
Aalto University

School of Science and Technology

Faculty of Electronics, Communications and Automation

Master’s Programme in Electronics and Electrical Engineering
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Automatic speech recognition is the machine-based method of converting
speech to text. MobiDic is a mobile dictation service which uses a server-side
speech recognition system to convert speech recorded on a mobile phone to
readable and editable text notes.

In this work, performance of the TKK speech recognition system has been
evaluated on law-related speech recorded on a mobile phone with the Mobi-
Dic client application. There was mismatch betweeen testing and training
data in terms of both of acoustics and language. The background acoustic
models were trained on speech recorded on PC microphones. The back-
ground language models were trained on texts from journals and news wire
services. Because of the special nature of the testing data, main focus has
been on using acoustic model and language model adaptation methods to
enhance speech recognition performance.

Acoustic model adaptation gives the highest and most reliable performance
increase. Using the global cMLLR method, word error rate reductions
between 15-22% can be reached with only 2 minutes of adaptation data.
Regression class cMLLR can give even higher performance boosts if larger
sets of audio adaptation data (> 10 min) are available.

Language model adaptation was not able to significantly improve perfor-
mance in this task. The main problems were differences between language
adaptation data and language of the law-related speech data.

Keywords: automatic speech recognition, mobile dictation, acoustic
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Automatisk taligenkänning är en maskinstyrd metod genom vilken tal omvand-
las till text. MobiDic är en mobil dikteringstjänst som använder ett server-
baserat automatiskt taligenkänningssystem för att omvandla tal inspelat p̊a en
mobiltelefon till läsbara och editerbara textdokument.

I detta arbete undersöktes förm̊agan hos Tekniska Högskolans taligenkännings-
system att omvandla juridik-relaterat tal inspelat p̊a en mobiltelefon med
MobiDics klientprogram till korrekt text. Det fanns skillnader mellan test- och
träningsdata gällande b̊ade akustik och spr̊ak. De akutiska bakgrundsmodell-
erna var tränade med tal som hade spelats in p̊a en datormikrofon. Spr̊ak-
modellerna var tränade med text fr̊an olika tidningar och nyhetstjänster. P̊a
grund av testdatans speciella karaktär har tyngdpunkten i arbetet legat p̊a att
förbättra taligenkänningsförm̊agan hos systemet genom adaptering av akustiska
modeller och spr̊akmodeller.

Adaptering av akustiska modeller ger de bästa och p̊alitligaste resultaten i syf-
tet att förbättra taligenkänningsförm̊agan. Genom att använda den globala
cMLLR-metoden och endast 2 minuter av adapteringsdata kan man förminska
antalet feltolkade ord med 15-22%. Genom att använda den regressionsklass-
baserade cMLLR-metoden kan man uppn̊a ytterligare förbättringar i taligen-
känningsförm̊agan om det finns större mängder av adapteringsdata (> 10 min.)
tillgängligt.

Adaptering av spr̊akmodellen gav ingen betydande förbättring av taligenkänn-
ingsförm̊agan. Det främsta problemet var de stora skillnaderna mellan spr̊ak-
adapteringsdata och spr̊aket som förekom i de juridik-relaterade talinspel-
ningarna.

Nyckelord: automatisk taligenkänning, mobil diktering, adaptering
av akustiska modeller, adaptering av spr̊akmodeller
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Chapter 1

Introduction

1.1 Automatic Speech Recognition

Automatic speech recognition (ASR) can in general terms be defined as any
machine-based method that converts speech to text. Speech recognition as a
scientific research field dates back to the 1950’s with the development of various
types of isolated-word recognizers at research laboratories and universities [1].

Having mainly been a curious academic research topic for many decades, many
commercial ASR applications began to see the daylight in the 1990’s. Speech
recognition technology is today implemented in a variety of different appli-
cations, automatic dictation being one of the most used ASR application on
personal computers.

The architecture of a modern speech recognition system is shown in Figure 1.1.

x(t)

Speech Text

Feature

Extraction

Acoustic

Model

Lexicon

Language

Model

Search

Space
Decoder W

X

Figure 1.1: The acoustic model, lexicon, and language model define a search
space that is used by the decoder to find the most likely word sequence.

4



CHAPTER 1. INTRODUCTION

Most of today’s ASR systems aim to be speaker independent (SI). Features,
which are invariant to both the speaker and environment, are extracted from
the speech signal x(t). Statistical probability models are used to find the most
likely word sequence. The acoustic model defines the probability that a basic
sound unit, or phoneme has been uttered. The lexicon contains information of
how words are formed from phoneme sequences. The language model defines
the probability of the occurrence of a word or a word sequence.

The decoder is the algorithm that tries to find the most likely word sequence W

in the search space defined by the statistical models.

1.2 Mobile Dictation

Mobile phones of today have grown to become quite powerful computing de-
vices. The same set of applications, which could only be run on desktop
computers in the past, can now be used on many of the latest mobile phone
models.

Although the computational power of mobile devices has grown, the small
physical size still restricts easy use of many applications. A word processor is
able to run smoothly on almost any mobile device but the small size of the
input keys makes it quite a painful task to produce any longer documents.

Direct speech input could be an alternative to traditional input mechanisms
for mobile devices. MobiDic is an application that has been developed at the
University of Tampere [2]. It’s a mobile dictation and note-taking application.
The application runs on a mobile phone. The user reads in speech to the
microphone and gets it back as editable text that can be stored and sent
forwards.

MobiDic implements the model of network speech recognition (NSR) [3], shown
in Figure 1.2.

The speech is digitally recorded on to the phone and sent to a speech recog-
nition server that converts the speech to text. The text results are then sent
back to the user for editing and reviewing.

The benefit of using a client-server architecture is that the greater processing
power and larger storage capacity of a server machine can be harnessed to run
the resource intensive ASR application.

Automatic dictation applications have mostly been used by specific profes-
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CHAPTER 1. INTRODUCTION

Speech

x(t)
Feature

Extraction

ASR

Decoder
W Text

X

Client Server Client

Figure 1.2: Network speech recognition (NSR) architecture. The recorded
speech signal is sent from the client to the ASR server for recognition. The
output text is then sent back to the client.

sions, such as lawyers and doctors. The target users for MobiDic are profes-
sionals who move a lot during their workday.

Because the actual speech recognition is done on a server, in an offline mode,
recognition speed is not of big importance. The quality of the recognized text
is what matters. The minimum performance requirement could be described
as that the time it takes to correct the recognized text isn’t longer than the
time it would take to write the entire text on the mobile phone.

1.3 Model Adaptation

In this thesis work we will simulate the integration of MobiDic with the large
vocabulary speech recognition system (LVCSR) developed in the department
of computer and information science at TKK. This will be done by taking
real life speech data recorded on the MobiDic client application and perform
recognition tests on it with the TKK speech recognizer.

The emphasis in the thesis is on acoustic model and language model adapta-
tion. Acoustic models and language models are usually estimated from large
speech and text corpora. The corpus data is chosen so that the estimated
models perform well on average for a wide variety of different users.

In order to develop a fully speaker dependent (SD) ASR system, several hours
of speech from the user is needed. This much data from one speaker is usually
not available and it is also impractical to collect large amounts of data from
every user. Acoustic model adaptation uses smaller amounts of data, in the or-
der of a few minutes of speech, to adapt the general acoustic model to better
estimate the natural voice characteristics of the specific user. Most acous-
tic model adaptation methods also adapt to the environment and recording
method.

6



CHAPTER 1. INTRODUCTION

Language model adaptation is done to improve the performance of the ASR
system for a specific topic or speaking style. Texts from the selected topic
are collected to either estimate a new language model or to adapt the general
language model.

The goal of this work is to enhance speech recognition performance for a special
user group of MobiDic, through the means of acoustic model and language
model adaptation. The intended user group is lawyers. The language model
will therefore be adapted to law-related texts. The acoustic model will be
adapted to the specific user and recording enviroment. Adaptation is needed
because there is mismatch between test data and background models both in
terms of acoustics and language. The background acoustic models have been
trained on speech recorded on a computer microphone, while the test data
has been recorded on a mobile phone microphone. The background language
models have been trained on texts from journals and news wire services, while
test data is mainly law-related.

The model adaptation framework and the integration of MobiDic with the
TKK speech recognition system is illustrated in Figure 1.3.

x(t)

Speech Text

Feature

Extraction

Acoustic

Model

Lexicon

Language

Model

Search

Space
Decoder W

LM

Adaptation

AM

Adaptation

Background

Language

Model

Background

Acoustic

Model

Law texts

FINLEX,

EURLEX,

etc.

Speaker

Adaptation

Data

X

MobiDic
Client TKK ASR Tools

MobiDic
Client

Figure 1.3: TKK ASR system runs on the server-side. The background acous-
tic model is adapted to the speaker and recording enviroment with speech
data gathered from the MobiDic client. The background language model is
adapted to law-related texts.
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CHAPTER 1. INTRODUCTION

The use of different acoustic and language model adaptation methods will be
studied in this work and the recognition performance will be compared to the
unadapted system.

The outline of the thesis is the following. Chapter 2 deals with the construction
and estimation of acoustic models. In Chapter 3, common acoustic model
adaptation techniques are presented. Chapter 4 describes the estimation of
language models. In Chapter 5, some of the most common language model
adaptation techniques are presented. In Chapter 6, the experimental setup is
described and the results are presented, analysed and discussed. Chapter 7
concludes the main findings of this work.
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Chapter 2

Acoustic Modeling

2.1 Acoustic Models

Speech is in essence just a sequence of different sounds. Our brains are tuned to
classify these sounds into basic phonetic units, or phonemes. From a sequence
of phonemes we can distinguish words. From a pattern recognition point of
view, this is quite an astonishing feat considering that the brain is also able
to comprehend speech produced in different environments and by different
speakers. Devising an algorithm for a computer to do the same is not a trivial
matter.

Recording speech onto a computer and converting its’ representation to num-
bers is however very easy and cheap with today’s technology. In this light, it
would seem more sensible to develop a data driven approach to classify and
recognize speech sounds, rather than to program a knowledge-based expert
system. This is the idea behind acoustic models that are used in most of
today’s speech recognition systems.

Acoustic models are statistical models that estimate the probability that a
certain phoneme has been uttered in a recorded audio segment. The models
are trained on several hours worth of pre-recorded speech. To give generality
to the model the material includes speakers of different age and sex.

In the following sections we’ll take a closer look at what characteristics of the
speech signal are used for phoneme classification and how the acoustic models
are constructed and trained.

9



CHAPTER 2. ACOUSTIC MODELING

2.2 Feature Extraction

2.2.1 Speech Signal

Digitally recorded speech is a discrete number representation of the air pressure
changes that are produced when someone talks.

T[s]

railroadsgaugenarrowtwo

eyrjheygowrnuwt ae zr owdl
0 0.2 0.4 0.6 0.8 1 1.2 1.4

-0.2

0

0.2

0.4

Figure 2.1: The sentence ”Two narrow gauge railroads” is uttered. The indi-
vidual phonemes are matched with the audio segments in which they occur.

The above figure shows the waveform of a digitally recorded speech signal. The
waveform is made up of sequential samples. The number of samples depends
on the length of the signal and the sample rate FS[Hz], how many times in
a second the original signal is measured. The sample rate for this signal is
16 000 Hz. The length of the signal is 1.4 s, meaning a total number of 22 400
samples are used to represent the signal.

Another important factor is the resolution of the signal. That is the amount
of memory (bits) used for the measurement of one sample. For the signal in
Figure 2.1 the resolution is 16 bits, meaning a measurement can be assigned
65 536 different values. A higher resolution equals to a more accurate signal
reconstruction.

In Figure 2.1 we can see that the phonemes are aligned with the audio segments
in which they occur. Corpora used for training acoustic models usually come
with phoneme level transcriptions of all the audio files. This means that the
phonemes are aligned with the matching sample intervals.

10



CHAPTER 2. ACOUSTIC MODELING

Table 2.1: Phoneme level transcription

Start End Phoneme

0 2048 t

2048 4352 uw

4352 5376 n

5376 6144 ae

6144 6656 r

6656 8960 ow

8960 11008 g

11008 13056 ey

13056 15616 jh

15616 16128 r

16128 17152 ey

17152 19200 l

19200 19712 r

19712 20736 ow

20736 21760 d

21760 22400 z

Having access to the phoneme level transcriptions it’s tempting to directly use
the raw speech signal as an acoustic model. The raw speech signal carries
all the vital information about the uttered phonemes, since the human brain
can clearly interpret what words are pronounced. But the signal also carries
a lot of excess information such as gender, mood, and other personal voice
characteristics. An acoustic model should ideally be invariant to these features
of the speech.

In addition, the waveforms take up a lot of memory. Using them directly as
acoustic models consumes an unnecessary amount of computing resources.

Thus, further processing of the speech signal is still needed. Only the features
which are essential for recognizing phonemes should be extracted and used for
training.

2.2.2 Power Spectrum

When extracting vital information from any signal, it’s usually more helpful
to study the signal in the frequency domain rather than in the time domain.
The discrete Fourier transform can tell us what frequency components Sk are

11



CHAPTER 2. ACOUSTIC MODELING

dominant in a signal s(n).

Sk =
N−1
∑

n=0

s(n)e−j 2π

N
kn (2.1)

The value Sk gives the amplitude of the k:th frequency component. A good
way to graphically illustrate the Fourier transform of a speech signal is a spec-
trogram. A spectrogram is a two dimensional colormap in the time-frequency
plane, where the power of a frequency component is indicated by the color
value of the plot.

Time [s]

F
re

q
u
en

cy
[H

z]

two narrow

eyraeuwt zdl owrowr jheygn

gauge railroads

0.2 0.4 0.6 0.8 1 1.2 1.4
0

2000

4000

6000

8000

Figure 2.2: Spectrogram of the speech signal in Figure 2.1. Darker colors
indicate higher power.

In Figure 2.2, the color value at a point (x,y) indicates the power of the
frequency y at time x. As a general trend we notice that consonants have
most of the power in the higher frequency bands.

The Fourier transform is a good starting point when attempting to classify
speech signals. The relative magnitudes of the different frequency bands carry
important information about what type of phonetic sounds are present in the
signal.
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CHAPTER 2. ACOUSTIC MODELING

To capture the frequency spectrum of individual phonemes the signal needs
first to be split up into sample intervals, or frames. For a 16 000 kHz signal a
frame length of 256 samples (16 ms) can be chosen. The frames are then set
to overlap so that they start within 128 samples from each other.

Figure 2.3: The waveform is segmented into frames. Each frame is 256 samples
long and they start within 128 samples from each other.

A Fourier transform can now be applied to each individual frame. But first the
frames have to be scaled with a Hamming window to reduce the distortions
caused by the frame borders.

h(i) = 0.54 − 0.46cos(
2πi

N
) (2.2)

A discrete Fourier transform is then applied to each frame t.

St(i) =
N−1
∑

n=0

s(k + tN)h(k)e−j 2π

N
kn (2.3)

The Fourier transform St(i) provides the frequency spectrum of an individual
phoneme. Useful features can now be obtained from the frequency spectrum.
The most elementary of features is the short-time power.

c0 =

N/2
∑

n=0

|St(i)|2 (2.4)

The short-time power c0 can be thought of as the energy that the individual
speech segment carries. It is a feature of the signal which is used for training
acoustic models. Additional features are extracted from the different frequency
bands of the signal.

13



CHAPTER 2. ACOUSTIC MODELING

2.2.3 Mel-frequency Cepstral Coefficients

Different frequency bands carry different significance when analysing speech.
Because of the logarithmic nature of the human auditory system the acoustic
features, which are vital for distinguishing phonemes, are not linearly sepa-
rated on the frequency scale. The human ear is more sensitive to changes
in pitch at low frequencies. It’s logical to assume that frequency bands that
determine phonetic differences are more narrow at lower frequencies and wider
at higher frequencies. To map these frequency bands onto a linear scale the
Mel-frequency scale is used [4].

fmel = 2595 log10(1 +
f

700
) (2.5)

Normal frequency [Hz]

M
el

fr
eq

u
en

cy

0 1000 2000 3000 4000 5000 6000 7000 8000
0

500

1000

1500

2000

2500

3000

Figure 2.4: The relationship between the normal frequency scale and the Mel-
frequency scale.

The Mel-frequency scale is divided into 21 equally long frequency bands and
triangular band-pass filters are applied to each frequency band.

14



CHAPTER 2. ACOUSTIC MODELING

Mel frequency
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Figure 2.5: Triangular band-pass filters are applied to each frequency band.
The frequency bands are located linearly on the Mel-frequency scale and non-
linearly on the normal frequency scale.

The average energy Savg(fk) is calculated for each frequency band, where fk is
the center frequency of the k:th frequency band (k=0,1,..,20),

Savg(k) = Savg(fk) =
1

N

N
∑

n=0

wFB(n)S(fk + δf(fk, n)) (2.6)

and N is the number of samples taken in the band spectrum. The function
δf(fk,n) represents the neighbouring frequencies of fk and wFB(n) is a weight-
ing function [4] .

As a final step in the signal processing chain, the log-values of Savg(k) are
calculated and a discrete cosine transform is applied to obtain the cepstrum
(”spectrum of a spectrum”) of the frequency band energies [4].

ci =
2

N

N−1
∑

k=0

log|Savg(k)|cos
(

2π

N
ik

)

(2.7)

Typically twelve (i=1,..,12) cepstral coefficients are extracted from the cep-
strum. These coefficients are called Mel-frequency cepstrum coefficients (MFCCs)
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CHAPTER 2. ACOUSTIC MODELING

because the computation is done in the Mel-frequency cepstrum. These twelve
MFCCs (c1, c2, .. , c12) constitute together with the short-time power c0 fea-
tures of perceptual importance that are used for training acoustic models.

The MFCC parameters, introduced by Davis and Mermelstein in [5], tend to
outperform other parametric representations of the speech signal, such as lin-
ear frequency cepstrum coefficients (LFCC), or linear prediction coefficients
(LPC). It is thought that the MFCC parameters offer perceptually more rel-
evant information about the short-time speech spectrum.

2.2.4 Delta Features

An additional set of features with more dynamic properties can be derived
from the Mel-frequency cepstral coefficients. The time derivates ∆ci(t) of the
basic features ci (i=0,1,..,12) are also known as delta features and can be
computed as follows [4]:

∆ci(t) =

M
∑

k=−M

kci(t + k) (2.8)

where M is the number of neighbouring frames. The value of M is usually
given a small value, such as 2.

Furthermore, the time derivates of the delta features themselves can also be
computed, yielding so called delta-delta features. In the end, combining the
basic features (13), delta features (13), and delta-delta features (13) gives a
total number of 39 different features.

A 39-element observation vector O=[c0 c1 . . ∆∆c12] is thus computed for
every frame in the speech signal, as illustrated in Figure 2.6.

16



CHAPTER 2. ACOUSTIC MODELING

c0

c1

...

...

c12

∆c0

∆c1

...

...

∆c12

∆∆c0

∆∆c1

...

...

∆∆c12

O1

c0

c1

...

...

c12

∆c0

∆c1

...

...

∆c12

∆∆c0

∆∆c1

...

...

∆∆c12

O2

c0

c1

...

...

c12

∆c0

∆c1

...

...

∆c12

∆∆c0

∆∆c1

...

...

∆∆c12

O3

Figure 2.6: Each frame in the speech signal is represented by a 39-element
MFCC observation vector.

Knowing the correct alignment between individual frames and phonemes, we
can now start constructing statistical models for simple phoneme classification
tasks.
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2.3 Gaussian Mixture Models

An essential part in the construction of an acoustic model is choosing a method
to classify phonemes based on feature observations. Given the observation
vector O=[c0 c1 . . ∆∆c12] for a frame in a speech signal, estimates are needed
for all phonemes, giving us the probability that this particular observation O

corresponds to the occurrence of a certain phoneme /pho/.

Having access to training data, which holds mappings between observation
vectors and phonemes, the means and covariances of the feature vector ele-
ments can be calculated for each phoneme. The next step is to find a suitable
probability distribution modeled around the mean vector.

Many naturally occurring phenomena have been successfully modeled by the
Gaussian distribution. In the one-dimensional case, a random variable X, with
a mean µ and variance σ2, is said to have a Gaussian distribution if it has the
following probability density function [6]:

f(x|µ, σ2) =
1√
2πσ

exp

[

−(x − µ)2

2σ2

]

(2.9)

X

f(
X

)

-5 0 5
0

0.2

0.4

0.6

0.8

1

Figure 2.7: One-dimensional Gaussian distribution (µ = 0 , σ2 = 0.4).
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The one-dimensional Gaussian distribution in 2.9, can be generalized to any
n-dimensional vector X:

f(X|µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

[

−1

2
(X − µ)TΣ−1(X − µ)

]

(2.10)

where µ is the n-dimensional mean vector, Σ is the n×n covariance matrix,
and |Σ| is the determinant of the covariance matrix Σ [6].
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Figure 2.8: Multivariate two-dimensional Gaussian distribution.

In Figure 2.8 there is a graphical plot of a two-dimensional Gaussian distribu-
tion. Although it’s harder to visualize a 39-dimensional Gaussian distribution
the idea is the same when estimating the probability distributions for the
MFCC observation vectors.

Lumping together phoneme statistics under a single Gaussian model has its’
disadvantages. The observation vectors are usually not centered around a
single point in vector space. They appear in clusters. This can be likened to
the different classes of speaker variabilities encountered in the training data,
such as gender, age, accent, or different speaking styles.
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To estimate a more reliable acoustic model for a speaker independent ASR
system, a mixture of different Gaussian density functions is preferable. Ideally,
each distinct cluster in vector space should be assigned an individual Gaussian
model.

The Expectation-Maximization (EM) algorithm [7] can be used to find the
optimal cluster set and to estimate the Gaussian parameters for each cluster.
The EM algorithm works by maximizing the log probability for the given
training data and model parameters.

The final Gaussian mixture model (GMM) is estimated from the different
cluster distributions as follows [6]:

f(X) =
M
∑

m=1

wmNm(X; µm,Σm)

=
wm

(2π)n/2|Σm|1/2
exp

[

−1

2
(X − µm)TΣ−1

m (X − µm)

]

(2.11)

where
M
∑

m=1

wm = 1 and wm ≥ 0

X

f(
X

)

-5 0 5
0

0.5

1

Figure 2.9: One-dimensional Gaussian mixture model. The dashed curves are
Gaussian models of different clusters. The solid curve is the weighted sum of
the different Gaussian distributions.

The mixture probability density function f(X) is a weighted sum of the indi-
vidual Gaussian distributions Nm(X;µm,Σm). The graph of a one-dimensional
Gaussian mixture model is shown in Figure 2.9.
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By estimating a 39-dimensional Gaussian mixture model for each phoneme,
we have a method for frame-wise phoneme classification based on the MFCC
observation vector.

2.4 Hidden Markov Models

Having a means to classify phonemes frame by frame is already a good step
towards a fully functioning ASR system. However, further processing is still
needed.

When applying a GMM to classify the phonemes for the speech signal in Fig-
ure 2.1 (”two narrow gauge railroads”) we might expect to get an output simi-
lar to the following: /t/t/t/uw/uw/uw/n/n/n/ae/ae/ae/r/r/r/ow/ow/ow/g/g
/g/ey/ey/ey/jh/jh/jh/r/r/r/ey/ey/ey/l/l/l/r/r/r/ow/ow/ow/d/d/d/z/z/z/.

It’s good to note that this is a raw simplification of the output since a 1.4s
length signal like in Figure 2.1 would contain up to over 80 frames and the
number of frames wouldn’t be equally divided between the phonemes. Even
recognizing this idealized case of frame output as the correct sentence is not
a trivial matter but more on that later.

The GMM, like any statistical model, is not perfect. Classification errors are
bound to happen considering that the pronunciation of many phonemes is very
similar. Instead of the ideal clean cut frame output, we are more likely to get
something like this: /t/d/t/uw/uw/ow/n/m/n/ae/aa/ae/r/r/r/ow/oh/ow/g/k
/k/ey/ay/ey/jh/jh/jh/r/jh/r/ey/ae/ey/l/l/l/r/l/r/ow/ow/ow/d/t/t/z/s/s/.

The frame output is distorted by acoustically similar, but erroneous, phonemes
that pop up here and there. It’s not totally impossible though to guess the
correct phoneme sequence. For example, in the English language the phoneme
/t/ is rarely followed by the phoneme /d/. We can thus make an educated
guess that the phoneme /t/ is uttered in the first time segment consisting
of the output frames /t/d/t/. Based on similar innate characteristics of the
spoken language it’s possible to construct a hidden Markov model (HMM)
that estimates the likelihood for all phoneme sequences.

In the hidden Markov model the utterance of a phoneme is regarded as a
hidden state which emits an observable representation of the signal, namely the
MFCC observation vector. The phoneme specific GMMs provide a probability
estimate that an observation is an emission of a certain state. State changes are
modeled with transition probabilities aij , ie. the probability that a phoneme
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i is followed by a phoneme j. Figure 2.10 illustrates the flowchart of an HMM
with three states.

S1 S2 S30.1

0.1

0.8

0.1

0.2

0.7

0.3

0.3

0.5

Figure 2.10: Flowchart of a 3-state HMM. The state transition probabilities
are marked along with the flow lines.

The state transition probabilities aij form an n×n matrix A, where n is the
number of states in the HMM.

In speech recognition applications the number of HMM states is usually equiv-
alent or correlated with the number of phonemes. A typical choice is to create
a separate HMM for each phoneme and model each HMM with three states
[8]. This is helpful in order to better capture the differences between the
beginning, middle, and end of the phoneme.

/d1/ /d2/ /d3/

/a1/ /a2/ /a3/

/t1/ /t2/ /t3/
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Figure 2.11: Each phoneme is modeled with its own 3-state HMM. The dashed
lines show the inter-HMM transitions. The HMMs form a network through
connections between each other’s third and first states.
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In this type of HMM framework, illustrated in Figure 2.11, the transitions
are limited to self transitions and transitions to next states. The HMMs form
a network through connections between each other’s third and first states.
This network of HMMs enables the creation of a phoneme-based speech rec-
ognizer [8].

An additional set of parameters in the HMM framework are the initial state
probabilities πi. They give an estimate for the probability that a state is the
first in a sequence of states.

The state transition probability matrix A and the initial state probabilities
πi constitute the parameter set of an HMM. The values of A and πi can be
estimated from training data using the Baum-Welch algorithm [9]. Together
with the emission probability density functions fi they form a broader HMM
parameter set commonly referred to as λ.

In continuous speech, phonemes are pronounced differently depending on the
phonemes pronounced before and after. To model this variability, instead
of modeling a phoneme with only one HMM, several HMMs are created for
different contexts. A common choice is a triphone model, in which a phoneme
is modeled in the context of the previous and following phoneme.

2.5 Viterbi Search

Given an observation sequence O=O1,O2,...,ON , the HMM (A,πi,fi) can
help us find the optimal matching state sequence Q=q1,q2,...,qN . The object
is to find a path Q̂ that maximizes the probability P(Q|O,λ) [9]:

Q̂ = arg max
Q

P (Q|O, A, πi, fi)

= arg max
Q

P (Q|O, λ) (2.12)

The Viterbi search algorithm, a technique based on dynamic programming
methods, can be used to find the single best state sequence. The essence of
the Viterbi search is storing the best path ending in each state i, for each time
instant t. The quantity δt(i) is defined as follows [9]:

δt(i) = max
q1,q2,...,qt−1

P (q1q2...qt = i,O1O2...Ot|λ) (2.13)

where δt(i) is the best score (highest probability) along a single path, at time
t, ending in state Si. For the time instant t+1, ending in state Sj , induction
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gives the following:

δt+1(j) = max
i

[δt(i)aij ]fj(Ot+1) (2.14)

To retrieve the best state sequence, we must keep track of the argument which
maximizes 2.14, for each t and j. This is done via the array Ψt(j).

The following procedure steps can be taken to find the best state sequence [9].

1. Initialization:

At t=1, the best path ending in state Si is simply.

δ1(i) = πifi(O1) (2.15)

No previous paths need to be stored in the array Ψt(i).

Ψ1(i) = 0 (2.16)

2. Recursion:

At t+1, the best path ending in state Sj , can be determined from the
best previous paths δt(i) combined with the transition probability aij .
The path with the highest probability is chosen.

δt+1(j) = max
i

[δt(i)aij ]fj(Ot+1) (2.17)

The previous state which produced the best probability is added to the
array.

Ψt+1(j) = arg max
i

[δt(i)aij ] (2.18)

3. Termination:

At the final time instant T, the state with the best ending path is chosen.

qT = arg max
i

[δT (i)] (2.19)

4. Path (state sequence) backtracking:

Starting from the best ending state qT , we can retrieve the optimal path
by backtracking along the pointers that are stored in the Ψt(i) array.

qt = Ψt+1(qt+1), t = T − 1, T − 2, ..., 1 (2.20)

Figure 2.12 illustrates the Viterbi search method in a lattice structure, with
circles representing the states and lines representing the optimal paths.
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Figure 2.12: Viterbi search. The best path (line) to each state (circle) at each
time instant is stored. The best path (solid line) is retrieved by backtracking
from the best ending state (thick solid circle) at the last time instant.

2.6 Decoder

The Viterbi search applied alongside the GMM-HMM framework helped us
find the optimal state sequence Q=q1,q2,...,qN given the observation sequence
O=O1,O2,...,ON . The optimal state sequence can also be thought of as a
representation of the optimal phoneme sequence.

The ultimate challenge is finding the optimal word sequence Ŵ=W1,W2,...,Wm,
where the number of words m is unknown beforehand. This search problem,
known in ASR applications as decoding, can be mathematically defined as
maximizing the posterior probability P(W|O) [10].
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Ŵ = arg max
W

P (W |O)

= arg max
W

P (O|W )P (W )

P (O)

= arg max
W

P (O|W )P (W ) (2.21)

Applying the Bayes rule on P(W|O) we end up with equation (2.21), which is
a combination of two probability models. P(O|W) corresponds to the acoustic
model and P(W) corresponds to the language model.

Before taking on the task of finding the most probable word sequence Ŵ , we
need a model for the pronunciation of individual words. The information of
how different words are pronounced is stored in a pronunciation dictionary,
also known as a lexicon. It contains information of the exact phoneme sequence
for every word. Tables 2.1 and 2.2 are example extracts from a monophone
and triphone lexicon.

Table 2.1: Monophone pronunciation dictionary.

Word Pronunciation

... ...

bannister b ä n a s t ö

rudman r a d m a n

gorman g O r m a n

sustaining s a s t E n i N

... ...

Table 2.2: Triphone pronunciation dictionary.

Word Pronunciation

... ...

bannister -b+ä b-ä+n ä-n+a n-a+s a-s+t s-t+ö t-ö+

rudman -r+a r-a+d a-d+m d-m+a m-a+n a-n+

gorman -g+O g-O+r O-r+m r-m+a m-a+n a-n+

sustaining -s+a s-a+s a-s+t s-t+E t-E+n E-n+i n-i+N i-N+

... ...

In the case of an isolated-word recognizer, the vocabulary words with their
specific phoneme sequences are mapped into an HMM network, as illustrated
in Figure 2.13. The most probable word can be found by doing a Viterbi
search over the HMM network.
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/b/ /ä/ /n/ /a/ /s/ /t/ /ö/

/b1/ /b2/ /b3/

/r/ /a/ /d/ /m/ /a/ /n/

/g/ /O/ /r/ /m/ /a/ /n/

/s/ /a/ /s/ /t/ /E/ /n/ /i/ /N/

Figure 2.13: Search network for an isolated-word recognizer. The internal
HMMs of the phonemes are concatenated. They form a separate HMM for
each word.

For a continuous speech recognizer, the challenge of finding the optimal word
sequence lies in the fact that there are no clear boundaries between the spoken
words. The beginning of a new word can start at almost any time instant.
Furthermore the language model P(W) has to be incorporated into the search
somehow.

A common strategy is to map the words and their concatenated phoneme
HMMs into a bigger network, just like in Figure 2.13 but with transitions
between the words [10]. The inter-word transition probabilities correspond
to the language model P(W). An example of a search network for a three-
word vocabulary is found in Figure 2.14. In this case the language model is a
bi-gram, so there is only one type of transition between the words.

In this type of search space, most methods try to find the optimal word se-
quence during a single run, simultaneously utilizing the knowledge sources of
both the acoustic model and the language model. This is called a one-pass
search strategy.

A one-pass search is usually performed so that the word hypotheses are formed
in a time-synchronous fashion over the sequence of observation vectors [10].
Most one-pass search strategies are time-synchronous.
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Figure 2.14: Search network for a three-word vocabulary (A,B,C) with a bi-
gram language model. The acoustic model state transitions are represented as
solid lines and the language model state transitions are represented as dashed
lines.

A dynamic programming algorithm, such as the Viterbi search, is usually ap-
plied on the HMM network to find the most probable word sequence. Because
the number of possible state sequences grows to astronomical proportions for
a large vocabulary, a common method to reduce the search space is by re-
moving the paths of unlikely word hypotheses whose scores fall under a fixed
probability [10]. This type of search is known as a beam search, and it is
implemented in many decoders.
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Chapter 3

Acoustic Model Adaptation

3.1 Acoustic Model Adaptation

In the previous chapter we learnt that acoustic models are trained on audio
corpora that contain several hours worth of pre-recorded speech from many
different speakers. The estimated model parameters are an average represen-
tation of the entire group of speakers in the training set.

Deviations from the training conditions are inevitable when testing the ASR
system in real life situations. The performance gets worse the less similar
the testing conditions are compared to the training conditions [11]. This is
illustrated in the graph in Figure 3.1.
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Figure 3.1: Acoustic variability degrades speech recognition performance.
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The sources of these deviations can be grouped into environmental noise, dif-
ferent channels (telephone, near- or far-field microphone), and speaker vari-
ability [11]. The speaker variability factor is the toughest one to cancel out.
It stems in part from the physiological differences in the vocal tract, but ac-
cent/dialect, cultural and emotional factors also account for the individual
voice characteristics.

There are many different techniques which have been developed to compen-
sate for speaker variability. The goal for all these adaptation methods is to
minimize the difference between the acoustic model and the selected speaker.
A common practice is to sample speech data from the new speaker and up-
date the acoustic model according to the features which are extracted from
the speech.

A speaker adaptation system can operate in two different modes. The adap-
tation can either be supervised or unsupervised [12]. In the supervised mode
the transcription of the speech data is known beforehand. In the unsupervised
mode the transcription is not known, and is taken from the output of a speech
recognizer.

The distinction between static and dynamic adaptation can also be made [12].
In static mode all the adaptation data is made available at once and is used to
adapt the final system during a single run. In dynamic mode the adaptation
data is acquired in parts and the system is continuously adapted over time.

In the following sections two of the most used speaker adaptation techniques
will be presented: maximum likelihood linear regression (MLLR) and vocal
tract length normalization (VTLN).

3.2 Maximum Likelihood Linear Regression

The maximum likelihood linear regression (MLLR) method belongs to a fam-
ily of adaptation techniques based on linear transformations. The general
approach is to estimate a linear transformation of the model parameters, in
order to construct a more appropriate acoustic model.

It is considered that the main differences between speakers are characterized by
the Gaussian means. In MLLR adaptation a linear transformation is estimated
to update the Gaussian mean parameters, as follows:

µ̂ = Aµ + b (3.1)
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where A is an n×n matrix and b is an n dimensional vector [12]. The value
of n is the dimensionality of the observations, 39 in the case of an MFCC
observation vector.

Equation (3.1) can be simplified to

µ̂ = Wξ (3.2)

where W is an n×(n+1) matrix and ξ is the extended mean vector

ξT = [1 µ1 ... µn] (3.3)

The matrix W is estimated such that the likelihood of the adaptation data is
maximised [12]. The Expectation-Maximisation (E-M) algorithm can be used
to estimate W.

The power of this most basic form of MLLR lies in that only a small amount of
adaptation data is needed to estimate a global transformation matrix W. The
global transformation matrix can then be used in (3.2) to transform Gaus-
sian means of phonemes or triphones that haven’t even been observed in the
adaptation data.

As was noted earlier, it is generally thought that the most important speaker
specific effect can be attributed to the Gaussian means. An extension to basic
MLLR is to also transform the Gaussian variances. The transformation of the
covariance matrix Σ takes the following form:

Σ̂ = HΣHT (3.4)

The Gaussian means and variances can be transformed independently with
equations (3.2) and (3.4). That is, separate transformation matrices W and
H are estimated for each parameter set. In the constrained transform case,
the means and variances are set to use the same transformation matrix Ac.

µ̂ = Acµ − bc (3.5)

Σ̂ = AT
c ΣAc (3.6)

This form of adaptation is known as constrained MLLR (cMLLR).

Instead of using the same global transformation matrix for all Gaussian mod-
els, different transformation matrices can be tied to Gaussians that are close
to each other in acoustic space [12]. The transformation matrices are arranged
into so called regression classes.
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The organization of the regression classes can either be fixed or dynamic.
The regression classes are fixed if their definitions are determined beforehand,
based on adaptation data. The optimal number of regression classes is roughly
proportional to the amount of adaptation data [13]. For example, a division
into Gaussian models representing vowel and consonant sounds could be made.
Hence, two transformation matrices are estimated for each group. In Figure 3.2
the adaptation framework for two fixed regression classes is shown.

Adaptation Data

Mixture Components

Regression Classes

Transformation Matrix (Wi) 1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

transform

estimate

Figure 3.2: Adaptation framework for two fixed regression classes. The mix-
ture components are divided into separate regression classes. The transforma-
tion matrices Wi are estimated to maximise the likelihood of the adaptation
data.

First, the size of the adaptation data is determined. After that the mixture
components are divided into an optimal number of different regression classes.
The class definitions, what mixture components belong to which class, are
determined beforehand. Finally, the transformation matrix Wi for each class
is estimated to maximise the likelihood of the adaptation data.

Fixed regression classes work well in some cases when the amount of adaptation
data is evenly distributed among the classes. However, if classes are assigned
with insufficient data then the estimates will be poor. Therefore, it would be
desirable to also determine the content distribution of the adaptation data and
make the division into regression classes based on this. In other words, the
regression classes are defined dynamically based on the the type of adaptation
data that is available.

Dynamic regression classes and the mixture components that are tied to them
are organized into a tree-like structure, as illustrated in Figure 3.3.
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Global Class

Base Classes

Figure 3.3: Regression class tree. The leaves of the tree represent the indi-
vidual mixture components. At the top of the tree is the global class under
which all mixture components can be grouped.

The leaves of the regression tree in Figure 3.3 represent individual mixture
components and at higher levels the mixture components are merged into
groups of similar components based on a distance measure between compo-
nents [13]. The root node represents the global transformation matrix under
which all mixture components can be grouped.

The regression tree is used to decide for what classes there is a sufficient
amount of data that a transformation matrix can be reliably estimated. A
search is made through the tree starting at the root. A transformation matrix
is estimated at the lowest level in the tree for which regression class there
is sufficient data. This allows adaptation data to be used in more than one
regression class and it ensures the mixture components are updated with the
most specific transformation matrix [13].

Typically a mean-only global MLLR adaptation gives a 15% reduction in
WER compared to an unadapted model, using about a minute of adapta-
tion data [12]. The WER tends to saturate very quickly for global MLLR, so
adding more adaptation data usually does not improve performance. In ex-
periments done by Leggetter and Woodland in [13], a WER reduction of 23%
was achieved for a global MLLR using 40 sentences as adaptation data. For
a similar MLLR adaptation that used regression classes the WER reduction
was 55%.

Although MLLR has so far been presented as a speaker adaptation method,
the technique can also be used in the same way for environmental adaptation.
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3.3 Vocal Tract Length Normalization

It was stated earlier that the main source of speaker variability is the vari-
ation in length and shape of the vocal tract. The difference in vocal tract
length tends to scale the frequency axis. For example, women tend to have
shorter vocal tracts than men. As a result of this, female speakers exhibit
formants (spectral peaks of sound) that are on average 20% higher than for
male speakers [14].

Vocal tract length normalization (VTLN) is a method developed to reduce the
effects of different lengths of the human vocal tract. In general, the method
works by re-scaling the frequency axis with a warping function gα, where α is
the transformation parameter [14].

ω̃ = gα(ω) (3.7)

where 0 ≤ ω ≤ π

The original frequency ω is transformed into the warped frequency ω̃. The
transformation is done in the frequency domain between 0 and π, where π
corresponds to the Nyquist frequency.

In an MFCC framework, the warping function is applied on the Fourier power
spectrum. The warped spectrum is then fed onwards to the MFCC filterbanks,
as illustrated in Figure 3.4.

x(t)
Fourier

Transform

Warping

Factor

Mel-

frequency

Warping

Filterbanks

Figure 3.4: The warping factor is applied on the signal in between the Fourier
transform and the Mel-frequency warping.

The warping function gα can either be linear or non-linear. A linear function
gα(ω)=αω models the vocal tract as a uniform tube of length L, where a
change in the length of the vocal tract from L to kL results in a scaling of the
frequency axis by a factor 1/k (=α) [14].

Usually a warping function is defined as piecewise linear, to handle the band-
width mismatching problem [15].

gα(ω) =

{

αω if ω < ω0

bω + c if ω ≥ ω0
(3.8)
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The linear warping function is not the best model of the vocal tract. A non-
linear transformation is preferable and the bilinear warping function is often
used [15].

gα(ω) = ω + 2tan−1 (1 − α)sin(ω)

1 − (1 − α)cos(ω)
(3.9)

In Figures 3.5 and 3.6 curves of piecewise linear and bilinear warping func-
tions are presented. It’s noticeable for piecewise linear warping functions that
α > 1.0 corresponds to the compressing of the spectrum and α < 1.0 corre-
sponds to stretching of the spectrum. The opposite is true for bilinear warping
functions, α > 1.0 corresponds to the stretching of the spectrum and α < 1.0
corresponds to compressing of the spectrum.

ω π

ω̃

π

α>1

α<1

Figure 3.5: Piecewise linear warping function.

ω π

ω̃

π

α<1

α>1

Figure 3.6: Bilinear warping function.
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The optimal value of α is estimated on speaker-specific adaptation data. Sim-
ilar to the estimation of the MLLR transformation matrix, the value of α is
estimated to maximise the likelihood of the adaptation data.

The relationship between MLLR and VTLN was studied by Pitz and Ney
in [16]. It showed that VTLN adaptation results in a linear transformation
in the cepstral domain, and can therefore be considered as a special case of
MLLR. This explains experiments showing that improvements obtained by
VTLN and MLLR are not additive in some cases.

In experiments done by Uebel and Woodland in [17], the performance increases
of VTLN and MLLR were compared. On average, the relative WER reduction
for unconstrained MLLR was 9.7% and for VTLN (bilinear warping function)
6.6%. As a contradiction to [16], the joint improvement of using both VTLN
and MLLR was additive, with an average WER reduction of 12.6%.
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Chapter 4

Language Modeling

4.1 N-gram Models

The main goal of statistical language modeling is to improve the performance
of various natural language applications. In speech recognition, this means
finding the best possible estimate for P(Wi), that is the probability for the
word Wi to occur.

The most commonly used method in speech recognition for estimating P(Wi)
is n-gram language modeling. N -grams are estimated from large text cor-
pora containing millions of words covering a vast range of topics. N -gram
models utilize the word history in a sentence. It is assumed that the prob-
ability for Wi only depends on the n - 1 previous words. The probability
P(Wi|H), where H is the n - 1 preceding words, is estimated by counting
the number of occurrences of the word contexts Wi−n+1,..,Wi−2,Wi−1,Wi and
Wi−n+1,..,Wi−2,Wi−1 in the text corpus.

To illustrate a typical case, we can set n=3, which we call a trigram. We
get the counts C(Wi−2,Wi−1,Wi) and C(Wi−2,Wi−1). From these counts the
probability is calculated using the maximum-likelihood estimate.

P (Wi|H) =
C(Wi−2, Wi−1, Wi)

C(Wi−2, Wi−1)
(4.1)

Although seemingly a simple method for capturing regularities in written
texts, n-grams offer a robust technique for modeling natural languages. The
implementation is independent of language and domain. The diminished costs
of mass storage space and the greater accessibility to large text corpora pro-
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vided by the Internet and other mediums has also contributed to making
n-grams a de facto standard for language modeling in speech recognition, and
other natural language applications such as optical character recognition and
machine translation.

4.2 Smoothing

4.2.1 Zero Probability Problem

As described earlier, n-grams are trained on text corpora which at best con-
tain up to billions of words. This might seem like a sufficient amount of text
to capture all possible n-grams that could ever occur in the language. The
reality is however, that many n-grams are never seen in the training text, ie.
for many word sequences C(Wi−2,Wi−1,Wi)=0. This causes also the proba-
bility P(Wi|H) to become zero. This is clearly a problem. Let’s consider the
following example. We find 10 occurrences of the trigram ”holiday in Greece”
and 50 occurrences of the bi-gram ”holiday in” in our training corpus. We
can thus from (4.1) calculate the probability P(”Greece”|”holiday in”):

P (”Greece”|”holiday in”) =
C(”holiday”, ”in”, ”Greece”)

C(”holiday”, ”in”)
=

10

50
= 0.2

As we can see, this yields a non-zero probability and everything is fine so
far. However, if we for example want to calculate the probability for the tri-
gram ”holiday in Bhutan”, when C(”holiday”,”in”,”Bhutan”)=0 in the train-
ing text, we end up with:

P (”Bhutan”|”holiday in”) =
C(”holiday”, ”in”, ”Bhutan”)

C(”holiday”, ”in”)
=

0

50
= 0

Although an uncommon vacation spot and a word sequence that is rarely seen
in the English language, zero is clearly an underestimate for this probability.

When generating n-gram probabilities through the maximum likelihood esti-
mate as in (4.1), we tend to get too high probability estimates for n-grams
that are seen in the training text and too low estimates for the n-grams that
are not seen. We would like to correct this unbalance by taking some proba-
bility mass from the seen events and redistribute it to all the unseen events.
This is called language model smoothing.
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4.2.2 Add-one Method

Many smoothing methods have been developed over the years. One common
strategy to tackle the problem of uneven probability distributions is to manip-
ulate the n-gram counts. Beginning with the simplest of methods, we simply
add one to every n-gram count,

P (Wi|H) =
1 + C(Wi−2, Wi−1, Wi)

|V | + C(Wi−2, Wi−1)
(4.2)

where |V| is the total number of words in the vocabulary. This takes away
easily the zero probability problem. Instead of adding just 1 we can generalize
this method to adding any constant k. However, these additive methods tend
to perform rather poorly. The unseen n-grams are usually given too high
probabilities.

4.2.3 Absolute Discounting

Instead of adding counts to every possible word context, a more successful
smoothing scheme is to subtract counts from the seen n-grams, and distribute
this left-over probability to the unseen n-grams. The probability redistribution
to the unseen n-grams is usually done by backing off to lower orders of the
word context. A good way to illustrate how this works in practice is to present
the absolute discounting method [18], where both discounting and backing off
are used together in the smoothing process.

P (Wi|H) =

{

C(Wi−2,Wi−1,Wi)−D
C(Wi−2,Wi−1) if C(Wi−2, Wi−1, Wi) >0

P (Wi|Wi−1) ∗ βWi−2,Wi−1
otherwise

(4.3)

In absolute discounting, the n-gram count C(Wi−2,Wi−1,Wi) is subtracted
with a constant D and after that the maximum-likelihood estimate is calcu-
lated as normal. The constant D is typically optimized on held out data and
the value is usually between 0 and 1. If C(Wi−2,Wi−1,Wi) is zero, we back
off to the word context Wi−1,Wi and multiply the corresponding probability
P(Wi|Wi−1) with βWi−2,Wi−1

. The factor βWi−2,Wi−1
is a back-off weight to

ensure the probabilities sum to 1. In the case that the count C(Wi−1,Wi) is
also zero we simply back off to the unigram probability.
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4.2.4 Kneser-Ney Smoothing

A further specialization of the absolute discounting method is Kneser-Ney
smoothing [19]. This smoothing method differs mainly in how we estimate the
lower order distribution. In absolute discounting we simply multiply the dis-
counted maximum-likelihood estimate P(Wi|Wi−1) with the back-off weight
βWi−2,Wi−1

to get the lower order probability. Kneser-Ney smoothing intro-
duces a modified probability function for the back-off n-grams. Instead of
estimating the probability based on the number of occurrences Kneser-Ney
smoothing derives the back-off probability from the number of distinct con-
texts the n-gram appears in.

P (Wi|H) =

{

C(Wi−2,Wi−1,Wi)−D
C(Wi−2,Wi−1)

if C(Wi−2, Wi−1, Wi) >0
N1+(•,Wi−1,Wi)
N1+(•,Wi−1,•) ∗ βWi−2,Wi−1

otherwise
(4.4)

where N1+(•,Wi−1,Wi) is the distinct number of trigram contexts the bi-
gram Wi−1,Wi appears in and N1+(•,Wi−1,•) is the total number of trigram
contexts found in the training text where Wi−1 is the middle word.

We can motivate the use of context counts over occurrence counts with an
example. Let’s consider the rare trigram ”beerfest at Tiffany’s”. There are
no occurrences of this word sequence in the training text we are using. If
we want to find a probability for this trigram using absolute discounting we
must back off to the bi-gram probability P(”Tiffany’s”|”at”). This has quite
a high probability, but mainly because of the large occurrence of the trigram
”breakfast at Tiffany’s”. To get an approximation from the real world, a
Google search finds 1 340 000 hits for ”at Tiffany’s” and 1 110 000 hits for
”breakfast at Tiffany’s. We can thus deduce that a large part, about 80%,
of the probability mass for P(”Tiffany’s”|”at”) comes from a single trigram
context. We will end up giving too much of this probability mass away if we
use the maximum likelihood estimate P(”Tiffany’s”|”at”) when backing off
from unseen trigrams like ”beerfest at Tiffany’s”. To handle this problem the
context counts N1+(•,Wi−1,Wi) and N1+(•,Wi−1,•) are used for estimating
the back-off probability in Kneser-Ney smoothing. This will help to reduce
the probabilities for rare n-grams that have a word sequence which occurs
frequently but only in a few contexts.
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4.2.5 Modified Kneser-Ney Smoothing

An improved variation of Kneser-Ney smoothing exits, called modified Kneser-
Ney smoothing, presented by Chen and Goodman in [20]. The discount con-
stant D for all non-zero counts is optimized. Instead of using the same discount
constant for all n-grams, a discount function D(c) is introduced, where c is
the number of occurrences the n-gram has.

D(c) =















0 if c = 0
D1 if c = 1
D2 if c = 2
D3+ if c ≥ 3

(4.5)

In [18], Ney. et al. suggest estimating D using a discounting method based
on the Good-Turing estimate [21],

D =
n1

n1 + 2n2
(4.6)

where n1 is the number of n-grams occurring once and n2 the number of
n-grams occurring twice. For the discount constants D1, D2, and D3+, the
corresponding estimates are derived from D as follows:

D1 = 1 − 2D
n2

n1

D2 = 2 − 3D
n3

n2
(4.7)

D3+ = 3 − 4D
n4

n3

There are many other smoothing techniques which have been developed over
the years. Most of these are based on different modifications of the discounting
and backing off mechanisms. However, an extensive study about smoothing
methods, done by Chen and Goodman in 1998 [20], showed that modified
Kneser-Ney smoothing outperforms all other techniques.

4.3 Varigram Language Models

In the presented n-gram model examples so far, we’ve only considered cases
where n=3. Longer range n-gram models would be more desirable since they
could give an even better approximation for P(W|H). We can see how this
works by considering the example sentence ”Harry rides a big red bicycle”.
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Trying to estimate the probability for the last word ”bicycle” in this sentence
with only a trigram, P(”bicycle”|”big red”), yields a much lower probability
than if the whole sentence is taken into account. Trigrams such as ”big red
firetruck” or ”big red house” are given about the same or higher probability
than ”big red bicycle”. On the other hand, if we were to use a longer range n-
gram model that could capture the preceding word ”rides” in its’ context, the
probability P(”bicycle”|H) would be greatly elevated in comparison to other
words.

We can see from the above example, that for an ideal approximation, an n-
gram model that would reach all the way back to the beginning of the sentence
is needed. There is a problem though when estimating the probability of longer
n-gram contexts. Even for the biggest training text corpora the unreliability
of n-gram probability estimates increases for longer contexts. This is because
of the simple reason that the number of possible sentences grows for longer
contexts but sparsity of training data causes longer n-grams to be overesti-
mated. That’s why it’s common in most applications to use models of lower
order (n = 3 ... 5). Deletion of rarely occurring n-grams from the model is
one way of tackling the data sparsity and unreliability problem. This is called
pruning and a common estimate is that as much as half of the n-grams can
be removed without affecting the performance of the language model.

A method for pruning Kneser-Ney smoothed n-gram models is presented by
Siivola et al. in [22]. In this method the language model is pruned by deleting
n-grams whose probability falls under a threshold ǫ, while at the same time
taking into consideration the effect of Kneser-Ney smoothing. Additionally,
the computational complexity of computing n-gram counts for longer spans
is reduced by the incremental growing of language models. This means, that
instead of first computing all the n-gram counts up the highest order and then
apply pruning, new n-grams hw are added from lower order n-grams h that
have survived pruning and are already in the model. The main benefit of
this is that counts C(hw) only need to be computed for histories h that are
already in the model.

It can be concluded, that the method described above can calculate reliable
long span n-gram models. It achieves this by removing rarely occurring n-
grams.
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4.4 Morph Based Language Models

We have so far considered words to be the most fundamental units in language
modeling. In many languages, such as English, a lexicon containing 50 000
- 100 000 most common words is enough to capture nearly all of the unique
words occurring in the billion word text corpora used for training the n-gram
models. In other languages however, the situation is different. In Finnish
for example, a lot of words are originally formed from their stem words by
the use of different morphological processes such as inflection, derivation and
compounding. Because of this the number of different word forms grows to be
very large. One typical difference between a morphologically rich language,
such as Finnish, and a morphologically poor language, such as English, is the
use of suffixes at the end of words instead of prepositions.

Table 4.1: Prepositions vs. suffixes

English Finnish English Finnish

car auto house talo

in the car autossa in the house talossa

out of the car autosta out of the house talosta

to the car autolle to the house talolle

in to the car autoon in to the house taloon

from the car autolta from the house talolta

From the example illustrated in the above table, we can see that for every
new noun that is introduced, the Finnish lexicon grows with five possible new
inflected words that are derived from the original stem word. In reality, the
number of possible word forms in the Finnish language that can be derived
from a noun is above 2000. This causes the lexicon to grow very rapidly.
However, a bigger problem is that many word forms are never seen in the
training corpora and are therefore not added to the lexicon. This in turn
causes a massive increase of out-of-vocabulary (OOV) words. These are words
that the speech recognition system has no means of recognizing because they
are not in the lexicon.

Research has been done on finding alternatives to word-based language models,
which are better optimized for morphologically rich languages. An intuitive
approach would be to use subwords. In other words, splitting words into
smaller fragments. Subwords could represent the shortest semantic building
blocks in a word, for example lefthanded → left+hand+ed. In [23], Creutz
et al. describe the Morfessor algorithm, which given a training corpus text,
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finds the most frequently occurring subwords, or morphemes. The algorithm
can on statistical basis calculate the optimal morpheme set to represent the
language. It tries to find a balance between the size of the morph lexicon
and the compactness of the representation of the training text corpus. The
smallest possible morph lexicon consists only of the individual letters in the
alphabet. This will however radically increase the representation size of the
training text because every word would be split up into as many morphs as
the number of letters it contains. At the other extreme, if words aren’t split
up at all the lexicon grows very large because now every distinct word will
have to be in the morph lexicon.

Table 4.2: The correlation between lexicon and representation size
|l|e|f|t|h|a|n|d|e|d| → small lexicon size, big representation size
|lefthanded| → big lexicon size, small representation size
|left|hand|ed| → optimal lexicon size and representation size

Since Morfessor is a statistical data-driven algorithm, the generated mor-
phemes don’t necessarily have to have a clear correspondence to any linguistic
morpheme segmentations. This is also part of the strengths of the algorithm
because it can be applied to any natural language without knowing the un-
derlying grammatical structure.

In experiments done in [23], morph-based language models outperformed word-
based language models in a number of speech recognition experiments for
Finnish, Estonian, and Turkish, all morphologically rich languages. The
performance boost was mostly attributed to the better modeling of out-of-
vocabulary words.

4.5 Evaluation of Language Models

4.5.1 Word Error Rate

As was stated in the beginning of the chapter, the main goal for language mod-
els is to improve the performance of speech recognition. The most straight-
forward way to measure performance increase for different sets of language
models is to run them in a speech recognition system and calculate the word
error rate (WER), which is the most common performance measure for auto-
matic speech recognition systems. The WER is calculated for an evaluation
transcription (with the total number of words Nr) as the percentage of the
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number of substituted (S ), deleted (D), and inserted (I ) words in the output
text generated by the speech recognizer.

WER =
S + D + I

Nr
(4.8)

A letter error rate (LER) can also be calculated in a similar fashion. In some
languages the LER is a more descriptive measure. For example in Finnish the
errors made on the word level are usually quite trivial, such as a deleted or
inserted letter at the end of the word. The WER is too harsh of a measure in
these cases.

Running the speech recognizer separately with different language models and
calculating the WER or LER on the evaluation transcription is a good mea-
sure when comparing performances between language models. However, it
is very time consuming. One recognition run on a big evaluation data set
can take several hours to complete. A faster way to measure language model
performance is needed.

4.5.2 Perplexity

The perplexity measure (ppl) is one of the most common methods used for
evaluating language models. It is a fast technique because the performance
measure is calculated over a text. Perplexity is defined as

ppl = N

√

√

√

√

N
∏

i=1

1

P (Wi|H)
(4.9)

where N is the number of words in the evaluation text and P(Wi|H) is the
probability yielded by the language model. Perplexity is a measure of how well
the language model predicts the word sequence in the evaluation text. The
perplexity value can also be described as the approximate number of equally
probable words the language model has to choose from when predicting the
next word in the sequence. This means that the lower the perplexity the
better the language model. When evaluating language model performance the
absolute perplexity value is usually not so important. The absolute value is
dependent on the model but also on the evaluation text. More important is
the relative perplexity reduction compared to a baseline model.

In Equation (4.9), the perplexity is assumed to be calculated over a word-
based language model. For morph-based models the perplexity expression has
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to be rewritten as follows [24]:

ppl = N

√

√

√

√

L
∏

i=1

1

P (Wi|H)
(4.10)

where N is the number of words, and L is the number of tokens, morphs +
word boundaries.

The perplexity measure is a much faster method for evaluating language mod-
els than what the word-error-rate is. There is however some dispute of how
well perplexity reductions correlate with WER reductions. The main source of
mismatch is considered to be that perplexity fails to account for the acoustic
confusability of words. However in [25], Iyer et. al showed that perplexity re-
duction correlates well with WER reduction when the evaluation text is from
the same domain as the LM training text.

In the article ”Two Decades of Statistical Language Modeling: Where Do We
Go from Here?” [26], R. Rosenfeld suggests as a rule of thumb, that a 5%
perplexity reduction does not usually lead to a significant drop in WER, a 10-
20% reduction usually leads to some reduction in WER, and 30% reduction is
quite significant. For example, in the experiments done by Iyer et. al in [25],
a relative perplexity reduction of 23% leads to a 4.5% relative WER drop. It
is however good to remember that this correlation does not always apply and
it depends highly on the model and evaluation data.
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Language Model Adaptation

5.1 Language Model Adaptation

Natural language is highly variable. The frequencies of different words and
word sequences we encounter vary across topic, style and also time.

Illustrating the difference between topics through homophones, the word ”go-
rilla” is more likely to occur in an article about tropical wildlife than the
word ”guerilla”. However if we switch the topic to world politics ”guerilla” is
probably more prevalent. Apart from single words, the frequency of specific
n-grams can also be greatly elevated in some particular topics. For example, a
commentary from a cricket match might have a significantly higher occurrence
of the n-gram ”corridor of uncertainty” compared to other topics.

Different styles of text and speech also influence heavily on n-gram statistics.
Comparing a casual conversation with friends with a speech given at an official
ceremony, we know that the latter is usually closer to the correct grammatical
syntax. Texts also differ in style depending on their purpose. A technical
report and an email written to a work colleague might both be just as close
to grammatical perfection, but we could still expect less informal language in
the email by the use of shorter sentences and more frequent use of first and
second person pronouns.

Natural languages evolve all the time. Grammar rules can change, new styles
emerge, old words become obsolete and new words and expressions are in-
troduced. This is also seen in n-gram statistics of texts and speeches from
different times in history. For example, the frequency of use of some technical
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terms usually rises and falls with the particular technology. Just consider how
often we see the word ”VHS” being used nowadays compared to 20 years ago.

In the previous chapter it was stated that n-gram language models are trained
with large text corpora containing up to several millions of words. The best
performing model is usually the one trained with the most amount of data.
It may however come as no surprise that model performance suffers, when
evaluating n-gram models on text or speech which differ from the training
corpus in topic, style, or time of creation. To model phone conversations for
example, an n-gram model trained with only two million words from similar
conversations performs much better than a model trained with 140 million
words from TV and radio news transcripts [27]. In experiments done by R.
Rosenfeld in [28], it was also shown when evaluating language models on busi-
ness related texts that the OOV rate is much lower for models trained with
business language data as compared to models trained with texts from other
topics. The timeline factor was also investigated, and as could be expected
the models trained with more recent material had a lower OOV rate than the
models trained with older texts.

Ideally, for each particular type of text or speech, we would like to have a
corresponding language model trained with texts from the same domain. Data
sparsity is a problem however. The total amount of text data found for some
specific topic is usually only a small fraction of the big text corpora which
are explicitly used for training general purpose language models. On the
other hand, these smaller in-domain models can perform just as well or even
better than larger out-of-domain models, as was noted earlier. For optimal
performance however, it would be best to use all information sources and
combine both the statistics of the bigger, more general background corpus
and the smaller, more topic specific adaptation corpus.

BP  (W |H)I A IP  (W |H)

P(W |H)I

Background Corpus Adaptation Corpus

Language Model

Adaptation

Figure 5.1: General framework for language model adaptation
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Combining statistics from text corpora of different domains to yield one lan-
guage model is called language model adaptation and the general frameworks
for it are outlined in Figure 5.1. The method used for combining the different
information sources is at the heart of the issue of language model adaptation.
Some of the most common methods will be introduced in the next sections.

5.2 Linear Interpolation

Linear interpolation is one of the most straightforward language model adap-
tation techniques available. The n-gram models PA(W|H), computed from
a small adaptation corpus, and PB(W|H), computed from a big background
corpus, are merged by simply adding together the weighted probabilities of
the two different models.

P (W |H) = (1 − λ)PA(W |H) + λPB(W |H) (5.1)

The interpolation coefficient λ takes a value between 0 and 1. The value
of λ is usually a constant and it’s estimated beforehand. This is done by
minimizing the perplexity when evaluating the model (as a function of λ) on
some held-out data (usually a subset of the adaptation corpus). For some
special implementations λ can also be a function of the word history H.

Linear interpolation can be further generalized from (5.1) to include any num-
ber of different language models Pi (i=1...N ) to be combined into one single
model.

P (W |H) =
∑

i

λiPi(W |H) (5.2)

where
∑

i

λi = 1

In [27], Bellegarda motivates the use of linear interpolation with the assump-
tion that the background model most of the time provides better estimates
because of the larger corpus it has been trained on. The smaller adaptation
model should give better estimates only for some rarely occurring topic spe-
cific words or word sequences. It might however be the other way around in
some cases, that the frequency of these idiosyncratic word sequences is higher
than the use of general language. Either way which model turns out to be
more dominant, linear interpolation will boost high probability n-grams for
the less significant model.
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In theory, linear interpolation will yield an adapted language model which is
at least just as good as the best of the two mixture models. This is of course
based on the optimal value of λ and the perplexity minima estimated from
the held-out data. In actual speech recognition, there are no guarantees on
the performance.

5.3 Log-linear Interpolation

Another straightforward method of combining different sets of n-gram models
Pi(W|H) into a single model P(W|H), is log-linear interpolation. Log-linear in-
terpolation was introduced as a language model adaptation method by Klakow
in [29]. It can in simple terms be described as linear interpolation in the log-
arithmic domain.

P (W |H) =
1

Zλ(H)

∏

i

Pi(W |H)λi (5.3)

where Zλ(H) =
∑

W

∏

i

Pi(W |H)λi

In log-linear interpolation the probabilities are merged by multiplication in-
stead of addition. The interpolation weights are also powered to the proba-
bility models instead of multiplied. We can now see how this justifies the use
of the term log-linear since multiplication and exponentiation correspond to
addition and multiplication in the logarithmic domain.

Another difference from linear interpolation is that the product is divided by
a normalization term Zλ(H). This is to ensure that the probabilities of all
words sum to 1. It is also worth noting that there are no constraints set on
the interpolation weights λi. They are not required to sum to 1 as in linear
interpolation.

The use of log-linear interpolation for combining probability models has a
well-founded mathematical basis. The theoretical cornerstone from which log-
linear interpolation is derived is the Kullback-Leibler distance.

D(P (W )|Pi(W )) =
∑

W

P (W )log
P (W )

Pi(W )
= di (5.4)

The Kullback-Leibler distance measures the difference between two probability
distributions P(W) and Pi(W). If we have a set of language models Pi(W)
(i=1...N) which we want to combine into a single target model P(W), the
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optimal combination method can be found indirectly when minimizing the
Kullback-Leibler distance D(P|P0) for an additional model P0(W). Setting the
distance measures di (i=1...N) as constraints and using Lagrangian multipliers
a system function DΓ(P(W)) to be minimized can be expressed.

DΓ(P (W )) = D(P (W )|P0(W )) +
∑

i

γi(D(P (W )|P0(W )) − di) (5.5)

If we choose P0(W) to be a uniform distribution (all words have the same prob-
ability), minimize DΓ(P(W)) through partial derivatives, and change P(W) to
a conditional probability P(W|H), the target model will get the same expres-
sion as equation (5.3). A more detailed mathematical proof can be found in
[30].

Log-linear interpolation outperforms linear interpolation in most situations.
In adaptation experiments done by Klakow in [29], log-linear interpolation
achieved a 12.8% perplexity reduction and a 3.1% WER reduction compared
to linear interpolation. A drawback for log-linear interpolation is the normal-
ization term Zλ(H) that needs to be calculated for all words in the vocabulary.
This will greatly increase the computational time it takes to calculate a log-
linear interpolation model.

5.4 MDI Adaptation

Linear and log-linear interpolation provide a fairly simple way of adapting a
general purpose language model to a more topic specific target model. A clear
disadvantage though, is the static way in which the background and adaptation
models are combined, relying on an averaged out interpolation weight.

When estimating language models from small adaptation corpora an issue
that comes up is reliability. The small size of the adaptation corpus can lead
to unreliable estimates especially for longer n-gram contexts. For example, in
small adaptation corpora that contain relatively few documents there might be
an disproportionate number of occurrences of some particular word contexts
which only reflect the style of the writer or a certain subtopic and not give a
good estimate of the topic as a whole. It’s justified to question the use of the
same interpolation weights for all n-grams when combining language models
which have been trained on corpora that differ greatly in size.

Ideally, we would like to pick out the most reliable n-gram estimates from the
adaptation corpus and get as close as possible to the background model. Using

51



CHAPTER 5. LANGUAGE MODEL ADAPTATION

selected features P̂A(Si) as constraints while at the same time minimizing
the distance to a given probability model is called minimum discrimination
information (MDI) adaptation and was first introduced by Della Pietra et. al.
in [31]. The target model PA is found by minimizing the Kullback-Leibler
distance to the background model PB.

PA = arg min
Q

∑

HWǫV n

Q(H, W )log
Q(H, W )

PB(H, W )
(5.6)

The solution depends on how the constraints P̂A(Si) are set. In [32], Fed-
erico sets the unigram estimates from the adaptation corpus as constraints
and reaches the following closed form solution using the Generalized Iterative
Scaling (GIS) algorithm.

PA(W |H) =
1

Z(H)

(

PA(W )

PB(W )

)β

PB(W |H) (5.7)

where Z(H) =
∑

Ŵ ǫV

PB(Ŵ |H)

(

PA(Ŵ )

PB(Ŵ )

)β

and 0 < β ≤ 1

This form of MDI adaptation is also known as fast marginal adaptation or
unigram rescaling. The parameter β can be set freely between 0 and 1. Just as
for log-linear interpolation a normalization term Z(H) needs to be calculated.
A closer look at equation (5.7), and we notice that it works by simply scaling
up the probability for words that are frequent in the adaptation corpus. The
unigram estimate is reliable even for small corpora, therein lies the power of
unigram rescaling as an adaptation method.

The parameter β is usually set by default to 0.5. In [33], Chen et. al. try to
find the optimal β for different corpus sizes. The optimal value of β approaches
1 when the corpus size is very large and is closer to 0 when the adaptation
corpus is smaller. This can be interpreted as a reliability factor. When the
corpus is larger the unigram estimates are also more reliable and a bigger value
can be assigned to β.

In most of the research that has been done on MDI adaptation, the perfor-
mance is evaluated in comparison to the background model. In experiments
done by Kneser et. al. in [34], MDI adaptation was evaluated on two different
domains. For the first domain a relative perplexity reduction of 19.5% and
a WER reduction of 9.8% was achieved compared to the background model.

52



CHAPTER 5. LANGUAGE MODEL ADAPTATION

For the other domain the perplexity was reduced by 18.3% compared to the
background model, but the WER was increased by 4.5%. In similar experi-
ments done by Federico in [32], an average perplexity reduction of 17.8% and
a WER reduction of 5.2% was obtained.

A comparison between the performance of MDI adaptation and linear inter-
polation (and other adaptation techniques) was done by Chen et. al. in [35].
The adapted models were evaluated on two different test sets and compared to
a background model. The average perplexity reduction for the MDI adapted
model was 7.2% and for linear interpolation 13.2%. The average WER reduc-
tion was 1.8% for MDI adaptation and 1.2% for linear interpolation.
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Chapter 6

Experiments

6.1 Experimental Setup

The following experiments are conducted in this work. Speech data supplied
by each test speaker is divided into test data and adaptation data. The test
data is run through the ASR system in a series of different experiments to
determine the best performing acoustic and language models. The evaluation
of speech recognition performance is done using the word error rate (WER).
To get a hint of how the WER and the quality of the recognized text are
correlated, reference sentences and speech recognition output with different
WERs can be viewed in Appendix A. Example sentences in both English and
Finnish are presented.

In the first line of experiments, unadapted baseline acoustic models are eval-
uated. After that, acoustic model adaptation is applied on the best baseline
model with adaptation data from the specific test speaker. The acoustic model
adaptation methods that will be evaluated are cMLLR, regression class cM-
LLR and VTLN. They are in turn evaluated for different amounts of adap-
tation data. A supervised mode is used for all acoustic model adaptation
methods, meaning transcripts are available for all adaptation sentences.

Using the best performing acoustic model (unadapted or adapted) as part of
the ASR system, the search for the best language model is started. Adapta-
tion data (law-related texts) is used to adapt a baseline LM using different
adaptation methods. The following LM adaptation methods are evaluated:
linear interpolation, log-linear interpolation, and MDI adaptation.
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6.2 Speech Recognition System

The TKK speech recognition system is used in this work. The system consists
of units for feature extraction, acoustic modeling, pronunciation modeling,
language modeling, and decoding.

The feature extraction unit divides the incoming speech signal into overlapping
segments. Each segment is converted to a 39-dimensional MFCC vector.

The acoustic models are based on a set of continuous density GMM-HMM
models. Triphones are used as the basic phonetic units. Each triphone is
modeled with a 3-state HMM. The pronunciation of words is modeled in a
pronunciation dictionary, or lexicon. A triphone lexicon is used with triphone-
based HMMs. For the Finnish language a morph-based lexicon is used instead
of a word-based.

N-grams are used for language modeling. The language models are trained
with the VariKN language modeling toolkit [22], that is able to estimate
variable-length n-grams. Language model adaptation is done with the SRI
toolkit [36]. To model the Finnish language, morphs are used instead of words.
The Morfessor toolkit [23] is used to generate the optimal morph set based on
training data.

Decoding is implemented with a time-synchronous beam search decoder [37] [38].

The TKK speech recognition system also includes tools for training acoustic
models and doing acoustic model adaptation (cMLLR and VTLN).

6.3 Significance Test

The same test data set is used to evaluate the different model setups of the
ASR system. The measured performance differences need to be checked if
they are statistically significant or not. In these experiments, a matched-pair
sentence-segment word error test (MAPSSWE) is used to measure statistical
significance [41]. The test is especially well suited for comparing ASR systems
that recognize continuous speech.

The number of errors made per sentence is compared between two systems.
Let Ni

1 be the number of errors made in sentence i by system A1, and Ni
2

the number of errors made in sentence i by system A2. Let Zi=Ni
1-N

i
2, and

i=1,2...,n, where n is the number of sentences. The average difference in the
number of errors in a sentence made by the two systems is denoted as µz. A
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natural estimate can be defined as follows:

µ̂z =
n
∑

i=1

Zi

n
(6.1)

The estimate of the variance of the Zi’s is:

σ2
z =

1

n − 1

n
∑

i=1

(Zi − uz)
2 (6.2)

The estimate of the variance of µz is then

σ̂2
µ =

σ2
z

n
(6.3)

The distribution W is defined as:

W =
µ̂z

σ̂z/
√

n
(6.4)

W is approximately a normal distribution with unit variance if n is large
enough. The null hypothesis H0 is that there is no significant difference be-
tween the two systems. In mathematical terms this is equal to µz=0. In these
experiments H0 is rejected for significance values over 95%.

6.4 Test Data

English test data consisted of 8 kHz audio recordings from a single test speaker.
The recordings were made with the MobiDic client application. The speaker
was a native male English speaker with a British accent. He will be referred
to as E1. In total, 161 sentences (28 min. of speech) recorded by E1 were
evaluated. The content of the dictations were mostly related to contract law.

Unfortunately very little Finnish audio data recorded with MobiDic was avail-
able at the time of this thesis project. To simulate the use of MobiDic, a mobile
phone was used to make 16 kHz recordings with a dictaphone program. The
recordings were transferred to a desktop computer for further evaluation and
adaptation with the TKK ASR tools. In total 90 test sentences (23 min. of
speech) were recorded by a native male Finnish speaker, referred to as F1. The
test sentences were taken from the Finnish law text evaluation set. The only
available Finnish audio data recorded with the MobiDic application was a set
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of six sentences (5 min. of speech) recorded in 8 kHz by a native male Finnish
speaker (F2). The content of the these dictations was related to contract law.

Finnish test data also included 30 sentences spoken by F1, F2, and a third
native male Finnish speaker, F3. Ten sentences were recorded by each speaker
with a headset microphone using a 16 kHz sampling frequency. The sentences
were taken from the Finnish law text evaluation set.

6.5 Adaptation Data

Adaptation data was divided into speaker adaptation data and language adap-
tation data.

Speaker adaptation data was available for speakers E1 and F1. For E1, 140
sentences (27 min. of speech) in total were reserved for adaptation. For F1,
50 sentences (11 min. of speech) were reserved for adaptation.

Language adaptation data was retrieved from different information sources
containing law-related material, for example EURLEX (English) and FINLEX
(Finnish).

For Finnish, 4.3 million words worth of text were available for LM adaptation.
A text consisting of 300 000 words was reserved for a development set, used
for fine-tuning adaptation parameters. A text set of 88 000 words was reserved
for evaluation purposes.

For English, 1.9 million words were used for LM adaptation. The development
set consisted of 30 000 words, and the evaluation set of 10 000 words.

6.6 Results

6.6.1 English

The English speech recognition experiments were conducted on evaluation
data from speaker E1. The evaluation set consisted of 161 sentences recorded
in 8 kHz digital waveform format.

Three different acoustic models were evaluated at starters to determine the
best performing baseline model. The Fisher acoustic model is trained on
180 hours of conversational speech in American English recorded over the
telephone [39]. The WSJCAM0 acoustic models are trained on 19 hours of
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planned speech in British English [40]. The WSJCAM0 D model is trained on
speech recorded from a desktop microphone, and the WSJCAM0 H is trained
on speech recorded from a headset microphone. The WSJCAM0 models use
the BEEP lexicon, a British English pronunciation dictionary, while Fisher
uses the corresponding American English CMU lexicon. Both lexicons are
60 000 words in size and they contain exactly the same words. The results of
the baseline experiments are presented in Table 6.1.

Table 6.1: Baseline acoustic models

Acoustic model Fisher WSJCAM0 D WSJCAM0 H

WER 79.7% 56.1% 63.3%

The WSJCAM0 D model achieved the best performance with a WER of 56.1%.
It was used as the baseline acoustic model in the adaptation experiments.
Three acoustic model adaptation methods were tested: global cMLLR, re-
gression class cMLLR, and VTLN. The adaptation methods were tested for
different sizes of adaptation data from speaker E1. The results can be seen in
Figure 6.1.

Adaptation sentences
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Figure 6.1: Regression class cMLLR achieves the highest performance increase.
After 140 adaptation sentences WER has dropped with over 30%.
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A noticeable trend for all three adaptation methods is that there is a sharp
performance increase for the first ten adaptation sentences (2 min. of speech).
After about 20 adaptation sentences (3 min. of speech) the decrease in WER
starts to saturate for all adaptation methods. The regression class cMLLR
method does give the best overall performance improvement and the WER
drops to 37.5% (33.2% relative WER drop) after 140 adaptation sentences (27
min. of speech).

The regression class cMLLR adapted acoustic model trained on 140 adaptation
sentences was chosen as the baseline acoustic model for the LM adaptation
experiments. Five different n-gram language models were evaluated. The
baseline LM is a modified Kneser-Ney smoothed varigram (n=6) model trained
on the Gigaword text corpus, which comprises billions of words of text from
different English newswire services. A similar law-domain varigram (n=6)
model was trained on 1.9 million words of law-related texts. The 60 000 word
Gigaword dictionary was used when training both language models. In the
law-related training text, 2.6% of the words were not in the dictionary. This
is also known as the OOV-rate. The OOV-rate for the Gigaword training text
was 1.8%.

Three different adaptation methods were used to combine the Gigaword LM
with the law-domain LM. The methods were linear interpolation, log-linear
interpolation, and MDI adaptation. The interpolation weights λGigaword and
λLaw were optimized on the 30 000 word development set (2.0% OOV-rate).
The optimal values were estimated to λGigaword=0.18 and λLaw=0.82. The
same interpolation weights were used for log-linear interpolation. For MDI
adaptation the law-domain unigram was used to adapt the Gigaword model.
The default β value of 0.5 was used.

As a first point of evaluation the perplexity values were calculated for each
model over the 10 000 word law-related evaluation text (2.7% OOV-rate). The
relative perplexity changes compared to the Gigaword model were calculated
for every model. The results are in Table 6.2.

Table 6.2: LM Perplexity over evaluation text

LM Lawtext perplexity Perplexity change

Gigaword LM 444 0%

Law LM 59 -87%

LIN 44 -90%

LOG-LIN 47 -89%

MDI 221 -50%
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We can see that in theory all adapted language models perform well. The
perplexity is reduced by 50-90% for all LM adaptation methods.

A similar set of perplexity experiments were also conducted on the 161 tran-
scribed evaluation sentences spoken by speaker E1. The OOV-rate was 1.7%.
The results can be seen in Table 6.3.

Table 6.3: LM Perplexity over E1 evaluation set

LM E1 evaluation set perplexity Perplexity change

Gigaword LM 357 0%

Law LM 762 113%

LIN 338 -5%

LOG-LIN 434 21%

MDI 253 -29%

There is perplexity reduction for the linear interpolation model (-5%) and the
MDI adapted model (-29%). Perplexity increases quite significantly for the law
LM (113%). There is also perplexity increase for the log-linear interpolation
model (21%). Comparing the relative perplexity changes with the reductions
achieved over the lawtext evaluation set, it can be concluded that the law-
domain LM doesn’t match that well with the 161 sentences spoken by E1.

Finally, a set of speech recognition experiments were performed on the evalua-
tion sentences, using the TKK ASR decoder with the adapted acoustic model
and the five different language models. The results are in Table 6.4.

Table 6.4: Speech recognition experiments on E1 evaluation set

LM WER WER change LER LER change

Gigaword LM 37.5% 0.0% 20.6% 0.0%

Law LM 42.7% 13.9% 22.9% 11.2%

LIN 37.0% -1.3% 20.1% -2.4%

LOG-LIN 38.4% 2.4% 20.8% 1.0%

MDI 36.7% -2.1% 19.9% -3.4%

The results are in line with the perplexity experiments on the E1 evaluation set.
There is performance degradation for the law-domain LM and the log-linear
interpolation method. The MDI adapted LM and the linear interpolation
method both manage to improve speech recognition performance slightly.

An additional set of linear interpolation models are estimated by varying
λGigaword between 0 and 1. This is to get a hint of where the optimal inter-
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polation coefficient lies. The ASR performance and perplexity (E1 evaluation
set) for these models is presented in Figure 6.2.
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Figure 6.2: Linear interpolated models of Law LM (λGigaword=0) and Gi-
gaword LM (λGigaword=1). The best performing LM has the interpolation
coefficient 0.8 and achieves a relative WER reduction of 5.1%.

The best performance is achieved for λGigaword=0.8, with a WER of 35.6% (5.1%
relative reduction). This is quite far from λGigaword=0.18, which is the value
that was optimized on the development set.

The poor baseline performance on the E1 evaluation set can probably in part
be attributed to the difficult language and the lack of proper adaptation data
to match it with. A word error rate over 50% is still quite high though,
suggesting there are also some significant differences between acoustic model
and speech test data. To get an estimate of the level of acoustic mismatch
between the E1 evaluation set and WSJCAM0 D, the performance of the
acoustic model was evaluated on speech data recorded in identical conditions
to that of the training data. The performance of WSJCAM0 D was tested on
the WSJCAM0 si et 2 (20k) evaluation set. The evaluation set consists of 436
sentences read by 14 different speakers. Just as in the previous experiments
the Gigaword varigram (n=6) with the 60 000 word dictionary was used for
language modeling. The OOV-rate for the si et 2 (20k) set was 3.7%. The
results of the experiments are in Table 6.6.
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Table 6.6: WSJCAM0 D evaluation set experiments

WER 25.5%

LER 11.7%

The WSJCAM0 D model achieves a WER of 25.5% on evaluation data recorded
in an identical environment to that of the training data. Comparing this re-
sult with the WER of 56.1% on the E1 evaluation set, it’s clear that there is
big acoustic mismatch between the E1 evaluation set and the WSJCAM0 D
model.

6.6.2 Finnish

The first set of Finnish speech recognition experiments were done on evaluation
data from speaker F1. The evaluation data consisted of 90 sentences recorded
in 16 kHz waveform format.

A baseline model setup was tested at first. The Speecon model was used as the
baseline acoustic model. It is trained on 20 hours of both read and spontaneous
Finnish speech recorded in 16 kHz format. A morph-based varigram (n=13)
model trained on texts from the Kielipankki corpus (180 million words of
Finnish text) was used as the baseline LM in the first experiments. The
Morfessor program was used to extract an optimal set of morphemes from
the training text. A morph lexicon of 19 000 subword units was used for
pronunciation and language modeling. The OOV-rate when using a morph-
based LM is 0% since the subword segmentations are able to build any word
or word form not found in the training text.

The result of the baseline experiment on the F1 evaluation set is in Table 6.7.

Table 6.7: Baseline experiment on F1 evaluation set

WER 21.2%

LER 4.6%

The Speecon model was then adapted to speaker F1 with different adaptation
methods and varying adaptation data sizes. The adaptation methods used
were global cMLLR, regression class cMLLR, and VTLN. The acoustic model
adaptation results are presented in Figure 6.3.

Global cMLLR, regression class cMLLR and VTLN, all improve speech recog-
nition performance. For both cMLLR-based methods, the highest drop in
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Adaptation sentences
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Figure 6.3: The Speecon model was adapted to speaker F1 with the global
cMLLR, regression class cMLLR, and VTLN adaptation method. The global
cMLLR achieves the highest performance increase.

WER happens during the first 10 adaptation sentences (2 min. of speech).
After that, the performance starts to saturate and even degrade. The global
cMLLR method achieves the highest performance increase with a WER of
17.5% (17.5% relative WER drop) after 20 adaptation sentences (4 min. of
speech).

The best performing adapted acoustic model was chosen as the baseline acous-
tic model when doing the LM adaptation experiments. The best performing
acoustic model was the global cMLLR model adapted with 20 sentences. Four
different language models were evaluated alongside the Kielipankki baseline
LM. A standalone law-domain varigram LM (n=13) was trained on 4.3 mil-
lion words of Finnish law texts. A lexicon of 13 000 morphs was created
alongside the law-domain LM.

Linear interpolation, log-linear interpolation, and MDI adaptation were used
to adapt the baseline LM with the law-domain LM. The interpolation weights
λKielipankki and λLaw were optimized on the 300 000 word development set.
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The optimal values were estimated to λKielipankki=0.25 and λLaw=0.75. The
same interpolation weights were used for log-linear interpolation. For MDI
adaptation the law-domain bi-gram (n=2) was used to adapt the Kielipankki
model. The default β value of 0.5 was used.

The language models were first evaluated by calculating the perplexity for
each model over a law-related evaluation text consisting of 88 000 words. The
relative perplexity changes in comparison to the Kielipankki model were also
calculated. The results are viewable in Table 6.8.

Table 6.8: LM Perplexity over law-domain evaluation text

LM Lawtext perplexity Perplexity change

Kielipankki LM 11220 0.0%

Law LM 7762 -30.8%

LIN 6918 -45.0%

LOG-LIN 8511 -24.1%

MDI 21878 95.0%

All adapted LMs give significant perplexity reductions over the law-domain
evaluation text, except the MDI adapted model.

Perplexity calculations were also done over the 90 sentences recorded by speaker
F1. The results are in Table 6.9.

Table 6.9: LM Perplexity over F1 evaluation set

LM F1 evaluation set perplexity Perplexity change

Kielipankki LM 12303 0.0%

Law LM 11220 -8.8%

LIN 6761 -45.0%

LOG-LIN 8318 -32.4%

MDI 14125 14.8%

The LM perplexities over the F1 evaluation sentences are relatively similar
to the LM perplexities over the law-domain evaluation text in Table 6.2. All
adapted LMs except the MDI adapted model give significant perplexity re-
ductions.

The language models were finally evaluated in speech recognition experiments.
The 90 recorded sentences by F1 were used for evaluation. The global cMLLR
adapted acoustic model was used in all the experiments as part of the TKK
speech recognizer. The results are in Table 6.10.
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Table 6.10: Speech recognition experiments on F1 evaluation set

LM WER WER change LER LER change

Kielipankki LM 17.5% 0.0% 3.4% 0.0%

Law LM 20.7% 18.3% 4.3% 26.5%

LIN 19.2% 9.7% 3.7% 8.8%

LOG-LIN 20.0% 14.3% 4.2% 23.5%

MDI 18.7% 6.9% 3.6% 5.9%

Despite the perplexity reductions, none of the adapted LMs improved ASR
performance on the F1 evaluation set.

In this case there was no clear relationship between perplexity reduction
and a lower WER. Probably due to this, the linear interpolation coefficient
λKielipankki=0.25 was clearly not an optimal value either. An additional set
of linear interpolation models were estimated by varying λKielipankki between
0 and 1. The WER and perplexity (F1 evaluation set) for these models is
presented in Figure 6.4.
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Figure 6.4: Linear interpolated models of Law LM (λKielipankki=0) and Kieli-
pankki LM (λKielipankki=1). The best performing LM has the interpolation
coefficient 0.9 and achieves a relative WER reduction of 2.9%.

From the curve in Figure 6.4, it’s evident that for optimal performance, the
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interpolation coefficient should get more weight from the baseline LM instead
of the law-domain LM. The best performing linear interpolation model is
λKielipankki=0.9 with a WER of 17.0% (2.9% relative reduction). It’s also
interesting to note the odd relationship between perplexity and WER after
λKielipankki=0.3. In contradiction with theory, ASR performance improves
although perplexity increases.

The test sentences recorded on the MobiDic client application by F2 were also
evaluated. The LM perplexities were calculated over the six test sentences.
The results are in Table 6.11.

Table 6.11: LM Perplexity over F2 evaluation set

LM F2 evaluation set perplexity Perplexity change

Kielipankki LM 14125 0.0%

Law LM 15488 9.7%

LIN 9333 -33.9%

LOG-LIN 12023 -14.9%

MDI 17783 25.9%

The perplexities of the linear interpolation LM and log-linear interpolation
LM are reduced over the F2 evaluation set. The law-domain LM and MDI
adapted LM both get higher perplexity values than the baseline.

The language models were then evaluated in speech recognition performance.
As acoustic model in all experiments on the F2 evaluation set, the 8 kHz
Speechdat model was used. The model is trained on 8 kHz telephone speech
from 4000 speakers. The results are in Table 6.12.

Table 6.12: Speech recognition experiments on F2 evaluation set

LM WER WER change LER LER change

Kielipankki LM 22.7% 0.0% 4.8% 0.0%

Law LM 30.4% 33.9% 7.1% 47.9%

LIN 26.7% 17.6% 5.6% 16.7%

LOG-LIN 24.7% 8.8% 5.5% 14.6%

MDI 22.9% 0.9% 5.0% 4.2%

From these results we can also conclude that there is no performance gain
for any adapted LM, despite significant perplexity reductions for the linear
interpolation LM and loglinear interpolation LM. The MDI adapted LM, which
had the highest perplexity value, achieves the lowest WER of all the adapted
models.
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The last set of experiments were done on the 30 sentence evaluation set con-
sisting of speech recorded by speakers F1, F2, and F3 (10 sentences/speaker)
on a headset microphone in 16 kHz. As usual, perplexities were calculated for
each LM over the evaluation sentences. The results are in Table 6.13.

Table 6.13: LM Perplexity over F1/F2/F3 evaluation set

LM Evaluation set perplexity Perplexity change

Kielipankki LM 13859 0.0%

Law LM 10594 -23.6%

LIN 6595 -52.4%

LOG-LIN 8252 -40.5%

MDI 16145 16.5%

Results in Table 6.13 follow the general trend. Perplexity drop occurs for all
adapted LMs except the MDI model. The highest perplexity drop is achieved
by linear interpolation with a reduction of 52.4%.

The speech recognition results are presented in Table 6.14. The unadapted
Speecon model was used as acoustic model in all experiments.

Table 6.14: Speech recognition experiments on F1/F2/F3 evaluation set

LM WER WER change LER LER change

Kielipankki LM 18.3% 0.0% 4.0% 0.0%

Law LM 20.1% 9.8% 4.2% 5.0%

LIN 17.7% -3.3% 3.6% -10.0%

LOG-LIN 19.4% 6.0% 4.3% 7.5%

MDI 18.5% 1.2% 4.0% 0.0%

Unlike previous experiments, LM adaptation is successful at improving ASR
performance on the F1/F2/F3 evaluation set. Linear interpolation reduces
WER with 3.3%. The other methods do not manage to improve performance
however. Comparing the absolute results with experiments on the other eval-
uation sets, there doesn’t seem to be much difference for Finnish between
speech recorded on mobile phones and headset microphones.
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6.7 Analysis

6.7.1 English

In the baseline acoustic model experiments on the E1 evaluation set, WSJ-
CAM0 D (WER 56.1%) outperformed WSJCAMO H (WER 63.3%) and Fisher
(WER 79.7%). The poor performance of the Fisher model is not surprising
considering it is trained on spontaneous speech in American English, a clear
mismatch to the E1 evaluation set. The reason why a model trained on far-
field data (WSJCAM0 D) performed better than a model trained on close-talk
data (WSJCAM0 H) is likely an effect of the recording condition. The E1
evaluation set was recorded on a mobile phone by holding the device a few
centimetres from the mouth.

Acoustic model adaptation improved ASR performance on the E1 evaluation
set. After the 10 first adaptation sentences the performance boost over the
baseline model was statistically significant (p=0.05) for all three adaptation
methods: global cMLLR, regression class cMLLR, and VTLN. However, there
was no significant difference between the methods after the 10 first adaptation
sentences.

Averaged out over all adaptation sizes (10-140), the performance of the cMLLR-
based methods was better than VTLN. Regression class cMLLR gave the best
overall performance, gaining a significant performance increase over global
cMLLR after 30 adaptation sentences (5 min).

It’s also noteworthy that there is no significant drop in WER for global cMLLR
after 30 adaptation sentences. For regression class cMLLR there is significant
WER drop even after 70 adaptation sentences (13 min). These results adhere
with the theory that regression class cMLLR is better at exploiting larger
adaptation data sets, through the use of multiple adaptation matrices. Decid-
ing what adaptation technique to use depends on how much adaptation data
is available. Global cMLLR gives faster and better performance increase for
adaptation data that is under 5 minutes. Regression class cMLLR is slower but
can give better performance if larger amounts of adaptation data are available.

Language model adaptation did not give any further performance increase in
this task. Log-linear interpolation and the law LM both performed worse than
the Gigaword baseline model. Linear interpolation and MDI both achieved a
WER that was lower than the baseline (1.3% and 2.1% relative WER drop),
but the improvements were not statistically significant.
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One of the reasons for the meagre results of LM adaptation is the apparent
linguistic mismatch between the E1 evaluation sentences and the law-related
adaptation texts. This is seen when comparing the LM perplexities over the
lawtext evaluation set and the E1 evaluation text (Tables 6.8 and 6.9). For
the lawtext evaluation set the relative perplexity reductions are significantly
high (50-90%) for all adapted LMs. For the E1 evaluation text only linear
interpolation and MDI reduce the perplexity, but the reductions are small
(5% and 29%).

Finding LM adaptation texts that better match the intended dictation topic is
the ideal solution. In this case, the dictations were mainly related to contract
law. Language adaptation data on the other hand, was mainly related to
case law. An LM trained only on contract law texts might have performed
better. Finding large enough in-domain text sets for training a standalone
contract law LM is an additional challenge. If data sparsity becomes an issue,
MDI adaptation could provide an optimal solution since it has been known
to offer performance increase even for smaller adaptation texts. In previous
MDI experiments, adaptation data consisting of only a few thousand words
has been enough to provide significant WER reductions [34] [42]. In [43],
Vergyri et al. propose a method of LM adaptation where the adaptation
data is taken directly from the recognition output. A feedback mechanism
is also implemented where the user is given the chance to partially correct
the output, mainly focusing on important topic-specific words. This method
achieves a 13% relative WER reduction over the unadapted system. How to
implement this feedback function on a mobile device in a user-friendly fashion
is another problem though. For future work a considerable approach would
be to collect written or manually transcribed work-related texts from the user
and use these texts to directly adapt the background LM.

In conclusion, it can be said that language modeling was far from optimal
in this task. Furthermore, the OOV-rate for the E1 evaluation set was 1.7%
and it contributes to the WER with roughly double that percentage (3.4%).
However, a far bigger error source seems to be the acoustic mismatch between
the baseline acoustic model and the speech recordings of the E1 evaluation set.
This fact is made evident when comparing the unadapted baseline performance
between the E1 evaluation set (56.1%) and the WSJCAM0 D evaluation set
(25.5%). It is not yet clear what is behind this huge gap in performance. There
are a number of factors which may degrade ASR performance when using a
mobile phone to record speech. Previous research has shown that there is
significant performance degradation when using different types of microphones
for training and testing [44]. The distance between the speaker’s mouth and
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the microphone also affects performance. Usually close-talk data tested on a
close-talk model gives better results than far-field data tested on a far-field
model.

The much lower WERs of the Finnish experiments are partly explained by the
fact that Finnish is phonetically an easier language to recognize than English.
Based on ASR experiments on the F1/F2/F3 evaluation set (speech recorded
on headset microphones), there didn’t seem to be much performance gain
coming from recording speech on a normal close-talk microphone instead of a
mobile phone.

Future research should focus on finding out whether there really are any sig-
nificant performance degrading factors related to recording speech on a mobile
phone. More detailed and controlled set of experiments needs to be done. To
rule out speaker, language, and recording environment variability, speech data
should be recorded simultaneously on both mobile phone and normal headset
microphone. Speech recognition performance is then evaluated separately for
each set of recorded data.

Another way of spotting performance degrading factors is to modify some
recording parameters. Changing the sampling frequency from 8 kHz to 16 kHz
could by itself enhance performance. Trying out different recording methods,
for example holding the phone at different distances while recording, could
also be an interesting approach to pinpoint any factors which may boost or
degrade performance. It would also be of interest to compare different mobile
phone models to see if there are any big differences in microphone quality and
suitability for ASR applications.

6.7.2 Finnish

Global cMLLR and regression class cMLLR gave statistically significant (p=0.05)
WER reductions on the F1 evaluation set. The performance enhancement was
achieved for both methods after only 10 adaptation sentences (2 min.). VTLN
also improved performance but the WER reduction was not significant.

Performance of global cMLLR was significantly better than regression class
cMLLR averaged out over all adaptation sizes (10-50). Global cMLLR achieved
the lowest WER of 17.5% after 20 adaptation sentences (4 min.). On average,
ASR performance saturated for all methods after 10 adaptation sentences. Re-
gression class cMLLR was not able to exploit the increased size of adaptation
data through multiple adaptation matrices, as it did for English speech data.
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It is not clear whether this is related to the quality of adaptation data or to
innate acoustic differences between Finnish and English.

Language model adaptation was unsuccessful at improving ASR performance
on both the F1 and F2 evaluation set. Over the F1 evaluation set, the per-
plexities dropped significantly for the law-domain LM, linear interpolation LM
and log-linear interpolation LM, but neither of these models got a lower WER
than the baseline LM.

The perplexity values over the F2 evaluation set were also in stark contradic-
tion with actual ASR performance. Linear interpolation LM and log-linear
interpolation LM had significant drop in perplexity compared to the baseline
LM, but ASR performance was degraded for both models with significantly
higher WERs. Another contradiction was that the MDI adapted LM came
closest to the baseline LM in performance with a WER of 22.9%, despite
having a perplexity increase of 25.9%.

The failure of LM adaptation on the F1 evaluation set is somewhat unex-
pected given that the evaluation sentences are from the same source as the
adaptation texts. The law-domain LM does attain perplexity reductions over
both the E1 evaluation sentences (8.1% relative drop) and the law-domain
evaluation text (30.8% relative drop), but in the ASR task the WER is 16.8%
higher than the baseline LM. A major challenge for Finnish LM adaptation
in this task seems to be perplexity, and it’s poor ability to predict ASR per-
formance for morph-based language models. This is exemplified in Figure 6.4,
where ASR performance is evaluated for linear interpolation coefficients be-
tween λKielipankki=0.0 and λKielipankki=1.0. An optimal linear interpolation
coefficient was estimated to be λKielipankki=0.25, based on perplexity over
a development set. However, optimal ASR performance is achieved for lin-
ear interpolation coefficient λKielipankki=0.9. Examining both the WER and
perplexity plots in Figure 6.4, it’s also noticeable that the curves move in com-
pletely different directions after λKielipankki=0.3. The performance improves
even though perplexity increases. Comparing this with the corresponding ex-
periment of English linear interpolated LMs (word-based) in Figure 6.2, there
is much more correlation between the WER and perplexity curve.

The experiments in this work cast a doubt over whether perplexity is a suitable
measure for predicting ASR performance of statistical morph-based language
models. Most previous research done on morph-based LMs have usually con-
centrated on comparing the performance (perplexity, OOV rate, WER) to
word-based LMs. Morph-based models are usually assigned higher perplex-
ities than word-based models but achieve better ASR performance due to a
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lower OOV rate. Not much research has focused on comparing perplexity
values between morphed-based LMs and relating this to actual ASR perfor-
mance. In [24], Broman studied the combination of morph-based LMs and the
models were evaluated by both perplexity and WER. The results are similar
to this work in that there is very little correlation between perplexity and
WER. It is possible that the true robustness of a morph-based LM is missed
when only calculating the probability for the most likely word segmentation.
Linear interpolation did however improve ASR performance on the F1/F2/F3
evaluation set. This shows that evaluation data can also have a significant
effect on results.

The log-linear interpolation and MDI adaptation methods also gave disap-
pointing results in this work. The less than satisfactory performance of their
part can in some regard also be related to the properties of morph-based lan-
guage models. Since the idea of MDI adaptation is to elevate the probability of
words that occur frequently in the adaptation texts, a bi-gram(n=2) was used
to rescale the baseline LM, to take in to account the morph-based structure
of the LM. It could be justified to use even longer contexts in future research
projects, because many words are segmented in to more than two morphemes.
The main reason log-linear interpolation underperformed is probably because
of the decision to use the same interpolation coefficient as was estimated for
linear interpolation.

Unfortunately there were only six evaluation sentences available (F2 evaluation
set) that were not taken from the same source as the adaptation texts. It’s
therefore difficult to judge how well the Finnish adaptation texts match with
texts dictated by real MobiDic target users.
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Conclusions

7.1 Conclusions

In this Master’s thesis work we have studied the integration of the mobile
dictation service MobiDic with the TKK speech recognition system. Eval-
uation data consisted of speech recorded on mobile phones. English speech
data was recorded in 8 kHz waveform format with the MobiDic client appli-
cation. Finnish speech data was recorded in 16 kHz format with a third-party
dictation program. The speech topics for both languages were law-related.

Because of the special characteristics of the evaluation data the main focus in
this work was on model adaptation.

Acoustic model adaptation modifies the acoustic model of the ASR system
to better fit the testing conditions, such as recording method, environmental
noise, and speaker voice characteristics. Three acoustic model adaptation
methods were evaluated in this work: global cMLLR, regression class cMLLR
and VTLN.

Language model adaptation adapts a background language model to a spe-
cific topic or style. Linear interpolation, log-linear interpolation, and MDI
adaptation were used in this work to adapt a background language model to
law-related text.

Acoustic model adaptation improved ASR performance on English evalua-
tion data. Global cMLLR, regression class cMLLR, and VTLN gave about
the same performance increase (22% relative WER drop) after 10 adaptation
sentences (2 min). After 30 adaptation sentences (5 min) regression class cM-
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LLR gave significantly higher performance increase over global cMLLR and
VTLN. Performance improvement for global cMLLR and VTLN saturated
after 30 adaptation sentences while regression class cMLLR gave significant
performance increase even after 70 adaptation sentences (13 min). The use
of multiple adaptation matrices in regression class cMLLR makes it a better
method for exploiting larger sets of adaptation data.

The poor baseline performance (WER 56.1%) on English evaluation data is
troubling. Acoustic model adaptation successfully dropped WER with over
30% but it might still be too high for a commercial application. Future re-
search should concentrate on finding the major factors that cause this big
performance flop. Trying out and comparing different recording settings is
a possible approach to see if there are any acoustic model mismatch issues
related to recording speech on a mobile phone. Another approach would be to
train a completely new acoustic model with speech data recorded on mobile
phones. This would of course require the recording of several hours of speech
data from different speakers.

Language model adaptation did not give any significant improvements in ASR
performance on English evaluation data. English language adaptation data did
not match that well with the language of the evaluation data. Gathering more
appropriate adaptation texts to adapt the background language model is the
natural solution. If data sparsity becomes an issue, selecting a smaller amount
of texts from a narrower but more accurate domain could give better results
with MDI adaptation than using larger text sets from a wider range of topics.

Global cMLLR and regression class cMLLR improved ASR performance on
Finnish evaluation data. VTLN did not give any significant improvements.
The performance increase after 10 adaptation sentences (2 min) was around
16% relative WER drop for global cMLLR and 12% relative WER drop for
regression class cMLLR. Performance did not significantly improve for either
adaptation method after the first 10 adaptation sentences. Regression class
cMLLR was not able to improve performance for increased adaptation data
size, as it did on English speech data.

Language model adaptation was unsuccessful at further improving ASR per-
formance on Finnish evaluation data. Adaptation data did match evaluation
data based on perplexity results, but reduced perplexity did not lead to im-
proved ASR performance. MDI adaptation gave the worst performance of
all the LM adaptation methods. It is likely longer contexts are needed for
the rescaling operation, taking into account how single words are split into
subwords in a morph-based language model.
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In summary, acoustic model adaptation is the best guarantee for improving
ASR performance on law-related speech recorded on a mobile phone. Global
cMLLR gives the fastest improvements with relative WER reductions of 15-
22% after only 2 minutes of speech. If adaptation data sets of over 10 minutes
are available it’s also worth trying out regression class cMLLR. Language
model adaptation was a tricky affair in this project. The main challenge lies
in finding adaptation data that will match the intended speech topics of the
target users.
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Speech Recognition Output

A.1 English

REF = Reference sentence.

OUT U = Speech recognition output with the unadapted WSJCAM0 D model
as acoustic model.

OUT A = Speech recognition output with the regression class cMLLR adapted
model as acoustic model.

REF: Hopefully Y would attempt to argue that the license is perpetual and
it can therefore use the application even after the termination of the contract.
OUT U: I have a clue why would it have to argue that the licenses perpetual
would impress or use the operation even after termination to. (WER 72.0%)
OUT A: Puzzling why would attempt to argue that the licenses perpetual
look of therefore use the application even after termination of the. (WER 36.0%)

REF: At the very least there should be some limitation wording requiring Y
to consult with X prior to such modification of license terms or removal of the
software and the chance for X to modify the license terms or software itself.
OUT U: For starters are released version drew some irritation wording requir-
ing white to cancel the debts prior to such modification of brass instruments
or removal of the software and each article X to modify the last trance also of
worries. (WER 53.7%)
OUT A: At the very least there should be some limitation wording requir-
ing white to cancel the debts prior to such modification of license terms or
removal of the software and the chance for decks to modify the license terms
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all software (WER 22.0%)

REF: Perhaps the most important schedule for the client’s purposes is sched-
ule three C which relates to products for FDA approval and reimbursement
authorization.
OUT U: North platte emerge a important ritual were for the client’s presence
the show draws on Reid’s shoe will which rose two products for FDA approval
all federal reimbursement authorization. (WER 78.3%)
OUT A: Perhaps the most important ritual for the clients purchased the
shuttle’s reads see her which related products for FDA approval and reim-
bursement authorization. (WER 43.5%)

REF: Achieving control of the concern requires control over its constituent
assets if these assets are owned by a company either the assets must be ac-
quired from that company or control must be acquired of the company itself.
OUT U: R which is in control of the concern acquired control of the redskins
featuring a search if these assets around by companies buy the assets must be
acquired from Atlanta braves or control must be required over the companies.
(WER 64.4%)
OUT A: But she’s in control of the concern requires control over its con-
stituent assets if these assets around by companies buy the assets must be
acquired from a company or control must be required over the companies.
(WER 44.4%)

A.2 Finnish

REF = Reference sentence.

OUT U = Speech recognition output with the unadapted Speecon model as
acoustic model.

OUT A = Speech recognition output with the global cMLLR adapted model
as acoustic model.

REF: Artiklan toisessa kohdassa kielletään sijoittautumisoikeutta koskevat
uudet rajoitukset jotka perustuvat jäsenvaltioiden kansalaisten syrjintään.
OUT U: Artiklan j a toisessa kohdassa kielletään nyt sijoittautumisoikeutta
koskevat uudet rajoitukset jotka perustuvat jäsenvaltioiden kansalaisten syr-
jintä. (WER 30.8%)
OUT A: Artiklan ja toisessa kohdassa kielletään sijoittautumisoikeutta koske-
vat uudet rajoitukset jotka perustuvat jäsenvaltioiden kansalaisten syrjintää.
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(WER 15.4%)

REF: Alioikeus katsoi että kantajia oli syrjitty viranhaussa sukupuolen perus-
teella ja esitti lisäksi ettei se voinut Saksan siviililain nojalla hyväksyä kanteita
muutoin kuin matkakulujen korvausvaatimuksen osalta.
OUT U: Alioikeus katsoi että kantajia on syrjitty viranhaussa sukupuolen pe-
rusteella tt esitti lisäksi ettei se voinut Saksan siviililain nojalla yöksi ja b kan-
teita muutoin kuin matkakulujen korvausvaatimuksen osalta. (WER 20.0%)
OUT A: Alioikeus katsoi että kantajia on syrjitty viranhaussa sukupuolen pe-
rusteella ja esitti lisäksi ettei se voinut Saksan siviililain nojalla hyväksi ja kan-
teita muutoin kuin matkakulujen korvausvaatimuksen osalta. (WER 12.0%)

REF: Tapauksesta ei ilmene että satamatyö on yleisiin taloudellisiin tarkoituk-
siin liittyvää palvelua joka erottaa sen erityisesti muista talouselämän toimin-
noista tai että etyn perustamissopimuksen noudattaminen estää yritystä täyttämästä
velvollisuuksiaan.
OUT U: Tapauksesta ei ilmene että satamatie on yleisiin taloudellisiin tarkoituk-
siin liittyvää palvelua joka erottaa sen erityisesti muista talouselämän toimin-
noista p t tai että ehtii perustamissopimuksen noudattaminen kestää yritystä
täyttämästä velvollisuuksia. (WER 22.2%)
OUT A: Tapauksesta ei ilmene että satamatie on yleisiin taloudellisiin tarkoituk-
siin liittyvää palvelua joka erottaa sen erityisesti muista talouselämän toimin-
noista tai että yhtiön perustamissopimuksen noudattaminen estää yritystä
täyttämästä velvollisuuksia. (WER 11.1%)

REF: Ainoa seikka joka poikkeaa tästä puhtaasti kansallisesta taustasta on
se että Werner asuu toisessa jäsenvaltiossa kuin se jossa hän on töissä.
OUT U: Ainoa seikka joka poikkeaa tästä puhtaasti kansallisesta taustasta
on se että Wärner asuun toisessa jäsenvaltiossa kun se jossa hän antoi pelissä.
(WER 23.8%)
OUT A: Ainoa seikka joka poikia tästä puhtaasti kansallisesta taustasta on
se että Wärner asuun toisessa jäsenvaltiossa kuin se jossa hän antoi töissä.
(WER 19.0%)

78



Bibliography

[1] B.H. Juang and L. R. Rabiner. Automatic Speech Recognition - A Brief
History of the Technology Development. Encyclopedia of Language &
Linguistics (Second Edition), pp. 806-819, Elsevier, 2006.

[2] M. Turunen, A. Melto, A. Kainulainen, and J. Hakulinen. Mobidic - A
Mobile Dictation and Notetaking Application. Proceedings of Interspeech
2008, Brisbane, Australia, September 2008.

[3] Z. H. Tan and I. Varga. Network, Distributed and Embedded Speech
Recogntion: An Overview. Automatic Speech Recognition on Mobile De-
vices and over Communication Networks, pp. 1-23, Springer, 2008.

[4] J. W. Picone. Signal Modeling Techniques in Speech Recognition. Pro-
ceedings of the IEEE, Vol. 81, No. 9, pp. 1215-1247, September 1993.

[5] S. B. Davis and P. Mermelstein. Comparison of Parametric Represen-
tations for Monosyllabic Word Recognition in Continuosly Spoken Sen-
tences. IEEE Transactions on Acoustics, Speech, and Signal Processing,
Vol. ASSP-8, No. 4, August 1980.

[6] X. Huang, A. Acero, and H-W Hon. Spoken Language Processing: A
Guide to Theory, Algorithm, and System Development, pp. 92-98 ,Pren-
tice Hall, 2001.

[7] X. Huang, A. Acero, and H-W Hon. Spoken Language Processing: A
Guide to Theory, Algorithm, and System Development, pp. 170-176
,Prentice Hall, 2001.
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[22] V. Siivola, T. Hirsimäki and S. Virpioja. On Growing and Pruning
Kneser-Ney Smoothed N-Gram Models. IEEE Transactions on Audio,
Speech, and Language Processing, Vol. 15, No.5, July 2007.
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