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Tässä työssä tutkitaan kolmea numeerista menetelmää, jotka approksimoivat integraalia
Gaussisten prosessien hyperparametrien posteriorijakauman yli. Tämän integraalin ana-
lyyttinen käsittely on usein mahdotonta. Työssä tutkitaan approksimaatioiden ominaisuuk-
sia, ja niiden suorituskykyä verrataan keskenään sekä piste-estimaattia käyttävään mene-
telmään.

Perinteisesti integraali hyperparametrien posteriorin yli on laskettu käyttäen Markovin ket-
ju Monte Carlo (MCMC) -menetelmiä. MCMC-menetelmät kuitenkin kärsivät Gaussisten
prosessien laskennan raskaudesta, sillä Gaussisten prosessien kompleksisuus kasvaa käy-
tettävän datan kasvaessa. Yksi vaihtoehtoinen menetelmä on käyttää piste-estimaattia hy-
perparametrien posteriorijakauman yli integroimisen sijaan. Tämä on laskennallisesti no-
pea tapa, mutta se jättää huomioimatta hyperparametreihin liittyvän epävarmuuden.

Tässä työssä esitetyt approksimaatiot pyrkivät ottamaan huomioon hyperparametrien epä-
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riorin yli integroiminen on hyödyllistä tietyissä olosuhteissa. Lisäksi näytetään että piste-
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sa. Käytettävän datan määrä ja mallien käyttötarkoitus vaikuttavat integrointimenetelmien
tarpeellisuuteen, ja työssä tarkastellaan näitä olosuhteita.
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This thesis examines three numerical approximations for the analytically intractable in-
tegral over the posterior distribution of the hyperparameters in Gaussian processes. The
properties of the approximations are studied, and their performance is compared to each
other and to a method using a point-estimate.

Traditionally the integral over the posterior of the hyperparameters is computed using
Markov chain Monte Carlo (MCMC) -methods. However, MCMC methods suffer from a
heavy computational burden of Gaussian processes, because the complexity of Gaussian
process models grows with the amount of the data used. An alternative approach has
been to use only a point estimate for the hyperparameters instead of integrating over their
posterior distribution. This is a computationally attractive approach, but it ignores the
uncertainty related to the hyperparameters.

The approximations discussed in this thesis attempt to take the uncertainty in the hyper-
parameters into consideration better than does a point estimate method, and to be compu-
tationally lighter than MCMC methods. The results demonstrate that the integration over
the hyperparameters is beneficial in particular conditions. In addition, it is shown that a
point estimate method yields equally accurate results with the integration methods in other
situations. The amount of the data and the use of the models determine the need for the
integration methods and the determining conditions are discussed in this work.
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Chapter 1

Introduction

Gaussian processes have received some attention in machine learning and statistician

communities in recent years. They provide flexible tools for various problems, such as

Bayesian regression. Gaussian processes are computationally demanding and the com-

plexity of the models increase with the size of the training data set. Therefore, much late

research have concentrated on making the inference computationally more feasible.

Full Bayesian treatment of Gaussian processes requires integration over the posterior dis-

tribution of a moderate number of hyperparameters. Even though most calculations in

Gaussian processes can be analytically solvable, the integral over the posterior of the hy-

perparameters often is not. A popular approach is to use numerical integration via Markov

chain Monte Carlo (MCMC) -methods. However, due to the computational burden, this

approach may be infeasible with large data sets.

An alternative to the MCMC-methods are analytical approximations. The integration

over the posterior of the hyperparameters can be approximated using only a single point

estimate. This approach is computationally attractive. However, in Bayesian inference, all

uncertainty should be taken into consideration, whereas a point estimate does not contain

information about the uncertainty.

This research started when a more extensive treatment than a point estimate for the hy-

perparameters was requested by the reviewers of a research article. The study of the

integration methods was beyond the scope of the article, but the importance of the ap-

proximations was of interest. Hence a Master’s thesis study was carried out.
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The aim of this research was to implement three numerical approximations for the inte-

gration over the hyperparameters and to study the importance of the approximations to the

inference with Gaussian processes. A goal was to examine if the integration enhances the

predictive performance of Gaussian processes, and whether the point estimate is sufficient

in some situations. The implemented integration methods have already been used in an

ongoing project.

This thesis is organized as follows. Chapter 2 gives an introduction to Bayesian infer-

ence. Chapter 3 discusses basics of Gaussian processes in supervised learning tasks. The

numerical approximations are introduced in chapter 4. Some results comparing the point

estimate and the integration methods with real-world and simulated data sets are given in

chapter 5. Chapter 6 contains the conclusions of this work.
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Chapter 2

Bayesian inference

The aim of the Bayesian inference is to formulate probability distributions of unknown

quantities based on observations. All uncertainty is expressed with probability distribu-

tions. Thus, probabilities can be assigned to events that actually are not random, but from

which there is not enough knowledge.

The outcome of a deterministic system can appear to be random, due to lack of informa-

tion. For example, the result of a coin toss may be predictable given all the influencing

variables. However, without the information about those variables, the result of a coin toss

is uncertain. There is the same uncertainty about the result even after the coin has landed,

until the outcome is observed. The randomness does not change during the observation,

but the uncertainty does.

This viewpoint is very different from the frequentist one, in which probability is defined

as the relative frequency of favorable outcomes in an infinite long sequence of random

tests. In a frequentist framework it would be difficult to assign probabilities for an event

that happens only once. It should also be remembered that the Bayesian methods are

applied also to frequently occurring events, not only to unique ones.

2.1 Bayes’ rule

First in Bayesian inference an observation model p(y|θ,M) is chosen, which determines

how a future observation y depends on the parameters θ. When a set of observations D
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is fixed, p(D|θ,M) is the likelihood function of the parameters. A posterior probability

distribution of interesting parameters is constructed based on an observed data set D,

model assumptions M and the a priori assumptions about the parameters p(θ|M). The

posterior distribution is composed with Bayes’ rule:

p(θ|D,M) =
p(D|θ,M)p(θ|M)

p(D|M)
, (2.1)

where

• p(D|θ,M) is the likelihood function of the parameters θ

• p(θ|M) is the prior probability distribution of the model parameters θ. This in-

cludes prior knowledge about the values of the parameters, as well as about the

structure of the dependencies between the parameters.

• p(D|M) =
∫
p(D|θ,M)p(θ|M)dθ is the marginal likelihood of the data D, also

referred to as the evidence of the model. This is a constant which normalizes pos-

terior to be a proper probability density.

In Bayesian analysis, everything is conditioned to the model assumptions M . Therefore,

for notational simplicity, M is often left out.

Even though including prior assumptions seems to bring subjectivity to the inference, all

statistical reasoning needs some subjective assumptions, for example, about the model

structure. Thus, there is always some subjectivity in statistical inference. The degree

of subjectivity can be reduced by using prior distributions that let the likelihood term

determine the shape of the posterior.

Bayesian formulation provides also an attractive way of updating the posterior distribu-

tion by using the former posterior as a new prior and updating it with new observations.

This way the inference can be conducted sequentially and the amount of new information

provided by the new observations can be monitored through the changes in the posterior

distribution.

4



2.2 Marginalization

Marginalization means that some parameters are integrated out from their joint distribu-

tion: ∫
p(θ1, θ2)dθ2 = p(θ1), (2.2)

where p(θ1) is the marginal distribution of θ1. Marginalization is often used in order

to acquire the posterior distribution of interesting parameters after constructing the joint

posterior of all the variables. This often results in complex integrals that are analytically

intractable. Some difficult integrals within Gaussian process framework are discussed in

Section 4.

2.3 Prediction

Often the objective of the Bayesian modeling is not only to achieve the posterior distribu-

tion of parameters, but to use that estimate to make predictions about future observations.

The posterior predictive distribution is constructed by marginalizing the parameters θ out

of the joint probability distribution of the prediction y∗ and the parameters θ given the

observations D:

p(y∗|D) =

∫
p(y∗,θ|D)dθ =

∫
p(y∗|θ)p(θ|D)dθ. (2.3)

As discussed before, the marginalization to construct the predictive distribution in (2.3) is

often analytically intractable.

2.4 Model Comparison

Numerous models can be used to explain a certain data set. Bayesian treatment would be

to average inference over possible models weighting each with the corresponding model

evidence. However, often one model is chosen due to simpler explainability or computa-

tion, and inference is conducted via that one model. Many methods and procedures for

choosing the best model have been developed (for example, Vehtari and Lampinen, 2002;
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Spiegelhalter et al., 2002).

The models in this thesis are compared using the mean squared error (MSE) and the mean

log-predictive density (MLPD) measures. These are defined as follows:

MSE =
1

n

∑
i

(ŷi − ti)2 , (2.4)

MLPD =
1

n

∑
i

log p(y∗,i = ti|x∗,i,D), (2.5)

where ti are the test outputs (not included in the training data set), n is the number of

test outputs, ŷi = E[p(y∗,i|x∗,i,D)] are the mean predictions of the model with the cor-

responding input, and p(y∗|x∗,D) is the posterior predictive distribution of y∗ with test

input x∗. In this work, separate test and training data are available.

MSE measures the distance between the mean of the predictions and the test outputs.

However, it does not consider the uncertainty in the predictions. MLPD uses the density

of the posterior predictive distribution as a measure of fit, thus taking into account both

the distance from the mean and the uncertainty of prediction.

Two probability distributions can be compared using Kullback-Leibler (KL) divergence,

which measures divergence from one distribution to another. It is defined as

KL(p||q) =

∫
p(x) log

p(x)

q(x)
dx. (2.6)

It should be noted, that KL-divergence is asymmetric, thus KL(p||q) 6= KL(q||p). It is

always non-negative and zero only if p(x) = q(x).

2.5 Markov chain Monte Carlo -methods

Integrals in the Bayesian inference are often analytically intractable. Such integrals can

be numerically approximated with Markov chain Monte Carlo (MCMC) -methods. In

Monte Carlo integration the expectation E[f(x)] =
∫
f(x)p(x)dx is approximated by

E[f(x)] ≈ 1

n

n∑
k=1

f(x(k)), (2.7)
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where x(k) are samples drawn from the distribution p(x).

Markov chain methods are algorithms for drawing samples from the target distribution.

They form a Markov chain of samples, in which each sample is conditionally independent

of all the other samples given the previous one. For thorough presentation of MCMC

methods, see, for example, (Neal, 1993; Gilks, 1996)

Quasirandom number sequence

To estimate integral
∫ b
a
f(x)dx accurately using Monte Carlo -integration, the samples ẋ

must cover the range [a, b] sufficiently well. However, even if the samples were drawn

from a uniform distribution, they may be clustered, leaving some part of the integration

interval without samples, thus possibly failing to estimate the integral well.

The integral over desired space could be evaluated in an evenly spaced grid. The total

number of the integration points would be the product of the points used for each di-

mension. Another solution could be the use of quasirandom number sequence. Such a

sequence attempts to cover the desired space as evenly as possible with a given number

of points.

Integration over a probability distribution could be enhanced by transforming a set of

evenly spaced samples so that there will be more samples in a region of high probability

and less samples elsewhere. An illustration is given by figures 4.2(a) and 4.2(c). Figure

4.2(a) has samples in a uniform grid and 4.2(c) has uniform samples transformed to be

distributed as a Student-t distribution.

The number of quasirandom numbers can be increased sequentially one by one if desired.

This could be advantageous if the accuracy of the integration is examined by increasing

the number of points used for integration. However, increasing the number of points

in an evenly spaced grid is not as straightforward as with quasirandom numbers. The

integrations in this thesis have been conducted using a predetermined number of points.

In this thesis, Hammersley quasirandom sequence (Hammersley, 1960) is used. To draw

nth of the N k-dimensional samples, let π2 = 2, π3 = 3, π4 = 5, . . . πk be the first k − 1

prime numbers. Then n is written in πi-nary notation, and it is read backwards as πi-nary

decimal. The nth sample xn is composed by collecting these decimals yni using all i =

2, . . . , k and combining them with n
N
− 1

2N
, resulting in xn = { n

N
− 1

2N
, yn2, yn3, . . . , ynk}.
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Table 2.1: Composition of yn2

n Binary Reverse decimal yn2

1 1 0.1 0.5
2 10 0.01 0.25
3 11 0.11 0.75
4 100 0.001 0.125
5 101 0.101 0.625

The steps of composing the ynk is clarified in table 2.1 by using i = 2.

This procedure produces points inside a k-dimensional unit hypercube. These samples

can be then scaled in order to fill the desired space. Figure 2.1(a) shows 20 points from

two dimensional Hammersley quasirandom sequence. They fill the unit box quite evenly,

whereas the 20 points from a uniform distribution shown in figure 2.1(b) fill the unit

box unevenly leaving large empty spaces with no samples. The even positioning and

deterministic composition of quasirandom samples decrease the variance of importance

sampling (see section 4.2.3), which is beneficial.
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(a) Hammersley quasirandom sequence
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(b) Uniformly samples sequence

Figure 2.1: 20 samples from two dimensional Hammersley quasirandom (a) and uni-
formly sampled random sequences (b).

These quasirandom samples can be used to get quasirandom samples from a probability

distribution. The cumulative density function (CDF) P (a) =
∫ a
−∞ p(x)dx is a function

from [−∞,∞] to [0, 1]. Hence, samples from desired distribution can be calculated using

the inverse CDF with uniformly distributed samples from [0, 1], because if x has CDF

P (x), then y = P (x) has a uniform distribution on [0, 1].
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Chapter 3

Gaussian processes

A Gaussian process defines a probability distribution of functions. This thesis discusses

GP in supervised learning tasks, including regression and spatial analysis in epidemiol-

ogy. GP can also be used in unsupervised and reinforcement learning tasks, but those are

not considered in this thesis.

The aim of a regression task is to learn a mapping from inputs x1, . . . ,xn to continuous

outputs y1, . . . , yn. These observed inputs and outputs compose the training dataset D.

The outputs are often assumed to be noisy realizations of an underlying function f(x).

GP provides not only one estimate of f(x), but a probability distribution over estimates

of f(x).

A Gaussian process provides a prior distribution p(f) over the functions f . A posterior

distribution p(f |D) over the functions is calculated using the Bayes’ rule (eq. 2.1):

p(f |D) =
p(D|f)p(f)

p(D)
. (3.1)

An observation y is linked to the the latent variable f through the observation model

p(y|f). For example, in regression with additive Gaussian noise, the observation model is

y = f + ε, (3.2)

where ε ∼ N(0, σ2
n), which can be written as p(y|f) = N(y|f, σ2

n). In addition to the

Gaussian observation model, other models can be used, including Student-t and Poisson-

9



models.

3.1 Definition of a Gaussian process

Rasmussen and Williams (2006) give the following definition for a Gaussian process:

A Gaussian process is a collection of random variables, any finite number of which have

a joint Gaussian distribution

Thus, if a function f is defined by a GP, latent function variables f = {f1, . . . , fn} with

corresponding inputs X = {x1, . . . ,xn} are distributed as a multivariate Gaussian:

p(f |X) ∼ N(µ,K), (3.3)

whereµ and K denote the mean and covariance of the Gaussian distribution, respectively.

Because of the consistency properties of Gaussian distribution, any subset of these vari-

ables is distributed as a Gaussian, for which the mean and covariance are submatrices of

µ and K.

The entries of the covariance matrix Kij are defined by a covariance function k(xi,xj),

which will be discussed in Section 3.5. The covariance function has a few hyperparam-

eters, and this thesis presents approximations for the integration over their posterior dis-

tribution. Despite of these hyperparameters, GP is referred to as a nonparametric model,

meaning that all inference with GP is conditioned on the training data, thus the complexity

of the model increases with the size of the training data set.

The distribution of function values f is always conditioned on the corresponding input

variables X. However, in this thesis the distribution of those is not specified, and the

inputs are left out of the notation: p(f)=̂p(f |X).

3.2 Prediction

A common aim in regression is to predict function value f∗ (or observation y∗) in an

unobserved test location x∗ given the training data D. In this section, the values of the

10



hyperparameters are assumed to be given. Their effect will be discussed in Section 3.4.

First the joint training and test prior is constructed as[
f

f∗

]
∼ N

(
0,

[
Kf ,f Kf ,∗

K∗,f K∗,∗

])
. (3.4)

The posterior distribution of latent variables is constructed using Bayes’ rule

p(f∗, f |y) =
p(y|f)p(f∗, f)

p(y)
. (3.5)

The posterior predictive distribution can be obtained by integrating over the latent variable

f in 3.5:

p(f∗|y) =
1

p(y)

∫
p(y|f)p(f∗, f)df =

∫
p(f∗|f)p(f |y)df . (3.6)

Using a Gaussian noise model, the integral in (3.6) can be evaluated analytically. The

resulting posterior predictive distribution is

p(f∗|y) = N(µ∗,Σ∗),where (3.7)

µ∗ = K∗,fK
−1
y,yy (3.8)

Σ∗ = K∗,∗ −K∗,fK
−1
y,yKf ,∗, (3.9)

where Ky,y = Kf ,f + σ2
nI.

The posterior predictive distribution of the future observations y∗ is constructed by adding

the noise σ2
nI into the covariance matrix in (3.9). The noise parameter σ2

n is included into

the hyperparameters.

3.3 Non-Gaussian likelihood

If the likelihood in (3.6) is non-Gaussian, the integral over the posterior distribution of

the latent variables is analytically intractable. MCMC methods have been used to solve

such integrals. However, recently expectation propagation (Minka, 2001) and Laplace
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approximations (Williams and Barber, 1998) have been used with success in certain mod-

els (Vanhatalo et al., 2009). They both approximate the posterior distribution of latent

variables with a Gaussian distribution, thus the predictive distribution p(f∗|y) becomes

analytically tractable. This thesis reviews Laplace approximation in section 3.6 and uses

it in section 5.3.

3.4 Effect of hyperparameters

Up to this point, fixed values have been assumed for the hyperparameters that determine

the shape of the covariance function. The effect of hyperparameters θ has to be taken into

account in order to perform a full Bayesian inference.

First the posterior distribution of the latent variables and hyperparameters is obtained:

p(f∗, f ,θ|y) =
p(y|f)p(f∗, f |θ)p(θ)

p(y)
. (3.10)

Then, the predictive distribution of f∗ is calculated by integrating latent variables f and

hyperparameters θ out of the joint distribution:

p(f∗|y) =

∫
p(f∗, f ,θ|y)dfdθ =

1

p(y)

∫
p(y|f)p(f∗, f |θ)p(θ)dfdθ. (3.11)

As discussed before, the functional form of the likelihood term determines whether the in-

tegral over latent variables is analytically tractable. However, the integral over θ is usually

analytically intractable, and MCMC-methods could be used to perform this integration.

This thesis reviews and examines the properties of three numerical approximations for the

integation over the distribution of the hyperparameters (see section 4).

3.5 Covariance functions

This section discusses covariance function k(xi,xj), which determines the covariance

matrix. Two common covariance functions are also reviewed. The form and the hyper-

parameters of the covariance function determine, for example, how smooth the function

12



f(x) is.

Any arbitrary function is not a valid covariance function, since the resulting covariance

matrix K must be symmetric (KT = K) and positive semidefinite (vTKv ≥ 0 for all v ∈
Rn). In addition, the covariance function is stationary if it is a function of xi − xj and

isotropic if it is a function only of the Euclidean distance of the inputs ||xi−xj||. Isotropic

covariance function is invariant to shifts and rotations of the input space.

Since the sum of two positive semidefinite matrices is also positive semidefinite, a covari-

ance function can be a sum of two proper covariance functions, k(xi,xj) = k2(xi,xj) +

k1(xi,xj), where k1 and k2 can have distinct properties. A GP with this type of covariance

function can have, for example, both fast and slow variations.

The following sections present two popular covariance functions and discuss their prop-

erties. For more detailed discussion and other covariance functions, see (Rasmussen and

Williams, 2006).

3.5.1 Squared exponential

A popular covariance function in machine learning is squared exponential (SE), which is

defined as

kSE(x,x′) = σ2
SE exp

(
−

P∑
p=1

(
xp − x′p

)2
l2p

)
, (3.12)

where lp is the length scale and σ2
SE is the magnitude. These are the hyperparameters of

a GP denoted by θ = {l1, . . . , lP , σ2
SE}. Length scale affects the distance after which the

inputs do not significantly correlate. Magnitude scales the overall covariance matrix of

a Gaussian process. Squared exponential covariance function is infinitely differentiable,

thus a GP using it is very smooth (Rasmussen and Williams, 2006).

As defined above, squared exponential allows dimensions of the input space to have dif-

ferent amount of correlation through their own lengthscales (lp). If it is reasonable to

assume that the properties of the variations of the function are identical in all directions

of the input space, each lp can be replaced with a common length scale l.

Figure 3.1 shows two functions with different length scales. These functions are drawn

from the prior distribution p(f), and are not conditioned on any training data. They
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Figure 3.1: Two functions from GP prior with different length scales. Dashed line has
length scale of 0.5 and solid line that of 1.

x
1

x
2

Figure 3.2: A Gaussian process with squared exponential covariance function with differ-
ent length scales for the two inputs.

demonstrate how the function with shorter length scale varies faster than the one with

longer length scale. Figure 3.2 shows a function, which has two inputs. The function is

illustrated as a surface, which varies faster in one direction then in the other.

3.5.2 The Matérn class of covariance functions

The Matérn class of covariance functions is popular in geostatistics (Cornford et al., 2002)

and is given by
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kMatern(r) = σ2
m

21−ν

Γ(ν)

(√
2νr
)ν
Kν

(√
2νr
)
, (3.13)

where r =
√∑P

p=1

(xp−x′p)2

l2p
, lp is the length scale, σ2

m is the magnitude, ν > 0 andKν is a

modified Bessel function (see, for example, Abramowitz and Stegun, 1972). For ν →∞,

kMatern becomes a smooth SE-function. For smaller ν, Matérn class covariance functions

produce more rough Gaussian processes.

Matérn class covariance function becomes simpler with half-integer ν: ν = p + 1/2,

where p is non-negative integer. In this case

kν=p+1/2(r) = σ2
ν=p+1/2 exp

(
−
√

2νr

l

)
Γ(p+ 1)

Γ(2p+ 1)

p∑
i=0

(p+ 1)!

i!(p− 1)!

(√
8νr

l

)p−i

,

(3.14)

and, for example, with ν = 3/2,

kν=3/2(r) = σ2
ν=3/2

(
1 +

√
3r

l

)
exp

(
−
√

3r

l

)
. (3.15)

3.6 Normal approximation for the posterior distribution

As discussed in the previous sections, the integral over the posterior distribution of latent

variables f can be analytically intractable. The posterior distribution is often approxi-

mated with a Gaussian distribution in order to make the integral in (3.16) analytically

tractable. The review of Laplace approximation in this section follows the discussion in

(Rasmussen and Williams, 2006).

The posterior predictive distribution can be written as,

p(f∗|y) =

∫
p(f∗|f)p(f |y)df , (3.16)

where p(f |y) = p(y|f)p(f)/p(y). If the marginalization is analytically intractable, p(f |y)

is approximated with a Gaussian q(f), in order to make marginalization analytically

tractable. Making a second order Taylor expansion of log p(f |y) around the mode, a
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Gaussian approximation is obtained:

q(f) = N(f |̂f ,A−1) ∝ exp

(
−1

2

(
f − f̂

)
A
(
f − f̂

))
, (3.17)

where f̂ = argmaxfp(f |y) and A = −∇∇ log p(f |y)|f=f̂ . The approximating Gaussian

distribution has its mean set to the mode of the target distribution and the covariance

matrix equals to the negative Hessian matrix evaluated in the mode.

The log-posterior of latent variables is written as follows:

log p(f |y) = log

{
p(y|f)p(f)

p(y)

}
(3.18)

= C + log p(y|f) + log p(f) (3.19)

= C + log p(y|f)− 1

2
fTKf ,f−1f − 1

2
log |Kf ,f | −

n

2
log 2π. (3.20)

Differentiating (3.18) w.r.t. f we obtain the first and second derivatives:

∇ log p(f |y) = ∇ log p(y|f)−K−1
f ,f f (3.21)

∇∇ log p(f |y) = ∇∇ log p(y|f)−K−1
f ,f = −W −K−1, (3.22)

where W = −∇∇p(y|f) (diagonal because observations yi are independent given latent

variables fi ). The mode f̂ can be found, for example, with Newton’s method described

in (Rasmussen and Williams, 2006, p. 43) using these derivatives.
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Chapter 4

Integration over the posterior
distribution of the hyperparameters

If the integration over the posterior distribution of hyperparameters in (3.11) is analyt-

ically intractable, some approximations are required. A computationally attractive ap-

proach is to select only a point estimate for hyperparameters. If this estimate maximizes

the marginal posterior density of the hyperparameters, it is referred to as a type II maxi-

mum a posteriori estimate (MAP-II). This closely relates to type II maximum likelihood

(ML-II) estimate (Rasmussen and Williams, 2006), which maximizes the likelihood func-

tion of the hyperparameters. The priors used in this work are weakly informative and

MAP-II and ML-II estimates should be close to each other.

However, this thesis presents a few numerical approximations for the integration over the

posterior distribution of the hyperparameters. MAP-II and the numerical approximations

are discussed in the following sections and their performances are compared in chapter 5.

4.1 Type II MAP estimate

The integral over the hyperparameters in (3.11) can be approximated by using a point

estimate θ̂ for the hyperparameters:
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p(f∗|y) =

∫
p(f∗, f ,θ|y)dfdθ (4.1)

=
1

p(y)

∫
p(y|f)p(f∗, f |θ)p(θ)dfdθ (4.2)

=
1

p(y)

∫
p(y|f)p(f∗, f |θ̂)df . (4.3)

A good estimate for hyperparameters can be found by maximizing the posterior distri-

bution p(θ|y) ∝ p(y|θ)p(θ). Maximizing this equals to the minimization of negative

log-posterior cost function:

E = − log p(y|θ)− log p(θ) (4.4)

θ̂ = argminθE. (4.5)

Corresponding point estimate for the hyperparameters is called MAP-II estimate.

In case of Gaussian observation model, the negative log-posterior cost function becomes

E = −1

2
yTK−1

y,yy − 1

2
log |Ky,y| −

n

2
log 2π + log p(θ) (4.6)

= −1

2
yT
(
Kf ,f + σ2

nI
)−1

y − 1

2
log |Kf ,f + σ2

nI| −
n

2
log 2π + log p(θ). (4.7)

The point minimizing (4.6) can be found, for example, by using a gradient based opti-

mizer. However, a problem with the MAP-II estimate is that the uncertainty in the hy-

perparameters is not considered. Other approximations presented in this work attempt to

consider both the location and the shape of the posterior distribution.

If the posterior distribution of the hyperparameters is very narrow, or if the inference with

GP is not very sensitive to the choice of hyperparameters, MAP-II estimate can lead to

equally good results compared to those of full Bayesian inference.

It should be noted, that the posterior distribution can be multimodal (example given by

Rasmussen and Williams, 2006, 116). Gradient based method is guaranteed only to find a

local minimum. Therefore, the hyperparameters should either be optimized several times

with different initializations, in order to discover several maxima if they exist; or other

global optimization method should be used, in order to find the global maximum.
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If multiple modes are found, one with the largest posterior probability would be the best

estimate if using only a single point estimate. An alternative approach would be to take

weighted average of the predictions using the corresponding posterior densities as the

weights.

With large data sets, one local optimum is often orders of magnitude more probable than

the other optima (Rasmussen and Williams, 2006). Thus, averaging over all modes would

have only a small effect to the inference and using only one point estimate would be

accurate enough.

4.2 Approximating the integral over the distribution of

the hyperparameters

The methods used in this work approximate the integration over the hyperparameters of

a GP. These approximations rely on replacing the continuous integration over hyperpa-

rameters in (3.11) with a discrete summation using suitable points in the hyperparameter

space.

The posterior predictive distribution can be written as

p(f∗|y) =

∫
p(f∗|f ,θ)p(f |y,θ)p(θ|y)dfdθ (4.8)

≈
m∑
k=1

[∫
p(f∗|f ,θk)p(f |y,θk)df

]
p(θk|y)∆k (4.9)

=
m∑
k=1

p(f∗|y,θk)p(θk|y)∆k, (4.10)

where the sum is calculated over the values of θk with weights ∆k. The important idea

is to approximate the continuous integral over the posterior distribution of the hyperpa-

rameters with a discrete summation using a set of point estimates θk and corresponding

area weights ∆k. In one dimension, this corresponds to estimating the distribution with a

histogram, where the values of ∆k equal to the widths of the bins.

The differences between methods presented in this work arise from the selection of the
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integration points θk and the corresponding weights ∆k. The three approximations are

named grid search, central composite design (CCD), and importance sampling (IS) with

Student-t proposal distribution:

• Grid search attempts to approximate the integral by a weighted average on a regular

grid

• CCD selects a small number of point estimates of hyperparameters symmetrically

around the mode of the posterior and approximates the integral by a weighted aver-

age of these points

• IS draws quasirandom samples from an importance distribution, evaluates the im-

portance weights for these points and approximates the integral by a weighted av-

erage of these points.

These methods will be reviewed in the following subsections.

4.2.1 Grid search

An intuitive approach to approximate a distribution is to explore it in a grid. However, the

size of the grid grows exponentially with the dimensions of the distribution. Moreover,

the correlations and different scales of the parameters can make a regular grid laid in the

main directions of parameters ineffective. Each evaluation of the posterior probability

p(θk|y) requires inversion of K, which is a computationally heavy operation. Therefore,

it is important to minimize the number of θk while assuring the coverage of the relevant

parts of the posterior distribution. Equation (4.10) shows that the predictions are weighted

with p(θk|y). Thus, the evaluation of the posterior distribution can be restricted to the area

with significant posterior density.

The grid search follows the work of Rue et al. (2009). First the posterior mode θ̂ is

located by maximizing the log-posterior distribution log{p(θ|y)}. Then, the shape of

the log-posterior is approximated with a Gaussian, the covariance matrix Σ of which is

the inverse of the negative Hessian at the mode. The Hessian can be evaluated using

finite differences. To aid the exploration, a standardized variable z is introduced. Let

Σ = VΛVT be the eigenvalue decomposition of Σ. θ can be defined via z, as follows:

θ(z) = θ∗ + VΛ1/2z. (4.11)
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The standardized variable z can be used to explore posterior more effectively, as it takes

into account the directions of the correlations, as well as the different scales of the param-

eters.

After standardization, the posterior is explored in the main directions of z by taking steps

of δz from the mode to the negative and positive direction. The exploration into each

direction is stopped when the log-posterior drops enough compared to that in the mode:

log{p(θ(0)} − log{p(θ(z)} > δπ, (4.12)

where δπ is a chosen threshold. Thus, the points θ(z) are accepted if their density is sig-

nificant enough. In addition, all the locations of θ(z) are explored which can be reached

from an accepted location with one step of lenght δz in any direction of main axes. If such

a location is accepted, adjacent locations are studied, and so on.

Since the points are laid on a regular grid, the integration weights ∆k in (4.10) are equal.

However, their exact values are not of interest since the posterior distribution can be nor-

malized afterwards to be a proper probability distribution.

This algorithm explores points in a grid determined by the location of the mode and the

directions of z. All points with a significant posterior density compared to that of the

mode are included. The acceptance threshold δπ can be increased and the step size δz
decreased, in order to achieve more accurate approximation of the posterior distribution.

A problem with grid search is that the size of the grid grows exponentially with the number

of hyperparameters. Even though the amount of evaluation points can be decreased by

changing parameters δπ and δz, accurate approximation can be a computationally heavy

task.

With a small number of hyperparameters, the grid search provides a fast method for ap-

proximating the posterior and integrating over it. An attractive feature of the grid search

is that regardless of the symmetric Gaussian approximation, it approximates asymmetric

posterior distributions as well as symmetric ones. In addition, it can even cover multiple

modes, if the drop in the posterior density does not exceed the threshold δπ between the

modes.
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4.2.2 Central composite design

If the dimensionality of the hyperparameters is high, the grid search can become com-

putationally infeasible. Central composite design (CCD) addresses this problem. Using

CCD, each direction of z (reparametrization in Section 4.2.1) are given only two possible

levels ±f0, where f0 is a parameter controlling distance from the mode.

If the number of dimensions m is high, not all possible combinations of these values are

examined but a smaller, computationally more feasible set. The choice of these points is

discussed by Sanchez and Sanchez (2005). In addition, the point in the mode and±f0

√
m

on each main axis of z are included. Thus, all but the central point lay on a sphere with

a radius of f0

√
m. f0 have to be greater than one in order to get a positive weight for the

central point (see equation 4.15). In this work f0 = 1.1.

The advantage of using CCD is that the number of points used remains very low compared

to that of grid search. In addition, CCD considers the shape of the posterior distribution

and covers a significant area of the posterior distribution of the hyperparameters. How-

ever, the integration using CCD can be inaccurate due to the small number of integration

points.

Weights of the CCD

Even though the points on the sphere are regularly laid, the central point deviates from

those, thus requiring a unique integration weight. To determine the integration weights for

the integration points, p(θ(z)|y) is assumed to be a standard Gaussian after reparametriza-

tion. Thus, E(θTθ) = m and
∫
p(θ) dθ = 1. These requirements give the integration

weights for the points on the sphere with radius f0

√
m. Due to the symmetrical position-

ing of the points, the integration weights are equal for the points on the sphere.

E(θTθ) =
∑
k

θTk θkp(θk)∆k = (np − 1)mf 2
0 (2π)−m/2 exp

(
−mf

2
0

2

)
∆ = m, (4.13)

where np is the number of design points. From 4.13 it follows that

∆ =

[
(np − 1)f 2

0 (2π)−m/2 exp

(
−mf

2
0

2

)]−1

. (4.14)
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The integral over p(θ|y) is approximated with p (θ(z = 0)) ∆0 +
∑

k p(θk)∆k. Thus, the

weight of the central point is

∆0 =
1−

∑
k p(θk|y)∆

p(θ(z = 0)|y)
=

1− (np − 1)(2π)−m/2 exp
(
−mf2

0

2

)
∆

(2π)−m/2

= (2π)m/2(1− 1

f 2
0

). (4.15)

The weights can be rescaled as p(f∗|y) will be normalized in the end. Thus, weights can

be written in a simpler form:

∆0 = 1 (4.16)

∆ =

[
(np − 1) exp

(
−mf

2
0

2

)(
f 2

0 − 1
)]−1

. (4.17)

4.2.3 Importance sampling with Student-t proposal distribution

The integration over posterior distribution p(θ|y) can be evaluated by drawing samples θ̇

from p(θ|y). Then (4.9) can be evaluated as

p(f∗|y) =

∫
p(f∗|θ,y)p(θ|y)dθ ≈ 1

N

N∑
i

p(f∗|θ̇i,y) (4.18)

where θ̇i are the samples drawn from the posterior distribution p(θ|y) (Gelman et al.,

2003, p. 342).

The posterior distribution of θ is not of a form from which samples can be directly drawn.

Therefore, (4.18) is evaluated by drawing samples θ̇i from another distribution q(θ) and

the calculations are corrected with the weight w(θ̇i) = p(θ̇i|y)/q(θ̇i):

p(f∗|y) =

∫
p(f∗|θ,y)p(θ|y)dθ (4.19)

=

∫
p(f∗|θ,y)

[
p(θ|y)

q(θ)

]
q(θ)dθ (4.20)

≈ 1

N

N∑
i=1

p(f∗|θ̇i,y)w(θ̇i). (4.21)
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The proposal distribution q(θ) must have nonzero values in the areas where the true pos-

terior has nonzero values. In addition, the values of the approximation should not be

significantly lower than those of the true posterior, because the weight of such a sample

would be large and it would dominate the summation in (4.21).

It should be noted, that samples having high q(θ̇) but low p(θ̇|y) do not pose a significant

problem, because the weights w(θ̇) for such samples are small, thus neglecting these false

samples from the summation in (4.21).

Student-t distribution is chosen to be the importance distribution, from which the samples

are drawn. Student-t distribution with a small number of degrees of freedom ν has fat

tails and should have sufficient probability density where the target distribution has it.

Student-t distribution approaches a Gaussian distribution when the degrees of freedom

grows, and desired tail behavior can be selected with suitable ν.

Selecting the importance distribution

The following procedure for the selection of the importance distribution follows the work

of Geweke (1989). First the Hessian of the log-posterior distribution is evaluated at the

mode θ̂, and the inverse of the negative Hessian is used as the scale matrix of the Student-t

distribution. However, this scale matrix may poorly predict the posterior density far from

the mode, especially if the posterior is asymmetric. Therefore the scale is adjusted in

order to better estimate the posterior.

The posterior is explored in directions determined by the Hessian matrix, in order to find

the locations with the largest drop in the importance density compared to the drop in the

posterior density. Then, the scale of the importance distribution in corresponding direction

is adjusted, in order to match the drops in log-densities. This procedure ensures that the

importance distribution does not decline faster than posterior distribution (in explored

directions), and it should not underestimate the posterior distribution.

The scale which makes the drops in posterior densities equal is defined as a function δ

corresponding to the distance from the mode:

fi(δ) = ν−1/2|δ|
{[
p(θ̂)/p(θ̂ + δTe(i))

]2/(ν+k)
− 1

}−1/2

, (4.22)
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where T is a factorization such that the inverse of TTT is the negative Hessian of log-

posterior at the mode, k is the dimensionality of hyperparameter space, and e(i) is a k× 1

indicator vector, e(i)i = ||e(i)|| = 1.

The scaling factors qi and ri are defined as

qi = supδ>0fi(δ) (4.23)

ri = supδ<0fi(δ). (4.24)

In addition let sqn+(α) = 1, if α ≥ 0 and sgn−(α) = 1− sgn+(α). Now samples θ̇ can

be drawn from the split Student-t distribution as follows:

ε ∼ N(0, I) (4.25)

ηi =
[
qisgn

+(εi) + risgn
−(εi)

]
εi(ζ/ν)−1/2, where ζi ∼ χ2(ν) (4.26)

θ̇ = θ̂ + Tη, (4.27)

where ε are drawn using quasirandom sequence.

The log-probability density function at θ̇ is (up to an additive constant)

q(θ̇) = −
k∑
i=1

[
log(qi)sgn

+(εi) + log(ri)sgn
−(ε)

]
− [(ν + k) /2] log

(
1 +

k∑
i=1

ε2i
ζi

)
.

(4.28)

Due to the rescaling, the distribution of these samples should resemble the posterior dis-

tribution better than without the rescaling, making the importance sampling effective.

Figure 4.1(a) illustrates an importance sampling distribution fit to the posterior distri-

bution of the hyperparameters. The symmetric importance distribution poorly fits the

asymmetric posterior distribution. Figure 4.1(b) shows that the scaling presented above

helps the importance distribution to fit more closely to the posterior distribution.

4.2.4 Summary of the approximation methods

Figure 4.2 shows one example of the posterior distribution of the hyperparameters with

the points θk used in approximation with different methods. With the presented methods

and parameters, the grid search is able to cover the largest area. It was observed that the
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Figure 4.1: An illustration of posterior distribution (blue) and importance distribution
(red) with and without scaling.

area covered is more important than the density of the grid. CCD method is able to cover a

broad area with only a small number of integration points. However, estimating the shape

of the posterior may be difficult with a small number of points, thus the integral might not

be as accurate as with the grid search.

The area covered by these methods is easily varied by changing parameter δπ for the grid

search and f0 for CCD. However, increasing δπ makes the exploration computationally

more demanding. Increasing the number of samples of IS increases the area covered only

little, because the posterior density is low far from the mode. The area can easily be

enlarged by using lower degrees of freedom ν.
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(a) Grid search (b) CCD

(c) 80 quasirandom samples from Student-t dis-
tribution with ν = 10

Figure 4.2: The posterior distribution of hyperparameters is illustrated with contour lines
and integration points θi of different methods are marked with black dots.
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Chapter 5

Results

5.1 Regression with a multimodal hyperparameter pos-

terior distribution

This experiment uses a data set introduced by Neal (1997). The observations are noisy

realizations from latent function f(x) = 0.3 + 0.4x+ 0.5 sin(2.7x) + 1.1/(1 + x2). Most

samples are contamined by noise from zero mean Gaussian with standard deviation 0.1.

However, with a probability of 0.05, the standard deviation of the noise was 1 and the

corresponding output is regarded as an outlier.

Figure 5.1 shows the latent function and 100 samples (the training data set) drawn from

it. The inputs are drawn from a standard Gaussian. A few possible outliers can be seen as

some samples deviate significantly from the other samples.

GP inference was conducted using squared exponential covariance function. Student-t

distribution with one degree of freedom and a scale of 36 was used as a prior for the hy-

perparameters. This prior distribution is broad and gives significant probability for both

small and large values of hyperparameters. Hence, prior distribution should not signif-

icantly restrict the shape of posterior distribution by suppressing areas where likelihood

term has non-zero probability. It should be noted that there is a model misspecification,

because the fitted model has same observation model for all the observations, whereas the

real observations arise from two different observation models. This might increase the

uncertainty in the estimation of the hyperparameters.
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Figure 5.1: Latent function (full line) and 100 samples drawn from it (dots).
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Figure 5.2: Contours of marginal posterior distribution of the length scale and magnitude.

Interestingly, the posterior distribution of the hyperparameters was discovered to contain

at least two modes. The more significant mode has a longer length scale than the other,

which is reasonable as the latent function f(x) varies quite slowly. However, the presence

of outliers suggest that the function might vary rapidly, thus raising another mode the

posterior distribution with a noticeably shorter length scale. The marginal distribution of

the length scale and magnitude is illustrated in figure 5.2.

The hyperparameter space can be divided in to attraction areas of the modes. An attraction

area is defined as hyperparameter values from which the hyperparameters converge to a

certain mode during the optimization. Figures 5.3(a)-5.3(c) illustrate the attraction areas

for three different optimization algorithms. The irregular shape of the areas should be

noticed, as well as that initializing a certain parameter to a high value does not guarantee

it to converge to the mode with a high value for that parameter. The red contours illustrate
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the marginal posterior distribution of the length scale and magnitude with a fixed value

for the noise hyperparameter σ2
n (shown in the title). Some projected sample paths of the

optimization are also shown with a green line.

As discussed earlier, the inference should be conducted using each discovered mode sep-

arately. The approximations in the modes must not overlap significantly. Otherwise over-

lapping region would be integrated twice.

Both modes were used weighting the predictions with the probability density of the mode

in case of the MAP-II estimate. For CCD and importance sampling approaches, the total

volumes of normal approximations on the modes were used as weights for the predic-

tions. The weights were close to those estimated from the points of grid search by di-

viding them to the two modes and calculating corresponding estimates for the volumes,

indicating that the approximations did not overlap significantly. Grid search was able to

reach both modes with a single initialization if the MAP-II estimate of the hyperparam-

eters converged to the lower mode. Both modes were reachable from the higher mode if

the step size δz was reduced to 0.5.

Because the two modes were quite close to each other, Student-t distribution with small

degrees of freedom tended to give some samples from different mode than it was intended

to, thus obtaining samples with extreme weights. Therefore ν = 14 was used, which

seemed to prevent the sampling from the wrong mode.

Figure 5.4 shows the means of the predictions using MAP-II estimates from the modes of

posterior distribution. The final prediction is a mixture of two Gaussians located around

these individual predictions. The green line derives from the short length scale and varies

significantly faster than the blue line deriving from the mode with a larger length scale.

However, the behaviors of the two functions are very similar in the regions with high

density in the training observations, indicating that reasonable variations in the values of

the hyperparameters do not matter if there is enough training data present.

Figure 5.5 shows the samples used in the grid search, CCD and importance sampling

approaches. The density of points in grid search does not have significant effect on the

predictions; more important is the covered area. An advantage of the grid search is that

it covers smoothly a large area of the posterior. In this example, the reparametrization

of grid search was done only by scaling the main axes without rotation, in order to get a

clearer figure. The lack of rotation did not affect significantly the results. Figure 5.5(a)
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shows multiple points around the lower mode because three dimensional points were

projected to two dimensions. The projections for the higher mode overlapped. Therefore

less points can be seen.

The methods were tested using a set of 1000 samples from the latent function. The test

inputs are drawn uniformly from the range of the training inputs. Figure 5.6 summarizes

the MLPD and MSE measures for each approach. The high values of MLPD and low

values of MSE are preferred.

Integration methods outperformed MAP-II estimate with both measures, clearly indi-

cating that integration was advantageous. However, the differences in MSE are small,

demonstrating that the means of the predictions are very similar between the methods.

Thus, the difference in MLPD results from differences in variances rather than in means.

Integration approximations compensate the mismatches in the means of the predictions

with a greater variance, thus increasing the density at the test outputs lying far from the

mean of the prediction.

However, if the range of the test inputs is restricted so that the density of the training

inputs is high, the differences between MLPD and MSE measures diminish to almost

negligible. The differences in behaviors of the approaches are clearest if the distance from

a prediction to the training inputs is large. The effect of the hyperparameters diminish

when the training data is able to determine the f(x).
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(a) Hyperparameters are optimized with the method
proposed by Coleman and Li (1996).
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(b) Hyperparameters are optimized using quasi-
Newton method discussed by Davidon (1991)
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(c) The hyperparameters are optimized using scaled
conjugate gradient discussed by Bishop (1996)

Figure 5.3: Attraction areas of the two modes. The hyperparameters are optimized using
different optimization methods. The scale of the hyperparameters is logarithmic.
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Figure 5.4: The means of predictions with MAP-II estimate from different modes. The
red line represents the predictions with higher length scale. Black dots mark the training
data
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(a) Estimated density and total 30 CCD in-
tegration points covering both modes
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(b) Estimated density and total 603 grid in-
tegration points covering both modes
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(c) Estimated density and total 240 IS in-
tegration points covering both modes

Figure 5.5: Contours represent the marginal posterior distribution. Hyperparameters used
for integration are marked with black dots.

33



0 0.1 0.2 0.3 0.4 0.5

M
LP

D

 

 
MAP−II
Grid
CCD
IS

0.265 0.27 0.275 0.28 0.285 0.29

M
S

E

Figure 5.6: MLPD and MSE measures for all the approaches with the Neal data
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5.2 Regression with a unimodal hyperparameter poste-

rior distribution

In this test, all the training observations were drawn from the latent function used in

section 5.1 with a constant variance for the noise (σ2
n = 0.04). With a sufficient sample

size the posterior distribution of the hyperparameters is unimodal. 1000 test inputs were

uniformly sampled from the range of the training inputs. Inference was conducted via GP

with a squared exponential covariance function. The prior for the hyperparameters was

Student-t distribution with scale of 36 and one degree of freedom.

In this section, a correct model is used as all the observations arise from the same model.

This should make the estimation of the hyperparameters easier than in the previous sec-

tion, where there was a model misspecification.

200 sets of 20 and 40 training observations were sampled with fixed training inputs for

each set size. Figure 5.7 summarizes the differences between MAP-II and integration

methods showing the mean of the difference and the 95% interval. With 20 training

inputs, the means of the results favor the point estimate method. However, the difference

is small and not significantly in favor of the point estimate, because the distribution is

wide.

The distribution of the MLPD measures using MAP-II estimate is slightly wider that those

of the integration methods, suggesting that the results of integration methods are more

stable. However, the difference is not significant. The distributions of the differences

between integration methods are significantly narrower compared to those in figure 5.7.

An interesting phenomenon in this experiment is that the results are even closer to zero

and the intervals are considerably narrower when 40 training inputs are used. This sug-

gests that the difference in the predictions of the methods approach zero when the size

of the training data increases. Figures 5.8 and 5.9 demonstrate this by showing samples

of the predictive distributions. The predictions are close to each other with 20 training

inputs, but they are almost identical with 40 training inputs. They also fit the underlying

function better when more training data is available.
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Figure 5.7: The means of the differences between MAP-II and integration methods with
the 95% confidence intervals.
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Figure 5.8: The means of the predictions of MAP-II and grid search approaches (solid
lines) with the intervals of two standard deviations (dashed lines). The training data of 20
observations (blue dots) and the latent function (black line) are also shown.
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Figure 5.9: The means of the predictions of MAP-II and grid search approaches (solid
lines) with the intervals of two standard deviations (dashed lines). The red line is mostly
under the green line. The training data of 40 observations (blue dots) and the latent
function (black line) are also shown.
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5.3 Regression with Poisson observation model

A field of study often using a Poisson observation model is spatial epidemiology. The aim

of the spatial epidemiology is to model, for example, the spatial variation in the risk of a

certain disease. In this example, simulated data is used, but similar approaches are used

in real-world data analysis. Bayesian spatial analysis is discussed, for example, by Best

et al. (2005).

First the area of study is divided into regions indexed by i. The area of interest could be,

for example, Finland and the regions would be counties or the cells of a grid. The inputs

x would then be the spatial coordinates of each region.

For each area, the expected number of cases Ei is calculated based on, for example, the

age, sex, and education structure of the population. If the disease cases are independent of

each other, the observed number of the disease cases yi would be distributed as a binomial

distribution. With sufficiently rare disease and a large number of people, the binomial is

approximately a Poisson distribution. The mean of the Poisson distribution is the product

of the expected number Ei and the local relative risk exp(µi), which is the variable of

interest in a spatial study. The logarithm of the local risks is given a Gaussian process

prior, because it is assumed that areas near each other have similar relative risks.

Formally, the model is given as

yi ∼ Poisson(Ei exp(µi)) (5.1)

µ ∼ N(0,K), (5.2)

where K is determined by the covariance function of the Gaussian process. Zero mean

assumption for the log-risk µ is reasonable because the expected number of cases Ei is

used.

The inputs relating to the observations were sampled from a standard Gaussian distribu-

tion. These correspond to the regions of the spatial study. The log-relative risks µi of the

regions xi were drawn from the latent function f(x) = −1.1 + 0.4x + 0.5 sin(2.7x) +

1.1/(1 + x2). Constant expected number of cases Ei was assumed for each i. Finally the

number of cases was drawn from Poisson distribution.

The posterior predictive distribution was conducted via GP with a squared exponential
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covariance function. The prior for the hyperparameters was Student-t distribution with

scale of 36 and one degrees of freedom. Laplace approximation was used in order to

solve the intractable integral over latent variables.

The number of regions and the expected number of occurrences were varied in order to

examine their effect on the MAP-II and integration approaches. The number of observa-

tions N used was 20, 40, and 80; and the expected number of occurrences Ei was 1, 2,

and 4.

350 sets of observations were sampled and the difference between MLPD measures of

MAP-II and CCD approaches were calculated for each set. Figure 5.10 summarize the

means of the differences and 95% confidence intervals with varying Ei and N . It can be

seen, that the confidence interval tends to become narrower as either of the parameters

grow. In addition, the difference between methods approach zeros as the values of the

parameters grow.

It should be noted that the distributions of the differences have long tails to the negative

direction. Majority of the differences concentrate close to zero and the median value is

little higher than the mean. Thus, the significance of the differences between methods may

be lower than expected. However, it is interesting that the significance of the difference

gets lower as the parameters grow.

The distributions of MLPD measures using MAP-II approach are slightly wider to the

negative direction than those of integration methods, hence the distributions of the differ-

ences have long tails to the negative direction. The results using integration methods are

somewhat more stable, and they do not yield as poor results as MAP-II approach in some

situations.

Figure 5.11 shows the observations and the predictions with four different combinations

of parameters N and Ei. It also demonstrates that the differences between the predictions

diminish as the values of the parameters increase.
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Figure 5.10: The differences in MLPD between MAP-II and CCD approaches in Poisson
observation model with parameters Ei = {1, 2, 4} and N = {20, 40, 80}. The means and
the 95% confidence intervals are shown.
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Figure 5.11: The observation and the predictions using MAP-II and CCD methods. The
number or observations N and the expected number or occurrences Ei are varied. In
figure (c), the green line is under the red one.
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5.4 Regression with precipitation data

The data used in this experiment consists of the monthly precipitation measures recorded

across the United States in 1995. The data consists of total 5776 stations, locations of

which are shown in figure 5.12. 223 of the measurements were removed for testing (plot-

ted with red dots in 5.12) and the rest were used for training.

Figure 5.12: Locations of training data (black dots) and test data (red dots).

The aim of this test is to demonstrate that the size of the training data set affects the

difference between results using MAP estimate and integration approximation. Subsets

of different sizes were sampled from the training data set, and those were used for the

training. In order to reduce the effect of the random sampling, results were averaged over

150 subsets.

Vanhatalo and Vehtari (2008) demonstrated that this data set contains both short and long

length scale phenomena. Therefore, a GP with two squared exponential covariance func-

tions is used. The prior for the hyperparameters was Student-t with a scale of 36 and one

degree of freedom. Vanhatalo and Vehtari (2008) showed that other GP structures ex-

plain the data better, the aim of this experiment is to study the difference between MAP-II

estimate and integration approximation.

Figure 5.13 shows the estimated precipitation using the whole data set. It suggests that the

variation differs in North-South and East-West directions. Therefore, both input dimen-

sions were given individual length scales for both of the covariance functions. Thus, the

GP has seven hyperparameters. The high number of hyperparameters would make Grid

search computationally demanding. Therefore only CCD approximation was used.

Figure 5.14 summarizes the differences in MSE between MAP-II and CCD methods using
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Figure 5.13: Annual precipitation in the US estimated from the full training data set.
Reproduced from (Vanhatalo and Vehtari, 2008)

training sets of different sizes. The mean of the differences is positive with all sizes of

training data sets, but the difference and the confidence interval diminish as the size grows.

This indicates that there is a small difference in the fits with these two methods in favor

of integration method. However this vanishes as the size of the training data grows.

Figure 5.15 shows similar comparison for MLPD measures. Negative difference shows

that CCD has better fit in predictive distribution. However, the difference between meth-

ods also vanishes as the amount of training data increases. Figure 5.16 shows that the

predictive distributions become almost identical as the amount of training data increases,

because the KL-divergence from predictive distributions of CCD to those of MAP-II goes

to zero.

The small size of the training data set makes the distances from the predictions to the

training data large. It was shown in previous sections that the difference between the

methods was at largest when there is no training samples near the predictions.
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Figure 5.14: The means of the difference in MSE between MAP-II and CCD methods
with different sizes of training data sets. Confidence intervals of 95% also shown.
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Figure 5.15: The means of the difference in MLPD between MAP-II and CCD methods
with different sizes of training data sets. Confidence intervals of 95% also shown.
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Figure 5.16: Means of KL divergence from predictions of CCD to those of MAP-II
method with different sizes of training data sets. Confidence intervals of 95% also shown.
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Chapter 6

Conclusion and future work

The aim of this thesis was to study the effect of the integration over the hyperparameters

of Gaussian processes. The integrated predictions were compared to those obtained using

MAP-II estimate for the hyperparameters. The comparison was conducted via MSE and

MLPD measures.

Results demonstrate that it can be advantageous to integrate over the hyperparameters

instead of using only a point estimate. Although MAP-II estimate is faster to use than

any of the presented methods, all approximations are computationally feasible with a

low dimensional hyperparameter space. With many hyperparameters grid search can be

too demanding, but CCD provides a computationally attractive approximation for the

posterior of the hyperparameters.

However, the difference in both measures between the point estimate and integration ap-

proaches diminishes to negligible when the size of the training data set increases. Gaus-

sian processes seem not to be very sensitive to the choice of the hyperparameters, if there

is enough data present. However, the data sets used in this thesis were small in order to

demonstrate the difference, whereas the real-world data sets are often significantly larger

than those used in this thesis.

The difference between the methods was clearest when the distance from prediction to

the training samples was large. MAP-II estimate appeared to underestimate the variance

in the predictions. Therefore integration approaches should be considered, if the density

of the training data is low near the predictions, even if the size of the training data set is

large.
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The significance of the difference in any measure always depends on the application and

the unit of the measure. For example, a benefit of 1 euro might not be a reason to use an

integration method, whereas 1 million euros could be one. In addition, if the computation

time is very expensive or limited, MAP-II estimate might be a more reasonable choice.

All the methods presented in this work are implemented in Matlab. Only the operations

relating to the integration over the hyperparameters were programmed and GPstuff tool-

box for Matlab (Vanhatalo et al., 2008) was used for other calculations. These integration

methods will be published as a part of GPstuff toolbox in the future.

The integration over a multimodal posterior distribution is not automated in the current

implementations of these methods. The integration over two modes in section 5.1 was

conducted manually. One possible solution could be to use a mixture of Student-t distri-

bution as a proposal distribution. Then the overlapping of the individual approximations

would not be a problem and the integration could be automated. This could be one fu-

ture improvement to the present methods. Also it might be of interest to study whether

the parameters of these approximations (such as, δz, δπ, f0) have significant effect on the

performance of the methods. The optimization of these parameters could be studied.

As a conclusion, the integration approximations were shown to be potentially useful, but

the benefit of these methods might not always be significant enough to overcome the

computational disadvantages. The choice of using only MAP-II estimate should be vali-

dated by comparing predictions of MAP-II method to the ones obtained using integration

methods.
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