
Helsinki university of technology
Faculty of Electronics, Communications and Automation

Jegadish Devadoss

DATA DISTRIBUTION OVER AN OVERLAY NETWORK

The thesis is submitted for examination for the degree of Master of Science in
Technology

Espoo 15.1.2009

Thesis supervisor:

Prof. Jörg Ott

Thesis instructor:

Igor Curcio

Helsinki university of technology abstract of the
master’s thesis

Author: Jegadish Devadoss

Title: Data distribution over an overlay network

Date: 15.1.2009 Language: English Number of pages: 5+55

Faculty: Faculty of Electronics, Communications and Automation

Professorship: Networking technology Code: S-38

Supervisor: Prof. Jörg Ott

Instructor: Igor Curcio

The Client-Server model based data distribution is inefficient for sessions with a
large number of participants interested in receiving the same content at the same
instant. Examples of such applications are live audio/video streaming, weather
updates, stock tickers etc. The lack of global multicast infrastructure has made
the research community to consider ‘Overlay networks’ as alternatives. Overlay
networks require effective mechanisms for bootstrapping, constructing, maintain-
ing and repairing the overlay. The effectiveness of these mechanisms influences
the quality of the service experienced using the overlay network. In this thesis, we
propose solutions that can be used by the overlay network to construct, maintain
and repair the overlay. More precisely, the solutions that we propose can construct
a minimum spanning tree for data distribution and identify capable (nodes with
extra outbound degree) nodes using a decentralised design. Overlay networks can
be classified into different types depending on the nature of the participants and
the type of data distribution mechanism (tree, mesh). In the thesis, our focus is
only on the overlay networks that uses tree based data distribution mechanism.

Keywords: Overlay networks, Algorithms

iii

Preface

This work started with the thoughts on the algorithms that can be efficient for
constructing a data distribution tree in an overlay network. Personally, This work
has been a transforming journey that has given me directions on how to understand
and design a system.

I am very grateful to Professor. Jörg Ott who agreed to supervise my thesis. The
freedom that he gave to explore and his valuable suggestions/pointers are very sig-
nificant in shaping this thesis. I also would like to thank my instructor Igor Curcio
for his valuable suggestions. Finally, I thank my lab colleagues, who had given me,
many valuable suggestions and were very encouraging.

Otaniemi, 15.1.2009

Jegadish Devadoss

iv

Contents

Abstract ii

Preface iii

Contents iv

1 Introduction 1

1.1 IP Multicast . 1

1.2 Overlay Networks . 2

1.3 Overlay based data distribution . 3

2 Scope, Problem statement and Related work 5

2.1 Scope . 5

2.2 Problem Definition . 7

2.3 Related Work . 8

2.4 Summary . 9

3 Distributed Tree Routing 10

3.1 Overview of the algorithm . 10

3.1.1 Local Correction-1 . 10

3.1.2 Local Correction-2 . 11

3.1.3 Local Correction-3 . 12

3.1.4 States maintained by the nodes 12

3.2 Locks for DTR execution . 13

3.3 An Example . 15

3.4 Metrics for evaluation . 17

3.5 Evaluating DTR performance using simulation 21

3.6 Analysing the efficiency . 23

3.6.1 Operation of DTR in degree constrained environment 23

3.7 Applications for this algorithm . 26

3.8 Conclusion . 26

4 Co-Operative Resource Identification Protocol 28

4.1 Operation of CORIP . 28

v

4.1.1 Operation of Rup . 28

4.1.2 Operation of Rdown . 33

4.2 Applications for the protocol . 36

4.2.1 Pro-Active Optimisation . 36

4.2.2 Reactive Repair . 40

4.3 Future Work and Conclusion . 40

5 Overlay network simulator design 41

5.1 Event scheduling mechanism in Ns2 41

5.2 Design and implementation details of an overlay node 42

5.2.1 Design overview . 42

5.2.2 Implementation Details . 43

5.3 Design and implementation overview of DTR 48

5.3.1 Local correction-1: . 49

5.3.2 Local correction-2 and 3: . 50

5.4 Summary . 51

6 Conclusion and Future Work 52

References 53

1 Introduction

The Client-Server model has been successfully applied by many Internet applica-
tions. Examples of such applications are web, mail, file transfer etc. These applica-
tions have been the catalyst for the growth of the Internet. In Client-Server based
systems, a participating entity can either be a client or a server. Servers are used for
storing the content that needs to be distributed. Each client makes an individual
connection to access the content hosted by the server.

The content distributed in the Internet can be either stored or live data. In live data
distribution, the data is periodically generated and sent to the interested receivers.
In this form of distribution, the generated data has a validity period associated with
it. The data is not usefull, if it reaches the receiver after the expiry of its validity
period. Examples of live data distribution applications are live media streaming,
weather updates etc.

Applications like media streaming consume significant bandwidth. Typically, stream-
ing video consumes few hundred Kbps to few Mbps. The share of video traffic in
the total Internet traffic, is getting more significant. In the case of live events like
football match, music concert and election, there are many viewers who are inter-
ested in watching them live. In such scenarios, the percentage of duplicate traffic in
the underlying network links, is very high. For example, let x be the bit rate of the
streamed video and n be the number of participants viewing it simultaneously. For
the case of client-server model, the server need to have outbound bandwidth that is
at least x× n. For x = 400 Kbps and n = 1000, the outbound bandwidth required
for the server is 400 Mbps. In addition, if a significant number of users are behind a
set of common links, then the percentage of duplicate traffic in those common links
shall be very high. This can result in congestion and can degrade the performance
to both the viewers and non-viewers of the event.

Applications like weather/news/stocks updates and real time updates from sensor
equipments, continuously send updates on the current situation. If every participant
where to connect as a client, then we see the same issues discussed in the previous
paragraph. The increased use of the above applications and the inefficiency of the
client-server model to support these type of applications necessitate the need for
one-to-many data distribution model.

The high outbound bandwidth requirements and inefficient network utilisation mo-
tivates us to consider IP multicast and overlay-network based data distribution as
alternative solutions. In the subsequent subsections, we discuss on their applicability
and effectiveness in today’s scenario.

1.1 IP Multicast

IP multicast operates over IP and the class ’D’ (224.0.0.0 to 239.255.255.255) ad-
dresses are reserved for the use of IP multicast applications. It requires the source
to send only one copy of the data and also at any instant, only one copy of the data

2

is carried in the intermediate network links. The above two points make it the most
efficient one-to-many data delivery mechanism.

Operating mechanism: A receiver that wants to join an IP multicast session,
sends an Internet Group Management Protocol (IGMP) message to its router, in-
forming it about its intentions to join a multicast session. The router responds by
joining the corresponding data distribution tree. The typical protocol used by the
router for this purpose is Protocol Independent Multicast (PIM). If a receiver de-
cides to leave the session, it sends a IGMP leave request to its router. Also, When
a router observes that it does not have any active receivers under its network, it
detaches from the data distribution tree.

Deployment: Even though IP multicast is an efficient many-to-many data distri-
bution mechanism, currently its global availability is very less. Organisations like
universities and industries are increasingly using IP multicast within their local net-
work. But, we do not have IP multicast sessions that are globally available. Issues
like address management – choosing multicast address that does not conflict – and
reluctance from the ISPs – economic viability – in enabling the service are some of
the important bottlenecks for global deployment. Also, an IP multicast application
programmer need to make sure that his application supports dynamic IP multicast
addressing, session management, heterogeneous receivers, security issues etc [1].

1.2 Overlay Networks

Overlay networks are networks that are built on top of another network. Nodes
in the overlay are interconnected using virtual or logical links. These virtual or
logical links can be considered as a path consisting of one or more physical links.
The overlay network has no control on how the packets/messages are routed in the
underlying network. But it can control the sequence in which a packet/message flow
through the overlay nodes. In other words, the order in which the overlay nodes are
connected is configurable.

Operating mechanism: There are different types of overlay networks and their
classification are discussed in the second chapter. Overlay networks can be used to
provide different types of services like, lookup service (DHT overlay), application
layer multicast (ALM) etc. Here, we consider an overlay network used for ALM and
explain its operating mechanism. In this form of overlay network, every participating
node has a parent node from which it receives the data and it maintains a list of
child nodes to which it forwards the copy of data. The participating nodes arrange
themselves to form a data distribution tree. The important differences with respect
to the IP multicast is illustrated in the figure 1. In the figure 1, ’S’ represents the
data source, ’R1, R2 and R3’ represent the router and ’r1 and r2’ represent the
receivers. The data flow in both the mechanisms is illustrated in the figure 1. In

3

Data flow in IP multicast Data flow in Overlay network

S S

R1 R1

R2 R3 R2 R3

r1 r2 r1 r2

Figure 1: Data flow in IP multicast and overlay networks

the IP multicast, the data distribution tree is constructed in cooperation with the
routers. In the overlay networks, the data distribution tree is constructed by the
participants in the overlay network.

We see (figure 1) that in the case of overlay-network, the access network of the
receiver ’r2’ carries two copies of the data. So, With regard to efficiency of the
solution, IP multicast is more efficient than the overlay-network based solution.

Effectiveness of Overlay networks: Overlay networks does not have the de-
ployment issues discussed in the IP multicast section. Deploying overlay network
does not require any change to the underlying network infrastructure. By using
efficient tree construction mechanism in overlay-network based data distribution,
we can effectively reduce the amount of duplicate traffic in the underlying network
links. There are real-world solutions that are based on overlay networks. The ex-
amples include Akamai’s [2] overlay-network that provides effective content delivery
mechanisms. Akamai’s solution maintains an overlay network of servers that are
used to distribute data more efficiently. There are also many proposed solutions
from the academic research projects [11, 12, 13], in this regard.

From the above analysis, we observe that there is a need one-to-many data distribu-
tion systems and overlay based approach is an effective mechanism for the current
situation.

1.3 Overlay based data distribution

Designing an overlay based solution requires efficient and effective algorithms for
data distribution and in handling the dynamics of the overlay network. These algo-
rithms need to be distributed so as to scale for large number of participants. In this
thesis, we propose distributed algorithms that can be used in designing a scalable
overlay based data distribution solution.

In the second section, we classify the overlay networks and discuss on the different
types of operations that are needed for the effective working of the overlay. In

4

the third section, we propose and analyse a data distribution tree construction
algorithm. In the fourth section, we propose and analyse a resource identification
protocol. We evaluated our solutions by implementing them as part of an overlay
node in a discrete event simulator. In the fifth section, we discuss on the design
details and the learnings from the process of implementing an overlay node in a
discrete-event simulation environment. Finally, In the sixth section, We conclude
and discuss on the future work.

5

2 Scope, Problem statement and Related work

In this section, we discuss about the scope, the problem statement and related work
done by the research community.

2.1 Scope

Overlay networks can be used for different purposes like data distribution, content
search etc. In this thesis, when we refer to overlay networks, we refer to the overlays
used for one-to-many live data distribution. In live data distribution, every data
packet has a threshold for the reception timestamp. If the time at which the receiver
receives the data exceeds the threshold, then the data is discarded. To put our
scope more precisely, we need to classify the overlay networks used for one-to-many
live data distribution. The overlay networks can be classified depending on the
mechanism of live data distribution and the nature of the nodes participating in the
overlay[10].

Live data distribution mechanisms: Depending on how the data is delivered,
the data distribution architecture can be classified as either Mesh-Pull or Tree-Push.
A general overview of the mesh and tree based system are illustrated in the figure 2
and 3 respectively.

The Mesh-Pull[9] architecture is similar to the mechanism used in BitTorrent, but
has been adapted to be used in live data distribution. Participating nodes peri-
odically exchange buffer maps with peers and retrieve the missing content. One
important difference from the BitTorrent is the use of peer selection algorithms that
considers the time constraints imposed by the live data. Many deployed overlay
based IPTV services like PPLive[4, 3], SopCast[5], CoolStreaming[7, 8], TVAnts[6]
etc., use this approach.

The advantages of Mesh-Pull architecture is that it is robust to churn and the
implementation complexity is less. The disadvantages are high end-to-end delay
in receiving the data, high delay in channel switching time (moving from one data
channel to other) and causes more stress to the underlying network.

In Tree-Push architecture, a data distribution tree is constructed based on the appli-
cation criteria (like end-to-end delay). Every participating node receives data from
its parent node and passes on the data to its child nodes. The operations involved
in a tree push architecture can be classified as

1. Bootstrapping: This mechanism is used by a new node to join the overlay.

2. Proactive tree construction/maintenance: This mechanism is required to op-
timise/strengthen the data distribution tree.

3. Tree repair mechanism: When a participating node loses a parent node, it
uses this mechanism to re-join the overlay.

6

Source

Figure 2: Mesh based systems

Source

Figure 3: Tree based systems

The advantages of Tree-Push architecture are low end-to-end delay in receiving
the data, low time lag between peers in receiving the data and use of an efficient
tree construction mechanism can considerably reduce the stress to the underlying
network. But the Tree-Push is not inherently as robust as Mesh-Pull in handling
churn.

Classifying overlay nodes: Depending on the stability of the participating nodes,
the nodes can be classified either user nodes or infrastructure nodes. Infrastructure
nodes are highly stable nodes that are made part of the overlay-network to improve
performance and stability. Depending on the type of nodes participating in the
overlay-network, the overlay-network can be classified as,

1. Overlay network with only user nodes

2. Overlay network with both user nodes and infrastructure nodes

3. Overlay network with only infrastructure nodes.

7

Focus: For one-to-many live data distribution, the data need to reach the receivers
with minimum end-to-end delay. If the delay in receiving the data from the data
source is high, then it leads to bad user experience and high start-up delay. Also,
the operation of overlay network should not stress the underlying network i.e. avoid
the redundant data carried over a network link. In the earlier paragraphs, we had
discussed the advantages and disadvantages of the different data distribution mech-
anisms. After analysing the discussion, we see that Tree-Push architecture can meet
these requirements, provided the overlay is optimised for these requirements. Re-
garding the type of overlay nodes, we consider a network that may have only user
nodes or both user and infrastructure nodes. In the subsequent sections, we present
the problems involved in optimising the overlay-network for minimim end-to-end
delay and minimim network stress.

2.2 Problem Definition

The problem is to construct an efficient data distribution tree. The constructed
tree has to minimise the cumulative end-to-end delay of all nodes, in receiving the
data. The tree also has to minimise the network stress. To put the term ’network
stress’ more clearly, we analyse the scenarios illustrated in the figure 4. In both the
scenarios given in figure 4, the cumulative end-to-end delay in receiving the data is
same. But in the second scenario, an efficient data distribution tree is used. So, the
stress to the underlying network is minimum.

S

2

1

3

50 ms

50 ms

50 ms

70 ms

S

2

1

3

50 ms

50 ms

50 ms

70 ms

(1) (2)

In figure (1), all nodes receive data with
minimum end-to-end delay. But the link S-2 is
stressed as two copies of data are carried in it.

In figure (2), all nodes receive data with
minimum end-to-end delay and with minimum
network stress. Here the parent of node-3 is
node-2 and not the data source (S)

Data flow

Network links

Figure 4: Stress to the underlying network

The solution to the problem should also have features discussed below.

Decentralised and Self-Organising The efficiency of data distribution needs to
evolve (improve with time) by making incremental changes in a distributed manner.

8

In a centralised solution, all nodes report the collected metrics to a designated node.
And this designated node constructs the distribution tree based on the reported
metrics. This approach is not scalable to many number of participants. So, we
require the solution to be distributed and self-organising over a period of time.

Adapting to network dynamics: In an overlay network, new nodes arrive and
this can introduce alternate paths that were not available before. The solution
should be able to adapt and construct a better distribution tree in such scenarios.
Also, as a node departs, the delivery of data to its child nodes are disrupted. So, the
solution need to have mechanisms that identifies potential alternate parent nodes in
advance.

The problem can be concisely put as: Construct a adaptive (to network dynamics)
data distribution tree that minimises the end-to-end delay in receiving the data and
stress to the underlying network in a distributed manner.

2.3 Related Work

In this section, we present the related-works in the field of overlay-based data distri-
bution. We also analyse the applicability of existing distributed minimum spanning
tree algorithms.

NICE [12] is a distributed tree building protocol. In NICE, every member is assigned
to a particular layer (hierarchical level). The members of a particular layer are
partitioned into a set of clusters. Every cluster chooses a cluster leader which in
turn joins the higher layer. An important function of the NICE protocol is to
maintain the clustering and layering operations. It is specifically designed for low
bandwidth data streams with large receiver sets. NICE protocol operates with a
state space complexity of O(logN) (where N is the total number of participants).

Narada [11] is a protocol that adds multicast support to the end systems. Narada
constructs a distribution tree using a two step process. As a first step, it constructs
a mesh-network (richly connected graph) of participating members. In the second
step, Narada constructs a spanning tree using well known routing algorithms. It has
been specifically designed for small group members. In Narada, every participating
node maintains state about all other participating nodes O(N).

OMNI (Overlay Multicast Network Infrastructure) [13] is an overlay-based solution
for networks deployed with the help of infrastructure nodes. It uses a two-tier
infrastructure to implement large scale media-streaming applications. The OMNI
infrastructure consists of a set of Multicast Service Nodes (MSNs - Infrastructure
nodes) distributed in the network and is used for delivering content to the end hosts.
The MSNs run a distributed protocol to organise themselves into a multicast data
delivery overlay. In this solution each MSN has to maintain state about degree +
logN other MSNs.

Our work is related to constructing an efficient data distribution tree. In this work,

9

we attempt to reduce the state space complexity and improve the efficiency of the
data distribution tree. We also propose an idea of idea of identifying potential parent
nodes using a cooperative mechanism. Our proposed solution can construct an MST
with minimal cumulative end-to-end delay in receiving the data and also minimises
the network stress. Also, In our case, the state space complexity is independent of
the number of participants (O(x2), where x is the degree).

Many algorithms have been proposed for building minimum spanning tree (MST)
in distributed manner. A summary of such proposed solutions are presented in
[16]. As our problem involves building efficient distribution tree, we evaluated their
applicability in overlay networks. For the following reasons, the existing algorithms
cannot be applied directly.

1. Distributed MST algorithms assume that nodes usually know how to distin-
guish their neighbours based on the incoming links. In Overlay networks, there
is no concrete means to know who their neighbour is?

2. In the case of failure of one or more nodes, entire MST has to be recomputed.
In overlay networks, with many number of participants, this is not desirable.
As the tree is used for distributing data, during the time elapsed in recomput-
ing MST, there will be loss of data.

3. The algorithms do not have mechanism that allow incremental evolution (build-
ing) of data distribution tree i.e, during the process of computing the MST,
there should not be disruption in the flow of data.

4. The algorithms compute MST to reach minimal sum of weights (link costs).
But our problem is to compute MST to minimise the cumulative end-to-end
delay in receiving the data from the data source.

The solution that we propose in the thesis can construct MST by taking the above
constraints into consideration.

2.4 Summary

We see that tree-push architecture can reduce the end-to-end delay in receiving the
data and can minimise the network stress by using an efficient tree construction
mechanism. The task of designing an efficient data distribution tree is the core
problem. Also, the solution to be designed need to be decentralised and adapt to
network dynamics.

10

3 Distributed Tree Routing

The initial bootstrapped position of the nodes are determined by the bootstrapping
algorithm. This initial position – decided by the bootstrapping algorithm – may not
be the optimal one. This problem can lead to high end-to-end delay in receiving the
data and high network stress. So, we need efficient algorithms for continuous opti-
misation of the data distribution tree. Minimising stress in the underlying network
and end-to-end delay need to be an important consideration in deciding the quality
of such algorithms. The problem can be modeled as: Given a weighted graph with
’n’ vertices and ’l’ links, construct a minimum spanning tree (MST) with the vertex
’S’ as the root. The solution for such problems require searching the graph, so as
to build a minimum spanning tree. In the field of computer networks, it becomes a
necessity that such search operation need to be distributed so as to scale for large
number of network elements.

In this chapter, we propose a distributed algorithm that can build an MST in spite
of the dynamics of the overlay network. The MST constructed by the algorithm is
optimised for minimising the cumulative end-to-end delay in receiving the data.

3.1 Overview of the algorithm

The algorithm has three node re-positioning steps executed concurrently in each of
the participating node. By re-positioning, we refer to the change of the parent node
from which a node receives the data. These three mechanisms are further referred
as local correction-1, local correction-2 and local correction-3 respectively. They are
collectively further referred to as ’Distributed Tree Routing (DTR)’.

3.1.1 Local Correction-1

In this step, every node calculates the cost of the virtual link with each of its
sibling nodes. The collected metrics are reported to their parent node. Also, every
parent node calculates the link cost with each of its child nodes. These metrics are
periodically collected and maintained in a table by the parent node. In Every T0

seconds, the parent runs Djikstra algorithm over the collected metrics to calculate
the least cost path to reach all of its child nodes. If the newly calculated paths are
different from the current paths, then a route update message is sent to all the child
nodes. The route update message can initiate two kinds of actions (i) change of
parent and (ii) addition of new child node.

Here, we explain using an example on how the local correction-1 works, by taking
link delay as weights. In figure 5, there are three child nodes that receive the data
from a common parent. At the parent node, a path cost table is maintained as in
table 1. Djikstra algorithm is used to calculate the least cost path to reach all of
the nodes (starting from the parent node). The new distribution path calculated
using Djikstra algorithm is updated to all the child nodes. The new distribution

11

P

C1 C2 C3

70ms 40ms 90ms

40ms

20ms 40ms

Currently Connected links

Measured link costs

Figure 5: Sample Topology for local-correction-1 explanation

Table 1: Tabulating path costs
From To Cost(In ms)
P C1 70
P C2 40
P C3 90
C1 C2 20
C1 C3 40
C2 C1 20
C2 C3 40
C3 C1 40
C3 C2 40

path shall look like, as in figure 6.

P

C2

40ms

C1 C3

20ms 40ms

60ms 80ms

Figure 6: Topology after local-correction-1 execution

3.1.2 Local Correction-2

In this step, a participating node measures link costs with its child and grandchild
nodes. Let ’X’ be a node, ’Y’ be the child node of ’X’ and ’Z’ be the child node of
’Y’. It checks for the two conditions 1 and 2. The condition 1 checks if the cost
of reaching the node ’Z’ directly from node the ’X’ is less than the cost of reaching
node ’Z’ via node ’Y’. The condition 2 checks if the cost of reaching the node ’Y’
via the node ’Z’ is less than or equal to the cost of reaching node ’Y’ directly from

12

X

Z

25ms

Y

40ms

O

10ms

X

Y

40ms

Z

10ms

O

25ms

40ms

Figure 7: Sample Topology for local-correction-2 explanation

the node ’X’.

COST (X − Z) < (COST (X − Y) + COST (Y − Z)) (1)

COST (X − Z) + COST (Z − Y)) <= COST (X − Y) (2)

If both the conditions are satisfied, then the position of ’Y’ and ’Z’ are changed in
the data distribution tree. An example showing how the topology gets transformed
is given in the figure 7.

3.1.3 Local Correction-3

In this step, similar to the local-correction-2, a node measures the link costs with its
child and grandchild nodes. Let ’X’ be a node, ’Y’ be the child node of ’X’ and ’Z’
be the child node of ’Y’. It checks for the two conditions 3 and 4. The condition 3
checks if the cost of reaching the node ’Z’ directly from node the ’X’ is less than the
cost of reaching node ’Z’ via node ’Y’. The condition 4 checks if the cost of reaching
the node ’Y’ via the node ’Z’ is greater than the cost of reaching node ’Y’ directly
from the node ’X’.

COST (X − Z) < (COST (X − Y) + COST (Y − Z)) (3)

COST (X − Z) + COST (Z − Y) > COST (X − Y) (4)

If both the conditions are satisfied, then the position of ’Z’ is changed to become a
child node of ’X’. An example showing how the topology gets transformed is given
in the figure 8.

3.1.4 States maintained by the nodes

For the above repositioning mechanisms to work, each node needs to maintain state
information about a set of nodes. In a tree structure with a constant degree of ’x’,

13

X

Z

25ms

Y

40ms

O

40ms

X

Y

40ms

Z

30ms

O

25ms

40ms

Figure 8: Sample Topology for local-correction-3 explanation

each node need to maintain state about

x(children)+x×x(grandchildren)+(x−1)(siblings)+1(parent)+1(grandparent)
(5)

Consolidating(5) = x2 + 2x + 1 (6)

So, the state space complexity of the algorithm is proportional to square of the
degree of the tree(O(x2), where x is the degree). In a graph, with ’n’ nodes, every
participating node maintains only its local information and amount of information
maintained is independent of the number of participants (n). This is an important
feature that makes the algorithm scale for distributed systems. The Figure 9 depicts
the state space complexity for a participating node ’X’ in a distribution tree with a
constant degree of 2.

1

2

x

54

6 7

3

98

Space complexity
f(x) = x^2 +2*x +1
f(2) = 9

Figure 9: State complexity

3.2 Locks for DTR execution

Every participating node except the data source, executes the same DTR process,
so it can be classified as a form of semi-uniform distributed algorithm. In the DTR
process, local correction-1 can move the nodes down from their current hierarchy and

14

the local-correction-2 and 3 can move the nodes up from their current hierarchy. So,
we see two forces, one trying to move a node UP and other trying to move DOWN
(in terms of hop count). These two operations need to be mutually excluded to
maintain consistency and success of the DTR process. In figure 10, we illustrate by
example where consistency would be broken.

1

2

3

65

4

7 8

DTR process in node-2:

Decision by Local-correction-1:
Move node-3 under node-4

DTR process in node-1:

Decision by Local-correction-2:
Move node-2 under node-3

CONSISTENCY LOST

What to do: Ensure Mutual Exclusion of conflicting process

Figure 10: Concurrency issues in DTR

Every solution in the field of distributed systems has to ensure consistency due to
concurrent operations. In our case, the DTR process needs to have the required
mechanism that can mutually exclude operations on a sub-tree of the main distri-
bution tree. Here, we ensure consistency by using locks in each node and the locks
are acquired by messaging between nodes. The central point is that when the DTR
process in a parent node wants to perform local-correction-2, it needs to acquire the
lock of its immediate child node whose position is to be changed. This prevents
that child node from doing any executions related to the DTR process. In the fig-
ures (11), we explain how the locking mechanism mutually exclude operations on
a sub-tree region.

With respect to the locking mechanism, the node can be in one of the three states.
The set of events that are possible for the node with respective to the locking
mechanism are listed in the event set.

States = {AVAILABLE, LOCKED BY SELF, LOCKED BY PARENT }

Events = {LOCK ACQ, LOCK OK, LOCK NOT OK, ROUTE UPDATE, LOCK TIMEOUT}

We look at two sample scenarios (figure 11) where the lock mechanism prevents
the loss of consistency for the problem represented in figure 10. There are many
other possible scenarios where the lock prevents the loss of consistency, the figure 10
presents two of such scenarios.

In distributed systems, the locking mechanism also need to consider packet losses.
Here we explain a sample scenario where the locking mechanism helps to maintain
consistency in an operating environment with packet losses. Let us consider a sce-
nario where a node ’X’ sends LOCK ACQmessage to its child node ’Y’. And the node

15

’Y’ sends LOCK OKmesssage to its parent node ’X’. If this message (LOCK OK) is
lost, then node ’X’ does not make any repositioning decision related to node ’Y’.
But the lock of node ’Y’ need to be released. To recover from such scenarios, every
node has a timer event associated with its lock. When a node’s lock is acquired, a
timeout event (LOCK TIMEOUT) is scheduled. After the expiry of the timer (t sec-
onds), the node ’Y’ automatically releases the lock. The value chosen for ’t’ need to
be chosen depending on the path delays observed in the operating environment. A
large value for ’t’ means more consistency and stability, but the optimising process
of the distribution tree would be slow.

In scenarios where a node involved in a locking transaction departs the overlay, the
locking mechanism fails.

3.3 An Example

The figure 12 represents a graph with 15 nodes and 18 edges. For subsequent
analysis, we shall be using this graph as reference.

We use four different scenarios to verify the solution. The first scenario is explained
in detail using figures that depict the detailed node transformations. For other three
scenarios, the convergence is shown using summary charts. In the scenario-1, we put
the source at node-1. The other nodes join (get active) the overlay to receive the
data. We simulate a condition where farther nodes join the overlay sooner than the
nodes closer to the source. In our sample topology, node-15 joins the overlay first,
then node-14 and so on. The DTR process in each node repositions the nodes in
the overlay to reach a MST. The DTR process repositions nodes depending on the
metrics reported by the nodes about which it maintains state. There is an interval for
which DTR process collects the required metrics and then makes the repositioning
decisions. In our example, we use this interval as 10 seconds, we refer this interval
as dtrtimeout further in this document. The algorithm used for bootstrapping will be
presented in chapter 5.

In this scenario, the distribution tree converges at time 73.20 seconds. The detailed
view of how the convergence happens in a distributed fashion is illustrated using fig-
ures 13 and 14. The figure 14 illustrates the timeline summary of the node arrivals
and the repositioning decisions. From figure 14, we see that the repositioning algo-
rithms converge to an MST. The table in figure 14 presents the minimum possible
distance to reach all nodes from the data source (node-1). The algorithm positions
the nodes in a way that they get the data with minimum possible delay and also
with minimum stress to the underlying network. From this example, we see that the
algorithm converges to an MST by iteratively repositioning the participating nodes.
The algorithm is able to handle to new node arrivals and the resulting change in the
topology (arrival of new links and nodes).

In scenario-2, the source is at the location node-1 and a preferable node arrival
pattern is used. The nodes closer to the source join the overlay sooner than the nodes
farther away. In this type of scenario, We expect the number of DTR transformations

16

Node-1 Node-2

AVAILABLE

LOCK_ACQ

AVAILABLE

LOCK_OK

Node-3

1

ROUTE_
UPDATE

LOCK_PARENT

AVAILABLE

ROUTE_
UPDATE

LOCK_SELF

AVAILABLE

2 3

4

1 -> DTR process in node-1 detects that node-3
needs to be moved under node-1 and node-2
to be moved under node-3.
2 -> In this period, the DTR process checks if
the decision on repositioning node-2 and node-
3 still holds
3 -> In this period, node-2 puts its DTR process
in hold
4 -> Change of parent resets the lock acquired
by the parent node

A possible scenario: Node-1 acts before Node-2

Node-1 Node-2

AVAILABLE

LOCK_ACQ

AVAILABLE

LOCK_NOT_OK
Node-3

1

Another possible scenario: Node-2 acts before Node-1

Node-4

2
LOCK_SELF

ROUTE_
UPDATE

ROUTE_
UPDATE

3

AVAILABLE

1 -> DTR process in node-1 detects that node-3 needs to be moved under node-1 and node-2 to be
moved under node-3.
2 -> DTR process in node-2 decides to move node-3 under node-4. (acquires its lock)
3 -> DTR process defers the re-positioning decision till its next timeout.
4 -> It informs node-1 that, node-3 need to be removed from its grandchild list
Important Design Decision: The DTR process attempts repositioning mechanisms once in say 'x'
seconds. Let the time taken for ROUTE_UPDATE message (number 4) to reach from node-2 to
node-1 be 'y'. Then, for successful operation 'x' need to be at-least greater then 'y'.

ROUTE_
UPDATE

4

Figure 11: State transitions of DTR lock process

17

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

200 200 200 200

200 200 200 200

100

100 100

100 100

100 100

100 100

100

50505050

Figure 12: A sample network graph used for evaluation

to be less, as the initial bootstrapped location is itself a near optimal one. The
timeline that summarises scenario-2 is represented in figure 15. The time taken for
the network to converge is 60.15 seconds (one iteration less than scenario-1).

In scenario-3, the source is at the location node-8 and the node arrival pattern
is same as the one used for scenario-1. The timeline that summarises scenario-3
is represented in figure 15. The time taken for the network to converge is 60.15
seconds.

In the scenario-4, the source is at the location node-8 and the node arrival pattern
is similar to the one used for scenario-2. The timeline that summarises scenario-4
is represented in figure 15. The time taken for the network to converge is 68.30
seconds.

The four scenarios that were presented above were chosen so as to illustrate their
relevance to the two metrics - Number of transformations required (proportional to
the time taken to converge) and end-to-end delay in receiving the media. In scenario-
2 and 4 (favourable arrival pattern), the number of iterations required were less than
the scenario-1 and 3. Also, the position of the source significantly influences the end-
to-end delay in receiving the data. In scenario-3 and 4, the cumulative end-to-end
delay in receiving the data is less than the other two scenarios.

3.4 Metrics for evaluation

In case of large topologies, it may not be clearly visible on how efficient the algo-
rithm is, in minimising the end-to-end delay and stress to the underlying network.
The mathematical form of the problem of minimising the end-to-end delay and the
network stress can be represented as,

S = Source (data source)

N = Set of all participating nodes (other than the source)

Ni = A participating node belonging to the set N

18

1

15

14

1

15

14

13

12

11

10

400

500

400

600

600

650

0 to 10s 10 to 20s 20 to 30s

For our example: DTR process in each node times out once in 10s and
performs the required re-positioning. So, we present the graph
for every 10 seconds. The weights given for each links represent the cost to
reach the node from the source.

Local Operation-2: node-11 and 14 repositioning

30 to 40s 40 to 50s

50 to 60s 60 to 70s

500

550

1

14

13 11

10

400

450

350

15

12

300

400

600

Local Operation-2: node-15 and 14 repositioning

9 8

7

500 400

500

1

13

11

14

400

350

12

400

600

9 8

7

400 300

400

250

300

10

15

1

13

11

14

400

350

12

400

9

8

7

400

300

200

300

10

15
450

250
6 5

350 250

200
4

3

2

400

100

1

13

11

14

400

350

12

400

9

300

10

15

250
6

5

350

200

4

8

2

3

7

1

13

11

14

400

350

12

400

9

300

10

15

250
6

5

350

200

4

8

2 3

7

4

6 5

4

Local Correction-2

Local Correction-3

Local Correction-1

Local Operation-2: node-8 and 11 repositioning
Local Correction-3: Node-12 promoted under 14

Local Operation-2: node-5 and 8 repositioning
Local Correction-3: Node-12 promoted under 11

Local Correction-3: Node-3 promoted under 1

200

450 250

150 100

300 200

150

300 300

350

100 200

200

300300

350

Figure 13: Scenario-1: Transformation steps

19

1

200

4 2

13

11

14 12

400

9

10

15

6

5

8

7

14

9

6

5

7

3

Minimum possible
cost from node-1 to

2 -> 100
3 -> 200
4 -> 200
5 -> 150
6 -> 250
7 -> 300
8 -> 200
9 -> 300
10 -> 350
11 -> 250
12 -> 350
13 -> 400
14 -> 300
15 -> 400

Converged to the minimum
possible spanning tree at
time 73.20 seconds

70 to 80ms

Local Correction-1: Node 3, 5 moved under 2
Local Correction-3: Node 6 promoted under 5

400

100

150 200

250 200

300 250 300

300 350 350

0 20 40 60 80 100

1
15

14

13
12

11
10

9

8
7

6
5

4
3

2

Time Line in
seconds

Local Correction-2

Local Correction-3

Local Correction-1

Converged at
time 73.20s

SCENARIO-1
Source Location: UNFAVOURABLE (at Node-1)
Node Arrival Pattern: UNFAVOURABLE

Figure 14: Scenario-1: Transformation steps

20

0 20 40 60 80 100

1
2

3
4

5
6

7
8

9
10

11
12

1314
15

Time Line in
seconds

Local Correction-2
Local Correction-3

Local Correction-1

Converged at
time 60.15s

SCENARIO-2:
Source Location: UNFAVOURABLE (at Node-1)
Node Arrival Pattern: FAVOURABLE

0 20 40 60 80 100

8
1

15

2
14

3
13

4

12
5

11
6

10
9

Time Line in
seconds

Local Correction-2
Local Correction-3

Local Correction-1

Converged at
time 70.20s

7

SCENARIO-3:
Source Location: FAVOURABLE (at Node-8)
Node Arrival Pattern: UNFAVOURABLE

0 20 40 60 80 100

8
5

11

7
9

2
14

6

10
4

12
1

15
13

Time Line in
seconds

SCENARIO-4:
Source Location: FAVOURABLE (at Node-8)
Node Arrival Pattern: FAVOURABLE Local Correction-2

Local Correction-3

Local Correction-1

Converged at
time 68.30s

3

Figure 15: Scenario 2, 3 and 4: Summary

21

PNi = Parent of the participating node Ni

LP NiNi
= Path connecting (set of links) PNi and Ni

CP NiNi
= Cost of the path LP NiNi∑

i∀N CP NiNi
= Cost of Data Distribution Tree (Ctree)

CStoNi
= Cost of the data in reaching from source (S) to Ni∑

i∀N CStoNi
= Cost of the Data in reaching all participating nodes (Cdata)

The goal of the algorithm is to continuosly minimise Cdata and Ctree, in spite of
new node arrivals and the resulting change in topology. At scenarios where the
requirements of Cdata and Ctree contradict each other, DTR will give priority to
Cdata. The figure 16, represents a sample topology and the possible data distribution
tree that can be constructed (considering ’S’ as data source). From the figure 16,
one can differentiate and understand the contradicting requirements of Cdata and
Ctree.

To analyse the working of the solution in large topologies, we periodically collect
and plot the metrics of Ctree and Cdata.

3.5 Evaluating DTR performance using simulation

In this section, we evaluate the performance of DTR using simulation. Two sample
networks with 1020 and 100 nodes respectively are chosen for evaluation. The
topologies are generated using the GT-ITM network topology generator[15]. The
results of the simulation are discussed in this section.

Joining Mechanism We present two scenarios with 100 (scenario-1) and 1020
(scenario-2) participating nodes. In both scenarios, a new node arrives for every 3
seconds. So, at time 300 (scenario-1)and 3060 (scenario-2) seconds, all node arrivals
are complete. For a node (Nodenew) to join the overlay, it has to contact the
bootstrap server. The bootstrap server chooses 5 random addresses from the existing
overlay participants list and returns it to the Nodenew. Nodenew sends Join Request
all the 5 existing overlay members. The node whose reply reaches first is taken as
the parent node. This mechanism helps the Nodenew to choose a parent (among the
5 node addresses received) that has less end-to-end delay.

Simulation Results The cost of the data distribution tree (Cdata and Ctree) are
calculated for every 10 seconds. The collected metrics are plotted as graphs and
presented in the figures 17 and 18. The graph shows the quality of the data

22

S

A

B X

100

100 100

50

S

A

B X

100

100 100

S

A

B X

100

100

50

MST for the metric:
Minimum end-to-end delay
in receiving data

MST for the metric:
Minimum cost of the
data distribution tree

Tree type-2

Tree type-1

(Let the cost of the links be represented in milliseconds)
For tree type-1:

 - Node 'X' receives the data in 200 ms

 - ∑ (E2E delay in receiving media) = cost(SA) + cost(SB) + cost(SC) = 500 ms
= (C(data))

 - ∑ (delay in receiving the media from parent) = cost(SA) + cost(AB) + cost(AX)
 = 300 ms = cost of the data distribution tree = C(tree)

For tree type-2:

(i) Node 'X' receives the data in 250 milliseconds

(ii) ∑ (E2E delay in receiving media) = cost(SA) + cost(SB) + cost(SC) = 550 ms
= (C(data))

(iii) ∑ (delay in receiving the media from parent) = cost(SA) + cost(AB) + cost(BX)
 = 250 ms = cost of the data distribution tree = C(tree)

From the above example, we can see that C(data) and C(tree) can be contradictory.
In such scenario, DTR gives higher priority to C(data).

Understanding the metrics: C(data) and C(tree)

Figure 16: Understanding Ctree and Cdata

23

distribution path with and without DTR. The graph shows that the performance is
continuosly optimised in spite of the change in network dynamics (new node arrivals)
and the performance improvement due to the use of DTR is also significant (figure 17
and 18).

3.6 Analysing the efficiency

From the evaluations using simulation, we see that the algorithm can adapt to the
arrival of new nodes and can converge to an MST. So, we see that the algorithm
works in constructing an MST. The time taken to converge and the ability to scale in
a distributed way are taken as parameters to decide the efficiency of the algorithm.
The state space complexity of the system is independent of the number of nodes, so
this shows that the algorithm can scale and evolve in a distributed way. Regarding
the time taken to converge, it depends on the following parameters.

Arrival pattern and bootstrapping mechanism: From Scenario 1 (figure 14)
and 2 (figure 15), we see that the number of transformation required to converge is
less, if the arrival pattern of the nodes are favourable. The bootstrapping mechanism
has an important part to play in deciding the initial position of the node. The better
the initial position, the quicker is the convergence.

Number of nodes and network links: The number of particpants, the density
of the links interconnecting the nodes and the weights of the network links form a
important factor in the time taken to converge.

dtrtimeout: The DTR process in each node executes the local correction algorithms
once in every dtrtimeout seconds. This parameter is a design decision that can be
modified depending on the operating environment of the algorithm. In our example
scenarios, we used a value of 10 seconds. Every node maintains data about ’x’
other nodes. The data about ’x’ other nodes is periodically(say every ’y’ seconds)
refreshed. The dtrtimeout value depends on the value chosen for ’y’.

Packet loss percentage: Loss of messages that carry route updates (reposition-
ing decisions) can lead to increased convergence time. Other engineering decisions
such as number of retransmissions, timeout to detect a lost ’route update packet’
etc. also have a role to play in deciding the convergence time.

3.6.1 Operation of DTR in degree constrained environment

To converge as an MST, the nodes must accept the repositioning decisions made
by the DTR processes. From scenario-1 (figure 14) execution, we see that at some
point in the middle of transition to an MST, a particular node was having four child

24

Simulation results (for 100 nodes)

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

C (data) 100 Nodes

Time in seconds

C
 (

da
ta

)

0 100 200 300 400 500 600
0

8

16

24

32

40

48

56

C (tree) 100 Nodes

Time in seconds

C
 (

tr
ee

)

Improvement in using DTR:

C (data) = With DTR, the performance is 84.94 % better
C (tree) = Without DTR, the performance is 164.57 % better

No DTR

DTR

DTR

No DTR

Figure 17: DTR performance (100 Nodes)

25

0 1000 2000 3000 4000 5000
0

1000

2000

3000

4000

5000

6000

7000

C(data) 1020 Nodes

Time in seconds

C
(d

at
a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

200

400

600

800

1000

1200

1400

C(tree) 1020 nodes

Time in seconds

C
(t

re
e)

No DTR

DTR

No DTR

DTR

Improvement in using DTR:

C (data) = With DTR, the performance is 159.74 % better
C (tree) = Without DTR, the performance is 16.78 % better

Simulation results (for 1020 nodes)

Figure 18: DTR performance (1020 Nodes)

26

nodes connected to it. If a node cannot perform some transformation for reasons
like lack of bandwidth (degree restrictions) or policy decisions, the algorithm cannot
converge as an MST (minimal Cdata). But by including these capacity restrictions
into the algorithm, we can still form a distribution tree with reduced Cdata and Ctree

To show the operation of DTR in a network with capacity restrictions, we take
the figure 12 as the reference network and all the nodes are considered to have a
constant degree restriction of two. The DTR algorithms are modified to consider the
degree restrictions of the nodes before making repositioning decisions. The initial
position of the nodes are chosen so as to represent a worst case condition. Figure
19 shows the transformation that are possible even with degree restrictions. From
figure 19, we see that even with a worst initial bootstrapped position and a strict
degree constraints, five repositioning (for a overlay with 15 participants) are made
to reduce the network stress and E2E delay in data path.

3.7 Applications for this algorithm

One important motivation behind the design of this algorithm is to find a solution
that can build an MST in a distributed way, taking into account of new node arrivals
and the resulting formation of better paths to deliver data (that form as a result
of new node arrivals). In this section, we give examples where this algorithm can
have application. Examples of overlay based data distributions are weather updates,
stock tickers, media streaming etc. All these applications require a bootstrapping
mechanism, a distribution tree construction mechanism, pro-active repair (or tree
optimisation) and reactive repair mechanisms (loss of a participating node). Our
distributed algorithm proposes effective solution for the tree construction and the
pro-active tree optimisation problems. So, all applications that require tree con-
struction and pro-active optimisation mechanisms can use our proposed approach.

3.8 Conclusion

In this chapter, we have proposed a solution that can construct a data distribution
tree in a distributed way. The state space complexity is independent of the number
of participants in the session (O(x2), where ’x’ is the degree) and the distributed
nature of the solution can make it scale to large number of participants.

When the nodes do not have enough capacity to perform the DTR transformations,
then the distribution tree does not converge as a completely optimal one. In such
scenarios, as a next step, we shall see how to make the distribution near optimal
using CORIP.

27

1

7 9

3 6 10 13

2 414 15 8 12 5 11

Local Correction-2
Local Correction-3
Local Correction-1

0 to 10s 10 to 20s

1

7 9

3 6 10 13

2 414

15

8

12 5

11

1

7 9

3 8 11 13

2 414

15

6 12 5 10

20 to 30s

No more repositioning
possible due to degree restrictions

For our example: DTR process in each node times out once in 10s and
performs the required re-positioning. So, we present the graph for every
10 seconds. The initial position of the nodes are chosen so as to
represent a worst case condition.

Figure 19: Degree restricted scenario

28

4 Co-Operative Resource Identification Protocol

Co-Operative Resource Identification Protocol (CORIP) is a protocol, using which
a node participating in a P2P-overlay session – with a tree based data distribution
– can identify resources. In the context of P2P-Overlay session, resources represent
capacity to accommodate a new child node. CORIP has been designed by taking
the following requirements into consideration.

1. Not all participating nodes may have enough capacity to support many child
nodes.

2. A node that joins the overlay session may not always be bootstrapped to the
best possible location.

3. To supplement DTR in sessions with many degree constrained nodes.

4. To construct/maintain a list of potential nodes that can be used by reactive
repair mechanisms (in case of loss of parent node).

Using CORIP, the participating nodes identify resources co-operatively. The identi-
fied resources are shared among the participating nodes. It is a distributed approach,
where the task of identifying resources are shared among the participating nodes.

4.1 Operation of CORIP

Using CORIP, a participating node can identify resources that are distributed through-
out the distribution tree. CORIP is a combination of two algorithms: Rup and Rdown.
Using Rup, the participating nodes operating with a hop count value of x (from the
source) can know about the resources with hop count value of ’less than or equal
to x’. Using Rdown, the participating nodes operating with a hop count value of x
(from the source) can know about the resources with the hop count value of ’greater
than x’.

4.1.1 Operation of Rup

To explain the working of Rup, we start by establishing the definition of the state
variables involved and the message types used for communicating between nodes.

State variables involved: The following are the variables that are read/updated
by the algorithm.

n = Represents a node that is participating in the session

Sn
nodes = Set of sibling nodes for the node n

29

Pn = Parent of the node n

Cn = Set of child nodes for the node n

TI1n
nodes = Set of nodes that are to be identified by node n

TI2n
nodes = Set of nodes that are to be identified by Cn

IRn
nodes = Set of nodes that are identified as resource

IRn
nodes : This set is built not by n alone, but in co-operation with all ancestors of

node n. TI1n
nodes is a set of nodes that is passed on to the node n by its parent node

(Pn). TI2n
nodes is a set of nodes that is passed on to the Cn by the node n.

Message classification: Rup uses three types of messages. These messages oper-
ate (read/update) over the variables discussed above.

Message Types = QUERY, QUERY RESULT, SHARE

QUERY : Using this message, one node (x) queries another node (y) to know about
its (y′s) capabilities and its child node information.

QUERY RESULT : Using this message, a node informs the querier about its ca-
pability and its child node information.

SHARE : Using this message, a node shares with its child nodes two types of
information. Type-1 refers to set of nodes that are identified as resources. Type-2
refers to set of nodes that are yet to be identified as resource.

Algorithm: Every node participating in the session (other than source) has four
events. They are

1. Qevent : Arrival of the message QUERY

2. QRevent : Arrival of the message QUERY RESULT

3. Sevent : Arrival of the message SHARE

4. Tevent : Periodic interval (Timeout event) to send QUERY and SHARE mes-
sages

Here, we explain how the events are handled and how the state variables are affected
by the events.

30

Algorithm 1 Handle Event : Qevent

queryReply = {}
n← currentNode
if n has extra degree (bandwidth) then

queryReply+ = n
end if
queryReply+ = Cn

send QRevent(queryReply)

Algorithm 2 Handle Event : QRevent

n← currentNode
Qnode ← getEventSourceDetails(QRevent)
ToBeI ← getToBeIdentifiedNodes(QRevent)
if Qnode has extra degree (bandwidth) then

IRn
nodes+ = Qnode

end if
TI2n

nodes+ = ToBeI

The event handlers (Functions 1, 2, 3, 4) periodically update the state variables
using the defined messages. The nodes maintained in the set IRn

nodes are the products
of the Rup algorithm. Depending on the requirements of the application, the Tevent

can be split into two events, one as a trigger for sending QUERY message and the
other for sending SHARE message. Also, one more timeout event can be added to
the protocol to cleanup obsolete records in the state variables. The value for the
Tevent timer, need to be decided based on the requirements of the application using
the protocol.

The figure 20 and 21 explain the working of Rup, using a sample topology. In this
Example, the execution starts with node 1 and 2 querying each other and updating
their state variables. Then, they prepare the SHARE message and pass it to their
child nodes. After node 3, 4 and 5 complete their queries, they update the state
variables and send the SHARE message to its child nodes. At the last hop, the leaf
nodes contain the list of nodes that have resources to contribute (i.e extra degree
available). This example explains the working using sequential flow of execution,
just to have better visualisation for the readers. But in a real-world scenario, every
node shall be updating the state variables concurrently. From figure 20 and 21, we
see that all nodes successfully identify the resources that are operating with a hop
count value that is lower than their hop count value.

Scaling to large topologies: In sessions with many participants, the length of
the SHARE message grows exponentially. The SHARE message is a container
holding TI2n

nodes (set of ’to be identified nodes’) and IRn
nodes (identified resources).

And the SHARE message is sent by nodes for every ’x’ seconds. To make the
solution scale to large number of participants, the size of the SHARE message

31

S

1 2

6

543

87

(1)
n = 1
S1

nodes
= { 2 }

P1 = S
C1 = { 3 }
TI11

nodes = { }

TI21
nodes = { 4, 5 }

IR1
nodes = { S }

(2)
n = 2
S2

nodes
= { 1 }

P2 = S
C2 = { 4, 5 }
TI12

nodes = { }

TI22
nodes = { 3 }

IR2
nodes = { S, 1 }

(3)
n = 3
S3

nodes
= { }

P3 = 1
C3 = { 6 }
TI13

nodes = { 4, 5 }

TI23
nodes = { 7, 8 }

IR3
nodes = { S, 1 }

(4)
n = 4
S4

nodes
= { 5 }

P4 = 2
C4 = { }
TI14

nodes = { 3 }

TI24
nodes = { 6 }

IR4
nodes = { S, 1 }

(5)
n = 5
S5

nodes
= { 4 }

P5 = 2
C5 = { 7, 8}
TI15

nodes = { 3 }

TI25
nodes = { 6 }

IR5
nodes = { S, 1 }

(A) (B) (C)

A Sample Data
Distribution Tree

Node with
resource

Node with no
resource

Figure 20: Working of Rup

32

(A) (B)

(C)

(6)
n = 6
S6

nodes
= { }

P6 = 3
C6 = { }
TI16

nodes = { 7, 8 }

TI26
nodes = { }

IR6
nodes = { S, 1, 8 }

(7)
n = 7
S7

nodes
= { 8 }

P7 = 5
C7 = { }
TI17

nodes = { 6 }

TI27
nodes = { }

IR7
nodes = { S, 1, 6, 8 }

(8)
n = 8
S8

nodes
= { 7 }

P8 = 5
C8 = { }
TI18

nodes = { 6 }

TI28
nodes = { }

IR8
nodes = { S, 1, 6 }

Using Rup, a node operating at hop count 'x', is able to identify all resource
nodes that are operating at hop count <= x (less than or equal to 'x').

The Result of the algorithm is the list of nodes stored in the set IRn
nodes.

Figure 21: Working of Rup

33

Algorithm 3 Handle Event : Sevent

n← currentNode
Inodes ← getIdentifiedNodes(Sevent)
ToBeI ← getToBeIdentifiedNodes(Sevent)
IRn

nodes+ = Inodes

TI1n
nodes+ = ToBeI

Algorithm 4 Handle Event : Tevent

n← currentNode
Itmp ← Sn

nodes + TI1n
nodes

Smsg ← IRn
nodes + TI2n

nodes

for all every node in Itmp do
send Qevent

end for
for all every node in Cn do

send Sevent

end for

need to be either fixed or made independent of the number of participants. This
can be achieved by maintaining a threshold on the maximum number of nodes
that can be packed into the SHARE message, from the TI2n

nodes and IRn
nodes. In

scenarios, where the number of nodes available in the TI2n
nodes and IRn

nodes exceeds
the threshold, the required number of nodes can be chosen by random selection,
based on the capability reported, based on history of the session etc. By using such
approaches, we shall be able to scale to large number of participants.

4.1.2 Operation of Rdown

Rdown can be considered as an extension of Rup. To explain the operation of Rdown,
we start by establishing the definition of the state variables and the messages that
are additionally needed.

State variables involved: The Rdown uses all the state variables that are used
by the Rup. In addition, it uses the variable IR3n

nodes. Also, it considers IRn
nodes as

a combination of two sets IR1n
nodes and IR2n

nodes.

IRn
nodes = IR1n

nodes + IR2n
nodes

IR1n
nodes = Set of nodes identified as resources by the ancestors.

IR2n
nodes = Set of nodes identified as resources by the current node.

IR3n
nodes = Set of nodes identified as resources by the child nodes.

34

Message classification: It uses all the messages that are used by the Rup. In
addition, it requires one more message.

PASS IR : Using this message, a node informs its parent node about the identified
resources. Here by identified resources, we refer to nodes that are having a hop
count value higher than the parent node.

Algorithm: We add two more events to the events listed in Rup. They are

1. PRevent : Arrival of the message PASS IR.

2. TPevent : Periodic interval (Timeout event) to send PASS IR message.

Here, we explain how the events are handled and how the state variables are affected
by the events.

Algorithm 5 Event Handler: TPevent

n← currentNode
PRmsg ← IR2n

nodes + IR3n
nodes

if n is resource then
PRmsg ← PRmsg + n

end if
if n NOT data source then

send PRevent(PRmsg)toPn

end if

Algorithm 6 Event Handler: PRevent

n← currentNode
Itmpnodes = getIRNodes(PRevent)
IR3n

nodes+ = Itmpnodes

From the function 6, we see that every node is able to receive the list of identified
resources and from the function 5, we see that this information is recursively spread
till it reaches the data source.

The figure 22 explains the working of Rdown, using a sample topology. In this
Example, the execution starts at node 6, 7 and 8. They send PRevent to their parent
node. The parent node in turn sends PRevent to its parent node. This recursion
stops, when the data source is reached. From the figure 22, we see that any node
operating with a hop count (from data source) value of ’x’ is able to know about
resources that are having hop count value ’> x’. The exception to the above rule
is, if a node is operating with a hop count value of ’x’ and is a leaf node, then it
cannot know about the resources that are having hop count value ’> x’.

35

S

1 2

6

543

87

(6)
IR16

nodes = { S, 1 }

IR26
nodes = { 8 }

IR36
nodes = { }

Node with
resource

Node with no
resource

(7)
IR17

nodes = { S, 1 }

IR27
nodes = { 6, 8 }

IR37
nodes = { }

(8)
IR18

nodes = { S, 1 }

IR28
nodes = { 6 }

IR38
nodes = { }

(3)
IR13

nodes = { S, 1 }

IR23
nodes = { }

IR33
nodes = { 6, 8 }

(5)
IR15

nodes = { S, 1 }

IR25
nodes = { }

IR35
nodes = { 6, 8 }

(4)
IR14

nodes = { S, 1 }

IR24
nodes = { }

IR34
nodes = { }

(1)
IR11

nodes = { S }

IR21
nodes = { }

IR31
nodes = { 6, 8 }

(2)
IR12

nodes = { S }

IR22
nodes = { 1 }

IR32
nodes = { 6, 8 }

In this example, we start explaining the working from the stage when the leaf
nodes have already identified the resources (using Rup). This is done to help the
task of explaining the solution

Figure 22: Working of Rdown

36

Scaling to large topologies: In case of sessions with many number of partici-
pants, the length of the PASS IR message grows exponentially. So, to scale for
large number of participants, the length of the PASS IR message need to be main-
tained within a threshold. The approach that was discussed for limiting the length
of SHARE message, is applicable for the PASS IR, too.

4.2 Applications for the protocol

4.2.1 Pro-Active Optimisation

One important requirement for the effective operation of P2P-Overlay sessions is
its ability to self-organise the data distribution tree over a period of time. By
self-organising, we refer to reducing the end-to-end delay in receiving the data and
reducing the stress to the underlying network. DTR is one such mechanism which
attempts to self-organise the data distribution tree using node repositioning tech-
niques. As discussed earlier, DTR has its limitations when operating in a session
with many degree constrained nodes (limited outbound bandwidth). So, partici-
pating nodes need to have a mechanism that can identify potential parent nodes in
the data distribution tree. CORIP is one such mechanism using which nodes can
identify a set of nodes that have extra degree to contribute. Using CORIP, a node
can identify resources (IR1n

nodes, IR2n
nodes and IR3n

nodes). The identified resources
can be periodically probed for better alternate parent nodes. Had it not been for the
CORIP or a similar mechanism, a node cannot know which nodes can be potential
parent nodes. So, Using CORIP, We can successfully give a scope to the search for
a better parent node.

In DTR chapter, we discussed about the performance of DTR in a session with
many degree constrained nodes. We found that DTR is able to optimise but not
completely optimise the data distribution tree in such sessions. Here, We take a
graph where DTR is not able to do any more repositioning due to degree restric-
tions and see how CORIP is able to optimise the distribution tree. Figures 23, 24
and 25 show the transformations in the node positions that were possible due to
CORIP.

Cs
n = End-to-End delay for the data to reach the node n from source

Dp
n = Delay for data to reach from node p to node n

Let n represent the current node and X represent the node that is to investigated
for its suitability as a parent node. A node moves from the current position to the
new position if,

Cs
X + DX

n < Cs
n (7)

37

1

7 9

3 8 11 13

2 414

15

6 12 5 10

In this graph, every node can
contribute to only 2 child nodes.
Using CORIP, nodes identify
the resources (i.e nodes that
have an unfilled position)

CORIP identifies resource
nodes as
 IR = { 3, 14, 6, 12, 5, 10, 2, 4}
This set is available in all the
participating nodes.

From here, the graph can make
many possible transformation.
Here, we show just one
possible instance of it.

(1)

(A)

 900 ms 300 ms

 600 ms 300 ms

 950 ms 350 ms

 550 ms 100 ms

 550 ms 150 ms

 300 ms 300 ms

 400 ms 100 ms

 300 ms 300 ms

 550 ms 100 ms

 450 ms 150 ms

 550 ms 150 ms

 600 ms 300 ms

 900 ms 300 ms

 1000 ms 100 ms

 8600 ms

 C1
2 P2

 C1
3 P3

 C1
4 P4

 C1
5 P5

 C1
6 P6

 C1
7 P7

 C1
8 P8

 C1
9 P9

 C1
10 P10

 C1
11 P11

 C1
12 P12

 C1
13 P13

 C1
14 P14

 C1
15 P15

 ∑Cs
n = Cdata ∑Pn = Ctree 3000 ms

Figure 23: CORIP Application: Self-Organising Overlay

From the figures 23, 24 and 25, we see that 4 nodes (out of a total of 15 participants)
were able to identify better node positions. Also the values of Cdata and Ctree have
been reduced by 11.63 % and 30.43 % respectively. From these results, we see that
CORIP is able to add the self-organising nature to the data distribution tree. Also,
Its operation together with DTR can be used to build data distribution tree with
minimum end-to-end delay and network stress.

38

1

7 9

3 8 11 13

2 4

14

15

6 12 5 10

(2)

(A)

Node 2 and 4 moved to new position,
as it reduces the end-to-end delay in
receiving the data.

Now CORIP identifies 13 as a resource

1

7 9

3 8 11 13

2 4

14156 12 5 10

(3)
Node 14 and 15 moves to new position,
as it reduces the end-to-end delay in
receiving the data.

(B)

Figure 24: CORIP Application: Self-Organising Overlay

39

1

7 9

3 8 11 13

2 4

14

15

6 12 5 10

(4)

DTR Local-Correction-1 repositions
 node-15 to be moved under node-14.

The graph started with a scenario where
no DTR operations where possible. But,
As a result of transformations due to
CORIP, DTR transformations were
made possible.

(B)

 600 ms 50 ms

 600 ms 300 ms

 650 ms 100 ms

 550 ms 100 ms

 550 ms 150 ms

 300 ms 300 ms

 400 ms 100 ms

 300 ms 300 ms

 550 ms 100 ms

 450 ms 150 ms

 550 ms 150 ms

 600 ms 300 ms

 700 ms 100 ms

 800 ms 100 ms

 7600 ms

 C1
2 P2

 C1
3 P3

 C1
4 P4

 C1
5 P5

 C1
6 P6

 C1
7 P7

 C1
8 P8

 C1
9 P9

 C1
10 P10

 C1
11 P11

 C1
12 P12

 C1
13 P13

 C1
14 P14

 C1
15 P15

 ∑Cs
n = Cdata ∑Pn = Ctree 2300 ms

Cdata and Ctree metrics have
improved by 11.63 % and
30.43 % respectively

Comparing the metric
with starting position

Figure 25: CORIP Application: Self-Organising Overlay

40

4.2.2 Reactive Repair

One important issue with the tree-based data distribution mechanism is that the
loss of a node results in disruption of service to all the descendant nodes. In such
scenarios, the nodes need to find a new parent node to rejoin the data distribution
tree. To find a new parent node, first they need to know contact addresses of
the other (capable) nodes in the session. If the nodes have not maintained any
information about the nodes which can be potential parent nodes, then the time
taken to rejoin the overlay will be high. In the worst case, they need to contact the
bootstrap server to retrieve a list of potential parent nodes. Contacting bootstrap
server to make re-join attempts has a high cost associated with it (delay and loss
of data). CORIP constructs and periodically updates information about capable
nodes. As this information is a selectively filtered set of capable nodes, It can
reduce the time taken by a node to rejoin the data distribution tree.

4.3 Future Work and Conclusion

In this chapter, We presented CORIP and analysed its working and applicability.
From the initial results, We see that CORIP can be used in proactive tree optimi-
sation and reactive tree repair mechanisms.

By its design nature, CORIP distributes the load of identifying resources among
all the participants. And, it spreads the identified resource information to all the
participants. This feature of the CORIP can make it scale for large topologies. To
validate this statement, we need to evaluate its applicability in the overlay simula-
tor. Currently, the CORIP functionality has not been implemented in our overlay
simulator. So, this evaluation is planned as a future task.

41

5 Overlay network simulator design

In this chapter, we explain the design and implementation details of an overlay node
in a discrete-event network simulator. Also, We describe the implementation details
of DTR in an overlay node. This chapter is structured as follows: The overlay
simulation environment that we built was by extending Network-simulator-2 [17].
So, we start by explaining the fundamentals of ns2 scheduling mechanism. Then
we explain the design details involved in implementing an overlay node. Finally, we
explain the implementation details of DTR.

5.1 Event scheduling mechanism in Ns2

Ns2 is a discrete event simulator. In discrete event simulation, the operation of the
system is represented as a chronological sequence of events. Ns2 has a scheduler
that maintains the chronological sequence. An explanation of the ns2 scheduling
mechanism (taken from [18]) is as follows:

Ns2 is a single threaded discrete event simulator. The ns-2 scheduler maintains
an internal virtual clock. The simulator objects use this virtual clock as a time
reference. The scheduler also maintains a timely-ordered list of events and processes
them one by one. It takes the next earliest event from the list, advances the virtual
clock till the firing time of the event, and executes it till completion. Then the
control returns back to the scheduler to execute the next event. There are two basic
scheduler categories that differ in the method used to advance the virtual clock non
real-time and real-time . In a non real-time scheduler, the virtual clock simply jumps
between firing times of consecutive events. The real-time scheduler in contrast tries
to execute events in the actual moments in real-time. It uses the physical clock of
the machine as a real-time reference. If the firing moment of a next earliest event
is in the future, the scheduler waits until that moment in time.

Overlay node can be considered as a system, which in turn is a collection of modules.
Each module implements protocol for operations like bootstrapping, joining, routing
etc. A protocol implementation can be modelled as a program that handles incoming
events and does specific tasks at specific times. The type of task can depend on the
‘state variables’ of the protocol instance. In Ns2, protocol implementations are
referred as agents or ns2 objects. All agents have functions for handling incoming
packets and has timer objects than can schedule timeout events to the scheduler. The
overview on how the agents and the scheduler interacts is illustrated in the figure 26.
In the subsequent section, we explain the design and implementation details of the
different modules of the overlay node. Each module of the overlay node may have
one or more timer objects associated with them. So, the understanding of figure 26
can help in visualising the implementation of the overlay node.

42

Ns2: Scheduler And Protocol Agent Interaction - HOW?

timeout() {

Task-1:
/* Do some processing or
 send data */
Task-2:
/* schedule a timeout event, so
that this function gets called
after the timer expires */
}

STEP-1:
Schedule event
(Example: call me
after 'x' seconds)

STEP-2:
The timeout() is called
indicating that 'x' seconds is
expired

Ns2 Scheduler
- Maintains a list of events
- Maintains a internal clock
- objects call scheduler to schedule event
- At timeout, the objects that scheduled the

 event are called back
(Objects can be instances of protocol agents,
traffic generator, links etc)

The objects in Ns2 like protocol agents, traffic
generators, links etc have a timeout function.
Implementing a protocol can be abstracted as
handling certain incoming events and doing
certain task at certain time. (The type of task
shall depend on the state variables). In Ns2,
timeout() is a way, how the protocol agents
execute a task scheduled at a
particular time.

Event-1

Event-2

Event-n

NOTE: NS2 objects do not access scheduler directly, they do it using
TimerHandler objects. In our above example, the TimerHandler interface is hidden
for the purpose of simplicity.

After 'x'
seconds

Figure 26: ns2: Scheduler and agents interaction

5.2 Design and implementation details of an overlay node

5.2.1 Design overview

In this section, we classify the overlay nodes and present the various functionalities
that constitute the overlay nodes. Also, here we focus on the core components
involved in implementing an overlay node. The implementation details related to
DTR is explained separately in the next section. This differentiation is made, so
that the components can be explained incrementally.

43

For an overlay-based data distribution network, there are three types of nodes,
they are participating node, data source node and bootstrap server node. The
functionality needed in an overlay node are presented below.

1. bootstrap client: Used for connecting to the bootstrap server to retrieve po-
tential parent node addresses and to periodically inform the bootstrap server
about the node’s presence.

2. bootstrap server: It maintains a list of active overlay participants and responds
to bootstrap client with the contact addresses of the potential parent nodes.

3. overlay client: It is used for connecting to the overlay, by making join requests
to the addresses retrieved by the bootstrap client.

4. overlay server: It handles incoming join requests from newly joining (or re-
joining) nodes. It is also responsible for detecting loss of child nodes.

5. data source: It acts as a data source and sends the generated data to the child
nodes. data forwarder: It handles the data received from the parent node and
forwards the received data to the child nodes. It also detects the loss of the
parent node.

In the table 2, we represent, which set of modules constitute a participating node,
data source node and bootstrap server node. Further in this section, when we refer
to bootstrap server and data source, we are referring to the module that is part of
the bootstrap server node and data source node respectively.

Modules participating node data source bootstrap server node
bootstrap server × × X
bootstrap client X X ×
overlay server X X ×
overlay client X × ×
data source × X ×
data forwarder X × ×

Table 2: Overlay node types and their modules

5.2.2 Implementation Details

In this section, we provide detailed description on how the modules are implemented.
The figure 27 is provided to support the process of understanding the implementation
details. Further in this chapter, when we refer to ’expiry of timer event’, it means
that the corresponding module’s timeout() function is called by the ns2 scheduler.
In real-world implementations, it can be done using the timer related functions
provided by the the operating system.

44

Bootsrapp
client

Overlay
client

Overlay
sever

Data
forwarder

1

2

3

5

6

4

7

8

Parameters:
Bootstrapp server
contact address

boot-request

boot-ack

Parameters:
Contact address of
active overlay members

join-request

join-ack

S
H
A
R
E
D

 M
E
M
O
R
Y

Step-1: Node is initialized with the bootstrapp server address as input.
Step-2: boot-request is sent to bootstrapp server node.
Step-3: Receives boot-ack from bootstrapp server node.
Step-4: Initializes the overlay client with the contact addresses received
in the boot-ack message
Step-5: Sends join-request to an active overlay member.
Step-6: Receives join-ack from the requested member.
Step-7 & 8: Initializes overlay server and data forwarder modules.

The overlay node has a shared memory module, to which all the modules
have access. The shared memory module has functions to access the
shared state of the node.

Scenario: A node join successfully to the overlay network. The sequence in
which the modules are initialized is presented below.

Figure 27: Initialisation sequence of the modules

45

1. Bootstrapp server: Bootstrapp server handles two message events (boot-
request and keep-alive) and one timer event (clean-up). This module maintains
a sorted list of active overlay members. The list is sorted for the capability value
reported by the active nodes, using keep-alive messages. The operating overview of
the bootstrap server mechanism is depicted in the function 7.

boot-request: boot-request messages are sent by bootstrap client. The response
to this event is a boot-reply message that consists of ’Numrecords’ (count) contact
addresses of active overlay members that can be potential parent nodes.

keep-alive: keep-alive messages are periodically sent by active overlay members
and they carry the capability information of the reporting node. By capability
information, we refer to the count of the number of child nodes that the reporting
node can accommodate. Absence of keep-alive message for a duration Activecheck,
results in removal of the node’s record from the active overlay member list.

clean-up: The bootstrap server maintains the list of active overlay members. Over a
period of time, this list accumulates obsolete records i.e, nodes that are not currently
participating in the session. So, for every Activecheck, the obsolete records are erased
from the list.

2. Bootstrapp client: Bootstrapp client handles one message event (boot-reply)
and one timer event (boot-timer). When initializing the bootstrap client, the address
of the bootstrap server node is passed as the parameter. At start, the bootstrap client
sends boot-request and schedules the boot-timer event to be triggered after boottimeout

seconds.

boot-reply: On receiving the boot-reply message, this module initialises the overlay
client module. Also, it cancels the boot-timer event. The addresses returned by the
bootstrap server are passed as parameters to overlay client during initialisation.

boot-timer: This timeout means that there was no reply to the boot-request. On
this timeout, the boot-request is sent again and boot-timer is rescheduled to be
triggered after boottimeout seconds, provided bootattempts is less than MaxBootattempts.

3. Overlay server Overlay server handles three message events (join-request,
leave-msg and child-report) and one timer event (child-timer). Overlay server is
initialised when an overlay node joins the overlay-network.

46

Algorithm 7 Bootstrapp server mechanism

nodeList = {}
eventTypes = {boot-request, keep-alive, clean-up}
repeat

event← recvdEvent
currT ime← event.currT ime
if event = boot-request then

returnList← {}
for i = 1to5 do

if nodeList.iisempty then
break

end if
returnList← returnList + nodeList.i

end for
return returnList

else if event = keep-alive then
avlBw ← event.avlBw
nodeAddr ← event.nodeAddr
if nodeAddr in nodeList then

nodeRecord← nodeList.nodeAddr
nodeRecord.avlBw ← avlBw
nodeRecord.time← currT ime

else
newNodeRecord← 0
newNodeRecord.nodeAddr ← nodeAddr
newNodeRecord.avlBw ← avlBw
newNodeRecord.time← currT ime
nodeList← nodeList + newNodeRecord

end if
sort nodeList

else if event = clean-up then
for i = 1 to nodeList.length do

nodeRecord← nodeList.i
if currT ime− nodeRecord.time > 10 then

nodeList← nodeList− nodeRecord
end if

end for
end if

until wait for an event

47

join-request: On receiving this event, the overlay server checks if it has capability
to accept this request. If capacity is available, then join-ack is sent, else the request
is ignored.

leave-msg: overlay server module maintains the set of child nodes to which it is
forwarding the data stream. On receiving the leave-msg, the node that sent the
leave-msg message is removed from the child node set.

child-report: Every node has to periodically send messages to its parent node.
These messages (child-report) can serve as keep-alive messages and can also carry
the metrics related to the quality of the received data. On receiving this message,
overlay server module updates the timestamp that represents the activeness of the
child node that sent the report.

child-timer: On this event, all the child nodes are verified for their activeness. If
any child node is found to be inactive for a continuous period of childtimeout, then
it is removed from the child node set.

4. Overlay client Overlay client handles one message event (join-ack) and two
timer events (join-timer and report-timer). When initialising the Overlay client, it
is given the contact addresses of the potential parent nodes as input. At start, the
Overlay client sends join-request to the potential parent nodes passed to it dur-
ing initialisation and also schedules the join-timer to be triggered after jointimeout

seconds.

join-ack: The reception of this message indicates that the node has connected
successfully to the overlay network. On receiving this message, the join-timer event
is cancelled and the report-timer is scheduled to be triggerred after reporttimeout

seconds.

join-timer: This timeout means that there was no reply to the join-request.
On this timeout, the join-request is sent again and join-timer timer is resched-
uled to be triggerred after jointimeout seconds, provided joinattempts is less than
MaxJoinattempts.

report − timer: On the expiry of this timer, a child-report is sent to the parent
node and the timer is rescheduled. The child-report message can carry metrics on
the quality of the data received by this node.

5. Data source Data source handles one timer event (data-timer). When the
module is initialised, the data-timer is scheduled to be triggered after datatimeout

48

seconds. The value for the datatimeout depends on the packet size and the bit rate
of the data being distributed.

data-timer: On expiry of this event, the data-msg is sent to all the child nodes
and the timer is rescheduled to be triggered after datatimeout seconds.

6. Data forwarder Data forwarder handles one message (data-msg) event. On
receiving this message, it forward the message to all the child nodes connected to
it. Data forwarder can also detect loss of parent node by detecting the absence of
data-msg for a prolonged time.

Engineering decisions: In designing a distributed system, we need to choose
effective values for the variables involved in the system. Below, we discuss on the
values assigned to the variables of different overlay modules.

Bootstrapp server: For the variable Numrecords, ’5’ was set as its value. Experimen-
tally, we find that it worked well for our scenario. These parameters may require
tuning depending on the arrival pattern of the nodes, churn and the characteristics
of the application.

Bootstrapp client: For the variable MaxBootattempts, ’3’ was set as its value and for
the boottimeout variable, ’1.5’ seconds was set as its value. As we did not perform
simulations with different packet loss values, we cannot decide on the effectiveness of
these values. Simulations with different packet loss percentages and diverse topology
structure (influences end-to-end delay) are needed to find the effective values for
these variables.

Overlay server: For the variable childtimeout, ’5’ was set as its value. The value
chosen for this variable is directly linked with the inter-reporting interval of child−
report message from the overlay client.

Overlay client: For the jointimeout, ’3’ seconds was set as its value and for reporttimeout,
’1.5’ seconds was set as its value. The value of reporttimeout is directly linked to the
value used for childtimeout (by overlay server). The value used by us for childtimeout

is based on the following design decision: A parent node can consider a child node
to be lost, if three consecutive reports from the child node are lost.

5.3 Design and implementation overview of DTR

DTR is the combination of three node repositioning algorithms (local correction-1,
local correction-2 and local correction-3). In this section, we specifically discuss on
how the required state space for the operation of the DTR are constructed by the
participating nodes.

49

Type-1 Type-2
From To From To
P C1 C2 C1
P C2 C2 C3
P C3 C3 C1
C1 C2 C3 C2
C1 C3 - -

Table 3: Metrics required for Local correction-1

5.3.1 Local correction-1:

Local correction-1 is a repositioning algorithm involving nodes that have parent-
child relationship. The repositioning decision is made by the parent node based on
the collected metrics. Let ’P’ be the parent node of three child nodes C1,C2 and C3.
The Local correction-1 requires the knowledge of the (virtual) link costs tabulated
in table 3, to make the repositioning decisions. From table 3, we see that the links
can be either ’parent-to-child’ or ’child-to-child’ (siblings).

Calculating parent-to-child link delay: The parent node includes the ‘sending
timestamp’ in the data packets that are forwarded to the child nodes. On receiving
the data packet, the child node calculates the delay between the parent node and
itself. The child-report (refer 5.2.2) message is used to report the calculated delay
metric to the parent node.

Calculating child-to-child link delay: The parent node periodically reports
(sibling-data) to its child nodes. The (sibling-data) report carries information
about all the child nodes operating under a parent node. These periodic reports en-
able the child nodes to know about their sibling nodes. Using this state information,
the child nodes periodically probe and calculate the link delay metrics with their
sibling nodes. The child-report message is used to report the calculated metric to
the parent node.

Repositioning decisions: The parent node periodically (dtrtimeout) evaluates the
collected metrics and decision is made on node repositioning. If a need for reposition-
ing is identified, then the child nodes are informed about the change in distribution
path using a route-update message.

Engineering decisions: In our simulations, ’10’ seconds was used as the value
for dtrtimeout. The effectiveness of the value chosen for dtrtimeout directly depends
on the inter-reporting interval of child-report and sibling-data messages. In our
simulations, ’5’ seconds was used as the inter-reporting interval for both the messages
(child-report and sibling-data) and we experimentally find that these values are

50

Type-1 Type-2 Type-3 Type-4
From To From To From To From To
P C P G1 C G1 G1 C
- - P G2 C G2 G2 C

Table 4: Metrics required for Local correction-2 and 3

providing the required results. Here, one important design decision is to choose
‘reporting interval’ that is less than the value chosen for dtrtimeout. This ensures
that for every dtrtimeout seconds, the metrics values are refreshed.

The route-update message carries repositioning decisions, So it is a critical message
(loss of this message disrupts the distribution path). To increase the reliability
of this message, two parameters (routeAcktimeout and routeUpattempts) need to be
configured. The routeAcktimeout represents the duration till which the DTR module
can wait for route-ack (acknowledgement for route-update) before retransmitting
the route-update. The routeUpattempts represents the number of attempts that can
be made for retransmitting the route-update message. The simulator at this point
does not have functionality to retransmit the route-update message. But we see that
the effective values (routeAcktimeout, routeUpattempts and inter-reporting interval of
child-report and sibling-data messages) for these parameters will directly depend
on the application using the overlay, the operating environment (packet loss ratio,
network topology etc) and the timeout value used for detecting the loss of parent
node.

5.3.2 Local correction-2 and 3:

Local correction-2 and 3 are repositioning algorithms involving nodes having parent-
child and parent-grandchild relationship. The repositioning decision is made by the
parent node based on the collected metrics. Let ’P’ be the parent node of a child
node ’C’ and let ’C’ have two child nodes (G1 and G2). The Local correction-2 and
3 requires the knowledge of the (virtual) link costs tabulated in table 4, to make the
repositioning decisions. From table 4, we see that the links can be ’parent-to-child’
or ’parent-to-grandchild’ or ’child-to-grandchild’ or ’grandchild-to-child’.

The metric collection mechanism for ’parent-to-child’ (P to C) has already been
discussed in the previous section. In the case of ’child-to-grandchild’ (C to G1 and
C to G2), it is also a form of ’parent-to-child’ metric, but this metric need to be
reported to the ’P’ node. So, Every child node periodically reports (child − gc) to
the parent node about the ’child-to-grandchild’ (i.e metrics of (C to G1) and (C to
G2)) metrics.

Calculating parent-to-grandchild link delay: The child node periodically re-
ports (child−data) to its parent node. The (child−data) report carries information
about all the child nodes operating under the reporting node. These periodic re-

51

ports, enable the parent nodes to know about their grandchild nodes. Using this
state information, the parent node periodically probes and calculate the link delay
metrics with their grandchild nodes.

Calculating grandchild-to-child link delay: It is a form of ‘child-to-parent’
metric which need to be reported to the grandparent node. Every child node peri-
odically measures link delay with its parent node and reports (gChild− data) it to
the grandparent node.

Repositioning and Engineering decisions: The same approach as discussed
in the section 5.3.1 is used to inform the affected nodes about the repositioning
decisions. Regarding the engineering decisions, ‘5’ seconds was used as the inter-
reporting interval for both the messages (child− data) and (gChild− data). From
our experiments, we see that the chosen values gave expected results. Here, one
important design decision is to choose reporting interval that is less than the value
chosen for dtrtimeout. This ensures that for every dtrtimeout seconds, the metrics are
refreshed. This reasoning also applies to the reporting interval value chosen for
child− report and sibling − data.

5.4 Summary

In this chapter, we have seen the design and implementation details of an overlay
node. Designing an overlay node requires proper configuration of different parame-
ters like timeout value, number of retransmission etc. The design overview discussed
here is also applicable for a real-world overlay-node design.

52

6 Conclusion and Future Work

In this thesis, we have provided solutions that construct an efficient data distribu-
tion tree (DTR) and an effective protocol (CORIP) for identifying capable nodes
(nodes that have extra contributing resources) in an overlay-network. We have also
presented the design and implementation details on the building of an overlay node,
in an discrete-event simulator.

DTR constructs minimum spanning tree for data distribution in overlay networks.
DTR is completely decentralised, self-organising and adapts to network dynamics.
From the simulation results, we see that the solution is very efficient in reducing the
end-to-end delay in receiving the data and the stress to the underlying network.

CORIP proposes a new approach of identifying capable nodes in an overlay network.
In this approach, the load of identifying capable nodes are shared among all the
participating nodes. We have presented initial results on, how CORIP together
with DTR can optimise the data distribution path in overlay networks with many
degree constrained nodes.

We presented the details and issues involved in implementing an overlay node in a
discrete-event simulator. We also presented the engineering decisions that need to be
made in the design and implementation of the overlay nodes. The details and issues
discussed in this regard are also valid for a real-world overlay node implementation.

Our bigger objective is to build a solution that covers all aspects of distributing data
in an overlay network. On this direction, the following are the tasks that requires
further research and analysis.

1. Need to implement CORIP in the overlay simulator. Need to study the ef-
fectiveness of CORIP and DTR in optimising the data distribution path in
resource constrained overlay networks. It requires large scale simulations with
diverse parameter sets.

2. In implementing the overlay node, we had seen many variables which need to
be configured appropriately (example: inter-reporting interval, timeout values
etc). Need to study the correlation of these variables with each other and with
the operating environment. Based on the study, we plan to propose rules for
the design of an effective overlay node.

3. Need to study the existing reactive repair mechanisms and draw conclusions
on their effectiveness. If needed, we plan to look for alternate solutions in this
regard. Here by reactive repair, we refer to the mechanisms used by a node
that lost the parent node, to re-join the overlay with minimal or no loss of
data. The resource list built using CORIP is already a step in this direction.

53

References

[1] B. Quinn, K. Almeroth RFC 3170: IP Multicast Applications: Challenges and
Solutions.

[2] Akamai Technologies http://www.akamai.com

[3] Hei, X. and Liang, C. and Liang, J. and Liu, Y. and Ross, K. W.: Insights into
PPLive: A Measurement Study of a Large-Scale P2P IPTV System. In Proc.
of IPTV Workshop, International World Wide Web Conference, July 2006.

[4] http://http://www.pplive.com/

[5] http://www.sopcast.com/

[6] http://www.tvants.com/

[7] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, DONet/CoolStreaming: A Data-
driven Overlay Network for Peer-to-Peer Live Media Streaming. In IEEE IN-
FOCOM, vol. 3, Mar. 2005, pp. 2102 2111.

[8] Susu Xie; Bo Li; Keung, G.Y.; Xinyan Zhang, Coolstreaming: Design, Theory,
and Practice. Multimedia, IEEE Transactions on, Volume 9, Issue 8, Dec. 2007
Page(s):1661 - 1671.

[9] Hei, Xiaojun and Liu, Yong and Ross, K. W.: IPTV over P2P streaming net-
works: the mesh-pull approach. Communications Magazine, IEEE, 2008.

[10] Jiangchuan Liu and Sanjay G. Rao and Bo Li and Hui Zhang: Opportunities
and Challenges of Peer-to-Peer Internet Video Broadcast. 2007.

[11] Yang-hua Chu, Sanjay G. Rao, Srinivasan Seshan & Hui Zhang: A Case for
End System Multicast. In ACM Sigmetrics, June 2000.

[12] Suman Banerjee, Bobby Bhattacherjee & Christopher Kommareddy: Scalable
Application Layer Multicast. In ACM Sigcomm, August 2002.

[13] S. Banerjee and C. Kommareddy and K. Kar and B. Bhattacharjee and S.
Khuller: Construction of an efficient overlay multicast infrastructure for real-
time applications. INFOCOM, 2003.

[14] http://www.bittorrent.com/

[15] Ellen W. Zegura and others: http://www.cc.gatech.edu/projects/gtitm GT-ITM
Topology Modelling. Last updated 26 July, 2000.

[16] Felix C. Gärtner: A Survey of Self-Stabilizing Spanning-Tree Construction Al-
gorithms. June, 2003.

[17] http://www.isi.edu/nsnam/ns/

54

[18] Daniel Mahrenholz and Svilen Ivanov: Real-Time Network Emulation with ns-
2. 2004.

