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In this work, a new hidden Markov model (HMM) based text-to-speedtsjsystem utilizing
glottal inverse filtering is described. The primary goal of the new TTS sy$$eto enable

producing natural sounding synthetic speech in different speakitesstjth different speaker

characteristics and emotions. In order to achieve these goals, the fuattioa real human
voice production mechanism is modeled with the help of glottal inverse filteringeddal in
a statistical framework of HMM.

The new TTS system uses a glottal inverse filtering based parametrizatioochle#th enables

the extraction of voice source characteristics separate from othestspaeameters, and thu
the individual modeling of these characteristics in the HMM system. In the sgististage
natural glottal flow pulses are used for creating the voice source, antibte source charag
teristics are further modified according to the adaptive all-pole model giaeby the HMM
system in order to imitate the natural variation in the real voice source.

Subjective listening tests show that the quality of the new TTS system is coaisigibetter
compared to a traditional HMM-based speech synthesizer. Moreoearethh system is clearl
able to produce natural sounding synthetic speech with specific speadaicteristics.
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TEKNILLINEN KORKEAKOULU DIPLOMITYON TIIVISTELMA

Tekija: Tuomo Raitio

Tyo6n nimi: Aanilahteen kaanteissuodatusta hyddyntava Markovin piilo-
malleihin perustuva suomenkielinen puhesynteesijarjestelma

Paivamaara: 30.5.2008 Sivuja: 89+5

Tiedekunta: Elektroniikka, tietoliikenne ja automaatio

Professuuri: S-89

Ty6n valvoja: Prof. Paavo Alku

Tassa tyossa esitetaan uusi Markovin piilomalleihin (hidden Markov modeMMHperustu-
va danilahteen kadanteissuodatusta hytdyntava suomenkielinen pukssinestelma. Uude
puhesynteesimenetelman paatavoite on tuottaa luonnolliselta kuulostavadtisyatpehetta,
jonka ominaisuuksia voidaan muuttaa eri puhujien, puhetyylien tai jopa &@mneatiosisallon
mukaan. Naiden tavoitteiden mahdollistamiseksi uudessa puhesynteesimessiatmiinne-
taan ihmisen &é&nentuottojarjestelméaa aanilahteen kaanteissuodatuksen jandliiviuksen
avulla.

Uusi puhesynteesijarjestelma hyddyntaa aanilahteen kaanteissuodatedmaa, joka maht

dollistaa aanilahteen ominaisuuksien parametrisoinnin erillaédn muista puheenegpazista,
ja siten ndiden parametrien mallintamisen erikseen HMM-jarjestelmassa. Syaiteesssg
luonnollisesta puheesta laskettuja glottispulsseja kaytetaan aanilahteen lumpjaisemilah-
teen ominaisuuksia muokataan edelleen tilastollisen HMM-jarjestelman tuottamameidta
sen kuvauksen avulla, mika imitoi oikeassa puheessa esiintyvaa luonndilisi@Ehdeen omi-
naisuuksien vaihtelua.

Subjektiivisten kuuntelukokeiden tulokset osoittavat, etta uuden puhesymienetelméan lag
tu on huomattavasti parempi verrattuna perinteiseen HMM-pohjaiseersynikesijarjestel
maan. Lisaksi tulokset osoittavat, ettéd uusi puhesynteesimenetelma pysiyymaan luon-
nolliselta kuulostavaa puhetta eri puhujien ominaisuuksilla.

Avainsanat: puhesynteesi, synteettinen puhe, TTS, HMM, aanilahtéeteigsuodatus
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Chapter 1

Introduction

The ultimate goal of text-to-speech (TTS) synthesis is to create natunatlisguspeech
from arbitrary text. Moreover, the current trend in TTS research éallsystems that en-
able producing speech in different speaking styles with differentkspeharacteristics and
even emotions. In order to fulfill these stringent general requirementsmajor synthe-
sis techniques have attracted increasing interest in the speech resaaroiunity during
the past decade. These two alternatives are the unit selection technitjtiecamdden
Markov model (HMM) based approach. The former has been showietd gynthetic
speech of highly natural quality. However, unit selection techniquestialltow for easy
adaptation of the TTS system to different speaking styles and speakectdristics. In
order to obtain various voice characteristics in text-to-speech systemd baghe selec-
tion and concatenation of acoustical units, a large amount of speech detpied. It is
difficult and laborious to collect and segment the speech units, and the imykgina of
the TTS system requires databases of extensive sizes, which sdiraietiie use of this
TTS technique for example in handheld devices. HMM-based technigutsgn, benefit
from better adaptability and a clearly smaller memory requirement. Howevecuthent
HMM systems often suffer from degraded naturalness in quality. It eaargued that a
potential reason for the reduced naturalness in the current HMMiIaE® systems can be
explained by the use of signal generation techniques which are oversapbfiproperly
mimic natural speech pressure waveforms.

A large part of what can be characterized as naturalness in speeriesrfrem different
voice characteristics as well as their context dependent changes=fdiee it is justified
in speech synthesis to search for methods aiming at accurate modelingeoémliffoice
characteristics as well as prosodic features of speech. Towardsghats, HMM-based
synthesizers have been developed with special emphasis on voicetehat@as such as
speaker individualities, speaking styles, and emotions. Moreover, sraetrstudies have
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introduced improved signal generation techniques for parametric HM3@ebaTS systems
that have been shown to improve the quality of synthetic speech comparexdlitmtral
methods. However, the quality of the TTS systems using these techniquesnstihis far
from the quality of natural speech.

In the real human voice production mechanism, the excitation of voiced sjieeep-
resented by the glottal volume velocity waveform generated by the vibratiogl Yolds.
This excitation signal, the glottal source, has naturally attracted intereseatissynthe-
sis, and many techniques have been proposed to mimic the glottal sourc¢eraf speech.
Artificial models for the glottal source have been used in order to improveualty of the
synthesis. However, current models for the glottal source are ovdifsanas well, and the
resulting quality of the synthesis has not been satisfactory. To overcapedhlems due
to oversimplified glottal source models, the idea of utilizing glottal flow pulsesetdd
from natural speech with the help of glottal inverse filtering has beerogeah However,
previous studies based on glottal flow pulses extracted from naturetispee limited to
special purposes such as the generation of isolated vowels, and #fiédeom combining
automatic glottal inverse filtering with an HMM-based speech synthesizer maivbeen
utilized.

The human voice production and especially the voice source has beetiv@research
topic at the Department of Signal Processing and Acoustics at the Helsimersity of
Technology. One particular outcome of the research has been the glotedearfiltering
method developed by professor Paavo Alku in the early 1990s. Théogedemethod has
been studied and verified to yield reasonable estimates of the glottal sandcéhas been
used at the department and by other researchers for estimating the glotte.s Also
speech synthesis has been a topic of special interest among the peoplewddays work
at the department, but the previous research has been focused mdiofynant synthesis
based techniques, and recently the activity of the research on spgebless has been
minimal.

Phonetics and linguistics have been widely studied at the Department oft58ee
ences at the University of Helsinki. Also speech technology has beawctae research
topic. Lately, an HMM-based speech synthesizer was adopted to stutigh-speech syn-
thesis with a special emphasis on the modeling of Finnish prosody. Thealeseith the
synthesizer has been focused mostly on modeling the linguistic featuresemftswith the
HMM system, but speech synthesis algorithms have not been widely studied.

Since the information about the voice source characteristics is considalgble in
HMM-based speech synthesis, a collaboration between the two departmasnssarted in
2007. The objective was to use the glottal inverse filtering method to reveabibe source
characteristics, and utilize that information in HMM-based speech synthdsis, a new
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HMM-based speech synthesis system was created in co-operation witlottlepartments.

In this thesis, a new HMM-based speech synthesis system that utilizes glotede
filtering is presented. The new TTS system aims to produce natural sgusylithetic
speech capable of conveying different styles of speaking as wethatans. In order to
achieve these goals, the function of the real human voice productiomadppss modeled
with the help of glottal inverse filtering embedded in an statistical framework\vifH

The thesis is organized as follows. Basic information about speechgrodupercep-
tion, and synthesis is presented in ChaerThe methods used in speech synthesis in
general and especially the methods utilized in the new TTS system aretease@hapter
3. The new HMM-based TTS system is presented and fully described ipt&t#a and the
evaluation of the constructed TTS system and the obtained results aribeds$c Chapter
5. Discussion about the new synthesizer and the utilized methods with findlsmms are
presented in Chapté&



Chapter 2

Background

This chapter describes speech production and perception from thgeptive of speech
synthesis, followed by a representation of the source-filter theory, alrtitat most speech
synthesizers are based on. A general description of speech sgraysems is given at the
end of the chapter.

2.1 Fundamentals of Speech Production

Speech is produced by regulating the airflow from lungs through throag and mouth.
The air in the lungs is pressed upon chest and lung tissues, resultingiffi@m t trachea
and larynx. At larynx the airflow is modulated by vocal folds, which credtee main
excitation for voiced speech. Pharynx connects the larynx to oral asal navities, which
are collectively called the vocal tract. The volume and dimensions of the/phand
oral cavity can be adjusted, functioning as an acoustic time-varying filieally* sound
is radiated to surrounding air at lips and nostrils. The speech productiohamism is
illustrated in Figure2.1

The produced speech sounds can be basically classified into threerged-irstly,
voiced speech sounds are produced by using the air pressure te gecti folds into vi-
bratory motion. This generates a periodic signal rich in harmonics. Vomeuds form the
main part of most West European languages. In English, for exampgle,of §honemes
are voiced (Catford 1977). Secondly, unvoiced sounds are peddog constricting the
airflow somewhere in the vocal tract. This creates a continuous turbutéotvacharac-
terized by a noise-like waveform without a harmonic structure. The camimunvoiced
speech sounds are called fricatives. Thirdly, unvoiced stop contsoage produced by
completely stopping the airflow in the vocal tract. The release of the inagasssure
creates a transient noise burst. Speech sounds are often a combifiidh woiced and
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Figure 2.1: Speech production mechanism. (Karjalainen 2000)

unvoiced components.

2.1.1 \Vocal Folds

The vocal folds are two elastic tissue structures situated horizontally aklafye opening
between the vocal fold is called tigkottis (Flanagan 1972a). The alignment and the tension
of the vocal folds can be adjusted by the surrounding muscles and cestilagich enables
switching between respiration and different phonation modes. Duripiya¢isn the vocal
folds are widely separated (abducted), but during phonation theyl@se t each other
(adducted). When the vocal folds are adjusted properly and the attffowgh glottis is of
sufficient velocity, the vocal folds start to self-oscillate.

The behavior of the vocal folds in phonation is illustrated in Figiz As the air from
the lungs is pushed upwards to the closed vocal folds, the subglottalipeds increased.
This gradually forces the vocal folds to open, increasing the airflowdstvwhe vocal folds.
The airflow causes an underpressure at the glottis, which draws tlaé fetds together,
contracting the open glottal area. Finally the glottis closes up as the vocahibkdgether,
creating the main excitation in phonation. After the closure, the subglottadymeebegins
to increase again, starting a new period. Figiesshows how the airflow varies in time in
phonation.

The periodic signal generated by the vibrating motion of the vocal foldslisdcthe
glottal flow, glottal volume velocity waveform, or simply the voice source. Hie at which
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Figure 2.2: Diagram showing an idealized cycle of vocal fold vibration.s@8eaon Story
(2002))

Amplitude

| | | | |
0 5 10 15 20 25 30
Time (ms)

Figure 2.3: Glottal volume velocity waveform estimated from a sustained viay@lro-
duced by a male speaker using normal phonation.

the vocal folds vibrate defines the fundamental frequendy of the speech. The average
fundamental frequency of speech is 120 Hz for men and 200 Hz for w@Karjalainen
2000), and in normal speech the fundamental frequency variesxap@ately from 50 to
500 Hz (Hess 1983). However, the fundamental frequency candaglgwaried from 33 to
3100 Hz in arbitrary utterance (Hess 1983).

In addition to the control of fundamental frequency, the vocal foldsbeaadjusted to vi-
brate in different phonation modes. This affects the characteristics wbibe source. Nor-
mal speech is typically categorized into three phonation modes: breatmyah@modal)
and pressed. The main distinction among different phonation modes is theedefgad-
duction. If the adduction is loose, the phonation is called breathy. On theacgnf the
adduction is intense, the phonation is called pressed. In normal phonaiaddiction is
between breathy and pressed. The phonation type affects the wavafiok the spectrum
of the voice source. In breathy phonation, the fundamental frequemtyponent is em-
phasized, whereas in pressed phonation the higher harmonics areseraghahe spectral
envelope of the voice source is called dpectral tilt (Klatt & Klatt 1990). Additionally,
speech sounds can be produced in different registers, suchadmnyoand falsetto. In vo-
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Figure 2.4: lllustration of the profile of the vocal tract and the resultingtspkeenvelope
in phonation of vowels [a], [i] and [ul].

cal fry, the vocal folds are loosely closed which permits the air to bubbtutr glottis,
creating a low-pitched creaky sound. In falsetto, the vocal folds dsepantly vibrating,
creating a breathy high-pitched sound.

2.1.2 Vocal Tract

The vocal tract extends from the glottis up to the lips. It consists of foutiea: the larynx,
the pharynx, the oral cavity and the nasal cavity. The length of the walis normally
about 17 cm in men and 15 cm in women (Karjalainen 2000, Claes, DologloBpwah &
van Compernolle 1998). The function of the vocal tract is to shape thetrapeharacter-
istics of the source. It functions as a time-varying filter that creates moeswgnances or
formants. The shape and dimensions of the vocal tract defines the properties &ftéhn.
Different sounds are formed by modifying the vocal tract profile byngag the position
of the tongue, lips, jaw and velum. In vowels, the oral tract is open, buasalnsounds
the oral cavity is blocked and the velum lowers down and couples the ctoaétract to
the nasal tract. An illustration of the profile of the vocal tract and the regusjpectrum
envelope in phonation of different vowels in show in Fig@ré
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2.2 Basics of Speech Perception

The perception of speech is a special function of hearing. Speeckptien has been
widely studied with psychoacoustical and physiological methods. The basigstical

cues of speech perception are rather well know, but the speecliispégher-level hearing
mechanism is yet widely unknown. This section will present the fundamprapkrties of

hearing and the most important perceptual characteristics of speech.

2.2.1 Hearing

Hearing is the ability to perceive sounds by detecting the pressure vasiatitime air. The
outer ear is the first organ that takes part in the perception of sourmssists of pinna, ear
canal and eardrum. The pinna gathers and focuses sound ermetdasa great effect on
spatial hearing. The ear canal extends from pinna to eardrum, aatidiusias an acoustic
filter. It amplifies frequencies around 3 kHz (Gulick, Gescheider & Frid®@9), which is
an important region for the speech perception. The eardrum transtbenasoustic wave
motion to mechanical vibrations. The three ossicles in the middle ear transfébtatons
of the eardrum to oval window. The purpose of the middle ear is to efficieratysfer
mechanical energy to waves in fluid. The transmission of sound throughitithe ear is
most efficient at frequencies from 500 to 4000 Hz (Moore 1997).sbluad is transferred to
electrical signals in cochlea in the inner ear. The cochlea is filled with liquid,whiaves
in response to the vibrations coming from the oval window. As the liquid madvess,
cells are set in motion, which then convert the vibrations to neuronal firiilge cochlea
can be considered a bank of filters whose outputs are ordered torahppithe auditory
nerve gathers sound information decoded to electrical signals for fustbeessing. The
overview of the human hearing system is presented in Fig&re

The range of audible frequencies extends from 20 Hz to 20 000 Hzh&#ueng is most
sensitive at 4 kHz, and the sensitivity decreases towards both extrétoegver, the full
bandwidth of hearing is not used in speech, since the speech signa¢ ceamd-limited to
about 10 kHz with only minor effects on its perception (Kleijn & Paliwal 1998)rther-
more, the intelligibility of speech can be obtained with much narrower bandwitii per-
ceived pitch of a sound is generally proportional to the logarithm of tregpuracy. There-
fore in many applications it is more convenient to describe the frequetatgdeguantities,
such as pitch or formant frequencies, with perceptually weighted auditags instead of
physical frequency. One of the earliest auditory scales was the pitolscale measured in
mels (Stevens, Volkmann & Newman 1937). The mel-scale is obtained by asKijects
to adjust the frequency of a tone to be half or twice as high as that of a iegrefgr com-
parison. Two other important auditory scales are the critical band rateuneglais barks
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Figure 2.5: Human hearing system. (Karjalainen 2000)

(Zwicker, Flottorp & Stevens 1957) and the Equivalent Rectangulad®atith (ERB) rate
(Moore & Glasberg 1974), which are both based on measuring thedineguesolution.

2.2.2 Perception of Voiced Speech Sounds

Voiced speech sounds are described by the periodic excitation of tlaé fetds and the
formant structure resulting from the profile of the vocal tract. Two ordHiest formants
are used to distinguish between different vowels (Pickett 1999). Tles fithmants remain
rather constant regardless of changes in articulation. Individualeiots can be described
by center frequency, amplitude and bandwidth. The just noticeableafffes (JNDs) for
first and second formant frequencies have been measured to b@& fim& percent of the
center frequency (Flanagan 1972a). The formant amplitude JNDstinea&d to be 1.5
dB and 3 dB for first and second formants, respectively (Flanag@2a)9 Changes in
formant bandwidth (-3 dB) of order 20—40 percent have been foahe just noticeable
(Flanagan 1972a).

Nasal sounds are described by a nasal murmur, whose spectrum isateohiy the low
frequency components. The spectrum is determined mostly by the main mesanfathe
nasal cavity. The spectrum of nasal murmur vary little among differeratl sasinds, since
the size and shape of the nasal cavity cannot be altered. Nasal sooodsorate also
antiformants which reduce the energy at certain regions. Nasal sewmednsiderably
lower in intensity than vowels due to blocked oral cavity.

The source waveform and spectrum of voiced sounds can be vargeditation inten-
sity, fundamental frequency and phonation type. The spectral sloffe afxcitation can
vary from —15 dB per octave of breathy phonation to —9 dB per octapessed phonation
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Figure 2.6: Glottal flow and its spectrum in different phonation modes. Olethen ide-

alized glottal flow in modal (normal) phonation and its spectrum is presentexisgectral
slope of the excitation is about —12 dB per octave. In the middle, laryngddjizessed)
phonation is illustrated where the spectral slope is about -9 dB per octavéhe right,

breathy phonation is visualized where the spectral slope is —15 dB pgeautd the higher
harmonics are replaced by aspiration noise.

(Pickett 1999). The spectral slope can also vary due to increasabtleftmrt. In pressed (la-
ryngealized) phonation, the glottal pulse waveform is narrower, thegfimental frequency
component is reduced, and there may be diplophonic irregularities inrmgrtal period.
Breathy phonation is characterized by increased open glottal pericgeéased amplitude
of the fundamental component, and a tendency of higher harmonics t@leead with
aspiration noise (Klatt & Klatt 1990). Figui26 shows how the glottal waveform and its
spectrum vary in different phonation modes.

Temporal fine structure is also known to exist in the glottal source. Theeshad the
periodicity of the glottal pulse is subject to various perturbations, for elaijtper and
shimmer. Although the magnitude of jitter in normal voices is found to be slightly less
than the detectability threshold, the fine structure of the glottal flow may be fisant
perceptual importance (Klatt & Klatt 1990).

2.2.3 Perception of Unvoiced Speech Sounds

Unvoiced speech sounds can be basically categorized either as &soatistop consonants.
Although fricatives and stop consonants may also incorporate a voicgegarent, the
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properties of voiced fricatives and stop consonants differ greatiyn fpare vowels, and
their distinctive features are somewhat the same whether the voiced paasésnpor not.

Fricatives are described by a continuous aperiodic noise. The dpdwracteristics of
the noise vary according to the articulatory configuration. The duratidhesfe sounds
is relatively long, though the length depends on many contextual factansexample,
the duration of the fricative /s/ can range from 20 to 200 ms (Klatt 1974it KI&76).
The spectral envelope, energy, and temporal characteristics veoydatg to individual
phoneme. In the case of voiced fricatives, the glottal vibrations modulateotitéruous
aperiodic noise.

Stop consonants are mainly described by a low-energy interval called gagtdollowed
by a transient noise burst. The spectral characteristics of the noisievany according to
the articulatory configuration. However, it is doubtful whether the spectintent of this
burst is sufficient for phonetic identification (Kent & Read 1992). Tgficthe bursts are
no longer than 5 — 50 ms in duration (Kent & Read 1992), and they arefdhe shortest
acoustic events that are analyzed in speech. The burst can alsarageasn which case
the burst is accompanied by a fricative-like longer noise tail. The burseiseped by the
stop gap, which corresponds to the low energy period due to the artigutatcusion. For
voiceless stops, the stop gap is virtually silent. For voiced stops in other thiahimitial
position, the stop gap usually contains a low frequency band of eneltgy taevoice bar.
The duration of the stop gap is usually 50 — 150 ms (Kent & Read 1992).c8tgpnants
are also characterized by a delay in voicing relative to the beginning obike hurst. This
delay is called the voice onset time (VOT) (Lisker & Abramson 1964). Theavonset time
is a major feature in distinguishing voiced and unvoiced stop consonamtsn¥aced stop
consonants the VOT is between 25 and 100 ms, whereas for voiced stepnemts VOT
can vary between —20 and 20 ms (Kent & Read 1992), in which case itiagycan start
before the noise burst.

During the transition from voiced to unvoiced and from unvoiced to voiceohds, the
formant frequencies are shifted due to change in the vocal tract .sfdgie functions as
an additional acoustic cue for the identification of the phoneme. For exaexpleriments
with synthetic speech show that stop consonants are identified withoutieelost if the
formant transitions are properly specified (Kent & Read 1992). Inrabspeech, however,
the influence of formant transitions is not so clear. The formant transitealzout 50 ms
in duration (Kent & Read 1992).

2.2.4 Acoustic Effects of Context and Speaker

The properties of individual speech sounds are largely dependetiteocontext of the
phoneme in syllables, words, and phrases. In continuous speecipeabehssounds are
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produced in rapid succession, and the boundaries between indigoduadls are blurred.
This effect, the interaction of speech segments, is called the coarticulatb@mtictilation
enables fast and smooth production of speech, but in speech techioleghallenging
to model and take the coarticulation into account when performing tasksasuspeech
synthesis or speech recognition.

In addition to the coarticulation, speech is greatly affected by the messagdedtio be
conveyed. All the modifications in the intonation, stress, and rhythm ofcbpledl in the
category of prosody. Prosody has many functions, such as synthsation of utterance
type, and expression of interaction, attitude or emotion. The prosodiaésatary accord-
ing to the prosodic functions. Prosody is formally defined as the supresegl features of
speech that are conveyed by the parameters of fundamental frgqueeosity, and dura-
tion. In addition to these parameters, the spectrum pattern of speech isaémbin terms
of prosody. A large part of the prosodic variation is generated bygihgrihe characteris-
tics of the glottal source signal, such as fundamental frequency, intesisityvoice source
spectrum. Since anomalies in prosody are easily perceived, the aowdeting of prosody
and thus the glottal source signal is especially important in order to creatalsounding
speech. For an extensive summary of speech prosody, see forlex@&igiett 1999).

Speakers vary substantially according to gender, age and other imaliddferences.
First, due to the differences in physical properties of the speakér.aaihe size and shape
of vocal folds and vocal tract, the speech sounds are producestetiffy. Second, the
individual differences in speaking style, such as language, acqa#cls rate, and dialect,
affect the use of the speech production organs. The message chspegsually well
understood despite the great variability, but the speaker characteastgsch give much
useful information. This is a property of natural speech, and therdfer preservation or
alteration of speaker characteristics in speech is an important objectiveex&mple, in
speech synthesis, this requires the correct modeling of the speeditiioodnechanism as
well as the higher-level speaking characteristics.

2.3 Source-Filter Theory

The source-filter theory of speech production states that speech s&@gnbe represented
in terms of source and filter characteristics (Fant 1960). In human lsgeeduction the
primary sound source is the excitation of the vibrating vocal folds. Thedgiervibration
generates a rich harmonic spectrum, whose energy declines with ingréasjonency. The
average rate of decline is 12 dB per octave (Flanagan 1972a, Kenta& E#92), but it
can be greatly varied according to phonation mode. The vocal tract ntfieexcitation
spectrum with a transfer function with formants or antiformants. Finally thacdoadiates
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Figure 2.7: Source-filter model of speech production. (a) Speech igdduitizy the vibra-
tions of the vocal folds. This generates a rich periodic spectrum, whielggrdeclines
with increasing frequency. (b) The vocal tract modifies the glottal excitdiyocreating
resonances. (c) Spectrum of the signal before lip radiation. (d)ddiation of sound from
lips and nostrils to surrounding air creates an effect that enhancegytier frequencies of
the signal. This is called the lip radiation. (e) The spectrum of the speedl.sign

to the surrounding air at lips and nostrils. This causes a frequency\depeeffect called
lip radiation, which acts as a high-pass filter. The magnitude of this effeppi®aimately
6 dB per octave (Flanagan 1972a), but it is usually approximated by a dififfele@ntiation
operation (Markel & Gray 1980). The source-filter theory is summairiz&dgures2.7 and
2.8

Assuming a linear time-invariant system, the above model can be describecdhimsform
notation by the equation

S(z) = E(2)G(2)V (2L(2). (2.1)

whereS(z) is the speech signék,(z) the impulse excitatior3(z) the glottal shaping model,
V(z) the vocal tract model, and(z) the lip radiation model (Markel & Gray 1980). The

impulse excitatiorE(z) does not represent a physical signal, but is rather used as a math-

ematical input to the glottal model filter. Transfer functidB&) andV(z) are usually
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Figure 2.8: Spectrum of the component in the source-filter theory. (@jt&pmn of the
glottal excitation. (b) Amplitude response of the vocal tract filter. (¢) Ampétsdectrum
of the lip radiation. (d) Spectrum of the speech signal.

described with all-pole linear filters, ahdz) is given by a differencing filter
L(z) =1—pz 2, (2.2)

where, in the definition by Markel & Gray (1980),is set to 1. Lip radiatior(z) is the
only numerator in Equatiof.1, but it is nearly canceled by one of the denominator terms
(Markel & Gray 1980). Thus the model can be described as

aazaagb, 2.3)

where the all-pole filter is defined as

1

AD= SV aLE: (2.4)

The detailed derivation of this model is presented for example in Fant ] B9@0Flanagan
(1972a).

The source-filter theory is a linear mathematical model with many simplifying assump
tions. Therefore some aspects of the theory are not really valid. Fonagstd has been
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observed that interaction between source and vocal tract can oauaiuiral speech (Klatt
& Klatt 1990). Moreover, the all-pole model is not perfectly appropriateniodeling an-
tiformants, which are present in nasal sounds. However, the (all-palege-filter model is
sufficient for most applications since the benefits of the linear model arb greater than
the disadvantages.

2.4 Overview of Speech Synthesis

Speech synthesis is the artificial generation of speech. Speech symaesarious useful
applications, such as telecommunication services, man-machine communicatiprade
education, aid to persons with disabilities, research on speech prodaaotioperception,
and many others. Depending on the application, different implementationspéech
synthesizer may be used. Today a text-to-speech (TTS) system is maylbheshcommon
and the most versatile solution. The ultimate goal of such a system is to reaexny
and convert it to speech. However, there are various criteria fduatiag the resulting
speech or the system as a whole, and various approaches can lie st the required
specifications. In this section, first a short overview of history aneldgvnent of speech
synthesis is presented. For more extensive summary of history and jpieexibof speech
synthesis, see for example Klatt (1987), Flanagan (1972a), andgaiaii®972b).

2.4.1 History of Speech Synthesis

The earliest attempts to produce artificial speech were made more than tdietiyears
ago (Flanagan 1972a). The early mechanical implementations of spegbbsiyers mod-
eled the physiology of the speech production organs. For example, invbrokempelen
presented a speaking machine which consisted of bellows, a vibratinganeg@ rubber
tube modeling the vocal tract.

As the electrical technology evolved, interest in speech synthesis sstteal he first
formant synthesizer was built by Stewart in 1922 (Klatt 1987). It céedisf two resonant
circuits, which were excited by a buzzer. This early synthesizer was@abenerate a static
vowel with two lowest formants. The first electrical device that could poedcontinuous
speech was the Voder developed at the Bell Telephone Laboratorie8 It was based
on the idea of a vocoder, a voice coder, which could analyze speec$iomtly varying pa-
rameters and then reconstruct an approximation of the original spexulitfe parameters.
The first dynamically controlled formant synthesizers were introduce®%8.1 Walter
Lawrence’s PAT and Gunnar Fant's OVE I, and especially their imprésesd versions,
could generate intelligible speech. Shortly after that the first articulat@gctpsynthesizer
was introduced in 1958. Consequently, the speech analysis and syndutsiques split
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into two paradigms: modeling of the speech production mechanism itself, anelingpd
only the speech signal (Sproat & Olive 1995). This division stands ¢vday, though
much co-operation exists between the fields. The first full text-to-spggstem was de-
veloped in 1968 by Noriko Umeda, and in 1972 John Holmes demonstratesiytithetic

speech could be so natural sounding that the average person couédl tloe difference

between the synthetic and the original sentence (Klatt 1987).

Since the late 1970s, many commercial speech synthesis and text-to-gpeduabts
have been introduced, with MITalk (Allen, Hunnicut & Klatt 1987) beinglpably the best
known TTS system. In the mid 1980s the concept of high quality TTS syntappeared,
mostly due to new technologies. Modern synthesizers have largely maacefectronic
circuitry to simulation on a digital computer. The methods used in speech simtéels-
nology today are very sophisticated as the latest findings from researafiformation
technology, signal processing, acoustics, speech production, guistics are applied di-
rectly to speech synthesizers. The quality of speech synthesis has edpma level of
great intelligibility, but the naturalness is yet a problem. Nevertheless, natueah sound-
ing speech synthesizers are constantly developed based on varfetendimethods. In the
next two sections, TTS architecture and speech synthesis methodsaigeced in more
detail.

2.4.2 General TTS Architecture

If the input to a speech synthesizer is given as text, the system is callettita-8peech
(TTS) synthesizer. However, in the case of speech synthesizers withdimgtabulary,
such as machines playing prerecorded samples, the definition is not uniaudhig\ccord-
ing to the more specific definition by Dutoit (1997), text-to-speech meangttauction
of speech by machines, by way of the automatic phonetization of utter".

A general functional diagram of a TTS system is shown in FiQu@eA TTS synthesizer
consists of two main components, called the high-level and low-level sysihEse high-
level synthesis converts the text input to a form that corresponds toetfieed acoustic
phonation of the utterance. This means converting the text input into a fihonesome
other linguistic representation and predicting the desired prosody. Inrtloess, the in-
put text is first normalized into plain letters, and the structural propertigbeofext are
analyzed. After that, the text is converted to a phonetic level, which is caleetetter-
to-sound conversion (Pickett 1999). Varying amount of linguistic amalggperformed on
the text in order to predict the prosodic features of the utterance, sushrasing and ac-
centuation patterns. Based on the prosodic analysis and the structoratatibn, actual
fo contour and phone durations are predicted for the utterance, typically statistical
methods. From the linguistic and prosodic information, the low-level syntlgesisrates



CHAPTER 2. BACKGROUND 17

Text Text and Im_gwstlc - Wavefo_rm Speech
analysis Phonetic generation
level
High-level synthesis Low-level synthesis

Figure 2.9: General functional diagram of a TTS system.

the speech waveform. For the waveform generation, today’s TTSnsgstemmonly em-
ploy technigues based either on the source-filter theory or modificatioccenvéitenation of
prerecorded speech samples. Speech synthesis methods are ednsidiee next section
in more detail.

2.4.3 Speech Synthesis Methods

Once the high-level synthesis of a TTS system has completed its task, theviehvgynthe-
sis starts generating the speech waveform. The waveform generatidye @ccomplished
in many ways, and the synthesis methods can be categorized accordimmptrs aiteria.
A basic division can be made according to whether the speech is compldiétyadly
generated from parameters, or are real speech samples used indbgsprohis property
greatly affects the functioning of the synthesizer. Formant synthesisylatory synthe-
sis, and linear predictive coding (LPC) based synthesis can be platieel fiost category,
whereas concatenative synthesis belongs to the latter.

Formant Synthesis The most basic acoustic speech synthesis technique, formant synthe-
sis, employs the source-filter theory of speech production describedcin82.3. The
vocal tract model consists of individually adjustable formant filters cotatkin serial, par-
allel, or often both. Different phonemes are constructed by adjustingetitercfrequency,
bandwidth, and gain of each filter. If the adjustment is made at certain timeatgefor
example every 5 ms, continuous speech can be generated. The soubzeroodeled with
voice pulses or noise. A basic speech synthesis model based on the-§tter theory is
shown in Figure2.10

Formant synthesis received a big boost in 1980 with Dennis Klatt's publicatica
sophisticated formant synthesizer with a complete computer program fectsggnthe-
sis. Today, the quality of formant synthesizers is inferior compared to testlsynthesis
methods, such as concatenative and LPC-based methods, but foyméesss has many
applications in reading machines for the blind and in speech perceptionraepés for
creating stimuli (Pickett 1999).
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Figure 2.10: Speech synthesis model based on the source-filter theory.

Articulatory Synthesis Articulatory synthesis tries to model the natural speech produc-
tion process as accurately as possible. Thus it is theoretically the bestdfethinigh
quality speech synthesis, but it is also by the same token the most difficultvs te#rim-
plementation and computational load. Because of the limitations of the curesttspro-
duction models and computational power, articulatory synthesis has nevadtas much
success as other speech synthesis methods. However, it has marlyappétations in
basic speech research, and it might have a promising future since gtielatory models

are steadily developed and computational resources are increasing.

Concatenative Synthesis In concatenative synthesis, prerecorded samples of real speech
are smoothly combined to create an arbitrary synthetic utterance. Commonngthide
are word, syllable, demisyllable, phoneme, diphone, and triphone. Bedhe natural
characteristics of the speech are preserved in the units, concateyatiliesis is capable of
generating highly intelligible and natural synthetic speech. However, therdiguities in
concatenation points can cause distortion despite the use of various sma@dtfurthms.
Also, the set of speech units is always limited. It is highly impractical or imptessistore
all the necessary units for various speakers in various contexts. diésraint makes the
concatenative speech synthesis less flexible: it can imitate the specifiespéth only
one voice quality. Another constraint is the need for vast storage fureatiecorded units,
but with the cost of computer storage decreasing, and with the developifast database
access techniques, this problem is not as serious as it used to be. thiedancatenative
speech synthesis is probably the most widely used and most naturairsgpuimat due to
the mentioned limitations, it might not be the best solution.

LPC-Based Synthesis In linear predictive coding (LPC) based speech synthesis, source-
filter theory of speech production is utilized the same way as in formant siathmit in
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the LPC-based synthesis the filter coefficients can be automatically estimated ghort
frame of speech instead of finding the parameters for individual forffilgars. With an
appropriate excitation, the filter coefficients can be used to synthesieelsp€he excita-
tion is either periodic source signal or noise, depending on whether titleesjzed speech
segment is voiced or unvoiced (see Figdr&0. Linear prediction (LP) is a widely used
method in speech technology, and is more closely discussed in S8ctioithough the
quality of a basic LPC vocoder is considered poor, high quality syntheiecdpcan be
produced with more sophisticated LPC-based synthesis methods. Theftgpeitation
signal is especially important for the quality of synthetic speech, as will beshater in
this thesis.

HMM-Based Synthesis One widely applied method in speech synthesis is the use of
hidden Markov models (HMMs). HMM is a statistical model, which can be usedbd-
eling the speech parameters extracted from a speech database, agertbeting the pa-
rameters according to text input for creating the speech waveform. Hied&d speech
synthesis systems are able to produce speech in different speakirg wsitfiedifferent
speaker characteristics and even emotions. They also benefit from dudability and
clearly smaller memory requirement. However, the HMM-based TTS systdgrs siffer
from degraded naturalness in quality compared to concatenative lpeshsynthesizers.
Nonetheless, the HMM-based TTS systems are developing fast, and mucliswarried
out for finding techniques to enhance the quality and naturalness ofetignspeech. The
current prevalent platform for HMM-based speech synthesis is tH& $yEtem developed
in Japan (HTS 2008). It is widely used among speech synthesis reseaand developers,
and lately numerous HMM-based TTS systems have been introducediftusianguages.
The hidden Markov models are generally described in Se8tidand the new HMM-based
TTS system is further described in Chapter
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Methods and Algorithms

In this chapter, the most essential tools for speech synthesis in gendraspecially for
this work are presented. The more detailed description of the methods implenrettie
new synthesizer are presented in Chapter 4.

3.1 Linear Prediction

Linear predictive coding (LPC) is one of the most widely applied techniguespeech
technology. Although linear prediction (LP) has been applied in many fietdslbng time,
the first researchers to directly apply it to speech analysis and synifersiSaito & Itakura
(1967) and Atal & Schroeder (1967). Today linear prediction hamwuarapplications in
speech technology, for example in speech coding, synthesis, analydisscognition, both
for commercial and research purposes.

The basic idea behind linear prediction is that a sample of data can be pdeloljcte
linear combination of previous samples. In speech technology, howbeegoal of LPC
is not really to predict any samples, but to represent the spectral pavefdhe speech
signal. Therefore, speech can be represented as a combination aof aniiltan excitation
signal, which is equivalent to the source-filter model of speech produclioe importance
of LPC lies both in its accuracy of estimating the speech parameters and intitersfeed
of computation.

3.1.1 Derivation of LPC filter

A samplex; can be stated as a linear combinatiomgfast samples. This can be formulated
as

3

Xn=—") aXn_i, (3.1)

20
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whereg; (1 <i < m) are the predictor coefficients) the model order and the minus sign
has been added for convenience. Thus the error signal, or theaksidn be stated as

m m
€nh =Xn—Xn =Xn+ Zaixn—i = %aixn—iy (3.2)
i= i=

whereag is 1. The optimal predictor coefficients (1 <i < m) can be obtained by min-
imizing the square o&,. This least squares minimization leads to the following so called
normal equations:

m
Y A Xn-iXnk =Y Xn-iXn, 1<i<m (3.3)
k=1 n n

(Markel & Gray 1980, Rabiner & Schafer 1978). Several algorithagetbeen developed

to solve EquatiorB.3, but in speech processing, two specific solutions are commonly used.
These are referred to as thevariance method and theautocorrelation method, of which

only the latter is guaranteed to yield a stable filter. In the autocorrelation methied,
assumed that the error is minimized over an infinite intervad,< n < oo, and the signal is
zero outside the time interval® n < N — 1. In the autocorrelation method, Equati®:3

can be rewritten as simultaneous linear equations:

R(0) R(1) R(2) ... R(m—1) a R(1)
R(1) R(0) R(1) ... Rim-2) a R(2)
R2) R1 RO ..Rm-3) ||a [=—|R3 [, 34
Rim—1) R(m-2) R(m.—3) R(0) am R(m)
where
N-1-k
RK= S XXnek (3.5)
m=0

In matrix form, Equatior8.4 can be written as

Ra=—r. (3.6)

Various approaches can be used to solve the coefficgeinten Equation3.6, but since the
matrix R is a symmetric Toeplitz matrix, the coefficients are most efficiently solved with
the recursive Levinson-Durbin algorithm (Markel & Gray 1980, Rabi& Schafer 1978).

3.1.2 Properties of Linear Prediction

Linear prediction coefficients can be represented as a digital filter,eyb@ser spectrum
represents the spectral envelope of the analyzed signal. The resutiibegirfipulse re-
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Figure 3.1: lllustration of LPC analysis. (a) Speech signal. (b) Resgigahl. (c) Spectral
envelope of the speech estimated with 20th order LPC.

sponse (FIR) filter is called the inverse filter, and is denoted in the Z-doraain a
Az) =5 az®. (3.7)

The linear speech production model introduced in Se@i8rstates that the speech can be
thought as a result of impulse excitation, glottal shaping model, vocal trad¢lmand lip
radiation model, i.eS(z) = E(z)G(z)V (z)L(z). The idea of LPC analysis is to separate the
excitation and the filter using the speech analysis model described as

E(z) = S(2A(2). (3.8)

Thus, the excitatioft (z), or the residual signal, will become an impulse train with additive
white noise, whereas the filtéy(z) is an estimate of the overall effect @{z)V (z)L(z), the
all-pole spectral model of speech. An illustration of LPC analysis is showigimre 3.1

The inverse of the prediction filter is called a synthesis filter. In speecthesis, the
synthesis filter is excited by an appropriate excitation signal to createlspEee synthesis
model is described as

S(z) =E(z2) —. (3.9)
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3.1.3 Line Spectrum Pair (LSP) Decomposition

LPC is frequently used for transmitting the spectral envelope of speedltharefore it has
to be tolerant to quantization and transmission errors. Since the LP caefiei® such are
very sensitive to errors, various coefficient representations hese teveloped to make
the transmission of coefficients more robust. One of the most efficient a@wywused
coefficient representations is the line spectral frequencies (LSHF&¢hvare the roots of
the LSP polynomials. LSP polynomials were first introduced by Itakura5) %t it was
Soong & Juang (1984) who got them to awareness of the general public

The spectral envelope of a speech signal can be represented BypotyilnomialA(z) =
zrk“:oakz*k, wherea, are the model coefficientsn the model order andg = 1. The line
spectrum pair (LSP) polynomials féxz) are defined as

P(2) = A(2) +z ™ 1A(z 1)

Q2) =A(z) —z ™Az ). (3.10)
The original polynomialA(z) can be reconstructed by
Az) = % [P(2) +Q(2)]. (3.11)

The result of such a decomposition is thafifz) has all roots within the unit circle, then
the roots of the polynomiaB(z) andQ(2)

1. are on the unit circle.
2. are simple (they do not overlap).
3. are interlaced.

(Soong & Juang 1984). These properties are illustrated in Figi&reSince the roots are
interlaced, the stability of the filter is guaranteed if and only if the locations ofdbts
on the unit circle are monotonously increasing. Moreover, line spect@lieéncies have a
well-behaved dynamic range (Soong & Juang 1984), that is, a sliglatizar to the root
locations on the unit circle does not affect much the filter characteristhuss, hiven a set
of line spectral frequencies, the corresponding LPC filter can benstwwted with great
robustness and stability check. Another benefit from using LSFs is ity logtiéepolation
characteristics compared to LPC coefficients. In speech coding atigesigithe parameters
are transmitted frame-wise, possibly causing large changes in the valoie$, may be
heard as undesired transients. To avoid this, interpolation is used beadgeent frames
to smooth the parameters. The interpolation characteristics of LSFs in termpeaifas
distortion and stability have been found at least equal (Umezaki & Itakeséd, Atal, Cox
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Figure 3.2: lllustration of the unit circle and the roots of the polynomidls, P(z), and
Q(2). The order of the polynomiaA(z) is eight. The trivial zeros oP(z) andQ(z) are at
—1 and+1, respectively.

& Kroon 1989) or superior (Paliwal & Kleijn 1995) compared to any otlemresentation,
including the original LPC coefficients.

In the calculation of LSFs, a major task is to find the roots of the LSP polynonhietise
process, first, the trivial zeros of the polynomiBiz) andQ(z), depicted in Tabl&.1, are
removed. Since there is no general formula for solving the roots of a poliah of order
greater than four, numerical methods must be used for solving the remaiatsy How-
ever, it is known that the roots of the LSP polynomials lie always on the umieciiT his
information can be utilized in order to make the numerical search more effidiéoite-

Table 3.1: Trivial zeros of the LSP polynomials.

(m+1)even (m+1)odd
P(z) none z=-1
Qlzg z=+1,-1 z=+1




CHAPTER 3. METHODS AND ALGORITHMS 25

over, the symmetric properties of the polynomig(g) andQ(z) can be utilized in solving
the roots. Usually, the polynomials are transformed to Chebyshev polynordetsi( &
Ramachandran 1986), which reduce the order of the root solvindgonaio half.

3.2 Fundamental Frequency Estimation

Fundamental frequencyfd) estimation is one of the most important problems in speech
processing. Although many solutions have been proposed, and margnofitbrk well in
their specific context, none of the presently available methods can betespegive per-
fectly satisfactory results across wide range of speakers, applicatiodperating envi-
ronments. There are many reasons for the difficulties in fundamentakinegestimation.
Although the periodicity of the speech signal derives from the vibratibttseovocal folds,
the estimation algorithms must cope with a mixed excitation consisting of voiced and un
voiced components. The characteristics of the voiced component cagreatly, and the
fundamental frequency is changing continuously with time, often with eadtabfzeriod.
The voice onsets and offsets, subharmonics of fundamental fregfenmant structure,
and the wide dynamic range of speech make the fundamental frequemgtes more
challenging.

Fundamental frequency estimators, or pitch detection algorithms (PDAs)Jyisonsist
of three components: a pre-processing stagefdlestimation, and a post-processing stage.
The aim of the pre-processing stage is to remove interfering signal canismrsuch as
extraneous noise, vocal tract influence, and DC offset, and to transhe signal to better
fit the later processing stages. The preprocessing methods includeafopke low-pass
filtering, inverse filtering, cubing, and peak or center clipping (Talkinsl$abiner 1977).
The purpose of the post-processing stage is to correct the errorsimtheefy estimation.
A straightforward and very successful strategy is to use median filteRagifier, Sambur
& Schmidt 1975), which very effectively ignores outliers while preseguhre fine structure
of the fg contour and the sharpness of true step transitions. Another sudaessfind is
dynamic programming (DP). It is based on the concept of cost functiochwienalizes
for large variation between two consecutive samples and rewards f& vicinity between
them. Dynamic programming was first used fin estimation by Bauer & Blankenship
(1974), and later clearly outlined by Ney (1981) that it could be also fmefd smoothing.
Also various heuristics can be used to correct the errors by utilizing kmmwvledge of the
speech signal or information from pafgtestimates.
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3.2.1 Time Domain Approaches

Time domain PDAs are based on the estimation of the fundamental period ofatbipeyi+
odic speech signal. A straightforward way of finding the fundamentabgés to examine
how often events, for example peaks or valleys in the waveform repemisttives. These
methods are easy to implement and do not require much computing powere Imatt xery
robust with complex speech spectra. The algorithm described by Goldbéh&a(1969)
is probably one of the most widely used methods of this type. Another relestdré, the
zero-crossing rate (ZCR) is a measure of how often waveform @asse per unit time. It
gives information about the spectral content of the signal, bég estimation it has certain
problems described for example in Gerhard (2003) and Kedem (19B&)ever, ZCR as
such is a statistically informative feature (Gerhard 2003), and it can dx sisccessfully
for example in classification problems. Singegestimation is closely related to the classi-
fication of speech into voiced or unvoiced segments, ZCR can be usesligplamentary
feature infp estimation.

Autocorrelation analysis is one of the most robust and reliable methods iarherdal
frequency estimation. It is based on the fact that a periodic signal wilinbiéas from one
period to the next. An autocorrelation function (ACF) is the measure of similafitiie
speech signal with itself as a function of time separation between them. lroangiation
analysis, an ACF is computed from a windowed segment of speech sighalarialysis
frame size is chosen to be at least twice the longest expected period éR&aBiYV). For
signalx, and window sizav, the ACF is defined as

n+w—1
(t) = Z Xj X1, (3.12)
j=n

wheret is the time delay (Paliwal & Kleijn 1995). However, fdg estimation purposes, it
iS more convenient to use a slightly different definition:

n+w—1-T1

mM= > XX (3.13)

J=n
In Equation3.13 the size of the analysis window decreaseq ascreases. This has a
tapering effect, so that the ACF will have smaller values with increasifidnis attenuates
the multiples of fundamental period peaks in ACF. Thus, the highest pedilkdéxg the
peak at zero depicts the fundamental period of the windowed signal, i.el#tien of the
signal with itself is strongest at time(t # 0). Usually the highest peak is found with an
exhaustive search within a predefined range of lags. A segment eflsignal and its
autocorrelation function is shown in FiguBe3.

The computation of the autocorrelation function is quite time consuming, but ntany a

gorithms have been introduced to make the computation faster (see for exRamiher &
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Figure 3.3: Speech signal (a) and its autocorrelation function (b). €ak porresponding
to the fundamental period is depicted with a circle. The multiple of the fundamestiald
peak, depicted with an arrow, is attenuated due to the tapering effect.

Schafer (1978)). Since the autocorrelation functior) is the inverse Fourier transform of
the power spectrur§( f ), autocorrelation can be defined as

(1) = /_ZS(f)ejZ"“df. (3.14)

Autocorrelation function is usually calculated through the efficient fasirieo transform
(FFT).

Despite the robustness of the autocorrelation analysis in many contextssitina flaws
that reduce its utility as a PDA. The autocorrelation function of a voicedcspesually
displays a prominent peak at pitch period, but also other peaks areprisant due to
the formant structure. The strength of the other peaks can be rediitedanous pre-
processing techniques, but, nonetheless, errors due to other peaksranon for autocor-
relation based PDAs. Another problem is the difficulty of selecting an ayiate window
length. Since the window length should be two or three times the longest edjperted,
the optimal window size varies according to speaker. For high pitchetéapéae window
size should be short (5—20 ms), whereas for low pitched speakeiauidshe long (20-50
ms). Autocorrelation analysis is also unreliable at speech segments withcregrides in
fundamental frequency.

Average magnitude difference function (AMDF) (Ross, Shaffer, ébph-reudberg &
Manley 1974) is another way to express the similarity between periods, ®UANIDF
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Figure 3.4: (a) Speech signal. (b) Average magnitude differencéidn@®MDF). (c) The
cumulative mean normalized difference function. The threshold for the digpieted with
a dashed line.

performs the comparison using differences rather than productsatflyadhe most popular
method using AMDF is the YIN developed by de Cheveigne & Kawahara2R06or
signalx, and window sizav, the AMDF is defined as

dn(T) = Y (Xj —Xj+1)° (3.15)
=1

(de Cheveigne & Kawahara 2002). In order to avoid the zero-lag dipsanondary dips
due to resonances, YIN employs a cumulative mean normalized differenctoh:

P I ! ift=0,
() = { da(1)/2 511 dn(j) otherwise. (3.16)

The AMDF and the cumulative mean normalized difference function are rsivowigure

3.4. The fundamental period is found by setting an absolute threshold foripheaid
selecting the smallest value ofbeing deeper than the threshold. Other improvements
introduced in the YIN method include parabolic estimation and best local estimiaite)
further reduce errors.
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Figure 3.5: Stages in cepstrum analysis. (a) Speech signal. (b) Ampliped&sm. (c)
Logarithm of amplitude spectrum. (d) Cepstrum. The peak correspondihg fondamen-

tal period is depicted with a circlen andk represent discrete time samples and frequency
bins, respectively. The length of the speech segment is 25 ms, and tiiruapés shown
from O to 8000 Hz.

3.2.2 Frequency Domain Approaches

Since periodic signals tend to be composed of harmonically related partiaenatfon
aboutfy can be extracted by examining the partials. Frequency domain methodssatke ba
on detecting these partials. Most methods utilize Fast Fourier Transfd¥i) (6 convert
the signal to a frequency spectrum. Other methods may use a comb-filtedter adink
to find the partials (Gerhard 2003). One particularly useful method utiliegpstaum to
reveal signal periodicity. Cepstrum was first described by BogedyHg Tukey (1963)
and first used in speech analysis by Noll (1964). Cepstrum was dhgutefined as the
Fourier transform of the logarithm of the amplitude spectrum of a signatollaty inverse
Fourier transform is commonly used instead of Fourier transform. Bedhesspectrum
of a periodic signal has regularly spaced peaks, or harmonics, th&repeof that signal
shows a peak at the period of the original waveform. The logarithm is tiakeransform
the original spectrum to such a form that the dynamics of the speech $sgpedperly
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represented. In addition to the fundamental frequency estimation, cepstralso used
for representing the spectral envelope of speech (see for examplél®88)). Figure3.5
shows the different stages in cepstrum analysis.

Many other time and frequency domain methods exist, but the discussed setfeod
probably the most widely used in speech processing. For more informdtourt & esti-
mation, see for example Hess (1983), Paliwal & Kleijn (1995), and Gertz03).

3.3 Gilottal Inverse Filtering

Glottal Inverse Filtering (GIF) is a procedure where the glottal souragakighe glottal
volume velocity waveform, is estimated from a voiced speech signal. The idasiof
GIF is to separate the source and the filter based on the linear speecictipodnodel
described in Sectiof.3,

The estimation of the glottal source has many applications, for example infspeeak
ysis, speech synthesis, and the study of laryngeal pathology. Singeebentation of
the idea of glottal inverse filtering by Miller (1959) many different methodgehlaeen
developed. Depending on the procedure that is used in recording ¢keetsgignal, in-
verse filtering methods can be divided into two categories. The first agtegasists of
methods in which a specially designed pneumotachograph mask, a Rotfiermhask
(Rothenberg 1973), is used to record the speech signal. The seatmybry consists of
methods in which the speech signal is recorded with a microphone in freefitdidle the
mouth. The microphone and other recording equipment must not cause gistortion
to the speech signal in order to get feasible results from inverse filtefilsg, for meth-
ods in the second category, the effect of lip radiation must be taken intuaicc After
the recording, the vocal tract parameters can be estimated either by hamibmatically.
The use of automatic estimation instead of estimation by hand is justified since the auto
matic estimation is fast and easy to use, and the estimation by hand may varyigelyjec
This section will be primarily concerned with automatic inverse filtering methogdbeab
to speech signals recorded outside the mouth.

According to the linear speech production model, the speech can bebéesby the
equation

S(z) = Eg(2V (2)L(2), (3.17)

whereS(z) is the speech signéky(z) the glottal volume velocity wavefornv,(z) the vocal
tract transfer function, and(z) the lip radiation model. The glottal volume velocity wave-
form Eg(z) corresponds t&(z)G(z) in Equation2.1 In glottal inverse filtering, the speech
signal is first analyzed to determine the parameters of the vocal tradetréunsction. Then,
the effect of the vocal tract can be canceled by filtering the speecal $ignugh the inverse
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model of the vocal tract transfer function, the inverse filter. Finally, thedgpation effect
is canceled from the inverse filtered signal. Glottal inverse filtering is qunaéy defined
as solving the glottal volume velocity(z) by the equation

_ 3
Eq(2) = VLD (3.18)
Since the lip radiatioh (z) can be considered to be the same for all speech sounds, only the
parameters of the vocal tract transfer functiofz) are required.

3.3.1 lterative Adaptive Inverse Filtering

Iterative adaptive inverse filtering (IAIF) is an automatic glottal inverseriilte method
developed by Alku (1992). The only input required to the system is thestical speech
signal recorded with a microphone. The method is completely automatic, arttbdan
plemented to run real time. The main tool of the method is LPC, described in S8ction
The estimated glottal flow is obtained by canceling the effects of the vocakmdahe lip
radiation. The IAIF method has been extensively studied by Pulakk®)188d the results
suggest that IAIF produces reasonable estimates of the glottal voluneityelaveform.
Figure 3.6 shows the block diagram of the IAIF method. The method consists of the
following stages. First (block 1), the signsiin) is high-pass filtered to remove any dis-
torting low-frequency fluctuation in the speech signal. The high-passisletinear FIR
filter with a cut-off frequency of 60 Hz. Second (block 2), a first ardeC is computed
for the signal. This yields a first order preliminary estimate for the combinfedtasf the
glottal flow and the lip radiation. This is denotedtdgi (z). Next (block 3), the estimated
effects of the glottal flow and the lip radiation are canceled from the spsigohl by in-
verse filtering. The resulting signal is then analyzed usiptheorder linear prediction in
order to obtain an estimate for the effect of the vocal tract. The vocaldffect is denoted
asHw1(2). The order of the LPC analysip, depends on the sampling frequency, and for
speech sampled at 16 kHz, appropriate values are typically betweein Pd aNext (block
5), the effect of the vocal tract is canceled by inverse filtering thectpsignal with the
obtained model. The first estimate of the glottal flow is obtained (block 6) bgetiag
the effect of the lip radiation from the inverse filtered speech signal. Tezse of the lip
radiation is modeled as integration. A new estimate for the contribution of the dlotial
on the speech spectrum, denotedHyy(z), is computed in block 7. The order of the LPC
analysisg is typically between 4 and 8 for speech sampled at 16 kHz. A new model of the
vocal tract filtering effect is obtained through canceling the glottal cantidh (block 8)
and lip radiation (block 9), and LPC analysis of orgigblock 10). Canceling the effects of
the estimated vocal tract and the lip radiation by inverse filtering (block 1d Jrdegrating
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Figure 3.6: Block diagram of the IAIF method for estimating the glottal excitatjior)
from the speech signa(n). The model for the vocal tract is estimated through iterative
procedure (blocks 2—10). The estimated glottal flow is obtained by cagdikneffects of
the vocal tract (block 11) and the lip radiation (block 12) from the spesggial. (Alku

etal. 1999)
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Figure 3.7: (a) Sustained vowel [a] produced by a male speaker usingahphonation.
(b) Corresponding glottal flow estimated with 1AIF.

(block 12) the speech signal, a final estimate for the glottal volume velocitgfaavg(n)
is obtained. An example of a speech signal and corresponding glotta¢ fittbmated with
IAIF is shown in Figure3.7.

3.4 Parametrization of Glottal Flow

Parametrization of the glottal volume velocity waveform is an essential padicd source
analysis. After the glottal flow has been estimated by some inverse filtering dhetteo
source signal is parametrized by quantifying the obtained waveforms woibefy se-
lected numerical values. These quantities, the glottal flow parameters, aeprEsent
the most important features of the glottal flow in a compressed numerical fganmous
parametrization methods focus on different features of the glottal flaranselection of
the parametrization method for a certain purpose is crucial in order to extteadesired
information.

Parametrization of the glottal flow can be applied in the following three partlylaye
ping areas. First, the most general application is the categorization of it® saurce,
i.e. dividing the speech sounds into various categories according to theedifmodes of
voice source. Second, parametrization can be used in the study ofdiscalers. Third,
the parametrization methods can also be applied to voice and speech synthesis

The parametrization methods can be roughly divided into two categories: timainlo
and frequency domain methods. Time domain methods can be further dividetime-
based and amplitude-based parameters. Time-based parameters cad béthuany in-
verse filtering method, whereas for amplitude-based parameters, alpicairated Rosen-
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berg’s mask is required. Since the amplitude-based parameters ardéenanhteoncern-
ing the topic of this thesis, speech synthesis, these parameters arethet fliscussed.
Amplitude-based parameters are discussed generally for example in AIR@)(2Addi-
tionally, a third category of time domain methods includes techniques that modehtie
glottal waveform by fitting certain predefined mathematical functions to the bilatta

3.4.1 Time Domain Parameters

In time domain parametrization methods, both glottal flow and its derivative caisdxd
to extract the desired parameters. One cycle of glottal flow and its deewaltained by
inverse filtering, with the most essential notations used in time domain paramiberiza
methods are shown in FiguB8 The most widely used time domain glottal flow param-
eters are open quotier®Q), speed quotientyQ), and closing quotienQ] Q). Other time
domain parameters used in voice source studies include closed qua@i@ntvhich is
sometimes used instead GFQ, return quotientRQ), and normalized amplitude quotient
(NAQ). Using the notations in Figur@8, these parameters are defined as

0Q = (to+tay)/T

3? = to/tcl

clQ = ta/T (3.19)
CQ = te/T

RO =  te/T

NAQ = ac/(dpeakT).

Many studies have been carried out to find out the relations of these six timaiil pa-
rameters to various speech production features, such as loudndssppdnation type, and
gender, but the results are not unambiguous. The behavior of the timeérdparameters
are studied for example in Holmberg, Hillman & Perkell (1988), Sulter & Wi9@Q9 Price
(1989), Alku, Backstrom & Vilkman (2002), and Backstrom, Alku & Vilkkma2002). A
good general review of the time domain parameters is given by Alku (2003).

In addition to the previously discussed numerical measures, it is also [gossiinodel
the whole glottal volume velocity waveform by defining an artificial wavefthat fits the
glottal flow or its derivative obtained by inverse filtering. In this type ofgpaetrization,
an appropriate mathematical model for the glottal flow is defined, after whecmtdel
parameters are optimized in order to get the best possible match between theamibd
the real glottal flow. The models for the glottal flow have evolved much fromstime
ple sawtooth waveforms and filtered impulse trains used in early models. Comthenly
modern glottal flow models are composed of piecewise continuous functiomgased of
sinusoidal, exponential or polynomial terms. For example, a fairly primitiisepmodel
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Figure 3.8: One cycle of glottal flow (upper) and its time derivative (low€&he following
time domain notations are depicted: fundamental period ¢losed phasetd), opening
phaset), closing phasetg), return phaset(), AC flow (ac), and the negative peak ampli-
tude of the derivativedpeak). The original speech signal is a sustained vowel [a] produced
by a male speaker using normal phonation.

used in the Klattalk synthesizer (Klatt 1987) is composed of a single thira podgnomial

E(t) = at? — bt®, (3.20)

wheret is time, and terma andb are defined according to the desired amplitude and shape
of the pulse. The closed period is simply padded with zeros. Fig@shows one period

of the Klatt model and its derivative. The waveform model for the main etkitat the
discontinuity at glottal closure is very simple, since the return phase of thatiee, which
accounts for the degree of spectral tilt, cannot be controlled.

One of the most widely used glottal flow models is the Liljencrants-Fant model (L
model) (Fant, Liljencrants & Lin 1985). In this model, the glottal flow derivatis pre-
sented by sinusoidal and exponential terms defined uniquely by foameers. An illus-
tration of a typical LF model pulse and its derivative are presented in &8ylif. The first
part of the glottal flow derivative is modeled with an exponentially increasimgsoid that
starts at the opening instant of the vocal folidsand ends at the instant of the maximum
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Figure 3.9: lllustration of the Klatt model for the glottal flow pulse (upper) &8 time
derivative (lower).

negative amplitud&. The second part is modeled with a function consisting of exponential
terms. After reaching the valug., the pulse abruptly returns to zero with time constant
ta, which models the closure of the vocal folds after the abrupt flow terminafibe time
constant, is defined as the duration betwegrand the time when the tangent of the expo-
nential at time hits zero. The exponential part ends in the zero at tyinéhe LF model

is defined as

Eoe™tsin(wyt), t<te
E(t) — —Etlie (e*s(t*te)efa(tcfte)) s te < t < tc (321)
0, te<t<T,

wherewy = T/tp andt; = T = 1/fo. Parameterst ande can be calculated from Equation
3.21by assuminge(te) = Ec and the energy balanqé E(t) = 0. Thus, parametets, te,

ta, andEe uniquely define the model. For detailed derivation of the model, see for égamp
Fant et al. (1985). Another way of defining the model is to use the followatgtions

Ry = 1/(Zp)
Re = te/tp—1 (3.22)
Ra = ta/to-

(Fant, Kruckenberg, Liljencrants & Bavegard 1994). In addition,sadaaveshape param-
eter for the pulse can be defined as

Ry ~ (0.5+ 1.2R)(Re/(4Ry) + Ry) /0.11. (3.23)
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Figure 3.10: lllustration of a typical LF model pulse (upper) and its time davie (lower).

LF model is commonly used in inverse filtering combined with automatic fitting of the
model parameters. The fitting can be performed by matching the time domain @avse w
form or by comparing the spectrum of the model and the original pulse piidperties of
LF model have been studied in numerous papers. Basic characteristiteanency do-
main properties are described for example in Fant (1995). The newotentrema for the
model, which substantially simplifies the description of the voice source rulexémple
in text-to-speech synthesis, was presented in Fant et al. (1994)rdinekfexplained in Fant
(1995). Importantly, the parametBy is able to represent the voice quality characteristics
in an effective single numerical measure. In normal covariation of vaioece parameters
it is possible to define the LF model with unique valudRgf or conversely, it is possible to
predict the values dRy, Rk, andR, from Ry.

In addition to Klatt and LF models, several other models have been prbposexam-
ple in Rosenberg (1971), Rothenberg, Carlson, Granstrom & GqBirs), Fant (1979),
Hedelin (1984), Ananthapadmanabha (1984), and Fujisaki & Ljung(Ae86).

3.4.2 Frequency Domain Parameters

The time domain changes in the glottal flow, for example changes in the phomgtien
from breathy to pressed, correspond to the changes in the speategl dethe power
spectrum of the voice source. Therefore, the frequency domain methedieveloped
to parametrize the spectral decay of the power spectrum. The spectrube @valuated
with FFT or with all-pole modeling, either pitch-synchronously or over sevfandamental
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Figure 3.11: Spectral decay of the voice source spectrum quantifield-biy2.

periods. For measuring the spectral decay, Childers & Lee (199&)draposed a quotient

called Harmonic Richness Factor (HRF). It is defined as the ratio betweesuth of the

amplitudes of harmonics above the fundamental and the amplitude of the funi@me.
2Hi

HRF — 212270 (3.24)
Hy

whereH; is the amplitude of théth harmonic andH; is the amplitude of the fundamen-
tal. With this quotient, the vocal fry was characterized by a high HRF value dB),
modal voices with a medium HRF value- 9.9 dB), and breathy voices with a low HRF
value (-16.8 dB). For the same purpose, Titze & Sundberg (1992) measured tee diff
ence between the amplitude of the fundamental and the second harmonianédsare,
usually denoted by H1-H2, has been widely used as a measure of wadi&y.qThe idea
of H1-H2 is demonstrated in FiguBl1l It has been shown that H1-H2 has a large cor-
relation with CQ (Fant 1995), and a linear equation for the relation betwdesdPl and
the LF model parametdry is derived in Fant (1995). Also linear regression (Howell &
Williams 1988, Howell & Williams 1992) and Parabolic Spectral Parameter (&R,
Strik & Vilkman 1997) have been proposed to model the spectral slope gidttal flow.

3.4.3 Voice Source Models in Speech Synthesis

It has been known for some time that the voice source characteristicspaeialy impor-
tant for the quality of speech. The earliest synthesizers used a train afsespor trian-
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gular pulses as an excitation signal, resulting in a harsh speech qualitg.ddphisticated
speech synthesizers have tried to model the glottal volume velocity wavesaai,as the
KLGLOTT88 model in KLSYN88 synthesizer (Klatt & Klatt 1990). LF modallpes have
been used in speech synthesis experiments for example by CarlsorGehhiGranstrom,
Karlsson & Lin (1989) and Carlson, Granstrom & Karlsson (19914,fanexample Cabral,
Renalds, Richmond & Yamagishi (2007) have combined the LF model to an Hiisidédd
speech synthesizer. However, the use of artificial glottal flow pulsesllysesults in a
somewhat buzzy quality due to strong harmonic structure at higher freigsecompared
to speech with natural glottal flow signal. To overcome this problem, natiothbflow
pulses extracted from speech by inverse filtering have been propesedice source. For
example, natural glottal flow pulses have been used in creating naturadisg speech
stimuli for speech research by Alku et al. (1999). Natural glottal flolgsgmihave also been
used in formant speech synthesis by Matsui, Pearson, Hata & Kamdi)(199

3.5 Hidden Markov Models

Hidden Markov Models (HMMSs) are statistical models which can be applied tieiirg of
various types of sequential data. For example in speech synthesiscagaiteon, HMMs
have been used with great success. HMMs were first described iirea gEpublications in
the late 1960s and early 1970s, but widespread understanding ditdhtipp of the theory
of HMMs to speech processing begun not until the late 1980s. Today kil widely
used in many fields, and the popularity is ever increasing.

A hidden Markov model can be described as a finite state machine whichagenha
sequence of time observations. A time observation is generated by firstgraakiecision
to which state to proceed, and then generating the observation accordiegdmbability
density function of the current state. The system modeled by an HMM isreskto be
a Markov process, in which the probability of a state transition dependsoontiie path
of the past states. This characteristic is called the Markov property. Hprid®M is a
doubly stochastic process consisting of underlying stochastic proass tiot observable
(hidden), but can be observed through another set of stochastiegses that produce the
sequence of observations. This means that the stochastic function ofisl&idsult of two
processes, one of which is the underlying hidden Markov chain haviimite number of
states, and another being the set of random processes associateatiisiate. At discrete
time instant, the process is assumed to be at some state and an observati@rateden
by the stochastic process of the current state. The underlying Mahkrm changes states
with time according to the state transition probability matrix. In principle, the unitherly
Markov chain can be of any order, and the outputs may be multivariatemapdocesses.
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Figure 3.12: Example of an HMM structure. The states of the HMM are ddneith
circles numbered from one to six. A state transitions probability from statestate] is
denoted as;j. An output probability density of staigs denoted ab;, and the generated
observation at time instahis denoted as;. (Karjalainen 2000)

An illustration of a 6-state left-to-right HMM structure is shown in Fig@r&2, in which
the state index increases or stays the same with each time step. Generallyyigit-to
HMM structures are used for modeling systems whose properties evolveuncassive
manner, such as speech and written language.

An N-state HMM is defined by a state transition probability distribufos: {aij}i’f‘jzl,
output probability distributio = {b;(0) E\‘:l, and initial state probability distributiafi =
{r}N,, whereajj is the state transition probability from stadeto stateq; ando is the
observation vector. A compact notation for the set of model parametezprissented as
A= (A,B,N).

There are basically three problems associated with HMMs:

1. Given the observation sequer@e= (04, 0y,...,0r) and a modeh = (A, B, 1), how
to efficiently calculatd®(O|A), the probability of the observation sequence, given the
model?

2. Given the observation sequer@@e= (01,0, ...,01) and the modeA, how to choose
a corresponding optimal state seque@Qce (q1,d, ..., qr)?

3. How to adjust the model parametérs- (A, B, 1) to maximizeP(O|A)?

The first problem is used for finding the probability that the observedeseze was pro-
duced by the given model. On the other hand, it can be also used to #terend models
on how well they match the given observation sequence. The probabitityecaalculated
by the equation

P(OJA) = ;QP(O]Q,)\)P(Q])\). (3.25)
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The direct calculation oP(O|)) is straightforward, but it involves on the order of 18"
calculations. Thus, the problem is usually evaluated with the Forwardvi&adkalgo-
rithm (see for example (Rabiner 1989)), which requires &Y calculations. The most
widely used criterion for optimal state sequence for problem 2 is to find tiggediest state
sequence that maximizes tR¢Q|O,A). This can be solved with the Viterbi-algorithm
(Viterbi 1967). The third problem is the most difficult one. No analyticdugon is
known for solving the model which maximizes the probability of the observaggnence.
However, iterative algorithms, such as the Baum-Welch algorithm (BaumePstiules &
Weiss 1970), or equivalently Expectation-Maximization (EM) algorithm (Dsterp Laird
& Rubin 1977)), and gradient based algorithms can be used for maxini#zDg\ ).

Hidden Markov Models can be extended with various features to make ¢hef tisem
more versatile and efficient. For example autoregressive HMMs, inclugionll transi-
tions, state tying, state duration densities and various optimization criteria bawnepipo-
posed. Useful features in HMM-based speech synthesis are dasaniliChapted. For
more information about HMMs in general, see for example Rabiner (19&8PRabiner &
Juang (1993).



Chapter 4

HMM-Based Speech Synthesis
System

In this chapter, a new HMM-based text-to-speech system is represéfitsti a general
overview of the synthesizer is given, after which the operational ptieiand the imple-
mentation of the synthesizer are described in more detalil.

4.1 System Overview

In this work, a new HMM-based text-to-speech system utilizing glottal irvéitsering

is implemented. The main goal of this new TTS system is to produce naturadiagun
synthetic speech capable of conveying different styles of speakingekhisas emotions.
In order to achieve this goal, the function of the real human voice produntechanism
is modeled with the help of glottal inverse filtering embedded in an HMM framework
Automatic glottal inverse filtering is used in the parametrization stage in ordentpue a
parametric feature expression for the voice source and the vocairtraster function. The
extracted parameters are fed into an HMM system for training and thenageddrom the
trained HMM according to text input. In the synthesis stage, natural glattalglilses are
used for generating the source signal for voiced sounds, and theamnvelope of this
glottal excitation is modified with an adaptive IIR filter to imitate the time-varying ckang
in the real voice source. The current implementation of the system is appli€dnfish,
but, in principle, it can be extended to other languages as any data dyintresizer.

The overview of the system is shown in Figutd. The system consists of two major
parts: training and synthesis. In the training part, speech parametersiteahiyy glottal
inverse filtering are extracted from sentences of a speech datablisepafametrization
stage is a major innovation in the new TTS system in comparison to previous Ha&ed

42
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Figure 4.1: Overview of the HMM-based text-to-speech system.

Text analysis

synthesizers. The obtained speech parameters are then modeled imtbedri of the
HMM. In the synthesis part, the HMMs are concatenated according to #igzaad input
text and speech parameters are generated from the HMM. The paraaret¢nen fed into
the synthesis module for creating the speech waveform.

4.2 Training Part

The goal of the training stage is to create a model of the speaker by pawzimgedr large
database of speech which syntax and phonemic content is labeled, antlaineng the
HMM system with the parameters.

4.2.1 Speech Parametrization

The purpose of the parametrization stage is to compress the information péezhssignal
to a few parameters which would describe the essential characteristiesmfgnal speech
signal as accurately as possible. A very efficient way of parametrizatitnseparate the
speech signal to source and filter. In speech synthesis, the speeahsigsually separated
artificially to source signal and filter coefficients that do not corresorttie real glottal
flow and the vocal tract filter. This approach has the downside that ityshard to model
the real mechanisms of speech production due to the artificial nature dftie and the
parameters. In the case of separating the speech signal into quantitiesrteapond to
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Figure 4.2: Flow chart of the speech parametrization stage.

real phenomena, it is easier to model the speech production mechanisnfranteeork of
HMM, and thus produce more natural sounding synthetic speech. foherglottal inverse
filtering is chosen for the core of the new implemented system.

The flow chart of the parametrization stage is shown in Figuge First, the speech
signal is high-pass filtered in order to remove any distorting low-frequénctuations.
The high-pass filter is a linear phase FIR filter with a cut-off frequencg®Hz. The
high-pass filtering is especially important for glottal inverse filtering, wiegsn weak low-
frequency components may cause extensive fluctuations in the estimatetfighottAfter
the high-pass filtering, the signal is windowed with a rectangular window tm2%rames
at 5-ms intervals. The mean of each frame is first removed to ensure geoopmponent
within the frame. The parameters are then extracted from each frame.

The core of the parametrization stage is the glottal inverse filtering that estithates
glottal volume velocity waveform from the speech pressure signal. Amatto inverse
filtering method, iterative adaptive inverse filtering (IAIF) described iot®a 3.3 is uti-
lized in the system. The IAIF iteratively cancels the effects of the vocal &iad the lip
radiation from the speech signal using adaptive all-pole modeling. Thelghotéase fil-
tering is applied successively to the 25-ms rectangular frames, reveaicgntesponding
glottal volume velocity waveform. LPC algorithm used in the inverse filtering is imple
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mented using the autocorrelation method, and LU decomposition is used fargsthie
Normal Equations3.6). In calculating the LPC, the frame is windowed using the Hann

window, defined as
21
w(n) =0.5 <1— cos<N — 1)) : (4.1)

The filtering of each frame is initiated with samples preceding the actual franrelén
prevent the discontinuity due to the filtering delay. For canceling out thediptian effect,
a leaky integrator is used, defined in the Z-domain as

1

= 1_7[32_17 (4.2)

H(z)
wherep is a value near one. The value pftan be defined by the user, but in the experi-
ments, valug = 0.99 was used.

The extracted features and the number of parameters per frame agatpceim Table
4.1 The parameters can be divided into source and filter parameters. datingrthe
voice source, fundamental frequency, energy, spectral ensngyyoice source spectrum
are extracted. For creating the formant structure corresponding teta tvact filtering
effect, spectra for voiced and unvoiced speech sounds are egtré®tparate spectra for
voiced and unvoiced excitation are extracted since the vocal tracterdnsttion as such
does not generate appropriate spectral envelope for unvoicechspaends. The extracted
features are further explained in the following paragraphs.

The outputs of the glottal inverse filtering block are the estimated glottal flowttzand
LPC model of the vocal tract (denoted by Voiced spectrum in Talle A sufficient or-
der of the LPC model for the vocal tract is approximately 20. The speeinalope of
the resulting glottal flow is parametrized with LPC (denoted by Voice soureetigpn in
Table4.1) in order to model the spectral characteristics of the voice source in ttibesy
sis stage. An appropriate degree of the LPC analysis for the glottal floatigelkn 8 and

Table 4.1: Speech features and the number of parameters.

Feature Parameters per frame
Fundamental frequency 1

Energy 1

Spectral energy 5

\oice source spectrum 10

Voiced spectrum 20

Unvoiced spectrum 20
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12. Further increasing the degree does not necessarily improve tlitg qtithe synthesis,
because the minor changes in the source spectrum may not originate &aoaathylottal
phenomena, but might stem from the errors due to the framing or impefétzlgnverse
filtering. Moreover, the slightest changes in the voice source spectruimt mig be con-
sistent enough with the context in order efficiently train the HMM system. Aduitlg, an
LPC model (denoted by Unvoiced spectrum in Tahl® is computed for unvoiced speech
sounds directly from the speech frame. A sufficient order of the LPC hfiodiae unvoiced
spectrum is approximately 20.

All the obtained LPC models are converted to LSFs, a parametric représeral PC
information well-suited to be used in a statistical HMM system. The trivial zefdbeo
LSP polynomials are removed by deconvolution, and for finding the rooteef SPs,
Chebyshev transform is utilized in order to make the algorithm more efficieB&sLof
voiced and unvoiced spectrum are further converted to the mel scaldantomperceptually
emphasize the learning of the low frequencies by the HMM algorithm. Theecsion of
frequency to mel-scale is defined as

f =700 (gn12rot0se_1). (4.3)

Since the fundamental frequency of speech originates from the glottatiaibs, it is
easy to extract thdy of the frame from the glottal volume velocity waveform. However,
the frame of obtained glottal flow for extracting the source and vocal ¢rentacteristics is
only 25 ms in duration, which makes the extraction of the fundamental freguestiow 80
Hz unreliable. Therefore another glottal inverse filtering is performeda®-ms window,
which enables the reliable extraction fafvalues up to 40 Hz. The fundamental frequency
extraction is performed by evaluating the autocorrelation function from kbigay and
finding the highest peak of the ACF. A predefined amount of samples isvesiat the
beginning of the ACF in order to avoid the selection of the zero lag peakr&dudting fo
is also verified to fit into a predefined range of valid fundamental freqasner otherwise
the frame is marked as unvoiced. In the present experiment, the rangsetvi@scover
the frequencies from 30 to 260 Hz. The voiced or unvoiced decisiondigsiaaially made
according to the amount of low-frequency energy in the frame and tloeczessing rate
(ZCR). The low-frequency energy was evaluated in the range of@B-#&. If the energy is
below or the ZCR value exceeds the predefined limits, the frame is determinadased.

In order to reduce the occasional errors in fundamental frequestayaion, a 3-point
median filtering is applied to th& contour.

The energy of the speech is evaluated by the sum of squares of the samtpkoriginal
25-ms frame. In addition, the spectral energy of five bands (0-100Q630-2000 Hz,
2000-4000 Hz, 4000-6000 Hz, and 6000—8000 Hz) is calculated thherspeech frame
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Figure 4.3: lllustration of a 7-state left-to-right context dependent HMiMcsure with 5
emitting states (lower), and the corresponding state duration model (upper)

with FFT for determining the unvoiced excitation.

4.2.2 Training of HMM

After the parametrization, the obtained speech features are modeled sirauiignie a
unified framework of HMM. First, monophone HMM models are trained. Aatesleft-to-
right HMM structure with 5 emitting states is used. All parameters excluding treeimen-
tal frequency are modeled with continuous density HMMs by single Gaudstibutions
with diagonal covariance matrices. The fundamental frequency is moolgkechulti-space
probability distribution (MSD-HMM) (Tokuda, Masuko, Miyazaki & Kobaghi 1999).
The conventional HMM modeling cannot be applied since the observatimuesee of
the fundamental frequency is composed of continuous values andtdisgmabols that
represent unvoiced frames. The state durations for each phoneme &tilivhodeled
with multi-dimensional Gaussian distributions (Yoshimura, Tokuda, Masukdbalfashi
& Kitamura 1998). The HMM structure and its state duration model are illustiatEdy-
ure4.3. In the current system, each feature is modeled in an individual streahfiolatne
fundamental frequency three streams are used due to the MSD-HMbMtimgsn a model
of eight streams. The delta and delta-delta coefficients of each featuilaulated in
order to enable smooth transitions between states in parameter generaigimgen a
feature order of 171 in total. Otherwise the training procedure is similar taltearibed
in Tokuda, Zen & Black (2002).

After the training of the monophone HMMs, various contextual factorstaen into
account and the monophone models are converted into context deperulizls. As the
number of the contextual factors increases, their combinations alsosecegponentially.

Due to the limited amount of training data, model parameters cannot be estimated with

sufficient accuracy. To overcome this problem, the models for eachréeata clustered
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Figure 4.4: lllustration of the decision-tree based context clusteringpéateum, pitch, and
state duration model. Context clustering is performed for all speech ésatur

independently by using a decision-tree based context clustering teehf@glell 1995).
The clustering is also required in order to generate synthesis paranwteesnf observa-
tion vectors that are not included in the training material. The decision-teslmontext
clustering is illustrated in Figuré.4. The contextual factors that are taken into account in
the current model are described in Tal2

4.3 Synthesis Part

In the synthesis part, the model created in the training part is used foragiegehe speech
parameters according to text input. The parameters are then fed into thesgmodule
for generating the speech waveform.

4.3.1 Speech Parameter Generation

In order to generate speech parameters according to the text inpupliosiplogical and
high-level linguistic analysis are performed, where the text input is ctenyé¢o a context-
based label sequence. According to the label sequence and the ni¢m@si® generated
by the training stage, a sentence HMM is constructed by concatenatingicdependent
HMMs. State durations of the sentence HMM are determined so as to maximizeehe lik
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Table 4.2: Contextual factors used in the current implementation of the syrgheThe
included sources of the contextual factors are marked as LL = two upitLlef left unit,
C = current unit, R = right unit, RR = two units right.

Description Context
Phoneme length L,C, R
Phoneme identity LL,L, C, R, RR
Mora index C
Phoneme position in syllable L,R
Phoneme position in word L, R
Phoneme context L,C,R
Mora index in syllable L,C,R
Phoneme count in syllable L,C,R
Syllable position in word L,R
Syllable position in phrase L,R
Syllable position in utterance L,R
Syllable stress C
Syllable accent L,C,R
Syllable distance to focused syllable L,R
Syllable distance to accentuated syllable L, R
Syllable distance to stressed syllable L, R
Syllable distance to break L,R
Strength of nearest breaks L,R
Content or functional word L,C,R
Word distance to focused word L,R
Word distance to accentuated word L,R
Word accent L,C,R
Word position in phrase L,R
Word position in utterance L,R
Syllable count in word L,C, R
Syllable count in phrase C
Phrase position in utterance L,R
Word count in utterance C
Phrase count in utterance C

Does the utterance start a topic C
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Figure 4.5: lllustration of the HMM-based generation process of spesme@meters ranging
from training stage to waveform generation.

lihood of the state duration densities. According to the obtained sentence atiNdtate
durations, a sequence of speech features are generated by upgerh parameter gener-
ation algorithm (Tokuda, Masuko, Yamada, Kobayashi & Imai 1995 udiek Yoshimura,
Masuko, Kobayashi & Kitamura 2000). Figu#e5 illustrates the generation process of
speech parameters ranging from training stage to waveform generation.
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Figure 4.6: Flow chart of the synthesis stage.

4.3.2 Synthesis

The flow chart of the synthesis block is presented in Figuf The excitation signal
consists of voiced and unvoiced sound sources. A natural glottal fldse s used as a
library pulse for creating the voice source. In comparison to artificial dlta pulses,
the use of natural glottal flow pulses helps in preserving the naturalmesguality of
the synthetic speech. The library pulse was extracted from an inversedilteame of
a sustained natural vowel produced by a male speaker. The extrattibe pulse was
performed by cutting off the pulse at the beginning of the closed time. The meitaton,
the discontinuity at the end of the open time, was left intact since it defines tampor
properties of the excitation. The glottal flow pulse was further slightly modifi¢de time
domain in order to remove some resonances that were present duririgsbe phase due
to imperfect glottal inverse filtering. The beginning and the end of the putse also set
to same level (zero) by subtracting a linear gradient from the pulse. proppate library
pulse was selected by evaluating the resulting quality of the synthesizathsfjde library
pulse used for creating the voiced excitation and its derivative are simowigure4.7.

By interpolating and scaling in magnitude this real glottal flow pulse, a pulsedoam
prising a series of individual glottal pulses with varying period lengthsearadgies is gen-
erated. A cubic spline interpolation technique is used for making the glottaldidse
longer or shorter in order to change the fundamental frequency ofdilte gource. How-
ever, cubic spline interpolation has some undesirable effects on the glotadlse when
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Figure 4.7: Library pulse used for creating the voiced excitation (u@pet)ts time deriva-
tive (lower).

the desired pulse length is much longer than the original pulse. Due to theolatéwp

some of the high-frequency components are lost, resulting in an unnaduradiag syn-
thetic speech. This effect, however, can be avoided by selecting a dlottapulse of

sufficient length so that it is not necessary to use too extreme interpoldatmmmaking

the glottal flow pulse shorter than the original one, there is no such a prolewever,
the fundamental frequency of the selected library pulse was 110 Hfpagdnerating low
pitched synthetic speech, the library pulse must be interpolated to aboutitsvieagth.

This processing results in the mentioned loss of high frequencies. Howeeeselected
library pulse was otherwise considered suitable in terms of speech quality.

In order to mimic the natural variations in the voice source, the desired voioees
all-pole spectrumHorig(z)) generated by the HMM is applied to the pulse train. This is
achieved by first evaluating the LPC spectrum of the generated puls€Hisgim(z)), and
then filtering the pulse train with an adaptive IIR filter

Horig(2)

Hsynth(z) ’ (44)

Hmatch(2) =

which flattens the spectrum of the pulse train and applies the desired spe&ruillus-
tration of the procedure is shown in Figute8. The LPC spectrum of the generated pulse
train is evaluated by fitting an integer number of the modified library pulses toSims2
frame, and performing the LPC analysis without windowing. Before thengtcuction of
this filter, the LPC spectrum of the generated pulse train is converted to, lBBHsboth
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Figure 4.8: lllustration of the modification of the voice source spectrum. Dile drder
LPC spectra of the estimated real glottal flow (solid line) and the interpolatedhlibulse
(dashed line) are shown in the upper panel. The frequency resphifgespectral matching
filter is show in the lower panel. The speech segment is a vocal [e] sfiiykamale with
fundamental frequency of 77 Hz.

LSFs (the desired voice source all-pole spectrum is originally in the foln$68) are then
interpolated to frame by frame basis with cubic spline interpolation, and finatiyected
back to LP coefficients. The filter coefficients are not updated foryes@mple, but only
for every second, third, or fourth sample, depending on the setupeoywsome artefacts
can be detected due to more abrupt changes in the filter coefficients if dla¢euipterval
is greatly increased. Since the estimated voice source spectrum may katgrgially in
time, and the estimated spectrum of the synthetic pulse train may differ greatlyieoreal
voice source spectrum, the resulting spectrurflgfici(z) may occasionally be somewhat
inappropriate. In order to avoid these occasional major changes ingb&sm ofHmatcH2)
and thus possible audible artefacts in the voice source, the LP coeffiofetgg(z) and
Hsyntn(2) are first damped with an exponential window by multiplying the coefficient vec
tors with a damping vectdd = (d° d* d? --- d™1), whered is a damping coefficient near
one andm is the model order. Valued = 0.98 andd = 0.99 were used for damping the
coefficients 0Horig(z) andHsyntn(z), respectively.

The unvoiced sound source is represented by white noise. In ordecdporate an
unvoiced component also when the speech sounds are voiced (athybseunds), both
voiced and unvoiced streams are produced concurrently throughedtaime. During
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unvoiced speech sounds, the unvoiced excitation is the primary sourmkesbut during
voiced speech sounds, the unvoiced excitation is much lower in intensityuriveéced
excitation of white noise is controlled by ttgvalue and further weighted according to the
energies of the five frequency bands. The practice of using the apexérgy for weighting
the white noise was experimentally studied, and the best result were athieweeighting
the noise mostly by the two highest energy bands (4000—-6000 Hz and&DQM Hz). In
fact, the accuracy of the unvoiced excitation and the resulting speetitydsi@ery good
for unvoiced segments, but the method does not perform very welldiced sounds in-
corporating an unvoiced component. This is mostly due to the simple weightingdare
according to spectral energy, which is not able to properly distinguisheas harmon-
ics of the voice source and the unvoiced noise component. Theref@elral energy is
unable to distinguish between normal and breathy voiced sounds anot ceamerate ap-
propriate noise source. Moreover, the unvoiced LPC spectrum dbdestirely correspond
to the spectrum of the noise component in voiced segments since the unspascdim
describes both the voiced and unvoiced speech sounds. In order éotheaicorporated
noise component in voiced speech segments sound more natural, the orojsenent is
modulated according to the glottal flow pulses. However, if the modulation is tendive,
the resulting speech sounds unnatural. Experiments with the modulation teelshiowed
that a good compromise is achieved by having a 50% baseline for the noip@rent, and
then modulating the remaining part of the noise.

A formant enhancement procedure (Ling, Wu, Wang, Qin & Wang 2@9épplied to
the LSFs of voiced and unvoiced spectrum generated by the HMM to caaefor the
averaging effect of the statistical modeling. LSFs are modified accorditigettllowing
procedure. If the LSFs of a frame are defined das= 1, ...,m, wheremis the model order,
the new enhanced LSFs can be calculated from order 2 to order torordérby

i =li_a+di1+ 7di2_1l+di2 [(li4a—Tlima) — (di +di-1)], (4.5)
where
di =a (lixa—1), (4.6)

anda < 1 andi=2,....m—1. Terma controls the degree of enhancement. The tes
the more intense the enhancement will be. The formant enhancement tecimabple to
change otherwise muffled synthetic speech to a more clear articulation tiad dxeerall
quality. However, if the method is applied too intensively, the strongest fuoisria the
speech are heard as disturbing whistle sounds.

After the formant enhancement, the voiced and unvoiced LSFs genénated HMM
are interpolated to frame by frame basis with cubic spline interpolation. LSFthan
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converted to LP coefficients, and used for filtering the excitation signksupdate interval
is critical to the speed of the filtering procedure, but some artefacts cdatbeted due to
more abrupt changes in the filter coefficients if the update interval is giieatlyased.

For voiced excitation, the lip radiation effect is modeled as a first-ordegrdifttiation
operationL(z) = 1— pz %, wherep = 0.99. Finally the two filtered excitation signals are
combined, and the gain of the signal is set according to the energy megsemated by
the HMM. This is achieved by successively evaluating the energy of thibasized signal
Esynth Within each 25-ms frame, and then evaluating a ratio

G= /oo (4.7)
Esynth

whereEyyg is the energy measure generated by the HMM. The vector consisting @fsvalu
Gis then interpolated to frame by frame basis, and applied to the synthetic sigeahto
obtain natural gain.

4.4 Other Experimented Methods

Various experiments were made with the new TTS system. The most sud¢@sstur-

rently implemented to the synthesizer and described in previous sections. nitieds
and experiments, that were not successful or require further gevelat in order to be
useful are describe here. Some of the promising methods are furthessiskcin terms of
future plans in Chaptes.

4.4.1 \oice Source Models

The voice source of the current TTS system is based on interpolatingiaihgiottal flow

pulse extracted from speech through glottal inverse filtering. Variotugalaglottal flow

pulses from different speakers were experimented in the synthesisevdng many other
voice source models were also experimented during the development ofrithesizer.
First, the Klatt model for the voice source was largely utilized due to easy implamien

and simple fundamental frequency control. The open quotient of the paitske modified
independently from the fundamental frequency, which enables studyagffect of the
open quotient to synthesized speech. Many experiments were made withetheguotient
of the Klatt model. Nevertheless, the Klatt model was too simplistic to providealagss
to synthesized speech. One of the greatest drawbacks of the Klatt maddeliigbility

to control the discontinuity at the glottal closure that greatly accounts fodéigeee of
spectral tilt. In addition, LF model pulses were experimented with the syndre&iat

further methods for modifying the parameters of the model were not implemented
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4.4.2 Spectral Modification of Voice Source

In the current implementation, the spectral decay of the voice source isiradasith an
all-pole model. The spectrum envelope of the all-pole model describes leospdictral tilt
and the more detailed spectrum of the voice source. The all-pole modeldsigderms
of accuracy and details, but the training of the complex parameter set tavive dystem
is still under development. In earlier experiments, the spectral decay wasuned with
single number quantities, such as Harmonic Richness Factor (HRF) aniffénercte be-
tween the amplitude of the fundamental and the second harmonic (H1-HB)mRasures
were evaluated from FFT spectrum of length 2048, and in the evaluatidiRBf first ten
harmonics were measured. Both measures were extracted and expeadimigmiznalysis-
synthesis method, and the two measures gave fairly consistent results wsfiettieal tilt.
Both measures showed also a good correlation relative to each othes.tlsnisoth meth-
ods yielded similar results, only the H1-H2, which requires less computatasuged in
further experiments. The appropriate mapping and applying of the melaspeetral tilt
to the real spectral tilt of the synthetic voice source was a challenging &s&e a single
parameter is not capable of describing the detailed spectral behavice wbitte source,
the spectral decay of the synthetic voice source was modified with vareausstics. For
example, the open quotient of the Klatt model pulse was mapped to H1-HZXyalue
the mapping was utilized in the synthesis. This created a variation in the voitmdbat
imitated the natural behavior, but the procedure did not actually improveutiéyqof the
synthesized speech, but created some audible artefacts. Moreeavasettof the H1-H2
value of the natural glottal source to modify Klatt model pulse is not wardatat@erform
well, since the relation between open quotient and H1-H2 is probablyetitfeetween the
Klatt model and natural glottal flow pulses. However, due to variation in thevsource,
some segments were more natural to some extent than without the variation ipetne o
quotient.

The H1-H2 parameters extracted from natural glottal source weresdsidfor changing
the spectral decay of the voice source created with natural glottal fltseguThis was
achieved by filtering the created voiced excitation signal with appropriatesfiltéor ex-
ample, first order FIR and IIR filters were used in order to change thetisp decay. The
mapping of the filter coefficients to H1-H2 values was based on comparingptural
decay of the synthesized and natural glottal flow pulses at particular®=alues and
through listening the resulting synthetic speech. As a result, variation wagedrto the
synthetic voice source, but the procedure created also some audifdetart@he artefacts
were produced most probably due to changes in the spectral slopevoitikesource signal
that were occasionally too intensive or without an appropriate contextedwer, in natural
speech there are most probably also other changes in the charactefisiieech wave-



CHAPTER 4. HMM-BASED SPEECH SYNTHESIS SYSTEM 57

form that accompany the changes in the spectral decay which make tingedhaspectral
decay sound more natural. In addition, the frequency response &t arfiler FIR or IIR

filter does not correspond to the real spectral changes in the voioeesdiilters with linear

frequency response were also used in the experiments for changispgttteal decay of the
synthesized voice source, but better results were not achieved. & simgber measure
of spectral tilt describes the spectral behavior of the glottal flow onlyigiigr since the

spectral characteristics of the speech signal certainly varies in many slonen On the
contrary, the ability of the all-pole model to describe the spectral chaistatsrof voice

source is much more versatile, and therefore all-pole model was finally utilized

4.4.3 Fundamental Frequency Control

The fundamental frequency of the synthetic voice source is modified d&ygihg the pe-
riod of the glottal flow pulse. In earlier experiments with the Klatt model, the pewiasi
changed according to Equati@®0such that the open quotient remained constant unless
other methods were used for altering the OQ. The method for changingrnilamental
period of the natural glottal flow pulse is interpolation. Although the use ofpotation
for changing the fundamental frequency is not perfectly appropiitayéelds satisfactory
results for the purpose. Two different methods for interpolation weperxented: cubic
spline and linear interpolation. In theory, cubic spline interpolation is bettee sinncurs
a smaller error than linear interpolation, but in practice the problem is nagisti@ward.
The cubic spline interpolation incurs also a loss of higher frequencigshviginot desir-
able. In the case of linear interpolation the loss is not so severe, but ther ilgquencies
are composed of random interpolation errors, which is not necessasisatile. However,
the differences between the two methods are not perceptually very digtiranid the cubic
spline interpolation technique was selected on theoretical grounds.

4.4.4 Other Voice Source Modifications

Since only one natural glottal flow pulse is used in the synthesis, the variagioveen
adjacent pulses is minimal. This creates a strong harmonic structure at figgnegncies,
and might result in a buzzy sound quality. Although some variation emerges tfie
differences in the fundamental period, the resulting slight variation islglaat sufficient
to reduce the harmonicity at higher frequencies. Therefore randonificatidn of the
spectrum of each individual pulse was experimented. The spectrunvarias through
filtering each pulse with a random filter whose frequency response la¢hfgequencies
was varied several decibels. However, the effect of such proeetdas not audible unless
the variation was increased to a point where distinctive artefacts wereiyed.
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Jitter in the fundamental period was experimented by creating a randorniomt@the
length of each glottal flow pulse. This effect was also not audible unlesatiount of jitter
was increased enough to cause distinctive artefacts. Since the exgatideot reveal any
benefits from using jitter, it is not used in the current implementation.

Diplophony was also experimented by increasing the length of every degdattal pulse
and decreasing the length of the other pulses at certain segments. Taepaiggs were
slightly emphasized by increasing the gain of the pulses. Various parameterexper-
imented in order to control the amount of diplophony, such as H1-H2 amdhfuental
frequency. Heuristic rules for the amount of diplophony were credt@dexample, the
amount of diplophony was increased if the fundamental frequency n@er certain limit
and the H1-H2 was high, indicating creaky voice quality. The effect dbgipny was
clearly audible at certain segments, such as the end of an utteranceg leffiettt did not
notably improve the naturalness of the synthetic speech. However, @iteddiplophony
did not incur any artefacts either. Thus, artificial diplophony could te&luis certain spe-
cific speaking styles in order to enhance the impression of creaky voice.

4.45 Unvoiced Excitation

Various methods were experimented in order to create a natural unvaoed source.
The currently used method has the flaw that it cannot create a naturalawigponent to
voiced speech segments. This problem derives from the inability of treérapenergy to
distinguish between noise and harmonics of the voice source. To ovetb@goblem,
band-pass voicing analysis was experimented. The signal was filtereg tirfquency
bands with pass-bands of 0—-1000 Hz, 1000-2000 Hz, 2000—-4006082—6000 Hz, and
6000-8000 Hz. The voicing strength of each band was estimated usimglzed corre-
lation coefficient around the fundamental period. The normalized ctioeleoefficient is
defined as
_ S hg XX T

\/ S ho0 XoXn 3 0o X TXn T
wherex, is the speech signal at sampleN is the pitch analysis window, andis the fun-
damental period. The pass-band voicing strengths describe the relatiesdn the amount
of harmonics and noise for each band. Experiments with synthetic voiceesand white
noise show that the band-pass voicing strengths can distinguish betweeuqgiced and
noisy speech sounds. The band-pass voicing strengths were atsin sy@thesis, where
a voicing strength for each band controlled the gain of band-pass filteied. In addi-
tion, an adaptive band-pass filter based on the band-pass voicingtesdar controlling
the white noise was experimented. However, the band-pass voicingthsengre not re-
ally robust in estimating the amount of voicing, and the use of band-passyaitrength

Cr

(4.8)
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for controlling the noise source did not improve the quality of the synthesseitheless,
the band-pass voicing strengths were not extensively studied and neighorth further
experiments.

Various experiments were also made with noise source type. In one experitme
spectral energy was used to weight the gain of each frequency bdiadiually. However,
since the spectral energy cannot measure the amount of voicing foibaad, the results
were not any better than in the current implementation. In another experihightpass
filtered noise was used instead of white noise in order to reduce the éstefiaerging from
the strong noise component at the harmonics of the voice source. Howevérequency
noise is required in some speech sounds, and therefore the methodaalhopractical.

The noise source was also modified according to the H1-H2 measure. HFltHd2
showed high values, indicating possible breathy voice, the gain of the soisee was
increased. This method showed some improvements to the quality of the synpleetits
Since the H1-H2 does not necessarily correspond to increased aofooise, but only
indicates the type of phonation, the method created also some artefacts deentistent
noise in synthetic speech if the relation between H1-H2 and noise gain wastog.
Nevertheless, some improvements could be achieved by using the H1-Hatty slantrol
the noise source.

4.4.6 Parameter Smoothing

The statistical HMM system has the property that the generated speechegiars are al-
ways smooth. On the contrary, in direct analysis-synthesis, the extiaatatheters vary
unnaturally rapidly and contain errors. Thus, the quality of the resultinthsyic speech
is unsatisfactory unless the parameters are smoothed. Since the anaiysésis is an
extremely useful tool for experimenting with the parametrization and synlsesiothing
methods are required. The parameters were generally smoothed in timeviojvaunthe
parameter vectors with a Gaussian function defined as

2

f(n) = Ae 22, (4.9)

whereA normalizes the sum of the discrete values of the function to oneg @odtrols the
width of the peak. A convolution with such function corresponds to lovsfiigtsring. The
length of the smoothing vector and the parameterere chosen for each parameter inde-
pendently to achieve an appropriate amount of smoothing. In the case ofimatiglonal
speech features, such as the LSFs and spectral energy, eatiefgaineector was smoothed
in time. For smoothing the fundamental frequency, a special procedweseal in order
to avoid the smoothing of the boundaries between voiced and unvoicedsfrdimes, only
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the voiced parts were smoothed separately. Similar procedure was useddothing the
H1-H2, since H1-H2 is measured only when the frame is voiced.

4.4.7 Other Experiments

Other experiments that do not constitute any larger topic are describedAigtough most
of the experiments are documented, many experiments made with the details dfShe T
system are left out in order to point out only the most relevant experinaadtéindings.

The glottal inverse filtering is never perfect, and often there are soroeasses left
on the glottal volume velocity waveform. Some of the resonances are cayseearly
real valued roots of the vocal tract transfer function. The res@woan be diminished by
reducing the distance of the real roots from the origin. Thus, a reabkoading algorithm
was developed that sought for nearly real valued roots and scaléaliiet ones in order to
reduce the resonances. The limit for the imaginary part was se®19 &nd the found real
valued roots were scaled to about half the original distance from the oddinough the
resonances might have been diminished a bit, the processing incurre@dgefaets to the
spectrum of the vocal tract. Therefore, the scaling of the real roats exeluded from the
inverse filtering block.

The evaluation of the spectrum of the estimated glottal flow with LPC has the-disad
vantage that the estimation is focused for the high-energy part of thel.sighas, the
fine structure of the declining spectrum of the glottal flow is hard to estimaigratety
with low-order LPC. In order to estimate the spectral envelope of the glotkal fhore
accurately, higher frequencies of the glottal flow were emphasizedebefeC analysis.
Correspondingly, the pre-emphasis was also applied to the estimation ofithetsy glot-
tal flow pulses. Thus, the effect of the pre-emphasis would be canagled matching the
desired spectrum to the spectrum of the synthetic voice source. Howeeeesults with
analysis-synthesis were not satisfactory due to increased differbeteeen the synthetic
and the natural glottal flow spectra. The use of pre-emphasis resultastanted voice
source and thus the quality of the resulting synthetic speech was pooerthgess, the
pre-emphasis method could be useful for enhancing the training of the kjk¢m since
over-emphasized parameters should be easier to learn.

The spectral shaping of the voice source through filtering changemiothe spectrum
but the phase of the signal as well. Although human hearing is not sersitparceiving
the changes in phase, the filtering might incur audible changes that gneesent in the real
voice source. To study the effect of the changes in phase due to filtdnmdltering was
applied both to normal and time reversed excitation signal. It turned out thdiréction of
the filtering did have an effect on the characteristics of the resulting spelesvever, either
of the tested methods did not provide clearly better quality, but only a sligletrdifte was
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observed between the methods. Although the time reversal has an effdat cesulting
quality of the synthetic speech, there is no physical justification to use it.efdrer the
filtering of the synthetic voice source is performed in a traditional way. Neekss, the
changes in phase due to filtering raise interesting questions about the \alithigyartificial

modification of the voice source.

For enhancing the robustness of the fundamental frequency estimapaoh dracking
algorithm was implemented. The algorithm selected the two highest peaks fecauti-
correlation function and selected the one that best fit to the series of lolelsvarhe new
sample was simply assumed to be the average of the previous samples. Tlee ofLpnévi-
ous samples was varied in the experiments, and an appropriate numbeviotiprsamples
was considered to be from 10 to 20. In addition, a statistical selection algonitis tested
that takes the height of the autocorrelation peaks into account. Thudgtnghan selected
the higher peak more probably than the lower peak. This procedure isgdstith the fact
that if the highest peak is always selected, theurve may end up following the wrong
peak due to occasional errors. If the highest peak is selected statistivaligorithm will
most probably follow the correct peak. In direct analysis-synthesisstidtistical method
produces some errors, but when applied to the HMM system, the ermeragavout. The
performance of the algorithm was two-sided. If thhecurve would originally contain much
errors, the algorithm reduced the amount of errors efficiently. Howéwvee fo curve was
rather smooth, the algorithm made some errors that impaired the quality. Sinodtise-
ness of the fundamental frequency estimation was considered suffidgieout the pitch
tracking algorithm, it was not included to the implemented system. However, the pitc
tracking algorithm might be useful when processing speech of certaaksm styles that
make the estimation of the fundamental frequency otherwise difficult. Meretinear
or polynomial fitting of thefy curve for selecting the new peak would be applied to the
algorithm, the robustness of the pitch tracking algorithm would probably tebhyobetter.

Autocorrelation based method is currently used for estimating the fundarfrexjiaéncy.
However, the AMDF-based method has been shown to yield more rolsdtste The
AMDF algorithm was not implemented to the system since the accuracy of theoauto
relation method was considered sufficient. However, in further developriie inclusion
of AMDF-basedfy estimation algorithm is not excluded.

In the current implementation, separate parameters for voiced and uhapieetra are
used. The increased amount of parameters makes it more laborious tatgehe speech
parameters from the trained HMM. Moreover, filtering of the voiced anabiced excita-
tion signals with separate filters is computationally laborious. In the current ingpita-
tion, the vocal tract filter is not appropriate for filtering the unvoiced ekoitaand there-
fore separate filters for voiced and unvoiced excitation signals mustdak twever, by
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modifying the unvoiced excitation, the vocal tract filter could be applied to ttiveioed
excitation as well, and the two excitation signals could be first summed togetth¢hnem
filtered with only one filter. The most significant difference between th@Mvact spec-
trum and the unvoiced spectrum is the lip radiation incorporated in the unvspaetrum.
Therefore, by integrating the unvoiced excitation signal, the vocal tpexitsim could be
used for filtering the unvoiced excitation. However, the results from iategy the unvoiced
spectrum show that the quality of the resulting speech is degraded duestaldtbrences
between the two spectra. For example, the low frequencies are signifidéffehgnt. At
present, the two separate spectra are justified with a better quality of thesigeithspeech,
but in further development it is desirable to incorporate only one spectrum.

4.5 Implementation Issues

The parametrization and synthesis stages are constructed as standrapaens that can
be run independently from the HMM system. The development of the spaethesis
system began with speech analysis and synthesis experiments with MATMAR\Vorks
Inc. 2008), but the final system was implemented in C in order to enablpriastssing and
compatibility with the HMM system. The HMM system used in the synthesizer is based
on the HMM-based speech synthesis system (HTS) developed in Jdp&n2008). The
HTS is a package built on top of the hidden Markov model toolkit (HTK) ttgyed in the
UK (HTK 2008). HTS and HTK consist of a set of source libraries amdstavailable in C
source form, and they are both under a free software license. At tivergity of Helsinki,
the HTS has been further modified to meet the requirements of the new sgathdhe
frontend for the phonological analysis and feature extraction has ako theveloped at
the University of Helsinki. The synthesizer includes a text user inteffacanalyzing and
synthesizing speech with different setups. The described system is immtézhfer audio
sampled at 16 kHz, but other sampling rates can be used as well with mirmagezhar he
development of the new TTS system continues, but the main structure ofrttheesizer is
expected to remain rather unchanged.



Chapter 5

Evaluation of the Text-to-Speech
System

The evaluation of a TTS system is a diverse issue. Obviously, the mosttampaspect in
the evaluation is the quality of the synthesized speech. Since the spedith iguavery
multidimensional term, its evaluation is problematic. The quality of a TTS systemecan b
assessed in terms of the overall speech quality, or the quality can be det@rnmiterms
of several different aspects, such as intelligibility or naturalness. $lirectelligibility of
TTS systems today is adequate for most applications, it is often the natgréieess of
primary concern in evaluation. A large number of possible deficienciesaase synthetic
speech to sound unnatural to varying degrees. For example, artefagégiciencies in
intonation, stress, accent, duration, tempo, and voice quality featuréeetithe perceived
naturalness of the synthetic speech. However, the evaluation of edwdinal feature
might not be the best approach in order to assess the naturalnesgdf.spesimple and
quite reliable way assessing the naturalness of synthetic speech is tot@eser of test
sentences synthesized by each system to be compared, and askingdhiejéess to judge,
which one they would prefer (Klatt 1987). This method does not distingbisimdividual
aspects that makes one method better or worse than others, but the methedasanmed
to yield reliable estimates of how the TTS systems would perform in practical use
There are several other aspects in the evaluation of a TTS system that doncern
the quality of speech, but the use of the system in a specific applicatiose Pheperties,
such as the ability to adapt to different speaker individuals or spealgtessand the re-
quirements for the used platform, heavily depend on the used synthesisdmattitmugh
the main issue in choosing a TTS system is the quality of speech, certaimfanttd re-
strictions may prevent the use of some speech synthesis methods in a sygditiation.
Moreover, flexibility is becoming an ever more important criterion in a TTS syste

63
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5.1 Subjective Evaluation

In order to evaluate the quality or naturalness of the synthetic speegbgctub listening
tests are required. In order to obtain preliminary data about the quality ofetveT TS
system, two subjective listening tests were conducted. First, the quality oétheystem
was compared both to natural speech and to synthetic speech gensratdcaditional
HMM-based TTS system. Second, the new TTS system was compared watthiteotral
HMM-based TTS system. By performing two individual tests, the perfonmaari the new
TTS system can be reliably compared to both natural speech and othey$E®S.

5.1.1 Test Setup

The implemented TTS system was trained with a prosodically annotated datdGG@
phonetically rich sentences spoken by a 39-year-old Finnish male speak®rising ap-
proximately one hour of speech material. The speech was sampled at 18 Rath-order
LPC was used in parametrizing the spectra of voiced and unvoiced sp@eich 10th-order
LPC was used in parametrizing the voice source spectrum. FeaturetbddsorChapted
were extracted together with their delta and delta-delta features from thetsgatabase.

For evaluation purposes, a de facto standard HTS model structuré@eda (Yoshimura,
Tokuda, Masuko, Kobayashi & Kitamura 1999, Tokuda et al. 2002) ugzd as a baseline
system. This previously developed HMM system uses the mel-cepstrakaneghnique
(Imai 1983) for spectrum modeling and a simple impulse train excitation modeixfor
tation generation. Instead of using more sophisticated excitation models, thie singp
was selected for the comparison because its quality is generally known @hegepeech
synthesis community. The training procedures for both TTS systems werersimila

The spectrograms of a Finnish utterance and corresponding synthsiangegenerated
by the baseline and the new system are presented in Figlir& he differences between
the utterances can be clearly seen from the spectrograms. For exaymphetis speech
generated by the new system has clearly more distinct formants and fdraresitions than
the baseline system.

The speech samples of the implemented TTS system were slightly high-passlfifter
order to compensate for the slight emphasis on the lowest frequenciescutoff fre-
guency of the filter was 79 Hz, and the attenuation at 50 Hz was —20 dB.tA&diltering,
the speech samples sounded slightly more like the natural speech samglgsodéssing
is considered appropriate since the implemented TTS system is only in a deesita
stage. For the listening test, the energy between the test samples was nalmadizser
to avoid differences in loudness.

The listening test was conducted at the Department of Signal Processincaustics
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tulevista elokuvarooleistaan on

Figure 5.1: Spectrograms of (a) natural speech, (b) synthetic sgeeehated by the base-
line system, (c) synthetic speech generated by the new system.

at the Helsinki University of Technology in Finland. The test sessioris pterce between
March 10th and March 18th 2008. The listening environment was an tcallys modi-
fied multipurpose room with low background noise level. The subjects listénreespeech
samples through Sennheiser HD 580 headphones. The listening testrecBwineaPig 3
(Hynninen & Zacharov 1999) was used in the test. Altogether 11 naivediste9 men and
2 women, participated in the test. All subjects were native speakers of kibeta/een 24
and 31 years of age.

5.1.2 Comparison Category Rating Test

In the first part of the subjective evaluation, a Comparison Category@R@iGR) test was
carried out. The test resembled the ITU-T Comparison Category Rating Test1996)

with minor changes. Although the CCR test is designed for slightly differergses, the
test was considered suitable for obtaining preliminary data. In the CCR tedistiners
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are presented with a pair of speech samples on each trial, and askedds thgsquality

of the second sample compared to the quality of the first one on the 7-paimp&izon
Mean Opinion Score (CMOS) scale. In effect, the listeners provide twgnaahts with one
response: "Which sample has better quality?" and "By how much?". Th@&htale is
presented in Table.1 Corresponding Finnish descriptions were used in the test. The test
user interface is shown in Figuge2

The test sample pairs consisted of natural speech, synthetic speechtgdrby the im-
plemented system, and synthetic speech generated by the baseline systaamdbenly
chosen sentences from held-out data were used for generatingttsartgdes. The sen-
tences are presented in Appendix All sample pairs are presented twice, exchanging the
order of the samples for the second time. Ten null pairs, where the two saarglehe
same, were included in the test in order to assess the reliability of the gigeveenby
each listener. The test consisted a total of 70 speech sample pairs {gficesn 3 methods,
2 orders, plus 10 null pairs). The subjects could play the sample pairsagimas as they
wanted.

The sample pairs were randomized individually for each test subject witbc ban-
domization method. The sample pairs were first divided into blocks, whetecmendition
occurs exactly once, and the sentences are evenly distributed ovdodike.bThen, the
order of the blocks was randomized so that the same sentence is nattpdetseice in a
row in the final order of presentation.

The subjects were given written instructions for the test, and furtherimstlictions
were given when necessary. The test consisted of a practice se§sieem sample pairs
selected randomly from the test sample pairs. During the practice sessitiaténers
were allowed to adjust the volume to a comfortable listening level. During thedssitos
the volume was kept constant. All subjects did the test individually with their pawe,
but they were encouraged to rate the overall quality of the speech saamgldsld that a

Table 5.1: Rating scale used in the CCR test.

3 Much Better

2 Better

1 Slightly Better

0 Aboutthe Same
-1 Slightly Worse
-2 Worse

-3 Much Worse
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Kuuntelukoe

listen | stop

Jalkimmaisen d4dnean laatu werrattuna ensimmaisean on

1 | | |
Paljon huonompi Yahan huonaompi Wahan parempi | Paljon parempi

Huonormpi Melkein sama Parempi
| Item: 1/70 Done

Figure 5.2: User interface used in the CCR test. The sample pair is playeddsygisten
and the currently playing sample pair can be stopped by presgipgAfter listening the
sample pair once or more, the quality of the second sample compared to tkarfige is
graded by setting the slider to the desired verbal description. The Hdtiomis pressed to
proceed to the next trial. The number of completed trials out of total trials isrsoo the
lower left corner.

detailed consideration would not necessarily yield a better result. The GCRO& from
20 to 30 minutes per listener.

Results

The ranking of the three methods with 95% confidence intervals accordthg toCR test

is shown in Figurés.3. The ranking of the methods was evaluated by averaging the scores
of the CCR test for each method. The 95% confidence intervals based arstted t-test
were calculated by the following equations (3GPP 2003):

upper limit = CMOSesH—tN’L%S‘e“
(5.1)
lower limit = CMOSes— m—mj\/ﬁz&est’

where CMO&st is the averaged CMOS score for the method in questjpn,q > is the
inverse value from Student’s t-distribution with— 1 degrees of freedom and probability
of 0/2, seq is the sample standard deviation, ads the number of answers per method.
For 95% confidence intervats= 0.05. The preferences between the methods were found
to be statistically significant. Although the 1-sided t-test is not precisely themigthod for
testing the means of more than two datasets, it yields results accurate enosgleang
that the means of the three methods are significantly different with a largerméfrghe
margin would be considerably smaller, more accurate statistical methodsasuuhitiple
comparison procedures, would be required. Bar plots of the scodemaan scores with
confidence intervals are presented in Fighbe
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Order of Preference

o natural
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Figure 5.3: Ranking of the CCR test for the following speech samples: atatpeech
(natural), proposed system (proposed), baseline system with an impailsexcitation
model (baseline). The mean score has no explicit meaning, but the distagiveeen the
scores are essential. The 95% confidence intervals are presenéediicscore.

proposed vs. baseline proposed vs. natural baseline vs. natural

100, pP<0.001 10, p<0.001 100, p<0.001

S 504

501 I
od — I |:||:|- 0- ___=.|:|II ____IZII

ot

Figure 5.4: Bar plots of the scores and mean scores with confidencesistemvthe follow-
ing speech samples: natural speech (natural), proposed systgugpdd, baseline system
with an impulse train excitation model (baseline).
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The consistency and the reliability of the listeners were assessed by ¢ogiea two
given grades for each same sample pair, and inspecting the gradesogitree null pairs. In
optimal case, the two scores for the same sample pair would be the same indasioos,
and the score for the null pairs would be zero (About the Same). Ovgralgonsistency
was fairly good since the difference between the same sample pairs wellg rese or
one, with only few exceptions. The reliability of the listeners was generalbd gince
nearly all listeners graded all the null pairs zero. The differencesdesthe scores of the
same sample pairs and the scores for the null pairs are presented insAgLisnd A.2
in AppendixA. The distribution of the given grades is quite uniform for all the listeners,
which indicates that the CMOS scale was appropriate for the test. The distnbof the
given grades by each listener are presented in FiguBén AppendixA.

5.1.3 Pair Comparison Test

In the pair comparison test, only the synthetic sounds generated by the tvw-lbéided
TTS systems were involved. A pair comparison test method was used, siigjects
listened to samples referred to as A and B, and selected the one they witeld listen
to. They were also given an option to choose that the samples soundettladsame,
indicating no preference between the two samples. The user interfaegpaitltomparison
test is shown in Figur8.5.

Ten randomly chosen sentences from held-out data (different frerorths used in the
CCR test) were used for generating the test samples for each methoderithaces are
presented in AppendiB. The test subjects made all the possible comparisons for each
sample in both orders. Furthermore, 4 null pairs, where the samples A areltBe same,
were included in order to assess the reliability of the given answers bylistener. The
pair comparison test included a total of 24 trials, consisting of 20 comparisetween the
methods and 4 null pair trials. The samples were presented to the listenedamramnder,
and the order was different for each listener. The subjects could listesathples as many
times as they wanted before giving the answer.

The subjects were given written instructions for the test, and furtherimstilictions
were given when necessary. The test consisted of a practice se$siem comparisons
selected randomly from the test samples. During the practice session therbstegre
allowed to adjust the volume to a comfortable listening level. During the test aeb&o
volume was kept constant. All the subject did the test individually with their pace,
but they were encouraged to rate the overall quality of the speech saamgldeld that a
detailed consideration would not necessarily yield a better result. Theqajparison test
test took from 10 to 15 minutes per listener.
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Kuuntelukoe
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Fumpaa kuuntelisit mieluummin?

4> A V B v melkein sama

I ltem: 1424 Done

Figure 5.5: User interface used in the pair comparison test. The samplptaged by
pressingA or B, and the currently playing sample can be stopped by pressipg After
listening the both samples at least once, the question "Which one would W liaten
to?" is answered by selecting one of the three alternatives: sample A, sBmpteno
preference for either of the samples. The bubmme is pressed to proceed to the next trial.
The number of completed trials out of total trials is shown on the lower leftezorn

Results

The preference scores of the synthesis methods with 95% confidensalistae shown in
Figure5.6. The confidence intervals based on the binomial distribution are calculsitegl u
the following formulas (NIST/SEMATECH 2008):

2 N
~ 2 1- 2
upperlimit — Pty 55

- %2

=
(5.2)
2 2
51 a/2 pa-p) , Ta/2
lower limit = 2 20/222 I
14-9/2

wheren is the number of sampleg,is the proportion of items in the category in question,
andz, ; is the upper critical value from the normal distribution that is exceeded wathepr
bility o /2, wherea = 0.05 for 95% percent confidence intervals. The preferences between
the two methods were found to be statistically significant.

The consistency and the reliability of the listeners were assessed by theirfigiiwvays.
First, the number of answers to A, B, and "no preference" were cddatesach listener.
This gives information about the behavior of each subject. Ideally, thebeuof answers
to A and B should be equal, since each comparison is made twice, and tinel siece the
order of samples in A and B is reversed. Mostly the answers were equstiijpdted, but
for one subject the answers for B were highly emphasized for somerre@ike distribution
of the answers to A, B, and "no preference” for each subject iepted in FigureB.1in
AppendixB. Second, the answers to the null pair trials were studied. Ideally, nerprefe
should be addressed for either of the samples. Generally, there wasfaepce for either
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100

proposed no pref. baseline

Figure 5.6: Results of the pair comparison test applied for the proposeshsyproposed)
and the baseline system with an impulse train excitation model (baseline). iEhadiaate

the percentage of the total number of answers to the question "Which are yau rather

listen to?". The center bar (no pref.) indicates no preference for aiftiee methods. The
95% confidence intervals are presented for each bar.

of the samples in the case of null pair trials, but one subject did not shchvisehavior,
but in almost every case answered either A or B. The answers to theaiuliripls are
presented in FigurB.2in AppendixB. Third, the answers of each subject to all non-null
sample pairs were compared, and the proportion of sample pairs reciiigingme answer
twice was calculated. Since each comparison is presented twice in the tely, thlea
subject should always choose the same answer, A, B, or "no pme&réor the sample in
the two occurrences of the sample pair. Generally, this kind of consistessyairly good
(about 80%), but two subjects failed to be consistent in their answes cdisistency of
the answers for each subject is presented in FiguBin AppendixB. In addition, the
answers to different methods by each listener, and the answers teniffeethods by each
sentence are presented in FiguBe4 andB.5 in AppendixB, respectively.

5.1.4 Result Analysis

The results of the CCR test show that the proposed new TTS system utilioitigl gn-

verse filtering has a considerably better quality than the previously dedldplM-based
method. Compared to natural speech, the quality of the new system is cleasky.iHow-
ever, since the prosodic features of the synthetic speech were tpehdiactly from the
HMM, the evaluated degradation in quality partly results from the prosodaepancies
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between the synthetic and natural speech samples.

The results of the second test show that the new system is almost alvedgsga over
the baseline system. Since the same prosody model was used for both syséerasults
are comparable. However, during the preliminary evaluation, it was nosedhd baseline
system sounded better with the new prosody model than with the originalTdmss, the
baseline system does not necessarily represent the referenae fysshimura et al. 1999,
Tokuda et al. 2002), but might be slightly better in quality. Neverthelesseghre results
show obvious preference for the new system over the baseline systsrisstie is not of
great concern.

After the two listening tests, the subjects were asked to describe possilite@rtbey
noticed in the synthesized speech in order to obtain information about thesad@sit
aspects that degrade the quality of synthetic speech. The listeneribddgbie baseline
system with terms such as creaky, machine-like, dry, rough, and robbigcquality of the
new system compared to the baseline system was described as morearatimamnan-like
with clear characteristics of a person. However, the proposed systamdescribed also
as too emphasized on the low frequencies, which was, according to sbjeetsyleasing,
but at the same time it made the speech less clear. All the synthetic speechssarngle
described as somewhat metallic and machine-like, but very intelligible. THeyqolkthe
prosody and the transients of the synthetic speech samples were criticirgred to
natural speech, and occasional other artefacts were also reported.

The comments from the listeners suggest that the synthetic speech of posgaaew
system is much more natural sounding than the synthetic speech of the dagstiam.
Moreover, the comments show that the new system is able to produce sysietich
with specific speaker characteristics. However, there are many agpélotsnew system
that were criticized, such as the emphasis on the low frequencies, metaltid, smd the
artefacts in prosody.

5.2 Computational and Implementation Considerations

A TTS system must be computationally feasible in order to be of practicalmseder to
implement areal time TTS system, a lot of computing power and memory is ofteingequ
Personal computers now mostly meet the requirements of current TT$systaet appli-
cations on memory and processing power constrained devices, sucltbées phones and
other handheld devices, are much more challenging. Moreover, thefare€@S systems
for the low resource devices is continuously increasing.

One of the advantages of the HMM-based TTS system is its low memory rewgnte
The whole TTS system takes less than ten megabytes of space. Comparedatenative
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TTS systems, which may take hundreds of megabytes of space, therdifdrememory
requirement is remarkable. The HMM-based speech parameter genedgtioithm is also
fast, and combined with text analysis, the generation of parameters froimnpex can be
run almost real time on a personal computer. In addition, there are alsopnasipilities
to make the HMM-based speech parameter generation faster than attpHo&ever, the
most laborious part of the HMM-based speech synthesis is the wavegfemeration from
the parameters. The waveform generation consists of two main tasks:tiexcganera-
tion and filtering. The generation of the excitation signal in a conventionaMHdsed
speech synthesis system is very straightforward: the excitation consathar impulses
or white noise. On the contrary, in the implemented TTS system, the generatioited
excitation covers the interpolation of natural glottal flow pulses and furttegfification of
the voice source spectrum through filtering with an adaptive IIR filtersTthe generation
of the excitation signal is computationally more demanding than in a conventipeetis
synthesizer. After the signal generation, the voiced and unvoiced gawcisignals are both
filtered with adaptive FIR filters, which is the most laborious part of the ggish

The current implementation of the HMM-based TTS system cannot synghgsech in
real time. The required synthesis time largely depends on the update irdgéthal filter
coefficients. If the coefficients are updated for every second sapvpiésh yields quality
indistinguishable from the synthesis with continuous updating of the filteficigeits, the
synthesis takes currently about twice the duration of the resulting spéeohly every
eighth coefficient is used, the synthesis time is less than the duration of titengspeech,
but also some minor artefacts can be detected.

The implementation of the TTS system is not entirely optimized in terms of computa-
tional efficiency, but it is rather a platform for experimenting with the nentlsgsis tech-
nique. There are several issues concerning the implementation that eodévd&loped in
order to make the synthesis computationally more efficient. Since most of thesgroc
ing time is used for filtering the voice source and excitation signals, the nétwuas of
development would be the filtering algorithms. The filtering process also ¢sespthe
conversion of LSFs to LPC polynomial on each filter update. The implementatitire
conversion function is not optimized for recurrent uséarloops, and thus the optimiza-
tion would speed up the filtering. Additionally, the update interval could be raddptive
to avoid unnecessary computation. Thus, the filter coefficients woulddsgegbonly if the
changes in LSFs would be large enough to cause artefacts.

Through the optimization, the synthesis could be made run with a considemalles
delay than at present. Moreover, if the text analysis, speech paragesteration, and
waveform generation would be implemented to run concurrently, continugesigrating
synthetic speech, near real time practical implementation would be possible.



Chapter 6

Discussion

This chapter concludes the thesis with a discussion of the most importanttcamcefu-
ture issues concerning the new TTS system. The utilization of glottal invétesinty and
modeling of the voice source characteristic in a HMM-based TTS systedisangssed. Al-
ternative methods of implementation are considered, and future planstfogrfdeveloping
the TTS system are described. Finally, the conclusions of the thesisemenped.

6.1 Discussion and Proposed Improvements

Although the experimental results show that the proposed new system i®adaerate
natural sounding speech, the full potential of the new system is not lgniised in the
current implementation. There are several aspects concerning the desigmplementa-
tion of the TTS system that are not optimal in any terms, and, as noted ptfereurrent
implementation is rather a platform for experimenting and further developingahel TS
method. The components of the TTS system that have major contribution ondlity @f
the synthesized speech are discussed in the next few sections. Pospileements are
proposed and the estimated benefits are evaluated.

6.1.1 Glottal Inverse Filtering

The aim of the new HMM-based TTS system is to create natural soundeeglsjn differ-
ent speaking styles with different speaker characteristics and eveiinesioThese goals
are achieved partly through the ability of the HMM system to model these atieaistics,
but foremost through the ability of the training stage to distinguish and paramétese
features from natural speech. Since a large part of what can lbacthidzed as natural-
ness in speech emerges from different voice source characteristioslleas their context
dependent changes, the core of the new TTS system is the glottal ifiterseg, which

74
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enables the parametrization of the glottal source characteristics.

The parametrization of speech signal is traditionally performed throughammsition
to source and filter. The decomposition can be performed in various Vi@ysxample
through basic all-pole modeling, through glottal inverse filtering, or with @ahgramethod.
The resulting source and filter need not to represent any real mechahspeech produc-
tion. The purpose of the decomposition is merely to represent the speech isigerms
of source and filter characteristic, and thus reduce the information eeljioir representing
the speech signal. In this respect, the approach of using inverse filslg not yield
any more accurate results than other decomposition methods. Howevegctimagbsition
through glottal inverse filtering yields information about the real functiomhthe vocal
folds and the vocal tract filter. This enables the modeling of glottal somdeacal tract fil-
ter parameters individually, and the further analysis and modification ofrthacteristics
are possible based on the knowledge of the speech production mechanism.

While the HMM system is a statistical method for describing the speech signah it ¢
not distinguish the voice source characteristics from source and fikedban traditional
decomposition. In other words, if an HMM system is trained with traditional@and fil-
ter parameters, the context dependent changes of the voice soaraetehistics are spread
randomly to both source and filter characteristic, and therefore the dgsirameters are
statistically smoothed out. Thus, the voice source characteristics canobtibed in a
traditional HMM-based TTS system. On the contrary, in the new HMM-bage&disystem
that utilizes glottal inverse filtering, separate voice source and vocakttracacteristics are
fully available for modeling in order to imitate the natural speech production amesm,
and thus produce natural sounding synthetic speech. Moreoverdikigiral modeling of
different speech characteristic enables the easy adaptation and ait@rafjeeaking style,
speaker characteristics and emotion.

6.1.2 Spectral Modeling

In the current TTS system, linear prediction is used for estimating the spentrelope

of the speech signal, and further the spectral envelope of the voiceesoblowever, it
has been known for some time that linear prediction suffers from varicawsbdcks that
are especially evident during voiced segments of speech. Specificalpetiks of the
LPC spectral envelope are biased towards the pitch harmonics, whiskschias to the
estimated formant structure. To overcome these problems, discrete alB#d® (nodel-

ing (El-Jaroudi & Makhoul 1991) could be utilized for evaluating the sf@envelope of
speech instead of LPC. Generally, DAP modeling gives better spectelbpes than linear
prediction. Moreover, DAP modeling enables the spectral weighting ofrthlysis, which

could be utilized in order to obtain better spectral model for the most importemidncies
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in speech.

6.1.3 Library Pulse

The use of a natural glottal pulse for creating the voiced excitation helpggegving the
naturalness and quality of the synthetic speech. However, since thegrestavariation
in the shape and spectrum of the glottal flow pulses in natural speechseha a single
glottal library pulse is not really justified. Experiments made with the TTS syskaw s
that the use of a single glottal library pulse is unable to mimic the dynamics of thel glotta
flow pulses that exist in natural continuous speech. It would be @igteto use more
than one library pulse in order to create desired variability, and probablguhlity of the
synthesized speech would improve as the number of different glottal flisep would
increase. However, there are several difficulties in such an agpréacstly, experiments
made with the system show that the selection of the library pulse has a signéfteot
on the quality of the synthesized speech. The characteristics of the dgathepeech are
substantially different with different glottal flow pulses even if the pulseg seem very
similar to each other in the time domain. Thus, it is challenging to create a set gfottal
flow pulses that would be suitable for creating the voice source and waadddenatural
sounding synthetic speech.

However, the approach of using more than one natural glottal flow ptdseseating
the voiced excitation is attractive. One method of implementing the pulse library ¥s to e
tract several pulses as similar to each other as possible, and then randenthe pulses
in synthesis. This might create the desired variation in the voice sourcéhamdachine-
like or metallic characteristics due to strong harmonic structure at higherenetgs would
probably be diminished. However, on the grounds of small scale expgsptéere is a
large possibility that the differences between the library pulses are heandefacts in the
resulting synthesized speech. Another approach, and maybe evercinalenging one,
is to extract separate glottal flow pulses from speech of differentaimedital frequency,
phonation type or intensity. This would bring out the characteristics of aledpeech, and
would at the same time partly solve the problem of changing the fundamergaéfrey of
the voice source. The extraction of the glottal flow pulses and the cotistrut an appro-
priate library for synthesis would require much work. However, theltesidi a successful
pulse library and algorithm for using the pulses could yield substantiaheenzents to the
naturalness of the synthesized speech. To reduce the artefacts deediffictences be-
tween adjacent glottal flow pulses, pulse modifying algorithms could be utilkeimple
method would be to gradually change the waveform of the glottal flow putse éne pulse
to another. Nevertheless, extensive experiments with more than one |guiaeywere not
performed.
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Itis challenging to create natural sounding synthetic speech by usiegatiffglottal flow
pulses, because it is likely that the differences between individualgpotagse artefacts to
some extent. Moreover, it is not only the variation that is required betweendjacent
glottal flow pulses, but there is also rules based on the physical fundiafithe vocal
folds that define the properties of the glottal source. Thus, more informatiout the
physical functioning of the vocal folds would be beneficial in order tiyfutilize the
pulse library. Alternatively, other methods for creating the voice souso&de used, for
example methods used primarily in articulatory synthesis, but unfortunately #ne no
proper methods for physical modeling of the voice source.

6.1.4 Fundamental Frequency Modification

Despite the fairly natural synthetic speech, the interpolation of the glottapfldse accord-
ing to the fundamental frequency is far from the natural behavior of libgag flow. The
interpolation is a compromise to alter the fundamental frequency due to theflpobper
methods for modeling the behavior of the vibrating vocal folds. The intetipolg@roce-
dure has many disadvantages. Firstly, although the original time propeftiles glottal
flow pulse are shifted in proportion to each other, it is different from ttenal behavior of
the glottal flow pulse. For example, although the open time would be longer ipitoived
pulses than in high-pitched ones, in does not mean that the abrupt glosiateckhould be
different between the pulses. By using interpolation, all the differespgties of the glot-
tal flow pulse are changed simultaneously without any physical basien8kgcthe cubic
spline interpolation changes the frequency content of the glottal flow.ptiisenot exactly
known how the spectral characteristics of a glottal flow pulse shouldveeliaen the fun-
damental frequency is changed. However, the cubic spline interpolatgocosipromising
method for changing the fundamental frequency.

There are alternative methods for interpolation in order to change tharfugmtal period
of the voice source. Since the closed time of the glottal flow pulse is kept Soateanstant
regardless of other changes in the voice source, it is easy to chanyedaenental period
through alteration of the closed time. However, preliminary test with the tecbsigowed
that the quality was not improved. This is probably due to the constancy ef ptbperties
of the glottal flow pulse, which results in unnatural synthetic speech wheesfutfdamental
period is different from the length of the original pulse. Another apginda to interpolate
only some parts of the original pulse, for example excluding the main excitalibas,
most of the properties of the glottal flow pulse would change according totldemental
frequency, but yet the main excitation would provide the desired highguéncies. This
method has not been experimented, but the obvious defect of the methodlaskhaf
variation in the main excitation.
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The implementation of a pulse library consisting of glottal flow pulses of difiieien-
damental period could be the best solution for changing the fundamesdaleincy of the
voice source. If the different glottal flow pulses describe the chaiatits of the voice
source at different fundamental frequencies, the resulting synthpteech should be more
natural, if the differences between adjacent pulses would not pradible artefacts. If
the library consisting of pulses with different fundamental periods iselensugh, the fine
adjustment of the fundamental period can be performed with a slight intégolaithout
greatly affecting the properties of the glottal flow pulse. As noted in theiguewsection,
the difficulty is to find and extract such pulses that would describe onlyekigeti proper-
ties, and would be otherwise similar to each other in order to avoid artefacts.

6.1.5 Spectral Modification of Voice Source

The all-pole model used for spectral modification of the voice source id goterms of
accuracy and details, but there are some problems in the training of the sopapéame-
ter set to the HMM system. At present, the parameters generated by the Méfrsare
somewhat oversmoothed, and thus do not create as much variation to tasmaice as de-
sired. Since the inverse filtering procedure is not perfect, the voicqesmcorporates also
some residual spectrum from the vocal tract. This might lead to a situatiomehevoice
source spectrum describes the residual of the vocal tract more thbehheior of the voice
source. Informal observation of the decision trees of the voice s@p®etrum revealed,
that the context clustering was performed mostly based on the phone idsaggesting
that some traces of the vocal tract were left on the voice source specthe residual on
the voice source spectrum is not a problem since the quality of the syreesiwel might
improve due to the phone-specific modification of the voice source, butrdidem is that
the HMM might not be able to model the voice source spectrum that desthidghona-
tion type as efficiently as desired. It seems that the HMM system is somendialeuto find
appropriate linguistic context for the changes in the voice source specHowever, this
problem might arise from many reasons, such as too small training matesatamndly the
training material might be spoken too monotonously without great variation®indice
source spectrum. In addition, there might also be other reasons cimgctra HMM sys-
tem that make the training of the voice source spectrum parameters lesweffAlthough
improvements should be made in order to model the spectrum of the voiceesearoe
features of speech are currently well modeled. For example, onetedheaeen splitting
criterion was syllable position in the utterance, showing that the HMM systeniecain
the characteristics of the utterance-final creaky voice, typical in Finhistvever, further
development for the modification of the voice source spectrum is requiree the appro-
priate variation in the voice source spectrum is one of the most importantdsaitithe
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new synthesizer. An especially interesting topic is how the spectrum of ibe source
would relate to the higher level phonological factors.

6.1.6 Impression of Breathiness

The synthesized unvoiced speech sounds are currently fairly ndiutaéihe unvoiced com-
ponent incorporating the voiced component sounds rather poor. fidiiéem derives from
the inability of the spectral energy to distinguish between noise and harnadriles voice
source. Since the natural impression of breathiness is important in oederethte natural
sounding synthetic speech, methods for measuring and adding breatinassbe devel-
oped. Thus, the relation between voiced and unvoiced components siouléasured.
There are several algorithms to perform the task, such as band-@asg\strength (see
Section4.4.5 and harmonic-to-noise ratio. Harmonic-to-noise ratio measures the ratio be
tween the magnitude of the harmonics and the magnitude of interharmonic ndigs, T
by measuring the relation between voiced and unvoiced components atmiffends, an
appropriate amount of noise could be added to each band. The besiggieing strength
has been already experimented, but further studies are requiredeintorckeate a natural
impression of breathiness.

The impression of breathiness could be expected to be more natural if idee aom-
ponent was modulated according to the voiced component. However, ishecesolid
information about the mechanism of the modulation. The modulation according ¢iaia
tal flow pulses was experimented, but large improvements were not adhiexperiments
also showed, that some time characteristics of the turbulent noise wendticatlg impor-
tant, since there were no audible differences regardless of whetheoidewas present at
glottal open time or closed time. The higher frequencies that originate frogidttial flow
pulses in natural speech follow the periodicity of the glottal flow, but theridnscation
between the noise originating from the vocal folds or turbulent flow is ditffic

6.1.7 HMM System

Methods for the HMM modeling are rapidly developing, especially in the fielspaech
synthesis. The current implementation of the HMM system does not repbsestate-of-
the-art of the HMM synthesizers, but is a basic implementation for experingewith the
new synthesizer. Thus, many improvements could be incorporated withirMiivk $ystem
which would probably improve the quality of the synthesized speech. Fangbe, the
introduction of hidden semi-Markov models (HSMM) (Zen, Tokuda, Masidobayashi &
Kitamura 2004) and speech parameter generation considering glolzaic&af(GV) (Toda
& Tokuda 2007) have been proposed to enhance the performanceldMM system, just
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to name a few. With the release of HTS version 2.0 (Zen, Nose, Yamagisio, Masuko,
Black & Tokuda 2007) various improvements and new features haveibeleded in the
HMM system. Moreover, speaker adaptation and adaptive training tesreibtroduced in
the HTS version 2.0 in order to enable flexible speech synthesis.

6.2 Future Work

Most of the main topics of further development were mentioned in previottfore but
no explicit directions of the development were discussed. Generallyjithefahe TTS
system is to enable generating highly natural synthetic speech capaldevelyng dif-
ferent speaker characteristics. The basic blocks that enable thalseage implemented,
but further development is required in order to fully utilize the capability ofrtbe TTS
system. For example, the forthcoming development will be focused on imgrdvinuse
and shaping of the natural glottal flow pulses, and enhancing the use wbite source
characteristics obtained by glottal inverse filtering.

6.3 Conclusions

In this thesis, a new HMM-based text-to-speech system utilizing glottal ieVitlexing was
described. Subijective listening tests showed that the quality of the prbpeseTTS sys-
tem was considerably better compared to a traditional HMM-based TTSrsysth an im-
pulse train excitation model. The information about the voice source chaséictebtained
through glottal inverse filtering and the use of natural glottal flow pulseslglenproved
the quality of the synthesized speech. Moreover, individual modelingeofdice source
characteristics in the framework of HMM enables flexible speech synthéisaviitrary
speaker’s voice, various speaking styles, and emotional expres3ibasiew method has
the potential to produce highly natural sounding synthetic speech. Metogenent of the
new TTS system continues in order to fully utilize the new techniques intradincthis
work.
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Appendix A

Detalls of the CCR Test

Table A.1: Sentences used in the CCR test.

10

Useimmat olivat nelissakymmenissa.

Tulosten julkistamisen yhteydessa tulisi aina kayda ilmi paitsi otantamenetelma,
mya®s relevantin kadon osuus.

Talla hetkella kesdjuhlan taiteellisena johtajana tunnen olevani lahinn&exhan
juuosaston paallikkd, ja selittelysta vastaava toimihenkil 6.

Sotamuistot ovat vain alkuja pitkille kertomuksille.

Siihen taas poliisi ei nahnyt minkaanlaisia perusteita.

Nykyhetkesta katsoen tuohon ajatuskaavaan luuduttiin liian tiukasti, liian pitkak
aikaa.

Niissé on lampda ja melankoliaa.

Niinpa kapinaa riennettiin kukistamaan.

Myds puolison sisaren miesta sanotaan langoksi.

Minusta tama on tyhmyytta.
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Figure A.1: Differences between the scores of the same sample pairadiorsebject.
Ideally, the difference should be zero.
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Figure A.2: Scores for the null pairs for each subject. Ideally, theesfmrthe null pair
should be zero.
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Appendix B

Details of the Pair Comparison Test

Table B.1: Sentences used in the pair comparison test.

© 00 N O 0o b~ W NP

=
o

Tallainen tori oli nostajien mielesta hyva nimenomaan laajapohjaisuudessaan.
Siitd maksetaan myds hyvia hintoja.

Se toi tuulahduksen toisenlaisesta aikakaudesta taman paivan politiikkaan.
Ruotsalaiset itseasiassa tartuttivat huolensa meihin.

Nykyiset aédnestéjat eivat Suomen sisapolittikkaa heilauta.

Maailma pydrii sittenkin, hyvaa yota.

Maksajia ei ilmaantunut.

Kevaalla sisdinen jannitys laukesi.

Kesélla saattaa olla lammintakin.

Ja jalleen kerran hanen potilaansa kokosi voimansa ja alkoi toipua.
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Figure B.1: Distribution of the answers to A, B, and "no preference"f@kach subject.
Ideally, the number of answers to A and B should be equal.
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Figure B.2: Answers to the null pairs trials for each subject. Ideally, rtepence should
be addressed for either of the samples.
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