HELSINKI UNIVERSITY OF TECHNOLOGY

FACULTY OF INFORMATION AND NATURAL SCIENCES

DEPARTMENT OF INFORMATION AND COMPUTER SCIENCE

DEGREE PROGRAM OF INDUSTRIAL ENGINEERING AND MANAGEMENT

Golan Lampi

Self-Organizing Maps in Decision Support:
a Decision Support System Prototype

Master’s thesis submitted in partial fulfilment of the requirements for the degree of
Master of Science in Technology

Espoo, 20th March 2009

Supervisor: Professor Olli Simula
Instructor: D.Sc. (Tech.) Miki Sirola, M.Sc. (Tech.) Jukka Parviainen

HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF

Faculty of Information and Natural Sciences MASTER’S THESIS
Degree Program of Industrial Management and Engineer-
ing
Auth Dat
vt Golan Lampi *€ 20th March 2009
Pages
BT +

Title of thesis
I I Self-Organizing Maps in Decision Support: a Decision Support System

Prototype
Professorship Computer and Information Science Code T-61
Supervisor Professor Olli Simula
Instructor

D.Sc. (Tech.) Miki Sirola, M.Sc. (Tech.) Jukka Parviainen

Industry and business are full of complicated decision making processes in which there
is a high probability of human error. These processes are most crucial in the operation
of nuclear power plants. The quality of decisions can be increased and probability
of errors can be reduced by providing computerized decision support for the decision
maker.

Self-Organizing Map (SOM) is a useful method for visualizing high-dimensional and
large datasets. The aim of this work is to find approaches for using SOM in supporting
the decision making processes of nuclear power plant operators, and to analyze whether
these approaches can be used for decision support in other applications. The research
methods are prototyping, data mining and survey of literature.

A prototype of a decision support system (DSS) platform (DERSI) has been develo-
ped. The prototype uses a collection of methods for decision support, including SOM
quantization error, SOM U-matrix, fuzzy logic, rule-based reasoning and case-based
reasoning. It is programmed with the Matlab programming language and uses a SOM
Toolbox add-on. It has a graphical user interface that contains visualizations of the
methods.

Two units of a DSS prototype have been built on this platform. One uses data from a
Simulink simulation model and the other unit uses data from the Teollisuuden Voima
(TVO) nuclear power plant simulator. These prototype units demonstrate the poten-
tial of the prototype methods. Other approaches for using SOM in decision support
were found from literature. The thesis compares these approaches with the prototype
methods and discusses the possible use of this prototype in other applications.

Keywords

Data Mining, Decision Support, Self-Organizing Map (SOM), Rule-
Based Reasoning, Fuzzy Logic

TEKNILLINEN KORKEAKOULU DIPLOMITYON
Informaatio- ja luonnontieteiden tiedekunta TIIVISTELMA
Tuotantotalouden tutkinto-ohjelma

Tekija Paivays
! Golan Lampi Y5 90. maaliskuuta 2009
|vumaarm n
Ty6n nimi . e -
Itseorganisoituvat kartat paiatoksenteon tuessa: paatoksenteon tukijar-
jestelmén prototyyppi
Professuuri Koodi

Informaatiotekniikka T-61

Tyo Ivoj
yon valveja Professori Olli Simula

I
YOn O3 T Miki Sirola, DI Jukka Parviainen

Teollisuus ja liiketoiminta ovat tdynnd monimutkaisia paitoksentekoprosesseja, joissa
inhimillisen virheen mahdollisuus on suuri. Ndmé& prosessit ovat hyvin kriittisia ydin-
voimaloiden toiminnan ohjauksessa. Pa#toksien laatua voidaan parantaa ja virheiden
todennédkdisyyttd vahentéasd antamalla tietokoneistettua pastoksenteon tukea paétoksen
tekijélle.

Itseorganisoituva kartta (SOM) on hyddyllinen tapa visualisoida moniulotteisia ja suu-
ria data-aineistoja. Témén tyon tavoitteena on loytdd tapoja SOM-menetelmén hyo-
dyntdmiseen ydinvoimalan operaattorin péaétdksenteon tuessa ja analysoida, voiko ky-
seisid tapoja kayttad myos muiden sovellusalueiden padtoksenteon tukeen. Tyon tutki-
musmenetelmét ovat kokeellinen prototyyppikehitys, tiedonlouhinta ja kirjallisuustut-
kimus.

Tutkimuksessa on toteutettu prototyyppi (DERSI) péa#toksenteon tukijérjestelmén
(DSS) alustasta. Se hyddyntdéd pédtoksenteon tuessa kokoelmaa erilaisia menetel-
miéd, kuten SOM kvantisointivirhettd, SOM U-matriisia, sumeaa logiikkaa, sddnto-
pohjaista paittelyd ja tapauspohjaista péadttelyéd. Prototyyppi on ohjelmoitu Matlab-
ohjelmointikielelld ja se hyodyntéda Matlabin SOM Toolbox -laajennusta. Sithen kuuluu
myo0s graafinen kdyttoliittymé, joka sisaltdd kaytettyjen menetelmien visualisoinnit.

Tutkimuksen alustalle on rakennettu kaksi padtoksenteon tukijérjestelmin prototyypi-
yksikko#. Yksi niistd hyodyntdd tutkimuksen Simulink-simulaatiomallin dataa ja toi-
nen Teollisuuden Voiman (TVO) ydinvoimalasimulaattorista saatua dataa. Nama yksi-
kot demonstroivat prototyypin menetelmien mahdollisuuksia. Kirjallisuudessa esiintyi
myo6s vaihtoehtoisia tapoja hyddyntdd SOM-menetelméad pa#dtoksenteon tuessa. Nai-
td verrattiin prototyypin menetelmiin ja lisdksi pohdittiin, voiko prototyyppialustaa
hyodyntaa muilla sovellusalueilla.

Avainsanat

tiedonlouhinta, pédtoksenteon tuki, itseorganisoituva kartta (SOM),
sddntopohjainen paittely, sumea logiikka

Foreword

This Master’s thesis has been done in the Department of Information and Computer
Science in Helsinki University of Technology in 2008-2009. Although the background
work of the thesis begun already in the summer 2003 when I came to work for the
first time to the department.

The industrial partner in this project was Teollisuuden Voima Oy (TVO) in Ol-
kiluoto, Finland. The project has been funded by TEKES and TVO. I am grateful
to both for supporting and financing the project. The project has been part of IDE
group in the beginning and part of NOTES project in the end.

[am very grateful for my supervisor professor Olli Simula and both instructors
Miki Sirola and Jukka Parviainen for guidance, support and most of all patience in
a process that has taken much longer than was intended. A lot of unexpected events
and obstacles in my personal life have desperately tried to prevent me from writing
this thesis but fortunately I have been able to finally complete it. I am forever grateful
for Miki from persistent support and belief in me in times when even I did not believe
in myself. Few instructors would have so much patience.

Thanks for my colleagues Jaakko, Mikko and Janne, Risto and Teemu from support
and from being excellent room mates. Thanks for Entropy and Rose Garden, and my
very unreliable computers for providing content to my life when I was not working :)

Most of all, I would like to thank my family. My parents Juha and Avigail, sisters
Johanna and Pamela, our dog Mona and my love Maikku. And two dear friends Mipi
and Roni that have been friends since childhood.

Otaniemi, Finland, March 20th, 2009

Golan Lampi

111

Contents

[l__Introduction

[L.1__Research Problem, Objectives and Scopd

2

Decision Supportl

.1 Definition of System and Procesd
0.2 Decision Making Processed o oo
0.3 Quality Management Procesdo o
.4 Svstems Engineeringo
.5 Decision Support Svstemdo

Software Development_and Data Mining

3.1 Software Engineerind
3.2 GUI Desien and Visualizationd

3.3 _Data Mining Procesd

Methodologied

K12 SOM Visualizatiod
W13 SOM as Reeression Model
U2 Rule-Based Reasoningd o oo
5.1 Nuclear Power Planfl oo
5.2 _Process of Prototype Developmentl o oo

G5 DERSLGUI
15.5.2 Recommendation Framd o oo oo
I5.5.3 TInput Data Plot Framd o o oo
554 Sensor Q-Frror Plot Framd

l5.5.5 Process State U-Matrix Framd oo oo

v

10
10

12
12
12
14
15
15
15

582 DERSITVO Unifl.

.9 DERSI Version Histord oo oo

6.5 Comparison of DERSI with SOM Literaturd
6.6 Other Applications for DERSE o
6.7 Analvsis of the Studsl
6.8 Opportunities for Future ResearcH

[z Summary
71 Conclusiond

[Referenced
G Rl of DERST S Tl

40
40
41
41
42
42
42
43
44
45
45
45
45
46

47
48

48

54

List of Figures

U1 Two-dimensional SOM in input spacel o oo oo 13
K2 SOM component plane, U-matrix and trajectory visualizations) 14
|51 Stricture diagram of BWR. nuclear nower plant) 17

5.6 DERSI GUI of Simulink unit. picture I 23
5.7 _DERSI GUI of Simulink unit, picture 4 23
5.8 DERSI GUI of TVO unit, picture I 24
5.9 DERSI GUL of TVQ unit, picture A oo 24
15,10 DERSI entity diagram| 29
[5.11 Time information expansion of a data matrix 29
15,12 DERSI fuzzy predicate membership functions) 31
15,13 DERSI diagnosis and recommendation tule 32

........................ 33
15.15 DERSI operation in simplified form!. 34
5.16 DERSI inference process) 35
517 modify dss.muserinterfacel 36
1518 Pl-diagram of the nuclear power plant Simulink model. | 37

vi

Acronyms and Terms

AHP
BI

BMU
BWR
CRISP-DM

DECS
DERSI
DERSI Platform

DERSI Unit

DSS

ESS
GUI
MIS
MMI

OLAP

PCA
SOM

SOP
SQL

Analytic Hierarchy Process

Business Intelligence. DSS is often referred to as BI in business
context.

Best Matching Unit. BMU of a vector in a neural network is the
neuron that has the smallest distance to the vector.

Boiling Water Reactor

CRoss Industry Standard Process model for Data Mining. Data
mining activities have been standardized into this standard,
whose latest version is 2.0.

DECS is a Matlab struct that contains all data of a DERSI unit.
DERSI platform is abbreviated as DERSI.

DERSI platform refers to the DSS prototype platform of this
study. The platform is application independent. The name of the
platform comes from DEcision support Recommendation System.
DERSI unit refers to a particular instance of DERSI Platform
that is customized and build for a particular application and
dataset. There are two DERSI units in this study: Simulink
unit and TVO unit.

Decision Support System. DSS is called in some contexts with
other names like BI, Management Information System (MIS) or
Executive Support System (ESS).

Executive Support System

Graphical User Interface

Management Information System

Man-Machine Interface. MMI refers to the part of a DSS that is
connected to a human user.

OnLine Analytical Processing. OLAP is a technique to quickly
answer multi-dimensional analytical queries. Various quantities
like sums, averages and correlations are deduced from a multi-
dimensional dataset.

Principal Component Analysis. PCA is a method of statistics.
Self-Organizing Map. SOM is an unsupervised neural network
algorithm.

Standard Operating Procedures

Structured Query Language

Vil

TVO Teollisuuden Voima Oy. TVO is a nuclear power plant company
that is an industrial partner of this thesis.

UI User Interface

WWW World Wide Web

viil

Chapter 1

Introduction

Fast development of technology, fierce competition in markets and demand for safer
systems than ever are reasons why enormous amount of research effort are put on
data analysis and visualization methods. Fast growth of processor power, memory,
disk storage and network capacity create new opportunities for information systems.

This study uses two groups of previous studies as a basis. First is a doctoral thesis
that has been conducted of utilizing rule-based reasoning in failure management of
safety critical processes [I]. Second is a series of studies where self-organizing map
(SOM) is utilized for industrial process monitoring [2, B, @, B, 6, [, 8. As SOM is
one of the most used neural network algorithms and has been invented in author’s
research institute, a lot of SOM research is conducted there. When researchers in
these two fields collaborated the following hypothesis arouse: combination of rule-
based reasoning and neural methods can be utilized in process monitoring decision
support.

It was decided to build a decision support system (DSS) [9] prototype that tries
to prove the hypothesis and demonstrate the strengths of these methodologies and
their combination. Many of industrial processes are safety critical. Nuclear power
plant process monitoring was chosen as the application for the prototype because
strong contacts and experience of the field existed in the research group steering this
study. A challenge in developing tools for this application is that the application is
extremely safety critical and new technology is tested and utilized very conservatively
in such applications. The reason is that in safety critical applications the replacement
of technology with newer one is considered to be an expensive risk. The scope of
the study was extended to identify other applications where the prototype could be
utilized.

Nuclear power plant process is monitored constantly by an operator or team of
operators whose task is to ensure efficient and safe operation of the plant [I0]. They use
various systems for monitoring the process and preventing faults. DSS is a computer
system whose purpose is to make the decision making process of the system user
faster, more consistent, accurate, fault free and safe. Prototyping is a methodology
for interactive development of a system [I1]]. It is used for experimenting new methods
and structures in situations were feedback is required constantly. Prototyping can have
many iterations of development and feedback gathering.

SOM is one of the most interesting methods for two-dimensional visualization of

data [T2]. Large amount of publications has been written of SOM and its applications.
In many applications computational efficiency is one of the primary concerns and this
is one of the most important strengths of SOM [I3]. SOM is used in many different
ways in this study, and one of them is classification. It can be used for case-based
reasoning, where an analogy is drawn from cases similar to the current situation.

Logical statements like A IS B or IF A THEN B are useful way to transfer human
knowledge into a computerized form that can be used automatically. Rule-based
reasoning is a methodology for the computer to process this knowledge and create
new facts from existing ones [I4]. As the most of real life knowledge is fuzzy in
nature, fuzzy logic can be useful in coding the process knowledge [15, [T6].

The largest problem with rule-based reasoning is that in almost any application
a very large amount of rules are required for coding all necessary knowledge and it
is difficult to be sure that nothing essential is missing from the rule database. By
combining rule-based reasoning, case-based reasoning and fuzzy logic it is possible
to reduce the amount of required rules to minimum and code the knowledge in the
language where it has the most simple representation.

This study is funded by TEKES and Teollisuuden Voima (TVO) nuclear power
plant and the study is a part of NOTES project.

1.1 Research Problem, Objectives and Scope

Study of this thesis is very interdisciplinary. Research fields connected to the study are
decision support, data mining, neural networks, software engineering, graphical user
interface (GUI) development, safety engineering, system engineering, quality manage-
ment, artificial intelligence, business intelligence and operations management. The
research problem is formulated as follows:

e How can self-organizing map (SOM) be utilized in nuclear power plant
operator decision support?

The following research questions help solving the research problem.

e How is information system designed?
e How are system models, algorithms and data structures selected?

e How are man-machine interface (MMI) visualizations selected?

These research questions are answered only partially in this thesis. They are in-
tended as a support for solving the research problem. While performing the study
knowledge of SOM utilization in decision support of other applications was also ac-
quired and documented.

The scope of the study has been limited by focusing only on SOM algorithm
and rule-based reasoning in the application of nuclear power plant decision support.
Other neural and reasoning methods are left outside the scope. Benchmarking of the
prototype has been left outside the scope because it is difficult. But some subjective
and intuitive evaluation has been performed.

While performing the study the scope was first extended by exchanging rule-based
reasoning into fuzzy rule-based reasoning. After that it was again extended by study-
ing if it is possible to use the prototype of the study in some other application than
nuclear power plant operator decision support.

The motivation behind this study is to increase safety and efficiency in process
control. As failure in nuclear power plant is very expensive, safety is a critical issue.
The study is a part of a larger problem of how can data-based learning methods in-
crease safety and efficiency of DSSs and how can data material be utilized as efficiently
as possible in decision support and process control. Important goals in nuclear power
plant operator decision support are early fault detection, identification and repairing.

1.2 Structure of the Thesis

The thesis is organized as follows. Chapter 2 explains decision support, decision
support systems, safety critical systems and related concepts. Chapter 3 explains
software engineering, graphical user interface (GUI) design and data mining briefly.
Chapter 4 describes the most important methodologies of the study: self-organizing
map (SOM), rule-based reasoning and fuzzy logic. Chapter 5 is the most important
chapter. It describes nuclear power plant process and DERSI, the constructed decision
support system platform prototype. Results are presented and evaluated in Chapter
6. Chapter 7 has summary and conclusions.

Chapter 2

Decision Support

2.1 Definition of System and Process

System can be defined in many ways. One definition is as follows: a system is a
purposeful collection of interrelated components that work together to achieve some
objective [T1], p. 21]. Systems are separated into three distinct parts: inputs, processes
and outputs [0, p. 35]. A diagram of a system in the context of decision support is
shown in Figure 211

SYSTEM
Inputs Processes Outputs
Raw materials Procedures Performances
Costs > Programs > Consequences
Resources Tools Finished products
Activities Services delivered
Decisions
Decision
maker Feedback

Figure 2.1: Processes, inputs, outputs and the decision maker in a system.

Inputs are the elements that enter into the system. Examples of inputs are patients
admitted to a hospital, raw materials entering a chemical plant or data input into a
computer or process control system. Processes are all the elements that are needed to
convert the inputs into outputs. For example a process in a chemical plant may include
elements like heating the materials, using operating procedures and using a material

4

handling subsystem. In a hospital a process may include elements like conducting
tests and performing surgeries. Outputs can be for example finished products or the
consequences of the running process. Gasoline is one output of a chemical plant and
cured people are an output of a hospital.

2.2 Decision Making Processes

One important process type is the decision making process. A lot of decisions need to
be made, either by people or automation. If automation is making decisions, people
have decided decision logic of the automation in advance. Decision making process
in problem solving can be divided into four phases: intelligence, design, choice and
implementation. Actions in the phases are summarized in the following list [9]:

e Intelligence

— Finding the Problem
— Problem Classification
— Problem Decomposition

— Problem Ownership
e Design

— Modeling
— Principle of Choice
— Developing Alternatives

— Predicting Outcome of Alternatives
e Choice

— Search of Alternatives

— Evaluation of Alternatives

e Implementation

The first part of intelligence phase is finding the problem. It is important to dis-
tinguish between a symptom and a problem. For example a symptom could be high
temperature in a nuclear reactor and a problem could be a broken valve. The phase
of intelligence is a primary target for decision support systems (DSS) designed for
non-structured problems [9 p. 60]. Models of design phase describe how symptom
variables change in relation to control variables and how uncontrollable variables act.
There are many approaches to model the situation of the decision making. Some of
them are game theory, scenario analysis, differential equations and various optimiza-
tion methods. Principle of choice is the principle of how risk averse or risk seeking
the decision should be. Alternatives are possible courses of action.

If the amount of alternatives is large, the search for effective alternatives in choice
phase can be complex. A few important approaches for evaluating alternatives are

utility theory, analytic hierarchy process (AHP), sensitivity analysis and what-if ana-
lysis. Implementation means carrying out the decision. In business context this could
mean communication, explanation and justification of the decision. In nuclear power
plant decision support context this could mean opening or closing of various valves of
the plant.

Structured processes are routine and repetitive problems that have standard solu-
tions. Unstructured processes are fuzzy and complex problems that have no simple
solutions. Decision making processes can be classified as structured, semi-structured
or unstructured. Semi-structured means that some parts of the process are structured
and some are not. One typical feature of an unstructured decision situation that the
amount of alternative actions is very large. Structured and some semi-structured de-
cisions have been supported by computers for many decades, especially decisions of
the operational and managerial control type. Such decisions are made in all functions
of an organization, especially in finance and operations [9, p. 13].

Problem finding is in very important role in many decision making processes. Some
of those processes do searching with problem knowledge that is in a hierarchical form.
Such processes are used in many diagnostic applications, for example when doctors
performs diagnoses for patients and computer support personnel perform diagnoses
while repairing a computer system [I7]. The problem solver begins from the root of
a knowledge hierarchy, asks a question, finds an answer for it and depending on the
answer chooses a node of the hierarchy. Then it repeats the procedure until a leaf is
chosen.

2.3 Quality Management Process

Quality management is a process that is present in all functions of an organization.
The goal of the process is the same in every organization so it has been possible to
standardize the process. ISO 9000 is a standard that defines quality management
procedures. ISO 9000 certified organizations conform to this standard. Certification
is a sign of quality for those evaluating the organization. Evaluators could be investors,
users of a product or other stakeholders. Safety is an important part of quality in a
nuclear power plant process. [I§]

Quality management can be divided into quality control, quality assurance and
quality improvement. It can also be divided into design quality, production quality and
customer quality. Design quality is the relation between the intentions of the product
designer and the actual product design. Production quality is the relation between
the production process specifications and the actual process output. Customer quality
is the relation between the customer needs and the specifications of a product.

The purpose of quality control is to ensure that the outcome of production process
is what was intended. Each of different production processes have their own quality
control activities. For example cell phone production quality is controlled both by
measurements in production process and feedback information. The first can be sta-
tistical samples of defects in a cell phone batch and the second can be the amount of
warranty returned phones or the amount of negative customer feedback.

A part of the quality control process is mental models for finding reasons of faults

in the production process. Such mental models are for example brainstorming, diag-
nosing methodologies, root cause analysis, standard operating procedures (SOP) and
fishbone analysis. One of the most important tools of quality control is the control
chart that is a time series plot of a production process variable [T9, p. 1128]. Tt is as-
sociated with upper and lower warning and alert limits. If the variable is a statistical
quantity, monitoring of the charts is calle statistical quality control.

2.4 Systems Engineering

The science of constructing systems is called systems engineering and it is very inter-
disciplinary field. The field is called with many other names like industrial engineering,
production engineering, operations management, manufacturing systems engineering
and control engineering. Systems engineering is connected to many other engineering
disciplines like software engineering, enterprise systems integration, intelligent system
engineering, expert system engineering, artificial intelligence engineering and data
mining. [20, 0]

The most important systems engineering projects are process re-engineering pro-
jects. Processes of an existing organization are mapped with business process map-
ping. Various process maps and process flow charts are created. These maps have
details of both the information flow and the material flow of the organization. The
maps and charts are analyzed with methodologies like flow analysis and new improved
process maps are acquired. After this both the form of the organization and its tech-
nological infrastructure are re-engineered. [21]

2.5 Decision Support Systems

Various systems are build for running, automating and supporting the processes of an
organization. These systems are networks of people, infrastructure and knowledge that
are connected together. Important infrastructure are computers and manufacturing
machinery. Knowledge can be either explicit or tacit. It can be either in memory
of people like the knowledge of a handcraft shoemaker. Or it can be saved in form
of written or electronic documents like emergency procedures and rules of a nuclear
power plant. The knowledge can be either in structured or unstructured form. [22]

Many human-computer interfaces emerge in these systems. They are called man-
machine interfaces (MMI). In business decision support context they are called dash-
boards. MMIs require a lot of attention as a bad MMI is a major reason of human
errors causing defects, faults and non-optimal operation of a process. [l 9

If the system provides support for a human user, it called a decision support system
(DSS). In some contexts the word is reserved for a system devoted for unstructured
problem solving. DSSs of some applications have different names like management in-
formation system (MIS) or executive support system (ESS). Business decision support
is often called business intelligence (BI). Most decision support systems use a data
warehouse as an input. Data warehouse is a database that collects data from all other
databases of an organization. Data mining is an essential part of modern decision
support and is often applied directly to the data warehouse. Mathematical queries,

reports, statistical analysis and online analytical processing (OLAP) are possible with
the data warehouse. OLAP is simple data mining that calculates summarized quan-
tities like averages and sums from multi-dimensional data cubes.

Many names are used to refer to the same computer or manufacturing systems.
The used name depends on which engineering discipline is used to model and analyze
the system. Some of these names are information system, enterprise system, control
system, decision support system and expert system. System structures in the organi-
zation depend on the form of the organization. Different structures would emerge in
a bureaucratic organization than in a flexible and organic organization [23].

2.6 Safety Critical Systems and Cost of Quality

Cost of quality can be divided into four groups: 1. prevention of failures, 2. appraisal,
3. internal failure and 4. external failure. Appraisal cost is created from inspecting or
monitoring. Internal failure cost is created from sales loss of defective products that
need to be discarded. External failure cost is created from defective products that have
been already sold to a customer. It can be from warranty service or from reclaims for
compensation. In some processes there are only failure costs that cannot be separated
to internal and external parts. Examples of such processes are production of services
and nuclear power generation. Usually it makes sense to minimize the total quality
cost that is sum of the four costs. [I§]

In some processes the cost of failure is much higher than the cost of prevention
or appraisal. These processes are safety critical. Examples of such processes are
nuclear power production, airplane traveling and diagnosing of fatal diseases. Safety
engineering is a field specialized into design of fault-free systems that are required for
control and support of safety critical processes. Very often safety requires security so
safety and security engineering are closely connected. [24]

Safety critical systems are designed to be redundant and they have to go through
much more detailed analysis than traditional computer or production systems. The
manufacturing of Olkiluoto 3 power plant will last for almost 10 years because of high
safety requirements [25]. Safety critical systems in nuclear power plants are built for
defense in depth. There are many subsystems in different levels and if one system
malfunctions, the next system becomes operational. Every subsystem is independent
of each other and the probability of all subsystems failing simultaneously is extremely
small [T]. That probability is the product of all individual subsystem failure probabili-
ties. When creating a safety critical computer program its reliability can be increased
by using methods of propositional logic to prove that the program is fault free [26].

In safety critical applications a false negative diagnosis of a fault is much more
expensive than a false positive diagnosis. So after optimizing the operation of a safety
critical system it is likely that the system produces false positive diagnoses easily. [27].

Chapter 3

Software Development and Data
Mining

3.1 Software Engineering

There are many models for the process of a software project. The most simple and tra-
ditional software process is the waterfall model that consists of five sequential phases:
1. requirements definition, 2. system design, 3. implementation, 4. integration and
5. system operation [I1]. Opposite of waterfall model is agile programming process
that is very flexible and organic [28]. It does not have distinct phases.

The most important part of a software project is requirements engineering. If the
requirements are poor, the outcome of the programming will be poor. Requirements
engineering has four parts: 1. feasibility study, 2. requirements elicitation and analy-
sis, 3. requirements specification and 4. requirements validation. Requirements can
be divided into functional, non-functional and domain requirements.

In requirements elicitation the knowledge and opinions of project stakeholders are
transferred into a written form. Cross-functional teams are formed from customers,
engineers, programmers, data analysts or other experts or stakeholders. Brainstorm-
ing, meetings and interviews are important methods in requirements elicitation. Mar-
keting research methods like questionnaire surveys, phone or Internet queries can also
be utilized [29]. In some projects useful data can be found by conducting struc-
tured query language (SQL) or online analytical processing (OLAP) queries to re-
lated databases. Simulations can be developed to get more understanding of the
software users problem. Examples are differential equation systems formed from laws
of physics, probabilistic Monte Carlo simulations or game theoretic simulations [9].

Rapid prototyping is a process of using a prototype for getting feedback and require-
ments from system users. The process is iterative and consists of many development
cycles. In every cycle a new version of the prototype is created and feedback is col-
lected from a prototype user. After requirements of the software project are clear the
prototype is discarded and the actual system is developed in different programming
environment.

3.2 GUI Design and Visualizations

Graphical User Interface (GUI) or man-machine interface (MMI) design is a field of
its own [30]. In a safety critical application like nuclear plant process monitoring it is
especially important that the user interface is of good design. The amount of relevant
information should be maximized and the amount of irrelevant information should
be minimized in every GUI screen. Psychological and cognitive factors of the GUI
user have to be taken into account. The interface should be easy to use and have
understandable results. [1]

Visualizations of the study can be divided into five groups: text, plots, maps,
on/off visualizations and bar visualizations. Text is one of the most common ones and
it can be either in structured or unstructured form. Plot is a graphical representation
that has one variable in z-axis and another one in y-axis and every point in z-axis is
associated to only one point in y-axis. If time is on z-axis the data of the plot is called
time series. Value on the y-axis is the value of the time series plot. Plots are used
for example in industrial process monitoring. Time series plots in quality control are
referred to as control charts [19, p. 1128]. Control chart plot has warning and alert
lines drawn above and below the area where the plot is supposed to be under normal
operation. If the value of the plot variable increases or decreases so that the plot goes
beyond the lines, the operator is notified.

There are numerous types of map visualizations. A map is a two-dimensional area
that has elements organized into some formation. One type of map is a diagram model
of a nuclear power plant that the operator can use for choosing a plant component for
more detailed analysis. Another type of map is a 2D projection of a multi-dimensional
data set. Such projections are for example principal component analysis (PCA) pro-
jection, curvilinear projection and self-organizing map (SOM) [31].

An example of an on/off visualization is a lamp that signals a process state by being
on, off or by blinking. Car and airplane dashboards are full of such visualizations.
Bar visualizations are similar to plot visualizations, but only one point of the plot is
expressed with the bar. Bar height is mapped to a data variable value. Examples of
bar visualizations are described in Sections and

Expression of time is a significant factor in visualizations. In time series plots one
spatial dimension is assigned for expressing time. In a SOM a vectorial time series can
be visualized with a trajectory where the timeline becomes a two-dimensional path.
In animation time itself is assigned for expressing time.

3.3 Data Mining Process

Data mining process has been standardized. The name of this standard is CRoss
Industry Standard Process model for Data Mining (CRISP-DM) [32]. It has six phases:
1. business understanding, 2. data understanding, 3. data preparation, 4. modelling,
5. evaluation and 6. deployment. The most important part of business understanding
is the definition of the problem. The most important part of data understanding is
exploratory data analysis and statistical analysis. Simple statistics can be used and
even more sophisticated methods like principal component analysis (PCA) projections

10

or unsupervised learning. Some statistical methods are calculation of mean, variance,
cross correlations, histograms and spectrum analysis. [31].

Important part of data preparation is data preprocessing. Data is filtered, vari-
ables are selected or discarded, samples are selected or discarded and features are
extracted with transformations. Choice of teaching samples and variables is signifi-
cant when teaching neural models like SOM [33]. Curse of dimensionality means that
it is difficult to build accurate models of a very high-dimensional dataset [31]. So the
dimension of the data has to be reduced with variable selection or projections. Com-
mon projections used for this purpose are PCA and random projection [12], [T3]. The
most important modeling concepts in data mining are description, classification, re-
gression and association. Description refers to statistical models, clustering, and other
kind of unsupervised learning. In classification the dataset is divided into classes, and
models for identifying samples of different classes are constructed. In regression a
model for calculating one variable (dependent variable) from other variables (indepen-
dent variables) is constructed. Association is the learning of association rules from
the dataset. Association learning finds causal relations between different variables.

In evaluation the performance of the models is evaluated with scoring functions.
The goal is to find a such model that maximizes the score value. Deployment means
using the model of the data mining process in production. Computational efficiency of
the chosen model or method is an issue when mining very large datasets [31]. Before
starting the data mining appropriate tools need to be chosen. Commonly used tools
are Matlab [34], SPSS and Excel computer programs.

11

Chapter 4

Methodologies

4.1 Self-Organizing Map (SOM)

The Self-Organizing Map (SOM) is an artificial neural networks algorithm that is
based on competitive learning [I2]. It can be used for many purposes, for example,
clustering, vector quantization and 2D visualization of multi-dimensional data. The
most important strength of SOM is its computational efficiency. In many applications
the SOM algorithm is fast compared to alternatives [I3]. It is also very good to
recognize noisy or ill-defined data [I2, p. 64]. A weakness of SOM is that it forgets
time relations of samples when learning [T2]. There are ways to overcome this weakness
[35] and one of them is to create delayed or difference versions of original teaching
variables into a teaching dataset of the SOM.

4.1.1 Algorithm

In SOM neurons are placed at the nodes of a lattice that is usually one or two-
dimensional. Higher-dimensional maps are possible but uncommon [33), p. 443]. The
neurons are prototype vectors that have the same dimensionality as the input data.
They are initialized either randomly or with some other initialization scheme [§].

The SOM teaching algorithm is illustrated in Figure BT and explained as follows.
The algorithm is iterative. First the prototype vectors are initialized. After that an
iterative teaching phase begins. A SOM is trained with input data. As an input
data vector is fed to the SOM the best matching unit (BMU) is searched from the
prototype vectors. The BMU, denoted here by b;, of an input data vector x; is the
map unit with a prototype vector m; closest to z; [8, p. 12]:

bi = argmin{l|z; —m;(t)]} (4.1)

Here 7 is the input data vector index, j is the map unit index and ¢ is the training
step index. There are many definitions for distance between two vectors but Euclidean
distance is a common one [I2, p. 16]. If the input data vector x; has missing variable
values, those variables are ignored in the distance calculation and in the subsequent
update step. After this the BMU and its neighbor cells are updated by moving their
prototypes towards z; so that new values for the prototype vectors are:

12

Data and initialized SOM Data and trained SOM

Y-value
o

X b d

i i 5 i i
=3 OX-value © 10 =5 0 X-value5 10

Figure 4.1: Two-dimensional SOM in input space. Crosses are input data vectors and
dots are SOM prototype vectors. In the left picture is an untrained map. In the right
picture is a trained map. It can be seen how the SOM approximates the input data
distribution.

m;(t + 1) = m;(t) + a(t)he; (1) [z —m;(t)] (4.2)

a(t) is learning rate and hy,;(¢) is a neighborhood function centered on the winner
unit. The neighborhood function gets its maximum value in the winner unit and
decreases monotonically with increasing distance on the map grid. The rate of this
decreasing depends on neighborhood radius o(t). [§]

During training both the learning rate a(t) and the neighborhood radius o(t)
decrease monotonically and the SOM prototype vectors become euclidically close to
the input data vectors. The SOM algorithm seeks to teach the map so that the
quantization error of the input data is minimized while the map still preserves the
topology of the input space. The quantization error of the map with input data vectors
x; can be calculated with the following formula:

N
Eq = Z ”xl — My,
=1

N is the amount of data samples and m,, is the prototype vector of the BMU of
x;. After the map is trained, it can be used to identify data that is similar to the
teaching data by using that data instead of input data vectors in the quantization error
calculation. Data that is different than the teaching data, gets a larger quantization
error than data that is similar to the teaching data [36].

2 (4.3)

13

4.1.2 SOM Visualization

SOM component plane,U-matrix and trajectory visualizations are shown in Figure 2.
A SOM component plane is a two-dimensional lattice that contains either rectangular
or hexagonal cells. The color of each cell represents a value of a prototype vector
variable. Each variable has a separate plane and by comparing the planes with each
other it is possible to find correlation relationships between variables.

Figure 4.2: SOM component plane visualization is shown on the left and SOM U-
matrix visualization on the right. A SOM trajectory is plotted into the U-matrix
visualization.

U-matrix is similar to a component plane but there is only one U-matrix for one
SOM and in the U-matrix there is one cell per every contact between two closest
neighbor prototype vectors of the map. Every prototype vector that is not in the
border of the SOM has six cells in the U-matrix when the SOM is of hexagonal type.
The color of a cell represents the distance between the two prototype vector neighbors.
Clusters can be easily seen in a U-matrix visualization as the cluster borders are shown
in brighter colors.

A time series can be visualized by drawing a trajectory into a SOM U-matrix or
component plane visualization. A BMU of a vector of a time series is marked with a
point. Then a BMU of the next vector of the time series is also marked with a point
and a line is drawn from the previous BMU to the current BMU. This procedure is
repeated until BMUs of all time series vectors are drawn. A curve showing the time
series propagation in the SOM is formed.

14

4.1.3 SOM as Regression Model

SOM can be used as a nonlinear regression model [37]. If a variable of a teaching data
vector is not used in distance calculation when finding its BMU, the SOM becomes a
regression model for that variable. If the variable is time, SOM can be used to find
out the time value of the teaching data vector that is similar to a test data vector.
In this study that value is called SOM progress of the test data vector on the teaching
data. Finding of the desired time value works only in limited amount of situations. In
process monitoring application, if the test data vector represents the current process
state and teaching data is a time series portion from fault state X, the value is called
current state SOM progress on fault state X or just SOM progress on fault state X.
There has been preceding studies of the potential use of the SOM progress value [3§].

4.2 Rule-Based Reasoning

One way for saving knowledge are rules based on propositional logic. Such rules are
IF-THEN rules where IF part is called antecedent and THEN part is called consequent.
Both the rule antecedent and the consequent can be A IS B type of logical statement.
The consequent can also be DO X type of imperative. Consequents of some rules
can be antecedents of other rules. The rules are contained in a hierarchical rule base
having many rule trees. Root of every tree is an imperative, nodes and leaves are
logical statements and branches are rules. Appendix [A] contains an example of a
simple rule base.

The rule base is a dedicated database. It is too inefficient to test all of the rules
of a large rule base. That is why the rules are tested in an inference process. It
begins either from leaves of the trees (forward chaining inference) or roots of the trees
(backward chaining inference). The testing process propagates to that direction in
the tree where the rule antecedents get true values. More details of the rule-based
reasoning process can be found from [39].

4.3 Fuzzy Logic and Reasoning

Fuzzy logic is a form of multi-valued logic derived from fuzzy set theory to deal with
reasoning that is approximate rather than precise [I5, [16]. In fuzzy set theory an
element can be a partial member of a set and its membership value can range between
0 and 1. The truth value of a fuzzy logic statement can also range between 0 (false)
and 1 (true). Such statement has a membership function that calculates the statement
truth value from some related quantities. This process is called fuzzification and it is
the first of three phases in the operation of a fuzzy reasoning system.

The second phase is fuzzy inference. All fuzzy rules, their statements and logical
operations (AND, OR, NOT) of antecedents are processed. Usually AND of two truth
values chooses the higher one and OR chooses the lower one. After processing the
logical operations their outputs are assigned for the consequents.

The third phase is defuzzification. It is the process of transforming consequent
truth values so that each consequent quantity is assigned only one result value. A

15

consequent quantity is assigned to many fuzzy statements, membership functions and
truth values, so the result value calculation can be complex, especially if accurate
techniques like centroid are used. In some applications the consequent truth values
are the desired output and defuzzification is not required.

16

Chapter 5

DERSI Platform Prototype

5.1 Nuclear Power Plant

A nuclear power plant produces electricity with a nuclear fission process [H0)]. Struc-
ture of a boiling water reactor (BWR) nuclear power plant is shown in Figure Bl
Important parts are reactor, turbines, generator, condenser and valves and pipes con-

necting the parts.
high-pressure
W

[~

low-pressure
turbine

generator

reactor

transformer —>>

transfer network

sea water
condenser

Figure 5.1: Structure diagram of a boiling water reactor (BWR) nuclear power plant.

A nuclear power plant is a safety critical application [T0]. A radiation leak could
kill a lot of people or make the environment near the plant uninhabitable for hundreds
of years. That is why nuclear power plants have especially strict safety requirements.
System redundancy is implemented in many ways. For example there are usually
four temperature sensors measuring the temperature of one place. If one sensor gets
broken, there are still three sensors functional. It is easy to identify a failed sensor by
comparing measurements from different sensors. It is highly unlikely that all of the
sensors would malfunction simultaneously.

Nuclear power plant systems are build for defense in depth (see Section [Z8). The
subsystem of the most inner level is the process control system controlling the plant.

17

Figure 5.2: Pictures of Teollisuuden Voima (TVO) nuclear power plant process ope-
rator room.

If it fails the first safety system activates. If also that system fails, a second safety
system activates. In the most outer level there is a decision support system (DSS) for
mitigation. This system minimizes loss if the worst (reactor meltdown) has already
happened. A prototype (RODOS) of such system has been implemented [A1].

An operator operates the process control system and some of the safety systems.
Control room of the operator is shown in Figure B2 The power plant operator has
a user interface with control charts, lamps that announce events or state changes,
and an event list where events appear after some condition becomes true. Inputs of
the control system are sensors that are located in different parts of the plant. The
sensors measure quantities like pressure, temperature, water height and radiation.
Essential actuators of the control system are valves and control rod depth adjusters.
The operator has to be able to make decisions in abnormal situations. [I]

5.2 Process of Prototype Development

Software development in the project of this thesis has been highly interactive with re-
quirements changing often so its software process is more similar to agile programming
than the waterfall model. The process could be also described as rapid prototyping.
The prototype development process is iterative and has been summarized in Figure
Thinking in terms of goal, inputs (process variables) and outputs (actuators, vi-
sualizations) has been a useful tool in finding requirements. The following question
is helpful: “What is the goal of the process that is automated or supported by the
prototype?”.

The goal of the prototype is defined as follows: “To provide essential information
for a human operator so that he is able to prevent fault states as early as possible
and as economically as possible.”. Application domain is nuclear power plant data in
Matlab environment. Scope is limited only to the few faults that are in the available
datasets. Inputs are variables like reactor pressure and temperature. Outputs are
visualizations like self-organizing map (SOM), time series plots and diagnoses.

Scope, application domain, inputs and outputs have all been evolving during the
development process. Especially the amount and quality of outputs has increased in

18

Process for Developing a DSS

\

Scope and
Goal Definition Application Domain
Definition

v

Inputs and Outputs
Definition

v

Prototype
Programming

v

Testing

Specification of
Requirements

Figure 5.3: Process for developing a DSS. First a goal is defined. After that many
iterations of development are conducted. In testing phase when it is clear that the
prototype is finished, it is converted into specification of requirements.

every development iteration. The latest prototype version has much better outputs
than the first one. After the specification of requirements is ready the implementation
of a new system begins. This system will be installed into production. Such final
specification will probably never be acquired in this project because the nature of its
development process is experimental.

A goal hierarchy of decision support systems is illustrated in Figure B4l Decision
support literature was studied and the discovered goals of decision support belonged to
the following group of five goals: prevention, prediction, detection, optimization and
human requirements [9, 27, 4T, 42, 43, 44, 45]. The goals are part of the goal hierarchy
that can be used as a mental model when designing decision support systems.

Data mining has been an essential tool in the prototype development process.
It helps to identify which internal structures or knowledge representations would be
suitable for the system. In this study the most used data mining methods were SOM
and and principal component analysis (PCA). Graphical User Interface (GUI) of the
prototype has been designed with intuition and examples from other monitoring and
decision support interfaces. Many important factors of GUI design have been left

19

Goals of DSSs

survival

profit

maximization safety

prevention of
faults

optimization hL.lman detection identification prediction
requirements

Figure 5.4: Goals of decision support systems organized into a hierarchy.

outside the scope of this study.

5.3 General DSS Model

A general decision support system (DSS) model emerged while developing the pro-
totype. DERSI prototype is one implementation of this model. The model is inde-
pendent of used data analysis methods and visualizations. Structure of the model is
explained in Figure Input is processed with data analysis operations and after
that used in reasoning diagnoses. The diagnoses are shown in a man-machine inter-
face (MMI) that contains visualizations like plots, text bullets and maps. Those plots
are quality control charts associated with warning and alert limits of corresponding
variables. Text bullets are descriptions of diagnoses or recommendations. Maps can
be anything from SOMs to other projections or diagrams.

A diagnosis can be also used for automatic control. This might be sensible in a
serious fault situation. For example the control system of Teollisuuden Voima (TVO)
nuclear power plant simulator initiated a reactor scram automatically without any
operator interference. The operator should never trust a DSS blindly. He should
question the output of the DSS and use also data from other sources as is illustrated in
Figure[3. Control loop arrow above the DSS box emphasizes that control procedures
or operator actions affect the DSS input as a feedback.

20

A Model for DSS

¢ control loop

INPUT DSS OUTPUT
+«| AUTOMATIC

transformation ”| conTrOL

classification) HUMAN
¢ OPERATOR
reasoning

¢ MAN MACHINE do as decision

INTERFACE (MMI) support says

DIAGNOSIS — plots do opposite as

decision support says

warning and
alarm limits decision support fails,
use traditional methods

Y VY

text bullets

maps

DATA FROM
OTHER SOURCES

Figure 5.5: General DSS model. DERSI prototype is one implementation of this
model.

5.4 DERSI Introduction

DERSI is a DSS platform prototype developed on Matlab programming environment
and SOM Toolbox [46] add-on. Its most important property is the usage of SOM quan-
tization error for fuzzy rule-based reasoning. DERSI has a partially object-oriented
structure. The prototype is modular and it is easy to extend it with new features. It
has been a subject of some earlier publications [A7, 48, 19, K.

DERSI is designed primarily for a nuclear power plant process operator. The
original purpose of the prototype was to provide a better operator user interface (UT).
During prototype programming it became apparent that appropriate user interface
development is beyond the scope of this study. The purpose of the prototype became
to demonstrate alternative visualizations and data analysis methods in nuclear power
plant decision support. DERSI became an operator Ul complement instead of a
replacement.

DERSI is a platform that is used for building a DSS (DERSI unit) for an ap-
plication like nuclear power plant decision support. Datasets of the application and
knowledge of its process are needed for the building. The building begins so that Mat-
lab is used for initial data analysis and preparation of the datasets. After that the
unit is built one part at a time with the DERSI unit building tools. Dataset matrices
are used for teaching SOMs and knowledge of the builder is transformed into rules.

21

After the unit building is complete the unit can be used for simulation of decision
support scenarios.

DERSI has two user interface parts: a GUI and command line tools. The GUI
is designed for the supported operator and the command line tools for DERSI unit
building. DERSI can also be viewed as a tool collection. Because of its modularity it
is easy to add new feature extractors into the prototype.

5.5 DERSI GUI

DERSI GUI with Simulink dataset (see Section B8l) is shown in Figures B0 and BT
DERSI GUI with TVO simulator dataset (see Section E8Z) is shown in Figures
and

The GUI contains 8 frames with different elements. Frame I shows diagnoses and
recommendations, frame 2 shows process state U-matrix and process state U-matrix
quantization error, frame 3 has GUI controls, frame 4 shows input data plots, sensor
quantization error plots and sensor progress value plots. Frames 5 and 7 show input
SOM and sensor SOM component planes and frames 6 and 8 show bar visualizations.
The view of diagnoses and the view of recommendations cannot be shown simulta-
neously so one or the other has to be selected into their frame. The same applies to
the view of input data plots and the view of sensor quantization error and progress
value plots. Diagnoses and input data are selected for viewing in Figures .0l and B8
Recommendations and quantization error plots are selected for viewing in Figures .1
and

DERSI can be used for simulating scenarios of the DERSI unit application. During
such simulation the content of every GUI frame is recalculated in regular intervals
(simulation steps).

5.5.1 Diagnosis Frame

Frame 1 is diagnosis frame by default. It can be switched to recommendation frame
by pressing Diag/Rec button in Ul Frame. If many diagnoses are inferred they are
listed in priority order from up to down. Each diagnosis has a diagnosis text, a priority
value Dpri in range of 0-100 and a truthness value Dtru in range of 0—1. Truthness
is a fuzzy truth value of the diagnosis.

The process of Dpri calculation goes as follows. First for every diagnosis rule k
a truth value Rtruy is calculated by doing fuzzy AND operation for all truth values
Ptruy, of the rule predicates i:

Rtruy = min{ Ptruy, } (5.1)

Predicates are explained in in detail in Section B2l Fuzzy OR is not supported in
DERSI rules because it can be implemented by negations and AND operations [39].
After rule truth calculations it is possible that a diagnosis [gets many truth values
from different rules j. Diagnosis truthness of that diagnosis is calculated by choosing
the maximum value of these:

22

Hgure 1o (DERSTINEDRORI Z22¥ D55 210))

Diag:
9 Diagnosis1. Priority is85. Truthness isl.
Valve 2 closed.

1

T 26 11 11 35 18
38 zu/""‘f = P 5/\ 29 12—

@ -0] 24 5
Feactor Up Pres Branch A R Pres Turbine | Fres Turbine 2 Pres Reactor Temp Turhine 1 Temp
18 1 1 25 25 3

ini < Poaal | Fooms -t

=] 0 5 5 =1
Yire 2 Ternp Coolpurnp 1 TermpCoolpurng 2 TermpCoolpump 1 flow Coalpump 2 flow Adm Walve |
4 Input Data Plots

Fault D State

Fault & State

Fault B State

Fauylt C State

Mormal State 9

o gl e

Reactor Up Pres Branch AR Pres Turhine 1 Pres. Turbine 2'Pres Reactor Temp Turkine 1 Temp

5 iine 2 Temp . Coolpurg 1 TernpCoolpurmg 2 TempCoolpunp 1 flow Coaloumi 2 flove Adm Valve 1
Input Data Component Planes

U-matnx SOM BMU Difference

State U-matrix Q-Error

)
2 State U-matriz
‘Component Plane Sensor Plat Wiridow Nutmber
2

E 7
Update Senzor S0Ms | B PTG

Save Plot Window |

Variable / G-Etrar Save as Mew |

Diag / Rec | Open Plot Edit |

Close Plot Edit |

Statt Simulation |

3 | Simu ‘Snapshot

Input Data Matrices
stated runi
runt
states_runi

EN
El

7

Simuspeed: | 1
Simu step: | 10
Simu snapshot %: [85
Plotcata Zaum:lﬂ_ﬁ

Trajdata Len: | 30
Input CPlane [a0

Birm. Time: 163 #4251

Fieactor Up Pres Branch A R Pres Turbine 1 Fres: Turbine 2 Pres

4 B
7 7ine 2 Temp Coolpump 1 TempCoolpump 2 TempCoolpump 1 flow Coolpump 2 fiow Adm alve 1
Sensor Component Planes

g

Sensor SOM BMU Difference

Figure 5.6: DERSI GUI of Simulink unit with input data plots in frame / and diag-

noses in frame 1.

Hguret A DERSTINEUHOEN ZZ YA S5 07

R1. Prii0.Open admission valve 2
returns the process to a stabile state
low cost

Rec:

R2. Pri70.0pen bypass valve
returns the process to 3 stabile state
low cost

3 B_W_ 3 w 3 3
15 1.5 15 15 15

¢

0] 0]
gal LK) e il e 52
f1e F(m 51 B3 3 Ta
0 a]] 0
31 52 53 a4 35

Sensor Q-Error (Up) and Progress {Down)

Figure 5.7: Upper frames of DERSI GUI of Simulink unit. Quantization error and
progress value plots are shown instead of the input data plots in frame 4 and recom-
mendations are shown instead of diagnoses in frame 1.

23

%

B

Figure 1: (DERSI'NEDROFEUZZY D55 2.0)

Diag:
9 Diagnosis1. Priority is80. Truthness is1.
paakiertopumpun vuoto alkanut

1

h irta
4 =l

TE48 HIEZ 1} o BB
T4 \‘J\‘HL‘ 15861 /\JK i} i} [i13} J\"’l‘_u'(
Tp41 360]] {51 i
F.K.\irta 36 F1 Kierrosl. PINTA412TIS FPINTA412T16 PAINE EVSO0S WS01 azento
E53 a6 100 15 7
E53 g6 oo 15 7
e 14 ﬂ

il 100
PAINE s jal

15
APRM s maton TI01 patoteho
Input Data Flots

8.BKM jannite

]
paines. vika
narmitita
3
paak. vuato
paak.s psulku
paines:y.psulky
L

2

State U-matrix

F1 Kiertasl.

PINTAH2TIS PINTA412TIE PAINE EAVSDS WSO1 asento

5 wh.Mirta FAIME 5 p.jal APRM 3 maton IOl patoteho Bl jannite
Input Data Component Planes
|
| |
P U-mainz SOM BMU Difference
LT 2

State U-matrix Q-Error

Companent Plane Sensor Pigt Window Mumiher

paak.vuoto J
aak.w.psulky
paakv.p 7
Update Sensor S0z | _ Loaut Plat Window_| P_‘m Windats
Save Plot Window
Yariable £ G-Errar Save as New |
Diag / Rec Open Plot Edit |
: Close Plot Edit

Start Simulation |

Simu Snapshot |

Input Data Mafrices
dz

ol

~ I b

Simuspesd: | 0.01

FINTA 412716 PAINE EXNS0S WSO1 asento

Sitnu stef: IT 7 b \irta, FAIMEsp @l AFFb smaton TI01 patoteho B BkW jannite
Simu snapshot %:IT Sensor Component Planes
Plotdata Zuum:IT I
Trajdata Len: IW I I I
Input CPiane | a0 8 I I I I
Sim. Time: 740 /1136 Sensor SOM BMU Difference

Figure 5.8: DERSI GUI of TVO unit with input data plots in frame 4 and diagnoses
in frame 1. Some texts are in finnish language.

B Figure (- (DERSINEUHOEUZZY D552.0)|
Rec: 3 3 i 3 U i
1.8 1.5 1.5 1.51FL(‘J 1.5
0 SR o 0
G0 740 g2h w40 29
el I'_, 7a ||| 13 [7o 13 l
0 0
normitila. paak vuoto pask v psulku paines. vika paires v psulku
Sensor Q-Error (Up) and Progress {Down)

Figure 5.9: Upper frames of DERSI GUI of TVO unit. Quantization error and progress
value plots are shown instead of the input data plots in frame 4. Some texts are in

finnish language.

24

Dtru; = max{ Rtru, } (5.2)
j

Choice of maximum value makes sense because false positive diagnosis is much
cheaper than false negative diagnosis in the nuclear power plant application that
DERSI is designed for. If the diagnosis gets a truth value from only one rule, that
value will be the diagnosis truthness. The priority of diagnosis [can be calculated by
multiplying its diagnosis truthness and significance:

Dpri; = Dtru; - Dsig, (5.3)

Significance is a part of a diagnosis entity and it means the importance of a par-
ticular diagnosis. The diagnosis significance is constant unlike the diagnosis priority.
If the priority gets a value that is less than a specified threshold value, the diagnosis
of that priority will not be shown in the frame.

5.5.2 Recommendation Frame

Frame 1 can be switched to the recommendation frame by pressing the Diag/Rec
button in Ul Frame. Recommendations are also shown in priority order from up to
down. They have own fields for the descriptions of effect and cost of the recommended
action.

The process of recommendation priority value RECpr: calculation goes as follows.
First the truth values of recommendation rules are calculated in a similar way as the
truth values of diagnosis rules. For every recommendation rule k a truth value Rtruy
is calculated by doing fuzzy AND operation for all truth values Ptruy, of the rule
predicates i:

Rtruy = min{ Ptruyg, } (5.4)

RECpri values are calculated differently than diagnosis priorities Dpri. One rec-
ommendation rule can have many recommendations and their significances as a con-
sequent. A recommendation significance is a part of rule entity and not a part of rec-
ommendation entity, so a particular recommendation can have different significances
in different rules. If many rules produce truth values for the same recommendation,
the higher significance rules should have more weight in priority calculation than the
lower significance rules. The recommendation priority RECpri; is calculated with
weighting accomplished by multiplication of rule truth values Rtru;, and significances
RECSsigy, :

RECpri; = max{ Rtru;, - RECsigy, } (5.5)
j

[is the index of a recommendation and j is the index of a rule having recommen-
dation [in its consequent.

25

5.5.3 Input Data Plot Frame

Frame 4 is input data plot frame by default. It can be switched to sensor g-error plot
frame by pressing the Variable/Q-Error button in the UI Frame. Input data comes
from processes of simulation scenarios which are listed in Input Data Matrices field
of Ul Frame.

Input data plots are similar to quality control charts of process control. They
show process variable values. The most recent values are in the right side of the plot
rectangles and the oldest values are in the left side. Variable names are written below
the rectangles. Reactor pressure is an example of a process variable. The plot y-axis
scales are specified in the DERSI unit building phase and they are based on the means
and variances of the teaching dataset variables. The z-axis scales can be adjusted by
writing a new value in the Plotdata Zoom field of the UI Frame. This changes the
scales of all plots of the DERSI GUI.

Variables 1-12 are shown in the input data plot frame by default. If the DERSI unit
has more than 12 process variables, a view with different variables can be observed
by first choosing a new view from the Plot Window Number list of Ul frame and
then pressing the Load Plot Window button below the list. A variable view can be
customized in the following way. First the Open Plot Edit button is pressed, then
new variables are chosen from the appearing menus. After that the Close Plot Edit
button is pressed. Finally either the view chosen in the Plot Window Number list is
overwritten by pressing the Save Plot Window button or a new view is created by
pressing the Save as New button.

5.5.4 Sensor Q-Error Plot Frame

Frame 4 can be switched to the sensor g-error plot frame by pressing the Variable/Q-
Error button in the Ul Frame. Sensor SOM quantization errors are plotted in the
upper row and sensor SOM progress values in the lower row of the frame. Names
of the sensors are written below the progress value plots. Sensor plot views can be
customized and plot z-axis scales adjusted in the same way as views and scales of
input data plots.

A sensor refers to an object of the somsensor class whose details are explained
later in the text. The purpose of the sensor is to represent and identify the state
of the process of the DERSI unit simulation scenario. This state has been taught
for the SOMs of the sensor in the DERSI unit building phase. One way for the
identification is to plot the SOM quantization error of the input data on a sensor
SOM. The quantization error plots can be used for monitoring the process. It is likely
in a state represented by a sensor whose latest quantization error is low. It is probably
not in a state represented by a sensor whose latest quantization error is high.

Sensor X SOM progress is the time value of the sensor X teaching data vector
that is similar to the vector of the current state. If a fault state is identified with
a SOM quantization error, the SOM progress can then be used for identifying the
phase of the fault, although this works only in limited amount of situations. Before
the calculations of SOM quantization and progress values the input data has to be
transformed into the somsensor space. The transformation is explained in Section

26

5.5.5 Process State U-Matrix Frame

Frame 2 is the process state U-matrix frame. A SOM U-matrix visualization is shown
in the left side of this frame. The U-matrix of the visualization is contained in a
umatrix object whose details are explained later in the text. Process states are
mapped to different areas or clusters in this state U-matrix. Clusters are shown as
darker areas and cluster borders as lighter areas. Clusters are labeled with texts on
the left and right sides of the U-matrix. A trajectory is drawn into the U-matrix and
one end of the trajectory represents the current state of the process. Other points
of the trajectory are past process states. The opposite end of the trajectory is X
samples in the past where X is defined by a value of Trajdata Len field in the UI
Frame. Process state transitions can be monitored by watching how the trajectory
moves between the different clusters.

In the right side of the frame is the state U-matrix quantization error plot. Input
data quantization errors on the state U-matrix SOM are visualized with this plot.
The plot can be used for two purposes. First when the trajectory crosses a cluster
border, a peak is also shown in this plot and it is easy to verify state transitions.
Second if the process enters a previously unknown state, the U-matrix quantization
error will get very large and it is easy to detect such unknown process states. Before
the calculations of the U-matrix trajectory and the state U-matrix quantization error
plot the input data has to be transformed into the umatrix space. The transformation
is explained in Section B.G

5.5.6 Input Data SOM Component Plane Frame

Frame 5 is the input data SOM component plane frame. The component planes can
be used for monitoring correlations between different process variables of the input
data. The plane visualization is created by first forming a matrix from X most recent
vectors of the current scenario data where X is Input CPlane field value of Ul Frame.
A SOM with fixed size and topology is then constructed from this matrix and the SOM
component planes are visualized in the frame.

5.5.7 Sensor Data SOM Component Plane Frame

Frame 7 is the sensor data SOM component plane frame. Every sensor has a SOM
dedicated for the component plane visualization. The currently visible planes can
be switched to those of a different sensor by first choosing a new sensor from the
Component Plane Sensor list of the UI Frame and then pressing the Update Sensor
SOMs button. The component planes can be used for checking correlations between
different process variables in the known process states whose data have been used for
teaching the sensors. Found correlations can be then compared with correlations of
the input data that are visible in Frame 5.

Sensor SOM of component plane visualization is different than that of quantization
error calculation because the size and topology of the plane visualization SOM has to

27

be fixed. Without using the same SOM size and topology in both plane visualization
frames it would be difficult to compare the correlations between these two frames.

5.5.8 U-Matrix Bar Visualizations Frame

Frame 6 is the U-matriz bar visualizations frame. The bars are formed in the following
way. The latest input data vector is first transformed into the umatrix space. Then
the difference between the transformed vector and its BMU in the process state U-
matrix is calculated. The difference is then inverse transformed back into the original
space and visualized with blue vertical bars. If a component value of the difference
vector grows over a certain threshold, color of the corresponding bar changes into red
and the height of the bar stops growing. This is because the GUI height is limited.
If the component gets a NaN (not a number) value, it is visualized with a wide and
shallow black bar. The frame reveals which variables are the ones responsible for a
high state U-matrix quantization error.

5.5.9 Sensor Bar Visualizations Frame

Frame 8 is the sensor bar visualizations frame. These bars are similar to those of the
U-matrix bar visualizations frame but the SOM used in the BMU calculation is that
of the currently chosen sensor that is highlighted in the Component Plane Sensor list
of UI Frame. The frame reveals which variables are the ones responsible for a high
sensor SOM quantization error of the chosen sensor.

5.5.10 UI Frame

Frame 3 is the UI frame. Input Data Matrices field has a list of available process
scenarios. A scenario simulation can be started by first choosing a scenario from this
list and after that pressing the Start Simulation button. The prototype is quite
slow, so calculation of a new simulation instant can take sometimes up to 10 seconds.
Current simulation instant is shown as the left number of Sim. Time: field in the
lower right corner of the frame. The right number is the length of the simulation.
Simulation speed can be adjusted by writing a new value to the Simuspeed: field.
Simulation runs in discrete steps. Simu step: field value defines how many samples
are jumped forward in each step of the simulation.

It can be convenient to take a snapshot of a specific instant of the simulation. First
the desired snapshot instant is written in Simu snapshot %: field (0 = beginning, 100
= end). Then a snapshot can be generated by pressing the Simu Snapshot button.

5.6 DERSI Structure

In DERSI, the most important decision support knowledge is saved in five types of
entities: SOM sensors, predicates, rules, diagnoses and recommendations. Figure
BT shows important DERSI entities and their relations. The DERSI prototype
unit is a Matlab struct, that is normally saved in a Matlab global variable named
DECS. inputData contains all input data matrices (scenarios) of the process. dssgui

28

DERSI ENTITY DIAGRAM

DECS
struct

inputbata | |

umatrix

simData

| | logicunit

somsensor | [inferenceeng | predicate

| recommendation |

rec rule

Figure 5.10: DERSI entity diagram. The most important entities of DERSI platform

and their relations are shown.

Original Matrix

org org org df

Matrix With Delayed Variables

di di d2 d2 d2

1 3
4 6
7 9
10 11 12
13 14 15
16 17 18

1
4
7
10
13
16

2
5
8
11
14
17

3 NaN NaN NaN NaN NaN NaN
6 NaN NaN NaN NaN NaN NaN
9 1 2 3 NaN NaN NaN
12 4 5 6 NaN NaN NaN
15 7 8 9 1 2 3
18 10 11 12 4 5 6

Figure 5.11: Time information expansion of a data matrix. Time information is added
to a data matrix with delayed copies of its columns. Amount of delay b is 2 samples
and amount of “echoes” a — 1 is 2. NaN means missing variable values.

contains the most important program variables that are associated with the state of
DERSI GUI components. simData contains the state of the DSS scenario simulation,
most importantly varMatr that is a matrix and featMatrList that is a cell array
of matrices. varMatr contains all process variables like temperature and pressure in
its columns. Rows of varMatr represent different instants of time. First row of the
matrix is the latest instant ¢, second row is the next latest instant ¢ — 1, row N is the

29

Nth latest instant ¢ — N. Columns of featMatrList matrices are features extracted
from process variables. The first featMatrList matrix gets somsensor quantization
errors and the second gets somsensor progress values. The matrices have as many
rows as varMatr and equal rows in both represent equal time instants.

logicunit, umatrix, somsensor, inferenceeng and predicate are the classes
of the prototype. logicunit is a container of all DSS logic. It contains a umatrix,
somsensors, an inferenceeng and predicates. somsensor contains three SOMs.
One is for quantization error calculation, one is for component plane visualization,
and one is for SOM progress value calculation. umatrix contains one SOM, and the
U-matrix of that SOM. The SOM of the umatrix is created so that teaching data of
all somsensors are combined into one big teaching data matrix. It is the transformed
into the umatrix space and used in the teaching of the umatrix SOM.

Before all calculations of somsensor or umatrix methods, used input data is trans-
formed to the corresponding somsensor or umatrix space. Transformation parameters
are attributes of objects of these classes. The transformation happens as follows. First
the input data matrix is normalized into zero mean unit variance of the teaching data
of the class object. Then a subset S of the variables is selected and their columns
are copied into a temporary matrix. This temporary matrix is then processed. Time
information is created by making a —1 delayed copies of every column so that they are
delayed with integer multiple of b as shown in Figure B.TT], where a = 3 and b = 2. Pa-
rameters S, a and b have been decided when building the DERSI unit. These columns
are then combined with the temporary matrix into the final transformed matrix that
is then used for the somsensor and umatrix calculations. Some calculation results
have to be inverse transformed before further utilization. The SOM algorithm forgets
the time relations of teaching samples and this is the main reason for providing DERSI
platform with the ability to include delayed copies of variables in the SOM teaching
and calculations.

predicate is a fuzzy logic predicate, see Figure BI2 It contains a membership
function that is generally trapezoid shaped, as shown in field 1 of the Figure. Shape
of the trapezoid is defined by the values maybe_down, is_down, is_up and maybe_up.
The predicate is associated with some process variable (for example reactor pres-
sure), that is in the z-axis of the predicate membership function chart. y-axis of the
chart is the truth value of the predicate. The predicate truth for a value X of a
process variable can be found by checking which value does the membership function
get at point X. In DERSI it is possible to have a membership function whose other
edge is at positive or negative infinity, as shown in fields 2, 3, 5 and 6 of the Figure.
Membership functions of propositional logic predicates A < x < B, x > Aand x < B
are shown in fields 4, 5 and 6.

inferenceeng is the prototype inference engine and knowledge base. It contains
four lists: 1. diag rule list (rule consequent is a diagnosis), 2. rec rule list
(rule consequent is a set of recommendations), 3. list of diagnosis and 4. list
of recommendations. diagnosis is a struct that contains a problem description in
text form and a diagnosis significance. recommendation is a struct that contains a
recommended action, cost of the action and effect of the action as text descriptions.
Every rec rule contain separate significances for the recommendations of the rule.
So a particular recommendation can have different significances in different rules. An

30

DERSI FUZZY PREDICATE
MEMBERSHIP FUNCTIONS
pred @ pred is_down < pred var <is_up (4
truth truth
1 1
0 » 0 >
/ \ pred var I pred var
maybe_down maybe_up
is_down is_up is_down = maybe_down is_up = maybe_up
pred @ pred pred var > is_down @
truth truth
1 is_up = maybe_up = Inf 1 is_up = maybe_up = Inf
0 » 0 »
| / / pred var | pred var
maybe_down
is_down is_down = maybe_down
pred @ pred pred var < is_up 6
truth truth
A A
is_down = maybe_down = -Inf .| is_down = maybe_down = -Inf
0 0 »
pred var
is_up = maybe_up

Figure 5.12: DERSI fuzzy predicate membership functions. Fields 1, 2 and 3 are
fuzzy membership functions and fields 4, 5 and 6 are corresponding propositional
logic membership functions.

example of a diagnosis rule and a recommendation rule are shown in Figure RT3
They are from DERSI Simulink unit that is explained in Section B8

The concept of diagnosis significance is absolute. For example the diagnosis re-
actor meltdown is always a very serious condition. But a breakage of one of four
sensors measuring the same process quantity is a smaller problem. The concept of
recommendation significance is context dependent. For example it would not make
sense to use boron injection to fix the problem of a temperature sensor because boron
injection is an expensive action. In this situation it would be better to set a small
significance value for boron injection. But if a reactor meltdown is diagnosed it would
make sense to set a high significance value for the boron injection.

31

e e e b e e R e e R e e R e e e e e e e e

DIAGHCEIS RULE 4:
IF
PRED 4:

***PREDICATE®*™*
-Inf < -Inf <« Sensor 4 gerror < 0.26 < 2.5

THEN

DIRG 4:
*rREDIAGHNOSIS***
Valve 2 closed.
Diag Sig: 85

7 9 Jc e e g S e e ok P d de e d o e Je ok o o e de o gk e e

FhhAkddhhkhkhkrk kA hhkdhhkhkddhhhihih

EECOMMENDATION RULE 1:
IFr
FPRED 6:

PREDICATE
2 23 < Variakle 1 walue < 10 <« 12

THEN

REC 1:
ERECOMMENDATION*
Increase speed of fesdwater pump
try to maintain the reactor wessel lewvel, not wery effective in this case
very low cost, easy to iﬂglement

Eule Rec Sig: 80

FhAkAkddhhkhkhkrkhkAdhhkdkhhkhkddhhhihiih

Figure 5.13: DERSI diagnosis rule (above) and recommendation rule (below). Words
predicate and significance are abbreviated as pred. and sig.

5.7 DERSI Operation

Important interactions between the DERSI entities are shown in Figure B.T4l The
most important prototype functionality is in two files: modify_dss.m contains func-
tionality for building and modifying a DERSI prototype unit and dssgui.m contains
GUI drawing functions, GUI callback functions and simulation logic. Almost all func-
tion calls in DERSI operation or unit building are initiated from one of these files.
logicunit interacts with modify_dss.m, dssgui.m and class objects that are con-
tained in it. inferenceeng interacts with logicunit and data that is contained in
it. Only three entities interact with SOM Toolbox: umatrix and somsensor as they
contain SOMs, and dssgui.m as it uses SOM Toolbox functions for visualizing the
SOMs.

DERSI operation in simplified form is shown in Figure B.TH and DERSI inference
process is illustrated in Figure BET6 At every simulation step varMatr is updated
with latest simulation samples from an input data matrix. Then varMatr is used for
calculating features and copying them to matrices in featMatrList. In the current
DERSI version only SOM quantization errors and progress values are used as extracted

32

DERSI INTERACTION DIAGRAM

dersidemo.m
1
operate_dss.m

modify_dss.m dssgui.m

inputData | | dssgui | | simData

logicunit

umatrix somsensor | | inferenceeng | | predicate |

diag rule
rec rule

diagnosis
recommendation

(SOM Toolbox)

XXXXXXXX.m Matlab m-file

Figure 5.14: DERSI interaction diagram. The most important interactions between
DERSI entities are visualized with lines between them.

features. After this inference results and visualizations are calculated and finally
drawn into the GUIL.

Inference process shown in Figure is explained as follows. The most recent
(instant ¢) values of process variables and calculated features are used as an input in
fuzzification 1. Acquired predicate truth values are used as an input in rule inference
1, that produces diagnoses with priorities and truth values (truthness). If the rule
base has rules that use diagnosis truth values as an input, the values are fuzzified
with predicates of those rules (fuzzification 2). Acquired diagnosis predicate truth
values are used together with truth values of fuzzification 1 for a second inference
(rule inference 2). The second inference is needed because sometimes it makes sense
to infer recommendations from found diagnoses.

5.8 DERSI Unit Building

As DERSI is a DSS platform, building a DSS unit (DERSI unit) for some application
is a separate process. modify_dss.m is the most important Matlab function that is
used for building a prototype unit. It is a command line tool and its text interface is

shown in Figure .17

33

DERSI OPERATION IN
SIMPLIFIED FORM

inputData

y

[varmatr |

calc features

y

[featMatrList |

— —

calc visualizations calc inference

Y rd

draw visualizations

Figure 5.15: DERSI operation in simplified form.

The nature of the process datasets need to be known when creating SOM sensors,
rules and other prototype entities. Data mining is a part of DERSI unit building and it
can be done both with DERSI platform and external tools. Choice of teaching samples
and variables is significant when teaching DERSI SOMs. If the application has very
large amount of variables, the dimension has to be reduced even before starting to
build the DERSI unit. Amount of time information (delayed variable copies) that is
to be included in SOM teaching has to be decided.

As classification with quantization errors is one of the main principles of DERSI,
the used application data has to be always divided to separate data matrices that
represent different classes. For example it is possible that data from a process with
fault is provided in a form of one long time series. In the beginning of the series the
process is in a normal state and at some instant a fault happens. In such case a part
of the time series would need to be copied into one matrix and a part into another.

If the fault is slowly developing, it is a difficult problem to decide which portion
of the time series is effective to use for a fault classifier building. 4, refers to the
sample index of the instant when the fault starts. As the goal of the decision support
is usually early fault identification, it makes sense to use the samples after ¢ g

The classifiers need also rules. Fuzzy membership functions need to be set sepa-
rately for every rule so that they activate at desired instants. It is obviously impossible
to create a classifier for unknown fault states. Such faults can be detected by creating
a rule that has g-error > limit type predicates of all known process state classifiers
as an antecedent. Such faults can be also detected with U-matrix SOM quantization

34

varMatr

select row 1

DERSI INFERENCE PROCESS

featMatrList

select row 1

varMatr
row 1 (latest t)

featMatrlList
row 1(latest t)

SOM quantization error
calculation

normal
preds

normal pred
truth vals

diag rules

diagnonis

diagnosis
truth vals

significances

diagnosis
preds

diag pred
truth vals

rec rules

recommen-
dations

significances

dlggr.u.)ss diagnosis rfacomr.ne.n.da- recommen-
priorities tion priorities dations

VISUALIZATION IN DIAGNOSIS
AND RECOMMENDATION FRAME

error plot as stated in Section BER.H.
The rule base should be as complete as possible [39]. A complete rule base has
rules for handling all possible inputs and conditions. It is impossible to prove a rule
base to be complete in a nuclear power plant application because there is always
the likelihood of a previously unidentified fault happening. But it should be made

35

Figure 5.16: DERSI inference process. Words predicate and value are abbreviated as
pred. and val.

bl MODIFY_DEE HELF bl

Create Sensor: modify dss{(21, sensorNumber, matrix)
Erase Zensor: modify dss(29, sensorNumber)
Create Hormal Predicate: modify dss(31l, prediiumber)
Create Diagnosis Predicate: modify_dss (32, predNumber)
Erase Diagnosis Predicate: modify dss{38, prediumber)
Erase MHNormal Predicate: modify_dss(39, prediumber)
Create Diagnosis ERule: modify_dss(41l, rulelumber)
Create Recommendation Bule: modify dss{42, ruleNumber)
Erase Recommendation Rule: modify dss{48, rulelNumber;
Erase Diagnosis Rule: modify_dss{49, ruleNumber)
Create Diagnosis: modify dss(51l, diaglumber)
Create Recommendation: modify_dss(52, recHumber)
Erase Eecommendation: modify dss(58, recHumber))
Erase Diagnosis: modify dss(53, diaglumber)

Setup U-Matrix Parameters: modify dssi{tl)

Create U-Matriz: modify dss(62)

Create U-Matrixz Label: modify dss(63, lablumber)

Erase U-Matrixz Label: modify _dss(64, labNumber)

Create Input Data Set: modify_dss(71l, setMumber, matrixz, setName)
Erase Input Data Set: modify dss(79, setNumber)

Create Variable MNames: modify dess=(3, lowWar, highVar)

Create f Beset FPlot Wins: modify dss(4)

)

Figure 5.17: modify_dss.m user interface. It is used for DERSI unit building.

certain that all essential knowledge is coded into rules. Generation of a complete fuzzy
rule base is a large problem and was left outside the scope of this study. Intuition,
experimentation, trial and error were used in building classifiers and the rule base.

5.8.1 DERSI Simulink Unit

A Simulink model of a boiling water reactor (BWR) nuclear power plant process was
built in this study. The model is simplified and based largely on assumptions. Its
components are modelled in total with 71 differential equations. PI-diagram of the
model is shown in Figure B I8 An illustrative demonstration of DERSI was acquired
with a DERSI unit that is constructed from a dataset of this Simulink model. The
rules of this DERSI Simulink unit can be found from Appendix [Al Details of the
model are in a report of a special study [51].

Six different scenarios are simulated with the process model. All of the scenarios
begin with a start of the nuclear reactor. One scenario is a normal state and the
rest are fault states. In scenario 1 starting of the reactor is successful and the process
converges into a stabile normal state. In scenario 2 a leakage appears between Reactor
and Preheater. In scenario 3 a leakage appears between Turbine 1 and Condenser
1. In scenario 4 the nuclear operator closes accidentally Valve 2 and it gets stuck. In
scenario 5 a leakage appears in the cooling system 1. In scenario 6 a strong disturbance

36

Turbine1
. Cooling: Pump 1
m Valve 1§§ >) Pipe 1_1 w
Pipe 1_2
Condenser 1
Valve 2
— Turbine 2
Reactor
Cooling: Pump 2
Pipe 2_1 m
Pipe 2_2
Preheater Pump Condenser 2

Figure 5.18: Pl-diagram of the nuclear power plant Simulink model.

takes place in Reactor input power as a result of an earthquake. Every scenario is
represented with a matrix with 251 rows and 11 columns where columns are time
series of process variables.

Scenario 4 is described in more detail. Figures B.0l and .1 show DERSI operation
in this scenario. More detailed time series plots of scenario 4 are shown in Figure
BET9 The most visible deviations are drops in Turbine 2 Pressure and Turbine 2
Temperature after the Valve 2 has been closed. The DERSI GUI plots shows the
same deviations. In the GUI it can be seen that the trajectory moves from Normal
State cluster to Fault C State cluster which is the state of Valve 2 closing. As seen in
frame 1, the rules identify Valve 2 as closed and recommend either opening of Valve
2 or opening of the bypass valve. In Figure .7 it can be seen that the quantization
error of sensor 4 (s4) gets small which is another sign of a transition to the fault state
of scenario 4.

The simulation does have some deficiencies. For example an unplanned initial
transient is seen in early values of Reactor Upper Pressure variable. Scenario 6 fault
data was too similar to scenario 2 fault so a sensor was not created of this scenario.

5.8.2 DERSI TVO Unit

The first real test of the prototype became possible as data from nuclear power plant
simulator was acquired. DERSI GUI of DERSI TVO unit is shown in Figures
and Four scenarios were simulated and in each scenario the simulated fault was
slowly developing. All of the simulations have a sampling frequency of 1Hz and a

37

200
100

40
20

20
10

20
10

40
20

30
20
10

30
20
10

Reactor Upper Pressure

Turbing 1 Pressure

Turbine 2 Pressure

Reactor Temperature

Turbine 1 Temperature

Turbine 2 Temperature

Cooling Pump 1 Temperatwre

Cooling Pump 2 Temperature

Cooling Pump 1 Flow

Cooling Pump 2 Flow

200 250 300 350 400 450 500

Figure 5.19: Time series plots of Simulink model scenario 4.

38

fault starts to develop at the instant ¢ = 1min (sample 61). In scenarios 1 and 3 (d!
and d3) the process starts normally and after two minutes a leakage in reactor coolant
pump begins to develop slowly. In both scenarios the fault becomes serious and the
simulation ends into a reactor scram. Difference between these two scenarios is the
development speed of the fault. In scenario 2 (d2) a pressure controller gets broken.
This scenario also ends into a serious fault and a reactor scram. Scenario 4 (d4) has
a series of faults and repairing actions but this scenario is not used in DERSI unit
construction because of difficulties in separating data of the different faults.

Three sensors were created in this DERSI unit. Samples 1-60 of d1 were used for
teaching normal state sensor. Samples 61-700 of d7 and d2 were used for teaching
fault 1 and fault 2 sensors.

5.9 DERSI Version History

DERSI development has lasted for a long time and many versions of the prototype
with varying features has been developed. In the beginning it was planned that
the prototype will be implemented with the C programming language. After some
planning the Matlab programming language became the choice because it would be
fast and easy to build the prototype on SOM Toolbox of Matlab.

The first versions of DERSI (V1.0 and V1.1) used very simple data for teaching
and testing. The data was generated with sine waves. In V1.2 the dersiex unit
building interface was added and DERSI became a platform capable of building a DSS
for any application. At the same time a Simulink model was created for providing
better test data. Rule numbers and rule priorities were added to the recommendation
frame.

In V1.3 variable choosing lists were added that enabled using datasets with larger
amount of variables than 12. Faulty and unnecessary Fourier transform and difference
visualizations were removed. Capabilities for generating delayed variable copies were
added. Scenario animation capability was added. In V1./ some small improvements
were made. In version V1.5 sensor quantization error and progress value visualizations
were added.

In V2.0 the prototype was totally recoded for more reliable and bug-free operation.
In version V2.1 fuzzy inference was implemented. In V2.2 important normalization
bug was fixed that enabled the usage of TVO simulator dataset. Correspondingly a
DERSI unit for TVO simulator dataset was built on this version.

39

Chapter 6

Results and Evaluation

The research problem was formulated as follows:

e How can self-organizing map (SOM) be utilized in nuclear power plant
operator decision support?

SOM quantization error can be used as an input for both traditional rule-based
reasoning and fuzzy rule-based reasoning. SOM U-matrix can be used for process
state visualization. Quantization error of this SOM can be used in detection of state
transitions and unknown faults. SOM component plane visualizations can be used
for correlation based fault detection. Vertical bars can be used for visualization of
distance between a SOM input data vector and its BMU. DERSI platform can be
used for demonstrating how a nuclear power plant operator could utilize SOM for
decision support. Additional approaches for using SOM in decision support were
found from literature. They are described in Section B8 Utilization of DERSI as a
business decision support system (DSS) was also considered and associated discussion
is in Section DERSI platform needs more testing for showing more of its potential.

6.1 DERSI Platform

The DERSI prototype platform is practically a collection of independent visualization
tools and methodologies that are gathered into one user interface (UI) and around
one simulation engine. In time critical decision support the tools need to be used fast
and efficiently. It was also considered to have separate windows and Uls for each tool.
But when a fast analysis of a serious fault needs to be performed, the operator does
not have time for unnecessary tasks like organizing windows on the monitor into a
convenient arrangement.

As there was much more knowledge about methodologies than about a process
to be supported, the prototype developed naturally into a general platform that is a
collection of tools and process independent. Processes in different applications have
very different requirements for methods and visualizations. Structure and graphical
user interface (GUI) of DERSI acts as a constraint for what kind of process data can
be used for building a DERSI unit. The platform is usable only for processes that
have enough similarities with nuclear power plant process monitoring.

40

The project of DERSI development begun many years before it was turned into a
focus of a Master’s thesis study. The project was planned to last from several months
to a year. The project continued for longer time than the initially planned duration.
After the first versions of the prototype it became apparent that the prototype devel-
opment should be treated as a continuous process where experimentation is performed
and requirements change constantly. Agile programming process should be used in
such development.

Later it also became apparent that Matlab is not the best programming language
for the prototype because it does not have pointers like C++- or it is not able to pass
values by reference like Java. This introduced many problems and forced the author
into difficult coding practices. The GUI tools of Matlab and SOM Toolbox were also
too slow for the prototype.

6.2 DERSI Unit Building

For a successful DSS development the process to be supported needs to fill the fol-
lowing requirements. First the process data has to be as realistic as possible. So
the process simulation has to be accurate or the data has to be recorded from a real
process. The most trustworthy testing would be possible with real process data and
recorded process faults. Obviously this is rarely possible with safety critical processes.
Second there has to be plenty of process data available. Third there has to be a lot of
process knowledge available. The best way to incorporate process knowledge in DSS
development is to have an application expert participating in the development of the
DSS. In this study a nuclear power plant operator would be a suitable application
expert.

For to be able to build and test a DSS, second and third requirements need to be
filled. For to be able to prove that the DSS methods really provide added value for
an operator, all three requirements need to be filled. Process of the Simulink model
fills second and third requirements but not the first. A demonstrative prototype unit
was created with the Simulink model.

Teollisuuden Voima (TVO) simulator process fills only the first requirement. Au-
thor has only limited knowledge of TVO nuclear power plant process and such know-
ledge was hard to acquire. As the TVO dataset had only three usable process states
and not enough details of the underlying process were available, it did not make sense
to create a large rule base for the TVO unit. But even with this small rule base it
was possible demonstrate that SOM quantization error and process state U-matrix
visualization can be used in nuclear power plant operator decision support.

6.3 DERSI Performance

DERSI operation speed is satisfactory with 10-12 variables, but with already 50 vari-
ables it becomes slow to operate. In DERSI unit of 50 variables one simulation step
can last 515 seconds. The simulation snapshot feature can be used in such situation.
The prototype performance has not yet been optimized and Matlab limitations slow
down the operation. GUI drawing is the slow bottleneck of DERSI.

41

6.4 DERSI Parts

6.4.1 Diagnoses, Recommendations and Sensors

The rule bases of both DERSI units are so small that they do not show the full
potential of fuzzy rule-based reasoning. But the units do demonstrate how it is possible
to calculate fuzzy diagnoses and recommendations with fuzzy reasoning from SOM
quantization errors and process variable values.

Diagnoses and recommendations of DERST Simulink unit are plausible most of the
time. But in a few time periods of some scenarios, inappropriate recommendations or
false diagnoses are shown. There are three possible causes for this: 1. SOM sensor
produces low quantization error for data of a wrong state, 2. SOM sensor produces
high quantization error for data of the right state, 3. rules of the unit are inaccurate or
faulty. If some process states cannot be separated into clearly distinguished U-matrix
clusters it is likely that faulty reasoning happens in state transitions between these
states.

DERSI TVO unit does not have recommendations and its diagnosing performance
is evaluated as follows. Reactor coolant pump leakage is identified easily with the
SOM sensor quantization error, especially near the end of the scenario. Breakage of
pressure controller and normal state data look similar and the states are difficult to
separate and identify. Variables 1 and 2 (P.K.Virta 36 and P1 Kierrosl.) correlate in
normal state, but the correlation vanishes when the reactor coolant pump leakage gets
stronger. By using SOM sensor quantization errors it is possible to identify Reactor
coolant pump leakage very early, much earlier than with the process state U-matrix
trajectory.

6.4.2 U-Matrix

Previous works have proved the ability of the SOM U-matrix to visualize industrial
process state transitions when the SOM is taught with a single time series that contains
many process states [36]. As the DERSI process state U-matrix SOM is taught with a
combined collection of different process state time series parts, there are many factors
and parameters that can increase or decrease the quality and usefulness of the U-
matrix visualization. The most important factor is that which teaching samples are
chosen from each state.

In DERSI Simulink unit, all of the five used process states are separated into clear
clusters in the U-matrix visualization as shown in frame 2 of Figure k6l The U-
matrix visualization of DERSI TVO unit is shown in frame 2 of Figure There is
a big smooth area in the upper end of the U-matrix visualization. This area contains
clusters but they have unclear borders. In the lower end of the map there are more
clear clusters.

This kind of cluster pattern implies that in the U-matrix SOM teaching data there
are likely small clusters of data that are euclidically very far away from the rest of
the data distribution. Samples of those small clusters act as outliers that stretch the
map, cause many map neurons to be situated between teaching data clusters and
cause non-optimal learning of the teaching data distribution. The small clusters are

42

reactor scram states of the process. If samples of the clusters are left outside from
U-matrix teaching data, it is likely that the rest of the process states are mapped
into more clear clusters. Both the visualizations with reactor scram states and the
visualizations without those states have their strengths and it might be appropriate
to have both kind of visualizations available for the operator.

U-Matrix Teaching Samples

Current version of DERSI platform uses all samples of each SOM sensor teaching
data matrix for the process state U-matrix SOM teaching. It is not obvious that such
approach produces always a U-matrix visualization where different process states are
clearly in different clusters of the U-matrix SOM.

It is an interesting problem that which samples and how many samples of SOM
sensor teaching data should be chosen for process state U-matrix SOM teaching to
make the U-matrix as informative as possible. For example if 10 samples is taken from
one fault for teaching and 100 samples from another fault, the U-matrix visualization
will be different than if the sample amounts are exchanged with each other. This
problem has not been examined.

One approach for the problem is to choose equal amount of samples from teaching
data of each SOM sensor. This approach was used with Simulink dataset. But if the
faults are slowly developing, there are no clear process state transitions or a process
state has only a few samples, then it is not clear that this approach is good. No
systematic way was found for choosing teaching data samples from slowly developing
faults of TVO simulator dataset so experimentation and intuition was used when
building the TVO unit.

U-Matrix Evaluation

U-matrix visualization does not provide such information that the operator does not
get from SOM sensor quantization errors. The main advantage of the U-matrix vi-
sualization is that it is cognitively much easier to follow state transitions from one
two-dimensional map visualization than from many plot visualizations. Human error
in interpreting the process state from a U-matrix map seems much less likely than
when interpreting the process state from large amount of plots. If process states need
to be organized two-dimensionally into a monitor, it is convenient to let a SOM decide
the organization.

6.4.3 Bar Visualizations

The motivation with bar visualizations was to create a cognitively meaningful state
visualization that is easy for the operator to remember. A combination of vertical
bars is a clearly distinguishable visual pattern. An average human can remember 5-7
separate things at the same time [23] and this factor limits the usefulness of the bar
visualizations. Bar visualizations did not provide much of added value in the built
DERSI units.

43

6.5 Comparison of DERSI with SOM Literature

A large amount of SOM applications can be interpreted as decision support applica-
tions. Study of this thesis preceded with other similar studies in the same research
facility [4, 6, B]. It was difficult to find other studies where SOM is utilized in a similar
application or in similar ways. Studies with SOM in decision support that were found
from literature are listed below. They are from many different applications and some
of them are pure method development without a particular application.

One study with a safety critical DSS was found. It is a medical diagnostic decision
support system for breast cancer detection. Unlike with DERSI, SOM is utilized
already in the system design phase where the ordering property of SOM is used in
system model selection [27]. One study was found where SOM is used for regression
in system identification [52]. The study is not application-oriented but applicability
of SOM for regression is analyzed thoroughly with three different tasks. One study
describes a recommender system that uses a clustering algorithm developed from SOM
[53]. It is an Internet recommender and unlike DERSI it utilizes system user profile
information and constantly changes recommendation logic.

Another study has a DSS of help desk personnel that is designed for browsing a
database of product problem symptoms and repairing instructions. In that system the
symptom descriptions have been transferred to vectors of word frequencies that enable
distance calculation between different descriptions. Problem and solution descriptions
are associated with these symptom descriptions. They are taught for a SOM that sets
similar problems near each other on the map. When searching for prospective solutions
for an unknown problem, the description of its symptoms is similarly transferred to
a vector of word frequencies. The neighborhood of BMU of this vector can then be
searched for likely effective solutions. Because the symptom database is very large,
SOM is a suitable method for creating a map of the symptoms. DERSI U-matrix
SOM is similar in operation but has different kind of data and is much smaller.

It was found that in addition to the approach of DERSI there are many other ways
to combine fuzzy logic with SOM in decision support. One study does data clustering
with SOM and uses the output of the clustering to generate fuzzy membership func-
tions [54]. In one study a fuzzy rule base is clustered with SOM so that interaction
between the rules are reduced in the fuzzy inference [42]. In one study SOM is used
for data selection so that one sample is chosen from every single SOM cluster and
after that the samples are used for fuzzy rule generation [55).

In two studies SOM is used for map visualization because of its ordering property
that is one of its strengths [56, B7]. In the first study music can be searched from a
SOM so that similar music pieces are neighbors. In the second study expertise inside
the organization can be searched from a SOM, where one expert is beside another
expert with similar knowledge. In these applications the following process is followed:
find X in SOM and explore neighborhood of X for interesting findings. In DERSI U-
matrix SOM neighbors are not interesting, except when the SOM trajectory is about
to cross a cluster border.

Two studies were about customer failures. Customers unable to pay back credit
and customers that are about to change a service provider were identified by their
position in SOM [68, B4]. This is similar to fault identification in the current DERSI

44

applications. In two studies SOM was utilized for vector quantization. In one of
them a customer desirability quantity was calculated, and in the other one the coor-
dinates of robot support system movement positions were calculated [59, 43]. Vector
quantization property of SOM is not utilized in DERSI.

6.6 Other Applications for DERSI

An additional problem of the study was that in what other applications than nuclear
power plant decision support the DERSI platform and its methods could be used.
The most significant limitation of DERSI is that the application process data needs
to be in form of matrices whose columns are time series variables. This restricts the
amount of suitable applications. Data of other applications than TVO nuclear power
plant and the Simulink model has not been tested with DERSI. DERSI units could be
easily built for applications in other process industries, for example paper industry.

One suitable application for DERSI could be a sort of business DSS whose input
variables are associated to sales of various products. The following are examples of
diagnosed “fault” states in such application: competing product launch, competing
new technology, shortage of liquid finance, warehouse getting filled with product X,
warehouse getting empty of product X, growing of product order-to-delivery time, or
unfavorable fashion trend. A lot of DSS have been implemented in business context
60].

6.7 Analysis of the Study

As the prototype development in the study has been experimentation where back-
ground of the developer is likely to affect into the type of experiments, the study
probably produces different results with another developer. Less material than ex-
pected were found with the literature study because articles were searched mainly
with the decision support system term. Later it was realized that decision support
applications are often studied without using that term at all.

In solving the main research problem reliability was increased by using three dif-
ferent information sources: prototype development, earlier studies in same laboratory
and literature study. DERSI applications were searched only by the author. More
applications might have been identified by presenting DERSI more actively to third
party researchers from different backgrounds.

6.8 Opportunities for Future Research

6.8.1 Improvements of DERSI

The next step in DERSI development is the installation of DERSI Simulink unit and
TVO unit to the premises of TVO nuclear power plant. A TVO nuclear power plant
process operator or some other TVO expert will test the units and give feedback from
them. This feedback can then be utilized in further studies.

45

When thinking about the map stretching problem mentioned in Section it
becomes apparent that a new kind of user interface with multiple SOM U-matrices
might be useful. In such Ul many U-matrix visualizations would be shown in the
same screen. Different subsets of existing fault state matrices would be used for
teaching different U-matrix SOMs. It is interesting that how much more value a such
combination of visualizations would provide for the process operator.

Another new user interface type would be one where the operator has one process
state U-matrix of all known states. The operator can zoom to the states. He chooses a
rectangular area from the U-matrix and a new U-matrix is formed from teaching data
whose BMUs are located in this rectangle. Alternatively there could exist a previously
built hierarchy of U-matrix SOMs where each node represents one zoom view.

A third new user interface type would be a variant of U-matrix SOM that is built
from scratch in every simulation instant in such way that a neuron in the middle of
the map is forced to be a BMU of the current instant input data vector.

One task of an operator of a safety critical process is to question the reliability of
all data sources. When using DERSI platform such operator might wonder how did
DERSI end up to the diagnoses and recommendations that it shows on the screen.
In such situations it might be of value to be able to visualize the inference process
and rule truth values so that the operator can confirm that false reasoning has not
happened.

6.8.2 New DERSI Units and Studies

If more knowledge and data were provided from TVO nuclear power plant process,
even more detailed and plausible DERSI unit could be created. Maybe it would be
possible to use data both from TVO simulator and real process faults for building a
single DERSI unit.

An interesting environment in finding decision support applicable data is World
Wide Web (WWW) 2.0 services. Another similar interesting source is navigation
patterns of Web users. This is of special interest of the author.

SOM component planes can be used for monitoring correlations. If component
planes are interpreted as vectors and then taught for another SOM, it is possible to
group the planes in such way that planes of correlating variables are near each other
[61]. It would be interesting to find out, how this increases the operator’s ability to
detect correlations between variables.

In this study decisions are considered to be individual entities. In many situations
sequences of decisions are required and these decisions are related with each other. It
would be interesting to study how requirements of a DSS differ and how can SOM be
utilized in such situation.

46

Chapter 7

Summary

Industry and business are full of complicated decision making processes. Probability
of human error is high in such decision making. Quality of decisions can be increased
and probability of errors can be reduced by providing computerized decision support
for the decision maker. The Self-Organizing Map (SOM) is a useful way to visualize
high-dimensional and large data sets. The aim of this work is to find approaches for
using SOM in nuclear power plant operator decision support and to analyze whether
the approaches can be used in decision support of other applications.

Systems and processes are the backbone of an organization or industrial plant. If
the systems interact with people of the organization, the connection point is called
man-machine interface (MMI). MMI is utilized in making decisions. Decision making
processes are especially important as they have large responsibility of success or failure
of other processes. Quality control process is important in safety critical processes
where the cost of failure is very high. If a system provides support for human decision
making, it is a decision support system (DSS). Very often such systems are referred
with other names like business intelligence (BI) system.

Software engineering and data mining principles have been followed when imple-
menting a DSS platform prototype, that utilizes SOM and fuzzy rule-based reasoning.
The prototype is called DERSI and it is programmed with Matlab programming lan-
guage and it uses the SOM Toolbox add-on. Used SOM properties are quantization
error, U-matrix, component planes and trajectory. Quantization errors of SOM based
sensors are used as input for fuzzy inference. Process states are mapped to different
areas of the U-matrix visualization and the trajectory head position identifies the
current process state. The prototype has a graphical user interface (GUI) that shows
visualizations for the prototype user that needs decision support. Results of fuzzy
inference are shown as diagnosis and recommendation texts.

Two units of a DSS prototype have been built on this platform. One (Simulink
unit) uses data of a Matlab Simulink simulation created by the author before this
study. Another one (TVO unit) uses data of the Teollisuuden Voima (TVO) nuclear
power plant simulator. These prototypes units demonstrate the possibilities of the
methods of the platform. The most important result is that SOM quantization errors
can be used in plot visualizations and as an input for fuzzy inference. In TVO unit
it is possible to detect a slowly developing fault very early with SOM quantization
error, much earlier than with the U-matrix visualization.

47

Approaches of using SOM in other ways in decision support were searched and
found from literature. These were compared with the methods of the prototype. The
possibility of using the prototype platform in other applications was analyzed.

7.1 Conclusions

There are many approaches for utilizing SOM in decision support. The decision sup-
port applications are numerous and it depends on the application which approaches
are most suitable. It is still unclear which of the approaches are most suitable for
nuclear power plant operator decision support. When there are many similar meth-
ods available it is difficult to choose which one to use. In such case simplicity and
reputation of the method and experience of its usage are decisive. The prototype
should be tested thoroughly to be sure that it is reliable and to be able to analyze
it in more detail. Testing of the prototype with data from another application would
make the results of the study more interesting.

48

References

1]

M. SiroLA, Computerized Decision Support Systems in Failure and Maintenance
Management of Safety Critical Processes, PhD thesis, Helsinki University of
Technology, Espoo, Finland, 1999.

E. ALHONIEMI, Monitoring of Complex Processes Using the Self-Organizing
Map, Master’s thesis, Helsinki University of Technology, Espoo, Finland, 1995.

O. SimuLA and J. KANGAS, Neural Networks for Chemical Engineers, volume 6
of Computer-Aided Chemical Engineering, chapter 14: Process Monitoring and
Visualization Using Self-Organizing Maps, Elsevier, Amsterdam, Netherlands,
1995.

O. StmuLA, E. ALHONIEMI, J. HOLLMEN, and J. VESANTO, Monitoring and
Modeling of Complex Processes Using Hierarchical Self-Organizing Maps, in Pro-
ceedings of the 1996 IEEE International Symposium on Circuits and Systems
(ISCS), volume Supplement, pages 73-76, 1996.

O. SimuLA, E. ALHONIEMI, J. HOLLMEN, and J. VESANTO, Analysis of Com-
plex Systems Using the Self-Organizing Map, in Proceedings of the 1997 Interna-
tional Conference on Neural Information Processing and Intelligent Information
Systems (ICONIP), pages 1313-1317, 1997.

E. ALHONIEMI, J. HOLLMEN, O. SIMULA, and J. VESANTO, Process Monitor-
ing and Modeling Using the Self-Organizing Map, Integrated Computer-Aided
Engineering, 6(1):3-14, 1999.

J. AHorA, E. ALHONIEMI, and O. SIMULA, Monitoring Industrial Processes
Using the Self-Organizing Map, in Proceedings of the 1999 IEEE Midnight-Sun
Workshop on Soft Computing Methods in Industrial Applications (SMCia/99),
pages 22-27, 1999.

J. VESANTO, Data Ezxploration Process Based on the Self-Organizing Map, PhD
thesis, Helsinki University of Technology, Espoo, Finland, 2002.

E. TURBAN and J. ARONSON, Decision Support Systems and Intelligent Sys-
tems, Prentice Hall PTR Upper Saddle River, New Jersey, USA, 1997.

B. PERSHAGEN, Light Water Reactor Safety, Pergamon Books Inc., Elmsford,
New York, USA, 1989.

49

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[20]

I. SOMMERVILLE, Software Engineering. 6th Edition, Addison Wesley, Harlow,
UK, 2001.

T. KOHONEN, Self-Organizing Maps, volume 30 of Springer Series in Informa-
tion Sciences, Springer, Berlin, Heidelberg, Germany, 1995.

S. Kaski, T. HoNKELA, K. LAcGuUs, and T. KOHONEN, WEBSOM-Self-
Organizing Maps of Document Collections, Neurocomputing, 21(1-3):101-117,
Elsevier, Amsterdam, Netherlands, 1998.

R. BANERJI, Artificial Intelligence, A Theoretical Approach, Elsevier, Amster-
dam, Netherlands, 1985.

L. ZADEH, Fuzzy Sets, Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected
Papers. World Scientific Pub Co Inc, 1996.

S. KARTALOPOULOS, Understanding Neural Networks and Fuzzy Logic: Basic
Concepts and Applications, Wiley-IEEE Press, 1997.

M. CONFORTI, Decision Support Systems for Medical Diagnosis, Information
Technology Applications in Biomedicine, pages 25-26, 1999.

P. LILLRANK, Quality Management Basic Course TU-22.302, Teaching Mate-
rial, Helsinki University of Technology, Espoo, Finland, 2004.

E. KREYSZIG, Advanced Engineering Mathematics, 8th Edition, Wiley, New
York, USA, 1999.

R. STEVENS, Systems FEngineering: Coping with Complezity, Prentice Hall
Europe, 1998.

W. STEVENSON and M. HoJATI, Operations Management, McGraw-Hill/Irwin,
Boston, USA, 2005.

A. JASHAPARA, Knowledge Management: An Integral Approach, Pearson Edu-
cation, 2004.

A. HuczyNski and D. BUCHANAN, Organizational Behaviour: An Introductory
Text, Financial Times/Prentice Hall, 2007.

N. BAHR, System Safety Engineering and Risk Assessment: a Practical Ap-
proach, CRC, 1997.

R. GULDNER and U. GIESE, EPR Becomes Reality at Finland’s Olkiluoto 3,
CHIMIA International Journal for Chemistry, 59(12):966-969, Swiss Chemical
Society, 2005.

M. Dowb, J. McDONALD, and J. SCHUH, The Art of Software Security As-
sessment: Identifying and Preventing Software Vulnerabilities, Addison-Wesley
Professional, 2006.

20

[27]

28]

[33]
[34]
[35]

[36]

[37]

[38]

[39]

[40]
[41]

D. WEsT and V. WEST, Model Selection for a Medical Diagnostic Decision Sup-
port System: a Breast Cancer Detection Case, Artificial Intelligence In Medicine,
20(3):183-204, Elsevier, Amsterdam, Netherlands, 2000.

R. MARTIN, Agile Software Development: Principles, Patterns, and Practices,
Prentice Hall PTR Upper Saddle River, New Jersey, USA, 2003.

A. WILSON, Marketing research: an integrated approach, Prentice Hall /Financial
Times, 2003.

X. FAULKNER, Usability Engineering, Macmillan, 2000.

D. HAND, H. MANNILA, and P. SMYTH, Principles of Data Mining, MIT Press,
2001.

P. CHapMmAN, J. CrLiNnTON, R. KERBER, T. KHABAZA, T. REINARTZ,
C. SHEARER, and R. WIRTH, CRoss Industry Standard Process for Data Mining
Crisp-DM 1.0., 1999.

S. HAYKIN, Neural Networks, a Comprehensive Foundation, Prentice Hall, 1999.
The Mathworks, Inc., Using Matlab Version 5, 1999.

G. BARRETO, A. ARAUJO, and H. RITTER, Time in Self-Organizing Maps: An
Overview of Models, International Journal of Computer Research, 10(2):139-179,
2001.

M. SiroOLA and J. VESANTO, Utilization of Neural Methods in Knowledge-Based
Decision Support Systems - State Monitoring as a Case Fxample, in Proceedings
of the 2000 International Conference in Modeling, Identification and Control,
Innsbruck, Austria, 2000.

K. KiviLuoTo, Predicting Bankruptcies with the Self-Organizing Map, Neuro-
computing, 21(1-3):191-201, Elsevier, 1998.

R. HAkALA, T. SiMiLA, M. SIROLA, and J. PARVIAINEN, Process State and
Progress Visualization Using Self-Organizing Map, Lecture Notes in Computer
Science, Springer, 2006.

R. STUART and P. NORVIG, Artificial Intelligence: A Modern Approach, Pren-
tice Hall, New Jersey, 1995.

R. F. H. YOUNG, University Physics, 9th Edition, Addison-Wesley, 2000.

S. FRENCH, J. BARTZIS, J. EHRHARDT, J. LOCHARD, M. MORREY, N. PA-
PAMICHAIL, K. SINKKO, and A. SOHIER, RODOS: Decision Support for Nuclear

Emergencies, Recent Developments and Applications in Decision Making, pages
379-394, 2000.

51

[42]

[46]

[47]

[48]

[49]

[51]

[52]

[53]

P. CHANG, C. Liu, and Y. WANG, A Hybrid Model by Clustering and Evol-
ving Fuzzy Rules for Sales Decision Supports in Printed Circuit Board Industry,
Decision Support Systems, 42(3):1254-1269, Elsevier, Amsterdam, Netherlands,
2006.

Y. HAYAKAWA, T. OGATA, and S. SUGANO, Flexible assembly work cooperating
system based on work state identifications by a self-organizing map, IEEE/ASME
Transactions on Mechatronics, volume 9, 2004.

J. HuysMANS, B. BAESENS, J. VANTHIENEN, and T. GESTEL, Failure Predic-
tion with Self Organizing Maps, Expert Systems with Applications, 30(3):479—
487, 2006.

N. KasaBov, L. ERZEGOVERI, et al., Hybrid Intelligent Decision Support Sys-
tems and Applications for Risk Analysis and Prediction of Fvolving Economic
Clusters in Europe, Future Directions for Intelligent Systems and Information
Sciences, Physica Verlag (Springer Verlag), 2000.

J. VEsanTO, J. HIMBERG, E. ALHONIEMI, and J. PARHANKANGAS, SOM
Toolbox for Matlab 5, Report A57, Helsinki University of Technology, Neural
Networks Research Centre, Espoo, Finland, 2000.

M. SiroLA, G. LAMPI, and J. PARVIAINEN, Neuro Computing in Knowledge-
Based Decision Support Systems, in Proceedings of the 2004 EHPG-Meeting of
OECD Halden Reactor Project, Sandefjord,Norway, 2004.

M. SirorLA, G. LAwmPI, and J. PARVIAINEN, Using Self-Organizing Map in a
Computerized Decision Support System, in Proceedings of the 2004 International
Conference on Neural Information Processing (ICONIP), Calcutta, India, 2004.

M. SiroLA, G. LAMPI, and J. PARVIAINEN, SOM Based Decision Support in
Failure Management, International Scientific Journal of Computing, 3(4):124—
130, 2005.

M. SiroLA, G. LAaMPI, and J. PARVIAINEN, Fuailure Detection and Separation
in SOM Based Decision Support, in Proceedings of the 2007 Workshop on Self-
Organizing Maps (WSOM), Bielefeld, Germany, 2007.

G. LawmPi, Building a Process Model to Produce Data for The Computerized Deci-
sion Support System Using Self-Organizing Map, Special Study Report, Helsinki
University of Technology, Espoo, Finland, 2004.

G. BARRETO and A. ARAUJO, Identification and Control of Dynamical Systems

Using the Self-Organizing Map, IEEE Transactions on Neural Networks, volume
15, 2004.

W. Linva, L. Lu, L. JING, and L. ZONGYONG, Modeling User Multiple

Interests by an Improved GCS Approach, Expert Systems With Applications,
29(4):757-767, Elsevier, Amsterdam, Netherlands, 2005.

52

[54]

[55]

[56]

C. YANG and N. BOSE, Generating Fuzzy Membership Function With Self-
Organizing Feature Map, Pattern Recognition Letters, volume 27, 2005.

I. NaAkAokA, K. TaN1, Y. HosHINO, and K. KAMEL, A Portfolio Selection by
SOM and an Asset Allocation of Risk/Nonrisk Assets by Fuzzy Reasoning Using
the Selected Brands, in Proceedings of the 2005 IEEE International Conference
on Systems, Man and Cybernetics, volume 3, 2005.

Z. HuanGg, H. CHEN, F. Guo, J. Xu, S. Wu, and W. CHEN, FExpertise
Visualization: An Implementation and Study Based on Cognitive Fit Theory,
Decision Support Systems, 42(3):1539-1557, Elsevier, Amsterdam, Netherlands,
2006.

E. PaMPALK, S. DixoN, and G. WIDMER, FEzploring Music Collections by
Browsing Different Views, Computer Music Journal, 28(2):49-62, MIT Press,
2004.

Y. Kim, H. SONG, and S. Kim, Strategies for Preventing Defection Based on the

Mean Time to Defection and Their Implementations on a Self-Organizing Map,
Expert Systems, 22(5):265, 2005.

W. YAN, C. CHEN, and L. KHOO, A Web-Enabled Product Definition and Cus-
tomization System for Product Conceptualization, Expert Systems, 22(5):241—
253, Blackwell Synergy, 2005.

P. KOTLER, Marketing Management, 11th edition, Pearson Education, 2002.

J. VESANTO and J. AHOLA, Hunting for Correlations in Data Using the Self-
Organizing Map, in Proceedings of the 1999 International ICSC Congress on
Computational Intelligence Methods and Applications (CIMA), 1999.

93

Appendix A
Rules of DERSI Simulink Unit

Rules of DERSI Simulink unit are listed below. Consequents of diagnosis rules are
logical statements and consequents of recommendation rules are imperatives. Conse-
quents of diagnosis rules 2, 3, 4 and 5 are antecedents of recommendation rules 7, 8,
9 and 10.

sttt R KR KR KK KR KR KR KR KR KR KR R KR R R o ok ok ok ok ok ok oK
DIAGNOSIS RULES:

DIAGNOSIS RULE 1:
IF -Inf < -Inf < Sensor 1 gerror <0.25 < 2.5

THEN Normal State, Sig: 85

DIAGNOSIS RULE 2:

IF -Inf < -Inf < Sensor 2 gerror < 0.25 < 2.5
THEN Leak between Reactor and Preheater, Sig: 85
DIAGNOSIS RULE 3:

IF -Inf < -Inf < Sensor 3 gerror < 0.25 < 2.5
THEN Leak between turbine 1 and condenser primary 1, Sig: 85
DIAGNOSIS RULE 4:

IF -Inf < -Inf < Sensor 4 gerror < 0.25 < 2.5
THEN Valve 2 closed, Sig: 85

DIAGNOSIS RULE 5:

IF -Inf < -Inf < Sensor 5 gerror <0.25 < 2.5

o4

THEN Leak in cooling between Pipel_1 and condenser secondary 1,
Sig: 85

sksksk ok sk ok ok ok sk ok sk ok sk sk sk ok sk ok sk ok sk sk sk ok sk ok sk ok sk sk sk sk ok sk ok
NORMAL RECOMMENDATION RULES:

RECOMMENDATION RULE 1:

IF 2<3K Variable 1 value < 10 < 12
THEN Increase speed of feedwater pump, Sig: 80
RECOMMENDATION RULE 2:

IF 0.8<1K Variable 1 value <3<5

THEN Activate the auxiliary feedwater system, Sig: 90

RECOMMENDATION RULE 3:
IF -Inf < -Inf < Variable 1 value <1<2

THEN Activate boron injection system, Sig: 88
RECOMMENDATION RULE 4:

IF 25 < 32K Variable 2 value < 33 < 34
THEN Open bypass valve, Sig: 90
RECOMMENDATION RULE 5:

IF 32 < 33K Variable 2 value < 36 < 37

THEN Open relief valve and initiate auxiliary feedwater system,
Sig: 95

RECOMMENDATION RULE 6:
IF 33 < 36 < Variable 2 value < Inf < Inf

THEN Prepare for possible reactor shutdown, Sig: 93

stokok ok ok sk sk ok ok ok ok ok sk sk sk ok ok skok sk sk ko ok sk ok ok ok
DIAGNOSIS RECOMMENDATION RULES:

RECOMMENDATION RULE 7:

95

IF 0.5<0.9¢K< Diagnosis 2 truthness

< Inf

THEN Decrease speed of feedwater pump, Sig: 80

RECOMMENDATION RULE 8:
IF 0.5<0.9¢K< Diagnosis 3 truthness

THEN Close admission valve 1, Sig: 90
RECOMMENDATION RULE 9:

IF 0.5<0.9¢K< Diagnosis 4 truthness
THEN Open admission valve 2, Sig: 80

RECOMMENDATION RULE 10:
IF 0.5<0.9¢K< Diagnosis 5 truthness

THEN Insert control rods, Sig: 90

o6

< Inf

< Inf

< Inf

Inf

Inf

Inf

Inf

	Introduction
	Research Problem, Objectives and Scope
	Structure of the Thesis

	Decision Support
	Definition of System and Process
	Decision Making Processes
	Quality Management Process
	Systems Engineering
	Decision Support Systems
	Safety Critical Systems and Cost of Quality

	Software Development and Data Mining
	Software Engineering
	GUI Design and Visualizations
	Data Mining Process

	Methodologies
	Self-Organizing Map (SOM)
	Algorithm
	SOM Visualization
	SOM as Regression Model

	Rule-Based Reasoning
	Fuzzy Logic and Reasoning

	DERSI Platform Prototype
	Nuclear Power Plant
	Process of Prototype Development
	General DSS Model
	DERSI Introduction
	DERSI GUI
	Diagnosis Frame
	Recommendation Frame
	Input Data Plot Frame
	Sensor Q-Error Plot Frame
	Process State U-Matrix Frame
	Input Data SOM Component Plane Frame
	Sensor Data SOM Component Plane Frame
	U-Matrix Bar Visualizations Frame
	Sensor Bar Visualizations Frame
	UI Frame

	DERSI Structure
	DERSI Operation
	DERSI Unit Building
	DERSI Simulink Unit
	DERSI TVO Unit

	DERSI Version History

	Results and Evaluation
	DERSI Platform
	DERSI Unit Building
	DERSI Performance
	DERSI Parts
	Diagnoses, Recommendations and Sensors
	U-Matrix
	Bar Visualizations

	Comparison of DERSI with SOM Literature
	Other Applications for DERSI
	Analysis of the Study
	Opportunities for Future Research
	Improvements of DERSI
	New DERSI Units and Studies

	Summary
	Conclusions

	References
	Appendix A: Rules of DERSI Simulink Unit

