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Directivity has a great influence on a loudspeaker’s perceived performance. Indoors 

directivity defines the indirect sound heard which influences the timbre and spatial 

perception. Outdoors the directivity defines the sound heard off-axis of the speaker 

where most of the audience is. 

The directivity of a single transducer primarily depends on driver size. Directivity 

can be modified using an acoustical waveguide. The primary purpose of a waveguide 

is to control the directivity of the source, but increased efficiency is a favourable 

side-effect. 

This thesis concentrates on applying the Finite Element Method (FEM) to virtually 

prototype waveguides. The theory of FEM and its usability in acoustics is reviewed. 

Also theory for horn directivity is discussed. Major emphasis is on reviewing and 

developing a method for visualizing modelled and measured directivity in a 

comparable manner. 

There are three major outputs of the thesis. First, the method of virtual prototyping is 

validated by comparing and analyzing the measured and FEM modelled prototypes. 

Also the value of the method as a designing tool is emphasized. Second, a 

visualization tool is created to enable comparison and analysis of the modelled and 

measured directivity. Third, a new method is created for combining a FEM model 

and laser velocimetry of a driver. The presented approach increases the accuracy of 

the model because the driver excitation can be made more realistic.  

Keywords: Loudspeaker, Directivity, Waveguide, Horn, Acoustics, Finite Element 

Method, FEM, Modelling 
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Kaiuttimen suuntaavuus on yksi merkittävä tekijä kaiuttimen suorituskykyä 

arvioitaessa. Sisätiloissa suuntaavuus määrittää ihmisen kuuleman epäsuoran äänen. 

Epäsuora ääni vaikuttaa havaittuun äänen väriin sekä tilan tuntuun. Ulkotilojen 

äänentoistossa vain harva kuulija on kaiuttimen suoralla linjalla. Tällöin kaiuttimen 

suuntaavuus määrää  kuullun äänen värin, koska ulkotiloissa heijastuksia on vähän. 

Yksittäisen kaiutinelementin suuntaavuus on riippuvainen lähinnä sen koosta. Yksi 

tapa äänilähteen suuntaavuuden muokkaamiseen on akustisen suuntaimen 

käyttäminen. Suuntain parantaa myös äänilähteen hyötysuhdetta. 

Diplomityö keskittyy esittelemään elementtimenetelmän soveltamista akustisen 

suuntaimen suunnittelussa. Elementtimentelmä on tietokonepohjainen numeerinen 

mallinnusmenetelmä, jota voidaan käyttää akustisten kenttien mallintamiseen. Työssä 

esitellään suuntaimen suuntaavuuden teoriaa ja kuinka suuntaavuus vaikuttaa ihmisen 

havaitsemaan ääneen. Työssä esitellään menetelmiä suuntaavuuden graafiseen 

esittämiseen vertailtavalla ja ymmärrettävällä tavalla. 

Työllä on kolme päätulosta. Ensinnäkin todennetaan elementtimallinnuksen 

käyttökelpoisuus suuntaimen suunnittelussa. Mallinnettuja ja mitattuja prototyypin 

suuntaavuuksia verrataan ja eroavaisuuksia analysoidaan. Toinen työn tulos on 

kehitetty työkalu mallinnetun ja mitatun suuntaavuuden graafiseen esittämiseen 

havainnollisella tavalla. Kolmas tulos liittyy mallinnuksen ja mittauksen 

yhdistämiseen. Mallinnuksen lopputuloksen tarkkuutta voitiin parantaa yhdistämällä 

malliin kaiutinelementin mitattu nopeus taajuuden funktiona.  

Avainsanat: kaiutin, suuntaavuus, aaltosuuntain, torvi, elementtimenetelmä, FEM, 

akustiikka, mallintaminen 
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1 Introduction 

Producing sound is a simple, but sometimes a complex matter. The first musical 

instruments date back thousands of years ago. The era of reproduced music began in 

the late nineteenth century with the introduction of the gramophone and its 

predecessors. The era of amplified music began in the 1920s, when Kellogg & Rice 

patented the moving coil loudspeaker. Virtually all current loudspeakers are based on 

the same principle introduced back then. Billions of audio devices are built every 

year. Therefore it is fair to say that they are really ubiquitous. Nevertheless, even the 

most advanced sound systems cannot match the fidelity of live sound at its best. The 

main driving force behind the thesis is to understand and create tools to improve the 

listening experience. As the story ahead will tell, sometimes it is necessary to go 

quite far from the original idea of listening experience to be able to find ways to 

improve it. 

This thesis combines FEM (Finite Element Method) modelling and acoustical 

understanding of directivity and waveguides. The goal is to use modelling to 

virtually prototype loudspeakers. The motivation is to speed up the prototyping 

process and reduce the amount of costly prototypes. The author also has a stubborn 

belief that modelling can lead to better performing loudspeakers in the end. This can 

be explained by the low threshold of trying out new ideas by virtual prototyping and 

also the enhanced understanding given by the advanced visualization methods. 

In general, waveguide and horn are synonyms. The primary purpose of early horn 

designs was to increase the output of the sound system. Later it became obvious that 

horns have a beneficial effect on the loudspeaker directivity. For some applications, 

the directivity characteristics of the horn are the main benefit and increased 

sensitivity is a side-effect [1]. These horns designed for directivity are called 

waveguides to emphasize the different design goals compared to horns. These days 

the devices used for public address sound reinforcement are called horns. 

Respectively the devices used in home speakers and studio monitors are called 

waveguides. 
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Figure 1.1. A loudspeaker with a waveguide – Genelec 8040A. 

A common goal of a waveguide is to match the directivity of a high frequency 

transducer to the directivity of a low frequency transducer (Figure 1.1). The 

waveguide is located on the upper part of the speaker, around the high frequency 

transducer, called a tweeter. The purpose of the waveguide is to control the 

dispersion characteristics of the sound source. Above the crossover frequency the 

directivity of the high frequency driver should be controlled. In general, the goal is to 

achieve constant beam width of the acoustical radiation or slightly decreasing beam 

width towards high frequencies. 

1.1 The aim of the work 

The content of the thesis is based on the work done on modelling acoustical 

waveguides while working for Genelec Oy. In this thesis are discussed the problems 

and solutions encountered when developing a method for modelling waveguide 

directivity. 

Analytical solutions are available for only a waveguide geometries and those are not 

feasible designs for the targeted directivity characteristics. Nevertheless there are 

some rules of thumb available for waveguide design. These rules are discussed and 

also evaluated during the test case of the thesis.  
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By definition, the accuracy of a model is always second to the real world. The 

selected method for validating the accuracy of the model is to compare it against the 

real world. There is no ready made tool for visualizing measurements and modelled 

results in comparable form. Therefore a major emphasis is needed on developing and 

creating tools for visualizing directivity.  

One aim of the work is to verify the accuracy of the method. Therefore reasoning is 

needed to evaluate the sources of the error of the model. Inaccuracy in the modelling 

result does not necessarily make the tool useless. However it is essential to 

understand the limits of the tool.  

A test case is created for comparing the measured and modelled results. The shape of 

the waveguide is chosen to be far from the optimal design. The reasoning for the 

selection is that there would be more acoustical phenomena present. Modelling 

should be able to expose these undesired effects. After all, the motivation for the use 

of modelling is to reveal and minimize these unwanted effects. 

1.2 Outline 

The outline of the thesis is divided into twelve chapters. The first chapter contains 

the introduction, aim and outline of the thesis. The second chapter discusses the 

acoustic wave equation, which is the basis of modelling acoustic fields. The third 

chapter discusses the use of FEM for solving the wave equation, splitting complex 

geometry to small elements and previous work done in the field of transducer and 

waveguide modelling. The fourth chapter concentrates on the sound source and room 

interaction, its subjective importance and how it is related to the directivity of the 

source. Also other aspects of sound quality are reviewed in order to widen the 

perspective. The fifth chapter introduces the directivity visualization methods used 

now and in the past. The sixth chapter discusses the directivity of a circular piston 

source. This reveals the directivity characteristics typical for the most commonly 

used sound sources. The seventh chapter expands the directivity discussion to horns. 

The directivity of several well known horn profiles is discussed.  

The eighth chapter covers the methods used in the FEM modelling. The ninth chapter 

discusses measurement methods for the physical prototype and visualization methods 

to enable the comparison of the measured and modelled waveguide. 
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The tenth chapter analyzes the phenomena found in the FEM modelled waveguide. 

The emphasis is on introducing the modelling as an engineering tool. 

In the eleventh chapter the results of the model and measurement are shown and 

analyzed. The comparison is done for the directivity of the waveguide and also for 

the frequency response of the waveguide. The twelfth chapter contains the 

conclusion of the work. The purpose of the chapter is to summarize the results and 

discuss future of the FEM modelling. 
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2 Time-harmonic solution of the wave 
equation 

The basis of solving acoustic fields is the three-dimensional wave equation (Equation 

(2.1). The wave equation is the basis when deriving the physics necessary for solving 

FEM. The medium is assumed to be lossless. The wave equation is based on the 

conservation of mass. Therefore no fluid flow should be present when it is used [2]. 

On the right hand side of the wave equation there is a possible monopole source Q . 

On the left hand side there is the second time derivative of the pressure p  and a 

constant term which consists of the density of air 0  and the speed of sound in air c . 

In the middle there is difference of gradient of pressure p  and possible dipole 

source q . The difference is divided by density of air 0  and divergence operation 

  is taken. 
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(2.1) 

The wave equation can be significantly simplified if the pressure is time-harmonic. 

In other words, the modelling is done in the frequency domain and transient 

phenomena are left out. 

For a time-harmonic wave, the pressure in three-dimensional space must be time 

harmonic (Equation (2.2). The variable x  is a three-dimensional vector coordinate, 

variable t  is time and   is angular velocity. 

tieptp )(),( xx 

 

(2.2) 

If the source and the problem are time-harmonic, the wave-equation can be written in 

time-harmonic form (Equation (2.3) [3]. 
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(2.3) 

Where ),( xpp  , hence it is a three-dimensional and frequency domain solution.  

The frequency domain solution of the wave equation presented above is also known 

as the Helmholtz equation. 

Reducing the analysis to 2D axisymmetric geometry significantly reduces the 

computational cost of solving the model. The computational cost for various 
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geometries is discussed in the Chapter 3.3. Fortunately many acoustic problems are 

2D axisymmetrical, for example loudspeaker driver cone and waveguide. 3D 

geometry is axisymmetric if it can be represented by a 2D profile and defined axis of 

rotation which extrudes it to a 3D geometry. 

For a time-harmonic wave, the pressure in the 2D axisymmetric space (Equation 

(2.4) is dependent on the radial coordinate r , the axial coordinate z , the azimuthal 

angle   and the circumferential wave number m  [3]. 




im
ezrpzrp


 ),(),,(

 

(2.4) 

It is noteworthy that azimuthal angle  affects only to the phase of the pressure. This 

is the key for reduced computational cost of the 2D axisymmetric geometries. 

Equation (2.3 and Equation (2.4 can be merged to Helmholtz equation of 2-

dimensional axisymmetric space (Equation (2.5) [3]. 
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3 Using the FEM to solve the wave 
equation 

The use of the FEM for engineering problems originated in the mechanical 

engineering and the aeronautical industry as early the late 1950s [4]. FEM was first 

used for applications where failure of the end product would be costly and even fatal. 

Examples of such applications are bridges and aircraft.  

An analytical solution of an acoustic field is only available to a few simple 

geometries. For more complex geometries, a method called the FEM can be used.  

The basic idea of the method is to divide a geometrically complex system into 

smaller individual components, which are called elements. The solution for these 

small and geometrically simple elements is straightforward to obtain. 

Error in the FEM model is caused by three reasons. First is the inaccuracy in the 

geometry. Second is the inaccuracy of the physics. Third is the finite element size, 

which causes computational error.  

Usually the inaccuracies of geometry and physics dominate the overall error. 

Considering the computational cost, it is not reasonable to push the error caused by 

finite element size much below the overall error [5].  

 Highest 

frequency to be 

modelled  

Sampling rate  Time domain 

calculations 

Frequency 

resolution 

Time 

domain 

solution 

20 kHz 40 kHz 256 samples 156 Hz 

 Highest 

frequency to be 

modelled 

- Frequency 

domain 

calculations (1 

kHz to 20 kHz) 

Frequency 

resolution 

Frequency 

domain 

solution 

20 kHz - 95 200 Hz 

Table 3.1. Computational cost of the time-domain modelling versus frequency 

domain modelling. 

With the acoustic simulation, usually the frequency response is the most interesting 

result. One approach to obtain the frequency response would be the same as with 

most modern acoustic measurement systems: somehow achieve the impulse response 

of the system and calculate frequency response with a fast fourier transform (FFT) of 
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the impulse response. Similarly it is also possible to model the impulse response of 

the system and obtain frequency response. However the computational cost of this 

approach is very high. The computational cost of calculating time-domain solutions 

for the FEM is much higher than calculating frequency domain solutions. For a time 

domain solution 256 calculations are needed in time domain compared to the 95 

calculations of the frequency domain solution (Table 3.1). Therefore it is more 

feasible to directly calculate the amplitudes at the frequencies of interest.  

3.1 Discretization the geometry to elements 

The fundamental idea of the FEM is to divide the geometrically complicated partial 

differential equation problem down to a coupled group of smaller problems. Each 

small problem is called an element. The process of dividing the geometry is called 

meshing. There are several locations to specify the physics on each mesh element. 

The basic approach is to specify the wave equation state parameters to the corners of 

the element (Figure 3.1). It is also possible to specify the states to the edges of the 

element or even to the centre of the element. These state parameters are called 

degrees of freedom (DOF). Using higher order elements improves the accuracy of 

the simulation, because there are more state parameters calculated per element. Of 

course the computational cost is also increased. In the models in this thesis a second 

order Lagrange element is used. Therefore there is a degree of freedom in each 

corner of the element and also at the sides of the elements. 

 
Figure 3.1. Degrees of freedom of each mesh element. Adopted from [3]. 
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3.2 Selection of the element size 

The distribution of the geometry to elements is called meshing. The maximum size 

of the element is limited by two factors. The first limiting factor is the shortest 

wavelength to be calculated. The second limitation is the size of the geometry details 

to be modelled.  

Usually these constraints are related to each other. Small details become interesting 

only when they are comparable to the wavelength of interest. Of course this depends 

on the phenomenon. For example, Helmholtz resonance might a have significant 

influence on the modelled result, even if the port opening is small related to the 

wavelength.  

max

max
6 f

c
EL 

 

(3.1) 

Maximum element size should be smaller than one-sixth of the wavelength of the 

acoustical wave (Equation (3.1) [5]. According to the Nyquist theorem, the element 

size should be smaller than half of the wavelength so that solution would have any 

meaning [3]. 

3.3 The concept of degrees of freedom 

The number of degrees of freedom determines the computational cost of solving the 

model. It is dependent on the mesh element count of the model. This is contradictory 

to the need for a detailed model and large air space to approximate far field 

conditions. The number of degrees of freedom is also highly dependent on whether 

the problem is 1D, 2D or 3D (Table 3.2). An approximation of the degrees of 

freedom of the model can be calculated, if constant y, domain size A, wavelength   

and exponential x are known (Equation (3.2).  

Geometry Multiplying 

constant y 

Modelled domain 

size A 
Wavelength   
exponential x 

1D or 1D 

axisymmetric 

12 Length 1 

2D or 2D 

axisymmetric 

144 Area Squared 

3D 1828 Volume Cubed 

Table 3.2. Factors affecting the degrees of freedom with 1D, 2D and 3D geometries 

[5]. 
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xAyDOF 

 

(3.2) 

According to the table and equation presented, the degrees of freedom can be 

significantly reduced if a 3D geometry can be reduced to a 2D geometry. It is 

possible to solve an axisymmetric 3D problem in a 2D domain without extra 

computational cost. This feature is very fortunate in the field of acoustics. Often 

geometries related to acoustics are axisymmetric or at least a reasonable 

axisymmetric approximation can be made. This is true also in the case of waveguide 

design.  

3.4 Computational cost example 

An approximation of the degrees of freedom for 1D, 2D and 3D problems were 

introduced in the previous chapter. However it is not straightforward to understand 

the difference in computational cost between a 2D axisymmetric and a full 3D 

model. Therefore the following example is shown to justify the use axisymmetry 

whenever possible. 

Geometry Edge length 

of the model 

geometry [m] 

Modelled 

domain 

size 

Wavelength 

at 20 kHz 

[mm] 

Wavelength 

exponential 

Degrees of 

freedom 

2D- 

axisymmetric 

0.4 0.16 2m  3.4 2 78 000 

3D 0.4 0.064 3m  3.4 3 23 000 000 

Table 3.3. Example calculation of degrees of freedom with 2D-axisymmetric and 3D 

model.  

Assume an axisymmetric system that can be modelled either as a full 3D model or a 

2D axisymmetric model. The length of the model edges is 0.4 meters and the highest 

frequency of interest is 20 kHz. Degrees of freedom of the 2D-axisymmetric and full 

3D geometry can be approximated with the known theory (Equation (3.2 and Table 

3.2). The number of the DOF for 2D axisymmetric model is 78000 (Table 3.3). 

Solving 78 thousand degrees of freedom takes about 10 seconds per frequency with a 

modern desktop computer. The memory requirement is less than 1 GB.  

For a full 3D model the degrees of freedom is 23 million. The problem is too large to 

be solved with a desktop computer because of the memory requirement. According 
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to this example it can be concluded that 3D modelling is limited either to small 

frequencies or small geometries (or supercomputers). 

The limit of the degrees of freedom to be calculated with a desktop computer is from 

one to two million. However, with long calculation times the FEM modelling is 

rather a verification tool than an interactive design tool. 

 
Figure 3.2. Mesh around the waveguide.  

In this thesis prototype the highest frequency of interest is 20 kHz. According to the 

one sixth of the wavelength rule (Equation (3.1) the maximum element size is 0.5 

mm. Figure 3.2 shows the mesh around the waveguide. This mesh is used in all the 

calculations of the FEM based models. It easy to see that the element size is quite 

constant over the domain. However, around the tweeter surround and faceplate the 

mesh is denser. This is caused by the small details in geometry around that area. The 

small details have an influence on the directivity at high frequencies. Therefore the 

extra computational cost caused by the small details is justified. 

3.5 Applications of the finite element method to 

acoustics 

The use of FEM for acoustical modelling is not a new idea. This chapter discusses 

the most important papers and applications. Emphasis is on the topics of waveguide 

and transducer modelling. 
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In the 1980s a Japanese research group published papers of applying FEM for 

solving loudspeaker related acoustical problems. In 1982, Kyouno used vibro-

acoustic coupling for compression driver and horn [6]. He explained the theoretical 

background of coupling the mechanical and acoustical domain with FEM. An 

elastical diaphragm of a compression driver was modelled in the mechanical domain 

with two-way coupling to the acoustical domain of a horn. Both cone vibrations and 

the near field acoustic field in the horn was investigated. Far field sound pressure 

was approximated with an analytical equation. Enlightening conclusions were made 

based on the model and measurements. First, the diaphragm vibration has little effect 

on the directivity characteristics of a system with a compression driver. Second, the 

acoustic load coupling to the diaphragm has great effect on its vibration. Thirdly, the 

assumption of plane wave or spherical wave shape of radiation is not valid at high 

frequencies - therefore the analytical solutions are not valid either.  

In 2001, Martin Opitz described three important tools for optimizing miniature 

loudspeakers for mobile applications [7]. FEM was used to optimize the force factor 

Bl and linearity and suspension compliance linearity. The structure of the magnet 

circuit was optimized with FEM. Mobile transducers should be flat as possible, but 

the efficiency of the magnet system sacrifices if the iron parts saturate because of 

small material thickness. Therefore these two contradictory requirements should be 

optimized. Also the membrane material thickness and geometry is optimized with a 

mechanical FEM model as is the linearity of the suspension. Mechanical vibrations 

were coupled to the acoustical world by using BEM (Boundary Element Method). 

Results were compared to physical prototype measured with laser velocitymetry. 

Mark Dodd has done extensive research on research on modelling loudspeakers with 

FEM. In 2002, Dodd modelled loudspeaker motor thermal behaviour with the FEM. 

He modelled the heat spreading from voice coil with axisymmetric geometry of the 

complete driver. Both static and transient cases were studied. He explained the four 

heat paths: radiation, conduction, natural convection and forced convection. 

Convection is the most difficult phenomenon to model, because the physics model 

changes from low velocity laminar flow to high velocity turbulent flow. Dodd found 

agreement between modelled and measured results.  In 2003 Dodd published his first 

paper with electro-magneto-mechanical-acoustical interaction [8]. Because full two-

way interaction between domains would have been too complicated to calculate, the 
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problem was divided into parts and parameterized one-way results were used for 

coupling. The design case was developing a phase-plug for compression driver. 

Blocked coil impedance was calculated with transient magnetic FEM, force factor 

with magneto-static FEM. Input voltage and voice coil length could be defined. 

These parameters were enough to define the force affecting the fully coupled vibro-

acoustic FEM model and thus obtain the full model of the driver. Compression 

drivers are always combined with a horn, which defines the acoustical impedance 

seen by the compression driver throat. This variable was eliminated by modelling 

and measuring the drivers in an impedance tube, which provides a purely resistive 

termination to the horn mouth. Then phase-plug cavity geometry was optimized with 

the model described above. The accuracy of the final design was also compared with 

measurements. A simplified compression driver model was coupled with a horn. 

There was basic agreement with the model and measurements, but the causes for 

differences were not analyzed.  In 2006, Dodd expanded the FEM based optimization 

to diaphragm and waveguide geometry [9]. He analyzed the theoretical solution of A 

planar piston in an infinite baffle. Unfortunately he did not compare the result with 

the well known analytical solution. Also the radiation of a hemispherical diaphragm 

was studied. With analysis of a finite length conical waveguide, he pointed out the 

problem caused by the mouth reflection. The last example was about a realistic dome 

and waveguide shape. The contours in the directivity sonogram behaved very well. 

He also presented a directivity sonogram of the impulse response of the system. This 

approach gave insight to the shape of wavefronts in a waveguide.  

In 2007, Biba et al used FEM for developing the moving parts of a headphone 

transducer [10]. The mechanical vibrations of the transducer membrane were 

modelled with FEM and vibro-acoustic interaction with the BEM. Visco-thermal 

effects were modelled in the narrow regions of the model. Cushion and similar 

damping elements were modelled with frequency dependent transfer impedances. 

The model was done in real 3D because the surround had corrugations and therefore 

axisymmetric modelling could not be used. The publication was divided to three 

phases. First, the moving parts of the transducer were modelled with FEM. 

Modelling results were compared to the average acceleration derived from 

measurements in a vacuum. As usual, there was agreement with results although the 

high frequency modelling is not very exact. Second, the air load was included in the 
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model. The influence of the slit elements and magnet circuit behind the transducer 

was investigated. Also a phase plug was added in front of the transducer. Third, the 

cushioning surround of the transducer was added. Adding details to the model also 

adds sources of error. However, the basic phenomena were visible both in measured 

and modelled curves. After all, this paper was a rare insight to headphone transducer 

design. 

In 2007, Backman presented a paper where he compared analytical solutions of 

various acoustical phenomena to more realistic FEM models [11]. He studied the 

impedances of transmission lines. The main point was to excite the transmission line 

with a non-planar wave. The conclusion was that one-dimensional solutions 

successfully predict the few lowest nodes of the impedance tube. Second, he 

modelled the acoustical length of the port with several flare radii. The conclusion 

was, that the lumped parameter model is accurate for predicting the fundamental 

resonance frequency of a box with port, but not accurate enough to predict the open 

pipe resonances of the port if a back wall or flared edges are present. One detail to 

criticize is that Backman used acoustic simulation software, which does not take in 

account the turbulent airflow inside the port [2]. 
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4 The subjective importance of the 
directivity 

The purpose of this chapter is to motivate the importance of the source directivity to 

the sound perceived by the listener. First is a literature review on the factors affecting 

to the human preference of the sound and what is the contribution of the directivity 

Second is discussed the loudspeaker and room interaction. 

4.1 Human preference for sound 

Comparison of loudspeakers’ performance has been under discussion as long as they 

have been built. It would be desirable that, the subjective performance of a speaker 

could be evaluated with objective measurements. Toole has done extensive work on 

evaluating loudspeaker subjective performance [12][13][14]. His findings were 

unambiguous. In general, flat on-axis frequency response is preferred over 

inconsistent response [13]. Likewise a low level of nonlinear distortion is preferred 

over high a level of distortion [14]. Toole also paid great attention to the loudspeaker 

and room interaction, which is dependent on the loudspeaker directivity. These 

finding are discussed in detail in the following paragraphs. 

According to Toole, a controlled change of frequency response towards an off-axis 

direction is preferred over abrupt changes [13]. This concept is called controlled 

directivity. The concept is very loosely specified. Defining the directivity is further 

discussed in Chapter 5. 

The sound heard in a room is dependent on the room, the speaker and the signal 

transmitted to the speaker. In this work the emphasis is on the speaker performance 

and how it can be evaluated. However room acoustics is briefly covered to highlight 

the importance of the loudspeaker directivity characteristics. The effect of the 

loudspeaker signal source is out of the scope of the thesis. 
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4.2 Loudspeaker and room interaction 

The following is an analysis of the factors affecting the measured impulse response 

of a speaker in a room. The assumptions are that the speaker is in a room, its 

acoustical axis is towards the listening position and there are not obstacles in the line 

of sight between the speaker and the listening position (Figure 4.1). The impulse 

response specifies change between the input signal of the system and the pressure at 

the listening position. The only missing variable is the listener. Therefore impulse 

response should closely correlate to the sound perceived by the listener.  

 
Figure 4.1. Direct sound (green), boundary reflections (magenta, red, orange) at a 

listening position of a music studio. 

One approach to analyze the loudspeaker and room interaction is to look at the 

energy decay at the listening position (Figure 4.2). The energy decay curve is a 

logarithmic presentation of a squared impulse response. As the figure shows, the 

sound heard at the listening position can be divided to three parts.  
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Figure 4.2. The energy decay curve of a loudspeaker in a room. Measured at the 

listening position of a music studio. 

First, the direct sound arrives. With a reasonable listening arrangement, there are no 

obstacles in the line of sight between the listening position and the speaker (Figure 

4.1). Likewise the speaker acoustical axis is turned towards the listening position, 

which is now on referred to on-axis response. Therefore the direct sound depends 

only on the loudspeaker on-axis frequency response. The direct sound is marked in 

Figure 4.2, which usually is the highest peak of the impulse response.  

Second, the early reflections arrive (Figure 4.2). These are usually first order 

reflections from the side walls, floor and ceiling (Figure 4.1). The time difference 

between the direct sound and early reflections is dependent on the wave travel time 

difference. Early reflections contribute to the spatial and tonal perception of the 

sound. The spatial effect is more easily understood by considering the time domain 

signal presented. The time delay and amplitude of the reflection gives a clue to the 

auditory system about the spatial space. Early reflections also affect the tonal 

balance. The sound absorption of the reflecting surfaces is frequency dependent. 

With a steady state signal, the direct and delayed reflected sound interferes at the 

listening position, which causes a comb filtering effect in the frequency domain.  

Third, the diffuse reverberation is left (Figure 4.2). Reverberation consists of a 

countless number of reflections from the room boundaries e.g. it is diffuse. The 

diffuse reverberation contributes to the perceived spatial experience. It takes a certain 

time for diffuse reverberation to build up. Therefore there is a silent part in the 

impulse response between the early reflections and constantly attenuating diffuse 

Direct sound 

Early reflections 

Diffuse reverberation 
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reverberation. Diffuse reverberation also affects the tonal balance of the sound, 

because absorption coefficients of the room material are frequency dependent. It is 

common that the reverberation time is longer at the low frequencies.  

When analyzing the three phenomena seen in the impulse response, it is noteworthy 

that only the direct sound is defined by the on-axis frequency response. Despite of 

the fact, the on-axis response is one of the most used measures to evaluate 

loudspeaker performance. Early reflections are dependent on the room acoustics and 

off-axis response of the speaker at the relevant angle. Diffuse reverberation is 

dependent on room acoustics and total power emitted by the speaker i.e. power 

response. 

To conclude, it is generally agreed that subjective loudspeaker performance is largely 

specified by following characteristics: on-axis frequency response, directivity and 

distortion [1] [14]. This thesis concentrates on the directivity.  
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5 Representing directivity 

This chapter presents the known ways to visualize directivity. In the simplest form 

the directivity is presented as a single scalar number that is a function of frequency 

(Directivity factor (Q), Directivity index (DI) and Beam width). It is noteworthy that 

the mathematics behind these presentation methods is most complicated, because of 

the need to compress a four-dimensional information to one scalar number.  

The second step is to show the frequency response at the specific points of the space 

(Frequency response) or one polar arc of the directivity at a specific frequency (Polar 

diagram). The problem with these plots is that many lines are needed present 

comprehensive information about the directivity.  

The third group are the 3D graphs. Either a full 3D pressure response balloon of the 

radiated sound at a specific frequency can be presented (Balloon graph) or equal 

amplitude contours of one polar plane as function of frequency (Directivity plot). 

The limitation of the balloon graph is that only one frequency can be shown at a 

time. The limitation of the directivity plot is that only one plane can be shown at 

once.  

5.1 Source radiation in space 

Consider a sound source in a space that is located at the origin of the axes (Figure 

5.1). Around the source are the polar arcs of the horizontal plane and vertical plane. 

The sound source is radiating to space and thus its radiation is a three-dimensional 

problem. Its radiation is also a function of frequency and therefore a full expression 

of a directivity is four-dimensional problem. Unfortunately four-dimensional 

problems cannot be visualized in an understandable form. Therefore there have been 

several methods compressing the directivity information to one constant, one-

dimensional, two-dimensional or three-dimensional graph. But it is noteworthy that 

no graph can express the source directivity completely. The fewer dimensions, the 

more compromises have to be made. 
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Figure 5.1. Loudspeaker and the planes. Loudspeaker in the origin, vertical plane 

(blue), horizontal plane (green). 

The target of expressing directivity with numbers or a graph has been to compress 

the four-dimensional information to form that would be informative and describe the 

directivity characteristics enough and at the same time being understandable and easy 

to compare with other sources 

5.2 Directivity factor (Q) 

Directivity factor can be seen as a ratio between on-axis pressure and the total sound 

power radiated by the speaker. In exact form, it is ratio between the sound power 

ANP  and ADP .  Its definition is given as [15]: 

 

(5.1) 

Where ANP  is defined in Equation (5.2. It is a sound power that would be radiated by 

an omnidirectional (i.e. point source) source with on-axis pressure p  at distance r  

[15]. 
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(5.2) 

ADP  is the total sound power emitted by the source (Equation (5.3). Angles   and   

used in the equation are the azimuth and vertical angle to the on-axis direction 

(Figure 5.2). 
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Figure 5.2. Coordinate system. Adopted from [16]. 

Some very useful room acoustic parameters can be calculated when Directivity factor 

Q is known. The sound pressure level pL  at distance r  from source can be 

calculated (Equation (5.4) when the directivity factor Q  of the source, sound power 

level of the source wL , radiation space   in sterians and amount of absorption A  is 

known [17]. 
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(5.4) 

The reverberation radius Rr  (Equation (5.5) is the radius where the sound power of 

the direct sound and reverberant sound from the source are equal. It can be solved 

from Equation (5.4 [17]: 
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(5.5) 

5.3 Directivity index (DI) 

Directivity index (Equation (5.6) is the directivity factor Q in a logarithmic form. It 

is more commonly used than the directivity factor. It is defined as [15]. 

QDI 10log
 

(5.6) 

The DI index is widely used in the loudspeaker industry. Its benefit is that it is rather 

easy to calculate from the commonly measured on-axis frequency response and 

horizontal and vertical polar measurements. It can be presented as a single curve that 

is a function of frequency.  
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The drawback is that DI simplifies the off-axis radiation. The root of this problem is 

that sound power is integrated over all angles. Therefore sources with very different 

radiation characteristic may still have equal on-axis pressure response and power 

response, and therefore have equal directivity indeces.  

5.4 Beam width 

Beam width presents the width of the main lobe of the sound source. The main lobe 

is defined as an angle of -6 dB attenuation compared to the on-axis response that is a 

function of frequency. This information is already available in polar plots. Therefore 

the beam width can be seen as post-processing of polar plots to show the directivity 

information in a single graph. The benefit is good frequency resolution. The 

downside is that only the -6 dB curve is available, which does not comprehensively 

describe directivity characteristic of the source.  

The beam width graph usability is at best at public address systems for outdoor 

events. Then the beam width provides indication of how large area can be relatively 

uniformly covered with a single source.  

5.5 Polar diagram 

The polar diagram shows the amplitude of the source on a horizontal or a vertical 

plane (Figure 5.1). The polar plot depicts amplitude of a source at a certain frequency 

as a function of angle (Figure 5.3). Usually the polar response is normalized to the 

on-axis response. Therefore on-axis response has 0 dB and amplitudes at the polar 

angles are relative and usually lower than the on-axis amplitude. 
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Figure 5.3. Polar diagram of a 2-way speaker at 3 kHz. Horizontal (red) and vertical 

(blue) planes. 

The advantage of the polar plot is the accurate angle resolution. Single graphs are 

also easy to compare. The disadvantage is that only few frequencies can be shown in 

one graph with good readability. Therefore several graphs are needed to see a large 

enough frequency range, which compromises the readability of the result. 

5.6 Frequency response 

A simple way to visualize directivity is to plot several frequency responses at 

different locations on the polar planes (Figure 5.4). The advantage of this 

visualization is a good frequency resolution. The source has to be measured only at 

the angles of interest. Therefore the measurement is fast and can be made without a 

turntable. The disadvantage is the limited angle resolution, because only a few 

responses can be shown with good readability.   

 
Figure 5.4. Frequency responses of horizontal plane. 
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5.7 Balloon graph 

Imagine that the every point on the surface of the balloon (Figure 5.5) has its own 

frequency response. If only one frequency is viewed at the time, a graph may be 

made where the colour and position of the points describe the amplitude in that 

direction. This can be also seen as a 3D equivalent for traditional polar plots 

introduced before. The advantage of this visualization is that full 3D radiation can be 

shown at once. The disadvantage is that only one frequency can be presented per 

graph. 

 
Figure 5.5. Balloon graph of two-way speaker at 3 kHz 

5.8 Directivity plot 

The directivity contour plot can be seen as an extension of the beam width curve. 

Information about the beam width is enhanced by adding the contours of other dB 

limits. Usually the resolution is from 0 dB to -21 dB in 3 dB increments. The 

readability of the plot has been improved by adding colours between the amplitude 

contours. Adding the colours can also been seen as converting the graph to a three 

dimensional representation. In a way, the directivity contour diagram combines the 

advantages of polar plots and beam width curves. The downside is the trade off 

between the frequency resolution and the readability of the graph. The amplitude 

resolution of the contours has to be large enough to maintain the readability.  
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Figure 5.6. Directivity of direct radiating two-way speaker.  

An example of a directivity plot (Figure 5.6) is from two-way speaker horizontal 

plane measurements. The plot is for a horizontal angle from -90° to 90°, to achieve 

clear view of the front half of the radiation of the speaker. The directivity change at 

the crossover frequency is clearly visible. The measured loudspeaker does not have a 

waveguide.  
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6 The directivity of a direct radiator 

The directivity of the circular piston source is relevant for several reasons, although 

the topic of the thesis is waveguide directivity. It is common combine direct radiating 

sources and sources with a waveguide in a loudspeaker. Usually the goal of the 

design is to match the directivity of these sources. Therefore it is essential to 

understand the elements affecting direct radiating source directivity. Also, in some 

cases the directivity of a waveguide can be described as the directivity of a plane 

circular piston.  

The directivity of a loudspeaker is highly frequency dependent. The analytical 

solution for directivity of circular piston source in an infinite baffle does exist 

(Equation (6.2) [15]). The circular piston source radiation directivity is dependent on 

the variable called wave number ka  (Equation (6.1), which is related to the 

circumference of the piston r2  and the wavelength  .  



r
ka

2


 

(6.1) 

With the wave number known, the directivity at an angle   can be calculated with a 

first order Bessel function 1J  (Equation (6.2).  


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(6.2) 

One way to express the directivity of a circular piston source is to show the polar 

plots at certain ka-numbers (Figure 6.1). The following three features can be found 

when analyzing the directivity of a circular piston source. First, a circular piston 

source is omnidirectional when the wave number ka < 1. Second, when ka >1, the 

beam width narrows towards high frequencies and the source is no longer 

omnidirectional. Third, with higher ka < 4, side lobes are present in addition to the 

main lobe. At this wave number the wavelength is shorter than the diameter of the 

source. Thus sound radiated from different parts of the piston is in and out of phase 

which causes constructive and destructive interference in off-axis directions.  



CHAPTER 6 THE DIRECTIVITY OF A DIRECT RADIATOR  27 

 

 
Figure 6.1. Directivity of a circular piston source. Adopted from [16]. 

Direct radiator directivity performance has a major influence on loudspeaker design. 

These acoustical phenomena limit the usability of direct radiating sources for 

loudspeakers.  

Based on the analysis of the circular piston directivity, three conclusions can be 

made considering a loudspeaker design. First, the beam width of a large cone might 

be too narrow at high frequencies to cover the desired area or then the side lobes 

limit the usability. Second, the beam width of the piston might be too broad for the 

application, thus causing high SPL levels at an undesired location. This is problem 

arises especially with low frequency sources. Third, ratio between direct sound and 

power response of the direct radiator is a function of frequency. Therefore the ratio 

between direct and reflected sound is not constant as a function of frequency. 
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7 The directivity of a horn radiator 

The directivity of a horn has been of interest as long horn loaded sources have been 

made. Therefore it is surprising how little information about the directivity of horns 

can be found in the literature. Again, the probable reason for this is the lack 

analytical solutions. Therefore horn directivity has been more of an engineering 

problem solved with prototypes and intuition. The academic world has shown 

relatively little interesting for this topic. Most papers published concentrate on the 

final shape achieved for a commercial application. Very little is discussed about the 

reasoning that led to the solution, probably because of trade secrets.  

Despite the efforts made for finding sources for horn directivity, the success of 

finding solid text was thin. The most comprehensive source found for this thesis was 

Olson’s work on the subject published back in 1957 [15]. The theory presented in 

this chapter is largely based on Olson’s research. 

When discussing the directivity of a horn, it is essential to keep in mind the 

directivity characteristics of a direct radiator presented in Chapter 6. It is common to 

combine direct radiator and horn loaded radiator in loudspeaker systems.  

The theory part of the horn directivity chapter is divided into two parts. First the 

directivity of an exponential horn is discussed. Exponential horn has been 

historically of great interest because of two reasons. First, there is an analytical 

solution for designing an exponential horn. Second, exponential horn has good 

impedance match between source mechanical impedance and the impedance of air.  

The second topic of discussion is the directivity of a conical horn. The conical horn 

has been used a lot because it is the most straightforward geometry of the horn 

imaginable. It also shows an interesting phenomenon toward high frequencies.  
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7.1 The exponential horn 

The cross-sectional area S  of an exponential horn follows an Equation (7.1. The 

constants are the throat area 1S  and the flaring constant m of the horn and variable 

distance x from the throat [15]. 

mxeSS 1

 

(7.1) 

 
Figure 7.1. Exponential horn with constant mouth size and varying length. Adopted 

from [15]. 

One approach to research the directivity properties of a horn is to compare polar 

plots of several horn geometries (Figure 7.1). The throat and mouth circumferences 

are constant, but the length and flare rate are varying. The beam width decreases 

towards high frequencies, which is a universal feature for exponential horn. The 

following problems arise because of this feature. First, the narrow beam at high 

frequencies limits the area that can be covered with a single horn unit. Second, the 

power response of the source decreases towards high frequencies, which affects the 

room response of the speaker. 

The number at the right side of each polar diagram indicates the size of a circular 

piston, which would have equal directivity to this particular horn. At 1000 Hz, the 

length of the exponential horn does not affect the directivity of the horn. The 

directivity of the horn is equal to the directivity of a circular piston with diameter of 

12 inches, which is exactly the diameter of the horn mouth. For frequencies from 2 
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kHz to 10 kHz the horn length does matter. With a longer horn, the beam width is 

slightly decreased at mid and high frequency range. 

 
Figure 7.2. Exponential horn with varying mouth size. Adopted from [15]. 

Another approach is to keep the flare rate m constant (Figure 7.2). Mouth size and 

length are varying. Again mouth the size is defining the directivity at low 

frequencies. With 6 inch and 12 inch mouth diameter horns the directivity at 1 kHz is 

comparable to the directivity of a direct radiator with an equal diameter. With a long 

horn and a large mouth, the directivity is more constant as a function of frequency. 

This is because the horn length and mouth are large compared to the wavelength and 

therefore the directivity is defined by the horn geometry rather than size of the 

mouth.  
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7.2 The conical horn 

The conical horn has different directivity characteristics (Figure 7.3). In the figure is 

presented polar plots of two conical horns with varying length, but constant mouth 

and throat size. The effect of the different profiles is not very intuitive. The following 

observations can be made of the directivity.  

 
Figure 7.3. Directivity of a conical horn with constant mouth size and varying length. 

Adopted from [15]. 

The low frequency directivities are equal. It is dependent only on the mouth size. The 

short horn has a wider beam width at high frequencies than long horn has.  

The beam width is narrowest at the mid frequencies. This is also called midrange 

beaming [15]. The longer horn has a narrower beam in the 4 kHz and 7 kHz 

diagrams. 

It is safe to assume, that the low frequency directivity of a conical horn is defined by 

its mouth size as it is with exponential horn geometry.  

The directivity of a conical horn is a strongly varying function of frequency and 

therefore it is not suitable for waveguide as such. 

7.3 The exponential and conical horn as a waveguide 

The beamwidth of an exponential horn and a conical horn strongly vary as a function 

frequency. Therefore they are not suitable for a loudspeaker with controlled 

directivity characteristics. Nevertheless some useful conclusion can be made based 

on the theory presented before.  
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 Low frequency directivity is dependent only on the mouth size. The cutoff limit is 

ka < 1 i.e. wavelength is longer than circumference of the horn mouth. When the 

wavelength is shorter than the mouth circumference, the directivity of the horn is 

dependent on the geometry.  

Because of this, an interesting conclusion can be made about minimum waveguide 

size for multi-way systems if controllable directivity is desired. Consider a three-way 

system, with a direct radiating woofer, a midrange driver in a waveguide and a 

tweeter in a waveguide.  

The midrange waveguide size is dependent on the crossover frequency and the 

woofer directivity, which is related to its size. If ka < 1 for the woofer at the 

crossover frequency, the midrange waveguide diameter has to be equal to the woofer 

diameter. Then the directivities will match, according to the theory presented above. 

If ka > 1 for the woofer at the crossover frequency, the midrange waveguide 

circumference has to be equal to or larger than the wavelength. Then the directivity 

of the midrange can be adjusted by the waveguide geometry.  

The tweeter waveguide directivity has to match the midrange waveguide directivity 

at the crossover frequency. With practical crossover frequencies, ka < 1 for the 

midrange waveguide. Therefore the tweeter waveguide circumference should be 

equal or larger than the wavelength at the crossover frequency.  

Neither exponential nor conical horn shapes are suitable for a constant directivity 

waveguide as such. The exponential horn beam width decreases towards high 

frequencies and the beam at high frequencies is too narrow for most applications. 

The conical horn beam width is narrow at mid frequencies, which is also referred to 

as midrange beaming. Still these two profiles are a good starting point for horn 

design and understanding the influence of horn geometry. There are also analytical 

solutions available for other shapes of horns, but they are even less fit for achieving 

constant directivity.  
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8 Using the FEM for modelling 
waveguides 

8.1 Waveguide geometry 

The simulation method and measurement were tested with a physical waveguide. 

The shape of the waveguide was chosen to be simple. The reasoning for this is that 

the geometry would be easy to manufacture and there would be no measurable 

geometric error between the modelled and physical prototypes. The properties of the 

waveguide were chosen to be such that it would have clear directivity characteristics, 

but its performance would be far from optimal. In other words, the waveguide shape 

was chosen to be such that it has problems to look for and to solve.  

The sound source consists of two parts, which are the waveguide and the tweeter 

(Figure 8.1, right). The waveguide is a conical shape with a 33° angle tangential to 

the axis of symmetry. The tweeter is an aluminium dome tweeter with a 19 mm 

dome diameter. The surround is made of fabric and the diameter width is 

approximately 3mm. The tweeter is mounted to a faceplate, whose diameter is 40 

mm. 

 

Figure 8.1. Model boundaries (left) and waveguide boundaries (right). Dimensions 

are in meters.  

The waveguide is surrounded with air (Figure 8.1, left). The radius of the air medium 

is 0.4 meters. The radius of the air space to be modelled is related to the 

computational cost of the model. The computational cost of solving a model is 

further discussed in Chapter 3.3. 

33° waveguide tweeter 
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8.2 Motivation and strategy to simplify geometry 

The computational cost of the model is highly dependent on the size and complexity 

of the geometry. The computational cost of the model can be reduced in the 

following ways. 

Use a 2D axisymmetrical model whenever possible. This is the most significant 

factor in minimizing model size.  

Reduce the area of simulation. For acoustics, this means usually the radius of the 

modelled air space around the simulated device.  

Reduce the details of the geometry. Small details increase the element count of the 

model. Optimization of the geometry is a matter of knowing what details really affect 

the result of the simulation. In general, the closer the detail is to the sound source, the 

greater the effect. Also larger details have a larger effect than small details.  

8.3 Modelling the medium and boundary conditions 

 

 
Figure 8.2. The boundaries of an axisymmetric waveguide in 4 sterians airspace. 

Boundaries are the geometry edges surrounding the air medium. Boundary condition 

has to be specified for each boundary. 

Radiation 

condition (limit 

of calculated 

airspace) 

 
Axis of symmetry 

Sound hard 

boundary 

(waveguide) 

Normal acceleration (tweeter 

dome) 
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8.3.1 The medium 

The medium is the area or volume in the model where the waves propagate. The 

properties of the medium have to be correct to achieve accurate results. The medium 

for acoustical modelling is air. Its density is 325.1  kgm  and speed of sound 

1343  msc , which corresponds to the properties of air at 20 C . 

8.3.2 Sound hard boundary 

The sound hard boundary is a boundary with infinite acoustical impedance. Particle 

velocity at the boundary is zero. Therefore also particle acceleration is zero at the 

boundary. The sound hard boundary condition is specified by subtracting the dipole 

source q  from the gradient of the pressure p  and taking the normal vector of the 

surface with the operator  n  [2]. 
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(8.1) 

This boundary condition is used to define all the rigid surfaces of the model 

8.3.3 Axisymmetry 

This is quite self-explanatory. In other words it is the line which is tangential to the 

axis of revolution. Of course this boundary needs only to be defined for 

axisymmetric models.  

8.3.4 Normal acceleration 

This is the boundary condition that defines the excitation inside the model. The 

equation for constant acceleration (Equation (8.2) is same as for the sound hard 

boundary (Equation (8.1) except the acceleration at the boundary is now specified to 

na  instead of zero. [2]. 
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(8.2) 

The most straightforward value would be constant acceleration na . Constant 

acceleration equals velocity frequency response, which attenuates 6 dB per raising 

octave. This is exactly the case with ideal driver movement above its mass-spring 

resonance frequency. The following assumptions are made with the ideal 
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acceleration source. First, the diaphragm moves as rigid surface. No breakups of the 

cone, dome or surround are present. Second, the effect of the voice coil inductance is 

excluded. Third, electromagnetic field (EMF) from the movement of the voice coil in 

magnet gap and other dynamic effects are excluded. Fourth, there is no coupling 

between the acoustical impedance of the air and the diaphragm motion. Pressure at 

the diaphragm surface does not damp movement of the cone. Therefore the 

resonances in the acoustic domain tend to be over-exaggerated compared to the 

reality. 

With so many simplifications made, it is fair to question if constant acceleration is 

realistic enough to model the transducer part of the simulation. However, of the 

mentioned simplifications, only cone breakups affect the directivity of the system.  

On the other hand, it may be a desirable feature to the designer to be able to exclude 

the nonidealities of the transducer from the contribution of the waveguide.  

An external source can be coupled to the model. It is also possible to define na as a 

frequency dependent function. 

8.3.5 Radiation boundary condition 

Radiation at the boundary can be specified as zero. Therefore there can be no 

reflections back to the model air domain. This boundary condition is used at the 

edges of the air domain to represent infinite space outside the modelled space.  

8.4 Improving the diaphragm movement model 

8.4.1 Motivation for the development of the model 

Accuracy of the tweeter radiation used in the FEM model limits the accuracy of the 

frequency responses of the model. At high frequencies the tweeter radiation starts to 

dominate the directivity characteristics over the waveguide. Therefore the accuracy 

of the tweeter model is vital for achieving realistic directivity results at high 

frequencies. The most difficult part of the tweeter model is to approximate the 

different radiation characteristics of the several radiating parts. The source of 

difficulty is that the radiation is dependent on the geometry, location in the geometry 

and frequency.  
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This chapter is shows several levels of accuracy improvement for of the tweeter 

radiation model. First the analogous circuits related to the tweeter and its radiation is 

introduced. Second, the use of a simple normal acceleration to model the tweeter 

excitation in the model is discussed. Third, the use of velocity measurements of a 

known driver as diaphragm excitation is shown. Fourth, is a discussion on how to 

couple the acoustical and mechanical domain to include the effect of the acoustic 

pressure on the diaphragm motion. 

8.4.2 The equivalent analogous circuit for loudspeaker 

driver 

 
Figure 8.3. Analogous circuit of a transducer. Divided to (a) electrical, (b) 

mechanical, and (c) acoustical domain. Adopted from [18]. 

The operation of a transducer can be expressed with an equivalent analogous circuit. 

There are several ways of presenting the analogous circuit. In the version used, the 

electrical, mechanical and acoustical domains are separate and then coupled with 

controlled voltage or current sources (Figure 8.3). The electrical domain consists of 

the voltage generator ge  and the internal resistance of the generator gr . The voice 

coil consists of series resistance of the coil eR  and inductance of the coil eL  shunted 

with a parallel resistance 
'

ER  to model the damping caused by eddy currents in the 

iron part of the magnet assembly. Back EMF ce  is modelled by coupling the velocity 

of the coil Du  from the mechanical domain and multiplying it by the force factor Bl . 

The mechanical domain consists of the mass of the moving parts MDM , mechanical 

damping MSR  and the compliance of the suspension MSC . The mechanical force Df  

from the electrical domain is calculated by multiplication of the electrical current ci  

and force factor Bl . The mechanical force Df  from the acoustical domain is 



CHAPTER 8 USING THE FEM FOR MODELLING WAVEGUIDES  38 

 

calculated by multiplying the pressure Dp  on the diaphragm surface and diaphragm 

area DS . The acoustical domain consists on acoustical impedance at front of the 

diaphragm AFZ  and at the back of the diaphragm ABZ . Volume velocity DU  of the 

diaphragm is coupled from the mechanical domain by multiplying the diaphragm 

velocity Du  and the area of the diaphragm DS . The question is, how is the FEM 

related to all this? This thesis is mostly about modelling the acoustical impedance 

AFZ  at the front of the diaphragm. Because the problem is in a three-dimensional 

space and also frequency dependent, there is no means to accurately model it using 

lumped elements. The approach presented crystallizes the idea of modelling the 

acoustical domain with FEM and how it is connected to the mechanical and electrical 

domains of the transducer. 

8.4.3 Defining location dependent acceleration 

The simplest method to excite the FEM model is to specify the diaphragm as 

constant acceleration boundary condition. The tweeter geometry model (Figure 8.4) 

has an aluminium dome part, inner half of the suspension, outer half of the 

suspension, and rigid parts. The simplest approach to specify the dome motion is to 

specify a constant acceleration for all the moving parts. In that case the modelled 

directivity becomes quite realistic for wavelengths much longer than the dimensions 

of the moving parts.  

 
Figure 8.4. The geometry of the tweeter in a model. Aluminium dome (green), inner 

half of the suspension (cyan), outer half of the suspension (magenta) and rigid parts 

(blue). 

The next improvement is to specify different accelerations for the dome and the 

surround. Acceleration of the surround has its maximum at the point where it is 

attached to the dome and the minimum close to the fixing point. For example, the 

acceleration can be specified to be 0.75 times for the inner part of the suspension and 

0.25 for the outer part of the suspensions of the acceleration of the dome.  
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The root of the problem for defining a realistic diaphragm movement is that the 

material properties of the dome and surround differ. The aluminium dome moves as 

a rigid piston in its passband, which is usually about 1 kHz to 20 kHz. The first 

mechanical eigenmode of the dome is called the dome break-up frequency. Then, the 

dome no longer moves as a rigid piston. For an aluminium dome this frequency is 

typically 22 kHz to 30 kHz [19]. However already much below the break-up 

frequency there is a phase difference between the moving parts of the dome. Usually 

this phase difference becomes significant about one octave below the break up 

frequency. For an aluminium dome the range is from 11 kHz to 15 kHz. The sound 

radiated from the different parts of the dome does not sum up perfectly because of 

the destructive interference caused by the phase difference. A typical tweeter 

surround is made of fabric mixed with adhesives. The combination is not very rigid, 

but the damping properties are excellent. Therefore the surround has resonances in 

the tweeter frequency range but they are well damped.  

8.4.4 Measuring the velocity of the diaphragm 

Velocity responses of an aluminium dome and a fabric surround of a tweeter are 

measured with a laser velocity meter (Figure 8.5). It is clearly seen that the 

aluminium dome has a higher velocity throughout the frequency range. However, the 

difference is decreases towards high frequencies. Therefore the radiation caused by 

the surround starts to dominate at high frequencies. Then the combined radiation 

approaches the radiation of a ring radiation source, which is much more directive 

than a piston source. This phenomenon does have an influence on the tweeter high 

frequency response and directivity. Directivity of the transducer increases toward the 

high frequencies because of the ring radiator phenomenon. 
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Figure 8.5. Measured velocity [m/s] of dome (black) and surround (blue) of 

aluminium dome tweeter. One volt excitation. 

The velocities of the dome and surround were measured with a laser velocity meter. 

The transducer was excited with an maximum length sequence (MLS) signal as done 

in acoustic measurements. The MLS is a pseudo random noise, which consists of a 

series of impulses. One impulse contains all frequencies and in the frequency domain 

it is white noise. MLS contains a series of these impulses to improve the energy of 

the excitation signal and improve signal to noise ratio [20].  

The velocity signal of the transducer was sent back to the measurement system, 

instead of a pressure microphone signal. The boundary condition for the moving part 

is the acceleration a  (Equation (8.3). 

f

v
a

2


 

(8.3) 

8.4.5 Using measured velocity in the FEM model 

The intention was that by combining measurements and simulations a very accurate 

result could be achieved. Considering again Figure 8.3, now AFZ  is simulated with 

FEM. The transducer velocity Du  is measured. The volume velocity DU  is 

automatically calculated in the model, because the moving boundary has the 

information of the diaphragm area. The only missing part in the big picture is the 

coupling between the air pressure at the diaphragm and mechanical system. The 

force aF  is the force caused by the acoustic pressure at the diaphragm. It is 
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calculated (Equation (8.4) by multiplying the pressure at the diaphragm Dp  and the 

area of the diaphragm DS  [18]: 

DDa SpF 

 

(8.4) 

Of course the pressure at the diaphragm is not constant, but is location dependent. 

Fortunately the FEM is able to integrate the complex pressure over the diaphragm 

surface. The pressure at the diaphragm boundary can be integrated, thereby obtaining 

the exact force caused by the acoustic pressure. The last step for including diaphragm 

pressure in the model is to calculate the difference in the acceleration caused by the 

force caused by the pressure at the diaphragm aF . If the driver is operating above its 

mechanical resonance frequency sf  the motion is controlled by the diaphragm mass 

m . Therefore Newton’s second law of motion is valid (Equation (8.5) [21]). 

maF 

 

(8.5) 

The goal is to combine the measured velocity Dv  and add the damping caused by the 

pressure at the dome surface. By combining Equations (8.3), (8.4 and (8.5) an 

equation can be created which includes the measured acceleration of the moving 

parts and the damping of the pressure (Equation (8.6). The Da  is the total 

acceleration at the diaphragm, Dv  is the measured velocity of the diaphragm, aF  is 

the force caused by the acoustic pressure at the diaphragm surface and Dm  is the 

mass of the diaphragm. 
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9 Measurement system and visualization 

9.1 The selection of the visualization method 

Post-processing of the result is significant part of modelling work. First, a 

meaningful graph should be made so that results can be analyzed and understood. 

Secondly, the post-processing method should be such that it can be used to visualize 

physical measurements for comparison.  

Various methods for visualizing directivity were introduced in the Chapter 5. For this 

thesis, the directivity plot was chosen for visualizing the results. The directivity plot 

is introduced in Chapter 5.8. There are several reasons for selecting the directivity 

plot as the visualization method. 

First, there were no readily available comparison methods for viewing the results 

from modelling software and physical measurement setups. Writing a post-

processing program was inevitable. 

Second, the numerical data of the modelled results can be exported with a very good 

angular resolution. The frequency resolution depends on how many solutions were 

calculated in the solving process. 

Third, the physical model can be measured in the anechoic chamber. The 

measurement system consists of a turntable and a PC-based measurement program. 

The measurement program controlled the turntable and excitation signal 

automatically. 

The code for data processing and graph plotting were written in a numerical data 

processing environment as part of the thesis project (Figure 9.1). Data processing 

codes had to be individually written for modelling and measurement processing, 

since the input data formats were different. The code for plotting the results is 

shared. 
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9.2 Visualizing the directivity of the measurements 

The creation of the directivity plot is divided to three parts which are data 

acquisition, processing the impulses to frequency responses and plotting of the 

frequency responses (Figure 9.1). 

 
Figure 9.2. Prototype waveguide with a tweeter. 

First, the acoustic response of the transducer in the waveguide is measured. The 

measurements are performed in an anechoic chamber (Figure 9.2). The low 

frequency limit of the anechoic room is approximately 100 Hz. Loudspeakers are 

usually omnidirectional at frequencies (below 100 Hz). Therefore the limit is not 

critical with directivity measurements. In this case the waveguide is used for tweeter 

(Figure 9.3), whose frequency range is above 1 kHz. Rotation of the waveguide to 

different angles during the measurement is executed with turn table. The turn table is 

automatically controlled by the measurement program. Measurements are made at 5° 

increments from 0° to 180°, which totals 37 measurements. Measurement of one 

Measured 

impulses 

Create 

directivity 

plot 

Calculate FFT  

Data acquisition Data processing 

Amplitude, 

time, angle 
Amplitude, 

frequency, 

angle 

Post-processing 

Modelled 

frequency 

responses 

Amplitude, 

frequency 

and angle 

Figure 9.1. The block diagram of data flow to create directivity plots from 

measured on modelled data. 
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polar arc is enough, because the waveguide is axisymmetric. Impulse responses of 

the measurements are stored and named according to the measurement angle. 

 
Figure 9.3. The measurement setup of the waveguide. Waveguide is on top of a 

microphone stand. Stand is on a turning table. Microphone is located in the top right 

of the figure. 

Second, the impulse responses are imported to software to perform a numerical data 

processing. The frequency responses are calculated with an FFT. All off-axis 

frequency responses are normalized to the on-axis response. Thus only the directivity 

can be examined. Also data of the measurement angles, frequency range and title are 

created.  

Third, the directivity plot is created. The inputs are the frequency responses, their 

respective frequencies and angles. The amplitude contour interval is 3 dB. The 

directivity is presented from 0° to 90°. 

The directivity plot is at its best for examining the directivity of the source. The 3 dB 

amplitude resolution does limit its usability for amplitude comparison. Therefore it is 

convenient to exclude the on-axis frequency response information from the graph. 

This is done by normalizing all frequency responses to the on-axis frequency 
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response. The result of this normalization is equivalent to the directivity of a source 

with flat on-axis response.  

9.3 Visualizing the directivity of the modelled results 

The pressure at the outer boundary of the modelled domain (Figure 8.2) is exported 

from the modelling software to a numerical format. The exported data contains 

information of the complex amplitude, frequency and angle. 

Directivity data in numerical format is imported to a software to perform numerical 

analysis. Directivity plot is created with same tool as for measured results (Figure 

9.1). 
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10 Analyzing the simulated waveguide 

There are two purposes for this chapter. First is to represent the results found in the 

directivity plot of the modelled waveguide. Second purpose is to compare the results 

to known theory of the horns (Chapter 7) and analyze the reasons for the phenomena 

found in the graphs. The idea is to demonstrate that the modelling tool can be used to 

understand the reasons behind the phenomena found in the measurement results.  

 
Figure 10.1. Directivity plot of the modelled waveguide. 

The directivity plot (Figure 10.1) of the modelled waveguide can be used to analyze 

the phenomena related to waveguide design. The directivity characteristics of this 

particular waveguide can be divided to four frequency ranges. 

At low frequencies (from 1 to 2 kHz) the waveguide directivity is close to the 

directivity of a circular piston. The wavelength (from 34 cm – 17 cm) is larger than 

the circumference of the waveguide mouth. Therefore the directivity of the source is 

equal to the directivity of circular piston source of the mouth size. This is congruent 

with the theory of the horn directivity at low frequencies presented in Chapter 7. 

At medium frequencies (from 2 to 5 kHz) the beamwidth decreases towards high 

frequencies. The wavelength (from 17 cm to 7 cm) is shorter than the circumference 

of the waveguide mouth. Now the shape of the waveguide profile is dominating the 

directivity. Again this is congruent with the horn theory. 

At high frequencies (from 5 to 12 kHz) the diffraction dominates the directivity. The 

conical waveguide used has a sharp edge at the mouth. The sharp edge can be seen as 

a impedance discontinuity, which causes diffraction. It is known from the theory that 
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the diffraction can be seen as a new sound source [15]. In the far field, this new 

source is out of phase with the direct sound at certain frequency. This phenomenon is 

almost solely an on-axis frequency response problem, because the off-axis responses 

are fairly unaffected except the 15° response (Figure 11.3). Even then, the directivity 

problem arises if a flat on-axis response is desired. The wavelength in the diffraction 

problem frequency range is approximately 7 cm to 3 cm. The distance from the 

mouth of the waveguide to the tweeter dome is approximately 2,5 cm. The frequency 

that correspond a half wavelength of this length is 6800 Hz. As can be seen in the 

model directivity plot, the diffraction problem is not exactly at one frequency as the 

theory would suggest. Instead it is smeared to frequency range from 5 kHz to 12 

kHz. There are two explanations for this. First explanation is related to the model 

geometry. The dome is not a point source. Therefore the distance from different parts 

of the dome to the mouth is not constant. Second explanation is that in theory a plane 

wave pressure field is assumed. In reality the pressure field is more complex (Figure 

10.2) and plane wave approximation is not adequate. The shape of the pressure wave 

is also frequency dependent.  

 
Figure 10.2. Sound pressure around the waveguide at 10 kHz. 

The severity of the diffraction problem is emphasized by the axisymmetry (Figure 

10.3) because the distance from the tweeter dome to the edge is equal in all azimuth 

angles. An asymmetrical waveguide would smear the diffraction problem to a 

broader frequency range. 
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Figure 10.3. Sound pressure level around the waveguide at 8200 Hz. 

At very high frequencies (from 12 kHz to 20 kHz) the dome shape starts to affect the 

directivity, but also the influence of the edge diffraction is present. At 13 kHz, the 

pressure diffracted at the edge of the waveguide is in phase with the on-axis 

response. The sum of these sources causes a bump in the on-axis response. Therefore 

the directivity of the source is increased. Again at 16 – 20 kHz the diffracted wave is 

out of phase with the direct wave and destructive interference occurs. At high 

frequencies, the size of the dome circumference is comparable to the wavelength. 

Therefore the dome geometry affects the directivity. The aluminium dome 

approximately moves as a rigid piston within the tweeter frequency range. However 

the surround made of fabric is not rigid at high frequencies.  
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11 Verifying modelling accuracy 

In this chapter are compared the simulated and measured results. First step is to 

analyze the differences between simulation and measurement and discuss the 

possible sources of dissimilarities. The second step is to analyze the simulated and 

measured frequency responses. If the modelled directivity is accurate, then the 

frequency response should reveal the accuracy of the tweeter driver model used.  

11.1 Accuracy of the simulated directivity 

The first purpose of this chapter is to present the differences between the measured 

(Figure 11.1) and simulated directivity (Figure 11.2) of the prototype waveguide. 

The second purpose is to analyze the difference between these two.  

 
Figure 11.1. Measured directivity plot of the waveguide. 

 
Figure 11.2. Modelled directivity plot of the waveguide. 
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The first impression is that the measured and modelled directivities are similar. Next 

the differences are presented in four frequency ranges.  

11.1.1 Comparison of the measured and modelled 

directivity 

At low frequencies (from 1 to 2 kHz) the beamwidth of the measured directivity is 

first increasing and then decreasing. The beamwidth of the modelled results is 

constantly decreasing. 

At mid frequencies (from 2 to 5 kHz) the beamwidth of the measured results is 

constantly decreasing with little ripple. The -12 dB and -15 dB contours shows 

decreasing directivity at 5 kHz. Modelled directivity is also decreasing and showing 

the decrease in directivity at 5 kHz. The distance between equal amplitude contours 

is smaller in the measurement – in other words the directivity of the source is 

increasing more rapidly when moving towards the off-axis direction. 

At high frequencies (from 5 to 12 kHz) the beamwidth of the measured directivity is 

rapidly increasing. The centre of the bump is at 10 kHz. The modelled directivity 

show similar phenomena. The increased beamwidth consist of two merging peaks. 

Peaks are at 8 kHz and 9.5 kHz.  

At very high frequencies (from 12 to 20 kHz) the measured directivity is first 

increasing and then decreasing. The modelled directivity shows the same phenomena 

but with more ripple.  

11.1.2 Analyzing the differences 

At low frequencies (from 1 to 2 kHz) the measured directivity has more ripple. This 

is probably caused by the measurement jig used under the waveguide (which shown 

in Figure 9.3). 

At mid frequencies (from 2 to 5 kHz) the space between equal amplitude contours is 

narrower in the modelled directivity. The only reasonable explanation is the 40 cm 

distance used in model. Thus the far field approximation of the analysis is not valid.  

At high frequencies (from 5 to 12 kHz) the width of the bump is very similar, 

although the exact amplitude contours have differences. The difference between the 

amplitude contours is largest at large angles. The diffraction causes a resonance 
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between the low acoustical impedance at the edge of the waveguide mouth and the 

high acoustical impedance at the throat of the waveguide. There are no losses 

included in the model but the outer boundary of the modelled air space. Therefore 

resonant phenomena tend to be exaggerated in the simulation. 

At very high frequencies (from 12 to 20 kHz) the dome shape and edge diffraction 

are combined. Increasing directivity caused by in-phase diffraction can be seen at 13 

kHz both in the simulation and the measurement. Also the shapes of decreasing 

directivity above 16 kHz are similar. The error between the model and the 

measurement should be highest at high frequencies (e.g. short wavelengths), because 

the limited detail in the model geometry and finite element size are comparable to the 

wavelength.  

11.2 Accuracy of the simulated frequency response 

Main emphasize was on to model the driver excitation in the model. The selected 

method to validate the accuracy of the driver model is to compare the frequency 

response of the model against the reality.  

The frequency responses of the modelled (Figure 11.3) and measured (Figure 11.4) 

prototypes are presented at several angles. Frequency responses are presented with a 

2 dB amplitude scale to enable critical evaluation of the results. Often a 10 dB scale 

is used with frequency responses, which would give the illusion of more congruent 

results. The directivity of the system was discussed in the previous chapter. 

Therefore phenomena in the frequency responses are emphasized in this chapter, 

although the directivity of the system can be also analyzed by comparing the off-axis 

frequency responses.  
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Figure 11.3. The modelled frequency responses of waveguide. From 0° to 60° angles. 

 
Figure 11.4. The measured frequency responses of the waveguide. From 0° to 60° 

angles. 

11.2.1 Comparing the measured and modelled directivity 

Modelled frequency response show a peak of 102 dB at 2 kHz. With measured 

response the peak is one dB less. The peak is sharper with the modelled result.  

Above 3 kHz, the slope of the response is similar in the measured and modelled 

results. The difference from 3 kHz to 7 kHz is 7 dB both for modelled and measured 

response. The peak at 4 kHz is present in both graphs, but the peak is 1 dB sharper 

for the modelled response. The diffraction problem around 9 kHz is also present in 

the both graphs. For modelled results it consists of two merging notches whereas for 

the measured response it is one notch. The on-axis response decreases above 12 kHz. 

The measured result shows more ripple at high frequencies. The modelled angle 

contours are further apart from each other which equals less directivity. 
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11.2.2 Analyzing the differences 

The peak at 2 kHz of the modelled response is caused by the driver mechanical 

resonance frequency. In the tweeter model it is expected that the driver is operating 

above its resonance frequency, which is called the mass controlled region. The 

acoustical pressure at the dome surface is coupled to the mass of the dome (Equation 

(8.6)). Therefore the tweeter driver model is not valid close to or below the 

resonance frequency of the driver. Also the fast decreasing slope of the on-axis 

response above 2 kHz is also caused by this invalid assumption. 

The sharpness of the 4 kHz peak at the modelled result can only be explained by the 

lack of damping in the resonant phenomena in the model.  

The diffraction problem is also resonance related. The possible explanation for the 

second notch of the modelled result is the lack of internal damping. At very high 

frequencies (from 12 kHz to 20 kHz) the modelled results show more ripple. Peak of 

the bump at 12 kHz is 92 dB for both results, but the modelled bump does have a 

peak in the middle.  
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12 Conclusions 

The purpose of this chapter is to summarize the accuracy and reliability of the FEM 

method for waveguide modelling. It also outlines the achievements of the work. 

Lastly the advantages of the tool with engineering problems and the possible future 

developments are discussed. 

12.1 Usability of the simulation 

The goal of the thesis is set in the first chapter. The goal is to use, further develop 

and verify a modelling method for designing waveguide directivity. The finite 

element method was used to model a conical waveguide. The results were compared 

to a physical prototype with equal dimensions. The main phenomena of interest 

were: change of directivity as a function of frequency, diffraction caused by the 

waveguide mouth edge and the resonant phenomena inside the waveguide. 

All the main significant phenomena found in the measured directivity could be found 

in the modelled directivity, although the accuracy of the frequencies and the 

amplitudes were varying. Differences between the amplitudes were less than one 

equal amplitude contour, which means 3 dB accuracy. Model tends to exaggerate the 

resonant phenomena. This is not necessarily a problem. If the design is optimized in 

the model to achieve minimum resonance problems, then the real world prototype 

should be excellent in terms of resonance problems.  

The frequency responses of the measured and modelled results show the same 

phenomena. Differences were less than 2 dB.  

Is the model accurate enough to be used in the daily world of engineering problems? 

It depends on the purpose. For optimizing and visualizing purposes it has shown its 

value. Often it is enough to be able to visualize the problem by seeing the acoustic 

field at a certain frequency. Then fast changes to the geometry will show how the 

phenomenon changes. However prototypes are needed for the final design if the 

shown accuracy of the model is not enough. 
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12.2 Guidelines for a successful waveguide design 

The design of the prototype waveguide was intentionally far from optimal. Still there 

is room for conclusions to be made about designing a waveguide with good 

performance. According to the analysis of the results, the following conclusions can 

be made for achieving successful waveguide design. 

Sharp transitions in geometry should be avoided so as to not excite diffraction. It is 

shown that smooth a transition to the enclosure baffle is necessary or a severe 

diffraction problem will occur.  

At low frequencies the directivity of the waveguide is comparable to the directivity 

of a circular piston with a size equal to the mouth of the waveguide. This is 

consistent with the horn theory.  

When the waveguide mouth circumference is comparable to the wavelength, the 

geometry of the waveguide dominates the directivity. In this frequency range the 

diffraction problem is worst.  

When the circumference of the driver is comparable to the wavelength, the geometry 

of the driver starts to dominate the directivity characteristics.  

An asymmetrical geometry would reduce the diffraction problem by smearing it to a 

broader frequency range. 

12.3 Outputs of the work 

There are two unique outputs of the work for which I did not find references in the 

bibliography. One of them is related to the directivity visualization tool created. It 

enables an intelligible way to compare the measured and modelled results. One 

favourable feature is that directivity plots are published by many loudspeaker 

manufacturers. Therefore there is already plenty of material with which to compare 

the modelled results without making measurements. The real value of this work is to 

have a tool for virtually prototyping waveguides. Directivity plots give instant 

feedback about how the change in the design affected the performance. With 

compact graphs it is possible to compare the directivity of several prototypes at a 

glance, whether they are virtual or real. 
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The second unique output is the improved transducer model. The idea is to combine 

measurements and modelling. The tweeter output can be also modelled, but as stated 

before: a modelled result is always second to the real world. The accuracy of the 

modelled result was improved by combining a laser velocity measurement with the 

model. 

12.4 Advantages of the virtual prototyping 

There are several advantages when using FEM modelling. First is the speed of 

testing the new ideas. It is convenient to try several approaches to find a solution to a 

problem. Also there is not the problem of storing the tested ideas as with physical 

prototypes.  

The second advantage is the improved visualization of the problem. In a model the 

full information of the pressure and particle velocity are always known in the 

modelled area. The information can be processed to achieve the most informative 

figure of the problem. This improves the insight and intuition related to the 

acoustical problem. The insight given by the colourful graphs is a great extension to 

have when intuition is not enough to understand the problem. 

The third advantage is related to time and money. With virtual prototypes it is 

possible to reduce the amount of physical prototypes. This may reduce the cost of the 

prototypes and also the development time of the product.  

12.5 Future work 

In general, there seems to be a certain trend for which areas are most suitable for 

FEM modelling. One common factor is that there is no analytical solution to the 

problem. The second factor is that prototypes are hard to manufacture or hard to 

measure. In the field of acoustics, usually the measurement is the troublesome phase. 

Most problems are 3D. Therefore a huge amount of individual points need to be 

measured for accurate information of the prototype.  

One common problem area is the Helmholtz resonance of a vented enclosure. 

Current equations for calculating proper port geometry make assumptions that lead to 

inaccurate results. By using an FEM model the port geometry can be defined right 
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from the first prototype. It is also possible to use FEM for fluid flow simulation to 

optimize the port geometry for minimal air turbulence, which causes port noises.  

Another possible area of simulation is the enclosure geometry. Diffraction from the 

enclosure edges is a known problem but few manufacturers pay attention to it. 

There is one future improvement for the transducer model presented in Chapter 8.4. 

The model used in the experiment assumes that the driver is operating above its 

mechanical resonance frequency. Therefore the movement of the diaphragm is mass 

controlled. The model does not give correct results if the model is used near the 

resonance frequency or below it. With a tweeter this is not usually a problem, 

because the intention is that the resonance frequency of the driver is well below the 

used frequency range. This assumption is not valid when considering woofers. 

Therefore a different approach is needed if this method is going to be used for a 

woofer model. At least two different solutions exist. The first solution would use the 

impedance response of the woofer to specify the motional impedance. In the second 

solution, Thiele-Small parameters could be used to replace the simple mass with a 

damped spring-mass resonator.  
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