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käydään lyhyesti läpi. Slide-kitaran analyysi- ja synteesimenetelmät kuvaillaan 
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Although computationally heavy for older computers, the sound and especially the 
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(http://www.youtube.com/watch?v=eCPFYKq5zTk). 
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Symbols  
 

a, ac  loop filter coefficients 

d  distance between blobs 

dr  decay rate 

f0  fundamental frequency of string 

fc  slide velocity 

fs  sampling frequency 

g, gc  loop filter coefficients 

gbal  friction balance parameter 

gTV   scaling coefficient for contact sound output 

L  absolute length of string 

ΔL  relative length of string 

nw  number of windings in string 

p(n)  signal output from the time-varying delay block 

pc(n)  energy-compensated signal 

pl  pulse length 

Δx  delay line variation in samples per one time step 
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1 Introduction 
 
This thesis presents a virtual slide guitar that can be played in real-time. A slide 
guitar synthesis is implemented in Pure Data and it is controlled by means of 
optical movement tracking and gesture recognition. The system is called a Virtual 
Slide Guitar (VSG) and it can be viewed as a successor of the Virtual Air Guitar 
(VAG) (Karjalainen et al. 2006), which was also developed at Helsinki University 
of Technology (present Aalto University, School of Science and Technology). A 
slide guitar or bottleneck guitar is a guitar instrument that is played by wearing a 
slide tube on the fretting hand and by moving the slide tube the pitch (i.e. the length 
of the string or strings) can be varied continuously while the other hand plucks the 
strings (Figure 1.1). This produces a unique voice-like tone. The slide tube can be 
slid across all the six strings but also single notes can be played by plucking just 
one string and damping the other strings with the plucking hand. 
 
The user controls the VSG by the same gestures he or she would use to play a real 
slide guitar (Johnson 1990), only that there is no physical guitar. An infra-red 
camera tracks the user’s hands and sends data to the synthesizer software which 
produces the sound according to the player’s hands’ movement. Both virtual 
guitars, the VAG and the VSG, use a computer-vision based approach for 
recognizing gestures, but the camera type and software are different. The VSG uses 
an infra-red camera for gesture tracking which has a higher frame rate and 
resolution compared to the web-cam approach of the VAG. Reviews on gestural 
control of music synthesis have been written by Paradiso (2007) and by Wanderley 
and Depalle (2004). 
 

1.1 Background 
 
The VAG acquired widespread popularity and even received international media 
attention. It is now located as a permanent exhibition item in Heureka, a science 
center in Vantaa, Finland. The ancestor of the VSG was a so-called rubber-band 
virtual air guitar, which was an early prototype of the VAG. This was a simplified 
gesture control system that measured the distance between the hands and translated 
it directly to string length. However, the rubber-band virtual air guitar could not be 
played as an instrument due to the resulting shaky pitch and a noticeable latency 
between plucking and actually hearing the resulting sound. 
 
Several types of air guitar interfaces have been created. For example a guitar 
controlled by data gloves has been created as a virtual reality application for EVE, 
a CAVE-like virtual environment with magnetic position tracking and data gloves. 
Also special control sticks that utilize ultrasonic positioning have been tried for 
playing the guitar. 
 
The VSG has certain key differences compared to the VAG. Firstly, it’s a slide 
guitar and not a normal, fretted guitar. Therefore the pitch (i.e. length of a 
string/strings) is not continuous. Also, the VSG operates an infra-red (IR) camera 
for tracking and gesture recognition compared to the normal web camera approach 
of the VAG. The infra-red camera has a higher resolution and frame rate compared  
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Figure 1.1: A slide guitarist wears a slide tube on the fretting hand. The strings are 
numbered from 1 to 6 starting from the highest and thinnest string. Adopted from 

Pakarinen et al. (2008). 
 
to the web camera of the VAG. For hand tracking, instead of one-colored gloves as 
with the VAG, the VSG uses a slide tube and a plucking ring made of IR-reflective 
fabric. This eliminates room lighting calibration which was a problem with a color-
based recognition of the player’s hands. 
 

1.2 Outline of the thesis 
 
This thesis has the following structure. The basic ideas and methods of the analysis 
of a slide guitar as well as slide tube measurements are presented in Chapter 2. 
Chapter 3 describes the synthesis of the slide guitar sound and slide tube contact 
sound, and modeling of the various aspects involved in making the VSG sound like 
a real slide guitar. Chapter 4 covers the implementation part of producing the VSG 
with sub-chapters describing the different main components of the implementation. 
Chapter 5 discusses the final implementation as a whole and Chapter 6 concludes 
this thesis with ideas and observations for improvement and future work as well as 
retrospect on the success of the final implementation. 
 
The goals of this thesis were to synthesize a slide guitar with a contact sound 
generator and to implement an air guitar interface for a virtual slide guitar that can 
be played in real-time and in a similar fashion that a real slide guitar would be 
played. The main focus of the synthesis part was to synthesize the friction noise 
between the strings and different slide tubes and to produce a credible slide guitar 
sound with an unnoticeable latency. To get a low latency between a gesture and a 
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sounding result of the gesture, it was decided that an infra-red camera was a best 
choice due to its better frame rate compared to a traditional web camera. The 
resolution of the IR camera was also found to be quite satisfactory for accurate 
playing. For the string synthesis, a time-varying digital waveguide (Smith 1992; 
Välimäki et al. 2006) was chosen.  
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2 Analysis 
 
The key points in analyzing a slide guitar are the mechanisms involved in 
generating its unique sound. When the slide tube contacts a guitar string and starts 
to slide along it, a squeaking sound is produced. The pitch of the resulting sound 
can be varied by moving the slide tube to another position on the string. The length 
of the string from the slide tube to the nut or bridge of the guitar determines the 
pitch of the resulting sound, but also the material and type of the string along with 
the material of the slide tube itself affect the final sound. The distance from the 
slide tube to the bridge (Figure 2.1) defines the pitch we hear since the pickups of 
the guitar are positioned on the body of the guitar. A slide tube can be made of 
different materials, for example brass, glass, plastic, ivory and chrome. The slide 
tube can be thought of as a fret that is moving and therefore it is possible to 
produce continuous pitches by varying its position. 
 
 
 
 
 

 
 

Figure 2.1: Main parts of an electric guitar. Taken from Hellmer. 
 

 



5 
 

When moving the slide tube along a string, the pitch changes constantly according 
to the place the slide tube is positioned. Sliding the tube without picking a string 
also produces a sound. For this, a closer look at the mechanics and physics involved 
in creating the friction noise was necessary.  
 
There are two kinds of strings in a guitar, wound strings and unwound strings. A 
wound string is made of two strings, the outer one wrapped around the center 
string. This produces bumps on the surface of the string. The distance between the 
bumps i.e. the thickness of a bump on a string depends on the thickness of the 
wound string. Unwound strings are just one string with a smooth surface thus 
making their analysis and synthesis simpler. Figure 2.2 depicts a slide tube on a 
wound string. 
 

 
Figure 2.2: A slide tube on a wound string. Notice the bumpy construction of a 

wound string. Adapted from Pakarinen (2005). 
 
 

2.1 Contact sounds 
 
When a slide tube touches a string they produce a sound. Sliding the tube along the 
string produces noise. This noise sounds different depending on the string 
construction (i.e. wound or unwound) and also the slide tube material. The sound 
resulting from a slide tube and a wound string could be describes as squeaky while 
the sound from a slide tube and an unwound string resembles hissing. Sliding 
movement also affects the resulting sound. The sound of a fast slide is louder than 
the sound of a slow slide. Also a fast slide contact noise has more emphasis on the 
high frequencies than a slow slide. 
 
In order to analyze the contact sound further, four different slide events were 
recorded on a steel-string acoustic guitar. These recordings were done at Aalto 
University, School of Science and Technology in a small anechoic chamber. A 
microphone (AKG C 480 B) was placed 1 m away from the guitar and directed 
towards the sound hole. A Yamaha 01V digital mixer was used for digital recording 
(44.100 Hz sampling rate, 16 bits) of the signals and they were fed into a PC laptop 
via a Digigram VX Pocket soundcard. Figure 2.3 illustrates the spectrogram images 
of four different slide events. 
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The contact sound between the slide tube and wound strings is caused by the same 
phenomenon as when sliding a finger across a wound string. A thorough analysis of 
these handling noises on wound strings has been done by Pakarinen et al. (2007). It 
is apparent in all four cases in Figure 2.3 that the contact sound has some common 
timbral qualities. The slide velocity controls the cutoff frequencies of a low-pass 
type shape of the noise. The noise also has a clear harmonic structure. The 
frequencies of the harmonics depend on the slide velocity. The windings around the 
strings explain the harmonic structure of the slide noise, which is periodic in nature. 
This has also been noted with a Chinese string instrument called Gucin (Penttinen 
et al. 2006). There appear to be also wider, static harmonic resonances around 
1.500 Hz. These are caused by longitudinal string vibration (Pakarinen et al. 2007). 
 
The string type and slide tube material affect the resulting sound from a slide event. 
Thicker strings tend to have a more conspicuous high-frequency content and 
produce a louder contact noise than thinner strings. This probably results from the 
smaller windings of thinner strings, which makes the surface of the string smoother. 
The contact noise between a slide tube and an unwound string has no harmonic 
structure, and it closely resembles white noise. Unwound strings also produce a 
much quieter contact sound noise than wound strings. Also it should be noted that 
every time the slide tube makes contact with a string, a quiet, but audible 
percussive click sound is produced. 

 
Figure 2.3: Contact noise spectrogram images of four recorded slide events. The 
tube materials and string numbers were chosen as follows: (a) brass tube with the 

6th string, (b) glass tube with the 6th string, (c) brass tube with the 5th string, and (d) 
glass tube with the 5th string. The strings were damped in all four cases. Adopted 

from Pakarinen et al. (2008). 
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2.2 Slide tube measurements 
 
To understand the differences between slide tubes made of different materials, it 
was decided to measure the impulse responses of three slide tubes made of different 
materials: glass, brass and a chromed slide tube. The slide tubes’ impulse responses 
were recorded in the small anechoic chamber at Aalto University, School of 
Science and Technology with a microphone (AKG C 480 B). The signals were 
recorded into a Macintosh laptop via an Ediro UA-101 audio interface.  
 
The slide tube was placed on the player’s finger (in situ), a pen was dropped on the 
slide tube and the response was recorded. Several measurements were done for all 
the slide tubes. Figure 2.4 shows the averaged magnitude responses of the glass and 
brass tubes. As can be seen, the glass tubes magnitude response is much flatter than 
that of the brass tube. The brass tube’s few sharp resonant peaks are too high in 
frequency (over 8 kHz) to be effectively coupled to the guitar body and radiated as 
audible sound 0. This leads to the conclusion that the audible differences between 
different slide tube materials are not created by the tube’s vibration but the surface 
texture of the slide tube. 
 
It was realized from the slide tube measurements that there are harmonic 
components that differ depending on the slide tube material. Both the glass and the 
brass tube had slow modulation but it was most notable with the slide tube made of 
glass. This might be caused by the mass differences between the slide tubes. The 
glass tube being lighter (14 g) than the brass tube (80 g) might allow for the 
player’s smallest movements to transfer more easily to the slide tube’s movement, 
which produces  frequency modulation at the harmonic resonances. Differences in 
frictional characteristics of the tubes could also affect the contact noise. 
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Figure 2.4: Averaged magnitude responses of the glass and brass slide tubes. The 
brass tube has sharp resonances near 8 kHz, 12 kHz and 13 kHz, while the glass 

tube is more heavily damped. Adopted from Pakarinen et al. (2008). 
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3 Synthesis 
 
Chapter 3 presents the synthesis methods used in the real-time implementation. A 
time-varying digital waveguide string is used for synthesis of the slide guitar. The 
contact sounds that are produced by the string and slide tube are synthesized with a 
parametric model. The contact sounds are inserted into the waveguide as excitation. 
 

3.1 Digital waveguide string  
 
The basis of the slide guitar synthesis engine is formed with a single-delay loop 
(DSL) digital waveguide (DWG) (Karjalainen et al. 1998). This string model is 
illustrated in Figure 3.1. The waveguide comprises of a simple integer delay loop, a 
fractional delay filter and a loop filter. The loop filter simulates the vibrational 
losses in the string (Smith 2006). Both the integer delay line and fractional delay 
filter are time-varying. The total loop delay value is controlled by the user in real-
time while playing the guitar. The loop delay value is directly proportionate to the 
distance between the player’s hands 
 
In order for the pitch to vary continuously and to enable correct tuning of the 
strings, a fractional delay filter is needed. A thorough tutorial for implementing 
fractional delay filters can be found in Laakso et al. (1996). In order to enable the 
pitch to vary continuously, a fractional delay filter is needed, because the regular 
integer delay line has a resolution of one sample. A fifth order Lagrange 
interpolator (Karjalainen et al 1998; Gasca et al. 2000) was found to be an optimal 
choice for our needs. It is short enough not to use too much processor time and its 
accuracy satisfies the quality needs. The Lagrange interpolator was implemented to 
work between 2.0 and 3.0 due to the fact that fractional delay filters are at their best 
accuracy near the midpoint of the filter, e.g. 2.5 for a 6-tap filter. Because of this 
the fractional delay filter has an overhead of 2 samples. This is compensated by 
making the integer delay line two samples shorter. 
 

 
 

Figure 3.1: A time-varying digital waveguide string. The fractional and integer 
delay values are controller by the distance of the player’s hands, so that when 

varying the distance between the player’s hands, the pitch of the string will change 
smoothly. Adopted from Pakarinen et al. (2008). 
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3.1.1 Energy scaling  
 
To prevent energy from being leaked out when increasing the string length, energy 
scaling is necessary. The signal energy of the DWG string varies when the length 
of the string is changed. When shortening the string, the signal samples that exceed 
the string length are discarded. This results in energy loss of the remaining signal in 
the string. Pakarinen et al. (2005) presents two energy-compensation methods. In 
order to save computation power needed from the computer, the simpler method 
was chosen. The zero-order energy-preserving interpolation adds a single scaling 
coefficient to the delay line. The scaling operation can be expressed as  

)()(1)( npgnpxnp cc =Δ−= ,  (1) 

where n is time index, p(n) is the signal output from the delay line, Δx is the delay-
line variation in samples per one time step and gc is the scaling coefficient. 
 

3.2 Contact Sound  
 
Based on the assumption that an exponentially decaying noise burst is generated 
when the slide tube slides over a single winding, a noise pulse train was chosen as 
the excitation signal to model the handling sounds generated by the slide tube when 
it passes over a winding on the string (Figure 3.2). The slide velocity controls the 
time interval between the noise pulses. Fast slides produce a temporarily dense 
pulse train and in opposition, a slow slide makes the adjacent pulses appear further 
apart from each other. In some sense, the contact sound synthesizer can be seen as a 
periodic impact sound synthesis model rather than a friction model. (Pakarinen et 
al. (2008). Impact and friction sound synthesis models are presented by Aramaki et 
al. (2006), Avanzini et al. (2005), Cook (1997), Peltola et al. (2007), Rath et al. 
(2005), Fontana (2003), and Rocchesso et al. (2003). 
 
 

Wound string

Slide tube

Time

A
m

pl
itu

de

Noise pulse

 
Figure 3.2: This figure depicts the idea behind the contact sound synthesis. A noise 

pulse is generated each time the slide tube passes a single winding on a wound 
string. Adopted from Pakarinen (2005). 
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A signal flow diagram of the contact sound generator block for wound strings is 
illustrated in Figure 3.2. The variable L(n) denotes the relative string length and n is 
the time index. nw denotes the number of windings on the string and is used as a 
scaling coefficient. A time difference is taken from the relative string length 
because of the contact noises dependency on the sliding velocity. A separate 
smoothing block is needed after the differentiator because the sampling frequency 
and control rate of the input signal L(n) are different. The smoothing block converts 
the control rate of the input signal to that of the sampling rate. An absolute value of 
the smoothing block output is taken because the slide direction does not affect the 
contact noise. The signal fc(n) that is output from the smoothing block can be seen 
as the noise-pulse firing rate. 
 
The noise pulse generator [block (a) in Figure 3.2] creates the basis of the contact 
sound generator. It feeds exponentially decaying noise pulses to the static and 
dynamic part of the contact sound model with given firing rate. String properties, 
such as decay time and pulse length determine the decay time and duration of each 
noise pulse. A second-order band-pass resonator [block (b)] is used to enhance the 
harmonic structure of the contact noise. This filter enhances the lowest time-
varying harmonic while the firing rate controls the resonator’s center frequency. A 
suitable nonlinear function [block (c)] is used to produce the higher harmonics. 
This is done by distorting the resonator’s output with the scaled hyperbolic tangent 
function. By changing the scaling of this function can be used to alter the number 
of higher harmonics. This approach is similar to waveshaping synthesis (Arfib 
1979; Le Brun 1979). 
 
To simulate the static longitudinal string modes and the general spectral shape of 
the contact noise, a fourth-order IIR filter [block (d)] is used. Because the contact 
sound characteristics depend on the tube material and string type, different filter 
parameters are used for different string and slide tube combinations. The contact 
sound balance coefficient gbal determines the ratio between dynamic (time-varying) 
and static contact sound components. The slide velocity fc(n) controls the total 
amplitude of the contact noise synthesis and it is scaled by a scaling coefficient gTV. 
The user controls the overall volume of the contact sound via an external parameter 
guser.  
 
Unwound strings do not utilize the same contact sound generator as wound stings. 
It was agreed that it is sufficient to use low-passed white noise as contact noise for 
unwound strings. 
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Figure 3.2: The contact sound generator block for wound strings. The sliding 
velocity controlled by the users hand movements commands the synthetic contact 

noise characteristics. The sub-blocks marked with the first four alphabets are (a) the 
noise pulse generator, (b) a resonator creating the first harmonic of the time-
varying noise structure, (c) a nonlinearity generating the upper time-varying 

harmonics, and (d) an IIR filter simulating the general spectral characteristics of the 
noise. Adopted from Pakarinen et al. (2008). 

 
 
Figure 3.3 illustrates the 4th order IIR filter magnitude responses used for the static 
longitudinal string modes as well as estimates of the contact sound’s overall 
spectra. The spectral estimates were obtained using a linear-prediction (LPC) filter 
of order 100. The pole and zero frequencies and radii used for the contact sound 
filters are presented in Table A.1. 
 
The whole slide guitar synthesis model for a single string is illustrated in Figure 3.4 
This model resembles the ordinary time-varying SDL DWG string with the 
exception that it has the additional blocks for energy compensation and contact 
sound generation. 
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Figure 3.3: Estimates of the contact sound’s overall spectra (solid lines), and the 
magnitude responses of the filters simulating them (dotted lines). The rows 

represent different strings (6th, 5th, and 4th strings, from top to bottom) and the 
columns representing different slide tube types (brass, glass, and chromed, from left 

to right). Adopted from Pakarinen et al (2008). 
 
 
 

 
 

Figure 3.4: The signal flow diagram of the slide guitar string synthesizer. The 
energy compensation block compensates for the artificial energy losses due to the 
time-varying delays. The contact sound generator simulates the handling noise due 

to the sliding tube-string contact. Adopted from Pakarinen et al (2008). 
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4 Implementation 
 
Chapter 4 presents the main components of the implementation. Implementation of 
the Virtual Slide Guitar was started by selecting a proper PC with enough 
computing power run the synthesis and camera software. Also a TrackIR 4 infra-
red camera was chosen as the means of movement tracking and gesture recognition. 
 
Since the VSG provides only an auditory feedback of the continuous pitch, the 
latency between the user’s action and the resulting sound should be much smaller 
than in the VAG. For this reason, a high frame rate (120 fps) infra red (IR) camera 
is used for detecting the user’s hand locations. The camera operates by lighting the 
target with IR-LEDs and sensing the reflected IR light. Therefore, for successful 
recognition, the user must have IR-reflecting material in his/her hands. A real slide 
tube coated with IR reflecting fabric is used for detecting the user’s fretting hand. 
Using a real slide tube instead of a glove makes the VSG more intuitive for the 
user. For the picking hand recognition, a small ring of IR reflecting fabric is worn 
on the index finger.  
 

4.1 Technical details 
 
The implementation works on a 2.66 GHz Intel Pentium 4 CPU with 1 GB of RAM 
and a SoundMax Integrated Digital Audio soundcard. Both the sound synthesis part 
and the camera interface operate in the Windows XP environment. The sound 
synthesis uses PD (Pure Data) (Puckette, 1996) version 0.38.4-extended-RC8. The 
sampling frequency for the synthesis algorithm is 44.1 kHz, except for the string 
waveguide loop, which runs at 22.05 kHz, as suggested by Välimäki et al. (1996). 
A Naturalpoint TrackIR4 USB IR-camera is used for gesture recognition. The 
camera senses only IR light and thus IR-reflective materials. It has a viewing angle 
of 46° and it outputs a 355 x 290 binary matrix, where the reflected areas are seen 
as blobs.  
  

4.2 Camera software  
 
The camera software is modified from Naturalpoint’s Optitrack SDK (Software 
Development Kit). The camera software enables the camera to send control data to 
the synthesis program. It calculates the positions of the blobs it sees. The software 
was modified to calculate the distance between two blobs, i.e. right and left hand, 
and send it to PD as an OSC (Open Sound Control) message. OSC is a content 
format for messaging between devices and programs. It is message transmission 
protocol similar to MIDI. For the camera API (Application Programming 
Interface), Naturalpoint’s OptiTrack version 1.0.030 (Naturalpoint 2008) was used 
in the Visual Studio environment. The camera software was modified to include 
OSC communication. The software was also modified to keep track of the virtual 
string location, i.e. an imaginary line representing the virtual string. This is very 
similar to the work presented by Karjalainen et al. (2006). The line is drawn 
through the tube and the averaged location of the plucking hand, so that the virtual 
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string slowly follows the player’s movements. The camera software detects the 
direction of the plucking hand movement when the virtual string is crossed. Once 
the string is crossed, a pluck event and a direction parameter is sent to PD. When 
the hands are kept still, a minimum velocity threshold is defined for the plucking 
gesture in order to avoid false plucks.  
 
For more realistic playing, a pull-off feature was been added to the system. This 
means that the camera software switches the string length to maximum (65 cm) 
whenever the slide hand is opened. When the slide hand is closed, the string length 
is again set according to the distance between the user’s hands. Thus, the user can 
lift the slide tube off the virtual strings, pluck open strings, and then press the tube 
on the strings again. This is typical for slide guitar playing. Opening the slide hand 
makes the tube finger to point to the camera so that the slide tube vanishes from the 
IR camera’s view. When the tube is missing, the coordinates where the tube was 
last seen are used for setting the imaginary string’s location. This way also open 
strings can be plucked, although the camera only detects one blob. 
 
Since the slide tube and the fabric ring have quite different shapes, it is easy for the 
system to distinguish between them. In practice, this is done by selecting the more 
square-like blob as the ring and the longitudinal blob as the tube. This allows the 
instrument to be played by left-handed people as well.  
 
There are two versions of the camera API which differ from each other only by the 
user interface. The basic version of the API has no user configurable interface and 
the camera image is not shown. This is recommended to be used with slower 
computers to save processor load. The pro version of the camera software is shown 
in Figure 4.1. On the main window (on the left) the image of the camera can be 
seen. The dot tracking part of the window shows the distance between the blobs (in 
pixels), how many blobs are detected and the surface areas of the blobs. The user 
can also select how often the display will be updated (every one frame, every two 
frames etc) or select the video image not to be displayed at all. The camera can also 
be stopped and started from this window. Clicking ‘Options’ reveals the window on 
the right side. From the camera options window the user can modify how the 
tracked blobs are ranked and by what factors the blobs are recognized. There are 
also sliders for setting the threshold, frame rate, exposure and intensity of the 
camera. By default there is no need to alter these settings, but in case of tracking 
problems these altering settings can help the tracking to work better. 
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Figure 4.1: A screenshot of the camera API. This is the ‘pro’ version of the API. 
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4.3 System calibration  
 
The system is calibrated so that the distance of 250 pixels corresponds to 48 cm 
when played approximately 2 m away from the camera. The distance is constrained 
in such a way that moving the hands further apart than 250 pixels does not make 
the strings any longer but will map them as open strings. Similarly, the minimum 
distance between the user’s hands is constrained to 62.5 pixels (12 cm when played 
2 m away), thus leading to a playing pitch range of an octave and a minor third for 
each string (from open string to the 15th fret). Since the plucking hand is not 
normally positioned at the bridge of the guitar but near the sound hole, an offset of 
17 cm is added to the distance to obtain the total length of the strings (65 cm for 
open strings). The minimum playable length of the string is 29 cm which 
corresponds to the 15th fret of the guitar. A shorter minimum length would not 
always work well due to the hands being positioned close to each other. The 
camera might confuse the two separate blobs as one and therefore playing would 
not work. For some guitars it is not even practical to play on the highest frets, 
which are usually around the 20th fret. A minimum string length limitation can also 
be justified because the length of the virtual string varies more with a shorter 
distance when plucking the guitar. The distance is calculated as a straight line 
between the two hands so for the distance to not vary while plucking, a circular 
movement should be used when plucking. The distance between the hands is 
normalized by dividing it with the open string length. This results in a relative 
string length (variable L(n) in Figure 3.2) between 0.446 and 1. Since the usage of a 
slide tube effectively makes every string have the same playing length, this 
normalized string length is used as a control signal for each of the synthesized 
strings.  
 

4.4 Pure Data Implementation  
 
Pure Data (PD) is a freeware real-time graphical programming environment for 
audio and graphical processing (Puckette). PD uses visual objects that are placed on 
the screen (called a canvas). These objects can be functions, variables, sliders, 
number boxes, messages or other PD patches. The boxes can be connected to each 
other by lines – like cables - that represent signal connections. There are two types 
of signals in PD: control signals and audio signals. Audio signal connections are 
represented by thick lines and control signal connections by thin lines. PD allows 
sub-programs (called sub-patches) to be nested inside the parent patch and the use 
of external patches (called abstractions) located in separate files. One major 
advantage of PD is that it works in real-time. In contrast to traditional programming 
languages where the code must first be processed before obtaining a result, PD 
code can be changed while the program is running. This helps with debugging and 
experimenting. (Puckette 2007) 
 
When the Pure Data implementation receives an OSC message containing a pluck 
event, an excitation signal is inserted into each waveguide string. The excitation 
signal is a short noise burst simulating a string pluck. A slight delay (20 ms) is also 
inserted between different string excitations for creating a more realistic strumming 
feel. The order in which the strings are plucked depends on the plucking direction. 
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The PD implementation can barely run all the strings in real time with the hardware 
and software described above. To lower the computational load of the synthesis, 
strings can be switched totally off. The instrument can be then played with lower 
end computers also. Due to their heavier computational requirements for contact 
sound generation, wound strings need much more computational power than 
unwound strings. Switching the contact sound synthesis off altogether also reduces 
the amount of CPU power needed dramatically. It is not possible to play all the 
strings with the above mentioned setup if FreeAmp2 is enabled. Figure 4.2 
illustrates the PD implementation’s on-screen user interface.  
 
 
 
 
 
 
 
 
 

 
 

Figure 4.2: A screenshot of the Pure Data user interface. In this example, the 
strings are in open G tuning, the highest four strings are played with a glass  

slide tube and the dynamic contact sound is slightly emphasized. No  
effect or plugin is user for output (bypass is selected). 
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The overall latency in PD can be set to a minimum of 20 ms by using ASIO (Audio 
Stream In/Out) sound drivers. With MMIO (Memory Mapped Input/Output) sound 
drivers the lowest manageable latency was 70 ms. For additional effects, VST 
(Virtual Studio Technology) plugins can be used with PD, but they tend to require 
quite much valuable processing power. The PD implementation has options to 
output the sound as it is, through a reverb effect (modified from PD audio 
examples) or through a FreeAmp2 VST plugin (Fretted Synth Audio 2007).  
 
Figure 4.3 illustrates the different modules and signaling between abstractions in 
PD. The whole program consists of three main parts: the main patch (with control 
options and user interface), string synthesis, and contact sound synthesis. Sub-
patches and abstractions are switched off when they are not needed in order to save 
computing time. For example, reducing the contact sound volume to zero switches 
all contact sound computation off. Since the waveguide loop runs at half the 
sampling rate, anti-aliasing filters (e.g. two-tap averagers, H(z) = (1+z-1)/2) are 
required at its input and output (Lavry 2004). The string synthesis abstraction 
converts the relative distance to frequency and delay line length, calculates the loop 
filter parameters depending on string length, as suggested in 0, sends the pluck 
excitation and contact sound to the delay line, and implements energy scaling and 
anti-aliasing filtering. The contact sound synthesis abstraction receives string 
parameters through the string synthesis abstraction and generates contact noise 
according to the slide tube type, string properties, and hand movements.  
 
The Pure Data part of the VSG consists of the main patch, which manages input 
signals, sends control data to the string synthesis components, handles the user 
interface and outputs the final guitar sound (Figure 4.2). The string synthesis 
component consists of pluck excitation, anti-aliasing and holds the delay line with 
its filters, delays and energy scaling. The contact sound synthesis component 
generates the contact sound between the slide tube and strings. It holds the noise 
burst generator for wound strings and low-pass noise generator for unwound 
strings. Every string has its own instance of the string synthesis and contact sound 
synthesis components which work independently of other strings. 
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Figure 4.3: The construction and signaling of the Pure Data synthesis 
implementation. 
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5 Virtual Slide Guitar  
 
In this chapter the Virtual Slide Guitar setup will be reviewed as a whole.  
 
The virtual slide guitar system is illustrated in Figure 5.1. At its simplest, the VSG 
is easy to play and needs no calibration. The user only has to put the slide tube and 
plucking ring on, select which strings to play and start moving his or her hands. For 
more demanding users, the VSG provides extra options, such as altering the tuning 
of the instrument, selecting the slide tube material, setting the contact sound 
volume and balance between static and dynamic components, or selecting an output 
effect. The user interface can be set to show the blob positions on the screen, but it 
is not required for playing. Drawing the blobs adds to the computational load of the 
system. 
 
Generally, it may seem that the VSG is not as easy to play as the VAG, because 
there is more freedom and options for the player. The VAG offers the user only a 
few chords or notes to play and might thus at first sound nicer to the audience, but 
this severely reduces the expressive range. The additional VSG features add 
versatility for playing, but a short training session is recommended to get the most 
out of this virtual instrument. The tube-string contact sound gives the user direct 
feedback of the slide tube position, so visual feedback is not necessarily needed in 
order to know where the slide tube is situated on the imaginary guitar neck. 
Switching between the slide tube types results in different kinds of contact sounds, 
but it is difficult to distinguish the tube material from the synthesized sound only. 
This might be due to the fact that the perceptually most important contact sound 
material cue, the frequency-dependent decay rate (Klatzky et al. 2000) of the tube, 
is not apparent in the synthesized sound. 
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Figure 5.1: The Virtual Slide Guitar system. It consists of an IR-camera, a PC and 

a loudspeaker(s). The camera API calculates the string length from the hand 
locations and sends the coordinates to the synthesis control block in Pure Data. The 
synthesis block creates the sound and outputs it to the soundcard and eventually a 

loudspeaker or headphones. Adopted from Pakarinen et al. (2008). 
 
 
Different methods for real-time implementation were considered during the starting 
period of the work. A normal web camera was considered, but it was decided, that 
an IR camera will work better since it has a higher frame rate than a normal web 
camera. For the camera application, PD’s GEM  along with Eyesweb (Camurri et 
al. 2000, 2005; Gorman et al. 2007) were considered, but both of them were 
discarded after realizing, that a free SDK is available for the IR camera. Also, for 
the IR camera software, no image manipulation was needed since the SDK 
calculates the blob positions by default.  
 
The camera itself does not need calibration, unless the circumstances in which it is 
played dramatically change. For the distances of the strings and notes to apply to a 
real guitar neck and body, an approximate distance of 2 m was measured to be 
satisfying. The camera needs to be pointed straight towards the player, naturally, 
otherwise either hand could disappear from the camera’s view when playing the 
instrument. Since the camera differentiates between the users pluck hand and 
fretting hand by comparing the shape and size of the blobs it sees, the VSG can be 
played by left-handed people just as well as right-handed. In fact, you could even 
play it with your feet, although it is not very practical. 
 
The PD patch includes intelligence and automation to minimize the use of system 
resources. The patch turns off some of the sub-patches and abstractions when they 
are not needed. The signal is routed only to the synthesis blocks and contact noise 
generators of strings that are in use. When the contact noise balance is switched 
completely to static or dynamic contact noise, the algorithms to generate the one 
not used is automatically switched off to save CPU power. Alternatively, if the 
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contact noise volume is lowered to zero, every abstractions and patches involved in 
generating and modifying the contact noise are switched off. Also, as mentioned 
before, the string synthesis runs on half the sample rate 
 
Since the synthesis part of the VSG is done in Pure Data, it is possible to expand or 
modify any aspect of the synthesis, or even add your own PD effects. It is quite 
easy to import your own PD patches, abstractions, effects to any existing PD 
program, as longs as you know how to use PD (Zimmer 2006). The VSG runs on 
Windows XP and it has not been tested on any other operating system. The 
synthesis part might run on a Mac but the camera API is for Windows only.  
 
The VSG was installed on a demo station in the Laboratory of Acoustics and Audio 
Signal Processing. During the implementation stages of the VSG in 2007, a quite 
good PC was chosen so that the VSG can be played with several strings at a time. 
However the 2.66GHz Intel Pentium 4 is not powerful enough to run synthesize all 
strings at once if the camera image is drawn by the camera API. A more powerful 
setup has yet to be tried to ensure what kind of processing power is needed for a 
simultaneous synthesis of all the strings with camera image drawn and a guitar 
effect in use. However since processors have developed immensely there is little 
doubt that a modern semi-high-end multi-core processor would not suffice. 
 
The PD user interface consists of tuning, string and slide tube selection, volume 
control, static/dynamic friction noise balance and volume controls, and output and 
plugin selection. Additionally, the real-time value of the relative guitar string length 
is displayed in the main patch window. There is also a small abstraction in the user 
interface of the PD program, which allows users to record what they are playing. 
 
The camera API displays the positions of the slide tube and plucking hand. The 
display can be turned off to minimize processor usage. The user can also change 
the update frequency of the camera frames (every frame, every other, every third 
etc) to reduce needed processing power, as well as modify blob tracking settings.  
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6 Conclusions 
 
In this thesis, a real-time sound synthesis model of a slide guitar with air guitar 
interface is presented. The string vibrations are simulated by means of energy-
compensated time-varying digital waveguides. Mechanism involved in generating 
the contact sound between slide tubes and strings are analyzed. Also different slide 
tubes have been measured and analyzed. A new parametric model for generating 
the contact noise between the string and the slide tube was introduced. The slide 
guitar synthesizer operates an infra-red camera for optical gesture recognition user 
interface. Slide guitar sound analysis and technical issues of the synthesis model 
were discussed in detail.  
 
There is room for improvement on the synthesis program; calculations and control 
data management could be tuned to require less processing time. Some parts of the 
calculations used for string and contact sound synthesis could be calculated only 
once collectively instead of separately for each string in use. Also the plucking 
movement varies the string length because the distance of the hands is measured 
from an imaginary straight line drawn between the player’s hands and the 
imaginary line follows the hands’ movement with little delay. This could be 
corrected by modifying the string length calculation algorithm to compensate for 
the unintentional stretching of the imaginary string when moving the plucking hand 
away from the string. Although not a major problem, occasionally some jewelry, 
glasses or other metallic or reflective materials in the cameras view can trigger 
false gesture recognitions and mess up the sound. Longitudinal string vibrations are 
not synthesized but simulated with fixed filters, which is done to simplify 
computation of the synthesis program. This results in a less dynamic spectrum. 
 
Altogether the VSG is a fun instrument that anyone can play with a low threshold. 
It sounds like a real guitar and using a guitar effect in the output makes it sound 
even more real. Current commercial guitar games utilize a rigid instrument and an 
air guitar interface might be the next step in musical games. Due to the versatility 
of Pure Data and the possibility to use OSC signals to control practically anything, 
the camera interface could be used to control any imaginable Pure Data (or other) 
software. 
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Appendix A 
 

Table A.1: Pole and zero frequencies and radii for the 4th-order IIR contact sound 

filter used for wound strings. Magnitude responses are illustrated in Figure 3.3. 

Adopted from Pakarinen et al. (2008). 

 
  Brass tube Glass tube Chromed tube 

  F (Hz) R F (Hz) R F (Hz) R 

0 0.9485 0 0.9272 ±696 0.9608 

0 0.8510 0 0.8222 ±1422 0.8042 

ze
ro

s 

±1400 0.9079 ±1400 0.9608 - - 

±643 0.9894 ±850 0.9957 ±748 0.9929 

6t
h 

st
rin

g 

po
le

s 

±1400 0.9922 ±1400 0.9984 ±1422 0.9937 

0 0.9406 0 0.9646 0 0.9686 

0 0.8105 0 0.7902 0 0.7752 

ze
ro

s 

±1600 0.9478 ±1640 0.9217 ±1640 0.8042 

±793 0.9957 ±644 0.9957 ±622 0.9859 

5t
h 

st
rin

g 

po
le

s 

±1600 0.9948 ±1640 0.9922 ±1640 0.9937 

0 0.8727 0 0.9887 0 0.9644 

0 0.7269 0 0.0543 0 0.6564 

ze
ro

s 

±2000 0.9687 ±1920 0.9826 ±2000 0.9217 

±1449 0.9930 ±980 0.9720 ±859 0.9929 

4t
h 

st
rin

g 

po
le

s 

±2000 0.9948 ±1920 0.9948 ±2000 0.9922 
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Appendix B 
 

In this appendix Pure Data source code of this thesis is presented. All patches, 
abstractions and sub-patches essential to the functionality of the implementation are 
shown here. The source code is presented in image format for clarity reasons and 
also because Pure Data is a graphical programming language. 
 
PD functions can have multiple inputs and multiple outputs. A thick line presents 
an audio signal line and a thin line presents a control signal line. A tilde (~) behind 
a function means it is an audio signal function. A $0- in front denotes a local 
variable or sub-patch to keep individual string parameters or objects from mixing. 
 
Below are descriptions of used PD functions and denotations that are not self-
explanatory: 
 
$f1, $f2…  = separate input values for expr, expr~ and fexpr~ functions 
abs  = take absolute value 
b  = bang, activates an object or number box 
biquad~ = a 2 pole 2 zero filter 
block~ = set block size of computation, overlap and up/downsampling 
catch~ = receive audio signal 
bpq2~  = 2nd order band-pass filter 
del  = send a bang after delay (ms) 
delwrite~  = writes a signal in a delay line 
expr  = arithmetic expression evaluation (Yadegari 2003) 
expr~  = arithmetic expression evaluation for audio signals  
fexpr~ = builds FIR and IIR filters by evaluating expressions sample by sample 
hip~  = high-pass filter 
lop~  = low-pass filter 
metro  = metronome function 
moses  = switches output according to set value 
noise~ = white noise generator 
pink~ = pink noise generator 
pipe = delay a message (ms) 
r  = receive signal 
s = send signal 
sel = select output 
sig~  = convert to audio signal 
switch~ = enable/disable patch and set block size, overlap and up/downsampling 
t  = trigger 
t b  = trigger bang, sends a bang when triggered 
tanh~  = hyperbolic tangent function 
throw~  = send audio signal 
unsig  = convert to control signal 
vd~  = read a signal from delay line at a variable delay time 
vline~  = audio ramp generator 
z~  = samplewise delay 
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Figure B.1: The main user interface of the VSG Pure Data program. The user can 

choose the preferences of the synthesis from this screen. From the top left corner 

the user can choose the direction(s) of plucking movement will excite the string(s). 

The top middle part displays the relative distance of the strings. The top right 

corner displays overall contact sound volume and balance between static and 

dynamic contact sound models. The lower right part displays string settings. From 

there the user can select which strings to play, which tuning and slide tube type to 

use. The lower middle part consists of output settings, which are the main output 

volume and guitar effects. From the lower left part the user can switch DSP 

computations off for the whole program, record output and play a fretted test guitar. 

All the check-boxes, selectors, number boxes (except % CPU) and the pluck button 

can be manually altered by the user. 
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Figure B.2: The plucking sub-patch. Pluck triggers are received and sent to strings 

with 20 ms delay between adjacent strings. An automatic plucking option with 

variable repeat interval for testing purposes can also be used from here.
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Figure B.3: This is the output patch, which selects the output effects. Selectable 

effects are PD reverb effect and VST FreeAmp2. The patch also protects from 

clipping and outputs the final signal to the soundcard and the recorder.
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Figure B.4: The input control patch. This patch shows the relative distance and 

routes input data. The reset sub-patch initializes strings with maximum length.
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Figure B.5: The input data patch. OSC messages from the camera API are received 

and treated here. Plucking events are sent according to OSC messages. On the 

lower part of the patch there are some conversions to convert length in pixels to 

meters and relative length.
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Figure B.6: This is the synthesis ‘mother’ patch. It initializes the strings and routes 

data to string synthesis patches.
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Figure B.7: The tuning patch sets the tuning of the strings according to what the 

player has selected from the user interface. More tunings could be implemented 

here.
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Figure B.8: This patch initializes the Fourth-Order IIR Contact Sound Filter 

coefficients for wound strings according to slide tube material.
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Figure B.9: This patch initializes and sends loop filter parameters for all strings.
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Figure B.10: The string synthesis patch. This is the main string synthesis patch. It 

holds the contact sound synthesis patch, the delay line and pluck excitation. String 

properties, filter parameters and distance/frequency/delay data is routed here. An 

anti-aliasing filter is implemented with a low-pass 6th order filter with Butterworth 

filter characteristics.
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Figure B.11: Loop filter coefficients a and g are calculated here with given loop 

filter parameters.
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Figure B.12: This is the delay line. It consists of the Lagrange interpolator, loop 

filter and energy scaling. Delay is also converted between seconds and samples for 

the filters and delay line.
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Figure B.13: The 5th order Lagrange interpolator. The filter receives the variable 

delay value D and calculates the filter coefficients. The block size is set to 1 which 

means that the filter calculates every sample separately.
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Figure B.14: This is the loop filter implemented with a 2 pole 2 zero filter.
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Figure B.15: The energy scaling function is implemented in this patch.
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Figure B.16: The main contact sound synthesis patch. This patch holds the contact 

sound generators for wound and unwound strings, as well as the bandpass resonator 

and contact sound volume controlling according to slide velocity. A DC component 

is also filtered out with a high-pass filter from the contact sound output.
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Figure B.17: This sub-patch receives string parameters, unpacks them and sends 

them to the contact sound generator.
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Figure B.18: This is the bandpass resonator frequency control sub-patch.
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Figure B.19: The contact sound for wound strings is generated inside this patch. It 

features the bandpass filter, a scaled hyperbolic tangent function, noise trigger 

mechanism, noise burst generator, the IIR contact sound filter and balancing of 

static and dynamic contact sounds.
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Figure B.20: This patch triggers the noise bursts. Triggering speed varies with 

string properties and slide velocity.
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Figure B.21: The noise burst generator patch receives noise burst triggers and 

outputs the noise pulse train according to triggering and string properties. 
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Figure B.22: This is the Fourth-Order IIR Contact Sound Filter. The IIR filter is 

implemented with fexpr~ function.
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Figure B.23: The noise generator for unwound strings. As can be seen, it is quite 

simple compared to wound strings. The output is low-passed white noise. 

 



55 
 

 

 
 

Figure B.24: The fretted test guitar. Originally for testing purposes, individual 

strings and tones can be played from here as a fretted guitar with normal tuning. 
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Figure B.25: A patch for recording the main output. By default this patch records 

7.5 seconds and writes the recording to a file called skit.wav as a 44.1 kHz mono 

wave file. The recording length and filename can be edited by the user. 
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