces. Also, the onset part vectors and the offset part vectors of the 
segment can be segmented to different spaces, the first one containing statistics about the 
“stable” nature of the segments, and the latter having information concerning the context 
due to the co-articulation effects. The advantage of the hierarchical structure can also be 
seen by the flexibility of classification decisions that can be made at different levels, 
enabling easy experimentation with different decision criteria. It is also possible to 
explore the clustering results at different levels, and also to have several segmental 
“labels” for the same data at the same time with different classification precisions. The 
hierarchical system also reduces problems with computational complexity as the 
classification process can be partitioned into smaller sub-problems, reducing total 
memory and CPU-time requirements. Evident disadvantages of the hierarchy are its 
susceptibility to gross classification errors (e.g., a wrong branch selection at the first 
level) and the difficulty of uniform management of the data across the several subspaces. 
The fundamental clustering process of both algorithms is shown below: 
 
Single-space Method 
 

1. Take the spectral coefficients svon,i for a segment onset OR svoff,i 
for a segment offset from the corresponding feature vector fvi. 

2. Calculate a distance cdi,j to all clusters 

! 

" j, j = [0,...,Nj] in 
the same space 

! 

". 
3. If the smallest distance cdi,m

! 

" tm, merge the vector to the cluster 

! 

" m (note that larger correlation means more similarity). If cdi,m< 
tm, create a new cluster centroid with the properties of fvi.  

4. Repeat for all Ni segments in the utterance  
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Multi-level Method  
 

1. Take the spectral coefficients svon,i for a segment onset OR svoff,i 
for a segment offset from the corresponding feature vector fvi. 

2. Calculate a distance cdi,j to all clusters 

! 

" j, j = [0,...,M] in the 
same space 

! 

"  by using a frequency range B1 = [f11 f12] of the 
coefficients. 

3. If the smallest distance cdi,m

! 

" tm, merge the vector to the cluster 

! 

" m. If cdi,m< tm, create a new cluster centroid 

! 

" M+1 with the 
properties of the fvi to this space 

! 

" . Also, create a new subspace 

! 

" M+1 for 

! 

" M+1 (level 2) and also create a copy of cluster 

! 

" M+1,1 

there. Repeat this for level 3 to create 

! 

" M+1,1,1 in 

! 

" M+1,1. 
4. If the vector was merged at level 1 to the cluster 

! 

" m, replicate 
the vector to the subspace 

! 

" m at level 2 and calculate a distance 
cdi,n to all clusters 

! 

" m,k , k = [0,…,N] in the same space by using 
a frequency range B2 = [f21 f22] of the coefficients.  

5. If the smallest distance cdi,n

! 

" tn, merge the vector to the cluster 

! 

" m,n. If cdi,n< tn, create a new cluster centroid 

! 

" m,N+1 with the 
properties of fvi to this level and create 

! 

" m,N+1,1 to the third 
level sub-space 

! 

" m,N+1.  
6. If the vector was merged at level 2 to cluster 

! 

" m,n go to the 
subspace 

! 

" m,n at level 3 and calculate a distance cdi,o to all 
clusters 

! 

" m,n,l , l = [0,…,O] in the same space by using a 
frequency range B3 = [f31 f32]. 

7. If the smallest distance cdi,o

! 

" to, merge the vector the cluster 

! 

" m,n,o. If cdi,o< to, create a new cluster centroid 

! 

" m,n,O+1 with the 
properties of the fvi to this level. 

8. Repeat for all Ni segments in the utterance.  
 
  
Especially in the Single-space Method there is a necessity for auxiliary functions that are 
used to “overhaul” the cluster space. The incrementality and non-predefined number of 
clusters leads to a severe expansion in their number with higher correlation radius 
thresholds. New data and noise always produce numerous new clusters consisting of only 
one or two segments. Also, the cluster centroids move in the space due to the averaging 
process with a speed proportional to the correlation radius of the cluster and to 1/N, 
where N is the number of segments in the cluster. When the cluster grows larger, its 
location starts to converge. However, movement during the first few segments may cause 
it to move inside the radius of another cluster. Therefore, so-called space cleaning 
operations are needed: clusters with size less than nmerg are merged to the closest cluster. 
Also, larger clusters that are too close to each other (cij > tmerg) will be merged together. 
The cleaning operation is repeated within specified intervals. 
 
Since the movement of the cluster centroids and the merging and cleaning operations are 
not self-explanatory processes from the perspective of the classification problem, their 
effects are explored in experiments. Also, so-called integrative merging will be tested. In 
integrative merging, the first Nmax segments arriving to the cluster are averaged normally 
with a 1/N weight. After the limit Nmax is reached, new segments will be averaged into the 
cluster with a constant weight instead of 1/N. This allows small but continuous centroid 
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movement over indefinite amounts of speech material, which may have effects on how 
the cluster spaces become populated. It is also a common technique found in the literature 
to adaptively adjust the radius of a cluster as the number of segments in the cluster 
increases (e.g., Kim et al., 2005). The effects of increasing the selectivity as the cluster 
becomes larger were also briefly experimented with. 
 
 

3.2 Evaluation methods 
 
For development and testing a speech processing system, reasonable and descriptive 
metrics are needed in order to evaluate the quality of the work. While there may be one or 
more final goals that the system should achieve in a best possible manner, intermediate 
evaluation is also a necessary process in order to compare different approaches and to 
justify selected methods and parameters.  
 

3.2.1 Evaluation of segmentation quality 
 
In order to evaluate the quality of segmentation, it is necessary to have a reliable 
reference for phonetic segment boundaries. In these experiments, one method for the 
evaluation of the segmentation follows a literature convention of manual annotation 
comparison, in which segmentation boundary locations are compared against the manual 
annotated boundaries. While manual segmentation is prone to variability of individual 
judgments, it can be thought of as a reliable baseline for quality if it is sophisticatedly 
produced (Wesenick & Knipp, 1996). 
 
A basic evaluation method promoted in the literature is a simple boundary distance 
comparison. Boundaries from the annotation are compared to the boundaries produced by 
the algorithm. Insertions are produced when there are boundaries created by the 
algorithm that do not match any annotated boundary, or if there are several boundaries 
produced in the vicinity of only one reference boundary. Deletions are produced when 
there is a boundary marked in the reference, but the algorithm produces no corresponding 
boundary. Also, found boundaries are considered as hits, and sometimes deletions are 
referred to as misses.  
 
As simple as it may first seem, problems emerge when it is considered how actual hits are 
counted. Some papers (e.g., Aversano et al., 2001; Estevan et al., 2007) use methods 
defined in Petek et al. (1996, see below), while some others (Sarkar & Sreenivas, 2005) 
use basically the same principles without referring to any existing methodology in 
literature or without describing their methods of evaluation in detail. The definition of the 
method in the Petek et al.’s paper is the following: a search region r1 of size 40 ms is 
taken and placed symmetrically around a reference boundary (see fig. 3.11). Then it is 
checked if there are any boundaries inside that time window that are produced by the 
segmentation algorithm. “If no peaks [of the algorithm] can be found in a search region, 
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a deletion is detected”, (Petek et al., 1996). If there is more than one peak in the search 
region, these additional peaks are counted as insertions.  
 
However, the definition above or in later papers adapting this methodology, do not 
describe what happens when the next reference boundary is examined and its search 
region r2 overlaps with the previous r1: are boundaries being searched again from the 
entire region r2, without concern for which peaks were defined as insertions in the last 
region? If it is possible to re-use algorithm boundaries from the previous search region, 
less deletions are obtained as many of the (reference) boundaries are located closer than 
40 ms apart due to the nature of speech. Also, when a boundary in the last region r1 is 
defined as an insertion, it may actually offer quite a good match for the next reference 
boundary in the middle of r2. If it is permitted to use a little bit of common sense, it may 
concluded that the boundaries considered as insertions in the last region can still be used 
to create a hit in the subsequent frame.  
 

 
Figure 3.12: Overlapping search regions marked around reference boundaries. 

 
However, there are still possibilities for different interpretations: according to the 
definition above, one reference boundary is taken at a time and a ±20 ms search region is 
placed around it. Then it is checked if there are any algorithm boundaries located inside 
that region. If there are any, it will count as a hit. Then a next region is created and 
searched for boundaries, and if there are any of them inside it, a new hit is obtained 
again, allowing the use of a same boundary produced by the algorithm to match two 
different peaks in two subsequent search regions. As in the case shown in fig 3.12, no 
deletions would be obtained from either of the search regions r1 or r2. The second (tacit) 
interpretation would be the one where the same algorithm boundary cannot be used in 
several regions to match reference boundaries. Both of these interpretations lead to 
different results in an automatic evaluation of the hit rate (which is naturally inversely 
proportional to the deletion rate).  
 
Other problems also exist: allowing each boundary to be used only once leads to another 
interesting question - on what basis are the boundaries paired with the reference 
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boundaries (i.e., banned from further use)? In figure 3.12 we have two search regions 
marked and one boundary is located inside both regions. If bf,1 is paired with bref,1 and bf,2 
with bref,2, no deletions or insertions occur without violating any of the above 
interpretations of the evaluation methods. On the other hand, if the evaluation algorithm 
pairs the closest boundary bf,2 to the bref,1 , bref,2 causes a miss since the only boundary 
inside r2 has already been used. 
 
Before making any further conclusions about what can be actually considered as the 
“best” method of evaluation, a few more concepts need to be introduced:  
  
A gross error is encountered when the segmentation algorithm produces a segment that 
begins and ends before the corresponding reference segment begins (see fig. 3.13). A fine 
error occurs when there is only a small deviation between the reference and the algorithm 
boundary, while the alignment of the boundaries still follows the structure of the 
reference in general (Kvale, 1993). Balducci & Cerrato (1999) use the terms position 
error and recognition error for the same phenomena, but these expressions can be 
misleading since the segmentation algorithm does not always deal directly with 
recognition per se. 

 
Figure 3.13: Gross and fine errors in segmentation (adapted from Kvale, 1993 and Balducci & 
Cerrato, 1999). 

 
Having fine errors (or position errors) does not necessarily mean that the algorithm has 
found incorrect locations for boundaries. Even gross errors (according to the reference 
boundaries) can sometimes be considered as correct segmentation, if the original speech 
signal is examined instead of the reference annotation. This results from the fact that 
there is no such thing as a universally correct speech segmentation, neither is there only 
one correct method to perform phonetic transcription. Each boundary in the manual 
annotation is produced by a human being, which results in an inevitable conditional 
variability in the segmentation and labeling.  
 
A study concentrating on quality of manual transcription carried out by Wesenick and 
Kipp (1996) illustrates this problem. They estimated the congruence of both manual 
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labeling and segmentation, also comparing them to automatic systems. For labeling, they 
found that approximately 95 % of manual consonant labels were similar between manual 
transcriptions performed by different phoneticians. For segmentation, as one might 
expect, accuracy was highly dependant on the type of transitions that take place between 
phones: transitions from unvoiced fricatives to unvoiced plosives were most consistently 
segmented, resulting in an average deviation of 5 ms between different segmenters. 
However, in nasal-to-nasal transitions, boundaries deviated on average as much as 16 ms. 
Wesenick and Kipp also made an interesting observation that the boundaries that are 
difficult for humans to find are also less correctly determined by automatic systems. 
Similar results regarding the deviation of manual transcription were already observed 
earlier by Kvale (1993), whose work on evaluation of segmentation is often cited when 
the above methodology or its analogies are used for segmentation evaluation. 
 
On the basis of these findings it can be concluded that using absolute distance metrics 
does not provide undistorted information about the quality of the algorithm under 
inspection. If one wishes to evaluate segmentation algorithms using a binary decision 
(hit/miss) logic, one needs to take into account the noise that originates from reference 
segmentations. The use of ±20 ms as the maximum allowed deviation from the reference 
boundaries has been established in the field, possibly because it has been found as a 
convenient compromise between the variability of annotation and the willingness to keep 
hit conditions reasonably tight. Barry (1991) was possibly the first one who used this ±20 
ms value in the distance evaluation while carrying out a labeling study where several 
automated labeling systems were compared usinng several languages. It is also a paper 
that several papers cite when segmentation evaluation is discussed. Barry, however, did 
not specify any justification for this selection.  
 
If we assume that manual annotations deviate with a Gaussian distribution around the 
“real” segment boundaries, even 40 ms (±20 ms) search regions are not always sufficient 
to guarantee that the algorithm under evaluation has actually missed the phone boundary 
if it does not produce a peak in the search region, as can be seen in the example in fig. 
3.14. 

 
Figure 3.14: A miss of a boundary in the evaluation due to deviation in manual segmentation. 
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As the figure demonstrates, if the reference boundary is within the limits of typical 
deviation of manual segmentation (true9 location shown in dashed lines), and the 
algorithm has produced a boundary that lies only 7 ms apart from the same location, the 
situation is still interpreted as a miss. However, while many authors have used larger 
search regions leading to attenuated effect of variability in the reference (e.g., Demuynck 
& Laureys, 2002), the use of larger hit-zones is easily questioned by, e.g., considering the 
average length of shorter plosives and the phone rate of normal speech. For example, in 
TIMIT there are on average 12 phones per second in the speech signals (including the 
silence before and after the utterances), meaning that there is a segment boundary every 
83.3 ms. If each boundary has a 40 ms hit window and it is assumed that they are equally 
spaced, almost half (48 %) of the signal is covered by search regions. By increasing the 
window size to 35 ms (84 % coverage), 50 ms (121 % coverage) or even to 70 ms (168 % 
coverage), it actually becomes a difficult problem to systematically insert boundaries 
outside the search regions. This is the reason why the use of large hit zones does not 
serve the quality of evaluation very well.  
 
While automated algorithms for segmentation evaluation are extremely helpful in 
development and testing of new methods, the best understanding of the functionality of 
the segmentation algorithm can be obtained by manual inspection. Looking and listening 
to the results at the word and phone level offers deeper insight to the characteristics of the 
system, allowing the knowledge of the observer regarding the language and context to 
interact with the data. The additive noise produced by deviations in manual reference 
annotation and the lack of phonetic comprehension in common automated evaluation 
methods renders the quantized performance evaluation factors into guidelines that are 
superficial in nature rather than accurate descriptions of the quality. A search for better 
and more descriptive automated methods that could form a standard for evaluation would 
probably be worthwhile, but it is not within the scope of this thesis. 
 

3.2.2 Segmentation evaluation methods used in this study 
 
A well-established DARPA-TIMIT Acoustic-Phonetic Continuous Speech corpus10 
(1993) was used for testing the segmentation algorithm developed within this thesis. The 
corpus was split up into training and testing data. The training part consists of a total of 
4620 signals (spoken by 3260 male and 1360 female speakers) while the testing part has 
a total of 1680 signals (1120 male, 560 female). Each of the speakers uttered 10 
sentences and each sentence was manually annotated using an acoustic-phonetic 
transcription that included 61 phonetic symbols and segment boundaries. Every sentence 

                                                
9 A true location refers here to the mean annotation of several phoneticians. 
10 “The Texas Instruments/Massachusetts Institute of Technology (TIMIT) corpus of read speech has been 
designed to provide speech data for the acquisition of acoustic-phonetic knowledge and for the 
development and evaluation of automatic speech recognition systems. TIMIT contains speech from 630 
speakers representing 8 major dialect divisions of American English, each speaking 10 phonetically-rich 
sentences. The TIMIT corpus includes time-aligned orthographic, phonetic, and word transcriptions, as 
well as speech waveform data for each spoken sentence” (Garofolo et al., 1993) 
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was spoken in one of the eight major dialects of the United States. The database was 
recorded using a 16 kHz sampling rate.  
 
In addition, to obtain a better understanding of the language dependency of the algorithm, 
segmentation accuracy was tested with a small in-house11 corpus of spoken Finnish. It 
consists of two male speakers, each speaking 80 and 117 utterances respectively. The 
database was annotated using the Worldbet machine-readable phonetic alphabet and 
recorded using a 22050 Hz sampling rate, which was downsampled to 14.7 kHz for the 
experiments.  
 
Two different methods were used for segmentation evaluation on the basis of the 
discussion in the last section. Method I represents the version where the algorithm moves 
in the time-domain from the beginning of the speech signal to the end, finding the nearest 
algorithm produced boundary for each reference boundary, and if they are closer than 20 
ms to each other, both boundaries are banned from further use. Method II adapts the idea 
of placing similar ±20 ms search regions around each reference boundary 
(simultaneously), and calculating the deletion rate, and thereby hit rate, by checking 
which of the search regions do not contain any algorithm boundaries. In addition to 
evaluate the quality of the algorithm presented in this thesis, the use of these two different 
methods also offers a good example to demonstrate how different results can be obtained 
by using algorithms that cannot be distinguished from each other by the definitions given 
in the literature. 
 
Method I 
 
One speech signal is evaluated at a time. The testing algorithm takes a boundary bref,j 
from a list of boundaries bref provided by the reference annotation for the corresponding 
signal, and calculates distances to each of the boundaries in bf produced by the 
segmentation algorithm. The closest boundary bf,i found is chosen, and its distance to the 
boundary bref,j is inspected. If the distance in time is less than 20 ms, the boundary is 
considered as matched and bf,i is removed from the bf to prevent multiple matches. If 
there is no matching bf,i boundary for bref,j existing within ±20 ms, it will count as a miss. 
Each subsequent boundary bref,j in the annotation is tested for a possible match. The final 
results are calculated as an arithmetical mean of all results from the evaluated signals.  
 
Method II 
 
One speech signal is evaluated at a time. The testing algorithm takes boundaries bref from 
the reference annotation, and places ±20 ms search regions around each boundary bref,j. 
Boundaries bf  produced by the segmentation algorithm are then mapped onto the same 
time axis. Each search region is searched for boundaries bf,i, and those containing any are 
counted as hits, while empty regions are counted as misses (deletions). The final results 
are calculated as an arithmetical mean of all results from the evaluated signals.  
 
                                                
11 Recorded and annotated in the Laboratory of Acoustics and Signal Processing, Helsinki University of 
Technology. 
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The quantized performance factors 
  
If boundary matches are denoted with Nhit, the total number of boundaries produced by 
the algorithm with Nf, and the number of boundaries in the reference annotation with Nref, 
the over-segmentation coefficient and the hit rate are defined as follows (Petek et al., 
1996; Aversano et al., 2001): 
 
Over-segmentation percentage: 
 

! 

" D = (
N f

Nref

#1)*100     (3.5) 

 
Correct detection percentage: 
  

! 

Pc =
Nhit

Nref

*100      (3.6) 

 
In many fields of research, there are two other central criterions for evaluation: precision 
(3.7) and recall (3.8). In the case of speech segmentation, they can be defined as follows 
(Ajmera et al., 2004):  
 

   

! 

PRC=
Nhit

N f

      (3.7) 

 

   

! 

RCL =
Nhit

Nref

      (3.8) 

 
Precision describes the likelihood or ratio of how often the algorithm hits a correct 
boundary when it detects one. Recall is exactly the same as Pc, except it is not multiplied 
to be a percentage. From these two criterion we can calculate a single scalar (0-1) that 
can be used to estimate overall segmentation quality, the F-measure (Ajmera et al., 2004): 
 

   

! 

F=
2.0*PRC *RCL

PRC + RCL
     (3.9) 

    
Use of these performance factors should be taken as a guideline in order to understand 
the effects of changes in the segmentation algorithm or in the material. They do not 
directly indicate what has been enhanced or what the problems in the process are, and 
therefore they should not be trusted alone. A direct comparison between different 
segmentation methods is possible by using these factors, but as already pointed out, the 
interpretation of hits and misses is not self-evident, nor consistent in literature.  
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3.2.3 Evaluation methods for features and clustering 
 
During the development of large speech recognition systems it is often also necessary to 
evaluate the quality of data clustering. In order to improve clustering algorithms and to 
gain insight into their functionality, there must be some type of metrics that capture the 
most important and relevant features of the cluster space and represent them in a human 
understandable form.   
 
Handl and Knowles (2007) have outlined that ultimately the quality of a clustering is 
defined in terms of external expert knowledge. However, they also note that as the 
clustering methods are usually unsupervised and external knowledge of the clustering 
process is usually unavailable, one must resort to internal criteria for evaluation. In this 
thesis the aim was to segment speech into phone-sized units and to cluster these single 
realizations of phones into corresponding clusters to form an abstract representation of 
the input speech. To gain insight about the behavior of the clustering algorithm, the 
manual annotations of corpora are used to describe each produced segment with a 
corresponding phone distribution. Ideally each segment would consist of only one 
phonemic class, but because of 1) some overlap and inaccuracy in segment boundaries 
between the reference and the algorithm, and 2) since, e.g., some diphones or triphones 
may be segmented as one single segment, denoting the phone-distribution as a portion of 
entire segment duration gives more insight into the statistical properties of the 
segmentation. Therefore, in the experiments each segment is characterized by one or 
several phone labels that are averaged with a weight into a cluster’s phonetic distribution 
as the segment becomes merged into a cluster. In this manner it is possible to inspect the 
distribution of phones in each cluster, one manner in which to evaluate cluster purity.  
 
While knowing the phonetic distribution of each single cluster helps to understand what 
is actually occurring in the clustering process, the use of single distributions alone is not a 
very convenient manner to get a good overview of the entire system. As is already 
known, it is permissible for speech recognition purposes for clusters to be selective only 
to those features of speech that they are trying to represent on an abstract level. In this 
case, these abstractions are phones, or more specifically, different realizations of them, 
and the features are feature vectors from the corresponding segments. Therefore, 
minimizing the randomness of the phone distribution in a cluster can be compared to 
increasing the selectivity (and quality) of the clustering. Randomness, or absence of 
patterns, can be described in terms of Shannon entropy. To estimate such entropy of a 
cluster, we use formula: 
 

! 

H = " p(i) * log p(i)
i=1

K

#      (3.10) 

 
where K is the number of different phone classes in the reference and p(i) is the 
distributional probability of the phone class i. In ideal clusters describing single phones, 
the distributional probability would naturally be zero for each but one phone class, 
leading to zero entropy. As the phone distribution becomes more complex, the entropy 
increases. This method of evaluating cluster space purity has been found generally 
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convenient in the literature (Duda et al. 2001). In this thesis, the term entropy will always 
refer to Shannon entropy, or, information entropy. 
 
Entropy can also be used to describe the size distribution of clusters in a cluster space. If 
we consider N as a number of clusters and p(i) as a relative size of the cluster i (all 
clusters together summing up to p = 1), and by using equation 3.10 again a scalar number 
between 0 and 1 is obtained that indicates how large the differences are in cluster sizes. 
The larger the entropy, the more uniform the cluster space is. For robust segmental 
classification, it may be appropriate to aim at several large clusters that represent 
different types of realizations of phones with good selectivity, which means that the 
phoneme distribution entropy has to be minimized and the cluster size entropy has to be 
maximized, simultaneously.   
 
To further exploit the availability of manual annotation, clustering and segmentation can 
also be evaluated together in terms of phone recognition: each produced segment is 
compared to the annotation and the most dominating phone class is chosen. Feature 
properties are extracted from the segment and are clustered into a pre-existing (so called 
trained) cluster space. The dominating phone class of the cluster, with which the segment 
merges, is then compared to the dominating phone class of the segment. If these two are 
of the same class, the phone segment is considered as recognized. Otherwise the segment 
is classified as misrecognized. The recognition percentage can be calculated over large 
sets of data to provide statistically reliable information. Some authors also compare 
several most probable phonetic labels of each cluster (see, e.g., Zahorian et al., 1997), 
although it can be questioned whether this deals more about recognition or about the 
possibility to interpret the same data with possibly totally different meanings. 
In reality, full exact phone recognition is an extremely difficult problem even for humans 
and especially in noisy conditions. Many segmentation algorithms, including the one 
used in this study, are based on the tracking of spectral changes. Without exploiting any 
context information, this generally causes some phones, e.g., plosives, to be split into a 
low energetic closure part (occlusion), and a spectrally more significant burst part 
(release). The closure sections of different phones are difficult to distinguish from each 
other, as they are only a part of a larger functional unit and consist mainly of silence. 
Also, slight variations in some nasal and vowel forms are hard to distinguish from each 
other but they rarely play a central role in the comprehension of speech. If they are 
processed as single distinct phones, it will lead to higher misrecognition rates in many 
systems due to the classification of two or more of these variations into the same abstract 
category. Therefore, many research papers using TIMIT annotation for recognition also 
use the so called reduced phone-class set (Antal, 2004; Zahorian et. al., 1997), as will 
also be used in the experiments in this study (see table 3.1).  
 
It should be noted though, that TIMIT is a corpus spoken in American English, and this 
type of classification of single phones into larger sets is predominately based on linguistic 
properties of spoken English. In some other languages, some of the phones classified into 
the same classes with this reduced set might have important meaning distinguishing 
properties between each other. Therefore this kind of reduced phone set cannot be 
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directly applied to speech material existing in other languages, even while they would be 
also annotated in a similar fashion. 
 

Table 3.1: Reduced TIMIT phone set (according Antal, 2004). 
Category Group Category Group Category Group 
Vowel ah, ax, axh Semivowel el, l Fricative f 

Vowel iy Semivowel r Fricative th 

Vowel ih, ix Semivowel w Fricative v 

Vowel eh Semivowel y Fricative dh 

Vowel ey Semivowel hh, hv Stop b 

Vowel ae Nasal m, em Stop d 

Vowel aa, ao Nasal n, en, nx Stop g 

Vowel aw Nasal ng, eng Stop p 

Vowel ay Affricate jh Stop t 

Vowel oy Affricate ch Stop k 

Vowel ow Fricative s Stop dx 

Vowel uw, ux Fricative sh, sz Closure epi, q, bcl, dcl, 

Vowel axr, er Fricative z  gcl, kcl, pcl, 

          tcl, pau, #h 
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4.  Experiments and findings 
 
 
 
 
In order to develop and test the methods involved in the bottom-up process, several 
experiments were conducted in the MATLAB-programming environment. As a necessary 
front-end operation in the architecture presented in this thesis, the segmentation algorithm 
was tested first. After the segment quality evaluation, different approaches to clustering 
will be evaluated and discussed. To understand the implications of the different feature 
extraction settings, the feature extraction evaluation was tightly coupled with the 
clustering evaluation and its evaluation methodology.   
 
 

4.1 Experiments with segmentation  
 
The segmentation algorithm was tested for clean speech with English and Finnish 
material. Noise robustness was also evaluated, leading to interesting results concerning 
the hit rates with high over-segmentation rates. These results, with a brief analysis of the 
underlying statistics, will be the main points covered in this section.  
 

4.1.1 Segmentation of English material 
 
The segmentation algorithm was mainly tested with the two different methods (Method I 
and Method II) described in the previous chapter. The aim was to get a good 
understanding of the overall performance of the algorithm that could be compared to the 
other results reported in blind segmentation literature, and to determine the general 
effects of different parameters to the segmentation results.  
 
The first results, presented in table 4.1, contain the evaluation of a basic segmentation of 
the TIMIT test section with default settings. Full test sets, Nfem = 560 for female and Nmale 
= 1120 for male speakers, were used, containing utterances from a total of 168 different 
speakers. As can be seen from the results, the algorithm is not very susceptible to gender 
specific differences. Also, the difference between the two evaluation methods can be 
easily seen: Method II, in which all of the search regions are searched for peaks 
simultaneously, results in an approximately five percent better hit rate than Method I, 
while the actual segment boundaries are located in the exactly same positions in both 
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cases. The hit-rate is denoted with Pc, over-segmentation with D’, precision with PRC, 
recall with RCL, and the F-measure with F.  
 

Table 4.1: Segmentation results for the TIMIT test-section with negligible over-segmentation. 
Data Method Pc D' PRC RCL F 
test/female I 75.59 0.87 0.75 0.76 0.76 

test/female II 80.91 0.87 0.80 0.81 0.81 

test/male I 75.10 0.43 0.75 0.75 0.75 

test/male II 80.26 0.43 0.80 0.80 0.80 

 
By accepting higher values of over-segmentation, higher hit rates can be obtained. The 
most efficient way to do this with the algorithm is to adjust the length of the Minmax-
filter and the probability threshold pmin of the peak detector. Table 3.3 shows the results 
for the train/female set with two different amounts of over-segmentation. 
 

Table 4.2: Segmentation results for the TIMIT test/female set with two different amounts of over-
segmentation. 
Data Method Pc D' PRC RCL F 
test/female I 79.07 17.92 0.67 0.79 0.73 

test/female II 84.37 17.92 0.72 0.84 0.77 

test/female I 83.79 42.10 0.59 0.84 0.69 

test/female II 88.77 42.10 0.62 0.89 0.73 

 
These results obtained are well in line with the other results reported in literature 
regarding blind segmentation algorithms. For example, Aversano et al. (2001) reported a 
hit rate of Pc = 73.58 % with an over-segmentation value D’ = 0 %, or by allowing excess 
over-segmentation, they gained Pc = 90 % and D’ = 63 %. Recently, Estevan et al. (2007) 
have reported a hit rate of Pc = 76.0 % with non-existent over-segmentation D’ = 0 % 
while at Pc = 90.3 %, D’ = 75.5 %. 
 

4.1.2 Segmentation of Finnish material 
 
As for the Finnish database, both speaker’s speech was automatically segmented 
independently to gain insight to both a) single speaker dependency, and b) the difference 
between rather swiftly spoken English material and very carefully articulated Finnish 
speech. The results are shown in table 3.4.  
 

Table 4.3: Segmentation results for the Finnish corpus, two speakers. 
Data Method Pc D' PRC RCL F 
Speaker-1 I 85.86 41.53 0.61 0.86 0.71 

Speaker-1 II 86.74 41.53 0.61 0.87 0.72 

Speaker-2 I 87.80 45.30 0.60 0.88 0.72 

Speaker-2 II 89.24 45.30 0.61 0.89 0.73 
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As can be seen, the segmentation algorithm finds more boundaries in Finnish speech than 
in TIMIT material. This is an expected result even if general phonetic differences 
between English and Finnish are ignored, since the Finnish material is spoken more 
slowly and each syllable is being stressed with greater care. It is also noteworthy, that in 
addition to gender invariability, the results for two totally different sounding speakers are 
also rather similar in terms of F-values. 
 
The large difference in over-segmentation between TIMIT and Finnish corpora is mainly 
due to differences in annotation: while TIMIT and the Finnish corpora both used an 
acoustic-phonetic labeling scheme, only TIMIT included differentiated closures and 
bursts for plosives while Finnish data considered plosives as one single unit. As the 
algorithm searches for possible segment boundaries by tracing changes in the spectrum, it 
will (in optimal situation) create three boundaries for each plosive instead of the two that 
can be found in the Finnish corpus’ annotation.  
 

 
 

Figure: 4.1: Example of segmentation results for a Finnish utterance, “Samaa kerii kelpo 
kerimö”, with a spectrogram and the segmentation output with reference marked. 

 
In figure 4.1 the utterance “Samaa kerii kelpo kerimö” is represented as a spectrogram 
paired with the output of the Minmax-filter (blue peaks), output boundaries of the 
segmentation algorithm (green lines) and the annotation reference (red lines). 
Algorithmically generated boundaries are very well matched with the spectral changes, 
and in most of the cases also with the annotation reference. However, as one can observe, 
the algorithm has produced extra boundaries for the burst of plosive [k] at t1 = 0.6 s, t2 = 
1.1 s and t3 = 1.6 s. Also, a general characteristic difference between the algorithm and 
the annotations can be found at the endings of the speech signals: here the last vowel [ö] 
is denoted to end at approximately tö = 2.18 s, while the spectrum of the breathy ending 
keeps fading away for few hundred milliseconds longer. As the algorithm reacts most 
prominently to the point where there is a discontinuity point in the spectrum (i.e., the 
signal changes from a correlating formant structure to a silence), it places two separate 
boundaries at the end of the utterance: one at the sudden change of the structure, and one 
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where the spectrum of the breath finally fades to a non-existent level. This effect is 
observed with both English and Finnish data. 
 

4.1.3 Parameter dependency 
 
There are many parameters in the segmentation algorithm presented in this thesis that can 
be adjusted to produce alternative results for speech segmentation. Many of these are 
complementary, and in some cases the correct values depend directly on other 
parameters. The most central of these settings have been gathered in table 4.4 shown 
below. The range value describes the usual or meaningful value range for each 
parameter, and the set of default values is defined such that using all of the default values 
at the same time will result in relatively stable and invariant results with all tested speech 
material.    
 

Table 4.4: Central parameters of the segmentation algorithm. 
Parameter Explanation range default 

wl FFT window length n/a 96 
ws FFT window step 8-wl 32 

d1 2D-integrator box size 2-30 10 

d2 2D-integrator triangle size 2-30 10 

alpha Tanh[x]-compression coefficient 0-1 0.45 
pmin Threshold for peak selection 0-1 0.06 

nmm Length of the Minmax-filter 5-60 40 

td Distance of the peak masking effect 0-100 0.025 

 
During all of the experiments, including the parameter tests, the FFT window length wl 
was set to a constant of 96 samples (6 ms for a 16 kHz sampling rate). As the purpose 
was to perform almost pitch-synchronous FFT-analysis, the window size is supposed to 
be approximately the same length as of one pitch period. The 6 ms window generally 
satisfies this condition for both male and female speakers. It should also be noted that 
while the FFT is usually computed with window lengths that are powers of two, no zero-
padding was used since MATLAB uses a combination of several numerically 
sophisticated techniques to perform the calculations, and the computational speed was 
found to be even faster for a 96 point window compared to a 128 point transformation. 
 
During the development of the algorithm, it turned out that the length nmm of the Minmax-
filter, threshold pmin and masking distance td of the final peak selection were the most 
dominating parameters for the hit rate Pc and over-segmentation rate D’. As for the nmm, 
the value is mainly a tradeoff between over-segmentation and hit-rate, where 
approximately nmm = 40 was used in most of the tests to produce  approximately D’ = 0 % 
over-segmentation.  
 
For the purpose of testing and demonstration, a small number (N = 100) samples from 
TIMIT test/female was evaluated with different parameters to describe the behavior of 
the algorithm as a function of parameter settings. All results were evaluated by using 
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Method I. It is important to note that all of the other parameters were kept constant during 
the evaluation of the chosen single parameter, and these other values were set to the 
default values. The effects of the length of Minmax-filter are listed in table 4.5.  
 

Table 4.5: The effect of length nmm of the Minmax-filter on segmentation results. 
Pc D' F nmm d1 d2 ws pmin td 

70.87 -4.54 0.73 50 10 10 32 0.06 0.025 

74.59 3.99 0.73 40 10 10 32 0.06 0.025 

77.41 12.68 0.73 30 10 10 32 0.06 0.025 

78.78 18.35 0.72 20 10 10 32 0.06 0.025 

78.73 18.87 0.72 10 10 10 32 0.06 0.025 

 
As can be observed, the length nmm controls the tradeoff between D’ and Pc, but the F-
value is not greatly affected by the changes. Table 4.6 shows the effects of adjusting the 
peak detection threshold pmin. 
 

Table 4.6: The effects of threshold for peak selection pmin on segmentation results. 
Pc D' F nmm d1 d2 ws pmin td 

79.61 27.36 0.70 40 10 10 32 0.02 0.025 

77.63 17.05 0.72 40 10 10 32 0.04 0.025 

74.59 3.99 0.73 40 10 10 32 0.06 0.025 

71.19 -6.81 0.74 40 10 10 32 0.08 0.025 

68.15 -14.98 0.74 40 10 10 32 0.10 0.025 

 
The peak selection threshold value pmin has a more dramatic effect on the F-value. This is 
an expected result, since it resembles the probability threshold for boundary detection: 
the more probable peaks that are chosen, the better the precision that is obtained. 
However, when using higher values of pmin the algorithm starts to miss less probable (in 
terms of the algorithm), but still existing, phone-boundaries. As the aim of segmentation 
is to find as many boundaries as possible, higher F-values at the cost of very low hit rates 
are not eligible. 
 

Table 4.7: The effect of masking distance td on segmentation results. 
Pc D’ F nmm d1 d2 ws pmin td 

78.91 25.11 0.70 40 10 10 32 0.06 0.005 

78.91 25.11 0.70 40 10 10 32 0.06 0.015 

74.59 3.99 0.73 40 10 10 32 0.06 0.025 

68.75 -8.31 0.72 40 10 10 32 0.06 0.035 

65.60 -11.83 0.70 40 10 10 32 0.06 0.045 

 
Table 4.7 indicates the results for masking distance td. A sweet spot can be found in the 
proximity of td = 25 ms. This is a reasonable result, since the rate of articulation in 
normal speech rarely exceeds four phones per 100 ms. There are still, e.g., some very 
quick plosives that can have bursts shorter than 20 ms, resulting in decreased Pc with 
longer masking distances than burst durations. On the other hand, by using values of tens 
of milliseconds, segmenting longer bursts into several small segments is avoided, since 
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the cross-correlation of the spectral coefficients may vary considerably within such 
variable transitions.  
 

Table 4.8: The effect of window step size ws on segmentation results. 
Pc D' F nmm d1 d2 ws pmin td 

81.7 43.21 0.67 40 10 10 16 0.06 0.025 

77.88 17.2 0.72 40 10 10 24 0.06 0.025 

74.59 3.99 0.73 40 10 10 32 0.06 0.025 

71.54 -3.74 0.73 40 10 10 40 0.06 0.025 

68.17 -10.96 0.72 40 10 10 48 0.06 0.025 

 
The step size of the FFT window has two important properties: it defines how often and 
how many of the windows will be applied to the waveform pitch-synchronously, and it 
also has a significant effect on computational time. A sweet spot in terms of the F-value 
can again be found at the proximity of the default value of 32 samples, that corresponds 
to 2 ms steps with the 16 kHz sampling rate used in the TIMIT tests, or 2.2 ms with the 
14700 Hz Finnish database.  
 

 
Figure 4.2: Effects of different parameter values on segmentation results tested independently of 
each other. 

 
Summarizing the parameter dependencies, most parameters control the tradeoff between 
over-segmentation and hit rate, and no parameter alone has an unquestionable effect of 
improving the results (see fig 4.2). Also, since many of the parameters are 
complementary, there are many possible combinations that achieve very similar results. 
Each value choice for a parameter limits the maximum hit rate Pc by some amount in 
order to keep the over-segmentation at reasonable levels. Therefore, in theory it could be 
possible to achieve much higher hit-rates by allowing D’ to grow to very high values (see 
table 4.2). However, then the possibility of hitting the correct search regions, just by 
randomly inserting the boundaries, starts to dominate the process as will be seen in the 
next section.  
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4.1.4 Error analysis and noise robustness 
 
The noise robustness of the algorithm was tested by adding white Gaussian noise to the 
TIMIT speech signals before evaluating the segmentation quality. The signal-to-noise 
ratio (SNR) was calculated by taking the mean power of the original signal over the 
entire signal duration, and then comparing it to the mean power of the white noise signal 
that was added to the original signal.  
 

Table 4.9: Hit rates with added white noise. 
Pc D’ F SNR 

73.69 -2.95 0.75 baseline 

76.36 11.69 0.72 38.17 

78.43 16.60 0.73 27.71 

79.77 19.97 0.73 21.68 

76.84 31.92 0.66 7.7 

73.91 35.91 0.63 1.7 

70.78 37.32 0.6 -2.9 

64.47 39.44 0.54 -∞ 

 
Figure 4.3: Hit rate and over-segmentation as a function of SNR. 

 
Interestingly, the hit rate first started to increase as non-correlating white noise was added 
to the original speech (fig. 4.3). Also, at very poor SNR-levels the hit rate Pc seemed to 
converge asymptotically to a specific value, as did the over-segmentation D’. By using 
pure noise (SNR = -∞) as the only input, almost 65 % of the reference boundaries were 
still found correctly with an approximately 40 % over-segmentation level. What happens 
to the performance factors if the entire speech waveform is replaced with noise, and the 
segmentation results are compared to the reference boundaries? By adjusting the length 
of the Minmax-filter, the number of insertions for each time unit also becomes adjusted. 
Figure 4.4 illustrates the consequences of this procedure, when the hit rates and over-
segmentation percentages are calculated with different filter length nmm-values.  
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Figure 4.4: Results of segmentation with pure white noise signal. 

 
By feeding the algorithm with pure noise, boundaries start to become detected by random 
hits to the search regions. As we saw in the chapter dealing with evaluation methods, the 
search regions around reference boundaries cover a relatively large portion of the 
timeline. As a result, the chance to hit each reference region by inserting boundaries 
randomly starts to grow as we allow larger numbers for over-segmentation. Moreover, 
the nonlinear Minmax-filter and peak masking operation of the algorithm issue special 
constraints to the locations of the random insertions. This leads to a better Pc/D’ ratio 
than with a pure Gaussian process. One way to interpret this result would be to consider 
the non-linear filtering used in the algorithm as a kind of modeling of speech prosody and 
temporal contours. In any case, and with or without any filtering processes, this 
observation leads to a conclusion that the segmentation results that are reported with 
relatively high over-segmentation values in the literature say very little about the true 
nature of the algorithm. The noise-segmentation results can be used to define a zero-level 
segmentation quality, that can be achieved with systematic insertion of boundaries 
without any true knowledge of the underlying speech signal.  
 
Figure 4.4 also shows the results for segmentation of pure signals with two different 
over-segmentation values. The distance dPc between the noise-segmentation and the 
pure-signal results starts to decrease rapidly when greater over-segmentation is allowed. 
This might infer that the process of random insertions may start to dominate the placing 
of prospective boundaries instead of truly discovering otherwise missed boundaries. 
There are papers in the literature (e.g., Kvale, 1993; Scharenborg et al., 2007) that report 
extremely high over-segmentation rates in their results, which should not be the case for 
methodological quality evaluation in the light of these findings.  

 
To gain a better understanding of the nature of the segmentation errors in the algorithm, 
the full train/male section of TIMIT was segmented to estimate segment boundary 
deviation from the reference. This is illustrated in fig. 4.5 below. As the previous results 
predict, the majority of the boundaries are located closer than 20 ms from the reference 
(mean deviation σ = 13 ms). Also, the mean of the distribution is symmetrically at zero. 
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However, nearly half of the boundaries are located outside the search region if the 
permitted deviation is changed from 20 ms to 10 ms. This can be verified by re-
calculating the hit rate by using this stricter threshold, which results in about a 55 % hit 
rate. As long as it can be presumed that the algorithm is mainly reacting to the “real” 
phonetic segment boundaries, this supports the convention of the 20 ms deviation 
allowance found in literature.  
 

 
Figure 4.5: Algorithm boundary deviation from the reference, full train/male set. 

 
By hypothesizing that there are several normally distributed processes underlying the 
ultimate segmentation results, one can consider the following: insertions can be thought 
of as errors originating from a random process, often for reasons discussed above (e.g., 
the endings of the signals). Deviation from the reference consists of two normally 
distributed interactive processes, deviation due to the manual segmentation performed by 
humans, and the deviation of the algorithm boundaries from these references when the 
boundary is correctly found. Combining these normally distributed processes would 
result in yet another distribution, where we should actually see two superpositional 
normal distributions. Figure 4.6 supports this hypothesis. 
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Figure 4.6: Segmentation results as a combination of two Gaussian processes. 

 
The hits distribution is the unnormalized normal distribution fit to the center part of the 
data. It has variance 
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Note that the since the distributions are not normalized, their mixture is not leading to a 
normal distribution when combined. It should be also noted that the hits distribution is 
almost totally inside the predefined ±20 ms search region. 
 
To further explore the nature of the noise distribution above, a normal distribution was fit 
into a histogram that contains deviation from the reference when only white noise (see 
beginning of this section for the explanation) was used to replace the speech signal input 
for the algorithm. By using the same 
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= 0.175
2  with mean at zero as above and scaling 

the distribution to match the numbers of boundaries in the noisy data, very high 
correspondence between the data and the model 
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~ N(0,0.175
2
)  is obtained (fig. 4.7).  
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Figure 4.7: Normal distribution model of the noise distribution process fit to the segmentation 
results of white noise. 

 
Based on these findings it can be hypothesized that the output of the segmentation 
algorithm is a product of (at least) two different interfering processes. Most of the 
boundaries are found in similar locations as in the reference by tracking the spectral 
changes of the speech signal. These boundaries reside normally distributed in the near 
proximity of the reference boundaries with a mean deviation of less than 10 ms. The 
deviation of this distribution is most probably defined by the variance in the manual 
annotation, more specifically by the way the phoneticians use spectral information in the 
segmentation, and by the small fluctuation caused by limited accuracy of the algorithm in 
the time domain. Another group, or distribution, of segment boundaries is produced by a 
normally distributed noise process. Based on experiences with manual inspection, they 
may occur due to, e.g., insertions in long fricatives and during silence. Also, in the 
endings of the signals the fading of the spectrum causes deviations between the reference 
and the algorithm.  
 
The nature of the algorithm is such that the Minmax-filter defines the length of the 
window where peaks will become inserted, as it was shown in the case of segmenting 
noise. The peak height is defined locally as the difference between maximum and 
minimum values of the 2D-filtered signal. This may result in relatively small peaks for 
some of the real transitions when there are several transitions close to each other, and to 
relatively large peaks inside a long continuous phone if there are no contrasting 
transitions nearby. The scaling of the probability classifications in different situations 
could be one topic of interest in order to improve the algorithm. Also, the properties of 
the non-linear Minmax-filter should be investigated further.  
 
The use of Gaussian mixtures for evaluating the segmentation algorithm could be a 
method that takes into account the “random” hits that are produced by excess over-
segmentation. Comparison of the size of the hits distribution to the noise distribution 
could depict how large a portion of the segments are actually found by using spectral 
cues, and how much is a result of “good luck”. This does not, however, remove the 
problems of variance in manual annotation or the fact that there is not a single correct 
way to perform speech segmentation. 
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4.1.5 Conclusions of the segmentation experiments 
 
The results obtained by the current version of the algorithm are comparable to those 
found in current literature (Aversano et al., 2001; Scharenborg et. al, 2007; Estevan et 
al., 2007), although the method of evaluation is not strictly defined in all papers. The 
Method I evaluation used in this thesis is the strictest possible version of the search 
region evaluation, and the results obtained with it are extremely close to other best blind 
algorithms. It is striking that while all authors are using different approaches to create 
blind acoustic-phonetic segmentation of speech, the results are very similar (also noted in 
Estevan et al.’s paper), and are not able to achieve hit rates higher than 80 %. This could 
be strong evidence for the necessity of some sort of intelligent top-down feedback that 
could be used to improve the segmentation accuracy and reliability. However, it should 
also be kept in mind that the reference comparison is not the ultimate goal of speech 
segmentation. In the end, the purpose of the segmentation algorithm depends on the 
entire speech processing system, in which it is implemented, and the most important 
evaluation method would be then to observe the functionality of the complete system. 
 
This work has also brought out the importance of understanding the nature and purpose 
of evaluation methods. Most papers in the speech processing literature concerning new 
segmentation technologies or comparisons between different methods report their results 
by using a handful of the performance factors presented in this thesis. While this may be 
indicative towards the overall performance of the systems, one cannot do any extensive 
and reliable comparisons between different methods from different authors unless a strict 
standard for evaluation is defined. The use of manual segmentation as a reference may 
also be unavoidable, but its characteristics should be observed and taken in account when 
working with the evaluation of segmentation.  
 
 

4.2 Experiments with clustering and feature extraction 
 
The clustering method presented in this thesis is specially tailored for incremental 
processing with no practical upper limit for the amount of data. However, due to practical 
time and resource constraints, limited data sets were used for most of testing and 
evaluation. The purpose of these experiments is to gain a good basic understanding of the 
behavior of the algorithm and of the effects of different special means to control the 
clustering process. Only features extracted from the first half of the segments were used 
in these experiments, as they are hypothesized to describe the segments better in terms of 
single static units, and are therefore sufficient for testing the basic functionality of the 
clustering methodologies used. The latter half of the segment, which is considered to be 
more context-dependent due to co-articulation, is ignored in this experimental framework 
and its use is left for further research.    
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4.2.1 Clustering experiments using the Single-space Method 
 
Before starting the clustering evaluation with the aid of entropy metrics, the base level 
entropy of the segments was estimated with N = 100 utterances (4066 segments). The 
mean entropy over every segment in the material (segmentation with 0 % over-
segmentation and 74 % hit-rate) was Hc = 0.080, which should be considered as the 
theoretical maximum (or entropic minimum) for the selectivity of the clusters with 
respective material.  
 
The first actual clustering experiment was performed with female spoken material from 
TIMIT (N = 560 sentences consisting of a total of 21821 segments) using the Single-
space Method. The correlation radius threshold tm was adjusted to demonstrate the 
selectivity of the clusters as a function of segmental correlation. Results are shown in 
table 4.10. Hc is the mean entropy of the cluster phone-distribution and Hs is the entropy 
of the cluster size distribution. Ntot is the total number of clusters and Nave is average 
number of segments in each cluster. Small clusters (N < 3 segments) are merged into 
larger clusters and clusters with higher correlation than tmm > 0.9 are merged to each other 
as a batch process during and at the end of clustering. No integrative cluster centroids or 
automatically adjusting cluster correlation radii were used. Division to voiced and 
unvoiced sub-spaces did not have any noticeable effect on the results, so the decision to 
run tests with a division to voiced and unvoiced clusters was arbitrary.  
 

Table 4.10: Clustering results for the Single-space Method. 
tm Ntot Nave Hc Hs 
0 13 1379 0.713 0.889 

0.2 36 606 0.626 0.814 
0.4 118 185 0.514 0.804 
0.6 355 61 0.458 0.798 
0.8 1057 21 0.399 0.826 

 
Figure 4.8: Entropies Hc and Hs and the total number of clusters as a function of correlation 

threshold tm. 
 

As expected, the entropy Hc of the cluster selectivity starts to decrease as the correlation 
threshold is increased (fig 4.8). The cluster size entropy Hs on the other hand seems to 
stay relatively stable, decreasing only slightly when the number of clusters grows. This 
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can be interpreted as a good property of the algorithm, as the balance of comparative 
cluster sizes does not seem to be greatly affected by a change in the distance threshold.  
 

 

 
Figure 4.9: Entropy Hc of cluster phone distribution with different correlation thresholds tm, sorted 
and normalized indices as the x-axis. 

 
Figure 4.9 illustrates the differences in phone distributions between clusters with several 
tm values. Clusters are sorted by their distribution entropy, and the indices are normalized 
to have a total number of 20 data points. This is because in practice there are order of 
magnitude size differences in the number of clusters with different thresholds tm. As can 
be seen from the figure, there are some clusters that have very low entropy, but most of 
the clusters fall between Hc = 0.2 and Hc = 0.7 with nearly linear distribution. The 
increase in threshold decreases the average entropy, but the difference between tm = 0.6 
and tm = 0.8 is very small in half of the clusters. Also, in practice there are always a few 
very large clusters with very high entropy, but they do not show up in the figure due to 
the normalization. Manual inspection reveals that these large clusters often contain not 
only several variations of similar vowels, but also trills (/r/), laterals (e.g., /l/) and 
approximants (/w/).  

 
Figure 4.10: Segment transitions as cluster indices. Transitions take place from columns to rows. 
Threshold tm = 0.5. 
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Transitions from segment to segment were also tracked and can be described in terms of 
the cluster indices of the segments (fig. 4.10). The matrix shows all transitions from all 
single clusters to every other cluster in the space. The fill percent of the transition matrix, 
that is, the number of non-zero elements in the matrix containing all possible transitions 
from one cluster to another, was 17.26 % in the case for figure 4.10. As can be seen, there 
are very little transitions from clusters with a large index to clusters with a small index. 
This is an understandable phenomenon when dealing with a limited amount of utterances, 
as the clusters with a small index are created first while the latter ones are new 
representations of the subsequent utterances that do not fit well to any pre-existing 
category. The entropy for the average distribution of transition probabilities over all 
clusters was also calculated, producing Ht = 0.4805. This means that from an average 
cluster there are transitions to several other clusters. The diagonal of the matrix contains 
only a fraction of all transitions, which indicates that there are only very few boundary 
insertions within similar spectral structures in segmentation, i.e., over-segmentation due 
to the splitting of phones.   
 
Phone recognition was also briefly tested by clustering the entire TIMIT female test 
section data with correlation thresholds tm = 0.4 and tm = 0.8 and then using N = 50 first 
utterances of the test set for comparison. A reduced TIMIT phone set was used. Note that 
the amount of clusters was now only a fraction of the amount of segments in the material, 
the average cluster size being approximately 100 and 21 segments per cluster, none of the 
clusters containing less than three segments. For tm = 0.5, 38 % of phones were 
recognized correctly, and for tm = 0.8 the value was 39 %. Interestingly, taking in account 
three instead of just the first dominating label (see section about evaluation methods for 
description), the recognition rates were 64 % for 0.5, and 58 % for 0.8. To test and 
compare recognition with different speakers and different material, utterances that were 
not used in the clustering material were also tested. The recognition result for tm = 0.5 
clustering was now 34 % with the most dominating label and 61 % when using the three 
most dominating labels. 
 
The effect of merging small clusters into larger ones and nearby clusters to each other 
was also tested in terms of phone recognition. 500 signals from the TIMIT train/female 
material were segmented and clustered incrementally (tm = 0.8) without any post-
processing in the cluster space. 50 utterances from the TIMIT test/female set were used 
for recognition. In the non-merged case, the recognition result was 30 %, while there 
were a total of 3712 clusters. Then the clusters with two or less segments were merged to 
the nearest large cluster and all clusters closer than a correlation radius of tmerg= 0.9 to 
each other were merged together, reducing the total number of clusters to 923. The 
recognition percent was identical, 30 %, to the one before merging. This seems to 
indicate that the extremely small clusters would not be statistically relevant from the 
perspective of the entire classification process.  
 
It should also be noted that the computational complexity of the Single-space algorithm 
starts to increase radically as the number of clusters becomes large (i.e., merge criterion 
is very tight). The nearest cluster is always searched for from the entire space, indicating 
that the distance from the segment has to be calculated to every other cluster separately. 
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This is one of the disadvantages of using a single large space. However, the 
implementation used in the experiments was not optimized for speed, which may have 
resulted in some excess computation time. Methods for faster search by, e.g., intelligent 
cluster indexing through partitioning might be possible without any noticeable 
degradation in the results.  
 

4.2.2 Effects of centroid integration and adaptive thresholds in the Single-
space Method 
 
To estimate how cluster movement in the cluster space affects the clustering results, an 
alternative method for upgrading the cluster centroids was tested. Instead of averaging 
every new vector to the centroid with weight 1/N, where N is the number of segments 
already in the cluster, new segments were averaged with a constant 5 % weight after the 
corresponding cluster had already received N = 20 or more segments. This prevents the 
cluster from converging into a specific spot in the space, a location that is mostly 
dominated by the first few arriving segments. The question with the integrative method is 
then how should the changes in the phonetic distribution caused by incoming segments 
be defined? In previous experiments, the 1/N weight was given to each segment’s 
features, and similarly each phone distribution of a segment was taken in account with a 
1/N weight in the cluster’s phone distribution. Using a 5 % constant weight for new 
distributions would mean that previous utterances have less weight for the final 
distribution during the evaluation. To maintain the results comparable with the other 
experiments, the phonetic distribution was still updated with a 1/N weight for each 
segment, while the centroid was updated with the constant 5 % weight after a number of 
20 segments was reached. One should keep in mind that in this experimental setting the 
cluster location does not match the distribution of phonetic content in segments directly. 
200 utterances were used to test the difference in entropy with integrative centroids. The 
results have been gathered into table 4.11.  
 

Table 4.11: Clustering results without and with integrative centroids. 
tm Hc,n Hc,i Hs,n Hs,i Nave,i Nave,n 
0.5 0.478 0.483 0.784 0.792 73 84 

0.6 0.438 0.432 0.795 0.788 45 43 

 
Hc,n is the entropy of the phone distributions without integration while Hc,i includes 
integration. Similarly, Hs,n is the entropy of the cluster size distribution without 
integration, and Hs,I is with integration. Adding new segments with a 5 % weight instead 
of 1/N increases the entropy slightly with tm = 0.5, but decreases it with tm = 0.6. The 
average number of segments in the clusters is nearly constant with both methods. Overall, 
integration is not causing any significant changes in the results.  
 
Another subject of interest was the adaptive correlation threshold: the more segments that 
end up in a cluster, the more selective the cluster becomes. This feature was tested in 
combination with integrative clustering. The threshold was defined with the following 
formulae: 
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where i is the index of the cluster, tm,0 is the lower limit for the threshold, a1 is the 
increase per segment, Ni is the number of segments in the cluster and Nmax is the number 
of segments that is required to achieve the maximum threshold. Again, by taking the 
same N = 200 female spoken utterances as in previous tests and setting tm,0 = 0.5, a1 = 
0.004 and Nmax = 50, a moving threshold between tm = 0.5 and tm = 0.7 was created. As a 
result of the clustering, the entropy settled to Hc = 0.489, which is worse than with static 
centroids using tm = 0.6 (Hc = 0.438). The average number of segments in the clusters had 
increased from 51 to 54, which is not a significant difference.   
 
By setting the threshold to a higher value tm,0  = 0.7 and keeping the other settings as they 
were, another run was carried out. Now the results were Hc = 0.462, Hs = 0.839 and Nave = 
36. In other words, the results were again slightly worse than with a fixed correlation 
threshold, but the average size of the clusters had decreased. Adaptation was tested once 
more, now setting tm0 = 0.3 and a1 = 0.008 to gain an extremely large difference in the 
selectivity between the small and large clusters (tm,min = 0.3, tm,max = 0.9). Entropy grew to 
Hc = 0.549 and the average cluster size increased to Nave = 88. All results with the 
adaptive thresholds were worse than with fixed thresholds. This leads to the conclusion 
that an adaptive threshold does not have a major impact of improving the clustering 
results.   
 

4.2.3 Clustering experiments using the Multi-level method 
 
The first experiment with Multi-level clustering was meant to determine which order of 
the frequency band comparisons used as classification criteria gives best results in terms 
of the selectivity entropy. Identical TIMIT test/female material was used as in the 
previous method. As described in the previous chapter, data was classified into different 
sub-spaces at different levels by comparing the correlation of frequency bands from 0 to 
1000 Hz, from 1000 Hz to 2000 Hz, and from 2000 Hz to 3000 Hz. A mediocre sized 
200-utterance test set was used with fixed thresholds to test all possible combinations. 
The final level (level 3) entropy was used to measure the quality. Only voiced segments 
were used in this test. Table 4.12 shows the results. The level of clustering hierarchy 
where the band is used as classification criteria is shown in the first three columns. A 
correlation radius threshold tm = 0.3 was used for all levels. 
 

Table 4.12: Mean entropy of the clusters with different frequency band orders as classification criteria. 
0-1 kHz 1-2 kHz 2-3 kHz Hc Hs 

1 2 3 0.389 0.800 
1 3 2 0.389 0.781 
2 1 3 0.364 0.802 
2 3 1 0.391 0.791 
3 1 2 0.356 0.801 
3 2 1 0.363 0.782 
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As the results reveal, it seems that the most efficient order is to first classify by the 
correlation at the 1000-2000 Hz or the 2000-3000 Hz frequency band, which most often 
contains the locations of the second and third formant in order. However, the choice 
between orders [2 1 3] and [3 1 2] was not an obvious one. These combinations were re-
evaluated, and now also included the unvoiced segments. Now both methods obtained 
identical Hc213 = Hc312  = 0.387 for the phone distributions, while [2 1 3] outperformed [3 
1 2] in the cluster size distribution clearly (Hs213 = 0.830 vs. Hs312 = 0.782). Therefore, the 
frequency band from 1000 Hz to 2000 Hz was chosen to be the decision criteria at the 
first level, the 0-1000 Hz range at the second level, and the 2000-3000 Hz at the third 
level.  
 
To obtain a general idea of the clustering process taking place in the hierarchy, voiced-
only material (N = 560 utterances from female speaker) was clustered. Figure 4.11 shows 
the cluster entropy levels at the different hierarchy levels when using the same tm = 0.3 
correlation threshold for each level. Cluster indices on the x-axis are normalized since the 
number of clusters increases from level to level. 

 
Figure 4.11: Multi-level clustering results, tm1 = tm2 = tm3 = 0.3 with level means marked with 
dashed lines. 

 
As the first two decision criteria contain the usual range of first and second formants, the 
results support the general understanding in the literature that the first two formants are 
usually sufficient for differentiating most of the vowels from each other (Peterson & 
Barney, 1952). The final comparison at the 2000-3000 Hz band further decreases the 
entropy, and manual inspection of the cluster phone distributions seems to indicate that 
this frequency band seems to help in differentiating many voiced consonants. If the 0-
2000 Hz band causes the most noticeable drop in the entropy due to vowel classification, 
running the test with exactly the same parameters but including also the unvoiced phone 
segments should lead to a different result regarding the relative entropy changes between 
levels if they are more dependant on the 2000-3000 Hz frequency-range than voiced 
phones. Figure 4.12 illustrates what is happening. 
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Figure 4.12: Entropies of clusters with both voiced and unvoiced phone segments included. 
Voiced clustering is shown as grey thin lines for comparison. 

 
The purity of the clusters somewhat degrades, which is expected as the number of 
segments and variety of the material increases. It should also be recognized that including 
the unvoiced segments may also include more noisy data, as they are most often 
classified as unvoiced by cepstrum analysis used for voicing detection. Interestingly, the 
difference in entropy at the first level is nearly non-existent. Another interesting notion is 
that the number of very low entropy clusters at level 2 has decreased notably with the 
unvoiced segments included. Closer inspection reveals that these low-entropy clusters 
consist mainly of a few fricative segments (e.g., [s]) that have been classified as voiced, 
one exceptional [d] segment and a handful of nasals. Using otherwise identical 
conditions, clustering only voiced segments resulted in approximately dHc = 0.035 better 
entropy. Since the difference is rather small, the rest of the segmentation test runs were 
performed with both voiced and unvoiced data together. 
 
The next step was to evaluate the clustering results as a function of the thresholds used at 
different levels. As the optimization of all possible combinations of three different 
thresholds is beyond the scope of this work, only the use of identical thresholds with 
small value adjustments and a few additional extreme cases were tested. Table 4.13 and 
figure 4.13 show the results for three different thresholds: tm = 0.1, tm = 0.3 and tm = 0.5 
for all levels. The tm parameter shows the correlation threshold for each level and Nave 
shows the average number of segments per cluster. Table 4.14 shows the results when 
combinations of different thresholds are used. 
 
As all of the results indicate, the two first steps (F1 and F2) are again very dominating in 
the classification decisions, splitting the data into several sub-spaces with even lower 
thresholds. It is difficult to say in which manner the thresholds should be set to gain the 
best possible classification. Although we can see that increasing tm will always decrease 
the entropy (increase cluster purity), the average cluster size will also decrease which 
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may cause similar phones to be classified into different clusters, and in the worst case 
into totally different subspaces.  
 
 

Table 4.13: Results for hierarchical clustering with different thresholds using the same threshold 
for each level. 

Level tm Hc Hs Nave 
1 0.1 0.864 0.891 3637 

2 0.1 0.685 0.838 704 

3 0.1 0.591 0.843 156 

1 0.3 0.817 0.759 1679 

2 0.3 0.604 0.772 248 

3 0.3 0.447 0.817 44 

1 0.5 0.781 0.739 839 

2 0.5 0.485 0.753 83 

3 0.5 0.307 0.822 14 

 
Table 4.14: Results for hierarchical clustering with different thresholds for different levels. 

Level tm Hc Hs Nave 
1 0.4 0.805 0.761 1284 

2 0.4 0.529 0.749 148 

3 0.2 0.404 0.802 37 

1 0.2 0.841 0.809 2728 

2 0.3 0.633 0.788 352 

3 0.4 0.461 0.822 46 

1 0.5 0.781 0.739 839 

2 0.2 0.608 0.783 182 

3 0.5 0.365 0.82 20 

 

 
Figure 4.13: Entropies of clusters on different hierarchical levels with different thresholds tm. The 
same threshold is used for all three levels (tm,1 = tm,2 = tm,3). 
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Phone recognition was tested similarly as with the previous clustering method. 
Recognition of the same material as was used for the original clustering gave a 38 % 
recognition rate with level 3 clusters for the most dominating labels, and 58 % when 
using the three most dominating labels. New utterances gave 33 % and 57 % accordingly. 
These results are very similar to the Single-Space Method (38 % with old and 34 % with 
new speech material), so practically there are no differences in the recognition rates 
between these two methods.  
 
The differences in the overall classification quality between the Multi-level Method and 
Single-Space Method are not large but noticeable (table 4.15). Using tm = 0.6 with 
integrative centroids for a single space yields better results than tm = 0.3 for all levels in 
hierarchical clustering. While the hierarchical results are slightly less selective, they have 
a more equal distribution of cluster sizes. 
 

Table 4.15: Comparison of Single-space and Multi-level Methods. 
Type tm Ntot Nave Hc Hs 
Single-space 0.6 485 45 0.438 0.766 
Multi-level 0.3 (all) 496 44 0.448 0.817 

 
One important observation of the Multi-level Method is its computational speed: since the 
segments are always compared to a limited number of clusters in the same sub-space, the 
number of computational operations needed to find the best matching cluster is much less 
than in the Single-space Method when data volumes grow large. Memory requirements 
are also reduced, since only the relevant sub-space information needs to be kept in 
memory during operations and all other sub-spaces can be discarded. For example, the 
time needed for a 0.8 correlation threshold clustering of 560 utterances with the Single-
space Method in the MATLAB environment with a relatively powerful Mac Pro takes 
approximately 20 minutes, while the same mean entropy clustering can be completed in 5 
minutes with the Multi-level Method. The difference becomes larger if the amount of data 
is increased, although the computational complexity in the both methods should converge 
to a specific level when all possible locations in the cluster space are covered. However, 
using lower thresholds (tm< 0.7) and cleaning the cluster space frequently to keep the 
number of clusters limited leads to acceptable computational times with the Single-Space 
Method over large sets of material as well. Despite the more efficient structure of the 
hierarchical method, there is also a maximum value for the merge criterion, after which 
the cluster space structure starts to expand with a remarkable rate, turning the 
classification process into a dispersion process.  
 

4.2.4 Feature extraction and parameter evaluation 
 
The effects of different parameters in feature extraction were tested in order to justify 
preliminary parameter selections. Central parameters in the feature extraction algorithm 
are the number ns of spectral vectors used to form the feature vector, the size of the 
margins m1 and m2 at both ends of the segment, and the location of the divisor d for 
dividing the segment into onset and offset parts (fig. 4.14). It was originally hypothesized 
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in the previous chapter that placing the parameter d at the 40 % duration point of the 
segment would lead to a relatively pure phone description of the first part of the segment, 
and to a more context-dependant second part. To confirm this, the location of d as a 
proportion of the total duration of the segment was adjusted in the feature extraction 
process and then a single-space clustering was performed to measure changes in the 
entropy Hc. 200 female spoken TIMIT signals (a total of 7700 segments) were used for 
these experiments. Margins m1 and m2 were kept at their default value m = 10 %. Table 
4.16 shows the results. 

 
Figure 4.14: Division of the segment into subsegments. 

 
Table 4.16: Effect of the segment divisor location on cluster selectivity. 

d (%) 15 20 30 40 60 80 

Hc 0.460 0.470 0.500 0.496 0.492 0.49 

 
According to these results it seems that the first 15-20 % of the segment contains the best 
static spectral description of the segment. Going below d = 15 % with 10 % margins is 
not practical since the number of pitch-synchronous windows starts to be insufficient 
compared to the number of spectral vectors taken for feature representation. The 
minimum entropy is not located near the vicinity of the 40 % boundary, which was the 
preliminary assignment for the parameter d due to empiric observations. To gain a more 
comprehensible understanding of the segmental division, the effects of margin size on the 
entropy were also evaluated (table 4.17). 
 

Table 4.17: Effect of margin size in feature extraction to cluster selectivity. 
m (%) 1 3 5 7 10 

Hc 0.517 0.49 0.468 0.483 0.496 

 
The symbol m describes the portion of the segment duration that is ignored from the 
beginning and from the end of the segment in feature extraction to avoid noisy or non-
contrasting spectral vectors. It seems that the feature vectors are most distinct when the 
margin is approximately 5 % of the segment duration. Using very short or even non-
existent margins causes the entropy to increase as expected, since some of the spectral 
vectors may be taken from the transition points between two subsequent phones instead 
of the locus of a single phone. Increasing the margin size above 5% also hinders the 
classification accuracy, an observation being in line with the results above concerning 
segment division.  
 
The last central issue in feature extraction is the number of spectral vectors that are taken 
and averaged to form one single spectral representation for each segment. The same 
experimental arrangements were used to estimate the selectivity of the clusters as above. 
Margins were set to 5 % and segments were divided at d = 40 % to gain a capture region 
of 35 % of the segment duration for the spectral vectors.  
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Table 4.18: Effect of the number of spectral vectors ns, female speakers. 
ns 1 2 3 4 5 7 12 

Hc 0.477 0.459 0.491 0.483 0.460 0.483 0.510 

 
The value ns = 5, that was chosen in advance as an enlightened guess and was used in all 
previous experiments, indicates that it is at the same level in entropy as other low-entropy 
selections for ns (table 4.18). Interpretation of these results is not straightforward, though. 
It seems that ns = 2 and ns = 5 produce almost the same selectivity for the clusters, while 
ns = 3 and ns = 4 yield a relatively high entropy compared to previous ones. To determine 
whether the phenomenon noticed with female speakers recurs with male spoken material, 
N = 200 male utterances from the TIMIT corpus were tested in a similar manner.  
 

Table 4.19: Effect of the number of spectral vectors ns, male speakers. 
ns 1 3 5 7 10 

Hc 0.500 0.507 0.519 0.510 0.515 

 
Together these results (tables 4.18 & 4.19) seem to indicate that using a low number of 
spectral vectors may provide a small advantage over a larger number of vectors (ns > 5), 
but as the dependency is not directly observable and rather ambiguous, nothing definite 
can be concluded.  
 

4.2.6 Conclusions on clustering and feature extraction experiments 
 
Two structurally different approaches to segmental data classification were tested. In 
terms of the entropy and average cluster size, the results are very similar for both 
methods. However, the manner in which the algorithms obtain the final state have a 
fundamental difference: the Multi-level method achieves the final state directly with a 
strict division to three levels of subspaces, each refining the clustering quality by 
comparing separate frequency bands and without performing further merging or cleaning 
operations to small or closely located clusters. On the contrary, the Single-Space method 
grows a very diverse amount of small clusters, which are later merged into larger ones if 
they seem to be one of a kind with large amounts of speech material. This may be a 
problem with learning new material, where there exist allophones that occur very rarely 
but should be nonetheless conserved as autonomic classifications. However, recognition 
tests did not show changes in the results when small clusters were merged away. It is also 
noteworthy that the classification of all material in the hierarchical experiments were 
performed only by scalar product based distance metrics and with a 0-3000 Hz frequency 
band comparison that is most suitable for the classification of vowels. The structure of 
this method essentially supports any quantitative decision criteria at any level, and 
therefore a search for more reliable decision criteria can be profitable in the future.     
 
The feature extraction experiments indicate that in order to describe phone segments with 
spectral coefficients averaged from the segment, the best place to pick these vectors is 
from the very beginning of the phone segment. It is recommended to use margins of 
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approximately 5 % of the segment duration in the beginning of the segment to prevent 
selection of spectral vectors from the transition points.  
 
Most results from the clustering experiments do not directly describe how well the 
methodology suits purposes of speech recognition by learning. The major goal of these 
experiments was to compare different experimental approaches to segmental data 
classification problem and to justify and re-evaluate preliminary chosen solutions and 
parameters. The recognition rates for phones were also tested, reaching approximately 30 
% for the top label and 60 % for the three most dominating labels for each cluster with a 
relatively rough clustering. Naturally, this is nowhere near trained HMM based phone 
recognizers that usually obtain correct recognition rates of approximately 75 % of phones 
(see Petrov et al., 2007). However, it should be kept in mind that the purpose of this 
project was not to build a phone recognizer, nor should it be evaluated solely on the basis 
of phone recognition. The ultimate effect of the chosen solutions for classification will be 
evaluated in terms of its compatibility and performance with a larger unsupervised 
learning recognition system that it will be integrated into.  
 
One issue worth discussing is that most of the evaluations used in this thesis rely very 
strongly on the entropy value of the phone distribution and the average size of the 
clusters. The entropy shows the selectivity of an average distribution of phones in each 
cluster, but it does not rely on a phonetic basis for quality, i.e., it does not directly depict 
how well the clusters actually classify different aspects of speech units that can be used 
for speech recognition purposes. It is also highly dependent on the segmentation 
algorithm that provides the data for classification, and the reference that is used for 
labeling. Therefore, other supportive methods for clustering evaluation could turn out to 
be useful in terms of future development of the methodology.  
 
 

4.3 Word recognition 
 
An experiment to test the functionality of the system developed so far was a certain type 
of word recognition, or, pattern discovery test. Utterances containing the same key words 
were used as an input to the system, and then cluster indices of the segments (or labels) 
were compared manually to see whether similar words follow similar paths in the cluster 
space. The idea was not to build sufficient statistics for a comprehensive evaluation of the 
patterns formulated by the algorithms, but to obtain a quick review of what has been 
achieved so far.   
 
Word recognition experiments were done with the TIDIGITS corpus (Leonard & 
Doddington, 1993), which contains English spoken utterances consisting of connected 
digit sequences. Signals were resampled from 20 kHz to 16 kHz in order to match the 
input specifications of the system. No phonetic transcription was available to be used in a 
phonetic label comparison or segmentation quality evaluation. Tests were carried out 
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with gender specific material, i.e., in this case only the female set was used12. However, 
the material still contained several different speakers. The training set (N = 4388 
utterances) was used for forming the cluster space and the test set was used for testing the 
labeling. Single-space clustering with tm = 0.5 was used with merging of all of the clusters 
closer than tmerg = 0.5 to each other as a post-processing step before moving on to actual 
test utterances. This pre-clustering resulted in Ntot = 22 separate clusters.  
 

 
Figure 4.15: Clustering labels of two different realizations 1a and 1b of the word “one” spoken 
by a female speaker. 

                                                
12 TIDIGITS is divided into a train and test set similarly to TIMIT, both containing 4 subsets of utterances: 
boy, girl, man, and woman.  
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Figure 4.16: Clustering labels of two different realizations of the word “zero” spoken by two 
different female speakers. 

 
The first test was performed with two different realizations of a single digit word, “one”, 
spoken by the same female speaker. As can be seen from the image (fig. 4.15, segment 
boundaries and cluster indices are marked with red), several segments of the word are 
classified similarly. The only difference (excluding the silence) is the splitting of the 
middle section of the word into two different parts in signal 1b, causing it to be clustered 
into clusters i = 3 and i = 12, instead of just i = 3 as in utterance 1a. 
 
To increase the level of difficulty, the words “zero” were compared from two completely 
different sounding female speakers. The major structure (fig. 4.16) of the clustering was 
still similar, while there were also some differences. As can be seen from the signal 
waveform and the spectrogram, these two realizations have very different temporal 
structure. There are also subtle differences in the frequency representations, concerning, 
e.g., absolute formant frequencies and relative formant energies.  
 
The next experiment was to compare two utterances, “one-five-seven” and “seven-one-
one” to get a preliminary grasp of how word location in the utterance affects 
classification. Figure 4.17 shows the spectrograms and waveforms for these two 
utterances.  
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Figure 4.17: Utterances “one-five-seven” (157a) and “seven-one-one” (711a). The most similar 
pair of “one” words is marked with red squares while “seven” words are marked with green 
squares. 

 
 
Two ones are segmented with identical structure and with identical labels, but the third 
realization at the end of the utterance 711a differs somewhat from these two. The sevens 
also have common clusters in the cluster sequence but several differences exist. When 
interpreting these results, it should be kept in mind that the clustering precision is very 
rough (tm = 0.5), meaning that the classification accuracy is also rather limited. On the 
other hand, the clustering is done with several speakers without any speaker 
normalization, which is a more difficult situation than with single speaker experiments.  
 
To remove the effects of several speakers and the requirement to use pre-existing 
clusters, a final test was arranged. Figure 4.18 shows the results for the same utterances 
as above when no pre-existing clustering with a training set was used. This means that the 
cluster space is in this case built incrementally, segment by segment, using only these two 
signals. Now the similarity has increased especially in the case of sevens. Also the ones 
have 92 % (11/12) congruence in the structure and labeling, if boundary insertion due to 
spectral fading is ignored in the last realization of 711a. The small difference is caused by 
a segment boundary deletion at approximately t = 1.1 s in the same utterance.  
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Figure 4.18: Utterances “one-five-seven” (157a) and “seven-one-one” (711a) without pre-
clustering. 

 
While these small experiments of “word recognition” do not give a statistically sufficient 
understanding of the functionality of the system, the results are a glimpse of the current 
status considering future work. The classification is not perfect, nor is it supposed to be at 
this very initial phase of the entire project of building a learning system, where the 
learning structures themselves are still only sketches on a blackboard. Nonetheless, the 
results are positive and show that the system is already capable of converting simple 
acoustic speech signals into structured representations containing only temporal 
boundaries and labels for each corresponding segment. 
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5 Conclusions and future directions 
 

 
 
 
The long-term goal of the ACORNS research project, in which this work contributes to, 
is to develop a learning speech recognizer. The recognizer will be able to build statistical 
representations of speech by bottom-up processing the input and then refining the 
bottom-up process itself by intelligent top-down feedback. In order to function properly, 
this speech recognition architecture requires a strong methodological bottom-up basis to 
provide consistent descriptions of the speech signals. To support such a need, novel 
methodological approaches were designed, implemented and evaluated within this thesis. 
Incoming speech is first segmented into phone-sized units with a blind segmentation 
algorithm. Then feature-based descriptions of each segment are extracted with a feature 
extraction algorithm, and finally, the segmental data is classified by using specific 
clustering techniques.  
 
The segmentation algorithm introduced in this thesis utilizes cross-correlation estimates 
of short window length FFT-spectrums in order to detect potential phonetic boundaries. 
Two-dimensional filtering of the cross-correlation matrix and a subsequent non-linear 
filtering process with a peak masking operation enables refined and robust segment 
boundary detection. The algorithm achieved good results in comparison to results 
reported in current literature. It was also demonstrated that the segmentation process 
could be performed in extremely noisy conditions, with the observation that locations of 
actual segment boundaries may often be found by unintentional random hypotheses 
instead of actual spectral change detections. Concerning this observation, different 
aspects of the segmentation evaluation were also discussed in more detail.  
 
Concerning data classification, the clustering methodology used in the architecture has a 
few important requirements: the nature of learning is incremental, and so is the 
availability of speech data. Therefore, the clustering algorithm must be able to work in an 
incremental manner instead of just performing batch processing. It is also an important 
aspect of the learning system that the maximum amount of data that can be potentially 
classified or learned should not be limited. This sets specific requirements for the design 
and implementation of the clustering algorithm. Two different clustering algorithms 
based on different structures for the cluster spaces were introduced and evaluated. 
Solutions and parameter selections used in feature extraction were also evaluated in order 
to justify, or, to disqualify the preliminary assumptions. Shannon entropy of the cluster 
selectivity, the entropy of the distribution of the cluster sizes, and phone recognition rates 
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were used as a central criteria in the evaluation. However, the ultimate quality of these 
methodological solutions will only be seen in terms of the functionality of the entire 
speech recognition system.  
 
The major goal of future research is to search for possible mechanisms that can be 
employed to enable top-down feedback and ultimately pattern discovery by learning. 
Methodological solutions for representing segmented utterances at an abstract level, and 
gathering statistics on speech signals as trajectories in the cluster space, may enlighten 
the path. It may be also intriguing to find out how the existing computational models of 
human memory (e.g., MINERVA2) perform on segmental statistics instead of direct 
acoustic features.  
 
It may also be useful to study the characteristics of the current segmentation algorithm in 
more detail. By building labeled statistics of the phonetic boundaries between the 
segments, and by comparing the transitions across different pairs of phones, more insight 
should be available to understand the problems and strengths of the algorithm. Careful 
manual inspection of the problematic points in the speech stream and well-covered tools 
to gain a deeper understanding about the behavior of the algorithm at those points will 
also provide valuable information. Understanding the structural and phenomenal reasons 
behind the flaws in the segmentation and clustering processes may indicate what sort of 
feedback is required from the higher levels. This also leads to a central question of the 
entire speech recognition theme: what is the composition of predictions and feedbacks 
that need to be made at the different levels of processing in order to optimize the learning 
process and recognition performance? 
 
Advances in the incremental clustering methodology will also be a topic of great interest. 
Incremental construction of the cluster space, utterance-by-utterance from an initially 
empty set, is not a deterministic process in a manner such that the same configuration of 
clusters, despite the order in which data is fed, would be attained. For example, it may be 
interesting to observe what happens if copies of the incoming segments are stored into  
separate storage, while incremental clustering is performed in parallel. Then later on, the 
contents of this storage could be used as new input to the clustering system that could be 
run in a batch mode in order to modify or consolidate the organization of the 
incrementally built space. This may lead to a more optimized organization of the clusters 
and enable learning of new classification structures (clusters), instead of only trying to 
optimize the input to existing structures. By using a little imagination, one could compare 
this to human cognitive processing during the waking hours and the re-organization and 
consolidation of memory taking place during sleep.  
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Appendix A 
 
2nd order pre-emphasis filter  
 

! 

y[n] = b
0
x[n]+ b

1
x[n "1]+ b

2
x[n " 2]  

 
b0 = 0.3426 
b1 = 0.4945  
b2 = -0.64  

 
Figure A.1: Frequency and phase response of 2nd order pre-emphasis FIR. 

 
Tanh[x]-mapping 
 

! 

y[n] = tanh(" # x[n]) , where 

! 

" = 0.45  was used in the experiments. 

 
Figure A.2: tanh[x]-mapping of the spectral coefficients. 
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Minmax-filter for MATLAB 

 
% Copyright © Okko Räsänen, 2007 
% 
% variables: 
% s = s[m] 
% I = index to the minimum 
% mfiltlen = length of the filter 
 
k = 1; 
y = zeros(length(s),1); 
while(k < length(s)-1-mfiltlen)  
   nmm = s(k:k+mfiltlen-1);  
   [A,I] = min(nmm); 
   y(k+I-1) = (max(nmm)-A); 
   k = k + 1; 
end 

 
 
Clustering algorithm fundamentals, pseudo-code 
 
 
% fv = feature vectors for all segments 
% X = cluster centroids for cluster space 
  
while(k <= length(fv)) 
  
    for i=1:number_of_clusters 
        dist(i) = calc_Dist(fv(k),X(i));     % Calculate distance 
        [minValue,cIndex] = min(dist);       % Find index for minimum 
    end 
       % Check criteria 
    if(minValue < tm && criteria1 == clusterCriteria1)  
        merge(fv(k),X(cIndex));      % Criteria met, merge to existing 
    else 
        createCluster(fv(k))         % Criteria not met, create new  
         centroid 
    end 
  
    k = k+1; 
end 
 
 
 

Memory requirements of the clustering algorithm 
  
A simple calculation demonstrates the memory requirements of clustering if every vector becomes stored 
separately. With a normal combination of onset and offset parts of the segment, the feature vector consists 
of 105 elements. In TIMIT there are on average 12 segments per second, and speech signals are on average 
approximately 2.5 seconds long, summing up to a total 30 segments per utterance. For example, in the 
TIMIT train/male section there are 3260 sentences, which results in almost 100k segments. Calculating 
100000 * 105 = 10500000, or, 10.5 million elements, each requiring 8 bytes of memory. This means that 
merely storing the train-set segment feature vectors would require almost 100 megabytes of memory only 
for about two hours of speech. In the case of another database, TI-digits, there are almost 25k utterances 
total with an average of 15 segments per utterance, resulting in more than 300 megabytes of data. While 
this is not an exceptionally impossible task for modern computers, problems will rise when more and more 
material is fed to the system. On the other hand, if we store only cluster centroids separately and we end up 
with 500 clusters for the material, we only need 500*105*8 = 420 000 bytes for the entire cluster space. 
Adding new speech material will not necessarily increase the number of clusters, as it will already converge 
to some value depending on the distance criteria.   
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