
HELSINKI UNIVERSITY OF TECHNOLOGY

Faculty of Electronics, Communications and Automation

Department of Communications and Networking

Timo Karttunen

Implementing Soak Testing for an Access Network

Solution

Master’s thesis submitted in partial fulfillment of the requirements for the

degree of Master of Science in Technology.

Espoo, February 12, 2009

Supervisor: Professor Raimo Kantola

Instructor: M.Sc. Sami Larkimo

II

HELSINKI UNIVERSITY OF TECHNOLOGY Abstract of the master’s thesis

Author: Timo Karttunen

Name of the Thesis: Implementing Soak Testing for an Access Network Solution

Date: February 12, 2009 Language: English Number of pages: 9 + 87

Faculty: Faculty of Electronics, Communications and Automation

Professorship: Networking Technology Code: S-38

Supervisor: Professor Raimo Kantola

Instructor: M.Sc. Sami Larkimo

The quality requirements are extremely demanding for telecommunications software.

Operators usually have SLA agreements with their customers, and violations to that

contract may lead to serious compensations. Furthermore, every moment that equipment

or some service is not operating correctly means lost income for the operator. For these

reasons, it is extremely important for a telecommunications equipment to continue

functioning properly without service affecting breaks.

The purpose of this thesis was to design and implement automated soak testing for the

IP/MPLS-based Tellabs 8600 router series. The system under test is composed of

several network elements and a graphical Tellabs 8000 Network Management System.

The purpose of this testing environment is to reveal defects that do not show up

immediately in functional or regression testing but may manifest when the system is

used for longer periods or operations are executed many times. A framework for

automatically operating the test network and detecting problems programmatically was

implemented in this thesis.

The testing environment was successfully implemented and satisfies the objectives

initially set for it. Testing environment has been taken into use in system testing at

Tellabs and after deployment has turned out to be useful and effective. Another

identical environment was also implemented for the system testing group.

Keywords: IP, MPLS, VPN, access network, network management, testing,

 test automation, soak testing

III

TEKNILLINEN KORKEAKOULU Diplomityön tiivistelmä

Tekijä: Timo Karttunen

Työn nimi: Pitkän ajan testausjärjestelmän toteutus liityntäverkkoratkaisulle

Päivämäärä: 12.02.2009 Kieli: Englanti Sivumäärä: 9 + 87

Tiedekunta: Elektroniikan, tietoliikenteen ja automaation tiedekunta

Professuuri: Tietoverkkotekniikka Koodi: S-38

Työn valvoja: Prof. Raimo Kantola

Työn ohjaaja: DI Sami Larkimo

Tietoliikennelaitteiden ohjelmistojen toiminnalle asetetaan erittäin kovat

laatuvaatimukset. Operaattoreilla on yleensä asiakkaiden kanssa SLA sopimukset,

joiden rikkomisesta operaattorit saattavat joutua maksamaan suuriakin korvauksia.

Lisäksi jokainen hetki, jolloin laite ei ole toimintavalmis, tuottaa operaattorille

kustannuksia menetettyjen tulojen muodossa. Tämän vuoksi on erittäin tärkeää, että

laitteet ovat jatkuvasti toimintakunnossa eikä palvelukatkoksia tule.

Tämän diplomityön tavoitteena oli kehittää automatisoitu pitkän ajan testausjärjestelmä

IP/MPLS pohjaiselle Tellabs 8600 reititinperheelle. Testattava järjestelmä koostuu

useista verkkoelementeistä sekä graafisesta Tellabs 8000 verkonhallintajärjestelmästä.

Tämän testausympäristön tavoitteena on paljastaa ongelmia, jotka eivät tule esiin

normaalissa toiminnallisessa tai regressiotestauksessa vaan vaativat ilmaantuakseen

pidempää ajoaikaa tai useita toistoja. Työssä kehitettiin kehys sille, kuinka

testausympäristössä voidaan suorittaa automaattisesti erilaisia operaatioita sekä voidaan

ohjelmallisesti havaita mahdollisia ongelmatilanteita.

Testausjärjestelmä toteutettiin onnistuneesti ja täyttää sille asetetut tavoitteet.

Testausjärjestelmä on otettu käyttöön Tellabsin systeemitestauksessa ja on käyttöönoton

jälkeen osoittautunut hyödylliseksi ja tehokkaaksi järjestelmäksi. Systeemitestauksen

käyttöön toteutettiin myös toinen täysin identtinen ympäristö.

Avainsanat: IP, MPLS, VPN, liityntäverkko, verkonhallinta, testaus, testauksen

 automatisointi, pitkän ajan testaus

IV

Preface

This Master’s Thesis was conducted for Tellabs Oy at their Espoo R&D department in

2008. First of all, I would like to thank Tellabs, and especially my manager Juha

Mailisto, for giving me the opportunity to carry out this thesis. I found the subject

extremely interesting and challenging, and thus very educational.

I wish to express my gratitude to my supervisor Professor Raimo Kantola, for all his

valuable advice and guidance especially with the structure of this thesis.

I am also highly grateful to my instructor, M.Sc. Sami Larkimo, for finding the time to

guide me at all stages of the thesis. His guidance and great ideas had a considerable

contribution to this work. Furthermore, I would like to thank all my colleagues in the

system testing group for all their valuable support during the writing of this thesis.

I would also like to thank my family and friends for their great support during my years

of studies. Finally, my warmest thanks go to my dear girlfriend Satu for enduring me

and for her encouragement throughout my studies.

Espoo, February 12, 2009

Timo Karttunen

V

Table of Contents

Preface..IV

Table of Contents ... V

List of Abbreviations .. VII

1 Introduction... 1

1.1 Background .. 1
1.2 Research problem and the objective of the thesis .. 2
1.3 Structure of the thesis... 3

2 IP and MPLS... 5

2.1 IP .. 5
2.1.1 Interconnecting local networks.. 5
2.1.2 Internet Protocol ... 7
2.1.3 Routing and forwarding... 8

2.2 Multiprotocol Label Switching .. 9
2.2.1 Introduction ... 9
2.2.2 MPLS Concept... 10
2.2.3 MPLS Label Stack Header... 11
2.2.4 Forwarding Equivalence Class (FEC) .. 12
2.2.5 Label Distribution Protocols ... 13

3 Tellabs 8600 Managed Edge System ... 16

3.1 Main Applications of the System... 16
3.2 Essential System technologies ... 18
3.3 Quality of Service in the System.. 20

4 Tellabs 8000 Network Management System .. 22

4.1 Network Management .. 22
4.2 Tellabs 8000 Network Manager... 23
4.3 Network Manager Packages... 25

4.3.1 Macro Manager Package .. 27

5 Access Network Technologies and Services.. 29

5.1 Protections.. 29
5.1.1 Multiplex Section Protection (MSP) .. 29

VI

5.1.2 RSVP Path Protection ... 30
5.2 Inverse Multiplexing for ATM... 31
5.3 The PPP Multilink Protocol (MP).. 32
5.4 Services .. 32

5.4.1 MPLS Layer 3 Virtual Private Networks... 33
5.4.2 MPLS Layer 2 Virtual Private Networks... 36

6 Software Testing Overview.. 38

6.1 Software Testing .. 38
6.2 Classification of Testing Techniques ... 39
6.3 Levels of Testing.. 41

6.3.1 Regression testing.. 44
6.4 Soak Testing... 44
6.5 Test Automation... 45

7 Implementation and Verification of the Soak Testing 49

7.1 Objectives... 49
7.2 The Soak Testing Environment.. 50

7.2.1 Services.. 51
7.3 Automating the operations ... 53

7.3.1 Operating network with QTP... 54
7.3.2 Operations with NMS macros.. 56
7.3.3 Operations with telnet connection and CLI ... 58
7.3.4 NMS operations ... 60

7.4 Detecting failures ... 61
7.5 Implementing logging .. 64
7.6 Integrating the pieces together ... 65

7.6.1 Overall architecture .. 65
7.6.2 Operation description.. 67
7.6.3 Additional considerations.. 69

7.7 Deployment of Soak Testing.. 71

8 Summary and Conclusion .. 72

8.1 Summary of the Thesis... 72
8.2 Conclusions .. 73
8.3 Further Research .. 75

References.. 78

Appendix A: Structure of Operation Execution with NMS Macros............... 84

Appendix B: Tcl Script Fetching the Statistics from the Agilent N2X 86

VII

List of Abbreviations

2G Second Generation Mobile Phone Standard
3G Third Generation Mobile Phone Standard
API Application Programming Interface
APS Automatic Protection Switching
APSG Automatic Protection Switching Group
AS Autonomous System
ATM Asynchronous Transfer Mode
BGP Border Gateway Protocol
BMI Buffered Message Interface
BMP Broadband Management Protocol
BSC Base Station Controller
CDC Control and DC Power Card
CE Customer Edge
CES Circuit Emulation Service
CIDR Classless Inter-Domain Routing
CLI Command Line Interface
CoS Class of Service
CPU Central Processing Unit
CSPF Constrained Shortest Path First
DiffServ Differentiated Services
DSCP Differentiated Services Code Point
E1 E-carrier level 1
eBGP exterior Border Gateway Protocol
EGP Exterior Gateway Protocol
ERO Explicit Route Object
FDDI Fiber Distributed Data Interface
FEC Forwarding Equivalence Class
FTP File Transfer Protocol
FR Frame Relay
GSM Global System for Mobile Communications
GUI Graphical User Interface
HDLC High-Level Data Link Control
HTTP Hypertext Transfer Protocol
iBGP interior Border Gateway Protocol
IETF Internet Engineering Task Force
IGP Interior Gateway Protocol
IMA Inverse Multiplexing for ATM
IP Internet Protocol
IPv4 Internet Protocol version 4
IS-IS Intermediate System-to-Intermediate System
ISP Internet Service Provider
ITU-T International Telecommunication Union,

Telecommunication Standardization Sector
JAR Java Archive

VIII

L1 Layer 1
L2 Layer 2
L3 Layer 3
LAN Local Area Network
LDP Label Distribution Protocol
LER Label Edge Router
LSA Link State Advertisement
LSP Label Switched Path
LSR Label Switched Router
ML-PPP PPP Multilink Protocol
MP-BGP Multi-Protocol BGP
MPLS Multiprotocol Label Switching
MSP Multiplex Section Trail Protection
MSPG Multiplex Section Protection Group
MTU Maximum Transmission Unit
N2X Agilent Test Equipment
N-PE Network-facing Provider Edge
NMS Network Management System
OAM Operations and Maintenance
OSI Open Systems Interconnection
OSPF Open Shortest Path First
P-a Provider router in access network
PDU Protocol Data Unit
PE Provider Edge
PHB Per Hop Behavior
PLT Packet Loop Test
PPP Point-to-Point Protocol
PSN Packet Switched Network
PW Pseudo Wire
PWE3 Pseudo Wire Emulation Edge to Edge
QoS Quality of Service
QTP QuickTest Pro
RAN Radio Access Network
RED Random Early Detection
RFC Requests For Comments
RIP Routing Information Protocol
RNC Radio Network Controller
RSVP Resource ReSerVation Protocol
RSVP-TE Resource Reservation Protocol - Traffic Engineering
SAToP Structure-Agnostic TDM over Packet
SDH Synchronous Digital Hierarchy
SLA Service Level Agreement
SNMP Simple Network Management Protocol
SONET Synchronous Optical Network
SSH Secure Shell
STM Synchronous Transport Module
Tcl Tool Command Language

IX

TCP Transmission Control Protocol
TDM Time Division Multiplexing
TE Traffic Engineering
TTL Time To Live
U-PE User-facing Provider Edge
UDP User Datagram Protocol
VC Virtual Circuit
VLAN Virtual LAN
VP Virtual Path
VPLS Virtual Private LAN Service
VPN Virtual Private Network
VPWS Virtual Private Wire Service
VRF Virtual Routing and Forwarding
WAN Wide Area Network
WFQ Weighted Fair Queuing
WRED Weighted Random Early Detection

1

1 Introduction

1.1 Background

Access networks have traditionally been based on various circuit switching

technologies. However, at the moment these distinct networking technologies are

evolving towards converged IP networks. The change is happening in both wireline and

mobile access networks. In mobile access networks the old technologies with limited

capacity do not provide the long term scalability and flexibility that mobile network

evolution demands. Thus, the underlying transport technologies of Radio Access

Networks (RANs) are expected to undergo a transformation from Time Division

Multiplexing (TDM) and Frame Relay (FR) to ATM and eventually to IP. This

evolution will take a long time and means that operators need to support all legacy

technologies simultaneously with IP.

In wireline networks the most popular business service is Local Area Network (LAN)

interconnection, which is used to build corporate intranets and share company data and

applications across remote sites. Traditionally, the technology for providing LAN

interconnection has been TDM, FR and ATM. However, these are all limited in their

capacity and are not very cost-efficient when used to transport data traffic in high

volumes. This means that the current network infrastructure is becoming inefficient and

expensive to maintain. Hence, it is no surprise that the trend today is towards Ethernet-

and IP based services. An IP infrastructure is the ideal choice for quickly and cost

effectively delivering different types of business and residential services. However, it is

critical that this new infrastructure provides service levels comparable to traditional

circuit switching technologies.

IP/MPLS has emerged as one of the strongest candidates for the above mentioned

access network evolution. MPLS can support various other transport technologies, such

as ATM, TDM, Frame Relay, and Ethernet, by tunnelling them over IP/MPLS network.

Furthermore, MPLS allows service providers to make use of traffic engineering

capabilities and it brings guaranteed QoS into best effort IP networks. The combination

2

of IP and MPLS provides the predictable properties of circuit switching but at the lower

cost of Ethernet based devices, creating a robust, scalable and manageable platform for

delivering next generation voice and data services.

1.2 Research problem and the objective of the thesis

Tellabs Oy, an enterprise operating in Finland, has designed Tellabs 8600 system to

address the abovementioned challenges faced by the telecom service providers. It is an

Internet Protocol/Multi-Protocol Label Switching (IP/MPLS) based access network

solution primarily targeted for mobile networks, but also applicable in fixed networks.

The sophisticated Quality of Service and Traffic Engineering features of the system

allow the creation of services with strict service level requirements. By supporting also

legacy networking technologies the system supports smooth transition towards all-IP

networks. Tellabs 8600 network elements are managed with the graphical user interface

(GUI) of the Tellabs 8000 Network Manager.

Today’s Internet service providers (ISP) offer specific service guarantees to their

customers according to agreed service-level agreements (SLAs). SLA is a contract

between a network service provider and a customer that specifies what level of service

the ISP will guarantee. To be able to keep the strict SLA’s the ability of networking

equipment to continuously function correctly is extremely important to service

providers. Therefore the phase of testing becomes crucial in telecommunications. In this

thesis, the word testing is used to specifically mean software testing.

The objective of this thesis is to design and implement an automated testing

environment for soak testing of Tellabs 8600 series routers. The purpose of this soak

testing environment is to find problems that do not show up immediately in functional

and regression testing but could manifest themselves in the service providers operating

network. Soak testing, also known as endurance testing, is a type of testing where the

system will be run over a prolonged period of time in order to check the system’s

stability under sustained use. The purpose is to reveal resource usage problems such as

memory leaks or buffer overflows. For example, networking equipment may work

3

normally when testing is executed for a few hours or some functionality is tested only a

few times but may fail if the testing period is extended to several days. The

implemented environment will be used in system testing of the Tellabs 8600 system and

will continue to expand after this thesis.

At first the physical network environment will be built and measuring equipment

configured so that data can be run through the network. Some methods to automatically

operate the network are examined. Test tool called QuickTest Professional is already

used in system testing of the 8600 system to run scripts that automatically operate the

GUI of the Tellabs 8000 Network Management System. QuickTest Professional

software is a tool for automating testing and for building functional and regression test

cases. It is first checked whether this software is applicable also for soak testing

purposes. In case it is not, some other ways to implement operations are examined, such

as NMS macros or CLI configuration through telnet sessions. Automatic operation of

the environment requires that also problems are automatically recognized. Therefore,

various methods to automatically detect problems in the environment will be examined.

The environment needs also some method to log everything that is done, in order to be

able to afterwards trace where problems have occurred.

1.3 Structure of the thesis

First half of this thesis presents the various technologies involved. Since the Tellabs

8600 system is based on the IP/MPLS, this thesis starts by examining these technologies

in Chapter 2. Chapter 3 contains an overview of the Tellabs 8600 Managed Edge

System itself. The chapter presents the essential system technologies and main

applications of the system. The chapter ends by explaining how Quality of Service is

implemented in the routers. Chapter 4 presents the Tellabs 8000 Network Manager,

which is used to manage the Tellabs 8600 network elements. Before explaining the

Tellabs implementation of the network manager a short introduction to objectives of

network management is given. Chapter 5 starts by examining some technologies that

will be present in the implemented environment before explaining the services at the

4

latter part of the chapter. These services are layer 2 and layer 3 MPLS Virtual Private

Networks (VPNs).

Sixth chapter provides an overview on the objectives of software testing. Testing levels

and various techniques are presented before giving a brief introduction to soak testing

and test automation. In Chapter 7 the soak testing for an access network solution is

implemented. The network, including the measurement device, is built and configured.

Different methods to automatically operate the network and detect failures are

examined. Finally, in Chapter 8 a summary of the thesis and some suggestions for

further developing the testing environment are given.

5

2 IP and MPLS

In this chapter, an overview of IP and MPLS technologies is given. The Tellabs 8600

Managed Edge System is an IP/MPLS based system and thus knowledge of these

underlying technologies is essential. In the first part of this chapter, a brief overview of

the IP technology is provided. The latter part of the chapter discusses MPLS

technology. The services created with the Tellabs 8600 system are L2 and L3 MPLS

based VPNs. Furthermore, this chapter shows how MPLS brings traffic engineering and

Quality-of-Service support to best-effort IP networks.

2.1 IP

2.1.1 Interconnecting local networks

Local Area Networks (LANs) enable computers attached to it to communicate with

each other. LAN represents the simplest possible network, since the hosts (computers)

are all directly connected by some physical medium. However, LANs suffer from two

main limitations. The number of hosts that can be attached to one LAN is limited and

LANs are restricted to a relatively small geographical area. These limitations can be

compensated to some extent with bridges and switches, which allow several LANs to be

connected together. Nevertheless, LANs build with bridges and switches are limited in

their ability to scale and are not very well suited for handling different types of LAN

technologies. [29]

To be able to connect two or more networks, which can possibly be geographically

dispersed and based on different LAN technologies, we need the concept of

internetworking. Internetworking means connecting networks together to form an

internetwork, using devices which operate at layer 3 of the OSI Basic Reference Model.

Internetworks are large networks that are very heterogeneous and have fairly efficient

routing; the most notable example being the Internet. Figure 2.1 shows an example of

internetwork where various LANs are connected by a Wide Area Network (WAN).

6

Figure 2.1: An example of internetwork composed of several networks [6]

Internetworks are often based on the TCP/IP architecture, which is a four layer model

depicting how to implement the internetworking concept. The four layers of the model

are from bottom to up: Network access, Internet, Transport, and Application. As in the

case of the OSI model, in the TCP/IP model layers offer services to upper layers

through interfaces and use services of lower layers. [9, 29]

The hourglass shape of the architecture is best described with the famous catchphrase

by Vinton Cerf, the first president of the Internet Society, “IP over everything, and

everything over IP”. At the bottom of the model are a wide variety of technologies,

ranging from Ethernet to FDDI to ATM to single point-to-point links. In fact, this layer

can be, and often is, a composition of several different protocols. Hence, IP runs over

everything. The second layer consists of only one protocol, namely the Internet

protocol. IP is the main protocol of the TCP/IP model and creates a single logical

internetwork by connecting separate networks together. It hides the low-level

technology details and enables hosts to communicate. While IP connects remote hosts

together, the layer above it connects processes running in these hosts. Two main

transport level protocols are TCP and UDP. At the top of the model are the application

layer protocols, which enable the interoperability of different applications through

networks. Typical examples are File Transfer Protocol (FTP) and HyperText Transfer

Protocol (HTTP). [29]

7

Routers, also known as IP gateways, are special networking equipments that connect

separate networks together at the OSI layer 3. As mentioned, these networks can be

based on different technologies. Routers forward packets based on their routing tables

that are populated by routing protocols. Routing and forwarding are discussed in section

2.1.3.

2.1.2 Internet Protocol

IP is the focal point of the TCP/IP model and is documented in the IETF RFC791.

Internet protocol offers connectionless, best-effort delivery of packets through an

interconnected set of networks. IP has been kept deliberately very simple. It does not

provide any end-to-end data reliability, flow control, or sequencing but these are

addressed by other protocols. The best effort service model of IP does not give any

guarantees for packet delivery. It tries to deliver the packets to destinations, but if

packets get lost, for any reason, the network is incapable of correcting the situation. IP

packets are conveyed in a connectionless manner, meaning that no connections or

circuits are created between source and destination. These datagrams contain enough

information so that the network knows how to route them to destinations. [29, 30]

Each interface in the network is identified with the worldwide unique IP address; a 32

bit long word consisting of two parts; the network part and the host part. Initially there

were three main classes of network numbers. Network part was 7-bits for class A

addresses, 14 bits for class B and 21-bits for class C. Later, as network managers

wanted to further structure their networks, third part was added to this two-level

hierarchy. Subnetting divides organization’s network into smaller parts called subnets.

The addresses of all nodes in a subnet start with the same binary sequence, identified

with the 32-bit subnet mask. [15]

To address the backbone routing table explosion and the exhaustion of the 32-bit IP

address space the concept of Classless Inter-Domain Routing (CIDR) was developed

[29]. With CIDR the prefixes are not constrained to 8, 16 and 24 bits, but can be

composed of any number of contiguous bits. CIDR uses variable length subnet masks to

represent the network part of the address. Thus the division between network and host

8

part can occur at any bit position in the address. In the CIDR notation the number of

contiguous bits representing the network part is shown at the end of the address. For

example 10.121.104.4/30 indicates that the network part of the address is 30 bits long.

[15]

2.1.3 Routing and forwarding

As mentioned, routers connect separate networks together. Routers have two main

responsibilities; routing and forwarding. Routing is implemented by the routing

protocols and involves obtaining reachability information to other networks. Based on

the received routing information, the routing algorithm calculates the best routes to

every destination network. This information is shown in the routing tables in the form

destination/next hop association. Routing tables contain information on all the best

paths to all the destinations that they know how to reach. Internet protocols operate in a

distributed fashion, since there are no central point calculating the routes and

distributing those to all routers. Routing directs the process of forwarding. Forwarding

is the process of taking a packet from input interface for transmission and deciding the

interface through which it should be transmitted. This is done by checking the

destination address and looking the next hop from the routing table. After decision the

packet is transmitted through the selected interface. [6, 13]

Various link-state protocols are nowadays the most widely used Internet routing

protocols. Link-state protocols flood the information to all the nodes in their network.

Routers send information about their directly connected links with link state

advertisements (LSA). This LSA contains information about the destination network

and the cost of this link. Routers receive these LSAs from all the other nodes in the

network and store them in a link state database. This link-state database represents the

topology of the whole network. Djikstra’s algorithm is then used to calculate the best

paths to destination networks and routing table is populated by the results. OSPF and

IS-IS are examples of link-state algorithms. [15]

Routing protocols are commonly divided to interior gateway protocols (IGPs) and

exterior gateway protocols (EGPs). Interior gateway protocols are used to distribute

9

routing information inside one autonomous system (AS) and exterior protocols are used

to exchange routing information between ASs. An AS is a collection of IP networks and

routers under the control of one administrative authority, typically single ISP. OSPF, IS-

IS and RIP are all IGPs, the most common EGP is Border Gateway Protocol (BGP)

[31].

2.2 Multiprotocol Label Switching

2.2.1 Introduction

Initial motivation for the development of MPLS was to achieve the speed of L2

switching also in IP based L3 forwarding. L2 forwarding is based on address lookup on

full address where the first match in database is always unique and thus the exact

answer. L3 lookup, in contrast, is based on the longest match principle, where several

routes to the same destination can be found. So, the whole database needs to be checked

as the first match is not always the best one. [51]

In the mid-1990s several companies had their own ongoing efforts to combine IP and

ATM technologies. Of these technologies, the most significant ones where developed

by Ipsilon (IP switching), Cisco Systems (Tag Switching), IBM (aggregate route-based

IP switching), and Cascade (IP Navigator). The approach used in all these proprietary

technologies was very much the same, since those all tried to utilize ATM in a way or

another. In 1997 the Internet Engineering Task Force established the MPLS working

group, in order to develop a standardized and vendor-independent protocol. The goal

was to use existing IP routing protocols to discover the routes between endpoints and to

allow the separation of control and forwarding components. [37]

At the same time the networking equipments improved and got much faster. These new

routers were as competent as ATM switches and looking up longest best match was no

longer an issue. This caused the original motivation to MPLS development fade away.

Instead of making forwarding faster, new applications rose. The label switching

principle of MPLS brings the following capabilities [37]:

10

• QoS Support - IP-based networks cannot provide the quality-of-service features

available in circuit-based networks, such as Frame Relay and ATM. MPLS

enables the capabilities of these connection-oriented protocols in the

connectionless IP world.

• Traffic Engineering - The ability to choose the path that traffic will flow through

the network is called Traffic Engineering. This can be based on the network

utilization and demand, thus increasing the utilization of the network. [21]

• VPN Support - When the service provider uses its IP/MPLS backbone for VPNs,

MPLS is used to separate different customers’ traffic in the backbone. [43]

• Multiprotocol Support - In addition to all the above advantages, one of the most

important advantages of MPLS is that it is independent of the layer 2 and layer 3

technologies and hence allows integration of networks with different layer 2 and

layer 3 protocols.

2.2.2 MPLS Concept

MPLS based packet forwarding is done according to labels attached to packets. Each

packet is assigned a label value and forwarding is done based on that. Figure 2.2 shows

the basic components of an MPLS network. Routers participating in forwarding in the

MPLS enabled network are called Label Switching Routers (LSRs). For each link the

router that is in the direction of the data flow, is called downstream LSR, and the other

router is naturally the upstream LSR.

Figure 2.2: Components of MPLS network [37]

11

The routers at the entry and exit points of an MPLS network are special kind of LSRs

called Label Edge Routers (LERs). The entry point of network occurs at ingress LER,

which does the packet classification and assigns a label value to it. Whereas the exit

point of the network, which is egress LER, is responsible for removing the MPLS

header. The unidirectional path that a particular packet travels through the MPLS

domain is called Label Switched Path (LSP). It is a sequence of LSRs that do

forwarding decisions based on the label value of the packet. This path is set up before

data transmission with the assistance of Label Distribution Protocols (LDP). Thus,

MPLS operates in a connection oriented way. [37, 51]

The label operations that a MPLS enabled router can make are push, pop and swap [34].

When a packet first enters a MPLS network the LER pushes a label to the packet before

forwarding it. As this packet travels through the network, the intermediate routers check

this label and based on the label value swap it to a new label. The egress LER pops the

label and forwards the packet without MPLS header. [10]

2.2.3 MPLS Label Stack Header

MPLS label stack header is often referred to as being Layer 2+ header, because it is

located between L2 (data link layer) and L3 (network layer) headers of the OSI model.

The MPLS label stack header, also known as MPLS shim header [51], is 32-bits long

and consists of four parts [33]:

Figure 2.3: MPLS header

Label – Label field carries the actual label value of this MPLS packet.

12

EXP – These three bits are reserved for experimental use. These are nowadays also

called as Class of Service (CoS) bits and are used to carry the packet priority

information. For example, the queuing and scheduling algorithms applied to the packet

can be derived from these bits.

S – Stack bit tells whether this is the last header in the stack.

TTL – An 8 bit Time-to-live value is usually decremented by one in every hop. When a

MPLS packet with a TTL value of 1 is received, the receiving LSR discards the packet.

MPLS label can be encapsulated inside another MPLS label, thus creating a label stack.

Label stacking allows the creation of hierarchical networks where multiple LSPs are

aggregated inside one trunk LSP through the backbone network. The most significant

benefit of this is the ability to create scalable L2 and L3 VPNs.

The processing of MPLS packet is always based on the label at the top of the stack,

hence the label that was added last [34]. As the packet flows through the tunnel only the

outer label is swapped, while lower labels remain the same. Thanks to this label

stacking, the LSRs in the core network do not have to know the label binding for every

LSP that goes through them. Rather it has to only know the bindings for the aggregating

tunnels between edge routers, hereby enhancing the performance and the scalability of

the network. [51]

With MPLS it is possible to use a mode called penultimate hop popping. In penultimate

hop popping the LSR prior to egress router pops the outer label, instead of swapping,

and forwards the packet with the inner label to the egress router. This enhances the

performance of the egress router, since without penultimate hop popping the edge router

would have to make two lookups. First it would have to derive that it is the egress router

and then forward the packet based on the inner label. [51]

2.2.4 Forwarding Equivalence Class (FEC)

A forwarding Equivalence Class (FEC) is a term used to describe a group of packets

which are treated in a same way at the intermediate nodes. FEC correspond to a certain

label switched path (LSP), whereas the reverse is not true since LSP is usually used for

multiple FECs. The mapping of packets to a certain FEC can be made with several

13

different characteristics. Some commonly used characteristics are the destination IP

subnet, egress router of the MPLS cloud, and the value of the Type of Service field of

IP packet. The packet classification and mapping to a particular FEC is done by LER as

the packet first enters the MPLS network. Packets belonging to the same FEC will be

assigned the same label value. [34, 51]

As can be seen, FEC relates to the level of aggregation used when forwarding packets,

called forwarding granularity. For example, the forwarding granularity in current IP

networks is based on the destination IP address. MPLS allows multiple levels of

granularity to coexist in the same network, thus giving more control over the forwarding

of packets. For example, the ingress LER can classify packets so that higher priority

packets get better treatment over the same path to the same destination. [51]

2.2.5 Label Distribution Protocols

Before packets can be sent through LSPs, paths have to be established with Label

Distribution Protocol (LDP). With LDP one LSR informs other LSRs about the

label/FEC bindings that it has made. For each link the downstream LSR is responsible

for the mapping and informing this to the upstream LSR. Routers that share this

label/FEC binding information with each other are called label distribution peers. Label

distribution can be done in one of two modes: [34]

• Downstream-unsolicitated is a mode, in which an LSR announces a label

binding for all of its label distribution peers without any request from them.

• Downstream-on-demand is a mode, in which the upstream LSP explicitly

requests the label from downstream LSR.

When an LSR receives FEC/label bindings from a downstream router, it may be the

case that this downstream router is not a valid next hop for that FEC. In this case there

are two options for label retention [34]:

14

• Conservative – Only labels that come from valid next hop are kept. This saves

the label space in case there are a lot of peers but the adaptation to routing

changes is slower than in the liberal mode.

• Liberal – In this mode all received labels are kept regardless of the fact whether

the downstream LSR is a valid next hop for this FEC. The benefit from this is

that labels are ready to be used if the downstream LSR becomes the next hop for

this FEC due to routing changes.

LDP can actually refer to the label distribution protocols in general or it can also refer to

a particular protocol designed for the same purpose. In fact, there are several protocols

designed for this purpose, LDP and RSVP-TE are the two protocols supported by the

Tellabs 8600 routers and presented here.

Original LDP specification is at the RFC3036, LDP Specification, but it is now

obsoleted by RFC 5036. LDP is used mainly in situations where traffic engineering

capabilities are not required. LDP is designed to support hop-by-hop label distribution.

With LDP the LSPs are established according to the IP forwarding tables of LSRs. So

packets travel the same path as normal IP packets would. Thus, LDP is not suitable for

traffic engineering purposes. If, for any reason, an LSP is broken, LDP relies on IGP in

path restoration. First the IGP routes have to converge and then the new path is

established based on these new IP forwarding tables on LSRs. The main benefit of LDP

comes from the ease of setting up a full mesh of LSPs between all of the routers on the

network. It supports both modes of label distribution, while the most common is

unsolicitated mode. [1, 51]

When LDP is enabled on some interface of an LSR it starts sending Hello packets in

order to discover adjacent LSRs. After neighbour discovery, an LDP session is

established between the corresponding routers. The hop-by-hop LSP creation from

ingress router to egress router occurs in the following way if downstream-unsolicitated

mode is used. The egress LER broadcasts label mappings with advertisement messages

to all of its neighbours. These broadcasts spread over the entire network until they reach

15

the ingress routers. On each hop, the messages inform the upstream router of the label to

use for each LSP. This way LDP floods the whole network and establishes LSPs

between all of the LDP enabled routers. [51]

Resource Reservation Protocol - Traffic Extensions (RSVP-TE) is defined in RFC 3209

and is a traffic engineering extension to a well known resource reservation protocol

RSVP, defined in RFC 2205. Some of the new features added to RSVP by RSVP-TE

are label distribution, explicit routing, bandwidth reservation, rerouting of LSPs, and

tracking of the route that an LSP takes. RSVP-TE is used to establish MPLS LSPs,

called LSP tunnels, when there are traffic engineering or Quality of Service

requirements. It works in an end-to-end fashion and allows the reservation of resources,

such as bandwidth, for the entire path. Conventional IP routing can be bypassed with

the use of explicit routing. Explicit routes can be injected manually or determined with

the help of the CSPF (Constrained Shortest Path First) algorithm. This CSPF algorithm

can take into account many characteristics, such as unreserved link bandwidth. [2, 51]

Setting up an RSVP tunnel requires the exchange of Path and RESV messages. When

an ingress LSR recognises the need to establish an LSP to an egress LSR, it generates

the Path message. This Path message might include the explicit route object describing

the detailed path to the destination and the traffic parameters associated with the route.

When this message is received by the egress LSR, it allocates a label for the LSP and

determines from the traffic parameters the resource reservations needed for the tunnel.

These are included in the RESV message, which is sent back to the ingress LSR. As the

message travels back towards the ingress router, each intermediate router allocates a

label for the LSP, sets up the forwarding table, and reserves the needed resources. The

tunnel is established when this message reaches the ingress router. [2, 51]

16

3 Tellabs 8600 Managed Edge System

In this chapter, a brief overview of the Tellabs 8600 system is given. Firstly, this

chapter presents the main applications of the Tellabs 8600 system. Hereafter, the

essential system technologies and the routers, including their roles in the network, are

presented. The chapter ends with a discussion of how the system implements different

Quality-of-Service levels. Understanding the applications and capabilities of the system

is important in order to design a test environment for the system.

3.1 Main Applications of the System

Tellabs 8600 Managed Edge system is a scalable IP/MPLS based access network

solution for evolving networks. The system is a suitable transport solution for a service

provider in environments where QoS and service management are important features. It

is mainly targeted to be responsible for the transport part of the mobile access networks

from the base station sites to the RNC/BSC sites. [44]

Figure 3.1: The positioning of Tellabs 8600 System in the service provider’s

network [44]

17

The Tellabs 8600 system supports multiple technologies, such as TDM, SDH, ATM,

FR, and Ethernet, which are needed in the evolving networks. It is a single platform that

can support TDM based GSM networks, 3G R99 ATM networks and 3G R5 MPLS/IP

networks. On the wireline side, a service provider can construct an access network with

the Tellabs 8600 system for providing LAN interconnections, Internet access and

corporate voice services to business customers, for instance. These services are

implemented with scalable and QoS capable Layer 2 and Layer 3 MPLS VPNs. Figure

3.1 shows the positioning of the system in the service provider access network. [44]

The main applications of the Tellabs 8600 Managed Edge System are [40]:

• Mobile transport in 2G and 3G RAN – 2G transport with TDM pseudo wires, 3G R99

transport with ATM pseudo wires, and 3G R5 transport over IP/MPLS network.

• Managed voice and data leased line business services – Various services can receive

desired QoS treatment.

• Managed LAN interconnection services – Replacing leased lines as a way to offer

corporate intranet services with lower-cost Ethernet tunneling over MPLS network.

• Managed IP VPNs – Provides many-to-many IP-level connectivity through operators

network

• Broadband service aggregation – Helps network convergence by providing a single

platform for aggregation of several services such as voice, data, and video [44].

The Tellabs 8600 system includes several different sized network elements and the

service-oriented network management system (NMS). Together with the graphical user

interface based Tellabs 8000 network manager, the network and end-to-end service

management are easy and efficient to execute, thus enabling significant savings on

operational and maintenance costs. The Tellabs 8000 network manager is presented in

the next chapter. [44]

18

3.2 Essential System technologies

Some essential technologies of the system are listed below [40]:

• MPLS – for emulating different technologies by tunneling these via label

switched paths.

• RSVP – to establish traffic engineered MPLS LSPs with bandwidth reservations

and explicit routing.

• DiffServ - for categorizing traffic into different service classes.

• Layer 3 (IP) VPNs - RFC2547bis based BGP/MPLS VPNs for implementing

multipoint-to-multipoint layer 3 connectivity between geographically dispersed

customer sites through the operator network.

• Layer 2 VPNs - realizing layer 2 (TDM, ATM, Ethernet, Frame Relay and

HDLC) connectivity between sites through the operator network with pseudo

wires.

• BGP - for distributing customer routes through the operator network between IP

VPN service endpoints.

• OSPF and IS-IS - for IP routing inside a single core or access network.

• Ethernet, ATM, Frame Relay and TDM - as customer access and aggregation

technology, as an alternative to MPLS in the access network.

• Traffic Engineering (TE) – TE extensions for RSVP and OSPF protocols to

reserve capacity for LSPs and to select the used path based on the Constrained

Shortest Path First (CSPF) algorithm.

• LDP – used to establish MPLS LSPs when traffic engineering is not required.

The trend in access networks is towards Ethernet, since it has a significant cost

advantage over other networking technologies, including ATM, FR, and SDH. As the

system supports both legacy connection-oriented networks and packet switching

technologies, it provides seamless path for service providers to shift from circuit

switching to packet switching. MPLS together with IP can provide the quality-of-

service features available in ATM networks but at the lower cost of Ethernet networks.

The Tellabs 8600 system allows the operator to increase the utilization of the network

19

by using advanced QoS and traffic engineering features. These tools can guarantee

superior treatment for premium services while best effort data traffic can utilize the

excess bandwidth. [44]

The 8600 router family consists of elements for all parts of the mobile operators RAN

from cell sites to RNC/BSC sites. The modular design of the Tellabs 8600 system

elements allows the service provider to equip each element with desired interfaces and

required capacities. These requirements are highly dependent on the position of the

element in the network. Modules can be added or upgraded based on the changing

demands of voice and data services. All network elements are based on the architecture

where switching is distributed to all line cards, meaning that there is no separate switch

card. [44]

The largest and highest-capacity network element is the Tellabs 8660 Edge Switch [48].

The position of the element is typically at large hub sites or close to Radio Network

Controller/Base Station Controller (RNC/BSC) [48]. The rack of Tellabs 8660 Edge

Switch has 14 slots, of which slots number 1 and 14 are reserved for integrated Control

and DC Power Feed Cards (CDCs). One CDC is always active and the other one is in

the passive state protecting the active one. If, for any reason, the active CDC is not

operable, the passive one becomes the new active CDC. The remaining 12 slots are

available for line cards, which again can be equipped with two separate interface

modules. The Tellabs 8630 Access Switch is a more compact version of the 8660 and is

aimed for medium and small hub sites or traffic aggregation sites in the mobile RAN

[47]. It can be equipped with four line cards and 2 CDCs. The Tellabs 8620 Access

Switch is targeted to be used at base stations, small hubs sites or as provider managed

customer premises equipment. Tellabs 8605 switch is a cell site node specially designed

for cost-efficiently switching or backhauling 2G and 3G traffic from a cell site towards

RNC or BSC through TDM, ATM or Ethernet pseudo wires. As well it can be used as

customer-premises equipment for providing business services. It is equipped with 16 E1

interfaces, two gigabit Ethernet interfaces, and two fast Ethernet interfaces. Latest

addition to the 8600 router family is the upcoming Tellabs 8607 router, which is more

20

or less designed for the same purposes as 8605 but with swappable modules. All of the

network elements have QoS support, allowing the creation of predictable services. [44]

3.3 Quality of Service in the System

IP/MPLS is a suitable platform for supporting services with varying QoS requirements

in terms of delay, jitter, bandwidth, and packet loss, thus eliminating the need to build

separate networks for different purposes. Tellabs 8600 routers support DiffServ-based

traffic management to classify IP or MPLS traffic. Based on the requirements, packets

are classified to a limited number of QoS classes, as shown in the Figure 3.2. Packets in

the same QoS class get the same forwarding treatment in the intermediate routers.

Packets are classified and marked based on L2, L3 and L4 information at the edge of a

Differentiated Service domain. QoS has been implemented in the 8600 router so that an

incoming packet is mapped to a certain PHB, which defines the packets forwarding

treatment inside the router. Every router contains default settings about how mapping is

done from different networking technologies to Per Hop Behavior (PHB). In Figure 3.2

the mapping is done from Ethernet 802.1p bits and from VLAN, but it can also be made

from DSCP bits in an IP packet or MPLS EXP bits, for example. Naturally, for an

outgoing packet the mapping is reverse. [38]

Figure 3.2: QoS mapping in Tellabs 8600 system. [46]

21

Sophisticated queue management and scheduling algorithms, based on the PHB of the

packet, are used to ensure the required QoS for the packets. Each QoS class gets its own

queue, where RED/WRED algorithms can be used for queue management. A

combination of strict priority and WFQ (weighted fair queuing) is used for packet

scheduling. Priority packets in the strict priority queues are always served first and the

remaining capacity is allocated to other queues using WFQ. [38]

22

4 Tellabs 8000 Network Management System

In this chapter, the Tellabs 8000 Network Management System is presented briefly.

First, the chapter discusses the objectives of network management in general. After that,

we will introduce the Tellabs implementation of the network management system. The

benefits and components of the management system are briefly discussed. The

capabilities of the system are presented by introducing various packages that compose

the system. A special emphasis is given to the macro manager package, which is used in

the implemented soak testing environment to operate the network.

4.1 Network Management

Without proper management the networks are of not much value in the long run. The

management of network resources is not an easy task and becomes more and more

laborious as the number of network elements, users and services increases. Therefore,

there is a need for efficient network management. Network management includes all the

activities and tools that involve the planning, organizing, monitoring, accounting, and

controlling of networked systems. [3, 7]

The major functions of network management systems are categorized into five separate

areas by ITU-T in recommendation M.3400. The model is also known as FCAPS model

[7, 19]:

• Fault management – The objective of fault management is to identify, log, report

and possibly fix problems in the network.

• Configuration management – Configuration management is concerned with

setting configurations and retracing any changes that take place on configuration

information of the network elements.

• Accounting management – The goal is to measure statistics of the usage of

network resources by individual users in order to be able to charge them

correctly and to regulate them appropriately.

• Performance management – The goal of performance management is to gather

performance related information from the network in order to determine the

23

efficiency and utilization of the network. This helps to ascertain a sufficient

performance level and prepare the network for the future.

• Security management – The security management is concerned with preventing

the access to the network resources by those without proper authorization.

4.2 Tellabs 8000 Network Manager

An essential part of the Tellabs solution is the GUI-based network management system

which enables element, network and service level configuration. The Tellabs 8000

network manager offers tools for network building, service provisioning, traffic and

network monitoring, and testing. It is designed to be easy to use and scalable, thus

giving ability to manage massive networks without thorough knowledge of the

underlying networking technologies. It enables quick end-to-end service provisioning,

where only necessary parameters are given and the system automatically configures all

the elements that take part in the service realization. In addition to the 8600 system, it

can also manage other Tellabs product families, such as Tellabs 8100 Managed Access

System, Tellabs 6300 Managed Transport System, Tellabs 7100 Optical Transport

System, and Tellabs 8800 Multiservice Router Series. [41, 44]

Figure 4.1: Tellabs 8000 Network Manager configuration. [41]

24

Figure 4.1 above shows the components of the management network of the Tellabs

8600 system. The management network consists of several workstations and servers,

each with their own function. Communication servers connect the management network

to the Tellabs 8600 network elements. All communication between the elements and the

management system goes through these servers. Communication servers send

configuration data to the nodes and poll them for performance and fault information.

For reliability and scalability reasons there can be several communication servers

connected to the same Tellabs 8600 network. [40]

All data related to the network and services is stored on the central database server.

Thus, the whole network configuration is found from this server. Network and services

can also be pre-planned in the Tellabs 8000 Manager database from where these

configurations can later be downloaded to each network element. The centralized

database helps to keep all workstations and integrated applications up to date, allowing

all operators to see changes in network state in real-time. Management servers contain

the business logic components of the Tellabs 8000 Manager. Simple operations done

with the network manager may require complex operations to the network elements.

Management servers convert the operations and ensure that these are done in the correct

order. The network is monitored and configured from the workstations, which contain

the GUI of the Tellabs 8000 Manager. Route masters can act as route reflectors, which

improves the scalability of the network by removing the need for the full mesh of BGP

sessions between all of the routers. [44]

As mentioned, all communication between network elements and the Tellabs 8000

Manager goes through communication servers. Tellabs proprietary Broadband

Management Protocol (BMP) and SNMP (Simple Network Management Protocol) are

used as communication protocols between the management system and network

elements. BMP is an object-oriented protocol designed particularly for managing data

network elements. SNMP is used for retrieving performance statistics. This control

traffic has high priority inside network element queues, thus ensuring successful

communication eventhough the network is congested. In addition to using the network

25

manager, network elements can also be managed with a Command Line Interface (CLI)

through telnet or SSH sessions. [44]

Management traffic can be carried in two disparate ways. Inband management means

that the management traffic goes, with other traffic, through the managed network itself.

There is no need for an external communication network, but the communication is

dependent on the state of the managed network. The other option is to use outband

management, where the management traffic is carried in a network that is totally

distinct from the actual network that is to be managed. This external management

network is required to provide IP connectivity between the Communication servers and

all network elements that are managed by the system. [40, 45]

4.3 Network Manager Packages

The system is divided into several separately licensed packages and tools. The basic

package includes various tools for building and configuring the network, monitoring

faults, and for user administration. The Node Manager tool enables the element-level

configuration and performance management.

4.2: Node Manager dialog of the NMS.

26

A screenshot of Node Manager is presented in Figure 4.2. Node manager itself includes

several tools for configuring and monitoring the network elements. With it the user can

set parameters, monitor faults and check consistency of the network element with the

database. It also shows the current cards and modules installed in the network element.

As shown in the figure, on the right side of the tool there is a picture of the network

element and by right clicking an interface one can configure that particular interface. On

the left side is also a tree view which enables the configuration of interfaces and other

element-level configurations such as routing and creation of protection groups. [40]

Figure 4.3: VPN Provisioning dialog.

Provisioning packages allow the creation of different kinds of services. With the VPN

Provisioning tool, shown in figure 4.3, the user can create, modify, and delete various

VPN services. These VPNs can be Ethernet pseudo wires (PWs), ATM PWs, TDM

PWs, Frame Relay PWs, HDLC PWs, and IP VPNs. Packets belonging to a certain

VPN can be mapped to a desired service class, allowing them to get differentiated

treatment, with the provisioning tool. These VPN services are explained in more detail

27

in the Chapter 5. Tunnel engineering tool enables the manual creation of RSVP based

traffic engineered MPLS LSPs. The operator can define explicitly the path that the

tunnel takes, define some parts of the path, or let the system use the CSPF algorithm for

automatically calculating the path. The Tunnel engineering tool also enables the

reservation of capacities for LSPs and the mapping of VPN service classes to LSPs. [39,

40]

The Performance Management Package includes tools for network performance

monitoring, reporting and troubleshooting. It allows the viewing and analysis of traffic

flowing through various pseudo wires, tunnels, trunks, and physical and virtual

interfaces. Communication Servers poll Tellabs 8600 network elements continuously in

the background and save this performance data to the database. Packet and cell statistics

can be viewed graphically either in real-time or in history mode. If real-time mode is

used, the statistics are read directly from the network element according to user defined

polling interval. In history mode the data is read from the database and shown from a

desired period. The user can configure which performance indicators are shown. For

packets and cells these can be link utilization, sent/received octets/packets, errored

packets, or discarded packets, for example. [40]

Other optional application packages include testing package, service fault monitoring

package, unit software management package, web reporter, planning package and

macro package. [40]

4.3.1 Macro Manager Package

The Tellabs 8000 Network Manager offers a macro package which can be used for

network management purposes. The purpose of this tool is to accelerate the network

management in large networks and when large amount of network objects have to be

configured. The macro manager replaces the graphical interface of NMS with macro

commands. Macro command, also called simply macro, describes a single NMS

operation. The command can be, for example, changing the interface parameter of one

interface. Tellabs proprietary macro language supports also high-level control structures

so that by combining macro commands with program statements the user can create

28

more complex macro programs. The user can execute with the macro manager almost

all the same operations that are possible with the GUI of Tellabs 8000. Most of the

macro commands that configure network elements also update the database so that it is

consistent with the current configuration and the same settings can be also seen through

the graphical user interface. [40]

Macro programs can be created by reusing sample macros which come with the tool,

writing them manually with a text editor, or by recording own macros. Macro manager

is capable to record operations done with the graphical interface to a macro file. Macros

can be compiled and run with the graphical user interface of the Tellabs 8000 Network

Manager. Additionally, those can also be run with the Macro Manager Command Line

Interface so that no GUI is needed. [40]

29

5 Access Network Technologies and Services

In this chapter, a description of various access network technologies and services is

given. The first part of this chapter presents technologies that enable the creation of

services introduced in the latter part of the chapter. These technologies and services will

be present in the implemented soak testing environment and thus it is important to

understand these concepts in order to be able to test them.

5.1 Protections

High network uptime is essential for the service providers business. SLA contracts have

usually very strict bounds to service availability, which is the probability that a service

is available at any point in the future [16]. If the agreed service level is not met, the

service provider may face penalties. Various protection mechanisms play an important

role in achieving survivable networks and thus in fulfilling SLAs. Protection in

networking means that backup resources are allocated for primary resources before a

fault occurs [16]. If the primary fails, the traffic is automatically switched to the backup

path. There are several different protection modes and the cost of achieving resilience

depends on the chosen mechanism. 1+1 mode means that separate secondary resource is

reserved for each primary resource. Traffic is sent on both resources and the receiving

end selects one copy to be transmitted further. In 1:1 mode traffic is sent only to the

primary resource, but if it fails, traffic switches to the secondary resource. When traffic

flows through the primary resource, the secondary resource can carry other extra traffic.

In general, 1+1 types of protection schemes are usually fastest, but also consume a

double amount of capacity from the network. [26]

5.1.1 Multiplex Section Protection (MSP)

Tellabs 8600 routers support SDH Multiplex Section Trail Protection (MSP), defined in

ITU-T recommendation G.841, for SDH networks and Automatic Protection Switching

(APS), defined in T1.105.01, for networks operating in SONET mode. Tellabs 8600

system extends these standards by considering also hardware based faults on line cards

and interface modules. MSP/APS is a 1+1 type of protection mechanism protecting the

30

multiplex section layer of SDH/SONET networks. MSP/APS provides sub-50-ms

protection switch times for point-to-point links [44, 45]

A Multiplex Section Protection Group (MSPG)/ Automatic Protection Switching Group

(APSG) includes two identical interfaces, the working (primary) interface is protected

by the protecting (backup) interface. Traffic is constantly sent to both interfaces and the

receiver selects the better signal for further processing. The selected interface is referred

to as the active interface while the non-active interface is called passive. Switching the

active side of transmission may be initiated by signal failure, signal degradation, or

equipment failure. [18, 45]

Tellabs 8600 network elements support both unidirectional and bidirectional modes of

MSP 1+1 protection. Uni-directional mode means that both ends of the link make

switching decision independent of each other on the basis of the quality of the received

signal. Thus, it is possible that a different line is selected on different directions. In bi-

directional mode, on the other hand, the switchover is coordinated in such a way that

transmission directions always use either working or protecting side of the group, hence

the same link. In the event of switchover, this is communicated to the other side

resulting in a switchover also at the far-end. Tellabs 8600 system supports both

revertive and non-revertive modes of MSP, described in ITU-T recommendation G.841.

[18, 45]

5.1.2 RSVP Path Protection

Tellabs 8600 network elements support also MPLS layer resiliency with the help of pre-

signalled RSVP-TE paths. The system supports RSVP-TE based 1:1 LSP protection and

MPLS OAM based 1+1 protection switching defined in ITU-T recommendation

Y.1720. RSVP-TE based 1:1 protection mechanism uses two explicitly routed RSVP-

TE signaled paths to provide less than 200 ms switching times. Protections work in an

end-to-end manner where primary and secondary tunnels are pre-signalled between

ingress and egress LSRs. These tunnels use Explicit Route Object (ERO) in PATH and

Resv messages to build the paths and should travel along disjoint paths to eliminate a

single point of failure. [20, 42]

31

Pre-signalled secondary MPLS paths offer superior performance compared to normal

routing protocol based traffic rerouting [27]. In case of fault in a primary path, traffic is

switched immediately to an already existing secondary path and thus switching time is

highly dependent on the error detecting mechanism. Protection switching may be

initiated by an L1 fault, an RSVP path error message, or routing protocol Hello timer

expiration [45].

5.2 Inverse Multiplexing for ATM

Inverse Multiplexing for ATM (IMA) is a method of combining several physical links

into a single higher-bandwidth logical link, and transporting ATM traffic over this

virtual link. This bundle of links, also known as an IMA group, can contain 32 members

at maximum. The capacity of the aggregate of links is roughly the sum of the

bandwidths of the links that make up the IMA group. After IMA group creation, one

can configure this IMA interface as if it was a normal ATM interface. The Tellabs 8600

system supports IMA versions 1.0 and 1.1 defined by ATM Forum. The system

supports IMA on E1, T1, and STM-1/VC-12 ports. [50]

Figure 5.1: IMA operation over three separate physical links. [50]

The operation of IMA is described in Figure 5.1 where two ATM capable network

elements are connected by an IMA virtual link consisting of three physical links. At the

transmitting side, IMA receives ATM cells from the ATM layer and distributes the cells

32

in a round-robin manner to multiple links comprising the IMA group. The receiving

side reassembles the cells from each link into a single stream and passes the stream to

ATM layer for further processing. Naturally, the same applies also in the reverse

direction. [50]

The activity of the IMA group depends on the number of active links and on the

configurable parameter which defines the minimum number of transmit links required

to be active for the IMA group to be in the operational state. If the number of active

links is lower than the minimum number, the group is not able to forward traffic. If

there are more active links than is required, some of those active links can go down and

the group remains still operable. [50]

5.3 The PPP Multilink Protocol (MP)

The Point-to-Point Multilink Protocol is an extension to the point-to-point protocol

(PPP), used to set up a direct connection between two endpoints. The initial application

of PPP was to use it as an encapsulating protocol when transporting IP packets over

point-to-point links [6]. Multilink Point-to-Point Protocol (ML-PPP) aggregates several

physical PPP links together in a way similar to IMA. ML-PPP is specified by the IETF

in the RFC1990. A single data stream is distributed to multiple PPP links and

recombined at the far-end, thus creating a logical point-to-point connection. The

bandwidth of the ML-PPP virtual link is approximately the sum of the individual links.

This ML-PPP group can be given normal IP interface configurations, such as IP address

and routing. [36]

5.4 Services

This section covers MPLS based L3 and L2 VPNs supported by the Tellabs 8600 series

routers. A VPN is a private network that uses a public telecommunication infrastructure,

such as the Internet, to provide secure connections. VPNs are used to connect

companies’ remote offices and to support remote access to company resources. Service

providers offer VPN solutions as a cheaper alternative to leased lines.

33

5.4.1 MPLS Layer 3 Virtual Private Networks

The Tellabs 8600 Managed Edge System supports IP VPNs based on the IETF

specification RFC 2547bis. RFC 2547bis describes an approach for a service provider to

offer any-to-any type IP VPN services by using their IP backbone [32]. It is also called

BGP/MPLS VPN since BGP is used for customer route distribution over the public

backbone network and MPLS is used for customer traffic forwarding. This VPN service

model allows for multiple different VPN topologies, such as full mesh and hub-and-

spoke. Figure 5.2 shows the RFC 2547bis IP VPN model. The Customer edge (CE)

router connects the customer’s local area network to the service provider’s network by

forming an adjacency with the Provider Edge (PE) router. CE is typically a normal IP

router, which can be owned either by the service provider or the end customer. PE

routers are responsible for the service intelligence at the edge of the IP/MPLS core

network. Provider (P) routers are core network routers performing ordinary MPLS

forwarding based on the outermost MPLS label. Since P routers do not need to have any

knowledge about the VPNs, the scalability of the model is greatly enhanced. [22, 44]

Figure 5.2: RFC2547bis based IP VPN model. [44]

PE routers are routing peers with connected CE devices and with other PE routers in the

service provider’s network. CE device can advertise site’s routes to PE router with

eBGP, OSPF, RIP, or alternatively with static routing. PEs use iBGP to distribute

customer routes of the connected sites to other PE routers across the backbone. In order

to deliver this VPN routing information, PE routers may establish a full mesh of iBGP

34

sessions. Since full mesh of BGP sessions would cause some scalability problems, the

operator can ease the burden of edge devices with route reflectors. Every PE router can

have a BGP session with the route reflector and advertise the routes to it, which again

distributes the routes to other PEs. In this case every PE needs only one iBGP session.

[22, 32]

PE routers maintain a separate VPN Routing and Forwarding (VRF) table for each

customer. VRF tables are used for isolating the customer VPN routes from the global IP

routing table. Each customer interface of a PE router is associated with the VRF table of

that customer. VRFs can control the import and export of routes with the BGP extended

community route target attribute. Routes are installed only if the received route’s export

route target attribute is the same as VRF's import target. By choosing the import and

export target attributes correctly, one can create different VPN topologies. [22]

The customer VPN traffic is tunnelled through the service provider network using LSPs

established between the PE routers. Several LSPs might exist between the same pair of

PE routers, for example, in cases where the service provider wants to offer different

levels of QoS to various customers. These LSPs are established with LDP or RSVP-TE,

like normal MPLS paths. A label stack of two labels is needed for BGP/MPLS IP

VPNs. The intermediate P routers use the outer label for traffic forwarding from the

ingress PE router to the egress PE router. The inner label, which is also called the BGP

label, identifies the correct VRF and thus the VPN, at the PE routers. BGP label is

assigned and distributed by the MP-BGP (Multiprotocol BGP). P routers are not aware

of this label. Since inner label identifies the customer, several customers’ traffic can be

tunneled through the same tunnels across backbone. [22, 45]

Different customers might use the same IP addresses from the private IP address space

in their intranets. This causes problems to the exchange of routing information between

PE routers, since with conventional BGP every IPv4 address needs to be globally

unique. To solve this problem, RFC2547bis defines VPN-IPv4 address family to

distinguish these possibly overlapping addresses from each other. A VPN-IPv4 address

35

is formed by adding an 8 byte route distinguisher to the basic IPv4 address. This route

distinguisher points the VRF where the routes should be inserted. Since normal BGP

can carry routing information only for IPv4, IETF defined Multiprotocol Extensions for

BGP in RFC 2858. This extension enables BGP to carry routing information for many

network layer protocols, including VPN- IPv4 routes. [22, 32]

In addition to the traditional IP VPN described above, the Tellabs 8600 system offers a

hierarchical model for L3 VPN services. It takes the same approach that was used in the

traditional model in the core network and extends it also to the access domain. The basis

for the architecture has been the IETF hierarchical model for VPLS service, which has

been enhanced to cover IP VPN services. With the hierarchical model, an MPLS VPN

does not have to end at the edge of the core network, but this can be spanned through

the access network. This has the benefit of bringing traffic engineering and QoS

capabilities to the access network thus improving the management of the services. [44]

The components of the distributed IP VPN model are shown in the figure 5.3. In the

model the functionalities of PE routers are divided between two separate routers. These

new router types replacing PE routers are U-PE (user-facing PE) and N-PE (network-

facing PE) routers. The U-PE is at the edge of the operator’s access network and has an

IP layer connection with the CE router. N-PE routers are at the edge of the service

provider core network and communicate with other N-PE routers using iBGP. U-PE

distributes routes across the IP/MPLS access network to the N-PE router with eBGP

since these devices reside in different ASs. Routers between U-PE and N-PE

performing normal MPLS forwarding are called P-a (P in access) routers to distinguish

them from P routers performing similar operations in the core network. This model

requires three separate LSPs; one LSP across each of the access domains and one over

the core network. In addition to improving the manageability of the services, the model

greatly enhances the scalability by moving some of the service intelligence closer to the

customer demarcation point. [44]

36

Figure 5.3: Hierarchical IP VPN model. [44]

5.4.2 MPLS Layer 2 Virtual Private Networks

Layer 2 VPNs can be either point-to-point Virtual Private Wire Service (VPWS) or

multipoint-to-multipoint Virtual Private LAN Service (VPLS). VPWS is a service that

emulates traditional leased lines whereas VPLS is used to emulate LAN over WAN. In

both services the CE device is connected to the PE router via layer 2 attachment circuit,

such as Ethernet port, VLAN ID or ATM VPI/VCI. The PE devices are connected with

pseudo wires, which carry customers layer 2 packets over the MPLS/IP network. [43]

Figure 5.4: MPLS-based pseudo wires used to offer L2 VPNs. [44]

The VPWS implementation supported by the Tellabs 8600 system is the Martini draft,

also known as PWE3 (Pseudo Wire Emulation Edge-to-Edge). PWE3 architecture is

defined in RFC 3985 and is shown in the figure 5.4. Pseudo wires emulate native layer

2 services over MPLS- enabled Packet Switched Networks (PSN). This emulated

37

service can be ATM, Frame Relay, Ethernet, or TDM (SAToP, CES), for example.

Pseudo wires are established by creating two unidirectional MPLS LSPs. The customer

traffic is sent from a CE device through the attachment circuit to the PE router, which is

the pseudo wire edge node. This PE router maps the traffic from attachment circuits to

correct pseudo wires. At the other end of the pseudo wire the traffic is mapped from the

MPLS label to the appropriate customer interface. Pseudo wires are tunneled across the

backbone inside trunk LSPs established between PE routers with either LDP or RSVP-

TE. [4, 44]

As in the case of IP VPN, again a stack of two labels is needed when forwarding pseudo

wire traffic. The outer label, known as PSN label, is used to forward the data through

the network from ingress PE router to the egress PE router. The inner label identifies the

correct customer interface at the ends of the pseudo wire. There are two slightly

different VPWS implementations defined. Draft Martini, supported by Tellabs 8600,

uses LDP as the inner label signalling protocol, whereas draft Kompella uses BGP. In

addition to LDP signalling, Tellabs 8600 network elements support also static label

assignment. This means that the inner label is generated by Tellabs 8000 Network

Manager during the service provisioning process. [44, 45]

Pseudo wires are advantageous for backhauling mobile traffic from cell sites through

RAN to the RNC/BSC sites with Ethernet, ATM and TDM pseudo wires. Pseudo wires

offer a more cost-efficient way of delivering legacy technologies by separating the

transport protocols from the transmission media. Furthermore, they allow the benefits of

statistical gain and provide smooth transition towards all-IP RAN. [49]

VPLS service is a service provider offering which makes it possible to provide Ethernet

based multipoint to multipoint connectivity over IP/MPLS networks. Currently, there

are two options for VPLS implementations. RFC 4761 based VPLS, co-authored by

Kireeti Kompella, uses BGP for PE label signalling and RFC 4762, co-authored by

Kireeti’s brother Vach Kompella, uses LDP protocol for the VPLS signalling setup.

Tellabs 8600 system supports the latter draft. [44]

38

6 Software Testing Overview

In this chapter, a description of the software testing process and methods are given.

After the general discussion of software testing, we will examine the objectives of soak

testing in more detail. As soak testing requires automating the tests, we discuss this in

the end of the chapter.

6.1 Software Testing

Telecommunications operator’s income is composed of a set of communications

services offered to customers. The quality of these services and their perception by

users is essential for the service provider’s business. These services are composed of

several different types of network elements, different communication protocols and

interfaces, which all make them extremely complex types of services. Due to the high

complexity of these services and the importance of continuous operation to the service

providers, the phase of testing becomes crucial in telecommunications.

Testing can be understood as a “process used for revealing defects in software, and for

establishing that the software has attained a specified degree of quality with respect to

selected attributes” [5]. Where quality is defined as “The degree to which a system,

component or process meets specified requirements” and “The degree to which a

system, component, or process meets customer or user needs or expectations” [17].

After the testing phase, if some defects have been discovered, starts the debugging or

fault localization phase, where the idea is to find the root cause, repair the code, and to

retest the software [5].

Misconceptions or mistakes made by humans cause errors in the system. This error can,

for example, be a typing mistake made by the programmer in the coding phase. These

errors in the system cause faults, also known as defects, in the system. Faults are

abnormal conditions that may cause the system to perform certain functions against

their specifications. On many occasion these are also called bugs. A fault may or may

not lead to a failure in the operation, which is a deviation of a program from its

39

expected behaviour. Failure is what the user of the program sees when executing the

program. [5]

Testing is sometimes misunderstood as a process which reveals all the defects in the

software. Nevertheless, it is impossible to show that software is free of defects, but

testing should take the approach of showing the presence of defects. Even if testing does

not find any more defects it is not a proof of defect-free software since all parts of the

software cannot be tested with all the possible inputs. Instead of trying to test

everything, testing should use risk and priorities to focus efforts on those parts of the

software that are the most important. Every somewhat larger piece of software contains

errors, but good testing can help to considerably reduce the risk that failures manifest

themselves in real operational environments. Thus, testing has a vital role in

contributing to the quality of the system. It is generally recognized as a fact that the

quicker problems are found the less it costs to fix those. Especially when defects are

discovered at the customers operational environment, the cost can be substantial. [24]

Common perception of testing is that it only consists of running tests, i.e. executing the

software. However, software testing includes also other activities than just test

execution. First the testing activities have to be planned. After planning and before

actual test execution the test-cases have to be created and the test environment

developed. Everything done during the test execution should be documented so that

another person is able to replicate the results. After tests have been executed their

results have to be evaluated in order to determine whether or not the test has been

successful. Immediately after finding problems, the tester should write a problem report

which is used later as a basis for debugging and fixing the problem. Even though the

test has passed successfully, it has to be documented into a test log. [24]

6.2 Classification of Testing Techniques

Figure 6.1 shows one kind of classifications of different testing techniques.

Testing techniques can be divided into dynamic and static techniques. Dynamic testing

is testing in more traditional sense where programs are executed and the outcomes are

40

verified against expected results. Static testing does not comprise execution of the

program but includes examination of the written code. Examples of static testing are

code inspections, code reviews, walkthroughs, and desk checking. [24]

Figure 6.1: Classification of testing techniques

Dynamic testing techniques can be further divided to black-box and white-box methods

[5]. Black-box testing, also called functional or specification-based testing, considers

the system to be tested as a black-box without knowledge of its internal structure. The

tester takes an external viewpoint on the system, knowing only the inputs and the

expected outputs and not how those outputs are attained. White-box techniques, also

called structural or glassbox methods, are based on knowledge of the internal structure

of the system or module to be tested. [24]

In order to design and execute test cases using white-box strategy the tester needs to see

the innermost of the system, i.e. the actual code. The object of white-box methods is to

verify that the internal components of the program are functioning correctly. White-box

testing is typically used for small software components. It usually involves inspecting

the code and following the execution of the program to determine problems in the

program structure. These methods can be further divided to data-flow based and

41

control-flow based methods. The first one is based on the idea of following the values

of the variables in the code. The latter one means following the progression of control in

the program. [5, 24]

White-box testing methods alone are not enough to test software thoroughly since it

might miss certain types of defects, such as missing functionality. Those techniques are

also incapable of measuring qualities such as performance and usability of the product.

As mentioned, black-box testing abstracts the innermost of the system and considers it

as a black-box. Black-box can be either functional or non-functional testing. Non-

functional testing tries to find out the quality characteristics of the system. Examples of

non-functional testing are load testing, reliability testing, and soak testing.

Functional tests, on the other hand, try to determine whether the functionality of the

software is working correctly. Functional testing is not concerned with how processing

occurs, but rather, with the results of this processing and that the behaviour of the

system complies with the requirements specification. [5, 28]

6.3 Levels of Testing

Testing in large software projects is usually divided into different levels, each of which

has their own testing goals. The V-model, which is shown in figure 6.2, is an easy to

understand software development model originally developed from the waterfall model.

It describes the relationship between various phases of the software development

process and its corresponding phase of testing. The model is shown in figure 6.2. Left

side of the model shows how development phases follow each other starting from the

initial requirements from the user’s point of view and ending at the final coding phase.

At each step the specification gets more detailed. When one development phase is

completed the design of the corresponding testing phase can begin and the development

specification is used as basis for test designs. Right side of the model shows then how

testing phases follow each other. When travelling upwards the model, in each testing

phase bigger parts of the system are covered by single tests. [5, 23]

42

Figure 6.2: The V model.

Testing in the V-model is implemented in four separate levels. These are unit testing,

integration testing, system testing, and acceptance testing as shown in the figure. Each

testing level concentrates on different aspects of the system implementation as the

testing is done against the specifications of the corresponding development phase.

When moving upwards in the V-model, testing methods usually shift from white-box

methods more and more towards black-box methods. [12]

The first stage of testing, according to the V-model, is the unit testing, where individual

components are tested separately. Unit refers to the smallest software component that

can be tested. Defects found at the unit testing level are easier to fix since the root cause

of the fault is easier to pinpoint and thus costs less to fix. Unit testing is often done by

programmers and involves inspecting the source code. The goal is to find functional and

structural defects of the unit and to verify that the interface of the unit functions as

specified. The importance of good unit testing is emphasized by Boris Beizer, who has

stated that "The most notorious bugs in the history of software development were all

unit bugs - bugs that would have been found by proper unit testing." [5]

43

Units that have passed unit testing may introduce new defects when connected to other

individually working units. Integration testing involves testing to make sure that these

individually working units work properly together. Integration testing has two major

goals: “to detect defects that occur on the interfaces of units” and “to assemble the

individual units into working subsystems and finally a complete system that is ready for

system test” [5]. Integration testing can be carried out on many levels, such as

component integration or system integration. Component integration means testing

individual components together, whereas system integration involves testing fully

functional systems together. Integration testing should be done iteratively, which means

integrating new units into the tested subsystem one at a time. [5, 12]

System testing means testing the system as a whole. It includes usually both functional

and non-functional requirements of the software. The upmost object of system testing is

to verify that the system performs according to its requirements. System testing is

usually carried out by an independent testing group and not by the developers. Due to

the complexity and large workload, system testing is often automated using testing

tools. System testing is a black-box type of testing since it abstracts the inner parts of

the system and is mainly concerned with inputs and corresponding outputs. [5]

After system testing the software is ready for acceptance testing where the purpose is to

make sure that the software satisfies customer’s needs and requirements. The clients and

staff from the development organization together create test cases which will be run in

acceptance testing. This is the last possibility for the customer to make sure that the

software meets their requirements specified at the start of the development process.

Clients should be allowed to participate in acceptance testing since they are the ones

that ultimately decide whether software is accepted or not. The software is run in actual

usage environments with customers own input data.

Variants of acceptance testing are alpha and beta (field) testing. Both of these testing

types are conducted by potential customers and not by the people of the development

organization. The difference between the two is that alpha testing is performed at the

44

facilities of the developing organization, whereas beta testing is conducted at the

customers own locations. [5, 12]

6.3.1 Regression testing

When modifications are made to the software, either by adding new functionality or

changing old modules, testing is needed to make sure that the capabilities of the old

version still exist and everything that worked previously is still functioning correctly.

This kind of retesting that tries to ensure that the new version has not caused any

unintentional effects is called regression testing. Regression testing can be performed at

any test level. Regression testing can be highly time-consuming and expensive to

execute if automated testing tools are not used. A distinction should be made between

regression tests and re-tests, which mean re-running the same tests that found defects

after those faults have been fixed. [5, 12]

6.4 Soak Testing

Soak testing means that a system under test is run at high level of load over a prolonged

time in order to detect slow to appear faults. When system is tested for a long time

without resetting it, such problems as memory leaks, stack corruption, wild pointers,

and buffer overflows may cause serious troubles. For example, in software testing, a

system may function properly when tested for a few hours. However, if test cases are

executed continuously for over 2 weeks, problems may cause it to eventually fail or

behave unexpectedly. Executing this kind of long tests requires automation since it

would be impossible for humans to continuously operate and detect failures in the

system. In addition to the above mentioned problems, soak testing tries to find

following types of defects; failures to close connections of various tiers of a multi-tiered

system, problems in closing database cursors and thus possibly leading to a entire

systems stalling, and degradation in the response time of some components due to

internal data structures getting more inefficient. [23, 35]

Soak testing tries to simulate normal operation of the system, but in an accelerated way.

In soak testing events are introduced to the system more often than would normally

happen in a real operating situation. The speed up of events allows the tester to detect

45

problems quicker than in a normal operating environment. For example, some faults

may manifest themselves after certain operations are executed sufficiently many times.

Other names for this kind of testing are endurance testing, duration testing, long

sequence testing, and burn-in testing. Soak testing is sometimes associated with stress

testing. In a way, soak testing can be considered as specialized type of stress testing.

Stress testing is a type of testing where one tries to deliberately break the system. This

can happen by either overloading the system or by reducing some of its resources.

When the system is gradually overloaded, the effects of this activity to the system are

examined. [8]

It is important to follow the memory usage of a system under test, since this may reveal

some memory leaks. If the memory usage goes upwards during tests, new memory is

reserved somewhere. This is often normal, especially when complicated configurations

are added, but if the amount of allocated memory does not return to lower values after

the configuration has been removed, it is possible that there is a memory leak. Another

interesting measure is the CPU usage, and how it changes during the test. In addition to

measuring the resource utilization of the system under test, also such facilities as Java

Virtual Machine should be monitored. [8, 35]

The preferred duration of soak testing is naturally dependent on the tested application

and what is the required amount of time for the system to run without problems.

However, the duration is often determined by the available time in the test lab. Systems

usually have a regular maintenance window, which is a good starting point when

determining the duration of soak testing. Due to the long run time, it is virtually

impossible to implement soak testing without some sort of automation. Therefore, test

automation is presented next. [8]

6.5 Test Automation

Testing software is hard and time consuming work, thus it is a natural step to use tools

to make the job easier and more efficient. Test automation means using software to test

other software. It is an attractive addition to manual testing, which in some case might

46

be extremely helpful but when wrongly used can distract testers or squander resources.

When properly used, automation can save time, speed development, extend the reach of

testing, and make it more effective. A common perception among some people may be

that the more tests are automated the better. However, automation is not suitable for

everything but should be used only when it advances the mission of testing. [23, 25]

Automation is especially useful in situations where the same tests have to be run many

times to different software versions. Smoke tests are run after the new build is ready and

is done to verify that it is worth further testing. It tests basic functionality of the

software that is expected to always work. Automated smoke tests can be run by anyone

during build process. These tests help to give fast feedback to developers immediately

after the new build is ready and thus accelerate the software development. Also

automating regression testing has many benefits, since regression tests are usually run

for every software version and stay relatively the same from one version to another. [23,

24]

The quality of automated testing depends on the ability to automatically detect

problems. When a human performs tests manually, he or she can detect all kinds of

anomalies in the behavior of the software. Whereas, computer detects only problems

that it is programmed explicitly to identify. Every time the test is run, it does the same

things in the same order and verifies the correctness in the same way. Thus, automated

test might miss some failures that a human would easily detect. A human can sometimes

do things differently and change the execution based on the behavior of the program.

Automation is not a replacement of manual testing, but rather an extension to manual

test which allows different types of tests. Some tests just cannot be executed without

automation and other tests can be further expanded. Various performance tests are good

examples of where automation can be particularly helpful. Here are some examples

[23]:

• Load test – Measuring a system’s performance and resource utilization under

heavy load

47

• Performance benchmarks – Collecting measurements to determine whether the

system performance is getting better or worse.

• Configuration test – Running same tests on different platforms and in different

configurations.

• Endurance test – Also called soak testing. Running system for a long time.

• Combination errors – Using automation to run tests that use different features of

the software in different combinations.

Capture-replay tools are popular and easy to use test automation tools. These tools can

record user actions while executing the program under test. It stores the captured user

events into scripts which can be replayed later. These scripts examine user interface

elements, locate the correct objects, and use them as specified in the script. While

running, it compares the current screen of information to information that was stored at

the recording phase and decides whether the test is passed or failed. However, capture-

replay tools have major limitations. The test input and output are hard-coded to the

scripts and they require that the user interface does not change much. When the GUI

changes, the test tool might not find correct elements anymore. To avoid changing the

tests every time the GUI changes, one needs to abstract the GUI from the tests. Few

techniques for accomplishing this abstraction are provided below [23, 40]:

• Window maps- Window maps tell to the scripts how to identify certain GUI

components. In this way there is no need to embed the identification method

explicitly to every reference to this component. When the GUI changes only

these window maps have to be changed.

• API-based automation – Avoids the use of GUI by using programming

interfaces found nowadays in many software products.

• Task libraries – Divide the program execution into smaller tasks which are

distinct from each others. After this, scripts can be created by combining these

tasks conveniently. In case the user interface changes, only the task that uses the

part of GUI that changed have to be updated. This avoids changing the whole

test case.

48

An improvement to capture-replay methods is the data-driven approach where inputs

and outputs are not hard-coded to the scripts but reside in separate file. Since these are

now separated from the script, the same script can execute several similar test cases

with different input and output combinations. Keyword-driven methods use input files

that in addition to data contain also keywords. These keywords define which functions

or tasks will be run from the task library. By combining these tasks conveniently, also

non-programmers can easily and rapidly create new automated tests. [23, 25]

49

7 Implementation and Verification of the Soak Testing

In this chapter, the implemented soak testing environment will be presented. The soak

testing environment was implemented by first building a dedicated network for only

soak testing purposes and then creating software for operating the network. First the

objectives for the soak testing environment are presented in section 7.1. Hereafter, the

physical environment itself is presented in section 7.2. This includes both the physical

structure of the soak testing network and the various configured services. The network

elements need to be operated somehow and various mechanisms for this are discussed

in section 7.3. Failure detection mechanisms are examined in section 7.4. Integration of

these various parts into one functioning program is explained in section 7.5 before

discussing the deployment of soak testing in section 7.6.

7.1 Objectives

At the beginning of this thesis, it was decided that in addition to building the actual

network the requirements for the soak testing environment are:

• Automatic operation of the network – We need to find some methods to be able

to automatically create various operations to the network.

• Automatic failure detection – Ways need to be able to automatically verify

whether everything is working correctly or not.

• Logging - We want to keep some kind of log file about the operations done in

the network so that we are able to check afterwards that what has been done.

Logging is especially important in situations where some kinds of errors are

encountered so that one can easily see what was going on in the network at the moment

when these errors appeared. Operations are created to the network for mainly two

reasons. The first one is to reveal problems in resource usage, which show up after the

operation is done sufficiently many times. The other one is to reveal defects that show

up rarely, but when operations are done many times the probability of those defects

showing up will be increased. The purpose is to emulate a real operating network in a

50

highly accelerated way. In the first stage a few operations will be implemented so that

the environment is operational. Afterwards, the environment will be gradually enlarged

so that it will encompass more operations and functionality. The first step was to build

the network and the presentation of implemented soak testing starts by presenting the

environment including the network elements and services.

7.2 The Soak Testing Environment

Figure 7.1 below shows the physical network of the implemented soak testing

environment. There are five Tellabs 8600 network elements; one of each type. Nodes

are numbered so that 8660 is node 20, 8630 is node 21, 8605 is node 22, 8620 is node

23 and 8607 is node 27.

Figure 7.1: The soak testing environment

The 12 member ML-PPP group between nodes 20 and 21 is configured on the

channelized STM1 interfaces and is MSP 1+1 protected. As shown in the figure 7.1, the

51

measurement equipment is connected to the network with ATM and Ethernet links.

There is a STM1ATM loop in the node 23 so that the transmitting side is connected to

the receiving side of the same port. This way ATM cells transmitted to that port will be

received in the same port. The reason for looping traffic back in this way is that there is

no STM1ATM interface in 8605 and 8607 nodes which could be connected directly to

the measurement equipment. With this arrangement, the ATM traffic entering the

network from nodes 20 or 21 will propagate through the network and will be eventually

received by the same measurement equipment port that transmitted those cells. The

biggest node, which is node 20, emulates a Tellabs node at the BSC/RNC site while the

smallest nodes (8605 and 8607) emulate nodes at a base station site. The network is

currently rather small, but it will be enlarged in the future as more network elements

and links will be added.

In order to introduce more IP routes to the network, we configured the measurement

equipment to emulate a number of OSPF routers. These emulated routers advertise IP

routes, represented by the clouds in the figure 7.1, to the network. These OSPF

emulation settings can be changed rather easily from the measurement equipment and

are an easy way to increase the load on the routers. For example, the number of routes

advertised or the number of OSPF neighbours can be changed with ease. Furthermore,

by disconnecting correct links in the network we can force new route calculation in the

whole network.

7.2.1 Services

The network includes an IP VPN service and various pseudo wires between the nodes.

There are both LDP and RSVP-TE signalled tunnels in the network to signal the outer

label of the VPNs. The RSVP tunnel between the nodes 20 and 22 is RSVP path

protected so that the primary path goes straight from node 20 to 22 via the straight

Gigabit Ethernet link, while the secondary path goes via node 21. There are two

separate RSVP sessions established between the nodes 20 and 21; one utilizing the

MSP1+1 protected MLPPP link and the other travelling via the GE link. Traffic is

divided between these two tunnels by mapping service classes to these tunnels so that

the higher priority packets go via the MLPPP link and lower priority packets via the GE

52

link. In addition to the MPLS tunnels mentioned above, the measurement equipment is

used to emulate a large number of LDP and RSVP sessions. The measurement

equipment can be used to emulate also various other protocols to the network.

Emulations are a rather easy way to increase the load on the routers.

Table 7.1: Services of the environment

VPN type Nodes Endpoints 1 Endpoints 2
Service
Class

ATM PWs 20 and 21 VP 100-199 VP 200-299 CBR
ATM PWs 20 and 21 VP 30 VC 1000-1099 VP 30 VC 1000-1099 nrt-VBR
ATM PWs 20 and 22 VP 600-624 VP 300-324 CBR
ATM PWs 20 and 22 VP 50 VC 2000-2024 VP 50 VC 2000-2024 CBR
ATM PWs 21 and 22 VP 400-424 VP 400-424 CBR
ATM PWs 21 and 22 VP 60 VC 2000-2024 VP 60 VC 2000-2024 CBR
ATM PWs 20 and 27 VP 85 VC 300-349 VP 75 VC 300-349 CBR
ATM PWs 20 and 27 VP 89 VP 79 CBR
Ethernet PWs 20 and 21 VLAN 1101-1110 VLAN 2101-2110 rt-VBR
Ethernet PWs 20 and 21 VLAN 1150-1159 VLAN 2150-2159 UBR
Ethernet PWs 20 and 22 VLAN 1301-1310 VLAN 3301-3310 rt-VBR
Ethernet PWs 21 and 22 VLAN 2201-2205 VLAN 3201-3205 rt-VBR
IP VPN 20 and 21 VLAN 1001-1007 VLAN 2001-2007

Table 7.1 list the pseudo wire meshes configured to the soak testing environment,

excluding the TDM PWs. A Pseudo wire mesh is a VPN which is composed of several

point-to-point pseudo wires. For most PWs, the PW endpoint is directly connected to

the measurement equipment, but the ATM PWs having another endpoint at 8605 and

8607 nodes are an exception. From these nodes the ATM cells coming from PW travel

over the IMA link towards the 8620 node from where these are looped back as

explained in the previous subsection. The figure 7.2 shows the ATM and Ethernet PWs

and the outer label signalling protocols. The L3 VPN is omitted from the figure but is

configured between nodes 20 and 21. There are seven L3 VPN endpoints in the nodes

20 and 21. These endpoints are in the same physical Ethernet interface, but virtually

separated by VLANs. The measurement equipment is configured to send ATM cells to

each individual ATM PW and Ethernet frames to Ethernet PWs and to IP VPN so that

the state of every VPN can be monitored by looking at the stream from measurement

equipment.

53

Figure 7.2: Pseudo wires configured in the network.

There are also several CES and SaTOP TDM PWs in the environment. These are

configured between the nodes 20 and 22 and between nodes 20 and 21 so that the full

capacity of one channelized STM1 interface is utilized in the node 20. No data is sent to

these TDM pseudo wires from the measurement equipment, but the TDM PWs operate

so that even though there is no data coming towards the pseudo wire it will still send

TDM frames. This way we could introduce more traffic to the network without needing

to configure and use ports on the measurement equipment. Furthermore, by configuring

also TDM pseudo wires we get more versatile configuration and higher burden on the

network elements.

7.3 Automating the operations

Operations are meant to simulate the real operating networks at a highly accelerated

way. The operations that we implemented in this first phase, and the ones that will be

implemented later, are selected based on two factors. Firstly, the experience gained

from system testing was taken into account. Based on the experience, we can select

such features where we are most likely to find defects also in the soak testing. The

second reason was the ease of implementation.

54

7.3.1 Operating network with QTP

First we examined whether the Quick Test Professional automation tool could be used

in the soak testing environment. QTP is an automated Graphical User Interface (GUI)

testing tool primarily targeted to regression testing. It identifies application GUI objects

and performs desired operations, such as mouse click, on these objects. It allows the

automation of user actions by using a scripting language built on top of VBScript to

control the application. This tool was already used by the regression team in the system

testing of 8600 system and thus the test libraries would have been already ready to be

utilized also in soak testing. [14]

In order to be able to check the applicability of the tool to soak testing, we created some

simple sample scripts. These scripts tried to do some basic operations from NMS GUI

for an extended period of time. An example script tried to change the protection side of

the MSP 1+1 protection group. The operation was first manually executed and then the

captured script was modified so that it repeated the same operations over and over

again. The dialog for changing the protection side of the group with Tellabs 8000

network management system is shown in Figure 7.3. The script opened the window

from the tree view of the node manager every 45 seconds and changed the side to

protecting or working depending on which side it was currently. After each GUI event,

such as mouse click, the script waited for 4-7 seconds for the GUI to settle down before

making any further operations.

55

Figure 7.3: NMS dialog for MSP 1+1 protection

This script was executed several times with the result that at some point the testing tool

or network management system was in such a condition that operations were not

possible before restarting the applications. In the NMS integration testing this same

procedure was tried manually with no problems. From this it was derived that there

were some problems in NMS and QTP co-operation in extended use. Similar results of

jammed windows were found with other scripts which tried to execute the same

operations several times. From the NMS point of view, it is not so important to test that

whether some GUI dialog can be used for very long periods or repeat the same

procedure many times. Rather it is more important to see that the NMS servers are

stable and continuously ready for operations. For these reasons, it was decided that the

GUI-based QTP would not be suitable for this soak testing environment and some other

methods would be needed.

56

7.3.2 Operations with NMS macros

Since the QTP based approach was not successful, we quickly decided that we will try

to create operations with the macro functionality of the network management system.

Macro commands and scripts can be run from the command line shell with the Macro

Manager - Command Line Interface, called mmcc. Macros can be easily created by

recording the operations that user does through the GUI of NMS. This recorded macro

can be later edited with some text editor. Macro scripts have the benefit that they are

independent of the GUI of NMS and thus do not require changes even though NMS

GUI changes. This is highly advantageous from the maintainability point of view.

Furthermore, the execution of operations is much faster with macros than would be

possible if GUI was used. This enables us to do more operations per period.

The figure 7.4 below shows the structure of the macro based operations. The

MacroInterpreter at the highest level in the figure is a Java program that launches the

macro execution. Macros itself have a two level hierarchy. At the lowest level there are

common macros, which include macros that carry out elementary operations needed in

many places. These are macros that are repeatedly needed and with parameterization

can be used from many higher level macros. In the figure there are two example

common macros, called DisconnectVPN and RemoveConfigurationMplsvpn. As the

name implies, the first one disconnects one pseudo wire and the second removes the

configuration from the database. The name of the pseudo wire that is operated is given

as a parameter. By compiling these common macros appropriately and calling with

suitable parameters one can accomplish one higher level operation to the network. The

macro package in the figure represents this kind of collection of calls to common

macros.

For every operation there is a separate higher level macro script file, which will be

called when the operation is wanted to be performed. In the figure 7.4, there is a simple

example loop that first disconnects and then removes the configuration from database

for nine TDM pseudo wires. Common macros reside in a separate file which is imported

into the higher level macro package. Currently all common macros are in the same file,

57

but as the system gets larger those can be divided to several files for maintainability

purposes.

Figure 7.4: Structure of the macro execution.

As mentioned, the high level macro is called by MacroInterpreter Java class. This Java

code simply launches macros by calling macro manager from CLI. In the figure there is

only a small example piece of code from the macro trigger method. The part that is

shown executes an external application, macro manager in this case, via command line

shell. The name of the macro file that will be executed is given as parameter when

macro manager is started. During the execution of the macro script the Macro Manager

prints information about the progress of the execution. This output of macro execution

is redirected to a file, the name of which is also specified when macro manager is

called. In the figure 7.4 shown above, this output file is named MacroResult.txt. After

starting the macro manager, the Java program waits while the macro manager has

finished executing the program before checking the exit value of macro manager. If the

58

exit value is something else than zero, meaning that the macro manager terminated

normally, the file where the macro manager output was redirected will be checked next.

If the execution of this macro program was successful, the last line of the result file

should be “Execution completed successfully”. On the other hand, in case of some

problems the last line is “Execution completed”. Boolean variable describing the

success of macro execution is returned by the MacroInterpreter object’s macroTrigger

method to the calling object. The structure and the used files for creating an example

operation with macros are presented in Appendix A.

The described macro procedure enables easy addition of new events to the network.

Only thing that is needed is to compile new events by combining common macros in an

appropriate way so that this event is accomplished and just invoke this higher level

macro script from the main program.

Some of the operations that are implemented with macros at this first stage are

disconnecting and then connecting some of the ATM, Ethernet, and TDM pseudo wires,

and reducing the number of members in the MLPPP and IMA groups and then putting

them back. We are also breaking links by putting those in the shutdown state with the

macros. In this way we can repeatedly test RSVP path protection and force OSPF route

calculation in all nodes, for example. All of the operations are not, at least not yet,

supported by the macros. Among these operations are switching of the protection side

of the MSP 1+1 protection group and the CDC protection switching. To be able to

perform also such operations that do not have macro support some new methods are

needed.

7.3.3 Operations with telnet connection and CLI

Since there are no macro support for every operation some other ways for implementing

these was investigated. Furthermore, we realized that we will need some methods for

reading information directly from the network element. For example, the change in

dynamic memory consumption during tests is one measure that we are interested in.

After a quick study, it was decided that these would be implemented by establishing a

Telnet connection to the node and sending CLI commands through this connection. As

59

in the case of macros, Java was used as the programming language. There was no need

to implement our own Telnet client since free clients were available from various

websites. We decided to use Apache commons project’s Net package, which

implements the client side of various basic Internet protocols, including Telnet. This

JAR file can be freely downloaded from the Apache website

(http://commons.apache.org/net/). The Commons is an Apache project intended on

creating all kinds of reusable Java components.

Figure 7.5: Structure of the telnet based operations

Figure 7.5 above shows the structure of the telnet based operations, where the

TelnetCommunicator class has a central role. There are four different methods in the

TelnetCommunicator; initialize, sendCommand, disconnect, and run. Initialize simply

calls the connect method of Net package and gives the address of the network element

and the TCP port as a parameter. Net package then takes care of establishing a telnet

connection with the Tellabs 8600 network element. Initialize method also opens the

streams for sending commands to the node and for writing the reply of the element to a

text file. Finally, the initialize method starts a reader thread. TelnetCommunicator

implements the Runnable interface and thus contains the run method. This separate

thread is used to just read the data that comes in from the network element and prints it

http://commons.apache.org/net/

60

to a text file, which is named reply in the figure 7.5. As long as there is still data coming

from telnet connection, the thread loops to read 1024 bytes at a time and writes it to the

reply file. This text file can be later used to check what was the response of the node to

some commands or queries. The name of this text file, in addition to the node address, is

given as a parameter when the connection is established. Thus, we can print the replies

from separate connections to individual files. SendCommand method sends the

command to the network element by simply printing and flushing the command given

as a parameter to the output PrintStream. After the commands have been sent and we do

not want to read anymore replies of the network element, the connection is ended with a

call to the disconnect method.

The operations that are implemented with telnet in this first stage are reloading the

active CDC and the line cards participating in the MSP 1+1 protection group. The

CDCs are realoaded alternately so that the one that is currenlty active is reloaded. This

causes the activity to change to the other CDC. The reloading is done similarly with line

cards participating in the MSP 1+1 protection group. The card that contains the

currently active interface is reloaded. The activity thus changes to the other interface

and data should flow through that interface without interrupts. Additionally, the telnet

connection allows us to read various information from the network elements, such as

the dynamic memory consumption of line cards.

7.3.4 NMS operations

In addition to the above mentioned macro and CLI based operations also some NMS

operations were configured to the network. One PC was configured to be a monitoring

workstation where several monitoring applications are open and monitoring the state of

the network. The SNMP agent was enabled on every node allowing them to be polled

by NMS for performance data with SNMP queries. Real-time performance management

windows are open on the monitoring workstation and are continuously polling the nodes

for performance data. History data is also collected on 15 minute intervals to the

database.

61

Tellabs 8000 Manager Packet loop test (PLT) application can be used to schedule

various tests to the network on regular intervals. These tests can measure throughput,

delay, and packet loss on various links, PWs, IP VPNs, and TE tunnels, for example.

We configured the packet loop application to run throughput tests, and one-way delay

tests through various links on 15 and 60 minute intervals. The result of all of these tests

can be later verified from the PLT. From NMS point of view, we are more interested in

whether these tests are actually executed continuously rather than the results of those

tests. Furthermore, in this way we can easily introduce more traffic load to the network

as the tests generate even 1Gbit/s on various links. Also the fault management

application is open and is manually checked that it collects faults from operations that

are done in the network. Tellabs 8000 Manager is also configured to take configuration

snapshots from all of the network elements on one hour intervals. These snapshots can

be used to restore the settings to the network element in case of some problematic

situation. The Manager requests the node to create the snapshot and uploads this to the

database automatically. The audit log application logs every configuration given to the

node, whether it is via CLI or through BMI interface with BMP protocol. It polls the

commands from the network element and saves the results to the database. The

monitoring workstation and all other NMS operations are manually checked for failures.

7.4 Detecting failures

Soak testing requires automated methods to detect various failures in the environment.

After a quick study, we decided that at first we would check after every operation

whether data is still running properly through the network or not. There are lots of data

streams in the network and a wide variety of problems will be noticed by seeing that

data is not going through some streams. We realized that the easiest way of

accomplishing this goal was to read various statistics related to the stream from the

measurement equipment that is used to generate traffic to the network. It was decided

that after every operation the packet loss of the streams affected by the operation would

be verified. We also wanted to follow the change in average latency of the streams

before and after every operation. The latency can change due to changed paths or

62

congestion situations, but should come back to the original level after the operation is

finished.

The measurement equipment used in the system testing at the moment is Agilent N2X,

which is also used in the soak testing environment. Agilent N2X is a multiservice test

solution for testing network equipments for voice, video and data services. The systems

traffic generation and analysis capabilities include technologies such as IP, MPLS, FR,

ATM, Ethernet and SONET/SDH. Agilent N2X has a Tcl API with predefined Tcl

commands to gain access to all of the tester’s capabilities. Commands are entered via

standard input or file and are interpreted by the Tcl or Wish shell, also called API client.

This API client can be located in the same machine as the tester or in a remote

computer. The client communicates with the tester through TCP connection.

The Tcl interface provided a suitable interface for automating the statistics reading from

the Agilent N2X. Agilent organizes the traffic into streams and stream groups. Streams

represent PDUs (Protocol Data Units) having the same stream ID, which is used to

measure per-stream statistics. One stream sends traffic to one pseudo wire configured in

the environment. Streams are aggregated into stream groups which all have a common

PDU template and PDU length distribution. Thus one stream group can send data to

many, for example ATM PWs, if the ATM VPs/VCs are selected appropriately.

To automate the data stream checking, we first created a Tcl script which reads statistic

remotely from the Agilent N2X and saves these statistics into a file in the local

computer. This script fetches statistics for one stream group at a time. The Tcl script

fetching the statistics takes the name of the stream group and a save file name as

parameters when it is called. The statistics retrieved from measurement equipment are

cumulative statistics from the start of the measurement. Thus, to get the instantaneous

statistics the streams have to be sampled twice. The instantaneous value is then obtained

by dividing the difference of these two samples by the time between the samples. The

Tcl script simply writes both samples to the text file and StatisticsReader Java class is

used to handle all the post processing of the retrieved information. The structure of

63

automated statistics retrieving and checking is shown in Figure 7.6 below. Appendix B

presents the Tcl script for fetching the stream statistics.

Figure 7.6: Detecting failures by fetching stream statistics from Agilent N2X

The StatisticsReader Java class runs the Tcl script through Tcl shell and also takes care

of the further processing of the retrieved statistics data. As mentioned, the Tcl script

saves the statistics data into a text file on the local computer. StatisticsReader opens the

text file containing the stream group data and calculates packet loss or average latency

to every stream in the stream group. Packet loss can be directly calculated by dividing

the difference of packet loss of two samples by the sampling period. If the value is

greater than a certain tolerance value, it is derived that there are problems with the

stream. This tolerance is needed since the packets might still be in the buffer of Agilent

N2X and this is seen as a packet loss. This same approach is not applicable to average

latency. Average latency of streams is calculated with the following formula.

etsAceivedPacketsBceivedPack
ALatencySumBLatencySumLatency

ReRe −
−

= (1)

Latency sum is the sum of latencies of all packets on a particular stream since the start

of the test. Difference of these latencies is divided by the sum of received packets

between sampling intervals. So we need to get two separate statistics per sampling

64

moment to calculate the average latency. There are methods in the StatisticsReader Java

class for verifying the packet loss and latency of the streams.

The described method checks for problems by verifying that data is still running

properly through the network. Additionally, the same method can be used to configure

the measurement equipment automatically during test. This is accomplished simply by

creating a new Tcl script and calling this script instead of the statistics script. From the

operator’s point of view, the most important thing is that data is still running correctly

and there are no revenue affecting problems. However, this method does not necessarily

mean that the network is free of problems since something that disturbs the traffic can

happen between the verification instants. For example, a line card or whole network

element can boot between sampling moments and this can go unnoticed or there may be

some deadlock in the node preventing further configuration. These kinds of spontaneous

resets and deadlocks are detected by manual checks at the moment, but should also be

automated in the future.

It is also important to detect failures in various NMS server processes, which are

running in the management and communications servers. Automatic error detection is

currently based on Dr. Watson, which is a program error debugger provided by

Windows. When an error occurs in any one of those processes, Dr. Watson creates a

text and binary log files that contains information about the computer at the moment the

error appeared. A manual check is made every day to see if those log files have been

created on certain folders. The detection of defects in various NMS features that are

running in the background is not automated yet. Performance management application,

packet loop tester, configurations audit log, and fault management application are all

manually checked from the monitoring workstation whether they are functioning

correctly.

7.5 Implementing logging

One important part of this kind of automated testing is the logging of various operations

done in the network. We need to be able to see back what was going on in the network

65

at a certain time. All operations that are done, including the time of operation, are

simply written to a text file. Both the starting time and if the execution was successful

also the end time are logged to this file. Actions related to statistics are logged into a

separate file. This file also includes the time and date alongside with the name of the

stream group that the operation is applied to. In case there are problems with some of

the streams, the name of the stream group and the id of the stream are logged to the file.

If some problems are detected, for example by night, the log files help to determine

which operations were done at the time the problems appeared. Comparing the time

when problems first appeared in the statistics files with the operation done in the

operation file helps to determine the cause of the problems. Additionally, we keep

counters which record the current number of operations done since the start of the test.

There is a separate counter for every operation type and these are updated after every

operation.

The dynamic memory consumption of network elements is probed on a regular basis

and is also logged to a separate file. At the moment, this reading is done by one hour

intervals to determine if the reservation of dynamic memory grows by time. Later it

could be enhanced so that the consumption of dynamic memory is read always before

and after operations.

7.6 Integrating the pieces together

7.6.1 Overall architecture

Operation execution and failure detection were tied together to create a program,

structure of which is shown in the figure 7.7. All other parts, except the Tcl scripts used

to access measurement equipment and macros used to implement some of the

operations, are made with Java. The operations are described with text files that are put

into a certain folder designated for these operation files only. The Agent, which

interprets the files and takes care of executing the operations, is a central component in

the overall architecture.

66

The test execution proceeds as follows:

1. Scheduler creates a text file describing the operation into a folder.

2. Agent picks the file from the folder and interprets it.

3. Agent executes the operation either through telnet connection or with macro

manager.

4. Agent checks the stream statistics to verify whether data is still running through

the network. In addition to verifying streams also other methods can be used to

detect failures.

5. The executed operation is written into a log file before picking the next

operation.

Figure 7.7: Overall architecture of the system

As mentioned, the main component in tying various parts together is the Agent class.

The Agent checks every 5 seconds whether there are files in the folder and performs

them when one exists. From the name of the file, it knows whether it is a telnet based

67

operation or macro based operation and thus how to interpret the information in the file.

If it finds a file from the folder it executes the operation via telnet connection or with

macro manager, as described in subsections 7.3.2 and 7.3.3. After the operation is

completed the Agent can instruct the StatisticsReader class to start fetching the statistics

for one stream group at a time. The text file contains the names of the stream groups

that need to be checked. As mentioned in section 7.5 these statistics are retrieved by the

Tcl script and are saved into a file in the local computer. Hereafter, the Agent calls

StatisticsReader to check packet loss or the change in average latency of the stream.

The name of the file containing these statistics is given as a parameter. If there are no

problems with the streams, the Agent removes the file from the folder and starts

searching for a new file. On the other hand, if there are problems with the streams, the

Agent stops executing the operations. It prints to the CLI that problems are detected and

checks the erroneous streams every 2 minutes. If at some point these streams are

functioning correctly, Agent continues the execution as described in the file. In addition

to verifying the statistics, the Agent can use a telnet connection to verify the state of the

element after the operation. By sending a command to the element and checking the

answer it can determine whether it is allowed to continue or not. This and other

frequently used common methods related to telnet connection are implemented in the

TelnetCommons class shown in Figure 7.7.

7.6.2 Operation description

Whenever some operation needs to be performed in the network, a text file with a

specific format and name is put into the folder. A separate text file is created for every

operation. All operations that are accomplished through telnet connection are described

with a text file of the same structure. Similarly, all macro operations have the same

structure which, however, is a bit different from telnet operations. As the figure shows,

there are several schedulers which create files to a certain folder on regular intervals.

These files describe operations to the Agent, which then performs them. Schedulers are

implemented with timers and the interval how often these files are put is dependent on

the operation. One scheduler is currently creating the files for the telnet based

operations, one creates files for VPN operations, and one creates IMA and MLPPP

operations. Naturally, one option would have been to combine everything into one big

68

scheduler that creates all the files for all the operations. The reason for dividing

operations to several schedulers is that now we can stop some operations while others

are still being generated and executed. Another option would have been to use a

separate file, which would give instructions to the big scheduler about operations that

are being executed.

The figure 7.8 below shows the format of the file for telnet based operations. All of the

fields are on separate line. When Agent interprets this file, it can read one line at a time.

Most of the fields are self-evident, but some require further explaining. The statistics

files are the names of the files where Tcl script will save the statistics retrieved from the

Agilent N2X. The reason for two statistics files is that it allows us to do comparison of

situation before and after operations, as is the case when we want to monitor the change

in average latency. It is also possible to execute operations without retrieving any

statistics. The verification operation means what kind of method we will use to detect

failures. Currently there are three alternatives. The packet loss and average latency of

streams can be monitored, as explained in section 7.5. The third alternative is to send

some command to the node and wait for a specific reply to verify that we can proceed.

This can be used to verify that a unit comes up after reloading it or making sure that

connections are working by pinging from one node to various destinations. There are no

restrictions on the amount of verification operations or on their order of execution. Files

for macro based operations are quite similar. The most notable difference is that instead

of commands send to the node, the file includes the names of the macro files that will be

executed.

69

Figure 7.8: Structure of the operation file for telnet based operations

7.6.3 Additional considerations

The structure described above executes the operations in a sequential order, meaning

that two operations cannot be executing simultaneously. When execution and

verification of one operation is ready, the Agent searches for the next operation. This is

important since there are operations that are not allowed to be performed at the same

time. For example, when the CDC is switched it is not allowed to configure the element

at the same time. Another benefit of the structure shown above is that operations are not

executed in the same order. Operations are created on different intervals and thus the

interleaving of operations changes constantly. Actually, the described approach is not

totally true, since there are two separate threads that pick files and make operations

based on them. The main thread picks and executes most of the operations and is

stopped when faults are detected. The second thread executes only such operations that

we want to perform always, even though main operations are stopped due to some sort

70

of failure. Examples of such operations are updating the transmit throughput of Agilent

N2X and reading of dynamic memory consumption of network elements.

We also wanted to create different bandwidth profiles to the links. For this reason, we

created a Tcl script that updates the transmitted throughput of a stream group on the

Agilent N2X. In the figure 7.7 this Tcl script is named ProfileBandwidth.tcl. The special

scheduler called Bandwidth calculates the new transmitted throughput every 2 minutes

for all stream groups that we want to update. Again the text file is used to convey this

information to the Agent. This text file has a different format than telnet or macro based

operations. The text file simply includes the names of the stream groups followed by the

new transmitted throughputs. This Tcl script updates the bandwidths of certain data

streams so that we achieve traffic profiles where the bandwidth utilization follows a

daily cycle. On nights the transmitted amount is much lower than on days. A sine

function was used as basis for the traffic profile and certain noise component was added

to this. Additionally, the bandwidth can slowly increase or decrease. This emulates the

common traffic profile found in the real operating environments. Below is the algorithm

which calculates the transmitted throughput.

noiseMINUTESDjMINUTESiBAbandwidth ++−+=
1440

**)))
360

(360(
2

sin(π (2)

A is a base bandwidth to which a cyclic part, calculated with the help of sine function, is

added. B determines the min and max values of the cyclic part, which makes full cycle

in a day. Constant MINUTES is the interval how often this new transmitted throughput

is calculated. The middle part of the formula allows us to set a small increasing or

decreasing component to the calculation. Constant D is the daily increase or decrease of

the bandwidth and thus determines how fast this change happens. The noise component

is created by taking a random number between values 0 and 1 with the random number

generator and then scaling this to appropriate value range.

71

7.7 Deployment of Soak Testing

When the system was taken into use, we realized that the system occasionally stopped

execution of operations due to false alarms. We quickly noticed that the reason for these

stoppages was false alarms introduced by the delay measurement. It was rather difficult

to set suitable tolerance to the variation of latency before and after operations. For these

reason, we decided that the latency check would be removed from tests until it is

enhanced.

One difficulty in this kind of testing is that when defects are discovered and corrected, it

takes a long time before we can evaluate the fix. It might be the case that this fix comes

in a newer software version but we do not want to stop testing with the previous version

and change to another one. It is not preferable to change to different software in the

middle of tests, since this requires that the node is booted and essentially starts the test

again from the start. Additionally, when this fixed version is taken into use, it can take

quite a long time before we can decide that the bug is corrected. To ease these

problems, we have built another identical soak testing environment. We can now run the

same tests simultaneously with two different software versions or we can run tests in

one environment and use the other environment for creating and testing new operations

that will be taken into use in soak testing.

72

8 Summary and Conclusion

8.1 Summary of the Thesis

The purpose of this thesis was to design and implement an automated soak testing

environment for the Tellabs 8600 Managed Edge system. Tellabs 8600 Managed Edge

system is an IP/MPLS based access network solution designed for evolving networks.

Soak testing, also known as endurance testing, is a type of testing where the system will

be run over a prolonged period of time in order to check the system’s stability under

sustained use.

This thesis started by reviewing the basics of the underlying IP and MPLS technologies.

After this introduction of the basic technologies, an overview of the Tellabs 8600

Managed Edge System itself was given. The essential system technologies and main

applications of the system were discussed. From here we proceeded to presenting the

Tellabs 8000 Manager, which is used to manage 8600 network elements. Additionally,

some access network technologies and services were presented. Understanding of these

technologies is important, since all of those are also present in the implemented soak

testing environment. The objectives of testing in general and soak testing were also

examined before introducing the implemented soak testing environment.

The implementation started by examining the objectives for the soak testing

environment. These objectives were, in addition to building the actual network, to be

able to automatically produce operations to the network, automatically detect failures,

and implement logging so that everything could be traced back. After the network was

built, services configured, and the measurement equipment configured to send data, it

was time to implement operations to the network. Initially, the QTP test tool was

considered as a method to produce these operations. This tool was already in use in

regression testing and thus the test libraries would have already been ready to be

utilized also in soak testing. However, it was quickly discovered that there were some

problems in cooperation of QTP and NMS when used for longer periods. Therefore,

73

macro based operations were examined next. A hierarchical structure for macro

operation was implemented so that common macros, which include repeatedly used

parts, are used by higher level macros. Since there was no macro support for all

operations, some of the operations were implemented with CLI commands through

telnet connection. There was no need to implement an own telnet client since one was

found from Apaches common project. Operations are implemented by creating a file

containing the description of the operation to a certain folder. This file is then

interpreted by the Agent. Additionally, some NMS operations are continuously running

in the background. Important part of any automated testing is the ability to

automatically detect failures. It was decided that initially data streams would be checked

to ensure the state of the network. For this reason, the automation of measurement

equipment was examined. The Tcl interface offered a convenient way to automatically

read data and configure the Agilent N2X. Logging of operations was simply

implemented by writing all operations including the time into various text files.

Software was coded with Java programming language to integrate these various parts

together.

8.2 Conclusions

The implemented soak testing environment has been successfully taken into use in the

system testing of Tellabs 8600 system. It has been turned out to be an effective

environment and seems to satisfy the initial requirements. In the beginning of this thesis

in section 1.2, we mentioned that the purpose of this soak testing environment is to find

defects that do not show up immediately in functional or regression testing but could

manifest themselves when the system is used for a long time. All defects found by soak

testing are from such features that are also tested by functional or regression testing but

have not showed up in these tests where the testing period is shorter or tests are

executed only a few times. Many of the defects that are found by soak testing

environment have serious effects on the services. For example, these defects can cause

data to drop from several pseudo wires or cause the whole network element to crash.

Thus, it can be determined that there is certainly need for this kind of testing and the

implemented soak testing adds value to the current testing of Tellabs 8600 system.

74

It is typical for this environment, that when one defect is found, this same defect keeps

showing up until it is fixed or the operation that causes it is removed. If nothing

changes, the test usually stops at some point due to the same problem. Thus, new

defects are usually found by gradual improvements of the system, which allows us to

execute longer test runs.

The defects that are found by soak testing can be roughly divided into three separate

categories. The first category includes defects that do not necessarily require that

operations are executed many times but manifest themselves with some, possibly small,

probability. These defects happen usually due to the fact that the execution of two

independent operations occurs simultaneously. This might lead to mutex deadlocks, for

example. The probability that these operations occur simultaneously in normal

environment is rather small. When operations are executed continuously for a long time,

the probability of detecting these defects is increased. An example of this kind of

simultaneous activity was the occurrence of node configuration snapshot, which is

initiated by NMS, at the same time with emergency snapshot, which is initiated by

network element. The second category includes resource usage problems that manifest

themselves when a certain operation is executed a sufficient number of times. When we

reloaded the active CDC alternately, at some point a certain log file containing

information about the switchover was filled up. In the worst case, this could cause the

network element to reboot. In addition to these two types of defects, the environment

has also been able to find various functional defects. These are defects that could have

also been found by functional testing.

We have roughly categorized the 15 defects that were found during past few months.

About seven of them are caused by some simultaneous operations, five are due to

resource usage problems, and three are functional defects. The number of these found

defects would probably be much higher, if we could fix the already known bugs faster.

As these figures show, the system is quite good in revealing defects that happen because

of simultaneous operations. It can be expected that when more functionality is added to

the system, more defects of this type will be revealed.

75

An effective framework for soak testing was created in this thesis, against which it is

easy to start developing the environment further. Adding new operations is rather easy

since the minimum that is needed is to add a new scheduler for writing the operation

file. On the other hand, the fact that we made the testing software by ourselves and did

not use any ready commercial software causes extra maintenance. To be able to make

changes to the system and debug in case of problems one needs to have a good

understanding of the overall idea and architecture of the whole testing system. There are

many separate components in the overall testing system, which can complicate ones

comprehension of the system. For these reasons, a good documentation is needed.

The fact that GUI-based operations are not done automatically has both benefits and

drawbacks. The drawback is naturally that the GUI part is not tested in soak testing.

However, this has not been seen as a serious omission since, as already mentioned in

subsection 7.3.1, it is more important that the NMS servers are continuously up and

running. The benefit from omitting GUI-based operations is that soak testing is not

dependent on any changes made in the NMS GUI. From maintainability point of view,

macro scripts are more advantageous since GUI changes do not affect macros and

macro commands are modified rather seldom.

8.3 Further Research

One important aspect in the future development of the environment is the expanding of

the coverage of soak testing. In the future, more operations should be added to the soak

testing environment so that more features will be tested. It should be investigated which

operations are most worthwhile to take into use in soak testing. Experience gained from

functional and regression testing and the easiness of implementation help to decide

which operations will be implemented. Also more different types of services and more

network elements should be added. It has been discussed that adding more 8605

network elements to the environment is needed. This requires that we circulate traffic

streams conveniently in the network.

76

Another way to expand the coverage would be to use several separate executing objects.

This means that there would be more than one Agent, which picks and performs the

operations. At the moment, only one Agent is executing operations one by one in

sequential order. Using multiple execution objects might help to find problems quicker

since it enables performing more operations per time. The problem with multiple Agents

is the need to coordinate the execution so that two instances are not making conflicting

configurations to the same network element at the same time. Implementing several

executing objects requires also that we investigate how to carry out failure detection as

one object can cause problems to data streams verified by another object at the same

time.

Second major objective of the future research would be the enhancement of reporting.

This objective can be further divided into two separate aspects. The first one is to

improve reporting so that developers can find and correct defects easier and quicker.

This means that we need to give more exact information about what was going on in the

network at the moment when problems manifested themselves at the first time. Second

aspect of reporting is the ability to report the results of soak testing. This would give

managers and other personnel an overview of the general state of the software so that

resources could be directed to places where most needed. One way to improve this

aspect would be to create web pages where the duration of soak testing is automatically

updated and could be seen graphically. Additionally, these web pages could show the

amount of certain operations performed. Furthermore, these pages would make it easy

to compare results of various test runs with separate software versions. This kind of

approach is already in use in integration testing of Tellabs 8000 Network Manager,

where the results of various tests are automatically updated to the web pages. To build

this kind of web pages only for soak testing might be too laborious, but it should be

examined if already existing methods from integration testing could be re-used.

Third place to look for improvements is the automatic verification part. In a way this

can be also seen as part of expanding the coverage by allowing us to detect new kinds of

defects, but is nevertheless considered here as a separate question. Firstly, we are not

77

currently sending data to TDM PWs and thus we are not able to monitor the state of

those PWs with current mechanisms. To be able to detect failures also in TDM PWs, the

environment should be able to send data to these PWs also. Part of the verifications is

currently done manually, and thus more mechanisms to automatically detect failures in

the system should be examined. At the moment, the checking is done only after some

operation is executed and thus it is possible that the network element resets itself in

between the operations and this goes unnoticed. This kind of spontaneous resets of the

whole system or line cards are currently noticed by manual checks. There can also be

some smaller problems that cause temporary interrupts in the data flow. If these

interrupts occur at some point between the sampling moments, we are not able to detect

those with the current system. We have already started to utilize the logging of data

streams in the Agilent N2X and it should be further investigated if this enables us to

detect also this kind of temporary data cuts. Additionally, the automation of failure

detection in NMS functionality should be investigated. When adding more failure

detection mechanisms, it should be kept in mind that false alarms do not interrupt the

test execution.

78

References

[1] Andersson, L., Minei, I. and Thomas, B., LDP Specification, IETF RFC

5036, 2007, http://www.ietf.org/rfc/rfc5036.txt.

[2] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., Swallow, G.,

RSVP-TE: Extensions to RSVP for LSP Tunnels, IETF RFC 3209, 2001,

http://www.ietf.org/rfc/rfc3209.txt.

[3] Black, U., Network Management Standards, 2nd ed., McGraw-Hill, New

York, 1994.

[4] Bryant, S. and Pate, P., Pseudo Wire Emulation Edge-to-Edge (PWE3)

Architecture, IETF RFC 3985, 2005, http://www.ietf.org/rfc/rfc3985.txt.

[5] Burnstein, I., Practical Software Testing, Springer, New York, 2003.

[6] Cisco Systems, Inc., Internetworking Technologies Handbook, 4th ed.

Cisco Press, Indianapolis, 2000.

[7] Clemm, A. Network Management Fundamentals, Cisco Press,

Indianapolis, 2006.

[8] Collard, R., SYSTEM PERFORMANCE TESTING, Case Study, New

York, 2005.

[9] Comer, D. E., Internetworking with TCP/IP – Volume I: Principles

Protocols, and Architecture, 5th ed., Prentice Hall, New Jersey, 2005.

[10] De Ghein, L., MPLS Fundamentals, Cisco Press, Indianapolis, 2007.

79

[11] Fewster, M., Common Mistakes in Test Automation, Presentation at

Software Test Automation Conference, March 5-8, San Jose, 2001.

[12] Haikala, I. and Märijärvi, J., Ohjelmistotuotanto. Suomen Atk-kustannus

Oy, Helsinki, 1998.

[13] Halabi, S., Internet Routing Architectures, 2nd ed., Cisco Press,

Indianapolis, 2001.

[14] Hewlett-Packard Development Company, HP QuickTest Professional

software, Data Sheet, 2008.

[15] Huitema, C., Routing in the Internet. 2nd ed., Prentice Hall, New Jersey,

1999.

[16] Hung-Yi Chang, Pi-Chung Wang; Chia-Tai Chan; Chun-Liang Lee, A

New Service Level Agreement Model for Best-Effort Traffics in IP over

WDM, AINAW Conference, March 25-28, Okinawa, 2008.

[17] IEEE Standards Board, IEEE Standard Glossary of Software Engineering

Terminology, IEEE Std 610.12-1990, New York, 1990.

[18] ITU-T G.841, Types and characteristics of SDH network protection

architectures, Telecommunication Union - Telecommunication

Standardization Sector Recommendation, 1998.

[19] ITU-T M.3400, TMN management functions, International

Telecommunication Union - Telecommunication Standardization Sector

Recommendation, 2000.

80

[20] ITU-T Y.1720, Protection switching for MPLS networks, International

Telecommunication Union - Telecommunication Standardization Sector

Recommendation, 2006.

[21] Juniper Networks, Inc., Multiprotocol Label Switching - Enhancing

Routing in the New Public Network, White Paper, 2000,

http://www.juniper.net/solutions/literature/white_papers/200001.pdf.

[22] Juniper Networks, Inc., RFC 2547bis: BGP/MPLS VPN Fundamentals,

White Paper, 2001.

[23] Kaner, C., Bach, J. and Pettichord, B., Lessons Learned in Software

Testing, John Wiley & Sons Inc., New York, 2002.

[24] Kaner, C., Falk, J. and Nguyen, H. Q., Testing Computer Software. 2nd

ed., John Wiley & Sons Inc., New York, 1999.

[25] Logigear Corporation, Achieving the Full Potential of Test Automation,

White Paper, 2006,

http://www.bleum.com/pdf/Achieving_the_full_potentia_of_test_automati

on.pdf.

[26] Martin, D. W., 1:1 Protection Switching Overview, Presentation at IEEE

802.1, July 16-19, San Francisco, 2007,

http://www.ieee802.org/1/files/public/docs2007/ay-martin-protection-

0707-v01.pdf.

[27] Pasqualini, S., Iselt, A., Kirstädter, A. and Frot, A., MPLS Protection

Switching vs. OSPF Rerouting – A Simulative Comparison, Barcelona,

2004.

81

[28] Perry, W., Effective Methods for Software Testing, 2nd ed., John Wiley &

Sons Inc., New York, 2000.

[29] Peterson, L. and Davie, B., Computer Networks – A Systems Approach, 3rd

ed., Morgan Kaufmann Publishers, San Francisco, 2003.

[30] Postel, J., Internet Protocol, IETF RFC 791, 1981,

http://www.ietf.org/rfc/rfc0791.txt.

[31] Rekhter, Y., Li, T. and Hares, S., A Border Gateway Protocol 4 (BGP-4),

IETF RFC 4271, 2006, http://www.ietf.org/rfc/rfc4271.txt.

[32] Rosen, E. and Rekhter, Y., BGP/MPLS IP VPNs, IETF RFC 2547bis,

2004, http://tools.ietf.org/html/draft-ietf-l3vpn-rfc2547bis-03.

[33] Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y., Farinacci, D., Li, T.

and Conta, A., MPLS Label Stack Encoding, IETF RFC 3032, 2001,

http://tools.ietf.org/html/rfc3032.

[34] Rosen, E., Viswanathan, A. and Callon, R., Multiprotocol Label Switching

Architecture, IETF RFC 3031, 2001,

http://www.ietf.org/rfc/rfc3031.txt.

[35] RPM Solutions Pty Ltd, Soak Tests, 2004,

http://www.loadtest.com.au/types_of_tests/soak_tests.htm.

[36] Sklower, K., Lloyd, B., McGregor, G., Carr, D. and Coradetti, T., The

PPP Multilink Protocol (MP), IETF RFC 1990, 1996,

http://tools.ietf.org/html/rfc1990.

82

[37] Stallings, W., MPLS, The Internet Protocol Journal – Volume 4, Number

3, 2001,

http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_4-

3/ipj_4-3.pdf.

[38] Tellabs Oy, Quality of Service in the Tellabs 8600 Managed Edge System,

White Paper, 2006, http://www.tellabs.com/papers/tlab8600qos.pdf.

[39] Tellabs Oy, Tellabs 8000 Network Manager Provisioning Packages, Data

Sheet, 2006,

http://www.tellabs.com/products/8000/tlab8000nmprovpkg.pdf.

[40] Tellabs Oy, Tellabs 8000 Network Manager R16A System Description,

Internal Tellabs Oy document, 2008.

[41] Tellabs Oy, Tellabs 8000 Network Manager – A Powerful Network and

Service Management Tool, Data Sheet, 2007,

http://www.tellabs.com/products/8000/tlab8000nm.pdf.

[42] Tellabs Oy, Tellabs 8600 Managed Edge System FP1.1 and FP2.9 MPLS

Applications Configuration Guide, Internal Tellabs Oy document, 2008.

[43] Tellabs Oy, Tellabs 8600 Managed Edge System FP2.7 VPNs

Configuration Guide, Internal Tellabs Oy document, 2007.

[44] Tellabs Oy, Tellabs 8600 Managed Edge System Overview, Tellabs Oy

document, 2006,

http://www.tellabs.com/products/8000/tlab8600sysoverview.pdf.

[45] Tellabs Oy, Tellabs 8600 Managed Edge System training material,

Internal Tellabs Oy document, 2007.

83

[46] Tellabs Oy, Tellabs 8600 Managed Edge System – Reliability, Protection

and QoS in Mesh IP/MPLS Networks, Application note, 2007,

http://www.tellabs.com/products/8000/tlab8600-mesh_an.pdf.

[47] Tellabs Oy, Tellabs 8630 Access Switch, Data Sheet, 2007,

http://www.tellabs.com/products/8000/tlab8630as.pdf.

[48] Tellabs Oy, Tellabs 8660 Edge Switch, Data Sheet, 2007,

http://www.tellabs.com/products/8000/tlab8660es.pdf.

[49] Tellabs Oy, The Business Case for Pseudowires in the RAN, White Paper,

2007, http://www.tellabs.com/papers/tlabpseudowireran.pdf.

[50] The ATM Forum Technical Committee, Inverse Multiplexing for ATM

(IMA) Specification Version 1.1, AF-PHY-0086.001, 1999.

[51] Wang, Z., Internet QoS: Architectures and Mechanisms for Quality of

Service, Morgan Kaufmann Publishers, San Francisco, 2001.

84

Appendix A: Structure of Operation Execution with
NMS Macros

Java method that executes the macros

public boolean macroTrigger(String macro) {
 String[] trigger = { "cmd.exe", "/C", "mmcc -e", macro, ">", "temp\\MacroResult.txt" };
 Vector<String> macroResult = new Vector<String>();

 try {
 Process proc = Runtime.getRuntime().exec(trigger);
 int exitValue = proc.waitFor();
 if (exitValue != 0)
 {
 System.out.println("Exit value " + exitValue);
 return false;
 }
 String line;
 BufferedReader bR = new BufferedReader(new FileReader("temp\\MacroResult.txt"));
 line = bR.readLine();
 while(line != null) {
 macroResult.addElement(line);
 line = bR.readLine();
 }
 } catch (Exception e) {
 e.printStackTrace();
 return false;
 }

 for (int i = macroResult.size() - 1; i >= 0; --i) {
 if ((macroResult.elementAt(i)).equals("Execution completed successfully."))
 return true;
 if((macroResult.elementAt(i)).equals("Execution completed."))
 return false; // There were some problems in the execution
 }

 return true;
}

Example higher level macro that connects several TDM pseudo wires

IMPORT "common.mac"

MACRO PROGRAM Connect_TDM_VPNs
 INT round;
 STRING VPN_name;

 # TDM Pseudowires between nodes 20 and 21
 round = 2772;

 WHILE (round < 2780)
 {
 VPN_name = "SATOP_20-21_chSTM1_" + round.TOSTRING();

85

 CreateConfigurationMplsvpn(VPN_name);
 ConnectMplsvpn(VPN_name);
 round = round + 1;
 }

 round = 2809;
 WHILE (round < 2825)
 {
 VPN_name = "CES_20-21_chSTM1_" + round.TOSTRING();
 CreateConfigurationMplsvpn(VPN_name);
 ConnectMplsvpn(VPN_name);
 round = round + 2;
 }

 ###
 # TDM Pseudowires between nodes 20 and 22
 round = 1;
 WHILE (round < 3)
 {
 VPN_name = "SATOP_20-22_" + round.TOSTRING();
 CreateConfigurationMplsvpn(VPN_name);
 ConnectMplsvpn(VPN_name);
 round = round + 1;
 }

 round = 1;
 WHILE (round < 5)
 {
 VPN_name = "CES_20-22_8605_" + round.TOSTRING();
 CreateConfigurationMplsvpn(VPN_name);
 ConnectMplsvpn(VPN_name);
 round = round + 1;
 }

ENDM

Examples of common macros

MACRO MPLS_VPN CreateConfigurationMplsvpn (STRING vpn_name)
 CMD = CREATE_CONFIGURATION
 MPLS_VPN = vpn_name
ENDM

MACRO MPLS_VPN ConnectMplsvpn (STRING vpn_name)
 CMD = CONNECT
 TARGET = HWDB
 MPLS_VPN = vpn_name
ENDM

86

Appendix B: Tcl Script Fetching the Statistics from the
Agilent N2X

This script retrieves the packet loss and statistics for calculating average latency for all streams in the

streamgroup

The name of the stream group needs to be given as a parameter

The path of the AgtClient.tcl package

cd "C:/soaktest/FINAL/TCL"

source AgtClient.tcl

package require AgtClient

Set the server hostname here

AgtSetServerHostname fism3000

The session ID

AgtConnect 24

Selecting the statistics

set hStatistics [AgtInvoke AgtStatisticsList Add AGT_STATISTICS]

AgtInvoke AgtStatistics SelectStatistics $hStatistics {AGT_STREAM_PACKET_LOSS

AGT_STREAM_LATENCY_SUM AGT_STREAM_PACKETS_RECEIVED}

Selecting the Streamgroups

set hStreamGrp1 [AgtInvoke AgtStreamGroupList GetHandle [lindex $argv 0]]

AgtInvoke AgtStatistics SelectStreamGroups $hStatistics $hStreamGrp1

Some wait and then retrieve the statistics. Then wait 4 seconds and retrieve statistics again

after 3000

set hResults1 [AgtInvoke AgtStatistics GetStreamGroupStatistics $hStatistics $hStreamGrp1]

after 4000

set hResults2 [AgtInvoke AgtStatistics GetStreamGroupStatistics $hStatistics $hStreamGrp1]

the sampling interval

set hInterval1 [lindex $hResults1 0]

the number of streams

set hNbrStreams1 [lindex $hResults1 1]

the sampling interval

87

set hInterval2 [lindex $hResults2 0]

the number of streams

set hNbrStreams2 [lindex $hResults2 1]

set hStreams1 [lindex $hResults1 2]

set hStreams2 [lindex $hResults2 2]

The path of the statistics file

cd "c:/soaktest/FINAL/StatisticsFiles"

if {$argc == 2} {

 set filename [lindex $argv 1]

} else {

 set filename "statistics.txt"

}

set fileId [open $filename "w"]

puts $fileId [AgtInvoke AgtStreamGroupList GetName $hStreamGrp1]

puts -nonewline $fileId "$hInterval1 \t\t\t\t$hInterval2\n"

puts -nonewline $fileId "$hNbrStreams1 \t\t\t\t$hNbrStreams2\n"

set i 0

set j 0

Writing the results into a file: packet loss A, average latency A, packet loss B, average latency B

while {$i < $hNbrStreams1} {

 puts -nonewline $fileId "[lindex $hStreams1 $j] "

 set j [expr $j + 1]

 puts -nonewline $fileId "[lindex $hStreams1 $j] "

 set j [expr $j + 1]

 puts -nonewline $fileId "[lindex $hStreams1 $j] \t"

 puts -nonewline $fileId "[lindex $hStreams2 [expr $j - 2]] "

 puts -nonewline $fileId "[lindex $hStreams2 [expr $j - 1]] "

 puts -nonewline $fileId "[lindex $hStreams2 $j] \n"

 set i [expr $i + 1]

 set j [expr $j + 1]

}

close $fileId

Remove the handle. Otherwise you cannot get a handle after the script has been run enough many

times.

AgtInvoke AgtStatisticsList Remove $hStatistics

AgtDisconnect

	 Preface
	 Table of Contents
	 List of Abbreviations
	
	1 Introduction
	1.1 Background
	1.2 Research problem and the objective of the thesis
	1.3 Structure of the thesis
	2 IP and MPLS
	2.1 IP
	2.1.1 Interconnecting local networks
	2.1.2 Internet Protocol
	2.1.3 Routing and forwarding

	2.2 Multiprotocol Label Switching
	2.2.1 Introduction
	2.2.2 MPLS Concept
	2.2.3 MPLS Label Stack Header
	2.2.4 Forwarding Equivalence Class (FEC)
	2.2.5 Label Distribution Protocols

	3 Tellabs 8600 Managed Edge System
	3.1 Main Applications of the System
	3.2 Essential System technologies
	3.3 Quality of Service in the System

	4 Tellabs 8000 Network Management System
	4.1 Network Management
	4.2 Tellabs 8000 Network Manager
	4.3 Network Manager Packages
	4.3.1 Macro Manager Package

	5 Access Network Technologies and Services
	5.1 Protections
	5.1.1 Multiplex Section Protection (MSP)
	5.1.2 RSVP Path Protection

	5.2 Inverse Multiplexing for ATM
	5.3 The PPP Multilink Protocol (MP)
	5.4 Services
	5.4.1 MPLS Layer 3 Virtual Private Networks
	5.4.2 MPLS Layer 2 Virtual Private Networks

	6 Software Testing Overview
	6.1 Software Testing
	6.2 Classification of Testing Techniques
	6.3 Levels of Testing
	6.3.1 Regression testing

	6.4 Soak Testing
	6.5 Test Automation

	7 Implementation and Verification of the Soak Testing
	7.1 Objectives
	7.2 The Soak Testing Environment
	7.2.1 Services

	7.3 Automating the operations
	7.3.1 Operating network with QTP
	7.3.2 Operations with NMS macros
	7.3.3 Operations with telnet connection and CLI
	7.3.4 NMS operations

	7.4 Detecting failures
	7.5 Implementing logging
	7.6 Integrating the pieces together
	7.6.1 Overall architecture
	7.6.2 Operation description
	7.6.3 Additional considerations

	7.7 Deployment of Soak Testing

	8 Summary and Conclusion
	8.1 Summary of the Thesis
	8.2 Conclusions
	8.3 Further Research

	 References
	 Appendix A: Structure of Operation Execution with NMS Macros
	 Appendix B: Tcl Script Fetching the Statistics from the Agilent N2X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /FIN ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

