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The purpose of this thesis was to study image compression using the Burrows-

Wheeler transform. The aim of image compression is to compress the image into a 

format which saves the storage space and provides an efficient format for transmission 

via telecommunication channels. The Burrows-Wheeler transform is based on block 

sorting, which rearranges data into an easier format for compressing. 

 

Before utilizing the Burrows-Wheeler transform, the image need to be pre-process by 

using a discrete cosine transform, a discrete wavelet transform or predictive coding. 

Then the image is converted from a 2-dimensional to a 1-dimensional pixel sequence 

with different scanning methods. The forward Burrows-Wheeler transform is applied 

on block of the image data. 

 

While compressing the image into the smallest storage space, the move-to-front and 

run-length encoding can be used to improve the compression ratio before entropy 

encoding. This thesis studies both lossless and lossy image compression. 

 

Keywords: the Burrows-Wheeler transform, image compression, lossless and lossy 

compression 



 iii 
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Tämän työn tarkoituksena on tutkia kuvan pakkausta Burrows-Wheelerin muunnosta 

käyttämällä. Kuvan tiivistämisessä tarkoituksena on tiivistää kuva muotoon, joka 

tallennetaessa saatetaan mahdollisimman pieneen tilaan, sekä nopeuttaa kuvan 

siirtämistä tietoliikenteen välityksellä. Burrwos-Wheeler muunnos perustuu annettuun 

datan uudelleenjärjestämiseen, niin että muunnoksen jälkeen data on helpompi pakata.  

 

Ennen kuin voidaan käyttää Burrows-Wheelerin muunnosta, kuva pitäisi ensin 

esikäsitellä diskreettillä kosinimuunnoksellä, diskreettilllä aallokemuunnosellä tai 

ennustuskoodauksellä. Tämän jälkeen 2D-kuvan pikseliit skannataan käyttämällä 

esilaisia skannausmenetelmiä, ja voidaan hyödyntää Burrows-Wheelerin 

menetelmällä.    

 

Burrows-Wheelerin yhteydessä käytetään hyväksi esim. move-to-front ja run-length-

koodaus menetelmiä ennen varsinaista entropiakoodausta, jotta kuva voitaisiin tiivistää 

mahdollisimman pieneen tilaan. Työssä tutkitaan sekä häviöllistä että häviötöntä 

kuvan pakkausta. 

 

Avainsanat: Burrows-Wheeler muunnos, kuvanpakkaus, häviöllinen-, häviötön 

pakkaus. 
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Chapter 1:  Introduction 
 
 
 

The aim of this Master’s thesis is to study the Burrows-Wheeler Transform [7] for use 

in image compression; the purpose is to compress images into the smallest space as 

possible. The Burrows-Wheeler transform (BWT) is a data compression algorithm, 

which was presented for the first time in 1994 by Burrows and Wheeler. The main idea 

is to achieve better data compression ratio to save storage space and to allow faster data 

transmission via different networks. The BWT based compression is close to the best 

known algorithm for text data nowadays, it could also perhaps be used to improve the 

compression performance of images. This thesis studies the BWT method for image 

compression and also some variants of the BWT method. The BWT is applied in 

combination with other additional methods of image compression techniques, for 

example, with move-to-front and run-length encoding, as well as with different 

scanning path methods and tested with various block sizes to get the competitive result 

for image compression. The results are obtained by testing empirically the pre-

processing methods such as discrete cosine transform (DCT), discrete wavelet transform 

(DWT) and predictive coding. This thesis will set the JPEG image compression 

standard as a basic target for comparison to our methods.  
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There are many types of data, for example, sound, text, video and image that could 

benefit in some way from applying the BWT for compression purposes. The scope of 

this Master’s thesis, however, concentrates on working with still image data.  

 

1.1  Thesis Organization 

In Chapter 2, the basic idea of image compression is introduced: the general concepts 

related to digital images and information theory including the measurement methods 

between images. Few transformation techniques such as DCT, DWT and Predictive 

coding for pre-processing of digital image data are introduced in Chapter 3. There are 

two important entropy coding techniques: Huffman and the Arithmetic coding. 

Predictive coding is also discussed from the perspective of lossless and lossy methods. 

Chapter 4 shows several techniques for converting the 2-dimensional image into 1-

dimensional sequence. In this thesis, the zig-zag, Hilbert, raster, snake, and spiral scans 

are used for linearization of the 2-dimensional image. The Burrows-Wheeler Transform 

(BWT) is presented along with few techniques to improve the efficient in image 

compression. Chapter 5 shows the experimental results and the analysis parts of this 

thesis, which is the core of this thesis investigation. Finally, in Chapter 6, conclusions of 

this thesis are presented and suggestions are made for possible areas of further study.   
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Chapter 2:  Basic of Image Compression 

 
 

This chapter begins with an introduction about the representation of the digital image, 

the mathematics of lossless and lossy image compression, and presents the basic 

elements of an image. Then some fundamental concepts of information theory such as 

average the amount of data and entropy are discussed. After this, three data 

redundancies are shown briefly to give the reader a better understanding of the concept 

of compression ratio, which is important in image compression. And finally, some 

felicity criteria classes showing the calculation of compressed image data are presented 

and the signal-to-noise ratio is used to compare the original image with the compressed 

image.  

 

2.1  Digital Image 

A digital image is represented by a two-dimensional array of picture elements (or 

pixels), which are arranged in rows and columns. A digital image can be presented as an 

NM   matrix [4] 
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where )0,0(f  gives the pixel of the first row and the first column of the image and 

)1,1(  NMf  defines the thM  row and thN  column of the image. A Grey-scale 

image, also referred to as a monochrome image contains the values ranging from 0 and 

255, where 0 is black, 255 is white and values in between are shades of grey. 

In a color digital image, each pixel of the image is represented by three different color 

channels, usually red, green and blue, shortly RGB. Each R, G and B is also in the range 

of 0 and 255 and each pixel is represented in three bytes, except in a Grey-scale image 

is represented only by one byte, which, naturally, makes the storage space of color 

images three times the size of Gray-scale images.  The color image can be represented 

in pixel-interleaved or a color-interleaved format. In a pixel-interleaved format, each 

image pixel is represented by three color values. In a color-interleaved format, the color 

is represented by three different color matrices, one for each color channel [20]. 

 
 

Figure 1: 3636  grey scale image of human eye 

 

2.2  Information Theory 

One of the most important features in the field of information theory is entropy, which 

was introduced by C. E. Shannon in 1948 in his paper A Mathematical Theory of 
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Communication. In Shannon’s theory, entropy is the quantitative measure of 

information, choice and uncertainty [22]. Suppose an image contains pixels referred to 

as the symbols, ,...,, 10 rr kr  and the each symbol has a probability of its occurrence 

)(),...,(),( 10 krprprp . The amount of information for each symbol is defined as 

)(log 2 krp , and, thus, is usually expressed in bits. Applying the previous definition, 

the entropy is defined as follows. The entropy )(SH  is the average amount of 

information, in other words, the entropy is the average number of bits needed for coding 

an image pixel,  

 

)(SH )(log)(
1

0

2 k

L

k

k rprp




                                          (2.2)  

 

            

2.3  Data Redundancy 

Data redundancy is a central issue in digital image compression. Because transmission 

bandwidth and space storage are limited, at the same time, the aim is to maximum 

amount of data within those constraints. To solve this problem by removing information 

that is redundant. Data with redundancy can be compressed; on the other hand, data 

without any redundancy can not be compressed. The idea is to reduce or remove the 

redundant information contained within data. Suppose 1n  and 2n  are two units of a set 

of data representing the same information. The compression ratio, RC , is denoted as [4] 

2

1

n

n
CR                                                            (2.3) 

The relative Redundancy DR of the data set, 1n , is defined as 

R

D
C

R
1

1                                                       (2.4) 
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There are three types of redundancies to explore in image compression and coding 

techniques: 

 Coding Redundancy 

 Interpixel Redundancy 

 Psychovisual Redundancy 

Coding redundancy and interpixel redundancy can be explored by lossless image 

compression. Psychovisual redundancy can be explored by lossy image compression. 

2.3.1  Coding Redundancy 

Image compression reduces the amount of data required to describe a digital image by 

removing the redundant data in the image, because in image data, some pixel values 

occur more common than others. Lossless image compression deals with reducing 

coding redundancy. A variable length coding is commonly used for coding redundancy 

reduction, where the average number of bits used per pixel in the image is reduced [10]. 

For example, Huffman and arithmetic coding are techniques which explore coding 

redundancy using in image compression to reduce or to remove the redundant data from 

the image. Coding redundancy utilizes histogram analysis to construct codes to reduce 

the amount of data used in the image representation [9]. 

)( kr rp =
n

nk  1,...,2,1,0  Lk                                         (2.5) 

The average length of the number of bits used to represent each pixel is 

)()(
1

0

kr

L

k

kavg rprlL 




                                                (2.6)  
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where )( krl is the length of the codeword used in pixel kr  and )( kr rp  is the occurrence 

probability of each kr . The total codeword length used in image NM   is avgLNM   

[4]. 

2.3.2  Interpixel Redundancy 

The interpixel redundancy technique which is related to interpixel correlation within the 

image is another form of data redundancy. The values of the neighboring pixels of 

image are usually highly correlated to each other. The grey levels of pixels are usually 

similar to neighboring pixels. Thus, the values of pixels can be predicted or 

approximated from examining the neighboring pixels: it is said that the image contains 

interpixel redundancy. Interpixel redundancy is reversible, thus the reconstructed image 

can be exactly the same as the original image. For example, predictive coding and run-

length coding techniques will reduce the interpixel redundancies efficiently.  

2.3.3  Psychovisual Redundancy 

It is known that the human eye does not respond to all visual information with equal 

sensitivity, some information being more important than other information [10]. The 

psychovisual redundant image data can be reduced or removed without changing the 

visual quality of the image [11]. This type of reduction is referred to as quantization. 

Since some information is lost, however, the process is not reversible. Therefore, this 

compression technique is known as lossy. The end result of applying these techniques is 

a compressed image file, whose size and quality are smaller than the original 

information, but whose resulting quality is still acceptable for the application at hand 

[24]. 
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2.4  Felicity Criteria 

In lossy compression methods, there will be some information loss during these 

methods. Thus, a reconstructed image may not be identical to the original image. 

Felicity Criteria are used for lossy image compression to measure the difference 

between the reconstructed images compared to the original image. There are two 

different Felicity Criteria classes: Objective felicity criteria and subjective felicity 

criteria. Below are two definitions of objective felicity criteria, where ),( yxf presents 

an original image, and ),(ˆ yxf is the approximation of original image. The difference of 

the original image and the reconstructed image is given as [4] 

),( yxe ),(),(ˆ yxfyxf  .                                          (2.7) 

The root mean-square error between the original image and the reconstructed image is 

defined as 

2/12 ])],([
1

[ 
y x

rms yxe
MN

e ,                                     (2.8) 

the Mean-square signal-to-noise ratio between original image ),( yxf , and the 

reconstructed ),(ˆ yxf  is 






y x

y x

rms

yxe

yxf

SNR
2

2

)],([

),(ˆ

.                                          (2.9) 

Although objective felicity criteria offer a simply and convenient mechanism for 

evaluating information loss, most decompressed images ultimately are viewed by 

humans. Subjective felicity criteria shows how the quality of the image is measured 

depends on the number of human observers. This is done be showing the evaluators a 

sample image of the original image and the reconstructed image using the absolute 
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rating scale for their average evaluations. The absolute rating scale can be used side-by-

side, which compares the images within the scale of {-3, -2, -1, 0, 1, 2, 3} to represent 

the subjective evaluations {much worse, worse, slightly worse, the same, slightly better, 

better, much better}, another example rating scale for the quality of the sample image 

could be a scale from 1- 6, with 1 standing for “excellent” and 6 standing for 

“unusable”. [4][16]  

 

2.5  Data Compression 

In data compression, the main idea is to convert the original data into a new data form, 

which contains the same information but can use a smaller space for storing the data. 

This is very important for saving expensive data storage space and for achieving a faster 

data transmission ratio. As mentioned earlier, data compression can be divided into 

lossless and lossy compression techniques presented briefly in the next sub-section. The 

compression system model consists of two important parts, which are an encoder and a 

decoder. At the encoder block, the original image ),( yxf  is converted into another 

representation, which can be transferred through the channel to the receivers. When 

reading the data, compressed data has to be uncompressed at the receiver side using a 

decoder block.. In the lossless compression method, ),( yxf  and ),(ˆ yxf  are actually 

the same but in the lossy compression method, the reconstructed images contain some 

error, and the images are not equal.  
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Figure 2: A general compression system model 

 

Figure 2 shows the compression system model for the image. The original input image 

is pre-processing in encoder block, where the result of the image is a 1-dimensional bit 

stream sequence. Then the sequence is transmitted via different telecommunication 

channels to decoder block, where the sequence of data is decoded. After transmission 

over the channel, the encoded representation is fed to the decoder, where a 

reconstructed output image is generated. In general, the output image may or may not 

be an exact replica of input image [4].  

2.5.1  Lossless Image Compression 

In lossless image compression methods, when the images have been compressed with 

some specific methods, the original images can be reconstructed from the compressed 

images without losing any information, that is 

          ),( yxf = ),(ˆ yxf ,                             (2.10) 

where ),( yxf  denotes the original image and ),(ˆ yxf  is the reconstructed image. 

Lossless compression methods are also known as reversible because of this lossless 

feature. Besides using the lossless compression methods for images, it is widely used 

 

Input image Output image 

Encoder 

Source encoder 

Channel encoder Channel decoder 

Source decoder 

Channel 
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also for text compression, where it is important that the original text data can be 

recovered exactly from the compressed data [2]. The disadvantage is that the 

compression ratio is not so high, precisely because no data is lost. For instance, lossless 

compression is generally the technique of choice for text files, where losing words data 

could cause a problem.  

2.5.2  Lossy Image Compression 

Using lossy image compression methods will always yield some loss of information. In 

lossy compression images can not be reconstructed exactly to their original form, that is 

         ),( yxf   ),(ˆ yxf .                                                (2.11) 

 This is because of some small errors of information are introduced into the original 

image. The lossy methods usually compress images to a smaller size than any known 

lossless methods, thus achieving a higher compression ratio.  Lossy compression is 

usually used in applications where a slight loss of information does not cause any harm. 

This is why lossy compression is commonly used to compress videos, images and 

sound, where small errors may be acceptable, and the idea only is to loose information 

that would not be detected by most human users. In the next chapter, lossy image 

compression methods using with discrete cosine transform, wavelet transform, and 

lossy predictive coding are presented.  
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Chapter 3:  Digital Image Processing 
 

 

 

In this chapter, the aim is to give an overview of different image processing methods, 

for example, discrete transformation and quantization using for image processing. The 

idea of transform coding is to map pixels of an image into the format such that the 

pixels are less correlated compared to the original image. The transform is a lossless 

method, since while doing the inverse transform there is no loss of information. The 

transform coding focuses the energy only on a few important elements, and quantizes 

those elements which have less important information, in lossy coding. There are many 

different transform methods for image compression, however, in this thesis the discrete 

cosine transform (DCT) and discrete wavelet transform (DWT) methods are utilized. 

For image processing, it is also possible to use predictive coding that predicts the 

following pixels of image instant of a transformation. The following step in image 

processing is quantization, which makes the transform coding and predictive coding to 

be lossy. During the quantization step, the majority of the less important coefficients are 

quantized to zero by applying the quantization table. In subsection (3.5) is showing the 

idea of obtaining different size of quantization table. In the end of this chapter, two 

entropy encoding methods, Huffman and Arithmetic coding, are presented.  
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3.1  Discrete Cosine Transform (DCT) 

Discrete cosine transform is one of the most used transformation techniques in image 

compression. The idea of DCT is to decorrelate the image data by converting the image 

into elementary frequency components. By using DCT-based coding, the digitized 

image needs to be split into blocks of pixels, typically 88  blocks. The DCT scheme 

itself is lossless, but it can also be said that the DCT technique is a near-lossless 

compression technique, because of the rounding of pixel values. A quantization step, 

where the process will produce a lot of zero coefficients for better compression ratio 

could be applied here, but there is some loss of information during this step. The 

forward discrete cosine transform of a 2-dimensional 88  block image is given as 

follows 

16

)12(
cos

16

)12(
cos),()()(

4

1
),(
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7

0

 vjui
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            (3.1) 

The forward discrete cosine transform concentrates the energy on low frequency 

elements, which are located in the top-left corner of the subimage. Following equation 

(3.2) is inverse cosine transform (IDCT) using for decoding the compressed image 

defined as [1] 

16
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where  











otherwise

vu
vCuC

1

0,
2

1

)()(  ,                                    (3.3)    

),( vuF  is the transformed DCT coefficient and ),( yxf  is the value of the pixel of the 

original sample of the block [1]. 
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As an example, consider using the discrete cosine transform to an original image of size 

256256 pixels. First the image is split into 88  pixel blocks, as an example consider 


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After shifting the pixels of the ),( yxf  matrix by -128 pixel levels to yield pixel values 

between [-128, 127], it is then cosine transformed by forward DCT using the equation 

(Eq. 3.1). Note that, large values, also called the lower frequencies, are now 

concentrated in the top-left corner of the matrix and the higher frequencies are in the 

bottom-right corner.   
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DCT transformation is said to be near-lossless, because Equation 3.5 is already rounded 

to the nearest integer. 

Now the 64 DCT coefficients are ready for quantization. Each of the DCT coefficients 

),( vuF  are divided by the JPEG quantization table ),( vuQ , and then rounded to the 

nearest integer [4] 
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









),(

),(
),(

vuQ

vuF
RoundvuFq ,                                        (3.6) 

 

where ),( vuQ  is defined as  

                        



































9910310011298959272

10112012110387786449

921131048164553524

771031096856372218

6280875129221714

5669574024161314

5560582619141212

6151402416101116

),( vuQ                         (3.7) 

The table ),( vuQ  is called a JPEG standard quantization table. The quantization step is 

mainly a lossy operation; the resulting matrix contains many zero-values at the higher 

frequency components, which can be seen in the following matrix  



































00000000

00100000

00000000

0000011-1

001011-31

001-01-115

000024-211-

00013-81-44-

),( vuFq                             (3.8)          

After de-quantization, the inverse discrete cosine transform is used yielding in to the 

following matrix, also known as the reconstructed matrix of the original image: 
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


































16785403640719066

10058364252687667

5045413452525268

5155261435292559

55531612315432

35269102517512

258142826273023

348243921315649

),( yxf                       (3.9) 

By comparing the 88  subimage ),( yxf  and ),(ˆ yxf , the difference of the original and 

the reconstructed image is given by 

           ),( yxe ),(),(ˆ yxfyxf  .                          (3.9) - (3.4) 

Obviously there are slight differences between these matrices, because of the 

quantization step applied after forward DCT. 

 

3.2  Discrete Wavelet Transform (DWT) 

Discrete wavelet transform (DWT) is one of the most effective methods in image 

compression. DWT transforms a discrete time signal into a discrete wavelet 

representation by splitting frequency band of image in difference subbands. In 2-

dimensional DWT, it is first necessary to apply 1-dimensional DWT in each row of the 

image before applying one-dimensional column-wise to produce the final result [36]. 

Four subband images named as LL, LH, HL and HH, are created from the original 

image. LL is the subband containing lowest frequency, which is located in the top left 

corner of the image and other three are subbands with higher frequencies. In a 2-

dimensional image signal in wavelet transform, it is containing one scaling function, 

),( yx , and three 2-dimensional wavelet ),( yxH , ),( yxV , ),( yxD , are required. 
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Each is a product of a one-dimensional scaling function  and corresponding wavelet 

  [4]. The definition of scaling function is defined as 

)()(),( yxyx                                                   (3.10) 

There are three different basic functions of the wavelet: ),( yxH  is for the horizontal,  

),( yxV  for the vertical and ),( yxD  for the diagonal subband. Wavelets are defined 

as 

)()(),(

)()(),(

)()(),(

yxyx

yxyx

yxyx

D

V

H













                                           (3.11) 

The discrete wavelet transform of function ),( yxf  of the size NM   is then given by 

[4] 











1

0

1

0

,,0 ),(),(
1

),,(
0

M

x

N

y

nmj yxyxf
MN

nmjW                         (3.12) 











1

0

1

0

,, ),(),(
1

),,(
M

x

N

y

nmj
ii yxyxf

MN
nmjW  .                       (3.13) 

Figure 3 shows four quarter-size output subimages, which are denoted as W , HW , 
VW  

and 
DW  

 

Figure 3: Discrete Wavelet Transform [4] 
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The top-left corner subimage is almost the same as the original image, due to the energy 

of an image being usually distributed around the lower band. A top-left corner subimage 

is called the approximation and others are the details [12][13]. 

  
 

Figure 4: 1-level and 2-level decomposition of WT 

Figure 4 shows the discrete wavelet of the 1-level and the 2-level decomposition using 

discrete wavelet transform. The 1-level decomposition has four subimages, where the 

most important sub-image in located at top-left corner of the image. For the 2-level 

decomposition, the final image consists of seven subimages.  

The quantization step of the wavelet is also referred to as thresholding. Hard threshold 

and soft threshold are two different threshold types used in image compression. In the 

hard threshold technique, if the value of the coefficient is less than the defined value of 

threshold, then the coefficient is scaled to zero, otherwise the value of the coefficient is 

maintained as it is. That is [20], 

                                            


 


otherwisex

txif
xtT

0
),( .                       (3.14) 

 In the soft threshold technique, if the value of the coefficient is less than the defined 

value of the threshold, then the coefficient is scaled to zero, otherwise the value of the 
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coefficient is reduced by the amount of the defined value of the threshold. Note that a 

threshold is set only for the detail coefficients [15]. The soft threshold is given by 










otherwisetxxsign

txif
xtT

))((

0
),( .                                (3.15) 

 

3.3  Lossless Predictive Coding 

Predictive coding is a technique used to predict the future values of the image pixels 

based on pixels already received. The aim is to reduce the interpixel redundancy. In 

lossless predictive coding, is based on eliminating the interpixel redundancies of closely 

spaced by extracting and coding only the new information in each pixel. The new 

information of the pixel is defined as the difference between the actual and predicted 

value of that pixel [4]. The difference between the actual and the predicted value of that 

pixel, ne , also referred to as prediction error. The prediction error is the subtraction of 

the original image pixel values and predicted pixels 

 nn fe nf̂ .                                                   (3.16) 

The encoder of the lossless predictive coding system consists of a predictor.   

][roundˆ

1





m

i

inin ff                                              (3.17) 

nf  is defined as original image and nf̂  denotes a predicted pixel which is rounded to the 

nearest integer. The system model of the encoder for lossless predictive coding is shown 

in Figure 5. The model contains the identical predictor and the prediction error for 

encoding. 
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Figure 5: Lossless Predictive coding system model [4] 

Here are examples of the first and the second orders of our predictor in the 2-

dimensional model used in this thesis [4] 

),1(5.0)1,(5.0),(ˆ

),1()1,(),(ˆ

yxfyxfyxf

yxfyxfyxf




                             (3.18) 

The predictive error images using the original images are shown below with the first 

and the second order predictor applied 

  

  

 

Figure 6: The first and the second order predictive error 

 

3.4  Lossy Predictive Coding 

A general system model of an encoder for lossy predictive coding is shown in Figure 7, 

which is consisting of a quantizer, identical predictor and the output of the system also 

referred as the prediction error 
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Figure 7: Lossy predictive coding system model [16] 

 

Differential pulse code modulation (DPCM) is one of the most commonly used lossy 

predictive coding techniques for image compression. The idea of DPCM is to predict 

the value of the neighboring pixels, which are highly correlated to each other, utilizing 

the identical predictor of the system. The difference between the original pixel and the 

predicted pixel, referred to as an error pixel, is then quantized and encoded [19]. For 

lossy predictive coding, we applied the same prediction error and the predictors used in 

the lossless predictive coding. The difference of the original image and the predicted 

image to referred as the prediction error ne , is defined as 

 nn fe nf̂ ,                                                    (3.19) 

and the predictor 1),( yxf


 is denoted as a first order predictor and 2),( yxf


is the second 

order predictor  

),1(5.0)1,(5.0),(ˆ

),1()1,(),(ˆ

2

1

yxfyxfyxf

yxfyxfyxf




                             (3.20) 

The example quantizer of the DPCM can be defined as 

 nn eQe 
~

= 16* 8256
16

255








  ne
                                (3.21) 

The other well known form of lossy predictive coding is Delta Modulation (DM), which 

is a simplified version of DPCM, the quantizer being defined as [4]  
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ne
~










otherwise

efor n



 0
                                              (3.22) 

The output of the quantized error is then encoded using Huffman or Arithmetic coding. 

   

3.5 Quantization Block Size 

In JPEG, each block of 88  samples is independently transformed using the two-

dimensional discrete cosine transform. This is compromise between contrasting 

requirements; larger blocks would provide higher coding efficiency, whereas smaller 

blocks limit complexity. The 88  discrete cosine transform coefficients of each block 

have to be quantized before entropy coding [26]. But the question remains, what if we 

want to divide the image data into a different block size, such as 22 , 44 , 1616 , 

3232  or 6464 ? The quantization table must be able to process in the same size as 

image block size, which is able to quantize.  



































9910310011298959272

10112012110387786449

921131048164553524

771031096856372218

6280875129221714

5669574024161314

5560582619141212

6151402416101116

),( vuQ  

When reducing the quantization matrix ),(88 vuQ x  into the ),(44 vuQ x block size, it can 

be done easily by dividing the matrix into 44  blocks, and then average the four 

values in each block. On the other hand, the interpolation of the quantization matrix  

),(88 vuQ x  can be simply done by expanding the matrix to  ),(1616 vuQ x , then the resulted 

matrix is interpolated to  ),(3232 vuQ x  or ),(6464 vuQ x quantization matrices.     
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3.6  Entropy Encoding 

In this thesis entropy encoding is used for compression of image pixels after scanning 

the pixels into a 1-dimensional sequence. The aim of entropy encoding is to compress 

the image data into less memory space for storage, which also makes it easier to 

transmit the image data. Huffman coding and Arithmetic coding are the two most 

widely used entropy encoding methods [18].  

3.6.1  Huffman Coding 

Huffman coding is a data compression technique which has been used also in image 

compression. Huffman coding is based on the probabilities of the data occurring in the 

sequence. Symbols which occur more frequently will need fewer bits than symbols with 

less frequency.  Consider we have a pixel symbol sequence consisting of 6 pixels; the 

probability of occurrence pixels are shown in Figure 8.  

 

Figure 8: Huffman Coding [4] 

 

 

First, Huffman code sums together the two lowest probability pixels into a new pixel 

with a new probability (0.06+0.04 =0.1), repeating this until there is only one pixel, and 

the probability is 1. The reverse step to code each probability with binary code starts 

with the smallest source and works back to the original source. Given the binary 0 and 1 

to the source on the right, then go backward with the same path, adding to the source 0 
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and 1. The operation is repeated for each reduced source until the original source is 

reached. The final code appears on the far left of Figure 9.  

 

Figure 9: Huffman Coding reverse [4] 

 

As can be seen from Figure 9, the symbol 2a  gives only the code with only 1 bit, and 

the 5a  has the code with 5 bits. In other words, the symbols that occur more frequently 

are coded with fewer bits than those symbols with least frequency.  

3.6.2  Arithmetic Coding   

Arithmetic coding [4] is another entropy coding technique. Like in Huffman coding, the 

occurrence probabilities of the symbols in the encoding message needs to be known in 

Arithmetic coding. Arithmetic coding encodes the data by creating a real number 

between 0 and 1 representing the value sequence. For ease of understanding, let us 

encode a sequence, 43321 aaaaa  with probabilities given in Figure 10. In arithmetic 

coding, the process starts with an interval [0, 1), all symbols have their occurrence 

probability and are set into a subinterval of the frequency at which it occupies in the 

message. Because the first symbol of the message being coded, the message interval is 

initially narrowed to [0.0, 0.2). The next step is to divide message interval again into 

smaller subinterval for the next symbol, 2a , yielding a subinterval [0.04, 0.08) . For the 

next symbol, 3a , the interval is divided into a new subinterval, producing [0.056, 
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0.072). By continuing this, we will arrive at the final interval [0.0688, 0.06752). The 

sequence of symbols can be coded with any number within the interval representing the 

data.   

Source Symbol                 Probability               Initial Subinterval 

        1a                                     0.2                             [0.0, 0.2)       

        2a                                     0.2                             [0.2, 0.4) 

        3a                                     0.4                             [0.4, 0.8) 

        4a                                     0.2                             [0.8, 1.0) 

 

Figure 10: Probabilities and the Initial Subinterval of symbol 

Figure 10 shows four symbol of source and the probability of each symbol, as well as 

the initial subinterval of which symbol is associated. Figure 11 shows the basic process 

of arithmetic coding. There are five symbol of message and four symbol of source is 

coded.  

 

Figure 11: Arithmetic Coding [4] 
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Chapter 4:  Burrows-Wheeler Compression 
 

 

The Burrows-Wheeler transform is based on the block-sorting lossless data compression 

algorithms [7] which are used in many practical applications, especially in data 

compression. The BWT transforms a block of data into a form, which is easier to 

compress. The BWT is widely used in text data, but also is rapidly becoming popular in 

image data compression. In this thesis, we applied the discrete wavelet transform 

(DWT), discrete cosine transform (DCT) and predictive coding methods before using 

the Burrows-Wheeler transformation to achieve the better compression rate of the 

image. One-dimensional sequences of pixels are obtained by path scanning; two-

dimensional transformed image is converted into a one-dimensional sequence of pixels 

by using zigzag, Hilbert path filling or raster scanning methods. The Burrows-Wheeler 

transformation is then applied for the sequence transform it to an easier form for 

compression. In this chapter, BWT is defined, and some pre and post processing 

methods are discussed. The move-to-front, inversion frequencies, distance coding and 

run-length-encoding methods are used after the BWT to obtain better compression 

performance in image compression. 
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4.1  The forward transform 

Consider a 1-dimensional pixel sequence obtained by path scanning 

p [3  2  5  3  1  4  2  6] 

The original sequence p is copied to the first row, also referred to as index 0. The 

sequence is then sorted with all left-cyclic permutations into each next index row. The 

step 1 of the BWT is presented in Table 1. 

Table 1: Step 1 of BWT 

 

index Step 1 

0 3    2    5    3    1    4    2    6 

1 2    5    3    1    4    2    6    3 

2 5    3    1    4    2    6    3    2 

3 3    1    4    2    6    3    2    5     

4 1    4    2    6    3    2    5    3     

5 4    2    6    3    2    5    3    1     

6 2    6    3    2    5    3    1    4     

7 6    3    2    5    3    1    4    2    

    

 

Next rows are sorted lexicographically. The step 2 of the BWT is shown in Table 2. 

Step 3 is the final step of the BWT process consisting of output of the BWT and the 

final index.  

                 Table 2: Step 2 and 3 of BWT 

 

 

The original sequence  62413523p  appears in the fifth row of Table 2, and the 

output of the BWT transform is the last column, indicated by  TL 22165433 , 

index Step 2 

0 1    4    2    6    3    2    5    3 

1 2    5    3    1    4    2    6    3 

2 2    6    3    2    5    3    1    4 

3 3    1    4    2    6    3    2    5 

4 3    2    5    3    1    4    2    6 

5 4    2    6    3    2    5    2    1 

6 5    3    1    4    2    6    3    2 

7 6    3    2    5    3    1    4    2 

index Step3 

0 3 

1 3 

2 4 

3 5 

4 6 

5 1 

6 2 

7 2 
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with the index = 4. The result can be written as BWT = [index, L], where L is the output 

of the Burrows-Wheeler transform and index describes the location of the original 

sequence in the lexicographically ordered sequence. For later on we also utilize the first 

column  TF 65433221 , which can be obtain from L by sorting to perform the 

reverse transform of the BWT. Obviously there are some repetitions of pixels at the 

transformed form of the output sequence.   

 

4.2  The reverse Burrows-Wheeler Transform 

The BWT is a reversible transformation which can recover the original sequence from 

the BWT output sequence. In reverse transform only the BWT output sequence L and 

index are needed for reconstructing the original sequence. To solve the reverse BWT 

using output of the BWT L and index, the reverse BWT is presented in Table 3.   

Here  1BWT [index, 3  3  4  5  6  1  2  2] = [3  2  5  3  1  4  2  6]. 

Table Construction:  For i=1….n-1, 

 Step (3i-2): Place column n in front of column 1 ….i-1. 

 Step (3i-1): Order the resulting length i strings lexicographically. 

 Step 3i:       Place the ordered list in the first I columns of the table. 

 

Table 3: Reverse BWT- transform modified form [6] 

 

index 

(i=1) (i=2) (i=3) 

a b c a b c a b c 

0 3 1 1…3 31 14 14…3 314 142 142…3 

1 3 2 2…3 32 25 25…3 325 253 253…3 

2 4 2 2…4 42 26 26…4 426 263 263…4 

3 5 3 3…5 53 31 31…5 531 314 314…5 

4 6 3 3…6 63 32 32…6 632 325 325…6 

5 1 4 4…1 14 42 42…1 142 426 426…1 

6 2 5 5…2 25 53 53…2 253 531 531…2 

7 2 6 6…2 26 63 63…2 263 632 632…2 
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index 

(i=7) 

a b c 

0 3142632 1426325 1426325…3 

1 3253142 2531426 2531426…3 

2 4263253 2632531 2632531…4 

3 5314263 3142632 3142632…5 

4 6325314 3253142 3253142…6 

5 1426325 4263253 4263253…1 

6 2531426 5314263 5314263…2 

7 2632531 6325314 6325314…2 

   

The output of the reverse transform is also at the index 4, which is why the index is 

utilized to represented the output of the forward transform and the sequence is 

 62413523 , which is the same as the original sequence p.  

 

4.3  Variant of the Burrows-Wheeler Transform 

Since publication of the Burrows-Wheeler transform in the early 1990s, many 

extensions and variants of the original BWT have been developed for the aim of 

possibly getting even better compression ratio. In this thesis, we only show briefly on 

the idea level of one variant of BWT; Lexical permutation sorting.  

4.3.1  Lexical Permutation Sorting 

The lexical permutation sorting is a variant of the traditional Burrows-Wheeler 

Transform, which was developed for the first time by Arnavut and Magliveras [8]. In 

index 

(i=4) (i=5) (i=6) 

a b c a b c a b c 

0 3142 1426 1426…3 31426 14263 14263…3 314263 142632 142632…3 

1 3253 2531 2531…3 32531 25314 25314…3 325314 253142 253142…3 

2 4263 2632 2632…4 42632 26325 26325…4 426325 263253 263253…4 

3 5314 3142 3142…5 53142 31426 31426…5 531426 314263 314263…5 

4 6325 3253 3253…6 63253 32531 32531…6 632531 325314 325314…6 

5 1426 4263 4263…1 14263 42632 42632…1 142632 426325 426325…1 

6 2531 5314 5314…2 25314 53142 53142…2 253142 531426 531426…2 

7 2632 6325 6325…2 26325 63253 63253…2 263253 632531 632531…2 
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the traditionally BWT, the pair of index and the last column of the lexically ordered 

(index, L) of the matrix are transmitted. In lexical permutation sorting any other 

columns of the lexically ordered can be selected and recovered into the original 

sequence without yielding any error. In the studies of Arnavut and Magliveras, it has 

been shown that it is possible to select any of the other columns and still recover the 

data [3].  

Let us recall the sequence  62413523p , the sequence first sorted by cyclic 

permutations, then is ordered lexically similarly in the BWT. The difference of lexical 

permutation sorting compared to the traditional forward BWT is the selection of the 

output column of the matrix shown below. Instead of selecting the last column, any 

other columns can be selected, for example, choosing the second column 

 TS 33221654  to be transmitted.  

 

Table 4: Lexical permutation sorting 

 

 

 

 

 

 

 

4.4 Pre and post processing 

In this section several techniques, which could be used to pre and post process the 

Burrows-Wheeler transform to obtain better image data performance, are introduced. 

Path scanning is a process which is done before using the BWT to convert the 2-

index Step 2 

0 4 

1 5 

2 6 

3 1 

4 2 

5 2 

6 3 

7 3 

index Step 1 

0 1    4    2    6    3    2    5    3 

1 2    5    3    1    4    2    6    3 

2 2    6    3    2    5    3    1    4 

3 3    1    4    2    6    3    2    5 

4 3    2    5    3    1    4    2    6 

5 4    2    6    3    2    5    2    1 

6 5    3    1    4    2    6    3    2 

7 6    3    2    5    3    1    4    2 
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dimensional data into a 1-dimensional form. After using the BWT the data could be post 

processed by using several methods such as move-to-front and run-length-encoding for 

easier image entropy coding.    

4.4.1 Path Scanning 

Because the Burrows-Wheeler transformation only works with sequential data, the 

image data first needs to be convert from a 2-dimensional to a 1-dimensional pixel 

sequence. Considering the NN   image, the result of path scanning is the form of 

21 N . There are various scanning techniques for scanning the pixels of the image. In 

this chapter we use several typical techniques for reading the pixels for later Burrows-

Wheeler transformation.  

4.4.1.1  Zig-Zag Scan 

Zig-Zag scans the image along the anti-diagonals beginning with the top-most anti-

diagonal. Each anti-diagonal is scanned from the left top corner to the right bottom 

corner [6]. The result of the 2-dimentional image using a zig-zag scan yields a 

coefficient ordering sequence which is 

 16 15, 12, 8, 11, 14, 13, 10, 7, 4, 3, 6, 9, 5, 2, 1,ZigZag . 

 

 

 

        Figure 12: Zig-zag scan 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 
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4.4.1.2  Hilbert Scan 

The Hilbert curve method scans every pixel of the image in the square image with any 

size of kk 22  [6]. The Hilbert curve has a basic element of a square with one open side, 

referred to as a subcurve [6].  The open side of the subcurve can be top, bottom, left and 

right. Each subcurve has two end-points, and each of these can be the “entry” point of 

the “exit” point. A first level Hilbert curve is just a single curve. The second level 

Hilbert curve replaces that with four smaller curves, which can inter-connected with 

each others by three joins yielding a second level Hilbert curve. Every next level repeats 

the process or replacing each subcurve by four smaller subcurves and three joins  

 

 

 

                 

 

 

 

 

 

              1
st
 level             2

nd
 level 

 

Figure 13: 1
st
 and 2

nd
 level of the Hilbert Scan 

4.4.1.3  Raster Scan 

A raster horizontal scan is the simplest scanning technique where the image is scanned 

row by row from top to bottom and from left to right within each row [6]. The result of 

the raster horizontal scan of the 2-dimentional image of size 44  is 

)16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1(RH .  

The raster vertical (RV) scans in a way similar to RH, but vertically; the image is 

scanned column by column from left to right and from top to bottom within each 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

1 2 

3 4 
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column [6]. The result of the raster vertical scan performed on the 2-dimentional image 

is )16,12,8,4,15,11,7,3,14,10,6,2,13,9,5,1(RV . 

                 Raster horizontal scan:                       Raster vertical scan: 

 

  

  

 

              RH         VH 

Figure 14: Raster scan 

 

In snake horizontal scan (SH), the image is scanned row by row starting from the top 

left corner pixel going though to the right, scanning to the end of the first row, and  

continue scanning the next row starting from the right to the left pixel. This is a variant 

of the raster horizontal scan method described above [6]. The result of snake horizontal 

scan of the 2-dimentional image is )13,14,15,16,12,11,10,9,5,6,7,8,4,3,2,1(SH . 

In snake vertical scan (SV), the image is scanned column by column starting from the 

top left corner pixel going to the end of the column, continuing with scanning the next 

column by starting from the bottom to the top pixel. This is a variant of the raster 

vertical scan method described above [6]. The result of the snake horizontal scan of the 

example image is )4,8,12,16,15,11,7,3,2,6,10,14,13,9,5,1(SV .      
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                 Snake horizontal scan              Snake vertical scan 

 

 

 

 

 

 

 

            SH                          SV  

Figure 15: Snake scan 

4.4.1.4  Spiral-Scan 

In spiral scan (SS), the image is scanned from the outside to the inside, beginning from 

the left top corner of the image. The result of the spiral scan performed on the 2-

dimentional image is )10,11,7,6,5,9,13,14,15,16,12,8,4,3,2,1(SS . 

The vertical spiral scan is a variants of the spiral scan, with the image being scanned 

from the outside to the inside, beginning from the left top corner of the image, scanning 

vertically to the bottom. The result of the spiral scan of the 2-dimentional image is 

)7,11,10,6,2,3,4,8,12,16,15,14,10,9,5,1(VSS . 

          

        Spiral scan                             Vertical spiral scan  

 

 

 

 

  

            SS             VSS 

Figure 16: Spiral scan 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 



 

4  BURROWS-WHEELER COMPRESSION 

 34 

4.4.2  Move-To-Front 

The move-to-front transform (MTF) is an encoding of data designed to improve 

performance of entropy encoding techniques of compression. The move-to-front is a 

process that is usually used after Burrows-Wheeler transformation to ranking the 

symbols according to their relative frequency. Move-to-front is base on a dynamic 

alphabet kept in a move-to-front list, where the current character during scanning is 

always moved to beginning of the alphabet [25]. After processing MTF, the sequence is 

as long as the original sequence because it does not compress the original sequence. The 

main idea is to achieve a better compression performance in entropy coding.  

Consider, the Burrows-Wheeler transforms output sequence is 

 221754230 L . 

Now we want to transform the sequence using MTF. First we need to initialize the 

index value list. In practice, the list is the order by byte value with 256 entries. In this 

case we have the list  

 765432100 l  

The first pixel of the sequence is ‘3’, which can be found in the fourth index of the list. 

We add the particular index to the Rank column, and then move the index to the front of 

the list, given  

1l = [3  0  1  2  4  5  6  7] 
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Table 5: Move-to-Front 

Sequence List Rank 

3    3    4    6    7    1    2    2 0    1    2    3    4    5    6    7 3 

3    3    4    6    7    1    2    2 3    0    1    2    4    5    6    7 0 

3    3    4    6    7    1    2    2 3    0    1    2    4    5    6    7 4 

3    3    4    6    7    1    2    2 4    3    0    1    2    5    6    7 6 

3    3    4    6    7    1    2    2 6    4    3    0    1    2    5    7 7 

3    3    4    6    7    1    2    2 7    6    4    3    0    1    2    5 5 

3    3    4    6    7    1    2    2 1    7    6    4    3    0    2    5 5 

3    3    4    6    7    1    2    2 2    1    7    6    4    3    0    5 0 

                     

By doing this to the end of the sequence, the final output of rank is obtained 

MTF [3  0  4  6  7  5  5  0] 

From the result of Move-to-Front the Rank, a data sequence is containing a lot of 

symbol in the low integer range.  

4.4.3  Inversion Frequencies 

The inversion frequencies (IF) method was introduced by Arnavut and Magliveras [8], 

the aim being to replace the move-to-front stage. The idea of the inversion frequencies 

method is based on the distance between the occurrences of the symbols after the BWT 

stage [3]. For example, the sequence L = [3 2 5 1 4 1 3 4 5 6 1 2 2] is the output of the 

BWT. The first step is to create a list of each symbol. Here we have a list of symbol 

 654321S . Starting with the first symbol of the list by counting the distance of 

the symbol then removes the symbol from the original sequence, and so on.  For better 

understanding, let us look at the table below. 

 Table 6: Inversion Frequencies 

List Occurrence Sequence 

1 3, 1, 4 3 2 5 1 4 1 3 4 5 6 1 2 2 

2 1, 6, 0 3 2 5 4 3 4 5 6 2 2 

3 0, 2 3 5 4 3 4 5 6 

4 1, 0 5 4 4 5 6 

5 0, 0 5 5 6 

6 0 6 
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The output of the inversion frequency is [3 1 4 1 6 0 0 2 1 0 0 0 0]. Compared to the 

original sequence, there are notably more zero-value created by the inversion 

frequencies method. 

4.4.4  Distance Coding 

Distance coding is based of the start of each symbol in the output of the BWT, thus we 

need to know the first occurrence of the symbol [3]. Then, we must count the distance 

of the same symbol from the first occurrence of the symbol. The symbol is counted 

from the original sequence without removing the symbols. The end of the symbol will 

get the distance of 0 to inform the end of each symbol. For example, 

 2216543141523L  

Table 7: Distance Coding [3] 

 

Symbol First occurrence Distance to the next run 

1 4 2, 5, 0 

2 2 10, 0 

3 1 6, 0 

4 5 3, 0 

5 3 6, 0 

6 10 0 

  

When decoding, we first start with the first occurrence column, by setting the first 

occurrence of each symbol to its own position. From the Table 7 it can be seen, that the 

symbol 1 fist occurrence is in the 4
th

 position, symbol 2 is in the 2
nd

 position, symbol 3 

in the 1
st
, and so on. Here the “*” is an unknown symbol. 

 

3 2 5 1 4 * * * * 6 * * * 

 

The Distance of the next run column tells us the distance to the same symbol; the 

symbol 1 distance to the next run is 2. Put the second 1 at the position 6 and the next 

distance is 5 from the position 6, which is position 11. 
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3 2 5 1 4 1 * * * 6 1 * * 

 

After continuing this with all symbols, the final result of decoder of distance coding 

became the following sequence, which is the same as the original sequence 

 2216543141523L  

 

3 2 5 1 4 1 3 4 5 6 1 2 2 

 

4.4.5  Run–Length Encoding 

The run-length encoding (RLE) is a simple compression technique, which can be used 

either before or after the BWT to reduce the number of runs in data sequence. RLE is 

more efficient when the sequence includes much data that is duplicated. The main idea 

of RLE is to count the runs that are repeated in the input data and replace the pixels with 

a different number of repetitions. For example, the one-dimensional sequence pixels of 

input data 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, the pixel “1” has repeated with 3 times, 

and the pixel “2” has 4 repetitions, the values can represented as (1,3), (2,4),… The 

sequence can be encoded by pairs of (value, repetition) to the end of the original data.  

  

Input data:  1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4 

          Encoder: 1, 3, 2, 4, 3, 3, 4, 6 

 

To decode the run-length, the first symbol of the encoder table is known by the value of 

the symbol, the second symbol is the repetition of such a value, which is 3 times that of 

the symbol 1. 

Decoder:  1, 1, 1, X, X, X, X, X, X, X, X, X, X, X, X 
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While decoding to the end of the value, the output of the decoder will becomes exactly 

the same as the input data.  

  

Output data: 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4 
 

 RLE encoding will compress the pixels of the sequence efficiently with the pixels 

which contain three or more runs. But if the repetitions of runs are less than 2, there is 

no reducing compressed ratio of the sequence [17], [6]. 

Input data:  1, 1, 2, 3, 3, 4 

    Encoder:  1, 2, 2, 1, 3, 2, 4, 1 
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Chapter 5:  Experimental results 

 
 

This chapter shows the image compression experimental result of different methods, 

and comparisons of images are given for several methods. The results are tabled and 

also shown some of the reconstructed images recovered from the original image. The 

results are presented for three different image compression techniques, which are 

discrete cosine transform, discrete wavelet transform and predictive coding. Included 

are methods such as move-to-front, run-length encoding, as well as the Burrows-

Wheeler transform, which has been discussed in previous chapters of the thesis. Also 

shown are the results of the effect of different scanning paths; zig-zag, Hilbert, raster 

and snake. The image comparisons also have been done for various block sizes. 

Huffman coding is the entropy encoding which is used to compress the image data. 

Comparisons between the Burrows-Wheeler transform methods and the JPEG standard 

is also considered.  

 

5.1 Experimental Data 

There are seven test images, which are used for test data – GoldHill, Bridge, Boat, 

Barb, Birds, Airplane and Lena.  
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5.2 Explaining Given Methods 

There are some abbreviations of different methods shown in this subsection. Here are 

some abbreviations along with an explanation of what they stand for:  

a) JPEG: JPEG (Joint Photographic Experts Group) standard (Section 3.2) 

b) BM: Burrows-Wheeler transform and move-to-front (Section 4.4.2) 

c) BR: Burrows-Wheeler transform and run-length encoding (Section 4.4.5) 

d) BMR: Burrows-Wheeler transform, move-to-front and run-length encoding 

e) Zig-Zag: Zig-zag scanning path (Section 4.4.1.1) 

f) Hilbert: Hilbert scanning path (Section 4.4.1.2) 

g) Raster: Horizontal raster scanning path scans from the left to right and from 

top to bottom (Section 4.4.1.3) 

h) Snake: Horizontal snake scanning path starts from the left top corner (Section 

4.4.1.3) 

i) DWT: Only discrete wavelet transform is used without BWT is applied 

(Section 3.3) 

j) Predictive: Only predictive coding is used without BWT is applied (Section 

3.4) 

5.3 Experimental Result using Discrete Cosine Transform 

5.3.1 Comparison with Different Methods 

This subsection contains an evaluation of the results by applying the discrete cosine 

transform. Variations of the Burrows-Wheeler transform are compared to the JPEG 

standard. The JPEG standard applies the DCT as a basic technique using the block size 

of 8x8. The DCT coefficients are scanned in zig-zag order, and coefficients are 



 

5  EXPERIMENTAL RESULTS 

 41 

encoding with RLE. These techniques are also applied in BM, BR and BMR to give 

better comparison for the simulation results.  

Table 8 shows that the JPEG standard gives the compression ratio (see Eq. 2.3) of 28:1 

on average, while Burrows-Wheeler transform with run length encoding gives a 

compression ratio of 30:1. However, the move-to-front method gives over 29:1 on 

average. This suggests that, applying the BWT will yield a better result compared to the 

original JPEG standard.     

 

 Table 8: Comparison of JPEG with BM, BR and BMR 

Method GoldHill Bridge Boat Barb Birds Airplane Average 

JPEG 24.45 26.34 23.54 31.03 36.90 29.25 28.58 

BM 29.68 26.68 22.68 25.68 37.57 31.87 29.05 

BR 29.07 26.74 26.19 28.78 34.91 34.05 29.96 

BMR 27.39 24.08 20.94 23.40 34.27 31.50 26.92 

 

5.3.2 Effect of Scanning Paths 

To evaluate the effect of the different scanning paths used in the study method, we 

applied the block size 3232  of the DCT, Burrows-Wheeler transform and run-length 

encoding to see the results of each scanning method. Zig-zag, Hilbert, horizontal raster 

and horizontal snake scanning methods are performed.  

The order of encoding is  

- DCT  Scanning path  BWT  RLE 

The Table 9 shows that applying the zig-zag scanning path achieved the best 

compression ratio which is nearly 30:1, while the Hilbert curve is worst, giving a 

compression ratio only on average 29:1. 
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Table 9: Comparing scanning paths 

Scan GoldHill Brigde Boat Barb Birds Airplane Average 

Zig-Zag 24.52 28.34 25.12 30.91 35.30 33.16 29.56 

Hilbert 25.84 23.07 23.07 31.75 33.71 29.89 28.80 

Raster 22.08 28.53 24.60 30.79 35.15 34.71 29.31 

Snake 22.94 28.94 24.37 30.91 35.30 31.87 29.05 

 

Most of higher frequency coefficients are converted into zeros after the forward discrete 

cosine transformation, which are in the right-bottom corner. The zig-zag is suitable for 

this situation to scans the sequence of zeros at the end, achieving higher entropy and 

run-length coding efficiency.   

The difference in results of Table 8 and Table 9 is due to block size of process. In zig-

zag scanning path is applied 3232  , while in BR method the block size is only 88 .   

5.3.3 Effect of Block Sizes 

In the DCT, the image data is split into smaller block to pre-process the data. Generally, 

DCT is broken into 88  blocks of pixels. However, in our application, we also tried 

various block sizes. For comparing different block sizes in DCT, we apply six different 

block sizes: 22 , 44 , 88 , 1616 , 3232  and 6464 . The DCT coefficients of 

the block are scanned using the zig-zag scan and JPEG standard quantization table (see 

section 3.3.1). 

The order of encoding is following: 

- DCT (block size)  Zig-Zag  BWT  RLE 
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Table 10: Comparing block sizes 

Block size GoldHill Brigde Boat Barb Birds Airplane Average 

22  26.42 26.14 27.38 29.46 32.85 30.71 28.82 

44  27.36 24.89 28.00 29.88 34.72 32.64 29.58 

88  29.07 26.74 26.19 28.78 34.91 34.05 29.96 

1616  21.48 22.92 25.28 20.68 41.79 46.54 29.77 

3232  24.52 28.34 25.12 30.91 35.30 33.16 29.56 

6464  36.56 25.60 19.68 36.56 25.60 19.68 27.28 

 

 

From the result shown in the Table 10, it is appear that the block size of 88  gives on 

average the best compression ratio, and the next best compression ratio is given by the 

block size of 1616 . The worst is the block size of 6464 . Also the block size of 

22  and 44  give comparative result in this application. The conclusion of this 

subsection is that the small block size gives better result. However the smallest block 

size that could be used is 8x8. 

The Figure 17 shows the compression ratio for each block size. 

 

Figure 17: DCT with different block size 

The Lena image with six different block size of DCT is shown in Figure 18. As can be 

observed, the reconstructed image with block size of 88 and 1616  give it visually 

almost the same image. But with the block size of 22 and 6464  give a poor 

reconstructed image because of the lower compression ratio shown in Table 10.   
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Figure 18: Lena with different blocks size of DCT 
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5.4 Effect of Different Threshold in DWT 

In this part, we evaluate the results of different thresholds while using the discrete 

wavelet transform for lossy compression. There are three tested methods with three 

kinds of thresholds: 10, 30 and 50. In this application we have used Scale 1 

decomposition and Scale 2 decomposition for the DWT. The block size of 6464  is 

performed.  

The orders of encodings are 

a) DWT  Threshold  

b) DWT  Threshold  BWT  MTF 

c) DWT  Threshold  BWT  RLE 

 

Table 11a: Scale 1 decomposition with different threshold 

Scale 1 Threshold-10 Threshold-30 Threshold-50 

Image DWT BM BR DWT BM BR DWT BM BR 

GoldHill 23.18 19.97 20.18 28.59 21.52 20.72 32.86 22.53 23.22 

Bridge 16.63 14.79 14.88 18.83 14.80 15.55 21.67 15.96 16.45 

Boat 18.77 16.64 17.48 22.72 17.02 17.85 27.41 18.68 19.01 

Barb 17.74 15.63 15.16 20.04 15.56 16.11 22.70 17.23 17.2 

Birds 20.44 17.84 18.33 24.95 18.91 19.05 27.53 20.22 19.63 

Airplane 16.79 15.91 14.96 18.77 16.79 16.04 21.96 17.27 16.54 

Average 18.52 16.80 16.78 22.32 17.43 17.63 25.68 18.64 18.67 

 

 

As can be seen from the result in Table 11a, in Scale 1 decomposition, applying the 

DWT without any use of Burrows-Wheeler transform will achieve the highest 

compression ratio. Obviously, the greater threshold gives the higher compression ratio 

compared to the smaller threshold. Here the threshold-50 gives a compression ratio of 

almost 26:1, when threshold-10 gives only 18:1. When comparing move-to-front and 

run-length-encoding with each other, in threshold-10 move-to-front is slightly better, 

but when the threshold is higher, run-length-encoding gives better results.  



 

5  EXPERIMENTAL RESULTS 

 46 

Table 11b: Scale 2 decomposition with different threshold 

Scale 2 Threshold-10 Threshold-30 Threshold-50 

Image DWT BM BR DWT BM BR DWT BM BR 

GoldHill 36.81 25.96 31.02 54.24 30.91 32.83 74.64 37.06 34.78 

Bridge 18.27 17.73 16.12 20.67 19.24 17.56 25.06 21.32 18.23 

Boat 20.24 18.89 18.24 25.16 20.76 19.72 30.36 30.32 21.21 

Barb 20.51 18.63 18.00 25.26 20.24 19.92 30.36 22.40 19.83 

Birds 18.33 17.95 16.62 22.22 17.90 17.86 25.28 20.08 18.49 

Airplane 22.72 20.90 19.90 26.50 22.42 21.74 33.50 24.14 22.39 

Average 22.81 20.00 19.98 29.00 21.91 21.60 36.53 24.94 22.48 

 

 

The results of Table 11b show that Scale 2 will give a much higher compression ratio 

compared to Scale 1 decomposition. Also, independent of the threshold, the move-to-

front method yields a better ratio than the run-length encoding.    

 

5.5 Experimental Result using Predictive Coding 

This part of the thesis pre-processes the image data, and then compares it with different 

variants of the Burrow-Wheeler-transform, such as move-to-front, run-length-encoding 

and also a combination of these two methods. The zig-zag scanning order is applies in 

this technique after predictive coding.   

By only using predictive coding without including any BWT methods, the compression 

ratio will be highest. The next best ratio is to apply the BWT and RLE. When applying 

the BWT, MTF and RLE together, the result is the lowest ratio.  

 

Table 12: Predictive coding and different methods of BWT 

Method GoldHill Bridge Boat Barb Birds Airplane Average 

Predictive 30.00 22.94 25.28 18.32 25.28 20.68 23.74 

BM 14.60 13.04 14.296 10.07 12.92 11.40 12.72 

BR 23.33 19.08 19.68 14.86 19.83 17.13 18.98 

BMR 13.25 11.81 12.85 9.072 11.73 10.35 11.51 
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The results of Table 12 shows that the process of predictive coding before applying the 

Burrows-Wheeler transform yields a great gap between different methods. The 

compression ratio of BMR is only 11:1, but the predictive coding is almost 24:1. 

The predictive coding can be done also after the Burrows-Wheeler transform, but in this 

situation predictive coding must do the scanning for the image data to one-dimensional 

sequence data, instead of doing the path scanning after predictive coding. 

a) path scanning  BWT  Predictive 

b) path scanning  BWT  Predictive  move-to-front  

c) path scanning  BWT  Predictive  RLE 

d) path scanning  BWT  Predictive  move-to-front + RLE 

Above the predictive coding is processed for the two-dimensional image data, now the 

predictive coding must be done for the 1-dimensional data.  

Table 13: Predictive coding after BWT 

Method GoldHill Bridge Boat Barb Birds Airplane Average 

BWT+Predictive 21.03 20.42 20.79 19.34 15.95 19.36 19.48 

BWT+M 10.43 11.26 10.65 10.48 9.76 10.95 10.58 

BWT+R 17.21 18.00 16.64 16.76 12.90 15.50 16.16 

BWT+MR 9.59 10.25 9.71 9.57 8.98 10.03 9.68 

 

The result of Table 13 gives poorer compression ratio compared to Table 12. So, when 

compressing the image using predictive coding after the BWT will give smaller ratio 

than applying the BWT before predictive coding. The worst case is using move-to-front 

together with run-length-encoding, its compression ratio is only near 10:1. Figure 19 

shows that using the predictive coding before BWT will achieve higher compression 

ratio than after BWT.   
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Figure 19: Predictive coding before and after BWT 

As can be seen at Figure 19, the use of the Burrows-Wheeler transfrom before 

predictive (BWT+P) will achieve quite good compression ratio compared to the use of 

the Burrows-Wheeler transform before run-length encoding (BWT+R). The applying of 

the Burrows-Wheeler transform gave worst compression ratio. 

5.5.1 Effect of Scanning Paths on Predictive Coding 

To compare different scanning path, here we also apply the same scanning paths as 

before: zig-zag, Hilbert, Raster and Snake.  

The phase of using predictive coding for the scanning path is the following: 

- Predictive Coding  Scanning path  BWT  RLE 

 
There are four path scanning methods being applied, it is noticeable that the raster and 

the snake scanning did not give any significant advantages of compression performance. 

As Table 14 shows, every scanning method gave almost the same compression ratio 

after applying the BWT and RLE. However the zig-zag scanning path gives the best 

overall result compared to the others. 
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Table 14: Predictive coding and different methods of BWT 

Scan GoldHill Brigde Boat Barb Birds Airplane Average 

Zig-Zag 23.33 19.08 19.68 14.86 19.83 17.13 18.98 

Hilbert 22.13 19.00 19.22 14.88 18.32 16.12 18.28 

Raster 22.81 19.544 19.36 14.54 17.68 16.31 18.37 

Snake 23.60 18.96 18.16 14.54 19.00 15.90 18.36 
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Chapter 6:  Conclusions 
 

 

In this thesis, the use of the Burrows-Wheeler transform in image compression was 

studied. A few discrete transformations, as well as predictive coding were considered. 

The difference of the quantization block sizes are presented and have been shown the 

results for the effect of the various block size of quantization table.  Several 

linearization techniques were introduced to convert the 2-dimensional image to 1-

dimensional linear data sequence. Also, variants of the Burrows-Wheeler transform 

methods have been considered.     

The experimental results show that application the Burrows-Wheeler transformation 

gives a slightly improved performance on average compared to the JPEG standard.  

Also a combination of BWT with move-to-front and run-length encoding yield even 

better results when compared to JPEG standard. For linearizing the image a into linear 

pixel sequence by zig-zag scanning path after pre-processing with the discrete cosine 

transform gives the best result compared to the other scanning methods such as the 

raster, the snake or the Hilbert scanning path. Furthermore, the raster scan and the snake 

scan are competitive methods that were discovered while studying methods for 

linearizing the pixels sequence. As results show, the block size of 88  applying in 
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DCT will achieve a better result in the instance of using 22 , 44 , 1616 , 3232  

or 6464  block sizes. But the neighboring block size of 88  are gave quite good 

compression ratio compared to, for example, the block size of 22  and 6464 .  The 

Figure 18 showed the discrete cosine transform with different block sizes, visually the 

block size of 88  gave the best result for the reconstructed image.   

The effect of using a different threshold will play an important role while processing a 

discrete wavelet transform. The experimental result shows that when tested the DWT 

with a higher threshold, the reconstructed image compression is better than in the case 

of a smaller threshold. This is noticeable from the pre-processing image, because the 

higher threshold will yield much more zeros at details coefficients of DWT. Scale 2 

decomposition of DWT yields also a better compression ratio result, but on the other 

hand, the reconstructed image is poorer than by applying only scale 1 decomposition. 

For predictive coding, the uses of the Burrows-Wheeler transform and other variants of 

the BWT did not yield any better average results than applying only the predictive 

coding for image compression. The use of predictive coding after the Burrows-Wheeler 

transform as well as the move-to-front and the RLE was also tested. The result did not 

gave any better compression ratio compared to the predictive used before the Burrows-

Wheeler transform. The use of a zig-zag scanning path gives also the best result in 

predictive coding as well as in DCT.  

Generally, the use of Burrows-Wheeler Transform is suitable for image compression as 

well as others standard compression methods. When using discrete cosine transform 

with zig-zag scanning path and run-length coding, the result of compression ratio will 

even better than JPEG standard. On the other hand, one additional method causes an 
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extra execution time in the processors, because of the slowness in processing steps of 

BWT, which is a one of drawbacks when using this technique.  

In the future the study will concentrate on different improvement algorithms of BWT to 

minimize execution time and the study of the compression in speech and video data 

using Burrows-Wheeler Transform.    
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Appendix A 

 
 

 

There are 7 test images used in this thesis, images are GoldHill, Bridge, Boat,    Women, 

Birds, Airplane and Lena. The test images are from 

http://decsai.ugr.es/cvg/CG/base.htm. 

 

 GoldHill           Bridge 

              

  

 

 

 

 

  

  

http://decsai.ugr.es/cvg/CG/base.htm
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Boat           Barb 

             

 Birds           Airplane 

              
     

              Lena     
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