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In this work, a new hidden Markov model (HMM) based text-to-speech (TTS) system utilizing

glottal inverse filtering is described. The primary goal of the new TTS system is to enable

producing natural sounding synthetic speech in different speaking styles with different speaker

characteristics and emotions. In order to achieve these goals, the functionof the real human

voice production mechanism is modeled with the help of glottal inverse filtering embedded in

a statistical framework of HMM.

The new TTS system uses a glottal inverse filtering based parametrization method that enables

the extraction of voice source characteristics separate from other speech parameters, and thus

the individual modeling of these characteristics in the HMM system. In the synthesis stage,

natural glottal flow pulses are used for creating the voice source, and the voice source charac-

teristics are further modified according to the adaptive all-pole model generated by the HMM

system in order to imitate the natural variation in the real voice source.

Subjective listening tests show that the quality of the new TTS system is considerably better

compared to a traditional HMM-based speech synthesizer. Moreover, the new system is clearly

able to produce natural sounding synthetic speech with specific speakercharacteristics.
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TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ

Tekijä: Tuomo Raitio

Työn nimi: Äänilähteen käänteissuodatusta hyödyntävä Markovin piilo-

malleihin perustuva suomenkielinen puhesynteesijärjestelmä

Päivämäärä: 30.5.2008 Sivuja: 89 + 5

Tiedekunta: Elektroniikka, tietoliikenne ja automaatio

Professuuri: S-89

Työn valvoja: Prof. Paavo Alku

Tässä työssä esitetään uusi Markovin piilomalleihin (hidden Markov model, HMM) perustu-

va äänilähteen käänteissuodatusta hyödyntävä suomenkielinen puhesynteesijärjestelmä. Uuden

puhesynteesimenetelmän päätavoite on tuottaa luonnolliselta kuulostavaa synteettistä puhetta,

jonka ominaisuuksia voidaan muuttaa eri puhujien, puhetyylien tai jopa äänenemootiosisällön

mukaan. Näiden tavoitteiden mahdollistamiseksi uudessa puhesynteesimenetelmässä mallinne-

taan ihmisen äänentuottojärjestelmää äänilähteen käänteissuodatuksen ja HMM-mallinnuksen

avulla.

Uusi puhesynteesijärjestelmä hyödyntää äänilähteen käänteissuodatusmenetelmää, joka mah-

dollistaa äänilähteen ominaisuuksien parametrisoinnin erillään muista puheen parametreista,

ja siten näiden parametrien mallintamisen erikseen HMM-järjestelmässä. Synteesivaiheessa

luonnollisesta puheesta laskettuja glottispulsseja käytetään äänilähteen luomiseen, ja ääniläh-

teen ominaisuuksia muokataan edelleen tilastollisen HMM-järjestelmän tuottaman parametri-

sen kuvauksen avulla, mikä imitoi oikeassa puheessa esiintyvää luonnollista äänilähteen omi-

naisuuksien vaihtelua.

Subjektiivisten kuuntelukokeiden tulokset osoittavat, että uuden puhesynteesimenetelmän laa-

tu on huomattavasti parempi verrattuna perinteiseen HMM-pohjaiseen puhesynteesijärjestel-

mään. Lisäksi tulokset osoittavat, että uusi puhesynteesimenetelmä pystyy tuottamaan luon-

nolliselta kuulostavaa puhetta eri puhujien ominaisuuksilla.

Avainsanat: puhesynteesi, synteettinen puhe, TTS, HMM, äänilähteen käänteissuodatus
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Chapter 1

Introduction

The ultimate goal of text-to-speech (TTS) synthesis is to create natural sounding speech

from arbitrary text. Moreover, the current trend in TTS research callsfor systems that en-

able producing speech in different speaking styles with different speaker characteristics and

even emotions. In order to fulfill these stringent general requirements, two major synthe-

sis techniques have attracted increasing interest in the speech researchcommunity during

the past decade. These two alternatives are the unit selection technique and the hidden

Markov model (HMM) based approach. The former has been shown to yield synthetic

speech of highly natural quality. However, unit selection techniques do not allow for easy

adaptation of the TTS system to different speaking styles and speaker characteristics. In

order to obtain various voice characteristics in text-to-speech systems based on the selec-

tion and concatenation of acoustical units, a large amount of speech data isrequired. It is

difficult and laborious to collect and segment the speech units, and the implementation of

the TTS system requires databases of extensive sizes, which severelylimit the use of this

TTS technique for example in handheld devices. HMM-based techniques,in turn, benefit

from better adaptability and a clearly smaller memory requirement. However, thecurrent

HMM systems often suffer from degraded naturalness in quality. It can be argued that a

potential reason for the reduced naturalness in the current HMM-based TTS systems can be

explained by the use of signal generation techniques which are oversimplified to properly

mimic natural speech pressure waveforms.

A large part of what can be characterized as naturalness in speech emerges from different

voice characteristics as well as their context dependent changes. Therefore, it is justified

in speech synthesis to search for methods aiming at accurate modeling of different voice

characteristics as well as prosodic features of speech. Towards these goals, HMM-based

synthesizers have been developed with special emphasis on voice characteristics such as

speaker individualities, speaking styles, and emotions. Moreover, some recent studies have

1



CHAPTER 1. INTRODUCTION 2

introduced improved signal generation techniques for parametric HMM-based TTS systems

that have been shown to improve the quality of synthetic speech compared to traditional

methods. However, the quality of the TTS systems using these techniques still remains far

from the quality of natural speech.

In the real human voice production mechanism, the excitation of voiced speech is rep-

resented by the glottal volume velocity waveform generated by the vibrating vocal folds.

This excitation signal, the glottal source, has naturally attracted interest in speech synthe-

sis, and many techniques have been proposed to mimic the glottal source of natural speech.

Artificial models for the glottal source have been used in order to improve thequality of the

synthesis. However, current models for the glottal source are oversimplified as well, and the

resulting quality of the synthesis has not been satisfactory. To overcome the problems due

to oversimplified glottal source models, the idea of utilizing glottal flow pulses extracted

from natural speech with the help of glottal inverse filtering has been proposed. However,

previous studies based on glottal flow pulses extracted from natural speech are limited to

special purposes such as the generation of isolated vowels, and the benefits from combining

automatic glottal inverse filtering with an HMM-based speech synthesizer have not been

utilized.

The human voice production and especially the voice source has been an active research

topic at the Department of Signal Processing and Acoustics at the HelsinkiUniversity of

Technology. One particular outcome of the research has been the glottal inverse filtering

method developed by professor Paavo Alku in the early 1990s. The developed method has

been studied and verified to yield reasonable estimates of the glottal source,and it has been

used at the department and by other researchers for estimating the glottal source. Also

speech synthesis has been a topic of special interest among the people who nowadays work

at the department, but the previous research has been focused mainly onformant synthesis

based techniques, and recently the activity of the research on speech synthesis has been

minimal.

Phonetics and linguistics have been widely studied at the Department of Speech Sci-

ences at the University of Helsinki. Also speech technology has been anactive research

topic. Lately, an HMM-based speech synthesizer was adopted to study Finnish speech syn-

thesis with a special emphasis on the modeling of Finnish prosody. The research with the

synthesizer has been focused mostly on modeling the linguistic features of speech with the

HMM system, but speech synthesis algorithms have not been widely studied.

Since the information about the voice source characteristics is consideredvaluable in

HMM-based speech synthesis, a collaboration between the two departmentswas started in

2007. The objective was to use the glottal inverse filtering method to reveal the voice source

characteristics, and utilize that information in HMM-based speech synthesis.Thus, a new



CHAPTER 1. INTRODUCTION 3

HMM-based speech synthesis system was created in co-operation with thetwo departments.

In this thesis, a new HMM-based speech synthesis system that utilizes glottalinverse

filtering is presented. The new TTS system aims to produce natural sounding synthetic

speech capable of conveying different styles of speaking as well as emotions. In order to

achieve these goals, the function of the real human voice production apparatus is modeled

with the help of glottal inverse filtering embedded in an statistical framework of HMM.

The thesis is organized as follows. Basic information about speech production, percep-

tion, and synthesis is presented in Chapter2. The methods used in speech synthesis in

general and especially the methods utilized in the new TTS system are presented in Chapter

3. The new HMM-based TTS system is presented and fully described in Chapter4, and the

evaluation of the constructed TTS system and the obtained results are described in Chapter

5. Discussion about the new synthesizer and the utilized methods with final conclusions are

presented in Chapter6.



Chapter 2

Background

This chapter describes speech production and perception from the perspective of speech

synthesis, followed by a representation of the source-filter theory, a model that most speech

synthesizers are based on. A general description of speech synthesis systems is given at the

end of the chapter.

2.1 Fundamentals of Speech Production

Speech is produced by regulating the airflow from lungs through throat, nose and mouth.

The air in the lungs is pressed upon chest and lung tissues, resulting in an airflow to trachea

and larynx. At larynx the airflow is modulated by vocal folds, which creates the main

excitation for voiced speech. Pharynx connects the larynx to oral and nasal cavities, which

are collectively called the vocal tract. The volume and dimensions of the pharynx and

oral cavity can be adjusted, functioning as an acoustic time-varying filter. Finally sound

is radiated to surrounding air at lips and nostrils. The speech production mechanism is

illustrated in Figure2.1.

The produced speech sounds can be basically classified into three categories. Firstly,

voiced speech sounds are produced by using the air pressure to get the vocal folds into vi-

bratory motion. This generates a periodic signal rich in harmonics. Voiced sounds form the

main part of most West European languages. In English, for example, 78% of phonemes

are voiced (Catford 1977). Secondly, unvoiced sounds are produced by constricting the

airflow somewhere in the vocal tract. This creates a continuous turbulent airflow charac-

terized by a noise-like waveform without a harmonic structure. The continuous unvoiced

speech sounds are called fricatives. Thirdly, unvoiced stop consonants are produced by

completely stopping the airflow in the vocal tract. The release of the increased pressure

creates a transient noise burst. Speech sounds are often a combination of both voiced and

4
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Figure 2.1: Speech production mechanism. (Karjalainen 2000)

unvoiced components.

2.1.1 Vocal Folds

The vocal folds are two elastic tissue structures situated horizontally at larynx. The opening

between the vocal fold is called theglottis (Flanagan 1972a). The alignment and the tension

of the vocal folds can be adjusted by the surrounding muscles and cartilages, which enables

switching between respiration and different phonation modes. During respiration the vocal

folds are widely separated (abducted), but during phonation they are close to each other

(adducted). When the vocal folds are adjusted properly and the airflowthrough glottis is of

sufficient velocity, the vocal folds start to self-oscillate.

The behavior of the vocal folds in phonation is illustrated in Figure2.2. As the air from

the lungs is pushed upwards to the closed vocal folds, the subglottal pressure is increased.

This gradually forces the vocal folds to open, increasing the airflow between the vocal folds.

The airflow causes an underpressure at the glottis, which draws the vocal folds together,

contracting the open glottal area. Finally the glottis closes up as the vocal folds hit together,

creating the main excitation in phonation. After the closure, the subglottal pressure begins

to increase again, starting a new period. Figure2.3shows how the airflow varies in time in

phonation.

The periodic signal generated by the vibrating motion of the vocal folds is called the

glottal flow, glottal volume velocity waveform, or simply the voice source. The rate at which
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Figure 2.2: Diagram showing an idealized cycle of vocal fold vibration. (Based on Story

(2002))

0 5 10 15 20 25 30
Time (ms)

A
m

pl
itu

de

Figure 2.3: Glottal volume velocity waveform estimated from a sustained vowel[a] pro-

duced by a male speaker using normal phonation.

the vocal folds vibrate defines the fundamental frequency orf0 of the speech. The average

fundamental frequency of speech is 120 Hz for men and 200 Hz for women (Karjalainen

2000), and in normal speech the fundamental frequency varies approximately from 50 to

500 Hz (Hess 1983). However, the fundamental frequency can be greatly varied from 33 to

3100 Hz in arbitrary utterance (Hess 1983).

In addition to the control of fundamental frequency, the vocal folds canbe adjusted to vi-

brate in different phonation modes. This affects the characteristics of thevoice source. Nor-

mal speech is typically categorized into three phonation modes: breathy, normal (modal)

and pressed. The main distinction among different phonation modes is the degree of ad-

duction. If the adduction is loose, the phonation is called breathy. On the contrary, if the

adduction is intense, the phonation is called pressed. In normal phonation the adduction is

between breathy and pressed. The phonation type affects the waveform and the spectrum

of the voice source. In breathy phonation, the fundamental frequencycomponent is em-

phasized, whereas in pressed phonation the higher harmonics are emphasized. The spectral

envelope of the voice source is called thespectral tilt (Klatt & Klatt 1990). Additionally,

speech sounds can be produced in different registers, such as vocal fry and falsetto. In vo-
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Figure 2.4: Illustration of the profile of the vocal tract and the resulting spectral envelope

in phonation of vowels [a], [i] and [u].

cal fry, the vocal folds are loosely closed which permits the air to bubble through glottis,

creating a low-pitched creaky sound. In falsetto, the vocal folds are only partly vibrating,

creating a breathy high-pitched sound.

2.1.2 Vocal Tract

The vocal tract extends from the glottis up to the lips. It consists of four cavities: the larynx,

the pharynx, the oral cavity and the nasal cavity. The length of the vocaltract is normally

about 17 cm in men and 15 cm in women (Karjalainen 2000, Claes, Dologlou, tenBosch &

van Compernolle 1998). The function of the vocal tract is to shape the spectral character-

istics of the source. It functions as a time-varying filter that creates moving resonances or

formants. The shape and dimensions of the vocal tract defines the properties of this filter.

Different sounds are formed by modifying the vocal tract profile by changing the position

of the tongue, lips, jaw and velum. In vowels, the oral tract is open, but in nasal sounds

the oral cavity is blocked and the velum lowers down and couples the closedoral tract to

the nasal tract. An illustration of the profile of the vocal tract and the resulting spectrum

envelope in phonation of different vowels in show in Figure2.4.
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2.2 Basics of Speech Perception

The perception of speech is a special function of hearing. Speech perception has been

widely studied with psychoacoustical and physiological methods. The basicacoustical

cues of speech perception are rather well know, but the speech-specific higher-level hearing

mechanism is yet widely unknown. This section will present the fundamentalproperties of

hearing and the most important perceptual characteristics of speech.

2.2.1 Hearing

Hearing is the ability to perceive sounds by detecting the pressure variations in the air. The

outer ear is the first organ that takes part in the perception of sounds. It consists of pinna, ear

canal and eardrum. The pinna gathers and focuses sound energy, and has a great effect on

spatial hearing. The ear canal extends from pinna to eardrum, and functions as an acoustic

filter. It amplifies frequencies around 3 kHz (Gulick, Gescheider & Frisina1989), which is

an important region for the speech perception. The eardrum transformsthe acoustic wave

motion to mechanical vibrations. The three ossicles in the middle ear transfer thevibrations

of the eardrum to oval window. The purpose of the middle ear is to efficientlytransfer

mechanical energy to waves in fluid. The transmission of sound through themiddle ear is

most efficient at frequencies from 500 to 4000 Hz (Moore 1997). Thesound is transferred to

electrical signals in cochlea in the inner ear. The cochlea is filled with liquid, which moves

in response to the vibrations coming from the oval window. As the liquid moves,hair

cells are set in motion, which then convert the vibrations to neuronal firings. The cochlea

can be considered a bank of filters whose outputs are ordered tonotopically. The auditory

nerve gathers sound information decoded to electrical signals for further processing. The

overview of the human hearing system is presented in Figure2.5.

The range of audible frequencies extends from 20 Hz to 20 000 Hz. Thehearing is most

sensitive at 4 kHz, and the sensitivity decreases towards both extremes.However, the full

bandwidth of hearing is not used in speech, since the speech signal canbe band-limited to

about 10 kHz with only minor effects on its perception (Kleijn & Paliwal 1995).Further-

more, the intelligibility of speech can be obtained with much narrower bandwidth.The per-

ceived pitch of a sound is generally proportional to the logarithm of the frequency. There-

fore in many applications it is more convenient to describe the frequency related quantities,

such as pitch or formant frequencies, with perceptually weighted auditoryscales instead of

physical frequency. One of the earliest auditory scales was the pitch ratio scale measured in

mels (Stevens, Volkmann & Newman 1937). The mel-scale is obtained by askingsubjects

to adjust the frequency of a tone to be half or twice as high as that of a tone given for com-

parison. Two other important auditory scales are the critical band rate measured in barks
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Figure 2.5: Human hearing system. (Karjalainen 2000)

(Zwicker, Flottorp & Stevens 1957) and the Equivalent Rectangular Bandwidth (ERB) rate

(Moore & Glasberg 1974), which are both based on measuring the frequency resolution.

2.2.2 Perception of Voiced Speech Sounds

Voiced speech sounds are described by the periodic excitation of the vocal folds and the

formant structure resulting from the profile of the vocal tract. Two or three first formants

are used to distinguish between different vowels (Pickett 1999). The other formants remain

rather constant regardless of changes in articulation. Individual formants can be described

by center frequency, amplitude and bandwidth. The just noticeable differences (JNDs) for

first and second formant frequencies have been measured to be from3 to 5 percent of the

center frequency (Flanagan 1972a). The formant amplitude JNDs are estimated to be 1.5

dB and 3 dB for first and second formants, respectively (Flanagan 1972a). Changes in

formant bandwidth (–3 dB) of order 20–40 percent have been foundto be just noticeable

(Flanagan 1972a).

Nasal sounds are described by a nasal murmur, whose spectrum is dominated by the low

frequency components. The spectrum is determined mostly by the main resonance of the

nasal cavity. The spectrum of nasal murmur vary little among different nasal sounds, since

the size and shape of the nasal cavity cannot be altered. Nasal soundsincorporate also

antiformants which reduce the energy at certain regions. Nasal soundsare considerably

lower in intensity than vowels due to blocked oral cavity.

The source waveform and spectrum of voiced sounds can be varied inexcitation inten-

sity, fundamental frequency and phonation type. The spectral slope ofthe excitation can

vary from –15 dB per octave of breathy phonation to –9 dB per octave ofpressed phonation
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Figure 2.6: Glottal flow and its spectrum in different phonation modes. On theleft, an ide-

alized glottal flow in modal (normal) phonation and its spectrum is presented. The spectral

slope of the excitation is about –12 dB per octave. In the middle, laryngealized (pressed)

phonation is illustrated where the spectral slope is about –9 dB per octave.On the right,

breathy phonation is visualized where the spectral slope is –15 dB per octave and the higher

harmonics are replaced by aspiration noise.

(Pickett 1999). The spectral slope can also vary due to increased vocal effort. In pressed (la-

ryngealized) phonation, the glottal pulse waveform is narrower, the fundamental frequency

component is reduced, and there may be diplophonic irregularities in fundamental period.

Breathy phonation is characterized by increased open glottal period, increased amplitude

of the fundamental component, and a tendency of higher harmonics to be replaced with

aspiration noise (Klatt & Klatt 1990). Figure2.6 shows how the glottal waveform and its

spectrum vary in different phonation modes.

Temporal fine structure is also known to exist in the glottal source. The shape and the

periodicity of the glottal pulse is subject to various perturbations, for example jitter and

shimmer. Although the magnitude of jitter in normal voices is found to be slightly less

than the detectability threshold, the fine structure of the glottal flow may be of significant

perceptual importance (Klatt & Klatt 1990).

2.2.3 Perception of Unvoiced Speech Sounds

Unvoiced speech sounds can be basically categorized either as fricatives or stop consonants.

Although fricatives and stop consonants may also incorporate a voiced component, the
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properties of voiced fricatives and stop consonants differ greatly from pure vowels, and

their distinctive features are somewhat the same whether the voiced part is present or not.

Fricatives are described by a continuous aperiodic noise. The spectral characteristics of

the noise vary according to the articulatory configuration. The duration ofthese sounds

is relatively long, though the length depends on many contextual factors. For example,

the duration of the fricative /s/ can range from 20 to 200 ms (Klatt 1974, Klatt 1976).

The spectral envelope, energy, and temporal characteristics vary according to individual

phoneme. In the case of voiced fricatives, the glottal vibrations modulate thecontinuous

aperiodic noise.

Stop consonants are mainly described by a low-energy interval called a stop gap followed

by a transient noise burst. The spectral characteristics of the noise burst vary according to

the articulatory configuration. However, it is doubtful whether the spectral content of this

burst is sufficient for phonetic identification (Kent & Read 1992). Typically the bursts are

no longer than 5 – 50 ms in duration (Kent & Read 1992), and they are one of the shortest

acoustic events that are analyzed in speech. The burst can also be aspirated, in which case

the burst is accompanied by a fricative-like longer noise tail. The burst is preceded by the

stop gap, which corresponds to the low energy period due to the articulatory occlusion. For

voiceless stops, the stop gap is virtually silent. For voiced stops in other than word-initial

position, the stop gap usually contains a low frequency band of energy called thevoice bar.

The duration of the stop gap is usually 50 – 150 ms (Kent & Read 1992). Stopconsonants

are also characterized by a delay in voicing relative to the beginning of the noise burst. This

delay is called the voice onset time (VOT) (Lisker & Abramson 1964). The voice onset time

is a major feature in distinguishing voiced and unvoiced stop consonants. For unvoiced stop

consonants the VOT is between 25 and 100 ms, whereas for voiced stop consonants VOT

can vary between –20 and 20 ms (Kent & Read 1992), in which case the voicing can start

before the noise burst.

During the transition from voiced to unvoiced and from unvoiced to voiced sounds, the

formant frequencies are shifted due to change in the vocal tract shape. This functions as

an additional acoustic cue for the identification of the phoneme. For example,experiments

with synthetic speech show that stop consonants are identified without the noise burst if the

formant transitions are properly specified (Kent & Read 1992). In natural speech, however,

the influence of formant transitions is not so clear. The formant transition are about 50 ms

in duration (Kent & Read 1992).

2.2.4 Acoustic Effects of Context and Speaker

The properties of individual speech sounds are largely dependent on the context of the

phoneme in syllables, words, and phrases. In continuous speech, the speech sounds are
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produced in rapid succession, and the boundaries between individualsounds are blurred.

This effect, the interaction of speech segments, is called the coarticulation. Coarticulation

enables fast and smooth production of speech, but in speech technology it is challenging

to model and take the coarticulation into account when performing tasks suchas speech

synthesis or speech recognition.

In addition to the coarticulation, speech is greatly affected by the message intended to be

conveyed. All the modifications in the intonation, stress, and rhythm of speech fall in the

category of prosody. Prosody has many functions, such as syntax, indication of utterance

type, and expression of interaction, attitude or emotion. The prosodic features vary accord-

ing to the prosodic functions. Prosody is formally defined as the suprasegmental features of

speech that are conveyed by the parameters of fundamental frequency, intensity, and dura-

tion. In addition to these parameters, the spectrum pattern of speech is also varied in terms

of prosody. A large part of the prosodic variation is generated by changing the characteris-

tics of the glottal source signal, such as fundamental frequency, intensity, and voice source

spectrum. Since anomalies in prosody are easily perceived, the correctmodeling of prosody

and thus the glottal source signal is especially important in order to create natural sounding

speech. For an extensive summary of speech prosody, see for example (Pickett 1999).

Speakers vary substantially according to gender, age and other individual differences.

First, due to the differences in physical properties of the speaker, such as the size and shape

of vocal folds and vocal tract, the speech sounds are produced differently. Second, the

individual differences in speaking style, such as language, accent, speech rate, and dialect,

affect the use of the speech production organs. The message of speech is usually well

understood despite the great variability, but the speaker characteristicsas such give much

useful information. This is a property of natural speech, and therefore the preservation or

alteration of speaker characteristics in speech is an important objective. For example, in

speech synthesis, this requires the correct modeling of the speech production mechanism as

well as the higher-level speaking characteristics.

2.3 Source-Filter Theory

The source-filter theory of speech production states that speech signal can be represented

in terms of source and filter characteristics (Fant 1960). In human speech production the

primary sound source is the excitation of the vibrating vocal folds. The periodic vibration

generates a rich harmonic spectrum, whose energy declines with increasing frequency. The

average rate of decline is 12 dB per octave (Flanagan 1972a, Kent & Read 1992), but it

can be greatly varied according to phonation mode. The vocal tract modifies the excitation

spectrum with a transfer function with formants or antiformants. Finally the sound radiates
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Figure 2.7: Source-filter model of speech production. (a) Speech is initiated by the vibra-

tions of the vocal folds. This generates a rich periodic spectrum, which energy declines

with increasing frequency. (b) The vocal tract modifies the glottal excitation by creating

resonances. (c) Spectrum of the signal before lip radiation. (d) The radiation of sound from

lips and nostrils to surrounding air creates an effect that enhances the higher frequencies of

the signal. This is called the lip radiation. (e) The spectrum of the speech signal.

to the surrounding air at lips and nostrils. This causes a frequency dependent effect called

lip radiation, which acts as a high-pass filter. The magnitude of this effect is approximately

6 dB per octave (Flanagan 1972a), but it is usually approximated by a simpledifferentiation

operation (Markel & Gray 1980). The source-filter theory is summarizedin Figures2.7and

2.8.

Assuming a linear time-invariant system, the above model can be described in Z-transform

notation by the equation

S(z) = E(z)G(z)V (z)L(z), (2.1)

whereS(z) is the speech signal,E(z) the impulse excitation,G(z) the glottal shaping model,

V (z) the vocal tract model, andL(z) the lip radiation model (Markel & Gray 1980). The

impulse excitationE(z) does not represent a physical signal, but is rather used as a math-

ematical input to the glottal model filter. Transfer functionsG(z) andV (z) are usually
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Figure 2.8: Spectrum of the component in the source-filter theory. (a) Spectrum of the

glottal excitation. (b) Amplitude response of the vocal tract filter. (c) Amplitude spectrum

of the lip radiation. (d) Spectrum of the speech signal.

described with all-pole linear filters, andL(z) is given by a differencing filter

L(z) = 1−ρz−1, (2.2)

where, in the definition by Markel & Gray (1980),ρ is set to 1. Lip radiationL(z) is the

only numerator in Equation2.1, but it is nearly canceled by one of the denominator terms

(Markel & Gray 1980). Thus the model can be described as

S(z) = E(z)
1

A(z)
, (2.3)

where the all-pole filter is defined as

A(z) ≃ 1
G(z)V (z)L(z)

. (2.4)

The detailed derivation of this model is presented for example in Fant (1960) and Flanagan

(1972a).

The source-filter theory is a linear mathematical model with many simplifying assump-

tions. Therefore some aspects of the theory are not really valid. For instance, it has been
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observed that interaction between source and vocal tract can occur innatural speech (Klatt

& Klatt 1990). Moreover, the all-pole model is not perfectly appropriate for modeling an-

tiformants, which are present in nasal sounds. However, the (all-pole)source-filter model is

sufficient for most applications since the benefits of the linear model are much greater than

the disadvantages.

2.4 Overview of Speech Synthesis

Speech synthesis is the artificial generation of speech. Speech synthesis has various useful

applications, such as telecommunication services, man-machine communication, language

education, aid to persons with disabilities, research on speech productionand perception,

and many others. Depending on the application, different implementations of aspeech

synthesizer may be used. Today a text-to-speech (TTS) system is maybe the most common

and the most versatile solution. The ultimate goal of such a system is to read anytext

and convert it to speech. However, there are various criteria for evaluating the resulting

speech or the system as a whole, and various approaches can be usedto meet the required

specifications. In this section, first a short overview of history and development of speech

synthesis is presented. For more extensive summary of history and development of speech

synthesis, see for example Klatt (1987), Flanagan (1972a), and Flanagan (1972b).

2.4.1 History of Speech Synthesis

The earliest attempts to produce artificial speech were made more than two hundred years

ago (Flanagan 1972a). The early mechanical implementations of speech synthesizers mod-

eled the physiology of the speech production organs. For example, in 1791 von Kempelen

presented a speaking machine which consisted of bellows, a vibrating reed, and a rubber

tube modeling the vocal tract.

As the electrical technology evolved, interest in speech synthesis increased. The first

formant synthesizer was built by Stewart in 1922 (Klatt 1987). It consisted of two resonant

circuits, which were excited by a buzzer. This early synthesizer was ableto generate a static

vowel with two lowest formants. The first electrical device that could produce continuous

speech was the Voder developed at the Bell Telephone Laboratories in 1939. It was based

on the idea of a vocoder, a voice coder, which could analyze speech intoslowly varying pa-

rameters and then reconstruct an approximation of the original speech from the parameters.

The first dynamically controlled formant synthesizers were introduced in 1953. Walter

Lawrence’s PAT and Gunnar Fant’s OVE I, and especially their improvedlater versions,

could generate intelligible speech. Shortly after that the first articulatory speech synthesizer

was introduced in 1958. Consequently, the speech analysis and synthesis techniques split
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into two paradigms: modeling of the speech production mechanism itself, and modeling

only the speech signal (Sproat & Olive 1995). This division stands even today, though

much co-operation exists between the fields. The first full text-to-speechsystem was de-

veloped in 1968 by Noriko Umeda, and in 1972 John Holmes demonstrated thatsynthetic

speech could be so natural sounding that the average person could not tell the difference

between the synthetic and the original sentence (Klatt 1987).

Since the late 1970s, many commercial speech synthesis and text-to-speechproducts

have been introduced, with MITalk (Allen, Hunnicut & Klatt 1987) being probably the best

known TTS system. In the mid 1980s the concept of high quality TTS synthesisappeared,

mostly due to new technologies. Modern synthesizers have largely moved from electronic

circuitry to simulation on a digital computer. The methods used in speech synthesis tech-

nology today are very sophisticated as the latest findings from researchon information

technology, signal processing, acoustics, speech production, and linguistics are applied di-

rectly to speech synthesizers. The quality of speech synthesis has improved to a level of

great intelligibility, but the naturalness is yet a problem. Nevertheless, more natural sound-

ing speech synthesizers are constantly developed based on various different methods. In the

next two sections, TTS architecture and speech synthesis methods are considered in more

detail.

2.4.2 General TTS Architecture

If the input to a speech synthesizer is given as text, the system is called a text-to-speech

(TTS) synthesizer. However, in the case of speech synthesizers with limited vocabulary,

such as machines playing prerecorded samples, the definition is not unambiguous. Accord-

ing to the more specific definition by Dutoit (1997), text-to-speech means "theproduction

of speech by machines, by way of the automatic phonetization of utter".

A general functional diagram of a TTS system is shown in Figure2.9. A TTS synthesizer

consists of two main components, called the high-level and low-level synthesis. The high-

level synthesis converts the text input to a form that corresponds to the desired acoustic

phonation of the utterance. This means converting the text input into a phonetic or some

other linguistic representation and predicting the desired prosody. In the process, the in-

put text is first normalized into plain letters, and the structural properties ofthe text are

analyzed. After that, the text is converted to a phonetic level, which is called the letter-

to-sound conversion (Pickett 1999). Varying amount of linguistic analysis is performed on

the text in order to predict the prosodic features of the utterance, such as phrasing and ac-

centuation patterns. Based on the prosodic analysis and the structural information, actual

f0 contour and phone durations are predicted for the utterance, typically using statistical

methods. From the linguistic and prosodic information, the low-level synthesisgenerates
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Figure 2.9: General functional diagram of a TTS system.

the speech waveform. For the waveform generation, today’s TTS systems commonly em-

ploy techniques based either on the source-filter theory or modification andconcatenation of

prerecorded speech samples. Speech synthesis methods are considered in the next section

in more detail.

2.4.3 Speech Synthesis Methods

Once the high-level synthesis of a TTS system has completed its task, the low-level synthe-

sis starts generating the speech waveform. The waveform generation can be accomplished

in many ways, and the synthesis methods can be categorized according to various criteria.

A basic division can be made according to whether the speech is completely artificially

generated from parameters, or are real speech samples used in the process. This property

greatly affects the functioning of the synthesizer. Formant synthesis, articulatory synthe-

sis, and linear predictive coding (LPC) based synthesis can be placed tothe first category,

whereas concatenative synthesis belongs to the latter.

Formant Synthesis The most basic acoustic speech synthesis technique, formant synthe-

sis, employs the source-filter theory of speech production described in Section2.3. The

vocal tract model consists of individually adjustable formant filters connected in serial, par-

allel, or often both. Different phonemes are constructed by adjusting the center frequency,

bandwidth, and gain of each filter. If the adjustment is made at certain time intervals, for

example every 5 ms, continuous speech can be generated. The source can be modeled with

voice pulses or noise. A basic speech synthesis model based on the source-filter theory is

shown in Figure2.10.

Formant synthesis received a big boost in 1980 with Dennis Klatt’s publication of a

sophisticated formant synthesizer with a complete computer program for speech synthe-

sis. Today, the quality of formant synthesizers is inferior compared to the latest synthesis

methods, such as concatenative and LPC-based methods, but formant synthesis has many

applications in reading machines for the blind and in speech perception experiments for

creating stimuli (Pickett 1999).
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Figure 2.10: Speech synthesis model based on the source-filter theory.

Articulatory Synthesis Articulatory synthesis tries to model the natural speech produc-

tion process as accurately as possible. Thus it is theoretically the best method for high

quality speech synthesis, but it is also by the same token the most difficult in terms of im-

plementation and computational load. Because of the limitations of the current speech pro-

duction models and computational power, articulatory synthesis has not achieved as much

success as other speech synthesis methods. However, it has many useful applications in

basic speech research, and it might have a promising future since better articulatory models

are steadily developed and computational resources are increasing.

Concatenative Synthesis In concatenative synthesis, prerecorded samples of real speech

are smoothly combined to create an arbitrary synthetic utterance. Common unit lengths

are word, syllable, demisyllable, phoneme, diphone, and triphone. Because the natural

characteristics of the speech are preserved in the units, concatenativesynthesis is capable of

generating highly intelligible and natural synthetic speech. However, the discontinuities in

concatenation points can cause distortion despite the use of various smoothingalgorithms.

Also, the set of speech units is always limited. It is highly impractical or impossible to store

all the necessary units for various speakers in various contexts. This constraint makes the

concatenative speech synthesis less flexible: it can imitate the specific speaker with only

one voice quality. Another constraint is the need for vast storage for allthe recorded units,

but with the cost of computer storage decreasing, and with the developmentof fast database

access techniques, this problem is not as serious as it used to be. Todaythe concatenative

speech synthesis is probably the most widely used and most natural sounding, but due to

the mentioned limitations, it might not be the best solution.

LPC-Based Synthesis In linear predictive coding (LPC) based speech synthesis, source-

filter theory of speech production is utilized the same way as in formant synthesis, but in
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the LPC-based synthesis the filter coefficients can be automatically estimated from a short

frame of speech instead of finding the parameters for individual formantfilters. With an

appropriate excitation, the filter coefficients can be used to synthesize speech. The excita-

tion is either periodic source signal or noise, depending on whether the synthesized speech

segment is voiced or unvoiced (see Figure2.10). Linear prediction (LP) is a widely used

method in speech technology, and is more closely discussed in Section3.1. Though the

quality of a basic LPC vocoder is considered poor, high quality synthetic speech can be

produced with more sophisticated LPC-based synthesis methods. The type of excitation

signal is especially important for the quality of synthetic speech, as will be shown later in

this thesis.

HMM-Based Synthesis One widely applied method in speech synthesis is the use of

hidden Markov models (HMMs). HMM is a statistical model, which can be used for mod-

eling the speech parameters extracted from a speech database, and thengenerating the pa-

rameters according to text input for creating the speech waveform. HMM-based speech

synthesis systems are able to produce speech in different speaking styles with different

speaker characteristics and even emotions. They also benefit from better adaptability and

clearly smaller memory requirement. However, the HMM-based TTS systems often suffer

from degraded naturalness in quality compared to concatenative based speech synthesizers.

Nonetheless, the HMM-based TTS systems are developing fast, and much work is carried

out for finding techniques to enhance the quality and naturalness of synthetic speech. The

current prevalent platform for HMM-based speech synthesis is the HTS system developed

in Japan (HTS 2008). It is widely used among speech synthesis researchers and developers,

and lately numerous HMM-based TTS systems have been introduced for various languages.

The hidden Markov models are generally described in Section3.5and the new HMM-based

TTS system is further described in Chapter4.



Chapter 3

Methods and Algorithms

In this chapter, the most essential tools for speech synthesis in general and especially for

this work are presented. The more detailed description of the methods implemented in the

new synthesizer are presented in Chapter 4.

3.1 Linear Prediction

Linear predictive coding (LPC) is one of the most widely applied techniquesin speech

technology. Although linear prediction (LP) has been applied in many fields for a long time,

the first researchers to directly apply it to speech analysis and synthesiswere Saito & Itakura

(1967) and Atal & Schroeder (1967). Today linear prediction has various applications in

speech technology, for example in speech coding, synthesis, analysis,and recognition, both

for commercial and research purposes.

The basic idea behind linear prediction is that a sample of data can be predicted by a

linear combination of previous samples. In speech technology, however,the goal of LPC

is not really to predict any samples, but to represent the spectral envelope of the speech

signal. Therefore, speech can be represented as a combination of a filter and an excitation

signal, which is equivalent to the source-filter model of speech production. The importance

of LPC lies both in its accuracy of estimating the speech parameters and in its relative speed

of computation.

3.1.1 Derivation of LPC filter

A sample ˆxn can be stated as a linear combination ofm past samples. This can be formulated

as

x̂n = −
m

∑
i=1

aixn−i, (3.1)

20
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whereai (1≤ i ≤ m) are the predictor coefficients,m the model order and the minus sign

has been added for convenience. Thus the error signal, or the residual, can be stated as

en = xn − x̂n = xn +
m

∑
i=1

aixn−i =
m

∑
i=0

aixn−i, (3.2)

wherea0 is 1. The optimal predictor coefficientsai (1 ≤ i ≤ m) can be obtained by min-

imizing the square ofen. This least squares minimization leads to the following so called

normal equations:
m

∑
k=1

ak ∑
n

xn−ixn−k = ∑
n

xn−ixn, 1≤ i ≤ m (3.3)

(Markel & Gray 1980, Rabiner & Schafer 1978). Several algorithms have been developed

to solve Equation3.3, but in speech processing, two specific solutions are commonly used.

These are referred to as thecovariance method and theautocorrelation method, of which

only the latter is guaranteed to yield a stable filter. In the autocorrelation method,it is

assumed that the error is minimized over an infinite interval,−∞ < n < ∞, and the signal is

zero outside the time interval 0≤ n ≤ N −1. In the autocorrelation method, Equation3.3

can be rewritten asm simultaneous linear equations:



















R(0) R(1) R(2) . . . R(m−1)

R(1) R(0) R(1) . . . R(m−2)

R(2) R(1) R(0) . . . R(m−3)
...

...
...

.. .
...

R(m−1) R(m−2) R(m−3) . . . R(0)





































a1

a2

a3
...

am



















= −



















R(1)

R(2)

R(3)
...

R(m)



















, (3.4)

where

R(k) =
N−1−k

∑
m=0

xnxn+k (3.5)

In matrix form, Equation3.4can be written as

Ra = −r . (3.6)

Various approaches can be used to solve the coefficientsa from Equation3.6, but since the

matrix R is a symmetric Toeplitz matrix, the coefficients are most efficiently solved with

the recursive Levinson-Durbin algorithm (Markel & Gray 1980, Rabiner & Schafer 1978).

3.1.2 Properties of Linear Prediction

Linear prediction coefficients can be represented as a digital filter, whose power spectrum

represents the spectral envelope of the analyzed signal. The resulting finite impulse re-
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Figure 3.1: Illustration of LPC analysis. (a) Speech signal. (b) Residualsignal. (c) Spectral

envelope of the speech estimated with 20th order LPC.

sponse (FIR) filter is called the inverse filter, and is denoted in the Z-domain as

A(z) =
m

∑
k=0

akz−k. (3.7)

The linear speech production model introduced in Section2.3states that the speech can be

thought as a result of impulse excitation, glottal shaping model, vocal tract model, and lip

radiation model, i.e.S(z) = E(z)G(z)V (z)L(z). The idea of LPC analysis is to separate the

excitation and the filter using the speech analysis model described as

E(z) = S(z)A(z). (3.8)

Thus, the excitationE(z), or the residual signal, will become an impulse train with additive

white noise, whereas the filterA(z) is an estimate of the overall effect ofG(z)V (z)L(z), the

all-pole spectral model of speech. An illustration of LPC analysis is shown inFigure3.1.

The inverse of the prediction filter is called a synthesis filter. In speech synthesis, the

synthesis filter is excited by an appropriate excitation signal to create speech. The synthesis

model is described as

S(z) = E(z)
1

A(z)
. (3.9)



CHAPTER 3. METHODS AND ALGORITHMS 23

3.1.3 Line Spectrum Pair (LSP) Decomposition

LPC is frequently used for transmitting the spectral envelope of speech, and therefore it has

to be tolerant to quantization and transmission errors. Since the LP coefficients as such are

very sensitive to errors, various coefficient representations have been developed to make

the transmission of coefficients more robust. One of the most efficient and widely used

coefficient representations is the line spectral frequencies (LSFs), which are the roots of

the LSP polynomials. LSP polynomials were first introduced by Itakura (1975), but it was

Soong & Juang (1984) who got them to awareness of the general public.

The spectral envelope of a speech signal can be represented by an LP polynomialA(z) =

∑m
k=0 akz−k, whereak are the model coefficients,m the model order anda0 = 1. The line

spectrum pair (LSP) polynomials forA(z) are defined as

P(z) = A(z)+ z−m−1A(z−1)

Q(z) = A(z)− z−m−1A(z−1).
(3.10)

The original polynomialA(z) can be reconstructed by

A(z) =
1
2

[P(z)+Q(z)] . (3.11)

The result of such a decomposition is that ifA(z) has all roots within the unit circle, then

the roots of the polynomialsP(z) andQ(z)

1. are on the unit circle.

2. are simple (they do not overlap).

3. are interlaced.

(Soong & Juang 1984). These properties are illustrated in Figure3.2. Since the roots are

interlaced, the stability of the filter is guaranteed if and only if the locations of theroots

on the unit circle are monotonously increasing. Moreover, line spectral frequencies have a

well-behaved dynamic range (Soong & Juang 1984), that is, a slight variation to the root

locations on the unit circle does not affect much the filter characteristics. Thus, given a set

of line spectral frequencies, the corresponding LPC filter can be reconstructed with great

robustness and stability check. Another benefit from using LSFs is its better interpolation

characteristics compared to LPC coefficients. In speech coding and synthesis the parameters

are transmitted frame-wise, possibly causing large changes in the values, which may be

heard as undesired transients. To avoid this, interpolation is used betweenadjacent frames

to smooth the parameters. The interpolation characteristics of LSFs in terms of spectral

distortion and stability have been found at least equal (Umezaki & Itakura1986, Atal, Cox
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Figure 3.2: Illustration of the unit circle and the roots of the polynomialsA(z), P(z), and

Q(z). The order of the polynomialA(z) is eight. The trivial zeros ofP(z) andQ(z) are at

−1 and+1, respectively.

& Kroon 1989) or superior (Paliwal & Kleijn 1995) compared to any other representation,

including the original LPC coefficients.

In the calculation of LSFs, a major task is to find the roots of the LSP polynomials.In the

process, first, the trivial zeros of the polynomialsP(z) andQ(z), depicted in Table3.1, are

removed. Since there is no general formula for solving the roots of a polynomial of order

greater than four, numerical methods must be used for solving the remainingroots. How-

ever, it is known that the roots of the LSP polynomials lie always on the unit circle. This

information can be utilized in order to make the numerical search more efficient.More-

Table 3.1: Trivial zeros of the LSP polynomials.

(m+1) even (m+1) odd

P(z) none z = −1

Q(z) z = +1,−1 z = +1
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over, the symmetric properties of the polynomialsP(z) andQ(z) can be utilized in solving

the roots. Usually, the polynomials are transformed to Chebyshev polynomials (Kabal &

Ramachandran 1986), which reduce the order of the root solving problem to half.

3.2 Fundamental Frequency Estimation

Fundamental frequency (fo) estimation is one of the most important problems in speech

processing. Although many solutions have been proposed, and many of them work well in

their specific context, none of the presently available methods can be expected to give per-

fectly satisfactory results across wide range of speakers, applications, and operating envi-

ronments. There are many reasons for the difficulties in fundamental frequency estimation.

Although the periodicity of the speech signal derives from the vibrations of the vocal folds,

the estimation algorithms must cope with a mixed excitation consisting of voiced and un-

voiced components. The characteristics of the voiced component can vary greatly, and the

fundamental frequency is changing continuously with time, often with each glottal period.

The voice onsets and offsets, subharmonics of fundamental frequency, formant structure,

and the wide dynamic range of speech make the fundamental frequency estimation more

challenging.

Fundamental frequency estimators, or pitch detection algorithms (PDAs), usually consist

of three components: a pre-processing stage, thef0 estimation, and a post-processing stage.

The aim of the pre-processing stage is to remove interfering signal components, such as

extraneous noise, vocal tract influence, and DC offset, and to transform the signal to better

fit the later processing stages. The preprocessing methods include for example low-pass

filtering, inverse filtering, cubing, and peak or center clipping (Talkin 1995, Rabiner 1977).

The purpose of the post-processing stage is to correct the errors madein the f0 estimation.

A straightforward and very successful strategy is to use median filtering (Rabiner, Sambur

& Schmidt 1975), which very effectively ignores outliers while preserving the fine structure

of the f0 contour and the sharpness of true step transitions. Another successful method is

dynamic programming (DP). It is based on the concept of cost function which penalizes

for large variation between two consecutive samples and rewards for close vicinity between

them. Dynamic programming was first used inf0 estimation by Bauer & Blankenship

(1974), and later clearly outlined by Ney (1981) that it could be also usedfor f0 smoothing.

Also various heuristics can be used to correct the errors by utilizing priorknowledge of the

speech signal or information from pastf0 estimates.
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3.2.1 Time Domain Approaches

Time domain PDAs are based on the estimation of the fundamental period of the quasiperi-

odic speech signal. A straightforward way of finding the fundamental period is to examine

how often events, for example peaks or valleys in the waveform repeat themselves. These

methods are easy to implement and do not require much computing power, but are not very

robust with complex speech spectra. The algorithm described by Gold & Rabiner (1969)

is probably one of the most widely used methods of this type. Another related feature, the

zero-crossing rate (ZCR) is a measure of how often waveform crosses zero per unit time. It

gives information about the spectral content of the signal, but inf0 estimation it has certain

problems described for example in Gerhard (2003) and Kedem (1986).However, ZCR as

such is a statistically informative feature (Gerhard 2003), and it can be used successfully

for example in classification problems. Sincef0 estimation is closely related to the classi-

fication of speech into voiced or unvoiced segments, ZCR can be used as asupplementary

feature inf0 estimation.

Autocorrelation analysis is one of the most robust and reliable methods in fundamental

frequency estimation. It is based on the fact that a periodic signal will be similar from one

period to the next. An autocorrelation function (ACF) is the measure of similarityof the

speech signal with itself as a function of time separation between them. In autocorrelation

analysis, an ACF is computed from a windowed segment of speech signal. The analysis

frame size is chosen to be at least twice the longest expected period (Rabiner 1977). For

signalxn and window sizew, the ACF is defined as

rn(τ) =
n+w−1

∑
j=n

x jx j+τ, (3.12)

whereτ is the time delay (Paliwal & Kleijn 1995). However, forf0 estimation purposes, it

is more convenient to use a slightly different definition:

rn(τ) =
n+w−1−τ

∑
j=n

x jx j+τ. (3.13)

In Equation3.13, the size of the analysis window decreases asτ increases. This has a

tapering effect, so that the ACF will have smaller values with increasingτ. This attenuates

the multiples of fundamental period peaks in ACF. Thus, the highest peak excluding the

peak at zero depicts the fundamental period of the windowed signal, i.e. therelation of the

signal with itself is strongest at timeτ (τ 6= 0). Usually the highest peak is found with an

exhaustive search within a predefined range of lags. A segment of speech signal and its

autocorrelation function is shown in Figure3.3.

The computation of the autocorrelation function is quite time consuming, but many al-

gorithms have been introduced to make the computation faster (see for exampleRabiner &
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Figure 3.3: Speech signal (a) and its autocorrelation function (b). The peak corresponding

to the fundamental period is depicted with a circle. The multiple of the fundamentalperiod

peak, depicted with an arrow, is attenuated due to the tapering effect.

Schafer (1978)). Since the autocorrelation functionr(τ) is the inverse Fourier transform of

the power spectrumS( f ), autocorrelation can be defined as

r(τ) =
Z ∞

−∞
S( f )e j2π f τ d f . (3.14)

Autocorrelation function is usually calculated through the efficient fast Fourier transform

(FFT).

Despite the robustness of the autocorrelation analysis in many contexts, it has some flaws

that reduce its utility as a PDA. The autocorrelation function of a voiced speech usually

displays a prominent peak at pitch period, but also other peaks are oftenpresent due to

the formant structure. The strength of the other peaks can be reduced with various pre-

processing techniques, but, nonetheless, errors due to other peaks are common for autocor-

relation based PDAs. Another problem is the difficulty of selecting an appropriate window

length. Since the window length should be two or three times the longest expected period,

the optimal window size varies according to speaker. For high pitched speaker, the window

size should be short (5–20 ms), whereas for low pitched speakers it should be long (20–50

ms). Autocorrelation analysis is also unreliable at speech segments with rapidchanges in

fundamental frequency.

Average magnitude difference function (AMDF) (Ross, Shaffer, Cohen, Freudberg &

Manley 1974) is another way to express the similarity between periods, but the AMDF
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Figure 3.4: (a) Speech signal. (b) Average magnitude difference function (AMDF). (c) The

cumulative mean normalized difference function. The threshold for the dip isdepicted with

a dashed line.

performs the comparison using differences rather than products. Probably the most popular

method using AMDF is the YIN developed by de Cheveigne & Kawahara (2002). For

signalxn and window sizew, the AMDF is defined as

dn(τ) =
w

∑
j=1

(x j − x j+τ)
2 (3.15)

(de Cheveigne & Kawahara 2002). In order to avoid the zero-lag dip and secondary dips

due to resonances, YIN employs a cumulative mean normalized difference function:

d′
n(τ) =

{

1 if τ = 0,

dn(τ)/1
τ ∑τ

j=1 dn( j) otherwise.
(3.16)

The AMDF and the cumulative mean normalized difference function are shown in Figure

3.4. The fundamental period is found by setting an absolute threshold for the dip, and

selecting the smallest value ofτ being deeper than the threshold. Other improvements

introduced in the YIN method include parabolic estimation and best local estimate,which

further reduce errors.
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Figure 3.5: Stages in cepstrum analysis. (a) Speech signal. (b) Amplitude spectrum. (c)

Logarithm of amplitude spectrum. (d) Cepstrum. The peak corresponding tothe fundamen-

tal period is depicted with a circle.n andk represent discrete time samples and frequency

bins, respectively. The length of the speech segment is 25 ms, and the spectrum is shown

from 0 to 8000 Hz.

3.2.2 Frequency Domain Approaches

Since periodic signals tend to be composed of harmonically related partials, information

about f0 can be extracted by examining the partials. Frequency domain methods are based

on detecting these partials. Most methods utilize Fast Fourier Transform (FFT) to convert

the signal to a frequency spectrum. Other methods may use a comb-filter or a filter bank

to find the partials (Gerhard 2003). One particularly useful method utilizes cepstrum to

reveal signal periodicity. Cepstrum was first described by Bogert, Healy & Tukey (1963)

and first used in speech analysis by Noll (1964). Cepstrum was originally defined as the

Fourier transform of the logarithm of the amplitude spectrum of a signal, buttoday inverse

Fourier transform is commonly used instead of Fourier transform. Because the spectrum

of a periodic signal has regularly spaced peaks, or harmonics, the spectrum of that signal

shows a peak at the period of the original waveform. The logarithm is takento transform

the original spectrum to such a form that the dynamics of the speech signalis properly
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represented. In addition to the fundamental frequency estimation, cepstrum is also used

for representing the spectral envelope of speech (see for example Imai (1983)). Figure3.5

shows the different stages in cepstrum analysis.

Many other time and frequency domain methods exist, but the discussed methods are

probably the most widely used in speech processing. For more information about f0 esti-

mation, see for example Hess (1983), Paliwal & Kleijn (1995), and Gerhard (2003).

3.3 Glottal Inverse Filtering

Glottal Inverse Filtering (GIF) is a procedure where the glottal source signal, the glottal

volume velocity waveform, is estimated from a voiced speech signal. The basicidea of

GIF is to separate the source and the filter based on the linear speech production model

described in Section2.3.

The estimation of the glottal source has many applications, for example in speech anal-

ysis, speech synthesis, and the study of laryngeal pathology. Since thepresentation of

the idea of glottal inverse filtering by Miller (1959) many different methods have been

developed. Depending on the procedure that is used in recording the speech signal, in-

verse filtering methods can be divided into two categories. The first category consists of

methods in which a specially designed pneumotachograph mask, a Rothenberg’s mask

(Rothenberg 1973), is used to record the speech signal. The second category consists of

methods in which the speech signal is recorded with a microphone in free fieldoutside the

mouth. The microphone and other recording equipment must not cause phase distortion

to the speech signal in order to get feasible results from inverse filtering.Also, for meth-

ods in the second category, the effect of lip radiation must be taken into account. After

the recording, the vocal tract parameters can be estimated either by hand or automatically.

The use of automatic estimation instead of estimation by hand is justified since the auto-

matic estimation is fast and easy to use, and the estimation by hand may vary subjectively.

This section will be primarily concerned with automatic inverse filtering methods applied

to speech signals recorded outside the mouth.

According to the linear speech production model, the speech can be described by the

equation

S(z) = Eg(z)V (z)L(z), (3.17)

whereS(z) is the speech signal,Eg(z) the glottal volume velocity waveform,V (z) the vocal

tract transfer function, andL(z) the lip radiation model. The glottal volume velocity wave-

form Eg(z) corresponds toE(z)G(z) in Equation2.1. In glottal inverse filtering, the speech

signal is first analyzed to determine the parameters of the vocal tract transfer function. Then,

the effect of the vocal tract can be canceled by filtering the speech signal through the inverse
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model of the vocal tract transfer function, the inverse filter. Finally, the lipradiation effect

is canceled from the inverse filtered signal. Glottal inverse filtering is conceptually defined

as solving the glottal volume velocityEg(z) by the equation

Eg(z) =
S(z)

V (z)L(z)
. (3.18)

Since the lip radiationL(z) can be considered to be the same for all speech sounds, only the

parameters of the vocal tract transfer functionV (z) are required.

3.3.1 Iterative Adaptive Inverse Filtering

Iterative adaptive inverse filtering (IAIF) is an automatic glottal inverse filtering method

developed by Alku (1992). The only input required to the system is the acoustical speech

signal recorded with a microphone. The method is completely automatic, and canbe im-

plemented to run real time. The main tool of the method is LPC, described in Section3.1.

The estimated glottal flow is obtained by canceling the effects of the vocal tract and the lip

radiation. The IAIF method has been extensively studied by Pulakka (1995), and the results

suggest that IAIF produces reasonable estimates of the glottal volume velocity waveform.

Figure3.6 shows the block diagram of the IAIF method. The method consists of the

following stages. First (block 1), the signals(n) is high-pass filtered to remove any dis-

torting low-frequency fluctuation in the speech signal. The high-pass filteris a linear FIR

filter with a cut-off frequency of 60 Hz. Second (block 2), a first order LPC is computed

for the signal. This yields a first order preliminary estimate for the combined effect of the

glottal flow and the lip radiation. This is denoted asHg1(z). Next (block 3), the estimated

effects of the glottal flow and the lip radiation are canceled from the speechsignal by in-

verse filtering. The resulting signal is then analyzed using apth order linear prediction in

order to obtain an estimate for the effect of the vocal tract. The vocal tract effect is denoted

asHvt1(z). The order of the LPC analysis,p, depends on the sampling frequency, and for

speech sampled at 16 kHz, appropriate values are typically between 16 and 24. Next (block

5), the effect of the vocal tract is canceled by inverse filtering the speech signal with the

obtained model. The first estimate of the glottal flow is obtained (block 6) by canceling

the effect of the lip radiation from the inverse filtered speech signal. The inverse of the lip

radiation is modeled as integration. A new estimate for the contribution of the glottalflow

on the speech spectrum, denoted byHg2(z), is computed in block 7. The order of the LPC

analysisg is typically between 4 and 8 for speech sampled at 16 kHz. A new model of the

vocal tract filtering effect is obtained through canceling the glottal contribution (block 8)

and lip radiation (block 9), and LPC analysis of orderp (block 10). Canceling the effects of

the estimated vocal tract and the lip radiation by inverse filtering (block 11) and integrating
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Figure 3.6: Block diagram of the IAIF method for estimating the glottal excitationg(n)

from the speech signals(n). The model for the vocal tract is estimated through iterative

procedure (blocks 2–10). The estimated glottal flow is obtained by canceling the effects of

the vocal tract (block 11) and the lip radiation (block 12) from the speechsignal. (Alku

et al. 1999)
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Figure 3.7: (a) Sustained vowel [a] produced by a male speaker using normal phonation.

(b) Corresponding glottal flow estimated with IAIF.

(block 12) the speech signal, a final estimate for the glottal volume velocity waveformg(n)

is obtained. An example of a speech signal and corresponding glottal flowestimated with

IAIF is shown in Figure3.7.

3.4 Parametrization of Glottal Flow

Parametrization of the glottal volume velocity waveform is an essential part ofvoice source

analysis. After the glottal flow has been estimated by some inverse filtering method, the

source signal is parametrized by quantifying the obtained waveforms with properly se-

lected numerical values. These quantities, the glottal flow parameters, aim to represent

the most important features of the glottal flow in a compressed numerical form.Various

parametrization methods focus on different features of the glottal flow, and the selection of

the parametrization method for a certain purpose is crucial in order to extract the desired

information.

Parametrization of the glottal flow can be applied in the following three partly overlap-

ping areas. First, the most general application is the categorization of the voice source,

i.e. dividing the speech sounds into various categories according to the different modes of

voice source. Second, parametrization can be used in the study of vocaldisorders. Third,

the parametrization methods can also be applied to voice and speech synthesis.

The parametrization methods can be roughly divided into two categories: time domain

and frequency domain methods. Time domain methods can be further divided into time-

based and amplitude-based parameters. Time-based parameters can be used with any in-

verse filtering method, whereas for amplitude-based parameters, a properly calibrated Rosen-
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berg’s mask is required. Since the amplitude-based parameters are not relevant concern-

ing the topic of this thesis, speech synthesis, these parameters are not further discussed.

Amplitude-based parameters are discussed generally for example in Alku (2003). Addi-

tionally, a third category of time domain methods includes techniques that model thewhole

glottal waveform by fitting certain predefined mathematical functions to the glottal flow.

3.4.1 Time Domain Parameters

In time domain parametrization methods, both glottal flow and its derivative can beused

to extract the desired parameters. One cycle of glottal flow and its derivative obtained by

inverse filtering, with the most essential notations used in time domain parameterization

methods are shown in Figure3.8. The most widely used time domain glottal flow param-

eters are open quotient (OQ), speed quotient (SQ), and closing quotient (ClQ). Other time

domain parameters used in voice source studies include closed quotient (CQ), which is

sometimes used instead ofClQ, return quotient (RQ), and normalized amplitude quotient

(NAQ). Using the notations in Figure3.8, these parameters are defined as

OQ = (to + tcl)/T

SQ = to/tcl

ClQ = tcl/T

CQ = tc/T

RQ = tret/T

NAQ = ac/(dpeakT ).

(3.19)

Many studies have been carried out to find out the relations of these six time domain pa-

rameters to various speech production features, such as loudness, pitch, phonation type, and

gender, but the results are not unambiguous. The behavior of the time domain parameters

are studied for example in Holmberg, Hillman & Perkell (1988), Sulter & Wit (1996), Price

(1989), Alku, Bäckström & Vilkman (2002), and Bäckström, Alku & Vilkman (2002). A

good general review of the time domain parameters is given by Alku (2003).

In addition to the previously discussed numerical measures, it is also possible to model

the whole glottal volume velocity waveform by defining an artificial waveformthat fits the

glottal flow or its derivative obtained by inverse filtering. In this type of parametrization,

an appropriate mathematical model for the glottal flow is defined, after which the model

parameters are optimized in order to get the best possible match between the model and

the real glottal flow. The models for the glottal flow have evolved much from thesim-

ple sawtooth waveforms and filtered impulse trains used in early models. Commonlythe

modern glottal flow models are composed of piecewise continuous functions composed of

sinusoidal, exponential or polynomial terms. For example, a fairly primitive pulse model
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Figure 3.8: One cycle of glottal flow (upper) and its time derivative (lower). The following

time domain notations are depicted: fundamental period (T ), closed phase (tc), opening

phase (to), closing phase (tcl), return phase (tret), AC flow (ac), and the negative peak ampli-

tude of the derivative (dpeak). The original speech signal is a sustained vowel [a] produced

by a male speaker using normal phonation.

used in the Klattalk synthesizer (Klatt 1987) is composed of a single third order polynomial

E(t) = at2−bt3, (3.20)

wheret is time, and termsa andb are defined according to the desired amplitude and shape

of the pulse. The closed period is simply padded with zeros. Figure3.9 shows one period

of the Klatt model and its derivative. The waveform model for the main excitation at the

discontinuity at glottal closure is very simple, since the return phase of the derivative, which

accounts for the degree of spectral tilt, cannot be controlled.

One of the most widely used glottal flow models is the Liljencrants-Fant model (LF

model) (Fant, Liljencrants & Lin 1985). In this model, the glottal flow derivative is pre-

sented by sinusoidal and exponential terms defined uniquely by four parameters. An illus-

tration of a typical LF model pulse and its derivative are presented in Figure3.10. The first

part of the glottal flow derivative is modeled with an exponentially increasingsinusoid that

starts at the opening instant of the vocal folds,t0, and ends at the instant of the maximum
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Figure 3.9: Illustration of the Klatt model for the glottal flow pulse (upper) and its time

derivative (lower).

negative amplitudete. The second part is modeled with a function consisting of exponential

terms. After reaching the valueEe, the pulse abruptly returns to zero with time constant

ta, which models the closure of the vocal folds after the abrupt flow termination. The time

constantta is defined as the duration betweente and the time when the tangent of the expo-

nential at timete hits zero. The exponential part ends in the zero at timetc. The LF model

is defined as

E(t) =











E0eαtsin(ωgt), t < te
−Ee
εta

(

e−ε(t−te)e−ε(tc−te)
)

, te < t < tc
0, tc < t < T,

(3.21)

whereωg = π/tp andtc = T = 1/ f0. Parametersα andε can be calculated from Equation

3.21by assumingE(te) = Ee and the energy balance
R T

0 E(t) = 0. Thus, parameterstp, te,

ta, andEe uniquely define the model. For detailed derivation of the model, see for example

Fant et al. (1985). Another way of defining the model is to use the followingnotations

Rg = 1/(2tp)

Rk = te/tp −1

Ra = ta/t0.

(3.22)

(Fant, Kruckenberg, Liljencrants & Båvegård 1994). In addition, a basic waveshape param-

eter for the pulse can be defined as

Rd ≈ (0.5+1.2Rk)(Rk/(4Rg)+Ra)/0.11. (3.23)
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Figure 3.10: Illustration of a typical LF model pulse (upper) and its time derivative (lower).

LF model is commonly used in inverse filtering combined with automatic fitting of the

model parameters. The fitting can be performed by matching the time domain pulse wave-

form or by comparing the spectrum of the model and the original pulse. Theproperties of

LF model have been studied in numerous papers. Basic characteristics and frequency do-

main properties are described for example in Fant (1995). The new control schema for the

model, which substantially simplifies the description of the voice source rules for example

in text-to-speech synthesis, was presented in Fant et al. (1994) and further explained in Fant

(1995). Importantly, the parameterRd is able to represent the voice quality characteristics

in an effective single numerical measure. In normal covariation of voice source parameters

it is possible to define the LF model with unique value ofRd, or conversely, it is possible to

predict the values ofRg, Rk, andRa from Rd .

In addition to Klatt and LF models, several other models have been proposed, for exam-

ple in Rosenberg (1971), Rothenberg, Carlson, Granström & Gauffin(1975), Fant (1979),

Hedelin (1984), Ananthapadmanabha (1984), and Fujisaki & Ljungqvist (1986).

3.4.2 Frequency Domain Parameters

The time domain changes in the glottal flow, for example changes in the phonationtype

from breathy to pressed, correspond to the changes in the spectral decay of the power

spectrum of the voice source. Therefore, the frequency domain methodsare developed

to parametrize the spectral decay of the power spectrum. The spectrum can be evaluated

with FFT or with all-pole modeling, either pitch-synchronously or over several fundamental
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Figure 3.11: Spectral decay of the voice source spectrum quantified byH1–H2.

periods. For measuring the spectral decay, Childers & Lee (1991) have proposed a quotient

called Harmonic Richness Factor (HRF). It is defined as the ratio between the sum of the

amplitudes of harmonics above the fundamental and the amplitude of the fundamental, i.e.

HRF =
∑i≥2 Hi

H1
, (3.24)

whereHi is the amplitude of theith harmonic andH1 is the amplitude of the fundamen-

tal. With this quotient, the vocal fry was characterized by a high HRF value (2.1 dB),

modal voices with a medium HRF value (−9.9 dB), and breathy voices with a low HRF

value (−16.8 dB). For the same purpose, Titze & Sundberg (1992) measured the differ-

ence between the amplitude of the fundamental and the second harmonic. Thismeasure,

usually denoted by H1–H2, has been widely used as a measure of vocal quality. The idea

of H1–H2 is demonstrated in Figure3.11. It has been shown that H1–H2 has a large cor-

relation with CQ (Fant 1995), and a linear equation for the relation between H1–H2 and

the LF model parameterRd is derived in Fant (1995). Also linear regression (Howell &

Williams 1988, Howell & Williams 1992) and Parabolic Spectral Parameter (PSP)(Alku,

Strik & Vilkman 1997) have been proposed to model the spectral slope of theglottal flow.

3.4.3 Voice Source Models in Speech Synthesis

It has been known for some time that the voice source characteristics are especially impor-

tant for the quality of speech. The earliest synthesizers used a train of impulses or trian-
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gular pulses as an excitation signal, resulting in a harsh speech quality. More sophisticated

speech synthesizers have tried to model the glottal volume velocity waveform,such as the

KLGLOTT88 model in KLSYN88 synthesizer (Klatt & Klatt 1990). LF model pulses have

been used in speech synthesis experiments for example by Carlson, Fant,Gobl, Granström,

Karlsson & Lin (1989) and Carlson, Granström & Karlsson (1991), and for example Cabral,

Renalds, Richmond & Yamagishi (2007) have combined the LF model to an HMM-based

speech synthesizer. However, the use of artificial glottal flow pulses usually results in a

somewhat buzzy quality due to strong harmonic structure at higher frequencies compared

to speech with natural glottal flow signal. To overcome this problem, natural glottal flow

pulses extracted from speech by inverse filtering have been proposedas a voice source. For

example, natural glottal flow pulses have been used in creating natural sounding speech

stimuli for speech research by Alku et al. (1999). Natural glottal flow pulses have also been

used in formant speech synthesis by Matsui, Pearson, Hata & Kamai (1991).

3.5 Hidden Markov Models

Hidden Markov Models (HMMs) are statistical models which can be applied to modeling of

various types of sequential data. For example in speech synthesis and recognition, HMMs

have been used with great success. HMMs were first described in a series of publications in

the late 1960s and early 1970s, but widespread understanding and application of the theory

of HMMs to speech processing begun not until the late 1980s. Today HMMs are widely

used in many fields, and the popularity is ever increasing.

A hidden Markov model can be described as a finite state machine which generates a

sequence of time observations. A time observation is generated by first making a decision

to which state to proceed, and then generating the observation according tothe probability

density function of the current state. The system modeled by an HMM is assumed to be

a Markov process, in which the probability of a state transition depends onlyon the path

of the past states. This characteristic is called the Markov property. Formally, HMM is a

doubly stochastic process consisting of underlying stochastic process that is not observable

(hidden), but can be observed through another set of stochastic processes that produce the

sequence of observations. This means that the stochastic function of HMMis a result of two

processes, one of which is the underlying hidden Markov chain having afinite number of

states, and another being the set of random processes associated with each state. At discrete

time instant, the process is assumed to be at some state and an observation is generated

by the stochastic process of the current state. The underlying Markov chain changes states

with time according to the state transition probability matrix. In principle, the underlying

Markov chain can be of any order, and the outputs may be multivariate random processes.
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Figure 3.12: Example of an HMM structure. The states of the HMM are denoted with

circles numbered from one to six. A state transitions probability from statei to statej is

denoted asai j. An output probability density of statei is denoted asbi, and the generated

observation at time instantt is denoted asot . (Karjalainen 2000)

An illustration of a 6-state left-to-right HMM structure is shown in Figure3.12, in which

the state index increases or stays the same with each time step. Generally, left-to-right

HMM structures are used for modeling systems whose properties evolve in asuccessive

manner, such as speech and written language.

An N-state HMM is defined by a state transition probability distributionA = {ai j}N
i, j=1,

output probability distributionB = {b j(o)}N
j=1, and initial state probability distributionΠ =

{πi}N
i=1, whereai j is the state transition probability from stateqi to stateq j ando is the

observation vector. A compact notation for the set of model parameters is represented as

λ = (A,B,Π).

There are basically three problems associated with HMMs:

1. Given the observation sequenceO = (o1,o2, ...,oT ) and a modelλ = (A,B,Π), how

to efficiently calculateP(O|λ), the probability of the observation sequence, given the

model?

2. Given the observation sequenceO = (o1,o2, ...,oT ) and the modelλ, how to choose

a corresponding optimal state sequenceQ = (q1,q2, ...,qT )?

3. How to adjust the model parametersλ = (A,B,Π) to maximizeP(O|λ)?

The first problem is used for finding the probability that the observed sequence was pro-

duced by the given model. On the other hand, it can be also used to score different models

on how well they match the given observation sequence. The probability can be calculated

by the equation

P(O|λ) = ∑
all Q

P(O|Q,λ)P(Q|λ). (3.25)
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The direct calculation ofP(O|λ) is straightforward, but it involves on the order of 2T NT

calculations. Thus, the problem is usually evaluated with the Forward-Backward algo-

rithm (see for example (Rabiner 1989)), which requires onlyN2T calculations. The most

widely used criterion for optimal state sequence for problem 2 is to find the single best state

sequence that maximizes theP(Q|O,λ). This can be solved with the Viterbi-algorithm

(Viterbi 1967). The third problem is the most difficult one. No analytical solution is

known for solving the model which maximizes the probability of the observation sequence.

However, iterative algorithms, such as the Baum-Welch algorithm (Baum, Petrie, Soules &

Weiss 1970), or equivalently Expectation-Maximization (EM) algorithm (Dempster, Laird

& Rubin 1977)), and gradient based algorithms can be used for maximizingP(O|λ).

Hidden Markov Models can be extended with various features to make the use of them

more versatile and efficient. For example autoregressive HMMs, inclusionof null transi-

tions, state tying, state duration densities and various optimization criteria have been pro-

posed. Useful features in HMM-based speech synthesis are described in Chapter4. For

more information about HMMs in general, see for example Rabiner (1989) and Rabiner &

Juang (1993).



Chapter 4

HMM-Based Speech Synthesis

System

In this chapter, a new HMM-based text-to-speech system is represented. First, a general

overview of the synthesizer is given, after which the operational principles and the imple-

mentation of the synthesizer are described in more detail.

4.1 System Overview

In this work, a new HMM-based text-to-speech system utilizing glottal inverse filtering

is implemented. The main goal of this new TTS system is to produce natural sounding

synthetic speech capable of conveying different styles of speaking aswell as emotions.

In order to achieve this goal, the function of the real human voice production mechanism

is modeled with the help of glottal inverse filtering embedded in an HMM framework.

Automatic glottal inverse filtering is used in the parametrization stage in order to compute a

parametric feature expression for the voice source and the vocal tracttransfer function. The

extracted parameters are fed into an HMM system for training and then generated from the

trained HMM according to text input. In the synthesis stage, natural glottal flow pulses are

used for generating the source signal for voiced sounds, and the spectral envelope of this

glottal excitation is modified with an adaptive IIR filter to imitate the time-varying changes

in the real voice source. The current implementation of the system is applied for Finnish,

but, in principle, it can be extended to other languages as any data drivensynthesizer.

The overview of the system is shown in Figure4.1. The system consists of two major

parts: training and synthesis. In the training part, speech parameters computed by glottal

inverse filtering are extracted from sentences of a speech database. This parametrization

stage is a major innovation in the new TTS system in comparison to previous HMM-based

42
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Figure 4.1: Overview of the HMM-based text-to-speech system.

synthesizers. The obtained speech parameters are then modeled in the framework of the

HMM. In the synthesis part, the HMMs are concatenated according to the analyzed input

text and speech parameters are generated from the HMM. The parameters are then fed into

the synthesis module for creating the speech waveform.

4.2 Training Part

The goal of the training stage is to create a model of the speaker by parametrizing a large

database of speech which syntax and phonemic content is labeled, and then training the

HMM system with the parameters.

4.2.1 Speech Parametrization

The purpose of the parametrization stage is to compress the information of the speech signal

to a few parameters which would describe the essential characteristics of the original speech

signal as accurately as possible. A very efficient way of parametrizationis to separate the

speech signal to source and filter. In speech synthesis, the speech signal is usually separated

artificially to source signal and filter coefficients that do not correspondto the real glottal

flow and the vocal tract filter. This approach has the downside that it is very hard to model

the real mechanisms of speech production due to the artificial nature of the signal and the

parameters. In the case of separating the speech signal into quantities thatcorrespond to
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Figure 4.2: Flow chart of the speech parametrization stage.

real phenomena, it is easier to model the speech production mechanism in theframework of

HMM, and thus produce more natural sounding synthetic speech. Therefore, glottal inverse

filtering is chosen for the core of the new implemented system.

The flow chart of the parametrization stage is shown in Figure4.2. First, the speech

signal is high-pass filtered in order to remove any distorting low-frequency fluctuations.

The high-pass filter is a linear phase FIR filter with a cut-off frequency of60 Hz. The

high-pass filtering is especially important for glottal inverse filtering, whereeven weak low-

frequency components may cause extensive fluctuations in the estimated glottal flow. After

the high-pass filtering, the signal is windowed with a rectangular window to 25-ms frames

at 5-ms intervals. The mean of each frame is first removed to ensure zero DC component

within the frame. The parameters are then extracted from each frame.

The core of the parametrization stage is the glottal inverse filtering that estimatesthe

glottal volume velocity waveform from the speech pressure signal. An automatic inverse

filtering method, iterative adaptive inverse filtering (IAIF) described in Section 3.3 is uti-

lized in the system. The IAIF iteratively cancels the effects of the vocal tract and the lip

radiation from the speech signal using adaptive all-pole modeling. The glottal inverse fil-

tering is applied successively to the 25-ms rectangular frames, revealing the corresponding

glottal volume velocity waveform. LPC algorithm used in the inverse filtering is imple-
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mented using the autocorrelation method, and LU decomposition is used for solving the

Normal Equations (3.6). In calculating the LPC, the frame is windowed using the Hann

window, defined as

w(n) = 0.5

(

1−cos

(

2πn
N −1

))

. (4.1)

The filtering of each frame is initiated with samples preceding the actual frame in order to

prevent the discontinuity due to the filtering delay. For canceling out the lip radiation effect,

a leaky integrator is used, defined in the Z-domain as

H(z) =
1

1−ρz−1 , (4.2)

whereρ is a value near one. The value ofρ can be defined by the user, but in the experi-

ments, valueρ = 0.99 was used.

The extracted features and the number of parameters per frame are presented in Table

4.1. The parameters can be divided into source and filter parameters. For creating the

voice source, fundamental frequency, energy, spectral energy,and voice source spectrum

are extracted. For creating the formant structure corresponding to the vocal tract filtering

effect, spectra for voiced and unvoiced speech sounds are extracted. Separate spectra for

voiced and unvoiced excitation are extracted since the vocal tract transfer function as such

does not generate appropriate spectral envelope for unvoiced speech sounds. The extracted

features are further explained in the following paragraphs.

The outputs of the glottal inverse filtering block are the estimated glottal flow andthe

LPC model of the vocal tract (denoted by Voiced spectrum in Table4.1). A sufficient or-

der of the LPC model for the vocal tract is approximately 20. The spectralenvelope of

the resulting glottal flow is parametrized with LPC (denoted by Voice source spectrum in

Table4.1) in order to model the spectral characteristics of the voice source in the synthe-

sis stage. An appropriate degree of the LPC analysis for the glottal flow is between 8 and

Table 4.1: Speech features and the number of parameters.

Feature Parameters per frame

Fundamental frequency 1

Energy 1

Spectral energy 5

Voice source spectrum 10

Voiced spectrum 20

Unvoiced spectrum 20
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12. Further increasing the degree does not necessarily improve the quality of the synthesis,

because the minor changes in the source spectrum may not originate from the real glottal

phenomena, but might stem from the errors due to the framing or imperfect glottal inverse

filtering. Moreover, the slightest changes in the voice source spectrum might not be con-

sistent enough with the context in order efficiently train the HMM system. Additionally, an

LPC model (denoted by Unvoiced spectrum in Table4.1) is computed for unvoiced speech

sounds directly from the speech frame. A sufficient order of the LPC model for the unvoiced

spectrum is approximately 20.

All the obtained LPC models are converted to LSFs, a parametric representation of LPC

information well-suited to be used in a statistical HMM system. The trivial zeros of the

LSP polynomials are removed by deconvolution, and for finding the roots ofthe LSPs,

Chebyshev transform is utilized in order to make the algorithm more efficient. LSFs of

voiced and unvoiced spectrum are further converted to the mel scale in order to perceptually

emphasize the learning of the low frequencies by the HMM algorithm. The conversion of

frequency to mel-scale is defined as

f = 700
(

em/1127.01048−1
)

. (4.3)

Since the fundamental frequency of speech originates from the glottal vibrations, it is

easy to extract thef0 of the frame from the glottal volume velocity waveform. However,

the frame of obtained glottal flow for extracting the source and vocal tractcharacteristics is

only 25 ms in duration, which makes the extraction of the fundamental frequency below 80

Hz unreliable. Therefore another glottal inverse filtering is performed witha 50-ms window,

which enables the reliable extraction off0 values up to 40 Hz. The fundamental frequency

extraction is performed by evaluating the autocorrelation function from the glottal, and

finding the highest peak of the ACF. A predefined amount of samples is removed at the

beginning of the ACF in order to avoid the selection of the zero lag peak. Theresulting f0
is also verified to fit into a predefined range of valid fundamental frequencies, or otherwise

the frame is marked as unvoiced. In the present experiment, the range wasset to cover

the frequencies from 30 to 260 Hz. The voiced or unvoiced decision is additionally made

according to the amount of low-frequency energy in the frame and the zero-crossing rate

(ZCR). The low-frequency energy was evaluated in the range of 0–1000 Hz. If the energy is

below or the ZCR value exceeds the predefined limits, the frame is determined asunvoiced.

In order to reduce the occasional errors in fundamental frequency estimation, a 3-point

median filtering is applied to thef0 contour.

The energy of the speech is evaluated by the sum of squares of the samples in the original

25-ms frame. In addition, the spectral energy of five bands (0–1000 Hz, 1000–2000 Hz,

2000–4000 Hz, 4000–6000 Hz, and 6000–8000 Hz) is calculated fromthe speech frame
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Figure 4.3: Illustration of a 7-state left-to-right context dependent HMM structure with 5

emitting states (lower), and the corresponding state duration model (upper).

with FFT for determining the unvoiced excitation.

4.2.2 Training of HMM

After the parametrization, the obtained speech features are modeled simultaneously in a

unified framework of HMM. First, monophone HMM models are trained. A 7-state left-to-

right HMM structure with 5 emitting states is used. All parameters excluding the fundamen-

tal frequency are modeled with continuous density HMMs by single Gaussiandistributions

with diagonal covariance matrices. The fundamental frequency is modeledby a multi-space

probability distribution (MSD-HMM) (Tokuda, Masuko, Miyazaki & Kobayashi 1999).

The conventional HMM modeling cannot be applied since the observation sequence of

the fundamental frequency is composed of continuous values and discrete symbols that

represent unvoiced frames. The state durations for each phoneme HMMare modeled

with multi-dimensional Gaussian distributions (Yoshimura, Tokuda, Masuko, Kobayashi

& Kitamura 1998). The HMM structure and its state duration model are illustratedin Fig-

ure4.3. In the current system, each feature is modeled in an individual stream, and for the

fundamental frequency three streams are used due to the MSD-HMM, resulting in a model

of eight streams. The delta and delta-delta coefficients of each feature are calculated in

order to enable smooth transitions between states in parameter generation, resulting in a

feature order of 171 in total. Otherwise the training procedure is similar to thatdescribed

in Tokuda, Zen & Black (2002).

After the training of the monophone HMMs, various contextual factors aretaken into

account and the monophone models are converted into context dependent models. As the

number of the contextual factors increases, their combinations also increase exponentially.

Due to the limited amount of training data, model parameters cannot be estimated with

sufficient accuracy. To overcome this problem, the models for each feature are clustered
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Figure 4.4: Illustration of the decision-tree based context clustering for spectrum, pitch, and

state duration model. Context clustering is performed for all speech features.

independently by using a decision-tree based context clustering technique (Odell 1995).

The clustering is also required in order to generate synthesis parameters for new observa-

tion vectors that are not included in the training material. The decision-tree based context

clustering is illustrated in Figure4.4. The contextual factors that are taken into account in

the current model are described in Table4.2.

4.3 Synthesis Part

In the synthesis part, the model created in the training part is used for generating the speech

parameters according to text input. The parameters are then fed into the synthesis module

for generating the speech waveform.

4.3.1 Speech Parameter Generation

In order to generate speech parameters according to the text input, first,phonological and

high-level linguistic analysis are performed, where the text input is converted to a context-

based label sequence. According to the label sequence and the decision trees generated

by the training stage, a sentence HMM is constructed by concatenating context dependent

HMMs. State durations of the sentence HMM are determined so as to maximize the like-
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Table 4.2: Contextual factors used in the current implementation of the synthesizer. The

included sources of the contextual factors are marked as LL = two unit left, L = left unit,

C = current unit, R = right unit, RR = two units right.

Description Context

Phoneme length L, C, R

Phoneme identity LL, L, C, R, RR

Mora index C

Phoneme position in syllable L, R

Phoneme position in word L, R

Phoneme context L, C, R

Mora index in syllable L, C, R

Phoneme count in syllable L, C, R

Syllable position in word L, R

Syllable position in phrase L, R

Syllable position in utterance L, R

Syllable stress C

Syllable accent L, C, R

Syllable distance to focused syllable L, R

Syllable distance to accentuated syllable L, R

Syllable distance to stressed syllable L, R

Syllable distance to break L, R

Strength of nearest breaks L, R

Content or functional word L, C, R

Word distance to focused word L, R

Word distance to accentuated word L, R

Word accent L, C, R

Word position in phrase L, R

Word position in utterance L, R

Syllable count in word L, C, R

Syllable count in phrase C

Phrase position in utterance L, R

Word count in utterance C

Phrase count in utterance C

Does the utterance start a topic C
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Figure 4.5: Illustration of the HMM-based generation process of speechparameters ranging

from training stage to waveform generation.

lihood of the state duration densities. According to the obtained sentence HMMand state

durations, a sequence of speech features are generated by using a speech parameter gener-

ation algorithm (Tokuda, Masuko, Yamada, Kobayashi & Imai 1995, Tokuda, Yoshimura,

Masuko, Kobayashi & Kitamura 2000). Figure4.5 illustrates the generation process of

speech parameters ranging from training stage to waveform generation.
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Figure 4.6: Flow chart of the synthesis stage.

4.3.2 Synthesis

The flow chart of the synthesis block is presented in Figure4.6. The excitation signal

consists of voiced and unvoiced sound sources. A natural glottal flow pulse is used as a

library pulse for creating the voice source. In comparison to artificial glottal flow pulses,

the use of natural glottal flow pulses helps in preserving the naturalness and quality of

the synthetic speech. The library pulse was extracted from an inverse filtered frame of

a sustained natural vowel produced by a male speaker. The extraction of the pulse was

performed by cutting off the pulse at the beginning of the closed time. The main excitation,

the discontinuity at the end of the open time, was left intact since it defines important

properties of the excitation. The glottal flow pulse was further slightly modifiedin the time

domain in order to remove some resonances that were present during the closed phase due

to imperfect glottal inverse filtering. The beginning and the end of the pulse were also set

to same level (zero) by subtracting a linear gradient from the pulse. An appropriate library

pulse was selected by evaluating the resulting quality of the synthesized speech. The library

pulse used for creating the voiced excitation and its derivative are shownin Figure4.7.

By interpolating and scaling in magnitude this real glottal flow pulse, a pulse traincom-

prising a series of individual glottal pulses with varying period lengths andenergies is gen-

erated. A cubic spline interpolation technique is used for making the glottal flowpulse

longer or shorter in order to change the fundamental frequency of the voice source. How-

ever, cubic spline interpolation has some undesirable effects on the glottal flow pulse when
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Figure 4.7: Library pulse used for creating the voiced excitation (upper)and its time deriva-

tive (lower).

the desired pulse length is much longer than the original pulse. Due to the interpolation

some of the high-frequency components are lost, resulting in an unnatural sounding syn-

thetic speech. This effect, however, can be avoided by selecting a glottalflow pulse of

sufficient length so that it is not necessary to use too extreme interpolation.For making

the glottal flow pulse shorter than the original one, there is no such a problem. However,

the fundamental frequency of the selected library pulse was 110 Hz, andfor generating low

pitched synthetic speech, the library pulse must be interpolated to about twiceits length.

This processing results in the mentioned loss of high frequencies. However, the selected

library pulse was otherwise considered suitable in terms of speech quality.

In order to mimic the natural variations in the voice source, the desired voice source

all-pole spectrum (Horig(z)) generated by the HMM is applied to the pulse train. This is

achieved by first evaluating the LPC spectrum of the generated pulse train(Hsynth(z)), and

then filtering the pulse train with an adaptive IIR filter

Hmatch(z) =
Horig(z)

Hsynth(z)
, (4.4)

which flattens the spectrum of the pulse train and applies the desired spectrum. An illus-

tration of the procedure is shown in Figure4.8. The LPC spectrum of the generated pulse

train is evaluated by fitting an integer number of the modified library pulses to the 25-ms

frame, and performing the LPC analysis without windowing. Before the reconstruction of

this filter, the LPC spectrum of the generated pulse train is converted to LSFs, and both
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Figure 4.8: Illustration of the modification of the voice source spectrum. The 10th order

LPC spectra of the estimated real glottal flow (solid line) and the interpolated library pulse

(dashed line) are shown in the upper panel. The frequency responseof the spectral matching

filter is show in the lower panel. The speech segment is a vocal [e] spokenby a male with

fundamental frequency of 77 Hz.

LSFs (the desired voice source all-pole spectrum is originally in the form ofLSFs) are then

interpolated to frame by frame basis with cubic spline interpolation, and finally converted

back to LP coefficients. The filter coefficients are not updated for every sample, but only

for every second, third, or fourth sample, depending on the setup. However, some artefacts

can be detected due to more abrupt changes in the filter coefficients if the update interval

is greatly increased. Since the estimated voice source spectrum may vary substantially in

time, and the estimated spectrum of the synthetic pulse train may differ greatly from the real

voice source spectrum, the resulting spectrum ofHmatch(z) may occasionally be somewhat

inappropriate. In order to avoid these occasional major changes in the spectrum ofHmatch(z)

and thus possible audible artefacts in the voice source, the LP coefficientsof Horig(z) and

Hsynth(z) are first damped with an exponential window by multiplying the coefficient vec-

tors with a damping vectorD = (d0 d1 d2 · · · dm−1), whered is a damping coefficient near

one andm is the model order. Valuesd = 0.98 andd = 0.99 were used for damping the

coefficients ofHorig(z) andHsynth(z), respectively.

The unvoiced sound source is represented by white noise. In order to incorporate an

unvoiced component also when the speech sounds are voiced (e.g. breathy sounds), both

voiced and unvoiced streams are produced concurrently throughout the frame. During
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unvoiced speech sounds, the unvoiced excitation is the primary sound source, but during

voiced speech sounds, the unvoiced excitation is much lower in intensity. Theunvoiced

excitation of white noise is controlled by thef0 value and further weighted according to the

energies of the five frequency bands. The practice of using the spectral energy for weighting

the white noise was experimentally studied, and the best result were achieved by weighting

the noise mostly by the two highest energy bands (4000–6000 Hz and 6000–8000 Hz). In

fact, the accuracy of the unvoiced excitation and the resulting speech quality is very good

for unvoiced segments, but the method does not perform very well for voiced sounds in-

corporating an unvoiced component. This is mostly due to the simple weighting procedure

according to spectral energy, which is not able to properly distinguish between harmon-

ics of the voice source and the unvoiced noise component. Therefore, spectral energy is

unable to distinguish between normal and breathy voiced sounds and cannot generate ap-

propriate noise source. Moreover, the unvoiced LPC spectrum does not entirely correspond

to the spectrum of the noise component in voiced segments since the unvoicedspectrum

describes both the voiced and unvoiced speech sounds. In order to make the incorporated

noise component in voiced speech segments sound more natural, the noise component is

modulated according to the glottal flow pulses. However, if the modulation is too intensive,

the resulting speech sounds unnatural. Experiments with the modulation technique showed

that a good compromise is achieved by having a 50% baseline for the noise component, and

then modulating the remaining part of the noise.

A formant enhancement procedure (Ling, Wu, Wang, Qin & Wang 2006)is applied to

the LSFs of voiced and unvoiced spectrum generated by the HMM to compensate for the

averaging effect of the statistical modeling. LSFs are modified according tothe following

procedure. If the LSFs of a frame are defined asli, i = 1, ...,m, wherem is the model order,

the new enhanced LSFs can be calculated from order 2 to order to orderm−1 by

l′i = li−1 +di−1 +
d2

i−1

d2
i−1 +d2

i

[(li+1− li−1)− (di +di−1)] , (4.5)

where

di = α (li+1− li), (4.6)

andα < 1 andi = 2, ...,m−1. Termα controls the degree of enhancement. The lessα is,

the more intense the enhancement will be. The formant enhancement technique is able to

change otherwise muffled synthetic speech to a more clear articulation and better overall

quality. However, if the method is applied too intensively, the strongest formants in the

speech are heard as disturbing whistle sounds.

After the formant enhancement, the voiced and unvoiced LSFs generatedby the HMM

are interpolated to frame by frame basis with cubic spline interpolation. LSFs are then
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converted to LP coefficients, and used for filtering the excitation signals. The update interval

is critical to the speed of the filtering procedure, but some artefacts can bedetected due to

more abrupt changes in the filter coefficients if the update interval is greatlyincreased.

For voiced excitation, the lip radiation effect is modeled as a first-order differentiation

operationL(z) = 1−ρz−1, whereρ = 0.99. Finally the two filtered excitation signals are

combined, and the gain of the signal is set according to the energy measuregenerated by

the HMM. This is achieved by successively evaluating the energy of the synthesized signal

Esynth within each 25-ms frame, and then evaluating a ratio

G =

√

Eorig

Esynth
, (4.7)

whereEorig is the energy measure generated by the HMM. The vector consisting of values

G is then interpolated to frame by frame basis, and applied to the synthetic speechsignal to

obtain natural gain.

4.4 Other Experimented Methods

Various experiments were made with the new TTS system. The most successful are cur-

rently implemented to the synthesizer and described in previous sections. Other methods

and experiments, that were not successful or require further development in order to be

useful are describe here. Some of the promising methods are further discussed in terms of

future plans in Chapter6.

4.4.1 Voice Source Models

The voice source of the current TTS system is based on interpolating a natural glottal flow

pulse extracted from speech through glottal inverse filtering. Various natural glottal flow

pulses from different speakers were experimented in the synthesis. However, many other

voice source models were also experimented during the development of the synthesizer.

First, the Klatt model for the voice source was largely utilized due to easy implementation

and simple fundamental frequency control. The open quotient of the pulsecan be modified

independently from the fundamental frequency, which enables studyingthe effect of the

open quotient to synthesized speech. Many experiments were made with the open quotient

of the Klatt model. Nevertheless, the Klatt model was too simplistic to provide naturalness

to synthesized speech. One of the greatest drawbacks of the Klatt model isthe inability

to control the discontinuity at the glottal closure that greatly accounts for thedegree of

spectral tilt. In addition, LF model pulses were experimented with the synthesizer, but

further methods for modifying the parameters of the model were not implemented.
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4.4.2 Spectral Modification of Voice Source

In the current implementation, the spectral decay of the voice source is measured with an

all-pole model. The spectrum envelope of the all-pole model describes both the spectral tilt

and the more detailed spectrum of the voice source. The all-pole model is good in terms

of accuracy and details, but the training of the complex parameter set to the HMM system

is still under development. In earlier experiments, the spectral decay was measured with

single number quantities, such as Harmonic Richness Factor (HRF) and the difference be-

tween the amplitude of the fundamental and the second harmonic (H1–H2). Both measures

were evaluated from FFT spectrum of length 2048, and in the evaluation ofHRF, first ten

harmonics were measured. Both measures were extracted and experimented with analysis-

synthesis method, and the two measures gave fairly consistent results with thespectral tilt.

Both measures showed also a good correlation relative to each other. Since the both meth-

ods yielded similar results, only the H1–H2, which requires less computation, was used in

further experiments. The appropriate mapping and applying of the measured spectral tilt

to the real spectral tilt of the synthetic voice source was a challenging task.Since a single

parameter is not capable of describing the detailed spectral behavior of the voice source,

the spectral decay of the synthetic voice source was modified with various heuristics. For

example, the open quotient of the Klatt model pulse was mapped to H1–H2 values, and

the mapping was utilized in the synthesis. This created a variation in the voice source that

imitated the natural behavior, but the procedure did not actually improve the quality of the

synthesized speech, but created some audible artefacts. Moreover, the use of the H1–H2

value of the natural glottal source to modify Klatt model pulse is not warranted to perform

well, since the relation between open quotient and H1–H2 is probably different between the

Klatt model and natural glottal flow pulses. However, due to variation in the voice source,

some segments were more natural to some extent than without the variation in the open

quotient.

The H1–H2 parameters extracted from natural glottal source were also used for changing

the spectral decay of the voice source created with natural glottal flow pulses. This was

achieved by filtering the created voiced excitation signal with appropriate filters. For ex-

ample, first order FIR and IIR filters were used in order to change the spectral decay. The

mapping of the filter coefficients to H1–H2 values was based on comparing thespectral

decay of the synthesized and natural glottal flow pulses at particular H1–H2 values and

through listening the resulting synthetic speech. As a result, variation was created to the

synthetic voice source, but the procedure created also some audible artefacts. The artefacts

were produced most probably due to changes in the spectral slope of thevoice source signal

that were occasionally too intensive or without an appropriate context. Moreover, in natural

speech there are most probably also other changes in the characteristicsof speech wave-
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form that accompany the changes in the spectral decay which make the change in spectral

decay sound more natural. In addition, the frequency response of a first order FIR or IIR

filter does not correspond to the real spectral changes in the voice source. Filters with linear

frequency response were also used in the experiments for changing thespectral decay of the

synthesized voice source, but better results were not achieved. A single number measure

of spectral tilt describes the spectral behavior of the glottal flow only partially, since the

spectral characteristics of the speech signal certainly varies in many dimensions. On the

contrary, the ability of the all-pole model to describe the spectral characteristics of voice

source is much more versatile, and therefore all-pole model was finally utilized.

4.4.3 Fundamental Frequency Control

The fundamental frequency of the synthetic voice source is modified by changing the pe-

riod of the glottal flow pulse. In earlier experiments with the Klatt model, the periodwas

changed according to Equation3.20such that the open quotient remained constant unless

other methods were used for altering the OQ. The method for changing the fundamental

period of the natural glottal flow pulse is interpolation. Although the use of interpolation

for changing the fundamental frequency is not perfectly appropriate,it yields satisfactory

results for the purpose. Two different methods for interpolation were experimented: cubic

spline and linear interpolation. In theory, cubic spline interpolation is better since it incurs

a smaller error than linear interpolation, but in practice the problem is not straightforward.

The cubic spline interpolation incurs also a loss of higher frequencies, which is not desir-

able. In the case of linear interpolation the loss is not so severe, but the higher frequencies

are composed of random interpolation errors, which is not necessarily desirable. However,

the differences between the two methods are not perceptually very distinctive, and the cubic

spline interpolation technique was selected on theoretical grounds.

4.4.4 Other Voice Source Modifications

Since only one natural glottal flow pulse is used in the synthesis, the variationbetween

adjacent pulses is minimal. This creates a strong harmonic structure at higherfrequencies,

and might result in a buzzy sound quality. Although some variation emerges from the

differences in the fundamental period, the resulting slight variation is clearly not sufficient

to reduce the harmonicity at higher frequencies. Therefore random modification of the

spectrum of each individual pulse was experimented. The spectrum wasvaried through

filtering each pulse with a random filter whose frequency response at higher frequencies

was varied several decibels. However, the effect of such procedure was not audible unless

the variation was increased to a point where distinctive artefacts were perceived.
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Jitter in the fundamental period was experimented by creating a random variation to the

length of each glottal flow pulse. This effect was also not audible unless the amount of jitter

was increased enough to cause distinctive artefacts. Since the experiment did not reveal any

benefits from using jitter, it is not used in the current implementation.

Diplophony was also experimented by increasing the length of every second glottal pulse

and decreasing the length of the other pulses at certain segments. The longer pulses were

slightly emphasized by increasing the gain of the pulses. Various parameterswere exper-

imented in order to control the amount of diplophony, such as H1–H2 and fundamental

frequency. Heuristic rules for the amount of diplophony were created,for example, the

amount of diplophony was increased if the fundamental frequency was under certain limit

and the H1–H2 was high, indicating creaky voice quality. The effect of diplophony was

clearly audible at certain segments, such as the end of an utterance, but the effect did not

notably improve the naturalness of the synthetic speech. However, the created diplophony

did not incur any artefacts either. Thus, artificial diplophony could be used in certain spe-

cific speaking styles in order to enhance the impression of creaky voice.

4.4.5 Unvoiced Excitation

Various methods were experimented in order to create a natural unvoiced sound source.

The currently used method has the flaw that it cannot create a natural noise component to

voiced speech segments. This problem derives from the inability of the spectral energy to

distinguish between noise and harmonics of the voice source. To overcomethis problem,

band-pass voicing analysis was experimented. The signal was filtered to five frequency

bands with pass-bands of 0–1000 Hz, 1000–2000 Hz, 2000–4000 Hz, 4000–6000 Hz, and

6000–8000 Hz. The voicing strength of each band was estimated using normalized corre-

lation coefficient around the fundamental period. The normalized correlation coefficient is

defined as

cT =
∑N−1

n=0 xnxn+T
√

∑N−1
n=0 xnxn ∑N−1

n=0 xn+T xn+T

, (4.8)

wherexn is the speech signal at samplen, N is the pitch analysis window, andT is the fun-

damental period. The pass-band voicing strengths describe the relation between the amount

of harmonics and noise for each band. Experiments with synthetic voice source and white

noise show that the band-pass voicing strengths can distinguish between pure voiced and

noisy speech sounds. The band-pass voicing strengths were also used in synthesis, where

a voicing strength for each band controlled the gain of band-pass filterednoise. In addi-

tion, an adaptive band-pass filter based on the band-pass voicing strengths for controlling

the white noise was experimented. However, the band-pass voicing strengths were not re-

ally robust in estimating the amount of voicing, and the use of band-pass voicing strength
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for controlling the noise source did not improve the quality of the synthesis. Nevertheless,

the band-pass voicing strengths were not extensively studied and might be worth further

experiments.

Various experiments were also made with noise source type. In one experiment, the

spectral energy was used to weight the gain of each frequency band individually. However,

since the spectral energy cannot measure the amount of voicing for each band, the results

were not any better than in the current implementation. In another experiment,high-pass

filtered noise was used instead of white noise in order to reduce the artefacts emerging from

the strong noise component at the harmonics of the voice source. However, low frequency

noise is required in some speech sounds, and therefore the method is not really practical.

The noise source was also modified according to the H1–H2 measure. If theH1–H2

showed high values, indicating possible breathy voice, the gain of the noisesource was

increased. This method showed some improvements to the quality of the synthetic speech.

Since the H1–H2 does not necessarily correspond to increased amountof noise, but only

indicates the type of phonation, the method created also some artefacts due to inconsistent

noise in synthetic speech if the relation between H1–H2 and noise gain was toostrong.

Nevertheless, some improvements could be achieved by using the H1–H2 to slightly control

the noise source.

4.4.6 Parameter Smoothing

The statistical HMM system has the property that the generated speech parameters are al-

ways smooth. On the contrary, in direct analysis-synthesis, the extractedparameters vary

unnaturally rapidly and contain errors. Thus, the quality of the resulting synthetic speech

is unsatisfactory unless the parameters are smoothed. Since the analysis-synthesis is an

extremely useful tool for experimenting with the parametrization and synthesis, smoothing

methods are required. The parameters were generally smoothed in time by convolving the

parameter vectors with a Gaussian function defined as

f (n) = Ae−
n2

2σ2 , (4.9)

whereA normalizes the sum of the discrete values of the function to one, andσ controls the

width of the peak. A convolution with such function corresponds to low-pass filtering. The

length of the smoothing vector and the parameterσ were chosen for each parameter inde-

pendently to achieve an appropriate amount of smoothing. In the case of multidimensional

speech features, such as the LSFs and spectral energy, each parameter vector was smoothed

in time. For smoothing the fundamental frequency, a special procedure was used in order

to avoid the smoothing of the boundaries between voiced and unvoiced frames. Thus, only
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the voiced parts were smoothed separately. Similar procedure was used for smoothing the

H1–H2, since H1–H2 is measured only when the frame is voiced.

4.4.7 Other Experiments

Other experiments that do not constitute any larger topic are described here. Although most

of the experiments are documented, many experiments made with the details of the TTS

system are left out in order to point out only the most relevant experimentsand findings.

The glottal inverse filtering is never perfect, and often there are some resonances left

on the glottal volume velocity waveform. Some of the resonances are causedby nearly

real valued roots of the vocal tract transfer function. The resonances can be diminished by

reducing the distance of the real roots from the origin. Thus, a real root scaling algorithm

was developed that sought for nearly real valued roots and scaled thefound ones in order to

reduce the resonances. The limit for the imaginary part was set to 0.01, and the found real

valued roots were scaled to about half the original distance from the origin. Although the

resonances might have been diminished a bit, the processing incurred someartefacts to the

spectrum of the vocal tract. Therefore, the scaling of the real roots were excluded from the

inverse filtering block.

The evaluation of the spectrum of the estimated glottal flow with LPC has the disad-

vantage that the estimation is focused for the high-energy part of the signal. Thus, the

fine structure of the declining spectrum of the glottal flow is hard to estimate accurately

with low-order LPC. In order to estimate the spectral envelope of the glottal flow more

accurately, higher frequencies of the glottal flow were emphasized before LPC analysis.

Correspondingly, the pre-emphasis was also applied to the estimation of the synthetic glot-

tal flow pulses. Thus, the effect of the pre-emphasis would be canceledwhen matching the

desired spectrum to the spectrum of the synthetic voice source. However, the results with

analysis-synthesis were not satisfactory due to increased differences between the synthetic

and the natural glottal flow spectra. The use of pre-emphasis resulted in distorted voice

source and thus the quality of the resulting synthetic speech was poor. Nevertheless, the

pre-emphasis method could be useful for enhancing the training of the HMMsystem since

over-emphasized parameters should be easier to learn.

The spectral shaping of the voice source through filtering changes notonly the spectrum

but the phase of the signal as well. Although human hearing is not sensitiveat perceiving

the changes in phase, the filtering might incur audible changes that are notpresent in the real

voice source. To study the effect of the changes in phase due to filtering, the filtering was

applied both to normal and time reversed excitation signal. It turned out that the direction of

the filtering did have an effect on the characteristics of the resulting speech. However, either

of the tested methods did not provide clearly better quality, but only a slight difference was



CHAPTER 4. HMM-BASED SPEECH SYNTHESIS SYSTEM 61

observed between the methods. Although the time reversal has an effect on the resulting

quality of the synthetic speech, there is no physical justification to use it. Therefore, the

filtering of the synthetic voice source is performed in a traditional way. Nevertheless, the

changes in phase due to filtering raise interesting questions about the validityof the artificial

modification of the voice source.

For enhancing the robustness of the fundamental frequency estimation, apitch tracking

algorithm was implemented. The algorithm selected the two highest peaks from the auto-

correlation function and selected the one that best fit to the series of old values. The new

sample was simply assumed to be the average of the previous samples. The number of previ-

ous samples was varied in the experiments, and an appropriate number of previous samples

was considered to be from 10 to 20. In addition, a statistical selection algorithm was tested

that takes the height of the autocorrelation peaks into account. Thus, the algorithm selected

the higher peak more probably than the lower peak. This procedure is justified with the fact

that if the highest peak is always selected, thef0 curve may end up following the wrong

peak due to occasional errors. If the highest peak is selected statistically, the algorithm will

most probably follow the correct peak. In direct analysis-synthesis, the statistical method

produces some errors, but when applied to the HMM system, the errors average out. The

performance of the algorithm was two-sided. If thef0 curve would originally contain much

errors, the algorithm reduced the amount of errors efficiently. However, if the f0 curve was

rather smooth, the algorithm made some errors that impaired the quality. Since therobust-

ness of the fundamental frequency estimation was considered sufficientwithout the pitch

tracking algorithm, it was not included to the implemented system. However, the pitch

tracking algorithm might be useful when processing speech of certain speaking styles that

make the estimation of the fundamental frequency otherwise difficult. Moreover, if linear

or polynomial fitting of thef0 curve for selecting the new peak would be applied to the

algorithm, the robustness of the pitch tracking algorithm would probably be notably better.

Autocorrelation based method is currently used for estimating the fundamentalfrequency.

However, the AMDF-based method has been shown to yield more robust results. The

AMDF algorithm was not implemented to the system since the accuracy of the autocor-

relation method was considered sufficient. However, in further development, the inclusion

of AMDF-basedf0 estimation algorithm is not excluded.

In the current implementation, separate parameters for voiced and unvoiced spectra are

used. The increased amount of parameters makes it more laborious to generate the speech

parameters from the trained HMM. Moreover, filtering of the voiced and unvoiced excita-

tion signals with separate filters is computationally laborious. In the current implementa-

tion, the vocal tract filter is not appropriate for filtering the unvoiced excitation, and there-

fore separate filters for voiced and unvoiced excitation signals must be used. However, by
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modifying the unvoiced excitation, the vocal tract filter could be applied to the unvoiced

excitation as well, and the two excitation signals could be first summed together and then

filtered with only one filter. The most significant difference between the vocal tract spec-

trum and the unvoiced spectrum is the lip radiation incorporated in the unvoiced spectrum.

Therefore, by integrating the unvoiced excitation signal, the vocal tract spectrum could be

used for filtering the unvoiced excitation. However, the results from integrating the unvoiced

spectrum show that the quality of the resulting speech is degraded due to other differences

between the two spectra. For example, the low frequencies are significantlydifferent. At

present, the two separate spectra are justified with a better quality of the synthesized speech,

but in further development it is desirable to incorporate only one spectrum.

4.5 Implementation Issues

The parametrization and synthesis stages are constructed as stand-aloneprograms that can

be run independently from the HMM system. The development of the speechsynthesis

system began with speech analysis and synthesis experiments with MATLAB (MathWorks

Inc. 2008), but the final system was implemented in C in order to enable fastprocessing and

compatibility with the HMM system. The HMM system used in the synthesizer is based

on the HMM-based speech synthesis system (HTS) developed in Japan (HTS 2008). The

HTS is a package built on top of the hidden Markov model toolkit (HTK) developed in the

UK (HTK 2008). HTS and HTK consist of a set of source libraries and tools available in C

source form, and they are both under a free software license. At the University of Helsinki,

the HTS has been further modified to meet the requirements of the new synthesizer. The

frontend for the phonological analysis and feature extraction has also been developed at

the University of Helsinki. The synthesizer includes a text user interfacefor analyzing and

synthesizing speech with different setups. The described system is implemented for audio

sampled at 16 kHz, but other sampling rates can be used as well with minor changes. The

development of the new TTS system continues, but the main structure of the synthesizer is

expected to remain rather unchanged.



Chapter 5

Evaluation of the Text-to-Speech

System

The evaluation of a TTS system is a diverse issue. Obviously, the most important aspect in

the evaluation is the quality of the synthesized speech. Since the speech quality is a very

multidimensional term, its evaluation is problematic. The quality of a TTS system can be

assessed in terms of the overall speech quality, or the quality can be determined in terms

of several different aspects, such as intelligibility or naturalness. Sincethe intelligibility of

TTS systems today is adequate for most applications, it is often the naturalness that is of

primary concern in evaluation. A large number of possible deficiencies cancause synthetic

speech to sound unnatural to varying degrees. For example, artefactsor deficiencies in

intonation, stress, accent, duration, tempo, and voice quality features all affect the perceived

naturalness of the synthetic speech. However, the evaluation of every individual feature

might not be the best approach in order to assess the naturalness of speech. A simple and

quite reliable way assessing the naturalness of synthetic speech is to present a pair of test

sentences synthesized by each system to be compared, and asking the test subjects to judge,

which one they would prefer (Klatt 1987). This method does not distinguishthe individual

aspects that makes one method better or worse than others, but the method canbe assumed

to yield reliable estimates of how the TTS systems would perform in practical use.

There are several other aspects in the evaluation of a TTS system that donot concern

the quality of speech, but the use of the system in a specific application. These properties,

such as the ability to adapt to different speaker individuals or speaking styles, and the re-

quirements for the used platform, heavily depend on the used synthesis method. Although

the main issue in choosing a TTS system is the quality of speech, certain fundamental re-

strictions may prevent the use of some speech synthesis methods in a specificapplication.

Moreover, flexibility is becoming an ever more important criterion in a TTS system.

63
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5.1 Subjective Evaluation

In order to evaluate the quality or naturalness of the synthetic speech, subjective listening

tests are required. In order to obtain preliminary data about the quality of thenew TTS

system, two subjective listening tests were conducted. First, the quality of the new system

was compared both to natural speech and to synthetic speech generated by a traditional

HMM-based TTS system. Second, the new TTS system was compared with a traditional

HMM-based TTS system. By performing two individual tests, the performance of the new

TTS system can be reliably compared to both natural speech and other TTSsystems.

5.1.1 Test Setup

The implemented TTS system was trained with a prosodically annotated databaseof 600

phonetically rich sentences spoken by a 39-year-old Finnish male speaker, comprising ap-

proximately one hour of speech material. The speech was sampled at 16 kHz. A 20th-order

LPC was used in parametrizing the spectra of voiced and unvoiced speech, and a 10th-order

LPC was used in parametrizing the voice source spectrum. Features described in Chapter4

were extracted together with their delta and delta-delta features from the speech database.

For evaluation purposes, a de facto standard HTS model structure described in (Yoshimura,

Tokuda, Masuko, Kobayashi & Kitamura 1999, Tokuda et al. 2002) was used as a baseline

system. This previously developed HMM system uses the mel-cepstral analysis technique

(Imai 1983) for spectrum modeling and a simple impulse train excitation model forexci-

tation generation. Instead of using more sophisticated excitation models, the simple one

was selected for the comparison because its quality is generally known amongthe speech

synthesis community. The training procedures for both TTS systems were similar.

The spectrograms of a Finnish utterance and corresponding synthetic versions generated

by the baseline and the new system are presented in Figure5.1. The differences between

the utterances can be clearly seen from the spectrograms. For example, synthetic speech

generated by the new system has clearly more distinct formants and formanttransitions than

the baseline system.

The speech samples of the implemented TTS system were slightly high-pass filtered in

order to compensate for the slight emphasis on the lowest frequencies. The cut-off fre-

quency of the filter was 79 Hz, and the attenuation at 50 Hz was –20 dB. After the filtering,

the speech samples sounded slightly more like the natural speech samples. The processing

is considered appropriate since the implemented TTS system is only in a developmental

stage. For the listening test, the energy between the test samples was normalized in order

to avoid differences in loudness.

The listening test was conducted at the Department of Signal Processing and Acoustics
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Figure 5.1: Spectrograms of (a) natural speech, (b) synthetic speechgenerated by the base-

line system, (c) synthetic speech generated by the new system.

at the Helsinki University of Technology in Finland. The test sessions took place between

March 10th and March 18th 2008. The listening environment was an acoustically modi-

fied multipurpose room with low background noise level. The subjects listenedthe speech

samples through Sennheiser HD 580 headphones. The listening test software GuineaPig 3

(Hynninen & Zacharov 1999) was used in the test. Altogether 11 naive listeners, 9 men and

2 women, participated in the test. All subjects were native speakers of Finnish between 24

and 31 years of age.

5.1.2 Comparison Category Rating Test

In the first part of the subjective evaluation, a Comparison Category Rating (CCR) test was

carried out. The test resembled the ITU-T Comparison Category Rating test(ITU 1996)

with minor changes. Although the CCR test is designed for slightly different purposes, the

test was considered suitable for obtaining preliminary data. In the CCR test, the listeners
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are presented with a pair of speech samples on each trial, and asked to assess the quality

of the second sample compared to the quality of the first one on the 7-point Comparison

Mean Opinion Score (CMOS) scale. In effect, the listeners provide two judgments with one

response: "Which sample has better quality?" and "By how much?". The CMOS scale is

presented in Table5.1. Corresponding Finnish descriptions were used in the test. The test

user interface is shown in Figure5.2.

The test sample pairs consisted of natural speech, synthetic speech generated by the im-

plemented system, and synthetic speech generated by the baseline system. Ten randomly

chosen sentences from held-out data were used for generating the test samples. The sen-

tences are presented in AppendixA. All sample pairs are presented twice, exchanging the

order of the samples for the second time. Ten null pairs, where the two samples are the

same, were included in the test in order to assess the reliability of the given answers by

each listener. The test consisted a total of 70 speech sample pairs (10 sentences, 3 methods,

2 orders, plus 10 null pairs). The subjects could play the sample pairs as many times as they

wanted.

The sample pairs were randomized individually for each test subject with a block ran-

domization method. The sample pairs were first divided into blocks, where each condition

occurs exactly once, and the sentences are evenly distributed over the blocks. Then, the

order of the blocks was randomized so that the same sentence is not presented twice in a

row in the final order of presentation.

The subjects were given written instructions for the test, and further oralinstructions

were given when necessary. The test consisted of a practice sessionof five sample pairs

selected randomly from the test sample pairs. During the practice session thelisteners

were allowed to adjust the volume to a comfortable listening level. During the test session

the volume was kept constant. All subjects did the test individually with their ownpace,

but they were encouraged to rate the overall quality of the speech samplesand told that a

Table 5.1: Rating scale used in the CCR test.

3 Much Better

2 Better

1 Slightly Better

0 About the Same

-1 Slightly Worse

-2 Worse

-3 Much Worse
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Figure 5.2: User interface used in the CCR test. The sample pair is played by pressinglisten

and the currently playing sample pair can be stopped by pressingstop. After listening the

sample pair once or more, the quality of the second sample compared to the firstsample is

graded by setting the slider to the desired verbal description. The buttonDone is pressed to

proceed to the next trial. The number of completed trials out of total trials is shown on the

lower left corner.

detailed consideration would not necessarily yield a better result. The CCR test took from

20 to 30 minutes per listener.

Results

The ranking of the three methods with 95% confidence intervals according tothe CCR test

is shown in Figure5.3. The ranking of the methods was evaluated by averaging the scores

of the CCR test for each method. The 95% confidence intervals based on the 1-sided t-test

were calculated by the following equations (3GPP 2003):

upper limit = CMOStest+
tN−1,α/2 stest√

N

lower limit = CMOStest− tN−1,α/2 stest√
N

,

(5.1)

where CMOStest is the averaged CMOS score for the method in question,tN−1,α/2 is the

inverse value from Student’s t-distribution withN −1 degrees of freedom and probability

of α/2, stest is the sample standard deviation, andN is the number of answers per method.

For 95% confidence intervalsα = 0.05. The preferences between the methods were found

to be statistically significant. Although the 1-sided t-test is not precisely the right method for

testing the means of more than two datasets, it yields results accurate enough considering

that the means of the three methods are significantly different with a large margin. If the

margin would be considerably smaller, more accurate statistical methods, suchas multiple

comparison procedures, would be required. Bar plots of the scores and mean scores with

confidence intervals are presented in Figure5.4.
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Figure 5.3: Ranking of the CCR test for the following speech samples: natural speech

(natural), proposed system (proposed), baseline system with an impulsetrain excitation

model (baseline). The mean score has no explicit meaning, but the distances between the

scores are essential. The 95% confidence intervals are presented foreach score.
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Figure 5.4: Bar plots of the scores and mean scores with confidence intervals for the follow-

ing speech samples: natural speech (natural), proposed system (proposed), baseline system

with an impulse train excitation model (baseline).
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The consistency and the reliability of the listeners were assessed by comparing the two

given grades for each same sample pair, and inspecting the grades given for the null pairs. In

optimal case, the two scores for the same sample pair would be the same in both occasions,

and the score for the null pairs would be zero (About the Same). Overall,the consistency

was fairly good since the difference between the same sample pairs were mostly zero or

one, with only few exceptions. The reliability of the listeners was generally good since

nearly all listeners graded all the null pairs zero. The differences between the scores of the

same sample pairs and the scores for the null pairs are presented in Figures A.1 andA.2

in AppendixA. The distribution of the given grades is quite uniform for all the listeners,

which indicates that the CMOS scale was appropriate for the test. The distributions of the

given grades by each listener are presented in FigureA.3 in AppendixA.

5.1.3 Pair Comparison Test

In the pair comparison test, only the synthetic sounds generated by the two HMM-based

TTS systems were involved. A pair comparison test method was used, wheresubjects

listened to samples referred to as A and B, and selected the one they would rather listen

to. They were also given an option to choose that the samples sounded about the same,

indicating no preference between the two samples. The user interface of the pair comparison

test is shown in Figure5.5.

Ten randomly chosen sentences from held-out data (different from the ones used in the

CCR test) were used for generating the test samples for each method. The sentences are

presented in AppendixB. The test subjects made all the possible comparisons for each

sample in both orders. Furthermore, 4 null pairs, where the samples A and Bare the same,

were included in order to assess the reliability of the given answers by each listener. The

pair comparison test included a total of 24 trials, consisting of 20 comparisons between the

methods and 4 null pair trials. The samples were presented to the listener in random order,

and the order was different for each listener. The subjects could listen the samples as many

times as they wanted before giving the answer.

The subjects were given written instructions for the test, and further oralinstructions

were given when necessary. The test consisted of a practice sessionof five comparisons

selected randomly from the test samples. During the practice session the listeners were

allowed to adjust the volume to a comfortable listening level. During the test session the

volume was kept constant. All the subject did the test individually with their ownpace,

but they were encouraged to rate the overall quality of the speech samplesand told that a

detailed consideration would not necessarily yield a better result. The pair comparison test

test took from 10 to 15 minutes per listener.
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Figure 5.5: User interface used in the pair comparison test. The samples areplayed by

pressingA or B, and the currently playing sample can be stopped by pressingstop. After

listening the both samples at least once, the question "Which one would you rather listen

to?" is answered by selecting one of the three alternatives: sample A, sampleB, or no

preference for either of the samples. The buttonDone is pressed to proceed to the next trial.

The number of completed trials out of total trials is shown on the lower left corner.

Results

The preference scores of the synthesis methods with 95% confidence intervals are shown in

Figure5.6. The confidence intervals based on the binomial distribution are calculated using

the following formulas (NIST/SEMATECH 2008):

upper limit =
p̂+

z2α/2
2n +zα/2

√

p̂(1− p̂)
n +

z2α/2
4n2

1+
z2α/2

n

lower limit =
p̂+

z2α/2
2n −zα/2

√

p̂(1− p̂)
n +

z2α/2
4n2

1+
z2α/2

n

,

(5.2)

wheren is the number of samples, ˆp is the proportion of items in the category in question,

andzα/2 is the upper critical value from the normal distribution that is exceeded with proba-

bility α/2, whereα = 0.05 for 95% percent confidence intervals. The preferences between

the two methods were found to be statistically significant.

The consistency and the reliability of the listeners were assessed by the following ways.

First, the number of answers to A, B, and "no preference" were counted for each listener.

This gives information about the behavior of each subject. Ideally, the number of answers

to A and B should be equal, since each comparison is made twice, and the second time the

order of samples in A and B is reversed. Mostly the answers were equally distributed, but

for one subject the answers for B were highly emphasized for some reason. The distribution

of the answers to A, B, and "no preference" for each subject is presented in FigureB.1 in

AppendixB. Second, the answers to the null pair trials were studied. Ideally, no preference

should be addressed for either of the samples. Generally, there was no preference for either
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Figure 5.6: Results of the pair comparison test applied for the proposed system (proposed)

and the baseline system with an impulse train excitation model (baseline). The bars indicate

the percentage of the total number of answers to the question "Which one would you rather

listen to?". The center bar (no pref.) indicates no preference for eitherof the methods. The

95% confidence intervals are presented for each bar.

of the samples in the case of null pair trials, but one subject did not show such behavior,

but in almost every case answered either A or B. The answers to the null pair trials are

presented in FigureB.2 in AppendixB. Third, the answers of each subject to all non-null

sample pairs were compared, and the proportion of sample pairs receivingthe same answer

twice was calculated. Since each comparison is presented twice in the test, ideally the

subject should always choose the same answer, A, B, or "no preference" for the sample in

the two occurrences of the sample pair. Generally, this kind of consistencywas fairly good

(about 80%), but two subjects failed to be consistent in their answers. The consistency of

the answers for each subject is presented in FigureB.3 in AppendixB. In addition, the

answers to different methods by each listener, and the answers to different methods by each

sentence are presented in FiguresB.4 andB.5 in AppendixB, respectively.

5.1.4 Result Analysis

The results of the CCR test show that the proposed new TTS system utilizing glottal in-

verse filtering has a considerably better quality than the previously developed HHM-based

method. Compared to natural speech, the quality of the new system is clearly worse. How-

ever, since the prosodic features of the synthetic speech were generated directly from the

HMM, the evaluated degradation in quality partly results from the prosodic discrepancies
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between the synthetic and natural speech samples.

The results of the second test show that the new system is almost always preferred over

the baseline system. Since the same prosody model was used for both systems, the results

are comparable. However, during the preliminary evaluation, it was noted that the baseline

system sounded better with the new prosody model than with the original one.Thus, the

baseline system does not necessarily represent the reference system (Yoshimura et al. 1999,

Tokuda et al. 2002), but might be slightly better in quality. Nevertheless, since the results

show obvious preference for the new system over the baseline system, this issue is not of

great concern.

After the two listening tests, the subjects were asked to describe possible artefacts they

noticed in the synthesized speech in order to obtain information about the mostsalient

aspects that degrade the quality of synthetic speech. The listeners described the baseline

system with terms such as creaky, machine-like, dry, rough, and robotic.The quality of the

new system compared to the baseline system was described as more naturaland human-like

with clear characteristics of a person. However, the proposed systems was described also

as too emphasized on the low frequencies, which was, according to some subjects pleasing,

but at the same time it made the speech less clear. All the synthetic speech samples were

described as somewhat metallic and machine-like, but very intelligible. The quality of the

prosody and the transients of the synthetic speech samples were criticized compared to

natural speech, and occasional other artefacts were also reported.

The comments from the listeners suggest that the synthetic speech of the proposed new

system is much more natural sounding than the synthetic speech of the baseline system.

Moreover, the comments show that the new system is able to produce syntheticspeech

with specific speaker characteristics. However, there are many aspectsin the new system

that were criticized, such as the emphasis on the low frequencies, metallic sound, and the

artefacts in prosody.

5.2 Computational and Implementation Considerations

A TTS system must be computationally feasible in order to be of practical use.In order to

implement a real time TTS system, a lot of computing power and memory is often required.

Personal computers now mostly meet the requirements of current TTS systems, but appli-

cations on memory and processing power constrained devices, such as mobile phones and

other handheld devices, are much more challenging. Moreover, the needfor TTS systems

for the low resource devices is continuously increasing.

One of the advantages of the HMM-based TTS system is its low memory requirement.

The whole TTS system takes less than ten megabytes of space. Compared to concatenative
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TTS systems, which may take hundreds of megabytes of space, the difference in memory

requirement is remarkable. The HMM-based speech parameter generation algorithm is also

fast, and combined with text analysis, the generation of parameters from text input can be

run almost real time on a personal computer. In addition, there are also manypossibilities

to make the HMM-based speech parameter generation faster than at present. However, the

most laborious part of the HMM-based speech synthesis is the waveformgeneration from

the parameters. The waveform generation consists of two main tasks: excitation genera-

tion and filtering. The generation of the excitation signal in a conventional HMM-based

speech synthesis system is very straightforward: the excitation consists of either impulses

or white noise. On the contrary, in the implemented TTS system, the generation ofvoiced

excitation covers the interpolation of natural glottal flow pulses and furthermodification of

the voice source spectrum through filtering with an adaptive IIR filter. Thus, the generation

of the excitation signal is computationally more demanding than in a conventional speech

synthesizer. After the signal generation, the voiced and unvoiced excitation signals are both

filtered with adaptive FIR filters, which is the most laborious part of the synthesis.

The current implementation of the HMM-based TTS system cannot synthesize speech in

real time. The required synthesis time largely depends on the update intervalof the filter

coefficients. If the coefficients are updated for every second samples, which yields quality

indistinguishable from the synthesis with continuous updating of the filter coefficients, the

synthesis takes currently about twice the duration of the resulting speech.If only every

eighth coefficient is used, the synthesis time is less than the duration of the resulting speech,

but also some minor artefacts can be detected.

The implementation of the TTS system is not entirely optimized in terms of computa-

tional efficiency, but it is rather a platform for experimenting with the new synthesis tech-

nique. There are several issues concerning the implementation that could be developed in

order to make the synthesis computationally more efficient. Since most of the process-

ing time is used for filtering the voice source and excitation signals, the naturalfocus of

development would be the filtering algorithms. The filtering process also comprises the

conversion of LSFs to LPC polynomial on each filter update. The implementationof the

conversion function is not optimized for recurrent use infor-loops, and thus the optimiza-

tion would speed up the filtering. Additionally, the update interval could be madeadaptive

to avoid unnecessary computation. Thus, the filter coefficients would be updated only if the

changes in LSFs would be large enough to cause artefacts.

Through the optimization, the synthesis could be made run with a considerably smaller

delay than at present. Moreover, if the text analysis, speech parametergeneration, and

waveform generation would be implemented to run concurrently, continuouslygenerating

synthetic speech, near real time practical implementation would be possible.
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Discussion

This chapter concludes the thesis with a discussion of the most important, current and fu-

ture issues concerning the new TTS system. The utilization of glottal inverse filtering and

modeling of the voice source characteristic in a HMM-based TTS system arediscussed. Al-

ternative methods of implementation are considered, and future plans for further developing

the TTS system are described. Finally, the conclusions of the thesis are presented.

6.1 Discussion and Proposed Improvements

Although the experimental results show that the proposed new system is ableto generate

natural sounding speech, the full potential of the new system is not entirely used in the

current implementation. There are several aspects concerning the design and implementa-

tion of the TTS system that are not optimal in any terms, and, as noted before, the current

implementation is rather a platform for experimenting and further developing thenew TTS

method. The components of the TTS system that have major contribution on the quality of

the synthesized speech are discussed in the next few sections. Possibleimprovements are

proposed and the estimated benefits are evaluated.

6.1.1 Glottal Inverse Filtering

The aim of the new HMM-based TTS system is to create natural sounding speech in differ-

ent speaking styles with different speaker characteristics and even emotions. These goals

are achieved partly through the ability of the HMM system to model these characteristics,

but foremost through the ability of the training stage to distinguish and parametrize these

features from natural speech. Since a large part of what can be characterized as natural-

ness in speech emerges from different voice source characteristics as well as their context

dependent changes, the core of the new TTS system is the glottal inversefiltering, which

74
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enables the parametrization of the glottal source characteristics.

The parametrization of speech signal is traditionally performed through a decomposition

to source and filter. The decomposition can be performed in various ways,for example

through basic all-pole modeling, through glottal inverse filtering, or with any other method.

The resulting source and filter need not to represent any real mechanism of speech produc-

tion. The purpose of the decomposition is merely to represent the speech signal in terms

of source and filter characteristic, and thus reduce the information required for representing

the speech signal. In this respect, the approach of using inverse filteringdoes not yield

any more accurate results than other decomposition methods. However, the decomposition

through glottal inverse filtering yields information about the real functioningof the vocal

folds and the vocal tract filter. This enables the modeling of glottal source and vocal tract fil-

ter parameters individually, and the further analysis and modification of the characteristics

are possible based on the knowledge of the speech production mechanism.

While the HMM system is a statistical method for describing the speech signal, it can

not distinguish the voice source characteristics from source and filter based on traditional

decomposition. In other words, if an HMM system is trained with traditional source and fil-

ter parameters, the context dependent changes of the voice source characteristics are spread

randomly to both source and filter characteristic, and therefore the desired parameters are

statistically smoothed out. Thus, the voice source characteristics cannot beutilized in a

traditional HMM-based TTS system. On the contrary, in the new HMM-basedTTS system

that utilizes glottal inverse filtering, separate voice source and vocal tract characteristics are

fully available for modeling in order to imitate the natural speech production mechanism,

and thus produce natural sounding synthetic speech. Moreover, the individual modeling of

different speech characteristic enables the easy adaptation and alteration in speaking style,

speaker characteristics and emotion.

6.1.2 Spectral Modeling

In the current TTS system, linear prediction is used for estimating the spectral envelope

of the speech signal, and further the spectral envelope of the voice source. However, it

has been known for some time that linear prediction suffers from various drawbacks that

are especially evident during voiced segments of speech. Specifically, the peaks of the

LPC spectral envelope are biased towards the pitch harmonics, which causes bias to the

estimated formant structure. To overcome these problems, discrete all-pole (DAP) model-

ing (El-Jaroudi & Makhoul 1991) could be utilized for evaluating the spectral envelope of

speech instead of LPC. Generally, DAP modeling gives better spectral envelopes than linear

prediction. Moreover, DAP modeling enables the spectral weighting of the analysis, which

could be utilized in order to obtain better spectral model for the most important frequencies
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in speech.

6.1.3 Library Pulse

The use of a natural glottal pulse for creating the voiced excitation helps in preserving the

naturalness and quality of the synthetic speech. However, since there is agreat variation

in the shape and spectrum of the glottal flow pulses in natural speech, the use of a single

glottal library pulse is not really justified. Experiments made with the TTS system show

that the use of a single glottal library pulse is unable to mimic the dynamics of the glottal

flow pulses that exist in natural continuous speech. It would be preferable to use more

than one library pulse in order to create desired variability, and probably the quality of the

synthesized speech would improve as the number of different glottal flow pulses would

increase. However, there are several difficulties in such an approach. Firstly, experiments

made with the system show that the selection of the library pulse has a significant effect

on the quality of the synthesized speech. The characteristics of the synthesized speech are

substantially different with different glottal flow pulses even if the pulses may seem very

similar to each other in the time domain. Thus, it is challenging to create a set of real glottal

flow pulses that would be suitable for creating the voice source and would lead to natural

sounding synthetic speech.

However, the approach of using more than one natural glottal flow pulsesfor creating

the voiced excitation is attractive. One method of implementing the pulse library is to ex-

tract several pulses as similar to each other as possible, and then randomlyuse the pulses

in synthesis. This might create the desired variation in the voice source, andthe machine-

like or metallic characteristics due to strong harmonic structure at higher frequencies would

probably be diminished. However, on the grounds of small scale experiments, there is a

large possibility that the differences between the library pulses are heardas artefacts in the

resulting synthesized speech. Another approach, and maybe even morechallenging one,

is to extract separate glottal flow pulses from speech of different fundamental frequency,

phonation type or intensity. This would bring out the characteristics of natural speech, and

would at the same time partly solve the problem of changing the fundamental frequency of

the voice source. The extraction of the glottal flow pulses and the construction of an appro-

priate library for synthesis would require much work. However, the results of a successful

pulse library and algorithm for using the pulses could yield substantial enhancements to the

naturalness of the synthesized speech. To reduce the artefacts due to the differences be-

tween adjacent glottal flow pulses, pulse modifying algorithms could be utilized.A simple

method would be to gradually change the waveform of the glottal flow pulse from one pulse

to another. Nevertheless, extensive experiments with more than one librarypulse were not

performed.
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It is challenging to create natural sounding synthetic speech by using different glottal flow

pulses, because it is likely that the differences between individual pulses cause artefacts to

some extent. Moreover, it is not only the variation that is required between the adjacent

glottal flow pulses, but there is also rules based on the physical functioning of the vocal

folds that define the properties of the glottal source. Thus, more information about the

physical functioning of the vocal folds would be beneficial in order to fully utilize the

pulse library. Alternatively, other methods for creating the voice source could be used, for

example methods used primarily in articulatory synthesis, but unfortunately there are no

proper methods for physical modeling of the voice source.

6.1.4 Fundamental Frequency Modification

Despite the fairly natural synthetic speech, the interpolation of the glottal flowpulse accord-

ing to the fundamental frequency is far from the natural behavior of the glottal flow. The

interpolation is a compromise to alter the fundamental frequency due to the lack of proper

methods for modeling the behavior of the vibrating vocal folds. The interpolation proce-

dure has many disadvantages. Firstly, although the original time properties of the glottal

flow pulse are shifted in proportion to each other, it is different from the natural behavior of

the glottal flow pulse. For example, although the open time would be longer in low-pitched

pulses than in high-pitched ones, in does not mean that the abrupt glottal closure should be

different between the pulses. By using interpolation, all the different properties of the glot-

tal flow pulse are changed simultaneously without any physical basis. Secondly, the cubic

spline interpolation changes the frequency content of the glottal flow pulse. It is not exactly

known how the spectral characteristics of a glottal flow pulse should behave when the fun-

damental frequency is changed. However, the cubic spline interpolation isa compromising

method for changing the fundamental frequency.

There are alternative methods for interpolation in order to change the fundamental period

of the voice source. Since the closed time of the glottal flow pulse is kept somewhat constant

regardless of other changes in the voice source, it is easy to change thefundamental period

through alteration of the closed time. However, preliminary test with the technique showed

that the quality was not improved. This is probably due to the constancy of other properties

of the glottal flow pulse, which results in unnatural synthetic speech when the fundamental

period is different from the length of the original pulse. Another approach is to interpolate

only some parts of the original pulse, for example excluding the main excitation.Thus,

most of the properties of the glottal flow pulse would change according to thefundamental

frequency, but yet the main excitation would provide the desired higher frequencies. This

method has not been experimented, but the obvious defect of the method is thelack of

variation in the main excitation.
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The implementation of a pulse library consisting of glottal flow pulses of different fun-

damental period could be the best solution for changing the fundamental frequency of the

voice source. If the different glottal flow pulses describe the characteristics of the voice

source at different fundamental frequencies, the resulting synthetic speech should be more

natural, if the differences between adjacent pulses would not produceaudible artefacts. If

the library consisting of pulses with different fundamental periods is dense enough, the fine

adjustment of the fundamental period can be performed with a slight interpolation without

greatly affecting the properties of the glottal flow pulse. As noted in the previous section,

the difficulty is to find and extract such pulses that would describe only the desired proper-

ties, and would be otherwise similar to each other in order to avoid artefacts.

6.1.5 Spectral Modification of Voice Source

The all-pole model used for spectral modification of the voice source is good in terms of

accuracy and details, but there are some problems in the training of the complex parame-

ter set to the HMM system. At present, the parameters generated by the HMM system are

somewhat oversmoothed, and thus do not create as much variation to the voice source as de-

sired. Since the inverse filtering procedure is not perfect, the voice source incorporates also

some residual spectrum from the vocal tract. This might lead to a situation where the voice

source spectrum describes the residual of the vocal tract more than thebehavior of the voice

source. Informal observation of the decision trees of the voice sourcespectrum revealed,

that the context clustering was performed mostly based on the phone identity,suggesting

that some traces of the vocal tract were left on the voice source spectrum. The residual on

the voice source spectrum is not a problem since the quality of the synthesized vowel might

improve due to the phone-specific modification of the voice source, but the problem is that

the HMM might not be able to model the voice source spectrum that describesthe phona-

tion type as efficiently as desired. It seems that the HMM system is somewhat unable to find

appropriate linguistic context for the changes in the voice source spectrum. However, this

problem might arise from many reasons, such as too small training material, orsecondly the

training material might be spoken too monotonously without great variations in the voice

source spectrum. In addition, there might also be other reasons concerning the HMM sys-

tem that make the training of the voice source spectrum parameters less effective. Although

improvements should be made in order to model the spectrum of the voice source, some

features of speech are currently well modeled. For example, one repeatedly seen splitting

criterion was syllable position in the utterance, showing that the HMM system can learn

the characteristics of the utterance-final creaky voice, typical in Finnish. However, further

development for the modification of the voice source spectrum is required since the appro-

priate variation in the voice source spectrum is one of the most important features of the
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new synthesizer. An especially interesting topic is how the spectrum of the voice source

would relate to the higher level phonological factors.

6.1.6 Impression of Breathiness

The synthesized unvoiced speech sounds are currently fairly natural,but the unvoiced com-

ponent incorporating the voiced component sounds rather poor. This problem derives from

the inability of the spectral energy to distinguish between noise and harmonicsof the voice

source. Since the natural impression of breathiness is important in order the create natural

sounding synthetic speech, methods for measuring and adding breathiness must be devel-

oped. Thus, the relation between voiced and unvoiced components shouldbe measured.

There are several algorithms to perform the task, such as band-pass voicing strength (see

Section4.4.5) and harmonic-to-noise ratio. Harmonic-to-noise ratio measures the ratio be-

tween the magnitude of the harmonics and the magnitude of interharmonic noise. Thus,

by measuring the relation between voiced and unvoiced components at different bands, an

appropriate amount of noise could be added to each band. The band-pass voicing strength

has been already experimented, but further studies are required in order to create a natural

impression of breathiness.

The impression of breathiness could be expected to be more natural if the noise com-

ponent was modulated according to the voiced component. However, thereis no solid

information about the mechanism of the modulation. The modulation according to the glot-

tal flow pulses was experimented, but large improvements were not achieved. Experiments

also showed, that some time characteristics of the turbulent noise were not critically impor-

tant, since there were no audible differences regardless of whether thenoise was present at

glottal open time or closed time. The higher frequencies that originate from theglottal flow

pulses in natural speech follow the periodicity of the glottal flow, but the discrimination

between the noise originating from the vocal folds or turbulent flow is difficult.

6.1.7 HMM System

Methods for the HMM modeling are rapidly developing, especially in the field ofspeech

synthesis. The current implementation of the HMM system does not represent the state-of-

the-art of the HMM synthesizers, but is a basic implementation for experimenting with the

new synthesizer. Thus, many improvements could be incorporated within the HMM system

which would probably improve the quality of the synthesized speech. For example, the

introduction of hidden semi-Markov models (HSMM) (Zen, Tokuda, Masuko, Kobayashi &

Kitamura 2004) and speech parameter generation considering global variance (GV) (Toda

& Tokuda 2007) have been proposed to enhance the performance of the HMM system, just
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to name a few. With the release of HTS version 2.0 (Zen, Nose, Yamagishi, Sako, Masuko,

Black & Tokuda 2007) various improvements and new features have beenincluded in the

HMM system. Moreover, speaker adaptation and adaptive training have been introduced in

the HTS version 2.0 in order to enable flexible speech synthesis.

6.2 Future Work

Most of the main topics of further development were mentioned in previous section, but

no explicit directions of the development were discussed. Generally, the aim of the TTS

system is to enable generating highly natural synthetic speech capable of conveying dif-

ferent speaker characteristics. The basic blocks that enable these goals are implemented,

but further development is required in order to fully utilize the capability of thenew TTS

system. For example, the forthcoming development will be focused on improving the use

and shaping of the natural glottal flow pulses, and enhancing the use of the voice source

characteristics obtained by glottal inverse filtering.

6.3 Conclusions

In this thesis, a new HMM-based text-to-speech system utilizing glottal inverse filtering was

described. Subjective listening tests showed that the quality of the proposed new TTS sys-

tem was considerably better compared to a traditional HMM-based TTS system with an im-

pulse train excitation model. The information about the voice source characteristic obtained

through glottal inverse filtering and the use of natural glottal flow pulses clearly improved

the quality of the synthesized speech. Moreover, individual modeling of the voice source

characteristics in the framework of HMM enables flexible speech synthesis with arbitrary

speaker’s voice, various speaking styles, and emotional expressions. The new method has

the potential to produce highly natural sounding synthetic speech. The development of the

new TTS system continues in order to fully utilize the new techniques introduced in this

work.
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Appendix A

Details of the CCR Test

Table A.1: Sentences used in the CCR test.

1 Useimmat olivat nelissäkymmenissä.

2 Tulosten julkistamisen yhteydessä tulisi aina käydä ilmi paitsi otantamenetelmä,

myös relevantin kadon osuus.

3 Tällä hetkellä kesäjuhlan taiteellisena johtajana tunnen olevani lähinnä rahanker-

juuosaston päällikkö, ja selittelystä vastaava toimihenkilö.

4 Sotamuistot ovat vain alkuja pitkille kertomuksille.

5 Siihen taas poliisi ei nähnyt minkäänlaisia perusteita.

6 Nykyhetkestä katsoen tuohon ajatuskaavaan luuduttiin liian tiukasti, liian pitkäksi

aikaa.

7 Niissä on lämpöä ja melankoliaa.

8 Niinpä kapinaa riennettiin kukistamaan.

9 Myös puolison sisaren miestä sanotaan langoksi.

10 Minusta tämä on tyhmyyttä.
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Figure A.1: Differences between the scores of the same sample pairs for each subject.

Ideally, the difference should be zero.
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Figure A.2: Scores for the null pairs for each subject. Ideally, the score for the null pair

should be zero.
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Figure A.3: Distribution of the given scores for each subject. Ideally, subjects should have

utilized the entire scale.



Appendix B

Details of the Pair Comparison Test

Table B.1: Sentences used in the pair comparison test.

1 Tällainen tori oli nostajien mielestä hyvä nimenomaan laajapohjaisuudessaan.

2 Siitä maksetaan myös hyviä hintoja.

3 Se toi tuulahduksen toisenlaisesta aikakaudesta tämän päivän politiikkaan.

4 Ruotsalaiset itseasiassa tartuttivat huolensa meihin.

5 Nykyiset äänestäjät eivät Suomen sisäpolittiikkaa heilauta.

6 Maailma pyörii sittenkin, hyvää yötä.

7 Maksajia ei ilmaantunut.

8 Keväällä sisäinen jännitys laukesi.

9 Kesällä saattaa olla lämmintäkin.

10 Ja jälleen kerran hänen potilaansa kokosi voimansa ja alkoi toipua.
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Figure B.1: Distribution of the answers to A, B, and "no preference" (N)for each subject.

Ideally, the number of answers to A and B should be equal.
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Figure B.2: Answers to the null pairs trials for each subject. Ideally, no preference should

be addressed for either of the samples.
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Figure B.3: Consistency of the answers for each subject measured by the proportion of a

sample receiving the same answer on both occurrences of the same sample pair.
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Figure B.4: Answers to different methods by each subject.
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Figure B.5: Answers to different methods by each sentence.
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