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Automatic speech recognition system consists of two basic elements, the
acoustic model and the language model. In topic adaptation of the language
model, we take into account the underlying topic of speech by elevating
the probabilites of the subvocabulary characteristic to its topic. Via topic
adaptation, we aim at improving the recognition of topically important words.

The potential benefit of topic adaptation relies on the success of retrieving
the underlying topic correctly. Given a sufficiently large amount of keywords
related to the topic, we can be confident that the retrieved topic is accurate.
Traditionally, the keywords are extracted from a textual document or the
transcription provided by the recognizer itself. However, due to the devel-
opment of multimodal interfaces, we are interested in a scenario where the
keywords are provided by an abstract modal source and no guarantees of the
sufficient size or reliability of the keywords can be assumed.

In this work, we discuss the prospect of topic adaptation using small-sized and
potentially unreliable topical keyword lists. The topic retrieval and speech
recognition results are evaluated in large vocabulary continuous speech recog-
nition task with English newswire data. The results indicate that successful
topic retrieval using small-sized cues is feasible. However, topic adaptation
did not either improve or degrade the speech recognition performance on the
whole.
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Automaattinen puheentunnistusjärjestelmä koostuu kahdesta peruskom-
ponentista, akustisesta ja kielimallista. Kielimallin aiheadaptoinnilla ote-
taan huomioon puheen aihe nostamalla aiheelle tyypillisten sanojen to-
dennäköisyyksiä. Aiheadaptoinnin avulla pyritään parantamaan aiheen
kannalta oleellisten sanojen tunnistamista.

Aiheadaptoinnin mahdollinen hyöty riippuu oikean aiheen haun onnistumises-
ta. Mikäli käytettävissä oleva, aiheeseen liittyvä avainsanalista on riittävän
suuri, voidaan olettaa, että aihehaku tapahtuu onnistuneesti. Yleensä avainsa-
nat on saatu tekstimuotoisista dokumenteista tai puheentunnistimen itsensä
tuottamasta tunnistustuloksesta. Multimodaalisten käyttöliittymien kehitty-
misen myötä on kuitenkin kiinnostavaa tutkia tilannetta, jossa avainsanat
ovat peräisin yleiseltä modaaliselta lähteeltä. Tällöin avainsanalistan riittävää
kokoa tai luotettavuutta ei voida olettaa.

Tässä työssä käsitellään aiheadaptointia käyttäen pienikokoisia ja mahdolli-
sesti epäluotettavia aihekohtaisia avainsanalistoja. Aihehakujen onnistumista
ja puheentunnistustuloksia arvioidaan suuren sanaston jatkuvan puheen tun-
nistuksessa käyttäen englanninkielistä uutisaineistoa. Tulokset osoittavat, että
onnistunut aihehaku on mahdollista tehdä pienellä avainsanamäärällä. Aihe-
haku ei kuitenkaan vaikuttanut parantavasti tai huonontavasti puheentunnis-
tustulokseen kokonaisuudessaan.
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Symbols and abbreviations

W Word sequence
O Observation sequence
S State sequence
wτ Word at time instant τ
oτ Observation at time instant τ
sτ State at time instant τ
wni Word sequence from i to n
c(.) Number of instances in corpus
D Document collection (corpus)
V Vocabulary
F Feature subset of V
N Noise subset of V
|X| Size of X
d Document
x,y Document feature vector
t̂ Retrieval result (topic estimate)
q Topic cue
l(.) Likelihood
λ Mixture coeffificent
B Background corpus

BMU Best matching unit
HMM Hidden Markov model
LM Language model
ppl Perplexity
sim Similarity
SOM Self organizing map
tfidf term frequency inverse document frequency
TER Term error rate
WCR Word change rate
WER Word error rate
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Chapter 1

Introduction

In automatic speech recognition, we aim at providing a textual transcription
for a given speech signal. The modern approach to accomplish this relies
on statistical methods to determine the text sequence which best matches
the speech signal phonetically and makes the most sense lingually. As
to lingual sensibility, we make use of the notion of topics as in differing
discussion topics we typically have differing vocabulary. For example, in
sports news articles, we are likely to encounter words such as score, match,
and league, whereas finances news is more likely to contain words such as
funds, investment, or stocks. Furthermore, we are interested in the means of
inferring the underlying topic of discussion. As to speech communication,
it is natural to make conclusions about the topic based on the words heard
in the discussion itself. However, humans are multimodal beings observing
their environment through vision, touch, tastes and smells, as well as
hearing. Therefore, topic deduction is also affected by information provided
by modalities other than speech.

Modern statistical speech recognition systems consist of three basic elements,
the acoustic model, the language model and the decoder. The first two
assign probabilities to phoneme and word sequences, respectively. In
combination, they result in multiple word sequence hypotheses of which
the decoder selects the best as the final transcription. The importance of
language modeling in speech recognition can be verified easily by removing
the language model block from the recognizer and watching the recognition
performance plunge.

As to capturing the topical essence of the speech, it is desirable to raise
the probability of capturing the topically prominent words. In order to
achieve this, we can incorporate the language model with a topic adaptation

3



CHAPTER 1. INTRODUCTION 4

procedure. In topic adaptation, we take into account the prevailing topic of
the speech by elevating the probability of the subvocabulary characteristic
to the topic. The information enabling the retrieval of the suitable topic is
referred to as a topic cue. The topic cue has traditionally been provided
using the recognition history of the speech recognizer itself.

Due to the development of multimodal applications, we are additionally
interested in studying a speech recognition scenario where the topic cue for
the recognizer is provided by a general modal source. It is expected that the
topic cues provided by speech and differing modalities have differing intrinsic
characteristics. Mainly, speech is best described as highly dependent word
sequences whereas the cue words provided by other modalities are expected
to be of much more fragmented and uncorrelated form. In addition, and
importantly so, the multimodal topic cue is expected to be of small size,
i.e. words instead of sentences. Consequently, these properties of the topic
cues may set additional requirements for the topic adaptation procedure
and particularly for the topic retrieval scheme.

In pursuit of maximal reductions in recognition errors, we would prefer to be
provided with as much topic-specific data as possible to estimate the correct
topic at hand. However, in multimodal environment, we expect the topic
cues to be small in size. Therefore, in this work we focus on the problem of
topic adaptation using small-sized topic cues in topic retrieval and cover the
following two fundamental research questions.

1. Do small-sized topic cues enable a reliable topic retrieval?

2. Is successful/failed topic retrieval significantly beneficial/harmful to the
recognition performance?

Related to the first question, we additionally examine if the source of the
topic cue or the choice of the topic retrieval criterion have a significant effect
on the topic retrieval.

This master’s thesis was conducted as a part of the speech group of the
Computer and Information Science laboratory (presently the department
of Information and Computer science) in TKK. During the last decade,
the research in the group has been spread on a wide focus on the speech
recognizer decoder implementation [1], acoustic modeling [2, 3] and language
modeling [4, 5, 6, 7, 8]. This thesis extends the work on language modeling
with a specific focus on the development of relevantly novel field of
multimodal interfaces. The topic adaptation procedure discussed in this
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work is based largely on the approach described in [9].
The rest of the work is organized as follows. In chapter 2, we describe the
fundamental statistical approach to language modeling, motivate the use
of topic adaptation techniques, and introduce the procedure implemented
in this work. In chapter 3, alternative implementation techniques of the
adaptation procedure are discussed. In chapter 4, we present the adaptation
experiments and the results with analysis and discussion. Finally, the
conclusions on the work are presented in chapter 5.



Chapter 2

Fundamentals of speech
recognition

2.1 Statistical speech recognition

An automatic speech recognizer aims at providing a textual transcription for
a given speech signal. Modern statistical speech recognition systems comprise
five fundamental components: feature extraction, acoustic models, language
models, lexicon, and decoder. The flowchart of the system is presented in
Figure 2.1. In the following, we describe the components in brief. A thorough
description of the system can be found in [1]. Basic literature on the subject
can be found, for example, in [10].

Feature extraction

In feature extraction, we acquire acoustic features from the speech signal.
The features are in the form of mel-frequency cepstral coefficients (MFCC)
and their 1st and 2nd derivatives extracted from short time windows. With
the Mel-scale, we execute a non-linear transformation for frequencies in order
to take into account the varying resolution of human auditory system in
frequency domain. Furthermore, with discrete cosine transformation (DCT),
we map the coefficients to the cepstral domain. The observed acoustic
features at time instant τ , O = {oτ}, are then fed forward to acoustic models.

Acoustic models

The acoustic models map the acoustic information from the MFCC features
to sequences of some basic units of speech, for example, phonemes. This

6



CHAPTER 2. FUNDAMENTALS OF SPEECH RECOGNITION 7

Speech signal

Feature extraction

Acoustic models

Language models Decoder

Transcription

max P(W|O)

P(W)

P(O|W)

O

Lexicon

P(O|S)

Figure 2.1: Speech recognition system.

is done using Hidden Markov Models (HMMs) [11] defined by prior
state probabilities, transition probabilities between the states and emission
probability distributions. Here the hidden states correspond to the phonemes
and the emitted observations to the features presented above. The output
of the acoustic model is the set of likelihoods of different state sequences
S = {sτ} generating the given observation sequence, i.e. P (O|S). As acoustic
models were needed to map the acoustic information from the feature vectors
to states, lexicon, in turn, defines a mapping from the states to the language
model vocabulary.
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Language models

Essentially, language models assign probabilites for word sequences
W = {w1, . . . , wN}, i.e. P (W ). Most commonly, this is accomplished using
n-gram models. The n-gram models are further discussed in section 2.2.

Decoder

Given the output of the acoustic and language models, P (O|W ) and
P (W ), the decoder finds the best hypothesis for the transcription.
This is equivalent to finding the maximum a posteriori, i.e.
arg maxW P (W |O) ∝ P (O|W )P (W ). In HMM-based system solutions
this is accomplished using the Viterbi algorithm [12].

2.2 N-gram models

In modern speech recognition systems the standard choice for statistical
language modeling is the n-gram model [13]. The n-gram model is a fine
example of a linguistically ill-posed and over simplified method which
nonetheless has proven to be extremely efficient in practical use.

The n-gram models are used to predict the probability of a word given
its immediately preceding words. Intuitively, unigram and higher order
n-grams form word probability distributions and word sequence probability
distributions, respectively. Formally, n-grams are nth order Markov
chains [13] with a Markov property referred to as the limited horizon:

p(wi|wi−1
1 ) = p(wi|wi−1

i−n+1)

where wi denotes word at time instant i, i ≥ n, and wi−1
i−n+1 the n− 1 words

preceding it. Moreover, we define that, in case of i < n, p(w1|w0
1) = p(w1),

p(w2|w1
1) = p(w2|w1), etc. This property is important in that it tells us that

the current state of the system (si) depends only on the n−1 previous states
(si−1
i−n+1), i.e. any word wi is dependent only on the n − 1 previous words

wi−1
i−n+1. The limited horizon property essentially makes the n-gram models

very effective tool at capturing the local dependencies of the language.
Increasing the order of model can improve performance of the model up to
the order of 5 or 6 [14]. However, as this increase leads to rapid growth
of memory requirements, n is typically in the range 2-4. The training of
n-grams is discussed in section 3.4.
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2.3 Long distance dependencies and topic

information

As stated previously, n-gram models are effective at capturing the local
dependencies between words. However, a real language only partially agrees
with the limited horizon assumption. For instance, let’s examine a scenario
including the following sentences.

The cat meowed.
The cat, more or less surprisingly, meowed.

Now, the probability of encountering the word meowed following the word
cat and the sequence the cat, more or less surprisingly, is likely to be
roughly the same. However, in the latter case, any feasible n-gram model
would be unable to capture this dependence since the limited length of word
history does not endure over the fragment more or less surprisingly. In fact,
an unreasonable n-gram of order 6 should be applied here in order to make
the prediction plausible.

Let’s then consider a second scenario rising from the development of
multimodal interfaces, for instance an image annotating tool using speech.
From other modalities included in the interface, we can in principle derive
topical information for the language modeling. That is, a combination of
image and eye movement data can offer us information about not only what
is on the screen, but also what is it there the user is likely to be interested
in. Let’s assume we know the user has focused his attention at a screen,
specifically on a picture depicting a harbour. Now, when commenting on
his view, it is presumable that he will more likely utter the word ship than
chip. If we can utilize this shift in probability distributions of words in our
language model, it may make a crucial difference for the recogniser when it
is deciding between such acoustically similar words.

To approach the above two scenarios, we need to merge knowledge of
long distance dependencies between words, i.e. the shift in the probability
distributions of words, into our language models. This can be accomplished
using topic adaptation principles.

2.4 Topic adaptation procedure

The topic adaptation procedure followed in this work is depicted in
Figure 2.2. Intuitively, we wish to obtain a large language model to capture
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the general features of the language and smaller models to take into account
the shift in word frequencies due to topical changes. The previous is obtained
from all the training data available, i.e. the background corpus, and the latter
from subcorpuses derived by topical clustering of the background corpus. The
final adapted model is a combination of the two types. In the following, we
take a look at the main features of the procedure.

Background corpus
semantic 

clustering

Topic clusters
&

Topic LMs

Background LM Topic LM

Topic cue

LM combination

Topic retrieval

Adapted LM

Figure 2.2: Topic adaptation procedure. LM stands for language model.

First, we assume that the background corpus consists of documents. Here,
we assume a document to consist of a group of sentences of one or more
topics. Topical clustering of text corpora is an extensively studied problem
and an overview on the subject is presented in section 3.1. Here we
would like to point out that, essentially, there is no single correct way to
partition documents by topics, since topics may overlap inside documents
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and topic definition is ambiguous. Therefore, we are interested in obtaining
in some sense well-founded partitioning of the data. If given a properly
preprocessed corpus and executed correctly, it is justified to expect that all
the state-of-the-art algorithms result in a sufficiently appropriate clustering.
In this work we use self-organizing maps [15] to accomplish the clustering
task. The clustering procedure using SOM is discussed in more detail in
section 3.2.

After the background corpus has been partitioned into topic clusters, we
are introduced to a topic cue provided by external information sources. In
the case of multimodal applications, the sources are modalities including
the recognition history provided by the speech recognition system itself.
Typically, the topic cue is in the form of a keyword list. With the topic cue,
we focus our attention on the topic currently at hand. This means that we
wish to find the cluster most similar to the topic cue or, nearly equivalently
but not quite, the topic language model which has most likely generated the
topic cue. In this work, the topic retrieval process is of our prime interest
and is discussed further in section 3.3.

After obtaining the wanted topic, we acquire the final adapted model
by combining the language models trained based on background corpus
and cluster corpus corresponding the retrieved topic. Again, language
model combining is an extensively studied problem and a great amount
of algorithms have been developed to accomplish this task. Combination
methods, including the method used in this work, namely mixture models,
are discussed further in section 3.6.



Chapter 3

Topic adaptation

3.1 Topical clustering of textual corpus

In clustering, we assign objects (data points) to clusters in an unsupervised
manner so that similar objects are assigned to the same cluster and
dissimilar objects to different clusters. As to clustering, we generally use the
terms objects or data points but as we are interested in clustering of textual
corpus, it is straighforward to refer to them as documents.

For the clustering of the corpus we present the documents using a
vector-space model [13]. The general starting point is a document-word
co-occurrence matrix W ∈ R|D|×|V |, where |D| and |V | are the number of
documents in corpus and words in vocabulary, respectively. Each document
is presented as a word histogram in which the information of word order has
been eliminated. This is known as the bag-of-words approach. Furthermore,
it is beneficial to weight the words according to their frequency counts in
individual documents to reflect their topical importance.

One of the most popular weighting schemes is the tfidf (term frequency
inverse document frequency) weighting [13] scheme. We define tfidf weight
for a given word-document pair as

tfidfij =
|wi ∈ dj|
|dj|

× log
|D|

|d : wi ∈ d|
(3.1)

where |wi ∈ dj| is the number of instances of word wi in document dj, |dj|
is the total number of words in document dj, |D| is the total number of
documents in corpus, and |d : wi ∈ d| is the number of documents where
word i appears. In calculations, we use 10-based logarithms.

12
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Another common weight [16] based on information theory for a given
word-document pair is defined as

itij = (1− εi)
|wi ∈ dj|
|dj|

(3.2)

where |wi ∈ dj| is again the number of instances of word wi in document dj
and |dj| the total number of words in document dj, and εi the normalized
entropy of wi in the corpus D. The expression for εi is

εi = − 1

log |D|

|D|∑
j=1

|wi ∈ dj|
|wi ∈ D|

log
|wi ∈ dj|
|wi ∈ D|

(3.3)

where |D| is the total number of documents in D, |wi ∈ dj| the number
of words wi in document dj, and |wi ∈ D| the total number of words
wi in the corpus D. Consequently, the weighting (1 − εi) describes the
way the word wi is distributed among the documents in the corpus D.
As can easily be seen 0 ≤ εi ≤ 1, where the first equality holds when
|wi ∈ dj| = |wi ∈ D|. Respectively, the second equality holds when

|wi ∈ dj| = |wi∈D|
|D| . Consequently, a value of εi near 0 indicates that word

wi appears focused only in a few documents, whereas a value of εi near 1
indicates that word wi is spread evenly among the documents in D.

Categorical data describes data where the data attributes (dimensions)
do not have numerical values but rather qualitative interpretations. A
traditional example of categorical data is the purchases of market customers
where the attributes would correspond to items such as milk, cheese, bread,
and ice cream. The attributes have binary values (zero or one) depending
on if the customer has purchased the item in question or not. Textual data
can be transformed into a categorical representation by simply replacing
all the non-zero elements in the document-word matrix W with ones. The
elements (wij) with value one in W can then be interpreted as ”the word wi
appears in the document dj at least once”.

Depending on the choice of word weighting scheme, a variety of
clustering algorithms can be applied to the corpus. In this section,
we describe four examples of clustering methods, namely, Latent Semantic
Analysis (LSA) [17], Agglomerative Clustering [18], Information-Theoretic
Co-Clustering [19], and ROCK: Robust Clustering Algorithm for Categorical
Attributes[20].
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Latent Semantic Analysis

Latent Semantic Analysis (LSA) [17] is an effective means of determining
document and term similarity in textual data. It is based on the notion
of concept space obtained by singular value decomposition (SVD) of the
document-word matrix. Latent Semantic Indexing (LSI) [21] utilizing LSA
is a fundamental technique in Information Retrieval (IR) applications. As
we are interested in document clustering, we will present LSA as a means of
dimension reduction as follows.

We start with a document-word co-occurrence matrix W ∈ R|D|×|V |, where
|D| and |V | are the number of documents in corpus and words in vocabulary,
respectively. Words in W are usually weighted using weighting schemes
similar to (3.1) or (3.2). After word weighting, we rewrite W using singular
value decomposition as

W = UΣV T (3.4)

where U ∈ R|D|×|D| and V ∈ R|V |×|V | are orthonormal matrixes and
Σ ∈ R|D|×|V | a pseudo-diagonal matrix holding the singular values. For W it
holds

WW T = UΣV T (UΣV T )T = UΣV TV ΣTUT = UΣΣTUT (3.5)

and
W TW = (UΣV T )TUΣV T = V ΣTUTUΣV T = V ΣTΣV T (3.6)

since for orthonormal matrixes it holds V TV = UTU = I. Therefore, as ΣΣT

and ΣTΣ are diagonal, we see that the columns of U contain the eigenvectors
for ΣΣT and columns of V the eigenvectors for ΣTΣ. By selecting the k
largest singular values from Σ and their corresponding eigenvectors from U
and V , we result in k rank approximation Wk of the original matrix W , that
is

W = UkΣkV
T
k (3.7)

where k corresponds to the wanted number of concepts extracted from
W . Using Σ and V , we can now transform the original document vectors
dj ∈ R|D| into the new concept space d̂j ∈ Rk, k � |D|, with

d̂j = Σ−1
k V T

k dj. (3.8)

The documents can subsequently be clustered in this new lower dimensional
space using suitable distance measures., e.g., distance

distance(x,y) =
√

(x− y)T (x− y). (3.9)

and the Agglomerative Algorithm [18] described in the next subsection.
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Agglomerative Clustering

The Agglomerative Algorithm (presented e.g. in the context of Clustering
Aggregation [18]) is an example of a simple means to obtain a partitioning
for data. The algorithm is initialized by assigning each document into a
singleton cluster. Then, we consider the pair of clusters with the largest
average similarity. The similarity measure is defined as seen suitable
depending on the used word weighting measure. Average similarity between
two clusters is defined as the average of pairwise similarities between the
documents in the two clusters. If the average similarity is greater than a
predetermined threshold β, the two clusters are merged into a single cluster.
These cluster comparisons and mergings are then iterated until there is no
pair of clusters with average similarity greater than the threshold. In that
case, the algorithm stops and gives the latest clusters as an output.

The algorithm can be illustrated with the following example. We will
interpret the document-word matrixW as categorical data and, consequently,
we introduce the Jaccard similarity coefficient [13]. Jaccard similarity
coefficient for documents di and dj is determined as the percentage of
non-differing indexes between their binary feature vectors di,dj ∈ RM , that
is

J(di,dj) = 1− (di − dj)
T (di − dj)

M
. (3.10)

Consequently, the average similarity between two clusters Ck and Cl
containing F and G documents {dk1 , dk2 , . . . , dkF} and {dl1 , dl2 , . . . , dlG}
with corresponding feature vectors {dk1,dk2, ...,dkf , ...,dkF} and
{dl1,dl2, ...,dlg, ...,dlG}, is

Javg(Ck, Cl) =

∑F
f=1

∑G
g=1 J(dkf ,dlg)

FG
. (3.11)

Furthermore, since 0 ≤ J(di,dj) ≤ 1 for all (i, j) and, consequently,
0 ≤ Javg(Ck, Cl) ≤ 1 for all (k, l), a suitable threshold is β = 0.5.

We start with a document-word co-occurrence matrix W ∈ R|D|×|V |, where
|D| = 4 and |V | = 5 are the number of documents in corpus and words in
vocabulary, respectively.

W =


10 7 0 0 0
7 0 5 0 0
8 5 3 1 0
0 4 0 0 2


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Let’s form a new binary matrix W ′ by assigning value 1 to each non-zero
element in W .

W′ =


1 1 0 0 0
1 0 1 0 0
1 1 1 1 0
0 1 0 0 1


As a starting point, all the documents form their own singleton cluster.

C1 1 1 0 0 0
C2 1 0 1 0 0
C3 1 1 1 1 0
C4 0 1 0 0 1

The pairwise average similarities for clusters C1, C2, C3, and C4 in W ′

can be gathered to a symmetric matrix where element (k, l) is the average
Jaccard similarity of clusters Ck and Cl, i.e. Javg(Ci, Cj):

1.0
0.6 1.0
0.6 0.6 1.0
0.6 0.2 0.2 1.0


The diagonal holds similarities 1.0 but these elements are ignored since a
cluster can not be merged with itself. Now we see that at least Javg(C1, C2)
exceeds the threshod β = 0.5 so clusters C1 and C2 can be merged together.
The new clustering is therefore

C1 1 1 0 0 0
C1 1 0 1 0 0
C2 1 1 1 1 0
C3 0 1 0 0 1

and the new average pairwise similarities are 1.0
0.6 1.0
0.4 0.2 1.0

 .

Again, we see that clusters C1 and C2 can be merged. Consequently we get
the final clustering
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C1 1 1 0 0 0
C1 1 0 1 0 0
C1 1 1 1 1 0
C2 0 1 0 0 1

since the new pairwise similarities(
1.0
0.33 1.0

)
do not lead to any new merges.

It is worth noticing that the Agglomerative Algorithm has at least one
advantage in addition to the simplicity of implementation: it does not need
the number of clusters as an input parameter. This follows from the fact
that the algorithm stops its iterations when there are no more clusters
similarity of which exceeds the given similarity threshold.

Information-Theoretic Co-clustering

In the LSA framework, the object was to yield improved document clustering
by grouping the words in a conceptual manner. This means that if the
words are semantically similar, they should be treated similarly as to the
document clustering by the clustering algorithm. In [19], this idea for
document clustering was presented in an information-theoretic framework
in the context of co-clustering, i.e. the simultaneous clustering of documents
and words.

In the following notation, we use x and y to denote rows and columns,
respectively. Let’s assume random variablesX and Y which take values in the
sets {x1, x2, ..., x|D|} and {y1, y2, ..., y|V |} where |D| and |V | are the number of
documents in corpus and words in vocabulary. Their joint distribution p(x, y)
is a |D| × |V | matrix which can be empirically derived by normalizing the
sum of the document-word co-occurrence matrix W ∈ R|D|×|V | to 1. The
clusterings are denoted as

Cx : {x1 , x2 , . . . , x|D|} → {x̂1 , x̂2 , . . . , x̂K}

and

Cy : {y1 , y2 , . . . , y|V |} → {ŷ1 , ŷ2 , . . . , ŷL}
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where {x1 , x2 , . . . , x|D|} denote rows, {y1 , y2 , . . . , y|V |} columns,
{x̂1 , x̂2 , . . . , x̂K} clustered rows, and {ŷ1 , ŷ2 , . . . , ŷL} clustered columns.
K and L are the number of row and column clusters, respectively, given
as input parameters. The co-clustering is the solution to the following
optimization problem.

Find a co-clustering (Cx, Cy) which minimizes the objective function

I(X;Y )− I(X̂; Ŷ ) (3.12)

for given K and L.

In the previous, I(X ′;Y ′) denotes the mutual information [13] between
random variables X ′ and Y ′ defined as

I(X ′;Y ′) =
∑
x′∈X′

∑
y′∈Y ′

p(x′, y′) log
p(x′, y′)

p(x′)p(y′)
. (3.13)

Furthermore, it holds that

I(X;Y )− I(X̂; Ŷ ) = DKL(p(x, y)||q(x, y))

where DKL(.|.) is the Kullback-Leibler divergence [13]. Since the
Kullback-Leibler divergence is always non-negative, minimizing
I(X;Y )− I(X̂; Ŷ ) is equivalent to finding the probability distribution
which is most similar to p(x, y). Distribution q(x, y) has the expression

q(x, y) = q(x̂, ŷ)q(x|x̂)q(y|ŷ) , where x ∈ x̂, y ∈ ŷ (3.14)

The core of the algorithm lies in this equality and its full derivation can be
found in [19]. Furthermore, in [19], they present a local search algorithm
which finds q(x, y) by monotonically decreasing the value of the objective
function (3.12).

The sensiblity of the solution (Cx.Cy) obtained by minimizing equation (3.12)
is illustrated by the following example used originally in [19]. Let’s assume
a |D| × |V | document-word matrix

W =


5 5 5 0 0 0
5 5 5 0 0 0
0 0 0 5 5 5
0 0 0 5 5 5
4 4 0 4 4 4
4 4 4 0 4 4


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where |D| = 6 and |V | = 6. The empirical joint distribution is consequently

p(x, y) =


0.05 0.05 0.05 0 0 0
0.05 0.05 0.05 0 0 0

0 0 0 0.05 0.05 0.05
0 0 0 0.05 0.05 0.05

0.04 0.04 0 0.04 0.04 0.04
0.04 0.04 0.04 0 0.04 0.04

 .

By looking at p(X, Y ), it is easy to see that a smart clustering for rows
and columns would be x̂1 = {x1 , x2 }, x̂2 = {x3 , x4 }, x̂3 = {x5 , x6 }, and
ŷ1 = {y1 , y2 , , y3}, ŷ2 = {y4 , y5 , y6}, respectively. The resulting joint
distribution is

q(x̂, ŷ) =

 0.3 0
0 0.3

0.2 0.2

 .

Indeed, using this co-clustering, the loss in the mutual information in (3.12)
is only 0.0957. Furthermore, it can be verified that no other clustering
results in a lower loss.

Robust Clustering Algorithm for Categorical Attributes
(ROCK)

Most clustering methods group documents based on the similarity between
the objects themselves. However, it might be beneficial to define the
similarity between two objects according to how similar their neighborhoods
are to one another. This idea was utilized in a clustering method for
categorical data in ROCK [20] where the clustering is based on links
between data points.

As to clustering, a common daunting task is to separate two very close
clusters. In these situtations, there can be two documents which, although
being adjacent to each other, belong to different clusters. However, although
being neighbors, it is presumable that these documents do not possess a large
number of common neighbors. This intuition is utilized in the definition of
links between two documents. Let’s start by assuming a document-word
co-occurrence matrix W ∈ R|D|×|V |, where |D| and |V | are the number of
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documents in corpus and words in vocabulary, respectively. We define that
two documents di and dj with feature vectors di and dj are neighbors if
their similarity exceeds a given threshold value α. Similarity is defined as
the Jaccard coefficient in equation 3.10. The number of links between two
documents di and dj, links(di, dj), is defined as the number of their common
neighbors. Consequently, if links(di, dj) is large, di and dj are likely to
belong to the same cluster.

As can be easily deduced, a good clustering for a corpus D is such that,
within the clusters, the documents share as many common neighbors as
possible, meanwhile documents in different clusters share as little common
neighbors as possible. In [20], this was formulated as an objective function
to maximize for given number of clusters k.

OROCK =
k∑
i=1

|Ci| ×
∑

dm,dn∈Ci

link(dm, dn)

|Ci|1+2f(φ)
(3.15)

where Ci is the ith cluster with size |Ci| and link(dm, dn) the links between
the documents dm and dn. |Ci|1+2f(φ) is an estimate for the total number
of links in cluster Ci where f(φ) is a function dependent on data set, e.g.
f(φ) = 1−φ

1+φ
, φ being a constant chosen based on the data set. Additionally,

a goodness measure g(Ci, Cj) is defined to describe how beneficial it is to
merge two clusters Ci and Cj into one.

g(Ci, Cj) =
link(Ci, Cj)

(|Ci|+ |Cj|)1+2f(φ) − |Ci|1+2f(φ) − |Cj|1+2f(φ)
(3.16)

where |Ci| and |Cj| are the cluster sizes and f(φ) the predetermined function
dependent on the data set. The number of links between two clusters Ci
and Cj, link(Ci, Cj), is defined as

∑
dm∈Ci,dn∈Cj link(dm, dn).

In [20], a local maximum for the objective function OROCK in (3.15) is
obtained as follows. First, each document is assigned to its own singleton
cluster. Then, at each iteration step, the pair of clusters with the highest
goodness measure in equation (3.16) are merged together. The merging of
clusters stops and the latest clustering is given as the output when the given
number of clusters k is reached .
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3.2 Topical clustering of corpus using self

organizing map

To obtain the topical clustering of the background corpus, we use the
procedure described in [22] which is depicted in Figure 3.1. Successful
implementation of the scheme particularly in the area of topic adaptation
was presented in [9, 23]. The procedure comprises of extracting features
of the textual data, dimension reduction and finally clustering using self
organizing map.

Background corpus

Document col lection with vocabulary V

1. Feature extraction

Tfidf weighted word histograms

2. Dimension reduction

Remove noise N from V
Random projection 

3. Clustering

Self organizing map

Topic clusters

Figure 3.1: Scheme for topical clustering of background corpus.

We start with a document-word co-occurrence matrix W ∈ R|D|×|V |,
where |D| and |V | are the number of documents and words in vocabulary,
respectively. To weight words according to their topical importance, we use
tfidf weighting presented in equation (3.1).

As a result of the vector-space model we have obtained feature vectors for
the documents. However, the data is in its current form of excessively high
dimension. Therefore, we first divide the vocabulary in two sections, subsets
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F and N , i.e.
V = F ∪N. (3.17)

Subset F includes all words that have appeared in the corpus for more than Θ
(e.g. Θ = 100) times and subset N correspondingly the rest of the vocabulary.
Intuition here is that words in N have appeared such a small number of times
that they do not contain substantial discriminative power as to clustering and
are therefore considered noise. When we use words in F as features for the
documents, we have already reduced the dimensionality drastically. In order
to reduce the dimensionality further to a practical magnitude, we utilize the
random projection technique [24, 25]. In random projection we obtain a new
vector xi ∈ Rm for each data vector yi ∈ Rn, m� n, using equation

xi = Ryi (3.18)

where the columns of R ∈ Rm×n are normally distributed orthogonal vectors
of unit length. Implemented in a document clustering task in [25], random
projection was shown to result in a prominent reduction in computational
load while causing only minor loss in discrimination power of the data.

Let’s define similarity between documents di and dj in the vector space as

sim(yi,yj) = −
√

(yi − yj)T (yi − yj) (3.19)

i.e. the negatively signed euclidean distance between the document feature
vectors yi,yj ∈ Rm. Assuming the bag-of-words approach, identical
documents have similarity value of zero and dissimilar documents values
below zero.

Finally, the document collection is clustered using a self-organizing map
(SOM) [26, 15]. SOM is a neural network used in an unsupervised manner
to represent high dimensional data in low dimensional space. A map consists
of nodes which have weight vector representations in the high dimensional
data space and low dimensional vector representations on the map lattice.
In training, at iteration τ , we find the node with the most similar weight
wBMU(τ) to input data vector x(τ) in data space. The most similar node
is referred to as the best matching unit (BMU). Weight vectors wk for all
nodes k are updated according to

wk(τ + 1) = wk(τ) + α(τ)γ(τ, δBMUτ ,k)(x(τ)−wk(τ)) (3.20)

where α(t) is a monotonically decreasing function and γ(τ, δBMUτ ,k) is the
neighborhood function dependent on the distance δ between node k and
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BMU in the low dimensional map space. In consequence of δ being defined
in the low dimensional map space instead of the high dimensional data
space, the map captures the topological structure of the data in the sense
that proximity on the map indicates similarity between map nodes in the
data space. The clustering of the background corpus is then obtained by
assigning documents to their BMUs. The result is hard clustered data, i.e.
every data point is assigned to exactly one node. Furthermore, we note that
from here on, each node k corresponds to one topic tk, i.e. the topics are
defined using SOM.

Additonally, it is important to be aware of the pitfalls of the topic clusters
obtained as described above. First, the corpus used for training may be
overly homogenous in that it does not contain sufficiently clear topical
structure to begin with. Second, assuming the underlying topic structure
exists, we are obliged to decide the number of the latent topics rather
randomly. Third, after obtaining the clustering, we lack the means of
analyzing the result properly. A common procedure is to view the clusters
manually to see if they consist of topically similar documents and words.
However, due to the massive number of documents involved in the training,
this overview is bound to be superficial with no well-founded means to
validate the result.

3.3 Topic retrieval

At the topic retrieval stage of the adaptation scheme, we approach the
broader field of information retrieval (IR). For instance, see [27] for a quick
overview on the subject. In information retrieval, we search a database for
documents given an information query from the user. Similarly, in topic
retrieval, we are interested in finding the underlying topic at hand given a
topic cue.

3.3.1 Definitions

Let’s first recap the definition of the term topic. Assuming a background
corpus B divided to K subsets through topical clustering, topic tk corresponds
to the subset k. This means that the topics are defined as SOM nodes.
Furthermore, the retrieval result t̂ (also referred to as the topic estimate) is
considered correct if the subsequent language model adaptation is considered
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successful. Adaptation is considered successful if, given a test corpus, the
perplexity score given by the adapted model is lower than the perplexity
score given by the unadapted baseline model. The perplexity measurements
is further discussed in section 3.5. A graphical interpretation of a successful
and failed topic retrieval is presented in Figure 3.2.

BEST

Good retrievals

Bad retrievals

X X

X

Figure 3.2: A graphical interpretation of topic retrieval with a SOM. Since
the map is topologically organized, proximity of nodes indicate similar topics
among them. Our topic retrieval is likely to be successful if it is close to the
best possible topic estimate (BEST) on the map. The BEST retrieval is
acquired executing the retrieval using a full document.

3.3.2 Topic cues as queries

Let’s consider a background corpus with vocabulary V and topics
tk, k ∈ 1, .., K. Each topic tk has been assigned with a subvocabulary
Vk ⊂ V in the topical clustering scheme, i.e. Vk comprises the words found
in the documents of topic k. Let’s define the topic cue as a keyword list
q = {w(q)

l : l ∈ 1, .., L}, wl ∈ V , sampled from the underlying topic t ∈ {tk}.
Now, q operates as a query for the topics tk. Naturally, the gained benefit
of topic adaptation relies heavily on the success of this query. By weighting
the word distributions towards an ill-retrieved topic, we are likely to degrade
our recognition performance.

Let’s divide the words in a keyword list q in three groups.
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1. Topical words coherent with underlying topic. The relative frequency
of these words is higher in documents of this topic than in the rest of
the corpus.

2. Topical words incoherent with underlying topic (topical outliers). The
relative frequency of these words in rest of the corpus is higher than in
documents of this topic.

3. Topically neutral words. These words are found uniformly everywhere
in the corpus.

Words belonging to groups 1 and 2 determine the estimate t̂ for underlying
topic for q. A uniformly sampled set of words from document follows the
same distribution as the original document. However, as to the retrievals,
the topical importance of words within the groups 1 and 2 differ. Therefore,
two (small-sized) samples with the same size may lead to very different kinds
of retrieval results. Consequently, the effect of varying the size of query L
on the retrieval success is difficult to predict.

Focusing further on small-sized ques, queries of identical size L may have
varying temporal dependecies among the words. First, the query may
consist of a sentence-like word segment where all the words are dependent on
the preceding word history. This is a valid assumption if the cue is provided,
for example, as speech by a human user. Second, the query may comprise a
set of keywords, in which case it is convenient to assume the word set to be
temporally independent. This is the expected case with other modalities. In
combination with the topic retrieval criteria presented in section 3.3.3, the
varying dependencies within topic cue words may have an impact on the
topic retrieval performance.

3.3.3 Topic retrieval criteria

Let’s then discuss three decision criteria in retrieval of the best topic estimate
t̂ for the query q. The overall retrieval schemes are depicted in Figure 3.3.
The criteria, from now on referred to as retrieval criteria 1, 2 and 3, are

1. Similarity of q and cluster k using words in vocabulary subset F as
query.

2. Similarity of q and cluster k using words in vocabulary V as query.
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3. Likelihood of topic language model pk generating observed word
probability distribution pq .

In the first approach, we treat q as a document and find the most similar topic
cluster. Similarity between a document and a topic cluster is the negatively
signed euclidean distance between the feature and the weight vectors of
the document and the cluster, respectively. Furthermore, as discussed in
section 3.2, the vocabulary of the background corpus is divided into two
subsets, F and N , before the clustering. Therefore, only the words in F
are used in calculating feature vectors and affect the resulting partitioning.
In consequence, it is justified to consider words in N unreliable keywords
and filter them out from the queries before extracting features and executing
retrievals. In brief, we divide q in two sections, q = {qF , qN}, where qF ⊂ F
and qN ⊂ N . Therefore, given q, retrieval criterion 1 is

t̂ = arg max
t

sim(qF ,wt) (3.21)

where qF is the feature vector corresponding to qF and wt the feature vector
corresponding to the topic cluster t.

Topic cue

Topic clusters

Topic retrieval based 
on similari ty

Retrieved topic

(1) Topic cue

Topic clusters

Topic retrieval based 
on similari ty

Retrieved topicNoise word
fi l ter ing

Topic cue

Topic LMs

Topic retrieval based 
on likelihood

Retrieved topic

(2)

(3)

Figure 3.3: Topic retrieval schemes using topic retrieval criteria 1, 2 and 3.

In the above approach, we regarded N as noise. However, the words in
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N are highly correlated with the words in F . This means that subsets
of words in N which occur coherently with subsets of F are clustered
correspondingly during the topic partitioning, and consequently make them
potentially valuable keywords. Therefore, in our second approach, we restore
N back to our keyword vocabulary after clustering the background corpus
with F . This is done by replacing each cluster j with a pseudo document.
The pseudo documents are obtained by adding together the word counts
of documents belonging to j and calculating tfidf weights for the resulting
document-word matrix. Given q, retrieval criterion 2 is

t̂ = arg max
t

sim(q,wt) (3.22)

where q is the feature vector corresponding to q and wt the feature vector
corresponding to the topic cluster t.

The two criteria above retrieved the topic utilizing similarity between the
query and the clusters. In the third approach, we train topic language models
(see section 3.4) with the topic clusters and retrieve the model that has
most likely generated the query. The likelihood of topical language model t
generating q is

lt(q) =
∏
i

pt(wi|wi−1
i−n+1) , wi ∈ {q}. (3.23)

However, it is common practice to make independence assumption between
the words, i.e. pj(wi|wi−1

i−n+1) = pj(wi), as q is considered a keyword list.
Thus, retrieval criterion 3 in log-likelihood form is

t̂ = arg max
t

∑
i

log pt(wi) , wi ∈ {q} , q ⊂ V. (3.24)

Notice that, as in approach 2, we use the whole vocabulary as keywords.

By comparing approach 1 with 2 and 3, we can find out if expanding keyword
vocabulary from F to V has an impact on the retrieval performance. As
discussed above, with approach 1, we can be confident that our queries
are executed with an optimal set of keywords. However, this optimality
is gained at the cost of throwing away a major part of our vocabulary
obtained from the background corpus. As for approaches 2 and 3, we can
highlight the fact that both schemes are essentially about smoothing word
distributions within topics. The difference between the two is that in the
likelihood-based approach we divide the probability mass among the whole



CHAPTER 3. TOPIC ADAPTATION 28

vocabulary whereas in the similarity-based approach the non-zero tfidf
scores are localized on observed words only. Therefore, with approaches 2
and 3, we can essentially compare the difference in retrieval using grained
and heavily smoothed word distributions within topics. Additionally, it
should be noted that approaches 1 and 2 use the bag-of-words representation
to queries whereas approach 3 preserves the word order information. This
makes a notional difference for the approaches but is, in practice, irrelevant
because of the independence assumption made in equation (3.24).

3.4 Language model training

N-gram models are simply trained from a text corpus by counting word
sequence occurrences and calculating maximum likelihood estimates based
on them as follows:

p(wi|wi−1
i−n) =

c(wii−n)

c(wi−1
i−n)

(3.25)

where c(.) denotes the number of instances found in the training data, wii−n
a sequence of n words, and wi−1

i−n+1 the word sequence preceding word wi.
However, let’s consider a vocabulary V of size |V |. Now, the number of all
the possible n-grams is |V |n. As the size of the vocabulary grows, it rapidly
becomes impossible to acquire enough training data to estimate the n-grams
reliably, and majority of the n-grams will not be seen in the data. This
phenomenom is called the sparse data problem and to counter-act it, we use
a technique called smoothing.

In smoothing, we essentially move probability mass away from the seen
events to unseen events, therefore making the probability distribution
more uniform, i.e. smoother. Moreover, as to retrieval criterion 3, it is
important to note that this smoothing results in a distribution where all the
words in the model vocabulary have a non-zero probability to be observed.
Ample methods related for smoothing exist, e.g. Good-Turing- [28] and
Witten-Bell- [29] discounting, and Kneser-Ney- [30] and Katz-smoothing [31].
A commonly used and, as verified with empirical tests in [32], the best
performing technique, is the Kneser-Ney backing-off method [30]. In this
work, all the models in the experiments are smoothed using the Kneser-Ney
technique. We describe the method in the following.

The smoothing includes three basic steps; discounting word observations,
establishing the low order n-grams, and combining the n-grams of various
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orders. With discounting the probability mass is shifted from the seen events
to unseen events by subtracting observations from seen events. Furthermore,
combinations of n-grams can, in general, be done in two ways (e.g. [32]), by
backing-off or interpolation. Backing-off methods are defined by the recursive
equation

psmooth(wi|wi−1
i−n+1) =

{
p(wi|wi−1

i−n+1) if c (wii−n+1) > 0
γ(wi−1

i−n+1)psmooth(wi|wi−1
i−n+2) if c (wii−n+1) = 0

(3.26)

where p(wi|wi−1
i−n+1) is the n-gram estimated from the discounted counts and

γ(wi−1
i−n+1) is coefficient set to make the probabilities sum up to one. The

idea behing the backing off is that if the word sequence wii−n+1 is seen in the
data, we use p(wi|wi−1

i−n+1). Otherwise we back off to a lower order n-gram
psmooth(wi|wi−1

i−n+2). The recursion tends that we keep on backing off until
we have an observation.

Interpolation methods are defined as a linear mixture

psmooth(wi|wi−1
i−n+1) = λ0p(wi) +

n−1∑
j=1

λjp(wi|wi−1
i−j ) (3.27)

where p(.|.) are the probabilities estimated from the discounted counts
and λj,

∑
j λj = 1, the mixture coefficients. In brief, in the interpolation

approach, the high order n-grams ending with the word wi are mixtures of
lower order n-grams ending with wi.

Kneser-Ney method is of the previous, backing off, approach using absolute
discounting, where we subtract a fixed count ∆ from all the each non-zero
counts. The model is defined as

PKN(wi|wi−1
i−n+1) = =

{
max{c (wii−n+1)−∆,0}P

wi
c (wii−n+1)

if c (wii−n+1) > 0

γ(wi−1
i−n+1)pKN(wi|wi−1

i−n+2) if c (wii−n+1) = 0
(3.28)

where c (wii−n+1) is the number of times word sequence wii−n+1 has been seen
in the data, γ(wi−1

i−n+1) coefficient set to make the probabilities sum up to
one, and ∆ a constant estimated in [30] from the data as

∆ =
c1

c1 + c2

(3.29)
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where c1 and c2 are the number of n-grams with exactly one or two counts,
respectively. The lower order distribution is chosen so that the marginals
of the smoothed higher order distribution (left side) match the lower order
marginals of the training data (right side):∑

wi−n+1∈V

pKN(wi|wi−1
i−n+1) =

c(wi−1
i−n+2)∑

wi
c(wii−n+2)

(3.30)

where V denotes the vocabulary, and c(.) again the count for word sequence.
In [30] it is shown that the probabilities pKN(wi|wi−1

i−n+2) in equation (3.28)
are of the form

pKN(wi|wi−1
i−n+2) =

N1 + ŵii−n+2

N1 + ˆ̂wi−1
i−n+2

(3.31)

where
N1 + ŵii−n+2 = |{wi−n+1 : c (wii−n+1) > 0}| (3.32)

and

N1 + ˆ̂wi−1
i−n+2 = |{(wi−n+1, wi) : c (wii−n+1) > 0}| =

∑
wi

(
N1 + ˆ̂wii−n+2

)
.

(3.33)

These formulas mean that the low-order n-grams are highly affected by
the number of contexts they follow. This approach distinguishes the
Kneser-Ney method from the other smoothing techniques which usually rely
on occurrence frequencies when calculating the low-order n-grams.

In addition to smoothing the n-gram distributions, the background
vocabulary is extensively large to be used as such. Therefore, it is necessary
to determine a fixed size for the active language model vocabulary and train
the language model using only these most frequently occurred words. A
practical size of language model for large vocabulary speech recognition for
English is approximately from 20k to 60k.

3.5 Language model evaluation

The most popular evaluation measure for n-gram language models is
perplexity [13] defined as

ppl(pj, w
M
1 ) = M

√√√√ M∏
i=1

1

pj(wi|wi−1
i−n+1)

(3.34)
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where M is the number of words in the test data sequence and pj the n-gram
probabilities of the tested model. Perplexity measures how well the model
predicts the given test data, larger values indicating worse performance.

As can be seen in equation (3.34), the perplexity measure corresponds to
the inverse of the geometrical mean of the likelihood. Therefore, as to topic
retrieval criterion in equation (3.24), topic LM maximizing the likelihood of a
query is equivalent to LM minimizing the perplexity. Moreover, we can cover
yet a third common measure for probability distribution similarity, namely
Kullback-Leibler divergence [13] defined as

DKL(q||p) =
∑
xi

q(xi) log
q(xi)

p(xi)
(3.35)

for discrete probability distributions q and p. Returning to equation (3.24),
we wish to find the topical language model pt(wi) that minimizes the
Kullback-Leibler divergence with word probability distribution pq(wi)
corresponding to a given query q. Here, pq(wi) can be estimated from the
keyword list, for example, simply using maximum likelihood estimate. As
can easily be seen

arg min
t

DKL(pq||pt) = arg min
t

∑
wi

pq(wi) log
pq(wi)

pt(wi)

= arg min
t

∑
wi

log
1

pt(wi)

= arg max
t

∑
wi

log pt(wi)

that is, pt(wi) minimizing the Kullback-Leibler divergence is again, assuming
uniform probabilities among the words in q, equal to pt(wi) maximizing the
likelihood of q .

Additionally, let’s take note of two properties of the perplexity measure.
First, as the vocabularies obtained from the training data are of limited sizes,
our models naturally can not comprise all the possible words or word forms.
Therefore, in previously unseen data, our models will always encounter
so called out-of-vocabulary (OOV) words. For all the unseen words in
training data, the maximum likelihood estimate gives a probability of zero.
As seen in equation (3.34), p(wj|wj−1

j−n+1) = 0 for any given j is enough
to make the perplexity go to infinity, which naturally makes the measure
useless. This is taken into account by brutally skipping the unknown
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words. Second, decrease in perplexity rarely indicates significant reduction
in recognition error since the overall performance of a speech recognition
system depends on multiple different factors. In contrast however, increase
in perplexity almost surely indicates either no improvement or degration in
the recognition error.

3.6 Language model combining methods

Language model combination methods have been a subject of extensive
research during the past two decades. A broad outlook at different
combining methods can be found, for example, in [33]. In the following, we
divide the techniques into two categories, the interpolation methods and
the non-interpolation methods. We describe a few examples of both classes,
namely mixture models [34]), cache models [35], trigger models [36, 37],
Mimimum Discrimination Information (MDI) [38, 39], and exponential
models [40].

Interpolation methods

Interpolation techniques rely essentially on mixture model approach where
the adapted model is a weighted linear combination of the component models,
that is

padapted(wi|wi−1
i−n+1) =

∑
k

λk pk(wi|wi−1
i−n+1) . (3.36)

The λk,
∑

k λk = 1, are the mixture coefficients commonly optimized
using a hand-held data set if available (see e.g. [34]). Mixture models are
often a good combination technique choice for their robustness and small
computational costs.
In this work, we use two types of mixture models. First type comprises
of the background model and one topic model. Second type comprises of
the background model and a neighborhood of topic models. As we are
simulating an adaptation scenario with little adaptation data, we use static
mixture coefficients. The neighborhood is conveniently determined by the
nearby topic nodes on the SOM lattice.

As a historical remark, one of the first attempts to combine topic information
with the background model was the use of cache models [35]. In cache
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models this is done by simply elevating the probabilities of words seen in
the recognition history. Models adapted using caches are of the form

padapted(wi|wi−1
i−n+1) = λ pbackgr(wi|wi−1

i−n+1) + (1− λ) pcache(wi|wi−1
i−n+1) (3.37)

where pbackgr(.) is a static model trained with the training corpus. The cache
model pcache(.) is dynamically adapted with the cumulating word history
so that the probability of a seen word is increased. The resulting model
padapted(.) is a linear combination of the two, where λ is again the mixing
coefficient (optimized with held-out data if available). Effectiveness of the
method, despite its obvious simplicity, is due to the fact that words tend to
appear repeatedly within a topic course. Therefore, cache models are a fine
example of a simple model which nonetheless takes efficiently into account
this one underlying property of language.

In trigger-based language models [36, 37], the idea of caches were expanded
so that an encountered word wk will temporarily raise the probability of
another word wl. These trigger pairs are defined beforehand with a training
corpus. However, selecting such trigger pairs from the training data is
in practise a difficult task, greatly due to the following reasoning. As for
common words, the trigger pairs can be estimated since there are enough
occurrences to make the correlation deduction reliable. Yet, in case of these
common words and events, the data is dense enough for the baseline n-grams
to work at adequate precision. Respectively, the rare words we have most
difficulties predicting with the baseline n-gram form also the trigger pairs
that can not be reliably selected from the data. With trigger models the
most significant improvents in recognition results are gained with highly
topic focused data, as in [41], where they were used in automatic meeting
transcription task.

Non-interpolation methods

As a first example of the non-interpolation techniques we discuss the
marginal adaptation methods. Marginal adaptation methods are based on
extracting low order distributions, referred to as constraints, from the topic
dependent data. Subsequently, the background model is adapted so that
its marginals agree with the constraints. As to model performance, this
approach often seems to be preferable to interpolation methods (stated e.g.
in [42]). However, the possible improvement is gained at the cost of higher
computational load and, naturally, no guarantees for improvement can be
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provided.

The following example method referred to as Minimum Discrimination
Information (MDI) [38, 39] summarizes well the idea behind the marginal
adaptation. The constraints are now extracted from the retrieved topic
clusters as unigram distributions P̂A. The joint distribution of the adapted
model is the PA which minimizes the Kullback-Leibler divergence [13] with
the background distribution PB while satisfying the constraints. Unigrams
are beneficial in that they can be estimated reliably from the small-sized
topic clusters. Moreover, the adapted model distribution conditioned on
word history reduces (see [39] for full derivation) to form

PA(wi|wi−1
i−n+1) =

PB(wi|wi−1
i−n+1)α(wi)∑

ŵi∈V PB(ŵi|ŵi−1
i−n+1)α(ŵ)

(3.38)

where

α(w) =
P̂A(w)

PB(w)
. (3.39)

Therefore, the adapted model is simply the background model multiplied
with a scaling factor α. Additionally, as P̂A(w) = 0 or PB(w) = 0 for
any w would result in a zero probability for w in the adapted model, it is
sensible to smooth both the background model and constraint unigrams
with Kneser-Ney before combining.

Second example of the non-interpolation techniques is the exponential
models [40]. Exponential models are of the form

p(wi|wi−1
i−n+1) =

1

Z(wi−1
i−n+1)

exp

(∑
i

fi(w
i
i−n+1)µi

)
p0(wi|wi−1

i−n+1) (3.40)

where

Z(wi−1
i−n+1) =

∑
wi

exp

(∑
i

fi(w
i
i−n+1)µi)

)
p0(wi|wi−1

i−n+1)

is a normalization term, p0(wi|wi−1
i−n+1) the prior probability, fi(w

i
i−n+1) the

features of the model, and µi the parameter associated with fi.

The idea behind the exponential model is illustrated with the following
example. First, the prior distribution p0 corresponds to a general n-gram
model (e.g. trigram) trained with the background corpus. Subsequently,
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topical information can be introduced to the model through the features
fi. Let’s say we want to raise the probability of word wi mice when its 2
preceding words wi−1

i−2 equals the word sequence cat eats. This can be done
using a feature

f1(wii−2) =

{
1 if wii−2 = {cat eats mice}
0 otherwise

and by setting µ1 so that the term eµ1 equals how many times more probable
the word mice becomes. The effect of this feature is that the probability of
the word mice in prior p0 is increased in the presence of context cat eats
while the probabilities of other words are decreased due to the normalization
term Z(wi−1

i−n+1). On the other hand, in the absence of context cat eats, the
prior distribution p0 is left intact.

The problem with the exponential model is the large computational
cost of obtaining the normalization terms Z(wi−1

i−n+1). Consequently, an
unnormalized version of the method was introduced in [40] where the
probabilities in the model are replaced with scores. To keep the scores
from exceeding value 1, the conditional probability p(wi|wi−1

i−n+1) in (3.40) is
formulated as

p(wi|wi−1
i−n+1) =

pauxwi|wi−1
i−n+1

1 + pauxwi|wi−1
i−n+1

(3.41)

where

paux(wi|wi−1
i−n+1) = exp

(∑
i

fi(w
i
i−n+1)µi)

)
p0(wi|wi−1

i−n+1)

1− p0(wi|wi−1
i−n+1)

.

The term
p0(wi|wi−1

i−n+1)

1−p0(wi|wi−1
i−n+1)

assures that p(wi|wi−1
i−n+1) = p0(wi|wi−1

i−n+1) holds in

the absence of features.
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Experiments

4.1 Data

The text data consists of news articles from the English Gigaword
Corpus [43]. The Gigaword is an archive of newswire text data that has
been acquired by the Linguistic Data Consortium (LDC) at the University
of Pennsylvania. The corpus consists of articles provided by six distinct
international new agencies. Of these, 101 000 documents published by
Agence France-Presse, English Service during 1994-1997 and 2001-2002 were
selected randomly. As a consequence to the selection of the documents,
the expected topics found within the document corpus are roughly those
associated with the daily news supply, such as finances, politics and sports.

The background corpus B used for training of language models (LM) consists
of 100 000 documents. These LMs are used throughout the experiments.
The average length of a document is 262 words. The background vocabulary
VB comprises 185641 words.

The experiments are divided into topic retrieval and speech recognition
sections. The test set for topic retrieval experiments comprises the rest
1 000 news articles with an average length of 256 words. The number
of out-of-vocabulary words per document in the test set compared to the
background vocabulary is, on average, zero.

Data for speech recognition experiments is derived from Wall Street Journal
database [44]. As we use acoustic models trained beforehand, we only obtain
a test set for the speech recognition experiments. The test set consists of
166 sentences picked from 8 articles. Each of the articles, and consequently

36
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the sets of sentences, are of coherent topic spoken by an individual
speaker. The articles consist of newswire data and, consequently, the topics
found in the speech data are again those associated with the daily new supply.

4.2 System parameters

The background corpus B is clustered using the procedure described in
section 3.2. The vocabulary VB is divided into subsets FB and NB so that
every word in FB has appeared at least 50 times. Consequently, the subsets
FB and NB are of sizes |FB| = 19k and |NB| = 167k. Additionally, 150
most frequently seen words are left out of VB as topically neutral function
words. The data dimension is reduced further from |FB| to m = 500 with
random projection [25]. The trained self organizing map [15] consists of 42
nodes in a 7 × 6 hexagonal lattice. The U-matrix and cluster size histogram
of the resulting map are presented in Figures 4.1 and 4.2, respectively.
Additionally, Figure 4.3 shows ten highest tfidf-scoring words, i.e. the terms
most characteristic to the topic, of each corner node of the map. The
U-matrix and cluster size histogram in Figures 4.1 and 4.2 show that the
documents have been spread evenly on the map whereas Figure 4.3 suggests
that nodes far apart on the map indeed hold differing underlying topics.
Therefore, the three figures confirm that the map has captured the topical
structure of the background corpus successfully.

Language models (LM) are trained and combined as described in sections 3.4
and 3.6, respectively. The background LM is a bigram model based on
the background corpus and topic LMs bigrams based on the topic clusters.
The LM vocabulary consists of 60 000 words. All the models are trained
using Kneser-Key backing off method [30]. Adapted models are mixture
models of background LM and the retrieved topic LMs. We use two types
of mixtures. First, using one cluster as the topic model and second, using
a cluster neighborhood. The neighborhood is defined as the retrieved SOM
node and nodes within the distance of one (see Figure 4.4). The mixture
coefficients are 0.5 for the background model and 0.5 divided evenly for the
topic models.
In summary, in the experiments we use three types of LMs which essentially

differ in the use of node neighbourhood of the SOM map. The parameters
of the LMs are presented in Table 4.1.
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SOM 15−Jun−2009

Figure 4.1: The U-matrix of the trained SOM. The nodes represent the
distance in data space between adjacent nodes of the SOM. As the dark end
of the color scale corresponds to large distances, the matrix is interpreted to
show closely connected light areas separated by the dark areas.
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Figure 4.2: The histogram of cluster sizes as documents. The majority of
the clusters are of sizes from 1000 to 4000 documents.
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 1: 
{graphi te-moderated,  
 pyongyang’s, 
 pyongyang, 
 reactor, 
 yongbyon, 
 graphite, 
 IAEA, 
 reactors,
 l ight-water, 
 plutonium, 
 gal lucci}

 7:
{g i l ts ,
 bel lwether,
 industrials,
 index,
 fourths,
 dow,
 CAC,
 pence,
 DAX,
 footsie,
 e ights}

 36:
{PLO,
 palestinians,
 yasser,
 waksman,
 shaath,
 rafah,
 gaza,
 hamas,
 arafat’s
 palestinian,
 a ra fa t }

 42:
{n inet ie ths,
 yen’s,
 interbank,
 currencies,
 sterl ing,
 dollar’s,
 eurodollar,
 pre-tax,
 ounce,
 greenback,
 yen }

1

7

36

42

Figure 4.3: Ten highest tfidf-scoring words in clusters 1, 7, 36 and 42.
The topics of nodes can be interpreted e.g. as nuclear power, stock markets,
palestinian politics and economy, respectively.

Figure 4.4: A SOM map in a 7×6 hexagonal lattice. Two 1-unit
neighbourhoods of sizes 3 and 7 are presented with gray nodes.
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Label N-gram Vocabulary SOM node Smoothing
order size neighbourhood method

background Bigram 60k None Kneser-Ney
background+1cluster Bigram 60k n = 1 Kneser-Ney
background+7clusters Bigram 60k n = 7 Kneser-Ney

Table 4.1: Language models

The speech recognition system used in the experiments has been developed
in the laboratory of computer and information science in TKK. A thorough
description of the system is given in [1]. The main properties of the acoustic
model are presented in the following. Speech signal is sampled using 8 kHz
sampling frequency and 16 bits. The signal is then represented with 12
MFCC (mel-frequency cepstral coefficients) and the log-energy along with
their first and second differentials. Features are calculated in 16 ms windows
with 8 ms overlap. Cepstral mean subtraction (CMS) and a maximum
likelihood linear transformation, which is estimated in training, are applied to
the features. For acoustic modeling we have state-clustered Hidden Markov
triphone models constructed with a decision-tree method [45]. The model
has 5062 states modeled with 32 Gaussians. State durations are modeled
with gamma probability functions [46].

4.3 Experiment description

In chapter 1, we presented the following research questions.

1. Do small-sized topic cues enable a successful topic retrieval?

2. Is successful/failed topic retrieval significantly beneficial/harmful to the
speech recognition performance?

Additionally, we examine if the source of the topic cue or the choice of the
topic retrieval criterion have a significant effect on the topic retrieval.

We approach the first question by comparing the performances of LMs
adapted using large and small-sized cues. To obtain these topic cues, each
document in the test set (see section 4.1) is further processed to three different
forms as follows.

1. Full document.
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2. Word sequence of length n from a randomly selected location within
document.

3. Randomly selected n words within document.

These three forms are used to simulate different topic cue scenarios. The
full document contains all the data available for retrieving the topic.
This retrieval result corresponds to the best estimate for underlying topic
available. A word sequence of length n represents a topic cue obtained as a
short segment of speech. Randomly selected n words represent a topic cue
obtained from other modalities. In the experiments, n is set to 10. From
now on, we refer to the topic cues 1,2, and 3 as full cue, speech cue, and
multimodal cue, respectively. The difference between speech and multimodal
cues lies in the expected strong correlation between the subsequent words
in speech cue. Mainly, it is highly unlikely for speech cues not to contain
any topic-specific words as for multimodal cues this is, in principle, possible.
Additionally, it should be emphasized that the speech cue is merely a
representation of a speech style text segment and differs fundamentally from
a real speech transcription in that it does not include any recognition errors.
An example of the three topic cue forms derived from a single document is
presented in the following.

Full cue

- - - no decisions were taken at the one-and-a-half hour meeting
bolger told reporters that among issues discussed were the
possibility of taking legal action through the international court
of justice support for a protest flotilla which is being planned to
sail to mururoa the prospect of members of parliament taking
part in the flotilla protest and action that could be taken by
the south pacific forum bolger said it was not clear whether new
zealand could mount a legal challenge but the party leaders had
agreed the idea should be pursued - - -

Multimodal cue

told agreed meeting that the consideration would mururoa action
leader

Speech cue
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bolger told reporters that among issues discussed were the
possibility

The topic retrieval performance using the three types of topic cues is
measured by LM perplexity scores using the Gigaword test set. In addition,
we compare the results obtained using the three retrieval criteria:

1. Similarity of q and cluster k using words in vocabulary subset F as
query.

2. Similarity of q and cluster k using words in vocabulary V as query.

3. Likelihood of topic language model pk generating observed word
probability distribution pq .

If the topic retrieval can be done successfully, we should perceive significant
improvement in the perplexity using adapted models compared to the
unadapted baseline.

Second, we study the effect of successful and failed adaptation on speech
recognition by adapting the background LM using properly retrieved and
randomly selected topics, respectively. The results of these two scenarios are
then compared with the unadapted baseline. The results are measured by
perplexity scores, word error rates (WER) and term error rates (TER) [47] on
the speech test set. Essentially, the WER and TER measures differ in that in
WER we take into account all the words in transcriptions whereas in TER we
stem the remaining words before calculating the error rate. The stemming
equals to removing suffixes using the Porter algorithm [48]. In order to
emphasize the effects of topic adaptation, in this work, we also remove non
topical words, referred to as closed class words, from the transcription before
executing the stemming. We define closed class words to include prepositions,
determiners, conjunctions, and pronouns (see [49] for the word lists). The
term order information is discarded and the transcriptions are treated as
term histograms (bag-of-words approach). In short, TER is the fraction of
differing term counts (tc) between the reference (ref) and recognized (rec)
transcription histograms [47]:

TER =

∑
t | tcref (t) − tcrec(t) |∑

t tcref (t)
. (4.1)

Additionally, we use word change rate (WCR) to show how many words,
in percentages, differ between the transcription using background and
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adapted models. Again, we use the full articles to estimate the topic as
well as possible. In consequence, adaptation using full cues results in 8
different adapted LMs. In addition, for each sentence, we pick randomly
10 words from the article corresponding to the sentence to be used as the
small-sized topic cue. Therefore, adaptation using small-sized cues results
in 166 different adapted LMs. In summary, we do the recognition for each
of the 166 sentences using 1) no topic estimate, 2) topic retrieved with
the whole article corresponding to the sentence, 3) topic retrieved with 10
words picked randomly from the article corresponding to the sentence, and
4) purely random topic estimate.

In the following, we use the Wilcoxon signed-rank test [50] to determine the
statistical significance of the results. The null hypothesis is that the results
are derived from identical distributions with equal medians. Therefore,
rejection of the null hypothesis indicates that the difference in model
performances is statistically significant. The null hypothesis is accurately
rejected with confidence, i.e. probability, of α.

4.4 Results and analysis

The perplexity results for the adapted models using differing topic cues and
the retrieval criteria are presented in Table 4.2. Since we are examining the
effect of varying retrieval criteria and topic cue sources on the performance,
the results are disected according to the applied LM.

The multimodal and speech topic cues result in equal adaptations with
practically 100% confidence. This result holds for both background+1cluster
and background+7clusters models. Moreover, we note that the adaptations
using small-sized cues fall coherently between the full cues and random
retrievals.

All pair-wise comparisons of the adapted models against the background
model are presented in Table 4.3. For both LM types, background+1cluster
and background+7clusters, the retrieval criteria performed in the following
improving order: random, criterion 1, criterion 2 and criterion 3. The order
was independent on the topic cue type. However, for the speech cue, the
improvements were not statistically significant. For full topic cues, all the
retrieval criteria (excluding random) and LM combinations resulted in a
beneficially adapted models compared to the background model. With
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multimodal cues, the background+1cluster and background+7clusters LMs
using the criterion 3 outperformed the background models with 99.69% and
99.19% confidence, respectively.

Language model Retrieval criterion Full M.modal Speech

Background None 237 237 237
Background+1 cluster Criterion 1 231 264 267
Background+1 cluster Criterion 2 210 237 234
Background+1 cluster Criterion 3 207 219 223
Background+1 cluster Random 269 269 269
Background+7 clusters Criterion 1 226 252 254
Background+7 clusters Criterion 2 219 232 230
Background+7 clusters Criterion 3 213 221 223
Background+7 clusters Random 256 256 256

Table 4.2: Average perplexity results.

Compared models Full Multimodal Speech

Backgr. Backgr.+1cl+Crit.1 A B B
Backgr. Backgr.+1cl+Crit.2 A A A
Backgr. Backgr.+1cl+Crit.3 A A A
Backgr. Backgr.+1cl+Random B B B
Backgr. Backgr.+7cls+Crit.1 A B B
Backgr. Backgr.+7cls+Crit.2 A A A
Backgr. Backgr.+7cls+Crit.3 A A A
Backgr. Backgr.+7cls+Random B B B

Table 4.3: Pair-wise comparisons of the unadapted background LM and the
adapted LMs using different topic retrieval criteria and topic cues. Cell is
marked with ’B’ if the background model outperformed the adapted model
and ’A’ if the adapted model outperformed the background model. The letter
is underlined if the result is statistically significant (with confidence of 99%).

Average recognition performances for backgound LM, LMs adapted using
retrieval criterion 3, and LMs adapted using randomly retrieved topics are
presented in Table 4.4. In the following, the confidences are determined
on speaker-basis. As to perplexity scores, all the adapted LMs using topic
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retrieval criterion 3 outperfomed the unadapted background model with
practically 100% confidence. In turn, the background model outperformed
the LMs adapted using random topics with 100% confidence. As to WERs,
the background model outperformed all the adapted models. However,
the difference in WER between the background and any of the adapted
LMs was not statistically significant. The column labeled WCR indicates
the rate of words changed (in percentages) between the background and
adapted transcriptions. As to TERs, the background model outperformed
the background+1 cluster models with 100% confidence. The differences
between background and background+7 clusters models were not statistically
significant.

Language model Ret. crit. Topic cue Perp WER (%) WCR (%) TER (%)

Background None None 475 26.0 0 14.2
Background+1 cluster Crit. 3 Full 456 26.2 20.4 16.0
Background+1 cluster Crit. 3 Multim. 444 26.8 20.6 14.7
Background+1 cluster Random None 504 27.1 20.9 15.5
Background+7 clusters Crit. 3 Full 432 26.7 20.8 16.7
Background+7 clusters Crit. 3 Multim. 420 26.4 20.5 14.9
Background+7 clusters Random None 464 26.7 21.0 14.8

Table 4.4: Speech recognition results. The columns indicate used language
model, retrieval criterion, type of topic cue, average perplexity score on
transcription, word recognition error rate (WER), word change rate (WCR)
between adapted and the background model, and term error rate (TER).

The topic retrieval histogram for speaker 1, 4 and 7, i.e. the values indicating
the map nodes retrieved using different topic cues generated from the article
corresponding to these speakers, is presented in Figure 4.5. The retrievals
using small-sized cues are spread around the same general area at the maps
as the retrievals executed using the full document cues.

4.5 Discussion

4.5.1 Topic retrieval

The perplexity results for multimodal and speech topic cues were identical
with practically 100% confidence. This indicates that the cues are equally



CHAPTER 4. EXPERIMENTS 46

FULL 11 7 4 2

2 1

1

1

FULL

1

1

11

1
1

1

2

2 3

6

FULL

1

1

1

1

1

2 2

36

1

1

Speaker 1 Speaker 4 Speaker 7

Figure 4.5: Topic retrieval histogram for speakers 1, 4 and 7. Each
speaker had their individual articles. The ’FULL’ nodes correspond to the
nodes retrieved using the whole articles as topic cues. Then, 10 words were
randomly picked from the articles and the retrieval was executed using these
10 words as a topic cue. This was repeated 20 times. The values on the
nodes show the number of times the node was retrieved.

valuable as to topic retrieval. A priori to tests, the speech cue appeared
to be more efficient since it is practically impossible for a sequence of 10
subsequent words not to contain topical words. In turn, for randomly
selected 10 words this is, in principle, possible. However, as seen from the
results, in large scale, the difference is non-existent.

As seen in Table 4.2, the topic retrieval schemes using document similarity
and the whole vocabulary VB as keywords (criteria 2 and 3) outperformed
the scheme using only feature subvocabulary FB as keywords (criterion 1).
In fact, with small-sized topic cues, the latter performed as badly as if
the topics would have been retrieved randomly. The result supports the
notion that the words in subvocabulary NB can, on average, be considered
valuable keywords for retrieval although they do not play a role in the
topical clustering of the background document corpus. This observation is
supported by the fact that criterion 2 outperformed criterion 1 also when
using full documents as topic cues. At any rate, the result strongly indicates
that the potential loss of keyword optimality caused by expanding FB is
compensated by the gained benefit of enlargened keyword vocabulary.

Next comparison in performances is made between retrieval criteria 2 and 3,
which, as discussed in section 3.3.3, represent a grained and heavily
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smoothed word distribution within topics, respectively. As seen in Table 4.2,
criterion 3 outperforms criterion 2 when the size of the topic cue is decreased
while the performances are identical using full cues. The result indicates
that a heavily smoothed word distribution may be preferable to a grainier
one, especially when the topic cues are of small size. This observation
interestingly agrees with the intuitive conception that there is always a
possibility, no matter how small, for all the known words to be associated
with all the imaginable topics. Therefore, as to statistical modeling of
topical information, no word should be assigned an observation probability
of zero within any topic. This is exactly what is done with criterion 3 where
the topical n-gram distributions are smoothed so that all the events have a
non-zero probability. In turn, as noted in section 3.3.3, criterion 2 assigns
a tfidf weight of zero to all unobserved events. Moreover, the conception is
expected to be of greater importance in the presence of high uncertainty.
This is supported by the fact that the perplexity results between the criteria
differ in favor of criterion 3 specifically when the topic cues are small-sized.

As to mixture LMs, we note that, overall, using a single topic cluster and
a neighborhood of 7 clusters has little impact on the performance of the
adapted model compared to each other. However, the results indicate that
the mixture models using neighborhoods slightly outperform the one topic
mixtures when the topic cue is small-sized (multimodal cue). In contrast,
the one topic mixture outperforms the neighborhood mixture when the topic
cue is sufficiently large (full cues). This observation suggests that, given an
unreliable topic cue, it is beneficial to broaden the topic estimation by its
neighboring topics.

In summary, the perlexity results in Table 4.2 essentially hold the following
information. (i) Given a large topic cue, all the topic retrieval criteria result
in a beneficial adaptation. (ii) Given a small-sized cue, we can execute, on
average, successful topic retrieval using retrieval criterion based on language
model likelihoods (criterion 3). (iii) In the case of small-sized cues, the
temporal dependencies between the words within the topic cue are not
likely to have an impact on the topic retrieval. (iv) As to using mixtures
in language model combination, given small-sized topic cues, the impacts
of single topics and topical neighbourhoods did not differ significantly from
each other.
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4.5.2 Speech recognition

The discussion in previous section was based on the perplexity results. The
results suggested that the topic retrieval can indeed be done, on average,
successfully using small-sized cues. However, the improvements in perplexity
scores usually appear in very small scale as for the whole speech recognition
system. Therefore, we now analyze the speech recognition results in more
detail.

First, by looking at Figure 4.5, we can confirm that the topics retrieved
using small cues are spread nicely around the best possible retrievals in all
three speaker cases. Although from 20 retrievals using small-sized topic cues
none or only one coincided with the node retrieved using large cue, it seems
that the topic estimations tend to be localized at the correct direction at
the bottom section of the map. However, as seen in Table 4.4, by adapting
the background model with valid topic cues, we achieved reductions in
perplexity but no change in the word error rates (WERs). Additionally,
in the worst case scenario, i.e. while using randomly retrieved topics, we
perceived no significant change in the perplexity nor the WER. However,
although after adapting the total WER remained intact, i.e. approximately
every fifth word was recognized falsely, the WCR scores show that on average
every fourth word in the recognition transcriptions was modified. Therefore,
let’s compare the transcriptions provided by unadapted background LM and
adapted LM in more detail with four example cases.

In the first example, we observe that the topical word department is missed
by the unadapted LM but captured by the adapted model.

Transcription
The department previously said jobs rose by four hundred
forty-eight thousand in january.

Recognition using background LM
The departing previously said jobs rose by four hundred
forty-eight thousand in january.

Recognition using adapted LM
The department previously said jobs rose by four hundred
forty-eight thousand in january.
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The above can be considered a model example of what we want to achieve
by adapting. In the second example, both LMs result in identical, and
correct, transcriptions. Therefore, changing the model did affect neither
the recognition of the topical word index nor the non topical words.

Transcription
The index ended with a declining zero point three five point two
one thousand two hundred seventy-two point one eighths.

Recognition using background LM
The index ended with a declining zero point three five point two
one thousand two hundred seventy-two point one eighths.

Recognition using adapted LM
The index ended with a declining zero point three five point two
one thousand two hundred seventy-two point one eighths.

In the third example, we encounter a similar event as above but this time
the effect of adaptation is averse. The unadapted model recognizes the word
average correctly but the adapted model suggests an acoustically similar
word everett in its place. Additionally, the models cause errors at the terms
at and increased to.

Transcription
The average rate on new thirteen week treasury bills increased
to six point one two percent from five point nine seven percent
at the previous auction last week.

Recognition using background LM
The average rate on new thirteen week treasury bills to increase
to six point one two percent from five point nine seven percent
at the previous auction last week.

Recognition using adapted LM
The everett rate on new thirteen week treasury bills increased to
six point one two percent from five point nine seven percent that
the previous auction last week.

The fourth example represents a situation where neither model is able to
capture the correct transcription.
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Transcription
What we don’t know is how much is price and how much is
volume.

Recognition using background LM
What we don’t know is calm are to spray sutton hama a truce
volume.

Recognition using adapted LM
What we don’t know is calm are to spray san hama choose
volume.

This result is caused by a distortion (speaker coughing) in the acoustic
signal during the segment how much is price and how much is. Therefore,
the background model suggests a word sequence which makes little sense.
On the other hand, the adapted model can not do any better. However,
this example is important in that it describes how the speech recognizer
works as a whole. In the beginning of the sentence, the acoustic signal is of
good quality and the system has no difficulty in making the transcription
regardless of the LM. Then, as the acoustic signal becomes unreliable, the
weight of the recognition is shifted on the LM. Therefore, after adapting,
the transcription is affected at the segment where the distortion occurs.
Unfortunately, as can be seen, the changes do not bring the result any closer
to being correct.

The above discussion originated from the observation that we were not able
to reduce WER by topically adapting LMs. However, as to the fundamental
concept of topic adaptation, as we raise the probabilities of topical words, we
consequently have to lower the probabilities elsewhere. Therefore, inherently,
we may be improving our chances at recognizing single topical words while
degrading the general properties of the LM. In consequence, it is difficult
to evaluate the effectiveness of topic adaptation using purely the WER.
Therefore, in addition to WER, we evaluated the recognition results using
term error rates (TERs) in order to emphasize the effect of the topic
adaptation procedure. After the removal of closed class words and stemming,
the first example transcription above is as follows.

Transcription
department previous said jobs rose four hundred forti eight
thousand january
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This type of preprocessing is beneficial in that the subsequent error rate
measurement is focused on the topical words and the effect of adapting the
LM can be observed more clearly. As can be seen from the recognition
results, the change in evaluation measure from WER to TER verifies
further that the adaptation did not result in any improvement in the speech
recognition results.



Chapter 5

Conclusions

In this master’s thesis, we implemented a topic adaptation procedure for
speech recognizer and studied its performance in a multimodal environment.
In a multimodal environment, the main assumption suggested that the topic
cues provided by modalities correspond to short lists of words. Therefore,
we focused on studying the effect of these small-sized cues on topic retrieval
in combination with differing topic retrieving criteria.

The adaptation procedure consisted of obtaining topical partitioning of
background corpus, topic retrieval of the adaptation data, and obtaining
an adapted model by combining the language model of the topic with the
background language model. The topical partitioning was acquired using the
vector space model for document representation, the random projection for
dimensionality reduction, and the self organizing maps for accomplishing the
clustering. Three topic retrieval criteria, namely document similarity using
the feature subvocabulary, document similarity using the total vocabulary,
and topic language model likelihood, were described and implemented.
The adapted language models were combined using mixtures of bigram
background and topical models. All the models used in the experiments
were trained using the Kneser-Ney smoothing method.

The results of the experiments executed on analyzing the obtained language
models are summarized as follows. First, assuming a small-sized topic
cue, it seems unlikely that the topic retrieval would be affected by the
temporal dependencies between the keywords. Second, the subvocabulary
N consisting of rare words and not used as features in topical clustering
of background corpus is to be, on average, considered valuable keywords
instead of noise. Moreover, assuming topic retrieval using small-sized
topic cues, heavily smoothed word distributions within topics seem to be
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preferable to fine-grained distributions. Finally, experiments suggest that
topic retrieval using small-sized keyword lists as topic cues results, on
average, in a successful topic estimation.

The results of the experiments executed on complete adapted speech
recognition system are summarized as follows. The topic adapted LMs
achieved consistently lower perplexity scores than the unadapted background
model. However, the word error rates (WER) and the term error rates
(TER) between topic adapted LMs and background model did not differ
significantly. Importantly, this holds for well-retrieved topics as well as for
intentionally ill-retrievied topics. In brief, the speech recognition results
show that successful topic estimation and adaptation, i.e. improvements
on perplexity, are feasible, while achieving reductions in word error rates
appears to a much more tedious task.

In the experiments, the reception of topic cues from multimodal sources was
based purely on a simulation. Therefore, the experiments in this work can
be naturally extended, and the notes made verified, when real-life data from
multimodal interfaces becomes available.
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