
Noé Falzon

Optimal inter-cell coordination for elastic
data traffic

Faculty of Electronics, Communications and Automation

Thesis submitted for examination for the degree of Master of
Science in Technology.

Espoo 25.08.2010

Thesis supervisor:

Prof. Samuli Aalto

Thesis instructor:

D.Sc. (Tech.) Pasi Lassila

A! Aalto University
School of Science
and Technology

aalto university
school of science and technology

abstract of the
master’s thesis

Author: Noé Falzon

Title: Optimal inter-cell coordination for elastic data traffic

Date: 25.08.2010 Language: English Number of pages:6+74

Faculty of Electronics, Communications and Automation

Department of Communications and Networking

Professorship: Networking Technology Code: S-38

Supervisor: Prof. Samuli Aalto

Instructor: D.Sc. (Tech.) Pasi Lassila

In cellular networks, where the wireless access is fairly shared among users, in-
dividual data rates are subject to variation because of the random nature of the
number of active flows in a cell. Another factor is the radio channel quality, which
depends highly on the users’ positions in the cell, and on the interference caused
by nearby base stations.
While user activity is random, its effects can be compensated by inter-cell inter-
ference coordination. This thesis proposes a queuing model of two interfering base
stations, and considers the possibility of turning them on and off depending on
the number of users in each cell.
We then devise an optimal time scheduling policy, that is a set of rules that min-
imizes the average total number of users in the system and therefore the average
delay.
We establish that depending on the level of interference, it is beneficial to either
serve always both cells at the same time, or on the contrary, to always serve only
one queue at a time.

Keywords: Elastic data traffic, interference mitigation, inter-cell coordination,
optimal time scheduling, Markov decision process, policy improve-
ment

iii

Preface

This thesis represents seven months of work as a research assistant in the department
of Communications and Networking of Aalto University’s School of Science and
Technology. I would like to thank the persons who made this achievement possible.

The first word goes of course to Samuli Aalto for his interest in my curriculum,
and who was kind enough to offer me the position in the laboratory; followed closely
by Pasi Lassila for his friendly supervision and always pertinent advice.

Must be mentioned the laboratory’s staff, for their great handling of adminis-
trative matters: Arja Hänninen, Sanna Patana, Sari Kiveliö, Lotta Timonen and
Hanna Ropponen; Viktor Nässi for his warm welcome and cheerful presence; and
Kimmo Pitkäniemi for his mastery of the arcane art of IT support.

Last but not least, my entire studies at the university would have been quite a
different experience without the availability and unconditional support of the office
of international affairs of the faculty: Anita Bisi and Jenni Tulensalo.

Otaniemi, 25.08.2010

Noé Falzon

iv

Contents

Abstract ii

Preface iii

Contents iv

Symbols and abbreviations vi

1 Introduction 1

2 Technological background: 3GPP LTE 3
2.1 Evolved UMTS Terrestrial Radio Access Network 3
2.2 System Architecture Evolution . 4
2.3 Simplified models . 5

3 Theoretical background 6
3.1 Markov processes . 6
3.2 Markov decision processes . 8

4 Time scheduling of two interfering base stations 13
4.1 Queuing model description . 13
4.2 Stochastically optimal policy in low interference 14
4.3 Stochastically optimal policy in high interference 20
4.4 Stability conditions . 22
4.5 Numerical considerations . 23
4.6 Direct Markov process solving . 26

5 Policy improvement 30
5.1 Optimal static policy, low interference 30
5.2 Optimal static policy, high interference 38
5.3 Policy improvement iteration . 40
5.4 Numerical policy improvement . 44

6 Quantifying the improvement 48
6.1 Gain . 48

7 Fairness 51
7.1 Low interference . 51
7.2 High interference . 52

8 Dynamic analysis of some OFDMA reuse patterns 54
8.1 Reuse patterns . 54
8.2 Teletraffic model . 56
8.3 Radio model . 58
8.4 Network topology . 58

v

8.5 Computing capacity gains . 59
8.6 Results . 60

9 Summary 63
9.1 Accomplished work . 63
9.2 Future work . 65

References 66

A Pyramid sequence 67

B Minimum of exponentially distributed variables 68

C Tabulated results for the gain of the optimal policy 70

vi

Symbols and abbreviations

Mathematical notation

Unless explicitely stated otherwise, the following typefaces are used to denote the
type of mathematical object:

M a matrix
mij or mi,j component on the i-th row and j-th column of matrix M
v a column vector
vi i-th component of vector v
X̄ = E[X] the average or expectation of the random variable X
P [X < x] the probability that the random variable X takes a value lower than x
lg(x) the base-2 logarithm, used for information theory purposes

Note that with the convention of using column vectors, the only valid matrix-
vector applications are Mv and vTM.

Teletraffic quantities

λ arrival rate [s−1]
µ service rate [s−1]
ρ load (= λ/µ)

Abbreviations

3GPP Third Generation Partnership Project
LTE Long Term Evolution
VoIP Voice over IP
UMTS Universal Mobile Telecommunications System
GPRS General Packet Radio Service
EDGE Enhanced Data Rates for GSM Evolution
UE User Equipment
E-UTRAN Evolved UMTS Terrestrial Radio Access Network
QPSK Quadrature Phase Shift Keying
QAM Quadrature Amplitude Modulation
OFDMA Orthogonal Frequency-Division Multiple Access
SC-FDMA Single-Carrier Frequency-Division Multiple Access
MIMO Multiple Input Multiple Output
FDD Frequency-Division Duplexing
TDD Time-Division Duplexing
MDP Markov Decision Process
SINR Signal to Interference and Noise Ratio
SIR Signal to Interference Ratio
AWGN Additive White Gaussian Noise

1

1 Introduction

The generalisation of mobile Internet, and the increasing demand in bandwidth-
hungry mobile services—such as real-time video, gaming, voice over IP, etc.—led
wireless technologies to adopt packet-switched networks as their main component.
First the General Packet Radio Service (GPRS) in 2G, and the Enhanced Data
Rates for GSM Evolution (EDGE) in 3G allowed packet switched traffic in addition
to the traditional circuit-switched networks. Long Term Evolution (LTE) systems
are now based on all-IP core networks, and thus set a clear standard for the future
of wireless cellular broadband access.

Elastic data traffic From an all-IP network’s point of view, all concurrent data
requests are streams of bytes or flows, seamlessly interwoven into one stream of
packets. Since no circuits, or connections, are reserved for anyone, the actual data
rate experienced by a particular user depends largely on

1. the number of other flows sharing the same resource, typically the number of
active users in the same cell,

2. the quality of the radio channel for the user, which itself depends directly on
the experienced signal to interference ratio. This makes inter-cell interference
a major limitation on the data rates.

Since item 1 varies randomly, the data rates are variable, or “elastic”. Although
we can consider incoming users as an immutable given, item 2 on the other hand is
related to the network and is therefore more likely to be controlled.

Coordination of base stations In [1], the authors introduce the new notion
of reducing inter-cell interference by coordinating base stations according to the
random nature of traffic. The basic motivation is that by turning off a base station,
higher rates can be achieved in neighboring cells.

They introduce the notion of “capacity” of a cell from a traffic point of view
(as opposed to static situations), and model a cellular network with many classes
of users, depending on their location in the cell (and therefore their data rates).
Assuming the base stations transmit at full power to one user at a time, they find
the optimal static scheduling strategies, that is how to attribute regions to user
classes depending on which base stations are on, in order to maximize data rates.
Numerical applications are done in symmetric 2 and 3 cells networks. However, the
optimization also involves load balancing which can be a contradictory objective,
especially when interference is high.

Queuing model In [2], the authors simplify this model by removing the spatial
dependency, and considering only two cells. This reduces to 2 classes of users (one
per cell), with heterogeneous service requirement distributions. These two classes
can be served either in parallel, or one after the other, which leads to different data

2

rates, representing the presence or absence of interference. Since the data rates are
now fixed, the objective is different, and more representative of a queuing model:
minimizing the total number of users in the system (and therefore the average delay)
by applying a time scheduling policy (switching base stations on and off at different
points of time).

The authors conclude that an optimal policy can be found only in particular
cases in this stochastic model, but not in general. They propose also fluid process
models and asymptotically fluid optimal policies characterized by switching curves.

In this thesis, inspired by the stochastic model in [2], we simplify it further by
considering symmetrical service requirements only. Although the paper contains
the general result, no detailed proof is given. We derive here a complete proof with
comments on the results and numerical examples.

This direct proof is possible only because of the drastic simplifications we as-
sumed. In more general cases, a numerical method such as policy improvement—as
described by the theory of Markov decision processes—may be needed. In order to
demonstrate its efficiency, we apply it to the problem at stake, and show that it
gives the same result.

Frequency reuse Another interference mitigation technique is studied in [3]: fre-
quency reuse patterns. These are motivated by the fact that LTE’s downlink is based
on OFDMA, which allows the division of the bandwidth to simultaneously transmit
to different classes of users. Data rates are directly proportional to bandwidth, so
using less bandwidth in each cell might seem like a loss. However, by cleverly allo-
cating bands to particular geographic regions, interfering base stations can be put
at greater distances from each other, therefore largely reducing interference and in
fact, increasing data rates.

Although reuse patterns were largely studied before in static situations, this pa-
per uses the traffic-wise capacity as defined in [1] as a measure of their performance.
Without deriving their analytical results, we re-compute the numerical results as a
proof of concept, possibly to be later integrated with time scheduling for even better
performance.

Outline This thesis is organized as follows. In Section 2, a brief description of
the technologies related to the problem is given, while in Section 3 we introduce the
mathematical tools that we use.

The main problem—finding an optimal way of realizing time scheduling between
two base stations—is established and solved in Section 4. In Section 5 we solve
the problem again but using Markov decision processes. Sections 6 and 7 present
a numerical quantification of the gain brought by the optimal policy, as well as a
discussion on its fairness.

The rather independent computation of capacity gains brought by frequency
reuse patterns is done in Section 8.

Finally, Section 9 is a summary of the results, and considerations on future works
to base on this one.

3

2 Technological background: 3GPP LTE

Long Term Evolution is the latest standard in mobile networking technology, de-
veloped by the 3rd Generation Partnership Project. Its goal is to answer to the
increasing demand for mobile broadband services, as users are now used to have
broadband access on personal computers and expect a similar quality of service re-
gardless of the location and the device. Indeed, by 2014, it is estimated that about
3.4 billion people will have access to broadband, among which 80% through mobile
subscriptions (see [4]).

LTE is a set of improvements over the Universal Mobile Telecommunications Sys-
tem (UMTS). Although it focuses on adopting 4G requirements, it does not fully
comply with them, and in this sense is a pre-4G step towards LTE Advanced—an
actual 4G compliant standard—, which is being developed by 3GPP as well.

Although the Internet is already accessible on 3G phones, LTE proposes to im-
prove user experience by increasing data rates and reducing latency, thus enhancing
applications such as web browsing, video streaming, voice over IP (VoIP), multime-
dia on-line gaming, real-time video, etc.

Performance goals In order to accommodate these highly demanding services in
terms of data rates and latency, the LTE standard imposes the following performance
requirements (retrieved from [5]):

Metric Requirement

Peak data rate for 20 MHz spectrum DL: 100 Mbps
UL: 50 Mbps

Mobility support Up to 500 km/h
Optimized for 0 to 15 km/h

Control plane latency (time from idle
to active state)

< 100 ms

User plane latency < 5 ms
Control plane capacity for 5 MHz
spectrum

> 200 users per cell

Coverage 5–100 km with slight degradation af-
ter 30 km

Spectrum flexibility 1.4, 3, 5, 10, 15 and 20 MHz

Additional goals are also to minimize power consumption and simplify user equip-
ment as much as possible. Furthermore, handover from LTE to 2G/3G is designed
to be seamless.

2.1 Evolved UMTS Terrestrial Radio Access Network

LTE’s air interface is called E-UTRAN, for Evolved UMTS Terrestrial Radio Ac-
cess Network. The Radio Access Network for LTE consists of a unique node that

4

interfaces with user equipments, called eNodeB. A single eNodeB provides similar
services than a nodeB and a Radio Network Controller together provided in UMTS,
and therefore reduces latency.

On the physical layer, E-UTRAN uses Orthogonal Frequency Division Multiplex-
ing (OFDM) for the downlink. The radio resource is divided into a time-frequency
grid. In frequency domain, the bandwidth is divided into many narrow sub-carriers
of width ∆f = 15 kHz, while in time domain, the symbol duration is 1/∆f plus a
cyclic prefix (used to maintain orthogonality between sub-carriers in time-dispersive
radio channels). Each one of these resource elements carries a variable number of
bits, depending on the modulation used (QPSK: 2 bits, 16-QAM: 4 bits, or 64-
QAM: 6 bits). They are finally grouped into resource blocks of 12 sub-carriers and
7 symbols, that is, 180 kHz and time slots of about 5 ms.

The allocation of resource blocks to users is done according to advanced schedul-
ing mechanisms, that can be applied as often as every millisecond.

In uplink, limiting power consumption is a major objective, since the signal is
emitted from user equipments. However, OFDM has a high Peak to Average Power
Ratio, which requires high quality power amplifiers (which would increase the cost
of the equipment), and empties the battery faster, which is always a problem on mo-
bile devices. To compensate this, in the uplink, LTE uses Single Carrier Frequency
Division Multiple Access (SC-FDMA), a linearly precoded OFDM which effectively
reduces power consumption and the need for efficient power amplifiers.

LTE also specifies multi-layered antenna technologies like 2x2 and 4x4 Multiple
Input Multiple Output (MIMO), and beam-forming for extended coverage. Fur-
thermore, both Frequency Division Duplexing (uplink and downling occuring at the
same time on different frequency bands) and Time Division Multiplexing (uplink
and downling alternating on the same frequency band) are available.

2.2 System Architecture Evolution

The core network architecture of LTE is called System Architecture Evolution
(SAE), designed to improve and replace the General Packet Radio Service (GPRS)
core network, by simplifying it. Its main component is the Evolved Packet Core
(EPC): an all-IP network that supports higher throughput and lower latency RANs
(Radio Access Networks, such as E-UTRAN, see Section 2.1), and mobility between
previous RANs, GPRS for instance.

• The Serving Gateway routes and forwards packets, and manages inter eNodeB
handovers, as well as mobility between LTE and other 3GPP technologies
(2G/3G systems).

• The Mobility Management Entity is responsible for tracking idle user equip-
ments, choosing a Serving Gateway for user equipments when they turn on.
It also deals with intra-LTE handovers that require Core Network node re-
location. Indeed, LTE enables sharing the eNodeBs between several Core

5

Networks (Mobility Management Entity, Serving Gateway and Packet Data
Network Gateway). This allows service providers to reduce their costs by
operating only a Core Network, and using the same eNodeBs conjointly.

• Finally, the Packet Data Network Gateway connects Serving Gateways to the
external packet data networks (such as the Internet), and provides mobility to
non 3GPP technologies (WiMAX, CDMA 1x, EvDO).

See [5] for a detailed description of SAE.

2.3 Simplified models

In this thesis, although we place ourselves in the very general context of LTE, the
models we use are extremely simplified. In Sections 4 and 5, the two interfering
base station can roughly model eNodeBs, but all physical or technical parameters
are reduced to a simple queuing model determined by average throughputs.

In Section 8, we consider the division and allocation of bandwidth to different
classes of users, which is inherent to a multiple access scheme such as OFDMA.

Beyond this, it should be noted that this thesis is of very theoretical nature, and
not necessarily tied to any actual technology.

6

3 Theoretical background

Note: the theory of dynamic programming (introduced by Bellman in [6]) and Markov
processes (see e.g. [7]) is wider than the following short introduction. We focus here
on the elements necessary to the comprehension of the problem at stake.

3.1 Markov processes

Definition Let X(t) be a discrete-state, continuous-time stochastic process. It is
said to be a Markov process if

P [X(tn+1) = xn+1|X(t1) = x1, . . . , X(tn) = xn] =

P [X(tn+1) = xn+1|X(tn) = xn]

for all n ∈ N, ordered time instants t1 < . . . < tn+1, and states x1, . . . , xn+1. In
other words, given the current state, the future of the process does not depend on
its past. We will also assume that X(t) is time-homogeneous, that is,

P [X(t+ h) = y|X(t) = x] = P [X(h) = y|X(0) = x]

for all positive times t, h and states x, y.

Transition rates Time-homogeneity allows us to define state transition rates qij
that are themselves independent of the time instant t:

qij = lim
h→0

1

h
P [X(h) = j|X(0) = i].

Equivalently, during a short time interval h, the probability of transition from state
i to state j is

P [X(t+ h) = j|X(t) = i] = qijh+ o(h).

Therefore, the probability of transition from i to any other state during a short time
interval h is

qih+ o(h), with qi =
∑
j 6=i

qij.

The memoryless assumption due to the Markov property makes this independent
of any other time interval. This is of course the characteristics of an exponential
distribution: the holding time in state i is exponentially distributed with rate qi:

Ti ∼ Exp(qi).

However, this holding time does not inform about which state the transition is
done to. Let Tij be the “potential” holding time for the i→ j transition, that is, the
holding time that there would be if i → j was the only possible transition. Again,
we have

Tij ∼ Exp(qij).

7

We can then express the holding time by

Ti = min
j 6=i

Tij,

and finally

P [Ti = Tij] =
qij
qi
,

as proved in Appendix B.

State probabilities We can now find the state probabilities, that is the proba-
bility that the system is in a certain state at a given time

πj(t) = P [X(t) = j].

For an infinitesimal time h, the probability of being in state j at time t+h is the
probability of having been in state i at time t and having had a i→ j transition, plus
the probability of being already in state j at time t and having had no transition:

πj(t+ h) =
∑
i 6=j

πi(t)qijh+ πj(t)(1− qjh) + o(h)

πj(t+ h)− πj(t) =
∑
i 6=j

πi(t)qijh− πj(t)qjh+ o(h).

To facilitate vector notation, we take the convention qjj = −qj, which results in

πj(t+ h)− πj(t) = h
∑
i

πi(t)qij + o(h)

πj(t+ h)− πj(t)
h

=
∑
i

πi(t)qij +
o(h)

h

dπj
dt

(t) =
∑
i

πi(t)qij,

or in vector form,
dπT

dt
(t) = πT (t)Q.

The general solution to this differential equation is given by

πT (t) = πT (0)eQt,

but the real interest is in the equilibrium distribution, which—if taken as initial
distribution—makes the Markov process stationary:

dπT

dt
(t) = 0 ⇐⇒ πT (t)Q = 0.

We therefore call steady state distribution the distribution π that satisfies

πTQ = 0.

8

For each column j, this equation expands to∑
i

πiqij = 0∑
i 6=j

πiqij + πjqjj = 0∑
i 6=j

πiqij − πj
∑
i 6=j

qji = 0,

and then ∑
i 6=j

πiqij =
∑
i 6=j

πjqji,

which is called the global balance equation, expressed for state j. Of course, to be
a proper distribution, it should be normalized:∑

i

πi = 1 ⇐⇒ πTe = 1,

where ei = 1,∀i. It is also possible to express both conditions in a single equation:

π = (QT + E)−1e,

where E = eeT is the matrix with all elements equal to 1.

3.2 Markov decision processes

While continuous Markov processes are a useful tool in the study of stochastic
systems, they have the significant disadvantage of describing only fixed situations,
in which the transition rates are constant. It is sometimes necessary to let these
rates vary, for instance to model the possibility of choice, or decision.

In a Markov decision process, to each state we associate a number of possible
actions, which determine both the transition rates out of the state, and a revenue
rate (or equivalently, a cost rate). A mapping of the states to the actions is called
a policy, and naturally the aim of the theory is to find an optimal policy, which
maximizes the average revenue (or minimizes the cost).

Although the concept can be applied to discrete time, we will focus here on con-
tinuous time, as the processes we will study later are continuous.

To comply with the Markov property, in each state i, the choice of an action a
can depend only on the current state. We will denote the corresponding revenue
rate ri(a) and the outgoing transition rates qij(a). Since a policy α maps each state
to a single action, we will in fact write these rates as functions of the policy: ri(α),
qij(α), or in vector form, r(α) and Q(α).

Note that fixing the policy α turns a Markov decision process into a simple
Markov process. We can therefore solve from its transition rate matrix Q(α) the
equilibrium distribution π(α): {

πT (α)Q(α) = 0

πT (α)e = 1
.

9

Average revenue rate Once the equilibrium distribution π(α) is solved, we get
directly the average revenue rate r(α):

r(α) =
∑
i

πi(α)ri(α) = πT (α)r(α).

The objective is now to find the optimal policy, that is the policy α∗ that maxi-
mizes the average revenue (or minimizes the average cost, defined similarly):

α∗ = arg max
α

r(α).

With a finite number of states and actions, there is a finite number of policies as
well, which in principle, allows to compute the average revenue rate for all of them.
In practice, this can be computationally impossible, and in many cases, the state
space is infinite anyway.

Solving for the optimal policy is rather done using dynamic programming tech-
niques, one of which being called policy iteration.

Note: from now on, the α parameter can be omitted for clarity of the notations,
but it should be assumed that every value depends on the current policy.

Relative state values We know that, as time grows to infinity, the state proba-
bility vector gets closer and closer to the equilibrium distribution, regardless of its
initial value:

lim
t→∞

πT (t) = lim
t→∞

πT (0)eQt = πT .

However, different initial values may lead to a different short term evolution of the
state probabilities. We introduce Vi(t), the cumulative revenue starting from state
i, that is the integral of the revenue rate over the time interval [0, t].

By choosing π(0) = ei (the vector whose ith component is 1 and the others zero)
we have:

Vi(t) =

t∫
0

πT (u)r du

=

t∫
0

eTi e
Qur du

= eTi

 t∫
0

eQu du

 r,

and in vector form

V(t) =

t∫
0

eQu du · r.

10

Since when t tends to infinity, the revenue rate tends to the average revenue rate,
which is positive, the integral grows generally unbounded. We therefore use instead
the relative state values vi to compare the initial transient behaviors, and ignore the
long term effects which are independent of the initial state:

vi =

∞∫
0

πT (u)r− πT r du

= lim
t→∞

Vi(t)− t · r

v = lim
t→∞

V(t)− t · re.

Howard equation Because of the memorylessness of a Markov process, it is pos-
sible to find a relation between the relative state values. Indeed, arriving in a new
state or starting in this same state should be strictly equivalent. Therefore we can
separate the integral in two parts: before the first transition (which on average
occurs at E[Ti]), and after:

vi =

∞∫
0

πT (u)r− πT r du

=

E[Ti]∫
0

πT (u)r− πT r du+

∞∫
E[Ti]

πT (u)r− πT r du.

Between 0 and E[Ti], the state probability collapses to ei, since we know with
certainty to be in state i. After E[Ti], we are in state j with probability qij/qi, and
the second integral is equal to vj:

vi =

E[Ti]∫
0

ri − r du+
∑
j 6=i

qij
qi
vj

vi =
1

qi
(ri − r) +

∑
j 6=i

qij
qi
vj

qivi = ri − r +
∑
j 6=i

qijvj.

And since qi = −qii, we finally get what is known as the Howard equation (introduced
e.g. in [8]):

ri(α)− r(α) +
∑
j

qij(α)vj(α) = 0, ∀i,

or in vector form:
r(α)− r(α)e + Q(α)v(α) = 0.

11

Computational considerations So far, we started with the computation of the
equilibrium distribution, then from it came the average revenue rate, which is used
in the definition of the relative state values. The definition of the latter being
somewhat difficult to use, we establish that they satisfy a certain relation (Howard
equation), which is the practical way to compute them.

However, this implies solving two systems of equations: one for the equilibrium
distribution, and one for the relative state values. If the ultimate goal is the relative
state values, regardless of any other intermediate variables, it is in fact possible to
solve only one system of equations.

Indeed, consider the following equation:

r(α)− ge + Q(α)v(α) = 0,

where g is unknown. Since each row of Q(α) sums up to 0, Qe = 0. Consequently,
if v is a solution to this equation, v + c · e is as well. In other words, the vi(α) are
determined up to an additive constant, and we can set for instance v1(α) = 0. This
allows to solve g as an unknown in the problem, which keeps an equal number of
equations and variables.

Now if g and v are solution to this equation, multiplying it by πT gives:

πT r− gπTe + πTQv = πT0

r − g · 1 + 0v = 0,

and finally,
g = r(α).

In conclusion, it is possible to solve for the average revenue rate and the relative
state values without knowing the steady state distribution.

Policy iteration From a policy α, we build a new policy α′ by choosing in each
state i the action ai according to the following definition:

ai = arg max
a

{
ri(a)− r(α) +

∑
j

qij(a)vj(α)

}
. (3.1)

Intuitively, this corresponds to taking the action that maximizes the immediate
revenue rate, and the expected revenue for the rest of the time (if after the next
transition the old policy was used).

It is shown in [9] that the obtained policy is never worse that the original. That
is,

r(α′) ≥ r(α).

Once the new policy is found, the new relative state values are computed, and the
policy iteration can be applied again until convergence. Indeed, if the policy does
not change in the iteration process, then it is proved that it is in fact optimal.

12

Relative state values in an M/M/1 queue As an example—and because the
result will be needed later—we derive here the relative state values in an M/M/1
queue, with arrival rate λ and service rate µ.

Note that we do not mention any policy in what follows. Since we consider the
“usual” M/M/1 queue, which is a simple Markov process, we assume a free-access
policy. The only available action is to serve at the constant rate µ, and accept all
incoming users. The transition rates and costs are constant.

The Markov process is as follows:

• the states n ∈ N represent the queue length

• the transition rates are between neighboring states only (which makes the
queue a birth-death process)

qn,n+1 = λ, ∀n ∈ N
qn,n−1 = µ, ∀n > 0.

Since the ultimate goal will be to minimize the delay in the system, we will
consider costs instead of revenues. By Little’s formula, the average delay in a stable
system is proportional to the average number of users present in the system (proved
in [10]). It is therefore reasonable to use the number of users (i.e. the length of the
queue) as the immediate cost rate.

rn = n.

The Howard equation follows directly:

v0 = 0

−r + λv1 − λv0 = 0

n− r + λvn+1 + µvn−1 − (λ+ µ)vn = 0, ∀n > 0.

It is easy to check that

vn =
1

2

n(n+ 1)

µ− λ
, r =

λ

µ− λ
(3.2)

verifies the equation and is therefore the solution. Note that since we chose the
queue length for the cost rate rn, r represents the average queue length, which is
indeed known to be

E[N] =
λ

µ− λ
(3.3)

for the M/M/1 queue1.

1It can be otherwise computed by finding the equilibrium state distribution and computing its
average, since the states n have been taken to represent queue lengths.

13

4 Time scheduling of two interfering base stations

Two base stations using the same frequency band interfere, in that a user in one
cell will hear the signal from the other cell as unwanted noise which competes with
the signal coming from its own base station. In other words, a neighboring base
station decreases its own signal to interference ratio, thus reducing the data rate he
experiences.

From the simple remark that a base station does not interfere when it is turned
off, we can intuitively infer that it should be possible to increase the global perfor-
mance of a network by turning off the base stations when they are least needed.

The concept of time scheduling for base stations—according to incoming random
traffic—has been introduced in [1], where the exact locations of the users in the cells
were considered. It was then simplified in [2], where the spatial component was
removed by averaging rates over the cell’s area.

We consider here two interfering base stations (see Figure 1), each with its own
queue of arriving customers, starting downlink flows of random sizes. We make the
simplifying assumption that the flow sizes are identically distributed, as it should
be if all users use the same kinds of services. However, we allow arrival rates in the
two cells to be different, since the two cells could be for instance of different sizes,
or in areas populated differently.

Figure 1: Interfering base stations

By “time scheduling” we mean that at any time, each base station can be either
on or off. We give ourselves the objective of minimizing the average total number of
users in the system. Since this is directly related to the average delay experienced,
this optimization is positive in terms of quality of service.

4.1 Queuing model description

We model the situation as follows. Consider two classes of users (i = 1, 2) arriving
according to independent Poisson processes with rate λi, and having the same ex-
ponentially distributed service requirements with mean E[X] (bits). At any time,
the server has three possible actions: serve one class only (either class 1 or class 2)
with service rate c0, or serve both classes 1 and 2 in parallel with rate c1 for each
(bits/s). To model the fact that the stations interfere with each other when serving
at the same time, we assume c1 < c0. As we will see, the relative values of c1 and

14

c0 have a major impact. The case 2c1 > c0 will be referred to as “low interference”,
and its counterpart 2c1 ≤ c0 as “high interference”.

We denote by µi the departure rates associated with rates ci, that is:

µ0 =
c0

E[X]
, µ1 =

c1

E[X]
.

For a given policy π, we denote by Nπ
i (t) the number of class-i users in the

system at time t, Nπ(t) = (Nπ
1 (t), Nπ

2 (t)). If the random variables with steady-state
distributions exist, they are denoted as Nπ

i and Nπ. By considering only non-
anticipating policies Π, the exponential service requirements make the stochastic
behavior independent of the discipline applied within a class. We can assume for
instance Processor Sharing.

A policy π̃ is called average optimal if

π̃ = argminπ∈ΠE[Nπ
1 +Nπ

2],

and stochastically optimal if

N π̃
1 (t) +N π̃

2 (t) ≤st Nπ
1 (t) +Nπ

2 (t), ∀t ≥ 0,∀π ∈ Π, (4.1)

where X ≤st Y means P [X > s] ≤ P [Y > s], ∀s ≥ 0. Note that stochastic
optimality implies average optimality.

4.2 Stochastically optimal policy in low interference

Here we prove that when 2c1 > c0, the stochastically optimal policy is to have both
stations switched on whenever possible.

Let the functions Vk, k ∈ N be defined as follows:

V0(x) = 1(x1+x2>s)

Vk+1(x) =
λ1

ν
Vk(x1 + 1, x2) +

λ2

ν
Vk(x1, x2 + 1)

+min
{µ0

ν
Vk((x1 − 1)+, x2) +

2µ1

ν
Vk(x),

µ0

ν
Vk(x1, (x2 − 1)+) +

2µ1

ν
Vk(x),

µ1

ν
Vk((x1 − 1)+, x2) +

µ1

ν
Vk(x1, (x2 − 1)+) +

µ0

ν
Vk(x)

}
,

for x1, x2 ≥ 0, ν = λ1 + λ2 + µ0 + 2µ1 and s > 0. Since we are interested in the
minimization problem, the 1

ν
factor—present in every term—can be omitted without

loss of generality.
The Vk(x) function represents the minimal expected cost after k transitions from

a (x1, x2) initial state, in the uniformized Markov process2. Each term in the recur-
sive definition of Vk+1 is the probability of transitioning from some state at step k

2Since the transitions depend on the choice of an action, we need to add dummy transitions
to the same state, so that whatever the action chosen, the sum of transition rates is the same,
denoted by ν.

15

multiplied by the expected cost of this state at the previous step. Each option in
the min{} represents one action (station 1 on, station 2 on, both stations on), and
uses transition probabilities which depend on the associated achieved rates.

Proposition 1. Vk(x) is non decreasing in x1 and x2 for all k.

Proof. By induction. Assuming Vk is non decreasing in x1, x2, all terms of Vk+1 are
of the form cVk(fd(x1), fe(x2)) where c > 0 and fd(xi) = (xi +d)+, and are thus non
decreasing functions of xi.

V0 = 1(x1+x2>s) is obviously non decreasing in x1 and x2.

Proposition 2. For x1 > 0, x2 = 0, k ∈ N,

µ0Vk(x1 − 1, x2) + 2µ1Vk(x)

≤ min
{
µ0Vk(x1, (x2 − 1)+) + 2µ1Vk(x),

µ0Vk(x) + µ1Vk(x1 − 1, x2) + µ1Vk(x1, (x2 − 1)+)
}
,

(and inversely for x1 = 0, x2 > 0). In other words, the minimizing term in Vk is the
one associated with the action of serving only the non empty queue.

Proof. With x2 = 0, the first inequality to prove reduces to

µ0Vk(x1 − 1, 0) + 2µ1Vk(x) ≤ µ0Vk(x1, 0) + 2µ1Vk(x),

and finally
Vk(x1 − 1, 0) ≤ Vk(x1, 0),

which is true, by the previous proposition.
The second inequality reduces to

µ0Vk(x1 − 1, 0) + 2µ1Vk(x1, 0) ≤ µ0Vk(x) + µ1Vk(x1 − 1, 0) + µ1Vk(x1, 0)

µ0Vk(x1 − 1, 0) + µ1Vk(x1, 0) ≤ µ0Vk(x) + µ1Vk(x1 − 1, 0)

µ1[Vk(x1, 0)− Vk(x1 − 1, 0)] ≤ µ0[Vk(x1, 0)− Vk(x1 − 1, 0)],

which is always true, since by previous proposition Vk(x1, 0)−Vk(x1−1, 0) ≥ 0, and
we assumed c1 < c0 (⇐⇒ µ1 < µ0).

The proof is similar with x1 = 0, x2 > 0.

Proposition 3. For x1, x2 > 0, k ∈ N,

µ0Vk(x)+µ1Vk(x1 − 1, x2) + µ1Vk(x1, x2 − 1)

≤ min
{
µ0Vk(x1, x2 − 1) + 2µ1Vk(x),

µ0Vk(x1 − 1, x2) + 2µ1Vk(x)
}
.

Proof. By induction.

16

Basis of induction At k = 0, V0 = 1(x1+x2>s), so V0(x1 − 1, x2) = V0(x1, x2 − 1),
and the inequality to prove is reduced to:

µ01(x1+x2>s) + 2µ11(x1+x2>s+1) ≤ µ01(x1+x2>s+1) + 2µ11(x1+x2>s),

which is equivalent to
c0f(x) ≤ 2c1f(x),

where f(x) = 1(x1+x2>s) − 1(x1+x2>s+1). Note that

f(x) =

{
1 if x1 + x2 = s+ 1

0 otherwise
,

so f(x) ≥ 0. And since c0 < 2c1, the inequality is always verified.

Inductive step We assume it holds for Vk, and prove this implies that it holds
for Vk+1 also.

Case x1, x2 > 1 Since the inequality holds for Vk, the minimizing term in the
definition of Vk+1 is always the third one, giving the following explicit expression:

µ0Vk+1(x) + µ1Vk+1(x1 − 1, x2) + µ1Vk+1(x1, x2 − 1)

=µ0 [λ1Vk(x1 + 1, x2) + λ2Vk(x1, x2 + 1) + µ1Vk(x1 − 1, x2) + µ1Vk(x1, x2 − 1) + µ0Vk(x)]

+µ1 [λ1Vk(x) + λ2Vk(x1 − 1, x2 + 1) + µ1Vk(x1 − 2, x2) + µ1Vk(x1 − 1, x2 − 1) + µ0Vk(x1 − 1, x2)]

+µ1 [λ1Vk(x1 + 1, x2 − 1) + λ2Vk(x) + µ1Vk(x1 − 1, x2 − 1) + µ1Vk(x1, x2 − 2) + µ0Vk(x1, x2 − 1)] .

Rearranging the terms gives:

= λ1[µ0Vk(x1 + 1, x2) + µ1Vk(x) + µ1Vk(x1 + 1, x2 − 1)]

+ λ2[µ0Vk(x1, x2 + 1) + µ1Vk(x1 − 1, x2 + 1) + µ1Vk(x)]

+ µ1[µ0Vk(x1 − 1, x2) + µ1Vk(x1 − 2, x2) + µ1Vk(x1 − 1, x2 − 1)]

+ µ1[µ0Vk(x1, x2 − 1) + µ1Vk(x1 − 1, x2 − 1) + µ1Vk(x1, x2 − 2)]

+ µ0[µ0Vk(x) + µ1Vk(x1 − 1, x2) + µ1Vk(x1, x2 − 1)].

At this point we recognize in each bracket the left side of the inequality assumed
true for each Vk:

≤ λ1[2µ1Vk(x1 + 1, x2) + µ0Vk(x1 + 1, x2 − 1)]

+ λ2[2µ1Vk(x1, x2 + 1) + µ0Vk(x)]

+ µ1[2µ1Vk(x1 − 1, x2) + µ0Vk(x1 − 1, x2 − 1)]

+ µ1[2µ1Vk(x1, x2 − 1) + µ0Vk(x1, x2 − 2)]

+ µ0[2µ1Vk(x) + µ0Vk(x1, x2 − 1)],

17

and finally:

= µ0 [λ1Vk(x1 + 1, x2 − 1) + λ2Vk(x) + µ1Vk(x1 − 1, x2 − 1) + µ1Vk(x1, x2 − 2) + µ0Vk(x1, x2 − 1)]

+ 2µ1 [λ1Vk(x1 + 1, x2) + λ2Vk(x1, x2 + 1) + µ1Vk(x1 − 1, x2) + µ1Vk(x1, x2 − 1) + µ0Vk(x)]

= µ0Vk+1(x1, x2 − 1) + 2µ1Vk+1(x).

We have shown that for x1, x2 > 1,

µ0Vk+1(x)+µ1Vk+1(x1−1, x2)+µ1Vk+1(x1, x2−1) ≤ µ0Vk+1(x1, x2−1)+2µ1Vk+1(x).

It can be shown in a similar way that

µ0Vk+1(x)+µ1Vk+1(x1−1, x2)+µ1Vk+1(x1, x2−1) ≤ µ0Vk+1(x1−1, x2)+2µ1Vk+1(x).

Case x1 ≥ 1, x2 = 1, first inequality Consider the following expression:

µ0Vk+1(x1, 1) + µ1Vk+1(x1 − 1, 1) + µ1Vk+1(x1, 0).

We can expand the first two terms by using the assumed property of Vk in its
definition (and choosing the non-optimal policy that serves the second queue only,
hence the inequality), and the third by application of Proposition 2:

≤µ0[λ1Vk(x1 + 1, 1) + λ2Vk(x1, 2) + µ0Vk(x1, 0) + 2µ1Vk(x1, 1)]

+µ1[λ1Vk(x1, 1) + λ2Vk(x1 − 1, 2) + µ0Vk(x1 − 1, 0) + 2µ1Vk(x1 − 1, 1)]

+µ1[λ1Vk(x1 + 1, 0) + λ2Vk(x1, 1) + µ0Vk(x1 − 1, 0) + 2µ1Vk(x1, 0)].

Rearranging:

=λ1[µ0Vk(x1 + 1, 1) + µ1Vk(x1, 1) + µ1Vk(x1 + 1, 0)]

+λ2[µ0Vk(x1, 2) + µ1Vk(x1 − 1, 2) + µ1Vk(x1, 1)]

+µ0[µ0Vk(x1, 0) + 2µ1Vk(x1 − 1, 0)]

+2µ1[µ0Vk(x1, 1) + µ1Vk(x1 − 1, 1) + µ1Vk(x1, 0)].

In the first two terms we apply the assumed property of Vk. In the third we make
use of the fact that

µ0Vk(x1, 0) + 2µ1Vk(x1 − 1, 0) ≤ µ0Vk(x1 − 1, 0) + 2µ1Vk(x1, 0)

⇐⇒ (µ0 − 2µ1)[Vk(x1, 0)− Vk(x1 − 1, 0)] ≤ 0,

—which is true, since Vk is non decreasing by Proposition 1 and µ0 < 2µ1—and
obtain:

≤λ1[µ0Vk(x1 + 1, 0) + 2µ1Vk(x1 + 1, 1)]

+λ2[µ0Vk(x1, 1) + 2µ1Vk(x1, 2)]

+µ0[µ0Vk(x1 − 1, 0) + 2µ1Vk(x1, 0)]

+2µ1[µ0Vk(x1, 1) + µ1Vk(x1 − 1, 1) + µ1Vk(x1, 0)].

18

Finally:

= µ0[λ1Vk(x1 + 1, 0) + λ2Vk(x1, 1) + µ0Vk(x1 − 1, 0) + 2µ1Vk(x1, 0)]

+ 2µ1[λ1Vk(x1 + 1, 1) + λ2Vk(x1, 2) + µ0Vk(x1, 1) + µ1Vk(x1 − 1, 1) + µ1Vk(x1, 0)]

= µ0Vk+1(x1, 0) + 2µ1Vk+1(x1, 1).

We have shown that for x1 ≥ 1, x2 = 1,

µ0Vk+1(x1, 1) + µ1Vk+1(x1 − 1, 1) + µ1Vk+1(x1, 0) ≤ µ0Vk+1(x1, 0) + 2µ1Vk+1(x1, 1).

Case x1 > 1, x2 = 1, second inequality Again we consider the expression

µ0Vk+1(x1, 1) + µ1Vk+1(x1 − 1, 1) + µ1Vk+1(x1, 0)

and expand it in a similar fashion. The first two terms are rewritten using the non-
optimal policy that serves the first queue only (by the assumed property of Vk in its
definition), and the third by application of Proposition 2:

≤µ0[λ1Vk(x1 + 1, 1) + λ2Vk(x1, 2) + µ0Vk(x1 − 1, 1) + 2µ1Vk(x1, 1)]

+µ1[λ1Vk(x1, 1) + λ2Vk(x1 − 1, 2) + µ0Vk(x1 − 2, 1) + 2µ1Vk(x1 − 1, 1)]

+µ1[λ1Vk(x1 + 1, 0) + λ2Vk(x1, 1) + µ0Vk(x1 − 1, 0) + 2µ1Vk(x1, 0)]

=λ1[µ0Vk(x1 + 1, 1) + µ1Vk(x1, 1) + µ1Vk(x1 + 1, 0)]

+λ2[µ0Vk(x1, 2) + µ1Vk(x1 − 1, 2) + µ1Vk(x1, 1)]

+µ0[µ0Vk(x1 − 1, 1) + µ1Vk(x1 − 2, 1) + µ1Vk(x1 − 1, 0)]

+2µ1[µ0Vk(x1, 1) + µ1Vk(x1 − 1, 1) + µ1Vk(x1, 0)].

In the first two terms we apply the assumed property of Vk and replace them by
the expression associated with serving the first queue only. We leave the third and
fourth terms untouched:

≤λ1[µ0Vk(x1, 1) + 2µ1Vk(x1 + 1, 1)]

+λ2[µ0Vk(x1 − 1, 2) + 2µ1Vk(x1, 2)]

+µ0[µ0Vk(x1 − 1, 1) + µ1Vk(x1 − 2, 1) + µ1Vk(x1 − 1, 0)]

+2µ1[µ0Vk(x1, 1) + µ1Vk(x1 − 1, 1) + µ1Vk(x1, 0)].

Finally:

=µ0[λ1Vk(x1, 1) + λ2Vk(x1 − 1, 2) + µ0Vk(x1 − 1, 1) + µ1Vk(x1 − 2, 1) + µ1Vk(x1 − 1, 0)]

+2µ1[λ1Vk(x1 + 1, 1) + λ2Vk(x1, 2) + µ0Vk(x1, 1) + µ1Vk(x1 − 1, 1) + µ1Vk(x1, 0)]

=µ0Vk+1(x1 − 1, 1) + 2µ1Vk+1(x1, 1).

We have shown that for x1 > 1, x2 = 1,

µ0Vk+1(x1, 1)+µ1Vk+1(x1−1, 1)+µ1Vk+1(x1, 0) ≤ µ0Vk+1(x1−1, 1)+2µ1Vk+1(x1, 1),

thus completing the induction for the case x1 > 1, x2 = 1. The two inequalities of
case x1 = 1, x2 > 1 are proven similarly.

19

Case x1 = 1, x2 = 1 We consider the expression

µ0Vk+1(1, 1) + µ1Vk+1(0, 1) + µ1Vk+1(1, 0)

and expand it using induction for the first term, and Proposition 2 for the second
and third:

=µ0[λ1Vk(2, 1) + λ2Vk(1, 2) + µ0Vk(0, 1) + 2µ1Vk(1, 1)]

+µ1[λ1Vk(1, 1) + λ2Vk(0, 2) + µ0Vk(0, 0) + 2µ1Vk(0, 1)]

+µ1[λ1Vk(2, 0) + λ2Vk(1, 1) + µ0Vk(0, 0) + 2µ1Vk(1, 0)]

=λ1[µ0Vk(2, 1) + µ1Vk(1, 1) + µ1Vk(2, 0)]

+λ2[µ0Vk(1, 2) + µ1Vk(0, 2) + µ1Vk(1, 1)]

+µ0[µ0Vk(0, 1) + 2µ1Vk(0, 0)]

+2µ1[µ0Vk(1, 1) + µ1Vk(0, 1) + µ1Vk(1, 0)].

In the first two terms we apply the assumed property of Vk. In the third term we
again make use of the fact that Vk is non decreasing in x1, x2, and µ0 < 2µ1, which
implies µ0Vk(0, 1)+2µ1Vk(0, 0) ≤ µ0Vk(0, 0)+2µ1Vk(0, 1). We leave the fourth term
as it is:

≤λ1[µ0Vk(1, 1) + 2µ1Vk(2, 1)]

+λ2[µ0Vk(0, 2) + 2µ1Vk(1, 2)]

+µ0[µ0Vk(0, 0) + 2µ1Vk(0, 1)]

+2µ1[µ0Vk(1, 1) + µ1Vk(0, 1) + µ1Vk(1, 0)]

=µ0[λ1Vk(1, 1) + λ2Vk(0, 2) + µ0Vk(0, 0) + 2µ1Vk(0, 1)]

+2µ1[λ1Vk(2, 1) + λ2Vk(1, 2) + µ0Vk(1, 1) + µ1Vk(0, 1) + µ1Vk(1, 0)]

=µ0Vk+1(0, 1) + 2µ1Vk+1(1, 1).

We have shown

µ0Vk+1(1, 1) + µ1Vk+1(0, 1) + µ1Vk+1(1, 0) ≤ µ0Vk+1(0, 1) + 2µ1Vk+1(1, 1).

The second inequality

µ0Vk+1(1, 1) + µ1Vk+1(0, 1) + µ1Vk+1(1, 0) ≤ µ0Vk+1(1, 0) + 2µ1Vk+1(1, 1)

was covered by the case x1 ≥ 1, x2 = 1, thus completing the induction and the
proof.

In light of the previous propositions, we deduce that the minimizing action in
the definition of the Vk is to use both servers in parallel when x1, x2 > 0 (that is
when both queues are non empty), and to serve only the non empty queue when

20

one of them is empty. In other words, turn off a base station if and only if it has no
users to serve.

Finally, given the choice of the cost function V0(x) = 1(x1+x2>s), the functions
Vk can be interpreted as Vk(x) = P [N1(k) + N2(k) > s|N(0) = x]. Therefore, by
showing that the minimizing action is always the same for all s and k, we have
shown that the associated policy is stochastically optimal.

4.3 Stochastically optimal policy in high interference

It is possible to imagine cases where interference between the stations is so bad, that
in the resulting model, 2c1 ≤ c0. Intuitively we can infer that using both stations
at the same time is never in our interest, and that the optimal policy is to use them
alternatively, one at a time.

Here we prove that it is indeed the case.
Propositions 1 and 2 still hold, since their proofs do not rely on the relative order

of 2c1 and c0.

Proposition 4. For x1, x2 > 0, k ∈ N,

µ0Vk(x)+µ1Vk(x1 − 1, x2) + µ1Vk(x1, x2 − 1)

≥ max
{
µ0Vk(x1, x2 − 1) + 2µ1Vk(x),

µ0Vk(x1 − 1, x2) + 2µ1Vk(x)
}
.

In other words, the minimizing term in the definition of Vk is never the one associ-
ated with serving both queues at the same time.

Proof. Similar to proof of Proposition 3, where all inequalities are inversed.

Note that this proposition does not give information about the actual minimizing
action.

Proposition 5. In the definition of Vk, the terms associated with serving one queue
only are equal. Formally, for x1, x2 > 0, k ∈ N,

µ0Vk(x1, x2 − 1) + 2µ1Vk(x) = µ0Vk(x1 − 1, x2) + 2µ1Vk(x),

or equivalently,
Vk(x1, x2 − 1) = Vk(x1 − 1, x2).

Proof. By induction.
At k = 0, V0 = 1(x1+x2>s), so V0(x1 − 1, x2) = V0(x1, x2 − 1), and the equality is

immediate.
For k > 0, suppose that the equality holds for Vk. In light of the previous

proposition, we can write, for x1, x2 > 1:

µ0Vk+1(x1 − 1, x2) + 2µ1Vk+1(x)

=µ0[λ1Vk(x) + λ2Vk(x1 − 1, x2 + 1) + µ0Vk(x1 − 2, x2) + 2µ1Vk(x1 − 1, x2)]

+2µ1[λ1Vk(x1 + 1, x2) + λ2Vk(x1, x2 + 1) + µ0Vk(x1 − 1, x2) + 2µ1Vk(x)].

21

This can be rearranged to:

=λ1[µ0Vk(x) + 2µ1Vk(x1 + 1, x2)]

+λ2[µ0Vk(x1 − 1, x2 + 1) + 2µ1Vk(x1, x2 + 1)]

+µ0[µ0Vk(x1 − 2, x2) + 2µ1Vk(x1 − 1, x2)]

+2µ1[µ0Vk(x1 − 1, x2) + 2µ1Vk(x)].

In each bracket we recognize the left side of the equality assumed true for Vk:

=λ1[µ0Vk(x1 + 1, x2 − 1) + 2µ1Vk(x1 + 1, x2)]

+λ2[µ0Vk(x1, x2) + 2µ1Vk(x1, x2 + 1)]

+µ0[µ0Vk(x1 − 1, x2 − 1) + 2µ1Vk(x1 − 1, x2)]

+2µ1[µ0Vk(x1, x2 − 1) + 2µ1Vk(x)],

and finally:

=µ0[λ1Vk(x1 + 1, x2 − 1) + λ2Vk(x1, x2) + µ0Vk(x1 − 1, x2 − 1) + 2µ1Vk(x1, x2 − 1)]

+2µ1[λ1Vk(x1 + 1, x2) + λ2Vk(x1, x2 + 1) + µ0Vk(x1 − 1, x2) + 2µ1Vk(x)]

=µ0Vk+1(x1, x2 − 1) + 2µ1Vk+1(x).

We are left with the cases x1 = 1 or x2 = 1. Suppose x1 = 1, x2 > 0. Proposi-
tion 2 gives us the following expression for Vk+1(0, x2):

λ1Vk(1, x2) + λ2Vk(0, x2 + 1) + µ0Vk(0, x2 − 1) + 2µ1Vk(0, x2).

We therefore have:

µ0Vk+1(0, x2) + 2µ1Vk+1(1, x2)

=λ1[µ0Vk(1, x2) + 2µ1Vk(2, x2)]

+λ2[µ0Vk(0, x2 + 1) + 2µ1Vk(1, x2 + 1)]

+µ0[µ0Vk(0, x2 − 1) + 2µ1Vk(0, x2)]

+2µ1[µ0Vk(0, x2) + 2µ1Vk(1, x2)].

Again, in the each bracket—but the third—we can use the assumed property of
Vk for x1, x2 > 0, and leave the third term untouched, which gives:

=µ0[λ1Vk(2, x2 − 1) + λ2Vk(1, x2) + µ0Vk(0, x2 − 1) + 2µ1Vk(1, x2 − 1)]

+2µ1[λ1Vk(2, x2) + λ2Vk(1, x2 + 1) + µ0Vk(0, x2) + 2µ1Vk(1, x2)],

which by the assumed property of Vk for x1, x2 > 0 is finally equal to

µ0Vk+1(1, x2 − 1) + 2µ1Vk+1(1, x2).

The case x2 = 1, x1 > 0 is similar, and the case x1, x2 = 1 is included in the
latter.

22

We deduce from the previous propositions that any policy that never uses both
servers in parallel (when x1, x2 > 0), and serves only the non empty queue, when
one of them is empty, is stochastically optimal.

Note that in the special case 2c1 = c0, the inequality in Proposition 4 is in fact
an equality, and the terms associated to the three actions are all equal. This implies
that any policy—provided it serves only the non empty queue when one is empty—is
optimal. Of course this is a rather theoretical situation, very unlikely in reality.

4.4 Stability conditions

When 2c1 ≤ c0, only one queue is served at a time, and the service rate is constant
equal to µ0, so in order to be stable, the total arrival rate must be smaller than µ0,
giving:

λ1 + λ2 < µ0,

as indicated in Figure 2.

λ1µ0

λ2

µ0

Figure 2: Stability region, 2c1 ≤ c0

When 2c1 > c0, the model becomes a coupled processors model, and its stability
conditions are as follows:

min

(
λ1

µ1

,
λ2

µ1

)
< 1 (4.2)

if
λi
µ1

< 1, λj <
λi
µ1

µ1 + (1− λi
µ1

)µ0, j 6= i, (4.3)

as proved in [11]. An intuitive interpretation of these conditions is indeed that if
condition (4.2) is not met, both queues would grow unbounded when served at the
same time according to the optimal policy. Condition (4.2) ensures that at least one
queue i will be emptied regularly. Consequently, this queue i, which has a load λi

µ1

will be non empty for a fraction λi
µ1

of the time. When queue i is non empty, queue
j gets a service rate of µ1, and µ0 otherwise. The average service rate for queue j is
then λi

µ1
µ1 + (1− λi

µ1
)µ0, and condition (4.3) ensures its stability.

These conditions reduce to a piecewise linear stability region:

23

Suppose that λ1 < µ1. Then the first condition is met, and the second implies

λ2 <
λ1

µ1

µ1 + (1− λ1

µ1

)µ0

λ2 < µ0 − λ1
µ0 − µ1

µ1

.

If on the contrary, λ1 > µ1, then the first condition implies λ2 < µ1 and therefore
the second condition gives

λ1 <
λ2

µ1

µ1 + (1− λ2

µ1

)µ0

λ2 < µ1
µ0 − λ1

µ0 − µ1

,

finally giving the stability region in Figure 3.

λ1µ0

λ2

µ0

µ1

µ1

Figure 3: Stability region, 2c1 > c0

4.5 Numerical considerations

Given the recursive definition of the Vk functions, it is possible to compute them
numerically without approximation (other than the loss of precision due to the in-
herent use of floating point representation). It can be however numerically intensive
for big values of k. Indeed, we see from the definition that computing Vk(x1, x2)
will require computing the values of Vk−1(x1± 1, x2± 1) and Vk−1(x1, x2), and so on
down to k = 0 where the values are read directly as 1(x1+x2>s).

Even using memoization techniques, computing Vk(x1, x2) requires computing
first a number of values that grows as O(k3) (see Figure 4). The exact value is in
fact 2k3+k

3
, as proved in Appendix A.

Furthermore, to evaluate the performance of the policies, it is interesting to get
the distribution of the total number of users in the system, for instance when starting
from the empty state. Adding the index s to the definition of the Vk functions

Vk,s(x) = P [N1(k) +N2(k) > s|N(0) = x],

24

Vk(x1, x2)

V0(x1, x2 − k)

V0(x1, x2 + k)

V0(x1 − k, x2) V0(x1 + k, x2)

Figure 4: Pyramid of values required to compute Vk(x1, x2)

we can write

P [N1(k) +N2(k) = s|N(0) = (0, 0)] = Vk,s−1(0, 0)− Vk,s(0, 0)

and from this compute the distribution of N for any k. Note however that for each
new s, the values must be recomputed over the entire state space, which is again
quite computationally expensive.

If the system is stable, the steady-state distribution is obtained by making k
tend to infinity. Then the dependency on the initial state (here taken to be (0, 0))
disappears. Again, it is numerically impossible to truly make k go to infinity, so
some kind of compromise between convergence and computational limitations must
be defined. We can for instance check the behavior of P [N = 0]. If the system is
stable, it should converge towards a finite positive value. If instead it is unstable, it
will converge towards 0.

Low interference, stable case We choose a set of parameters that place us in
the case 2µ1 > µ0, and that comply with the stability conditions:

µ0 = 1.2, µ1 = 0.9, λ1 = 0.2, λ2 = 0.3.

Figures 5 and 6 give the values of V40,4 and of the distribution P [N = x] for a
high value of k, which ensured its convergence. As expected, P [N = 0] is positive,
and the distribution quickly decreases, since the chosen load is quite small.

For comparison purposes, Figure 7 shows the difference between V40,4 and the
same function but taken for a non-optimal policy (in this particular example, serving
only one class at a time). We can see as expected that the difference is always
negative. The plot has similar shapes for different values of s, illustrating that
Vk(x) = P [N1(k) +N2(k) > s|N(0) = x] is minimal over the set of policies for all s,
and that the previously described policy is indeed stochastically optimal.

Low interference, unstable case We now keep the same system parameters,
but choose a load that lies outside the stability region:

λ1 = 0.8, λ2 = 1.

25

5

10

15

20

x1
5

10

15

20

x2

0.0

0.5

1.0

Figure 5: V40,4, stable low interference case

0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

Figure 6: Probability distribution of N (taken after convergence, at k ' 80)

The distribution of N (shown in Figure 8) does not converge anymore: the steady
state distribution does not exist, the system is unstable and N will grow unbounded
when k →∞.

High interference, stable case Now considering 2µ1 ≤ µ0, we experiment with
the following parameters:

µ0 = 1.2, µ1 = 0.4, λ1 = 0.4, λ2 = 0.2.

The Vk functions have roughly the same shape as before (see Figure 9), with the
specificity that they are now symmetrical. In fact, this result is even stronger, and
comes from Property 5:

Vk(x1, x2 − 1) = Vk(x1 − 1, x2)

implies that Vk is constant for x1+x2 constant. In particular, Vk(x1, x2) = Vk(x2, x1).

26

5

10

15

20

x1

5
10

15
20

x2

-0.02

-0.01

0.00

Figure 7: V40,4 − V non-opt
40,4

2 4 6 8 10

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Figure 8: Probability distribution of N , for k ∈ {10, 20, . . . , 200}

4.6 Direct Markov process solving

With the assumptions of Poisson arrivals and exponentially distributed service re-
quirements, the system is in fact a 2-dimensional Markov process, and the steady
state distribution can be found by solving its global balance equations.

We have seen that, for instance in low interference, the policy is to serve both
queues when they are non empty, and to serve only the non empty queue when
one of them is empty. This leads to a state transition diagram as in Figure 10. Of
course, this diagram shows truncation of the state space, which is necessary to be
able to do any numerical computation.

The next step is the construction of the associated state transition matrix. We
number the states arbitrarily (here in lexicographic order) and build the matrix Q
where qij is the transition rate from state i to state j and qii = −

∑
j 6=i qij. Since each

state is neighbor to a maximum of only four other states, Q is a sparse matrix. For
instance, truncation to 32 = 9 states gives the following transition matrix (optimal

27

5
10

15

20
x1

5

10

15

20

x2

0.0

0.5

1.0

Figure 9: V 4
80, stable high interference case

λ1

λ2

µ1

µ1

λ1

λ2
µ0

λ2
µ0

λ2

µ1

µ1

µ1

µ1λ1

µ1

µ1λ1

µ0

λ1

λ2

µ0

λ1

λ2

x2

x1

Figure 10: State transition diagram for the optimal policy in low interference case

policy in low interference case):
−λ1−λ2 λ2 0 λ1 0 0 0 0 0
µ0 −λ1−λ2−µ0 λ2 0 λ1 0 0 0 0
0 µ0 −µ0 0 0 0 0 0 0
µ0 0 0 −λ1−λ2−µ0 λ2 0 λ1 0 0
0 µ1 0 µ1 −λ1−λ2−2µ1 λ2 0 λ1 0
0 0 µ1 0 µ1 −2µ1 0 0 0
0 0 0 µ0 0 0 −µ0 0 0
0 0 0 0 µ1 0 µ1 −2µ1 0
0 0 0 0 0 µ1 0 µ1 −2µ1


As proved in Section 3.1, the steady state distribution π is found by solving

πTQ = 0,

effectively solving the global balance equations of the Markov process, and by nor-
malizing π to comply with the normalizing condition

∑
i πi = 1.

28

2
4

6
8

10

2 4 6 8 10

0.0

0.2

0.4

0.6

Figure 11: Steady state distribution for λ1 = 0.2, λ2 = 0.3 (stable case)

10
20

30
40

10
20

30
40

0.000

0.001

0.002

0.003

0.004

Figure 12: Steady state distribution for λ1 = 1.0, λ2 = 1.0 (unstable case)

The truncation of the state space has evidently an impact on the accuracy of
the resulting distribution. In the following examples, we found that 402 states were
enough to reach convergence in the stable cases, while still being small enough to
be computed in a reasonable time.

Note however that a real-life system never has infinite waiting places. When one
queue is full, the incoming user is dropped. If the system size is known, the trunca-
tion can be adjusted to it, and the numerical approximation will be actually closer
to reality. Here we nevertheless choose a system big enough to appear as infinite in
the stable cases.

Figures 11 and 12 show results for a stable and unstable case, with the same low
interference system parameters as before: µ0 = 1.2 and µ1 = 0.9.

We can note that in the unstable case, the high probabilities accumulate towards
the upper boundaries of the state space, implying a high average number of users,
and a lot of refused connections.

In order to compare with the results of the previous method of calculation, we can
derive from these 2-dimensional distributions the distribution of the total number of
users in the system, by simply adding the probabilities on the x1 +x2 = n diagonals.
In this case we obtain the distribution represented in Figure 13, strictly equal to the
one found earlier shown in Figure 6.

Finally, to illustrate the optimality of this policy π̃, we compute by the same

29

0 2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

0.6

Figure 13: Steady state distribution of the total number of users for λ1 = 0.2,
λ2 = 0.3 (stable case)

0 5 10 15

-0.04

-0.03

-0.02

-0.01

Figure 14: P [Nπ ≤ x]− P [N π̃ ≤ x]

means the steady state distribution associated with another—non optimal—policy
π. For instance we use a policy that always serves only one queue at a given time.
From the resulting distribution we get the cumulative distribution function, that we
compare to the one associated with the optimal policy (see Figure 14).

We note that P [Nπ ≤ x] ≤ P [N π̃ ≤ x], which implies

P [N π̃ > x] ≤ P [Nπ > x], ∀x ≥ 0.

This was expected, since this is a direct consequence of definition (4.1) (stochastic
optimality of the policy π).

30

5 Policy improvement

In this section we focus on obtaining an optimal policy by application of the Markov
Decision Process theory. We first derive the optimal static policy, and then experi-
ment with one step improvement.

5.1 Optimal static policy, low interference

We use the same model as in Section 4. In addition to the three main modes of
serving (0, c0), (c0, 0) and (c1, c1), any convex combination of the three can be reached
in a time-division fashion, with sufficient granularity to be considered continuous.
By also considering turning off the two stations at the same time (giving (0, 0) as
the rate vector), we obtain the rate region in Figure 15. We also assume for the
time being that 2c1 > c0 (previously called “low interference” case).

r1c0

r2

c0

(c1, c1)

Figure 15: Achievable rate region

In a static policy (that is, where r1 and r2 do not vary over time), the sys-
tem reduces to two independent M/M/1 queues, with parameters (λ1, r1/E[X]) and
(λ2, r2/E[X]). Naturally, to optimize the performance we consider minimizing the
average lengths of the queues. An M/M/1 queue with parameters (λ, µ) has an
average number of users given by equation (3.3) (proved in Section 3.2):

E[N] =
λ

µ− λ
.

Therefore for a rate vector of (r1, r2), the number of users in the two correspond-
ing independent queues is simply their sum:

N̄ =
λ1

r1/E[X]− λ1

+
λ2

r2/E[X]− λ2

.

To clarify the notations, we will from now on use X̄ as the average file size,
giving the expression:

N̄ =
λ1X̄

r1 − λ1X̄
+

λ2X̄

r2 − λ2X̄
.

31

For any point (r1, r2) strictly within the rate region, increasing r1 or r2 will
decrease N̄ . We can therefore deduce that the optimal point will be on the upper
boundary of the rate region, and assume the following relation:

r2 =

{
c0 − c0 − c1

c1
r1, r1 ≤ c1

c1
c0 − c1

(c0 − r1), r1 ≥ c1

.

The rate vector (r1, r2) and consequently the value of N̄ are now functions of the
single variable r1, which greatly simplifies the analysis.

Stability Since the system is composed of two independent M/M/1 queues, they
should each be stable, which is ensured by λi < ri/X̄. We therefore have the
following stability condition:

r1 > λ1X̄ and r2 > λ2X̄.

Interestingly, this results in the same stability region for λ1 and λ2 than pre-
viously derived for the stochastically optimal policy, where the queues were not
independent but coupled (conditions (4.2) and (4.3), Figure 3). Fixing the ri gives
the stability region shown in Figure 16. On the other hand, fixing the arrival rates
restricts r1 further (Figure 17).

(r1, r2)

c0

c0

(c1, c1)

λ2X̄

λ1X̄

Figure 16: Stability region of (λ1, λ2), for (r1, r2) fixed

In order to get the optimal static policy, we need to find the minimum of N̄ over
the stable range for r1. In the following paragraphs we divide the problem in several
cases, based on the relative values of the λi. Furthermore, without loss of generality
we assume that λ1 < λ2.

Case λ2 ≥ µ1 See Figure 18. In this situation, r1 ≤ c1, which implies

r2 = c0 −
c0 − c1

c1

r1.

32

r1c0

r2

c0

(c1, c1)

λ2X̄

λ1X̄

Figure 17: Stability region of (r1, r2), for (λ1, λ2) fixed

c0

(r1, r2)
c0

c1

λ2X̄

λ1X̄

c1

Figure 18: Stable range for (r1, r2) in case λ2 ≥ µ1

Given the definition of N̄ , the latter will have vertical asymptotes at both end
of the stability range, when

r1 → λ1X̄ and r2 → λ2X̄ ⇐⇒ r1 → r−1
2 (λ2X̄) ⇐⇒ r1 → (c0 − λ2X̄)

c1

c0 − c1

.

Since in the stability range, N̄ is otherwise positive and continuous, we can expect
a plot similar to Figure 19 in which the minimum can be found by setting the
derivative to zero.

∂N̄

∂r1

=
−λ1X̄

(r1 − λ1X̄)2
+

−λ2X̄

(r2 − λ2X̄)2

∂r2

∂r1

= 0

λ1X̄

(r1 − λ1X̄)2
=

λ2X̄

(r2 − λ2X̄)2

c0 − c1

c1

.

Since we know that r1 > λ1X̄ and r2 > λ2X̄, we can directly simplify the second
degree equation by taking the square root of each side, resulting in a single solution

33

N̄(r1)

r−1
2 (λ2X̄)λ1X̄

r1r∗1

Figure 19: N̄ in case λ2 ≥ µ1

(meaning that the second one is outside the stability range):√
λ1X̄

r1 − λ1X̄
=

√
λ2X̄

r2 − λ2X̄

√
c0 − c1

c1

(r2 − λ2X̄)
√
λ1X̄ = (r1 − λ1X̄)

√
λ2X̄

c0 − c1

c1

(c0 −
c0 − c1

c1

r1 − λ2X̄)
√
λ1X̄ = (r1 − λ1X̄)

√
λ2X̄

c0 − c1

c1

(c0 − λ2X̄)
√
λ1X̄ + λ1X̄

√
λ2X̄

c0 − c1

c1

= r1

(√
λ2X̄

c0 − c1

c1

+
c0 − c1

c1

√
λ1X̄

)
.

Finally, the unique solution for ∂N̄
∂r1

= 0 within the stability range is given by:

r∗1 =
(c0 − λ2X̄)

√
λ1X̄ + λ1X̄

√
λ2X̄

c0 − c1
c1√

λ2X̄
c0 − c1
c1

+ c0 − c1
c1

√
λ1X̄

. (5.1)

Note that by rewriting

r∗1 =
(c0 − λ2X̄)

√
λ1X̄ + λ1X̄

√
λ2X̄

c0 − c1
c1√

λ2X̄
c0 − c1
c1

+ c0 − c1
c1

√
λ1X̄

·
c1

c0 − c1
c1

c0 − c1

r∗1 =
(c0 − λ2X̄) c1

c0 − c1

√
λ1X̄ + λ1X̄

√
λ2X̄

c1
c0 − c1√

λ1X̄ +
√
λ2X̄

c1
c0 − c1

,

we make appear the fact that r∗1 can be expressed as the average of the stability

limits weighted by the coefficients
√
λ1X̄ and

√
λ2X̄

c1
c0 − c1

.

To conclude, in the case λ2 ≥ µ1, there is a unique optimal static policy, which
consists in serving the queues with the fixed rates r∗1 and r2(r∗1).

34

c0

(r1, r2)
c0

c1

λ2X̄

λ1X̄

c1

Figure 20: Stable range for (r1, r2) in case λ2 < µ1

Case λ2 < µ1 See Figure 20.
Numerical experiments—backed up by the following analysis—show that two

situations can occur. Because λ2 < µ1, the upper bound of the stability region
r−1

2 (λ2X̄) is now greater than c1. Given the piecewise definition of r2 with a cut on
c1, N̄ is now also a piecewise function over the stability region. As we will show, it
can take two different shapes (Figure 21).

N̄(r1)

r−1
2 (λ2X̄)λ1X̄

r1r∗1 = c1

N̄(r1)

r−1
2 (λ2X̄)λ1X̄

r1r∗1 c1

Figure 21: The two possibilities for N̄ in case λ2 < µ1

First we need to prove that N̄ is strictly increasing on the “right” segment
(r1 ≥ c1). Then we will find the conditions that separate the two possible cases on
the “left” segment (r1 ≤ c1), as well as the resulting minima for N̄ .

35

Case λ2 < µ1, right segment In this situation, c1 ≤ r1 < r−1
2 (λ2X̄), which

implies

r2 =
c1

c0 − c1

(c0 − r1).

We consider the derivative of N̄ :

∂N̄

∂r1

=
−λ1X̄

(r1 − λ1X̄)2
+

−λ2X̄

(r2 − λ2X̄)2

∂r2

∂r1

=
λ2X̄

(r2 − λ2X̄)2

c1

c0 − c1

− λ1X̄

(r1 − λ1X̄)2
,

and we therefore have:

∂N̄

∂r1

> 0 ⇐⇒ λ2X̄

λ1X̄

(r1 − λ1X̄)2

(r2 − λ2X̄)2

c1

c0 − c1

> 1

⇐⇒ λ2X̄

λ1X̄
> 1 and

(r1 − λ1X̄)2

(r2 − λ2X̄)2
> 1 and

c1

c0 − c1

> 1.

The first inequality is verified directly, by the assumption λ1 < λ2.
Since r1 > λ1X̄ and r2 > λ2X̄, the second inequality reduces to

r1 − λ1X̄

r2 − λ2X̄
> 1

r1 − λ1X̄ > r2 − λ2X̄

(r1 − r2) + (λ2 − λ1)X̄ > 0

which is verified, since λ1 < λ2 and r1 ≥ c1 ≥ r2.
Finally, 2c1 > c0 implies c1 > c0 − c1 and as expected,

c1

c0 − c1

> 1.

We have proved that N̄ is strictly increasing on [c1, r
−1
2 (λ2X̄)[, which implies

that its minimum on this segment is reached at r1 = c1.

Case λ2 < µ1, left segment We now have λ1X̄ < r1 ≤ c1. Consider the following:
prolong the “left” piece of N̄ into N̄left by extending its definition from]λ1X̄, c1] to
the r1 greater than c1 as well.

In other words, let

r2,left = c0 −
c0 − c1

c1

r1, r1 ∈ [0, c0]

and

N̄left =
λ1X̄

r1 − λ1X̄
+

λ2X̄

r2,left − λ2X̄
.

36

Then as before (case λ2 ≥ µ1, page 31) it reaches its minimum at r∗1, previously
defined in equation (5.1):

r∗1 =
(c0 − λ2X̄)

√
λ1X̄ + λ1X̄

√
λ2X̄

c0 − c1
c1√

λ2X̄
c0 − c1
c1

+ c0 − c1
c1

√
λ1X̄

.

The relevant question is now to find out whether r∗1 < c1 or r∗1 ≥ c1. Indeed, in
this first case, N̄(r∗1) < N̄(c1) and therefore N̄ reaches its minimum in r∗1. In the
second case, N̄ is minimal at c1 (see Figure 22).

N̄left(r1)

r1r∗1 c1

r∗1 ≤ c1

N̄left(r1)

r1

r∗1 > c1

c1

Figure 22: The two possibilities for N̄left in case λ2 < µ1

Comparing directly r∗1 to c1 is difficult and leads to an expression that does not
give any insight on the structure of the problem. Instead, we will note that since
N̄left is continuous, has only one minimum on the considered interval, and goes to
infinity at λ1X̄ and r−1

2,left(λ2X̄), it is necessarily decreasing before r∗1 and increasing
after. Therefore,

r∗1 < c1 ⇐⇒
∂N̄left

∂r1

∣∣∣∣
r1=c1

> 0.

∂N̄left

∂r1

∣∣∣∣
r1=c1

=
λ2X̄

(r2(c1)− λ2X̄)2

c0 − c1

c1

− λ1X̄

(c1 − λ1X̄)2

=
λ2X̄

(c1 − λ2X̄)2

c0 − c1

c1

− λ1X̄

(c1 − λ1X̄)2
,

37

and finally

r∗1 < c1 ⇐⇒ λ2X̄(c1 − λ1X̄)2 c0 − c1

c1

> λ1X̄(c1 − λ2X̄)2

⇐⇒ λ2(µ1 − λ1)2µ0 − µ1

µ1

> λ1(µ1 − λ2)2. (5.2)

Although the boundary in the form λ2(λ1) exists, and is given by solving the
quadratic equation

λ2(µ1 − λ1)2µ0 − µ1

µ1

= λ1(µ1 − λ2)2,

it has little interest. We can however have an overview of its properties by noticing
that

• λ2(0) = 0

• λ2(µ1) = µ1

• λ2(λ1) is strictly increasing on the interval [0, µ1].

Proof. The first two statements are proved by simple value substitution:

λ2µ1(µ0 − µ1) = 0 =⇒ λ2 = 0,

0 = µ1(µ1 − λ2)2 =⇒ µ1 − λ2 = 0 =⇒ λ2 = µ1.

The third by differentiating both sides of the equation with respect to λ1:

µ0 − µ1

µ1

∂

∂λ1

{
λ2(µ1 − λ1)2

}
=

∂

∂λ1

{
λ1(µ1 − λ2)2

}
µ0 − µ1

µ1

(
∂λ2

∂λ1

(µ1 − λ1)2 − 2λ2(µ1 − λ1)

)
= (µ1 − λ2)2 − 2λ1(µ1 − λ2)

∂λ2

∂λ1

∂λ2

∂λ1

·
(
µ0 − µ1

µ1

(µ1 − λ1)2 + 2λ1(µ1 − λ2)

)
= (µ1 − λ2)2 + 2λ2(µ1 − λ1)

µ0 − µ1

µ1

,

which gives

∂λ2

∂λ1

=
(µ1 − λ2)2 + 2λ2(µ1 − λ1)

µ0 − µ1
µ1

µ0 − µ1
µ1

(µ1 − λ1)2 + 2λ1(µ1 − λ2)
,

which is positive, since 0 < λ1 < λ2 < µ1 < µ0.

The closed region between this line and the λ2 = λ1 line then corresponds to the
values of λi for which r∗1 ≥ c1, and therefore the minimum of N̄ is reached for c1.

38

Conclusion on the optimal static policy, low interference In light of the
analysis of the three previous cases, and by taking in account the symmetry of the
λi (we assumed λ1 < λ2, but for the opposite case a simple renaming of the variables
brings them back in the desired order), the solution of the problem falls down into
two cases, as illustrated in Figure 23:

• λ1 and λ2 are “close enough”, as defined by inequation (5.2). The optimal
static policy is to serve both queues with rate c1 at all times.

• λ1 and λ2 are not close enough. The optimal static policy is to serve the queues
with rates r∗1—defined in equation (5.1)—and r2(r∗1) at all times.

µ0

µ0

(µ1, µ1)

λ1

λ2

r∗1

r∗1

c1

Figure 23: Regions for the optimal value of r1, depending on (λ1, λ2)

5.2 Optimal static policy, high interference

We now consider the so called “high interference” case, that is when 2c1 ≤ c0. The
achievable rate region is again the convex hull of the points (0, c0), (c0, 0), (c1, c1)
and (0, 0), as shown in Figure 24.

Since (c1, c1) is inside the rate region, we can already infer that using this mode
will not be of any interest, and that the optimal policy will make use only of the
single-queue modes. Formally, we derive as before the average number of users in
the system as the sum of the lengths of two independent M/M/1 queues:

N̄ =
λ1X̄

r1 − λ1X̄
+

λ2X̄

r2 − λ2X̄
.

Since N̄ is strictly decreasing in r1 and r2, we know its minimum will be on the
upper boundary of the rate region, and we therefore assume:

r2 = c0 − r1.

39

r1c0

r2

c0

(c1, c1)

Figure 24: Achievable rate region, high interference

Stability As before, the stability of the system is ensured by the stability of the
two independent queues:

r1 > λ1X̄ and r2 > λ2X̄,

as illustrated in Figure 25. Stability is achieved when r1 ∈]λ1X̄, r
−1
2 (λ2X̄)[, that is

for
λ1X̄ < r1 < c0 − λ2X̄.

c0

(r1, r2)

c0

λ2X̄

λ1X̄

Figure 25: Stable range for (r1, r2)

Minimum We solve for the minimum of N̄ as before:

∂N̄

∂r1

= 0

−λ1X̄

(r1 − λ1X̄)2
+

−λ2X̄

(c0 − r1 − λ2X̄)2
(−1) = 0√

λ1X̄

r1 − λ1X̄
=

√
λ2X̄

c0 − r1 − λ2X̄

(c0 − r1 − λ2X̄)
√
λ1X̄ = (r1 − λ1X̄)

√
λ2X̄.

40

Finally,

r∗1 =
(c0 − λ2X̄)

√
λ1X̄ + λ1X̄

√
λ2X̄√

λ1X̄ +
√
λ2X̄

.

Note that:

• the result is independent of c1. As long as c1 is smaller than c0/2, its actual
value does not matter;

• again, r∗1 is in fact the average of the stability limits, weighted in this case

with the coefficients
√
λiX̄;

• since

r∗2 = c0 − r∗1 =
(c0 − λ1X̄)

√
λ2X̄ + λ2X̄

√
λ1X̄√

λ1X̄ +
√
λ2X̄

,

we can see that the results are symmetrical with respect to the λi: swapping
λ1 and λ2 swaps r∗1 and r∗2, which was to be expected, given the symmetry of
the problem.

In fact the relation with the low interference case is even stronger. It is simply its
limit as c1 → c0/2. Indeed, as soon as c1 becomes smaller than c0/2, the (c1, c1)
mode is never used anymore, and the problem stays equivalent to c1 = c0/2.

5.3 Policy improvement iteration

Starting from the optimal static policy, we can now apply policy improvement, as
described in Section 3.2.

Initial policy We first need to find out the relative state values for the static
policy. As stated previously, for the optimal static policy, the system is in fact two
independent M/M/1 queues, with parameters (λ1, r

∗
1/E[X]) and (λ2, r2(r∗1)/E[X]).

We can therefore use directly the sum of relative state values for the two M/M/1
queues, derived in equation (3.2). With µ1s = r∗1/E[X] and µ2s = r2(r∗1)/E[X]:

vs(n1, n2) = vM/M/1−λ1,µ1s(n1) + vM/M/1−λ2,µ2s(n2)

vs(n1, n2) =
1

2

n1(n1 + 1)

µ1s − λ1

+
1

2

n2(n2 + 1)

µ2s − λ2

.

In order to alleviate further expressions, let us notice already that

vs(n1 + 1, n2)− vs(n1, n2) =
n1 + 1

µ1s − λ1

, ∀n1 ∈ N

and

vs(n1, n2 + 1)− vs(n1, n2) =
n2 + 1

µ2s − λ2

, ∀n2 ∈ N.

41

We can also derive immediately the cost rate

rs(n1, n2) = n1 + n2

and the average cost rate

rs =
λ1

µ1s − λ1

+
λ2

µ2s − λ2

,

which are, again, simply the sums of the associated values in two independent
M/M/1 queues.

First iteration To improve the policy, we now need to find for each state (n1, n2)
the action a that will minimize the following expression, as stated in equation (3.1):

Ca(n1, n2) = rs(n1, n2)− rs +
∑
(u,v)

q(n1,n2)→(u,v)(a)vs(u, v).

Note that in this particular case, the cost rates are independent of the action.
Only the transition rates vary. Also, the available actions are the same for each
state, and correspond to the three service modes of the system: (0, µ0), (µ0, 0) and
(µ1, µ1), denoted respectively “01”, “10” and “11”.

Furthermore, we take advantage of the definition of q(n1,n2)→(n1,n2) to rewrite:

Ca(n1, n2) = rs(n1, n2)− rs +
∑

(u,v) 6=(n1,n2)

q(n1,n2)→(u,v)(a) [vs(u, v)− vs(n1, n2)],

and we can finally write down the expressions for the three possible actions:

C10(n1, n2) = rs(n1, n2)− rs+λ1[vs(n1 + 1, n2)− vs(n1, n2)]

+λ2[vs(n1, n2 + 1)− vs(n1, n2)]

+µ0[vs((n1 − 1)+, n2)− vs(n1, n2)],

C01(n1, n2) = rs(n1, n2)− rs+λ1[vs(n1 + 1, n2)− vs(n1, n2)]

+λ2[vs(n1, n2 + 1)− vs(n1, n2)]

+µ0[vs(n1, (n2 − 1)+)− vs(n1, n2)],

C11(n1, n2) = rs(n1, n2)− rs+λ1[vs(n1 + 1, n2)− vs(n1, n2)]

+λ2[vs(n1, n2 + 1)− vs(n1, n2)]

+µ1[vs((n1 − 1)+, n2)− vs(n1, n2)]

+µ1[vs(n1, (n2 − 1)+)− vs(n1, n2)].

We can already notice that the first four terms of each expression are independent
of the chosen action. Let us regroup them under the constant K and expand the

42

remaining terms:

C10(n1, n2) = K − µ0
n1

µ1s − λ1

,

C01(n1, n2) = K − µ0
n2

µ2s − λ2

,

C11(n1, n2) = K − µ1
n1

µ1s − λ1

− µ1
n2

µ2s − λ2

.

Note that the special cases n1 = 0 or n2 = 0 are correctly included in the same
expressions. We can also discard directly the case (n1, n2) = (0, 0) which makes all
three values equal: when both queues are empty, the service rates are irrelevant.

Comparing the three cases is now straightforward, and leads to the following
equivalences:

C10(n1, n2) > C01(n1, n2) ⇐⇒ n2 > n1 ·
µ2s − λ2

µ1s − λ1

,

C11(n1, n2) < C10(n1, n2) ⇐⇒ n2 > n1 ·
µ2s − λ2

µ1s − λ1

µ0 − µ1

µ1

,

C11(n1, n2) < C10(n1, n2) ⇐⇒ n2 < n1 ·
µ2s − λ2

µ1s − λ1

µ1

µ0 − µ1

,

or with shortcut notations R = µ2s−λ2
µ1s−λ1 , S = µ0−µ1

µ1
:

C10 > C01 ⇐⇒ n2 > n1 ·R,
C10 > C11 ⇐⇒ n2 > n1 ·RS,

C11 > C10 ⇐⇒ n2 > n1 ·R
1

S
.

As before, the final result depends on the relative values of µ1 and µ0, the “high”
and “low” interference cases.

High interference 2µ1 ≤ µ0

µ1 ≤ µ0 − µ1

µ0 − µ1

µ1

≥ 1

=⇒ S ≥ 1,
1

S
≤ 1.

We therefore have the order 1
S
R ≤ R ≤ SR, and two possible cases:

• n2 ≤ n1R. Consequently, n2 ≤ n1SR, which gives C10 ≤ C01 & C10 ≤ C11.
The minimizing action is “10”.

• n2 ≥ n1R. We have n2 ≥ n1
1
S
R, which gives C10 ≥ C01 & C01 ≤ C11. The

minimizing action is “01”.

The new policy is described by a linear switching curve of equation n2 = n1R, as
represented in Figure 26.

43

n1

n2

“01”

“10”

n2 = n1 · µ2s−λ2µ1s−λ1

Figure 26: New policy, high interference

Low interference 2µ1 > µ0

µ1 > µ0 − µ1

µ0 − µ1

µ1

< 1

=⇒ S < 1,
1

S
> 1,

We therefore have the order SR < R < 1
S
R, and three possible cases:

• n2 < n1SR. Consequently, n2 < n1R, which gives C10 < C11 & C10 < C01.
The minimizing action is “10”.

• n1SR < n2 < n1
1
S
R. Then C10 > C11 & C01 > C11. The minimizing action is

“11”.

• n2 > n1
1
S
R. Then n2 > n1R and C01 < C11 & C01 < C10. The minimizing

action is “01”.

The new policy is described by two linear switching curves of equations n2 = n1SR
and n2 = n1

1
S
R, as represented in Figure 27.

Remarks on the first iteration

Optimality In the high interference case, the improved policy never makes use
of the “11” mode, and is therefore stochastically optimal, according to Sec-
tion 4.3. For the low interference case, however, one iteration is not enough
to reach the stochastically optimal policy.

Initial policy Here we chose to take the optimal static policy as a starting point.
However, it is in general not true that this will lead to the optimal first iterated
policy. It is possible that non optimal starting points give better results. How-
ever, given the complexity of the expressions, it is unlikely to find explicitly an

44

n1

n2

“01”

“10”

n2 = n1 · µ2s−λ2µ1s−λ1
µ0−µ1
µ1

“11”

n2 = n1 · µ2s−λ2µ1s−λ1
µ1

µ0−µ1

Figure 27: New policy, low interference

optimal starting point. Furthermore, the theory of Markov decision processes
states that regardless of the starting policy, the average-optimal policy will
be found at convergence. A “good” starting policy may only accelerate this
convergence.

Improvement To quantify the actual improvement brought by the iteration, one
would compute from the new policy (i.e. transition rates) the relative state
values and average cost rate, using the Howard equation. However, now that
the policy is described by switching curves, it is not static anymore, and the
Howard equation takes a different form depending on high/low interference
and the region in which the state is. This plus the fact that the state space is
infinite makes it very unlikely to find a symbolic expression.

Following steps Again, given the description of the first iterated policy, it is dif-
ficult to consider applying one more improvement step symbolically, let alone
applying it indefinitely until convergence. For given parameters, it is however
almost trivial to do numerically.

5.4 Numerical policy improvement

As stated before, the complexity of the expression of the policy prevents us from
applying more improvement steps explicitly. We therefore turn to numerical com-
putations. As in Section 4.6, we need to truncate the state space to be able to solve
for equilibrium distributions and the Howard equation.

As before, the necessary size of the state space depends on the load of the
system. The closer to instability, the higher number of states there should be to
avoid accumulation at the state space borders. In the following examples, we use
302 = 900 states as a compromise between computation time and results’ accuracy.

Low interference We choose a set of parameters that places us in the case
2µ1 > µ0, and that comply with the stability conditions:

µ0 = 1.2, µ1 = 0.9, λ1 = 0.2, λ2 = 0.3.

45

The optimal static policy is to serve both queues at rate µ1, according to the
condition (5.2). Solving the Markov process gives an average total queue length of
0.785714 users.

The first iteration, expressed previously, gives an average of 0.681884 users. The
second iteration leads already to the optimal policy, as shown in Figure 28, with an
average number of users of 0.680562. Indeed, applying the iteration step again gives
only the same policy, which indicates we reached convergence.

10 20 30

10

20

30

10 20 30

10

20

30

Figure 28: Policy iteration, low interference: serve both queues whenever possible,
otherwise serve the non empty queue

High interference Now considering 2µ1 ≤ µ0, we experiment with the following
parameters:

µ0 = 1.2, µ1 = 0.4, λ1 = 0.3, λ2 = 0.4.

The optimal static policy is to serve the queues at rates (0.355051, 0.489898).
This leads to an average of 9.89898 users in the system.

The first iteration is the simple switching curve described previously, and an
average of users of 1.4. Although we know that this situation is already optimal, the
algorithm does not stop yet. The average does not decrease anymore, but the policy
oscillates through several seemingly random similar states, as shown in Figure 29.

Depending on the actual parameters, the algorithm can either stop in a few steps,
loop back at some point to a previously found policy—in which case the algorithm
will loop forever—, or go on for a possibly very large number of steps. However, in
all the experiments done, the average stabilizes in a few steps only. For this reason,
it was found more useful to set the stopping condition on the average (when it does
not change by more than an arbitrary small value such as 10−8) rather than on the
policy itself.

46

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

10 20 30

10

20

30

Figure 29: Policy iteration, high interference: always serve only one queue at a time

In any case, these considerations are mostly for the sake of understanding how
the policy improvement algorithm works, since we know that the optimal policy is
always reached after the first step, for high interference. All subsequent policies
make indeed no use of mode “11” and are therefore stochastically optimal.

Notes on the numerical experiments

• Although we presented here only two examples, they happen to be quite rep-
resentative of all the numerical experiments we made. In low interference, the
optimal policy is often reached at step 2, rarely at step 3, never more, and
the algorithm converges. In high interference, the optimal policy is—as proven
before—reached at the first step, but it usually does not converge immediately,
and the stopping condition has to be the average number of users.

47

• The policy improvement algorithm as described by Howard gives the average-
optimal policy only. In this case it happens to be stochastically optimal as
well, but this is not a general result.

• Running the algorithm in unstable cases gives rather incoherent results. Al-
though the policies returned are indeed optimal, they are so only in the context
of the truncated state spaces, which are then not representative of the infi-
nite space we are studying. The patterns described before disappear. See for
instance Figure 30 for parameters µ0 = 1.2, µ1 = 0.8, λ1 = 0.6, λ2 = 0.9.

10 20 30

10

20

30

10 20 30

10

20

30

Figure 30: Optimal policy reached for an unstable case

48

6 Quantifying the improvement

We have now shown by two different means that the average number of users in the
system (and therefore the delay) can be optimally reduced by using the following
policy:

If one queue is empty, serve only the other one. If both queues are non empty

• in “low interference”, always serve both queues at the same time.

• in “high interference”, never serve both queues at the same time3.

However, we have not yet compared this optimal policy π̃ with the basic policy
π0 we tried to improve in the first place (that is, to always keep both base stations
on at all times). We will therefore compute for numerical examples the gain, defined
as the ratio of the average numbers of users for the basic policy over the optimal
policy:

G(λ1, λ2, µ0, µ1) =
N̄π0

N̄ π̃
.

Note that when using policy iteration to reach the optimal policy, the gain does
not evolve much after the first step. This is a typical behavior of policy improvement:
although the algorithm may take a several steps to converge, the average cost value
that we try to optimize evolves very little after the first few steps. In cases where the
optimal policy is unknown or difficult to describe (other than by actually waiting
the convergence of the algorithm), a good approximation can usually be found in
the first or second step.

Of course, since here the optimal policy is entirely known, the actual gain can
be computed.

6.1 Gain

To obtain a general idea of the gain brought by the optimal policy, a few numerical
examples are insufficient, hence the necessity of a systematic parameter space ex-
ploration. Of course, the latter being continuous and infinite, a few measures are to
be taken to make this realistic.

To begin with, note that scaling all the parameters by a constant k leaves all re-
sults unchanged, for any policy. Indeed, replacing λ1, λ2, µ0, µ1 by kλ1, kλ2, kµ0, kµ1

in the Markov process’ transition matrix Q simply multiplies it by k, because all
transition rates are simple linear combinations of the parameters. And naturally,
the nullspace of kQ is the same as the one of Q, which means that the steady state
distribution found by solving πTQ = 0 is unchanged.

3The actual choice of which queue to serve depending on the state does not matter, except for
fairness purposes, as seen in Section 7

49

We can therefore normalize every point in the 4-dimensional parameter space to
a vector of three parameters, by setting for instance µ0 = 1:

(λ1, λ2, µ1, µ0)→ (λ1/µ0, λ2/µ0, µ1/µ0, 1).

Furthermore, as the system is symmetrical with respect to the two queues, we
will compute the gain only for λ1 ≤ λ2. Similarly, we know that for the optimal
policy, when µ1 < µ0/2 = 0.5, the result is the same as when µ1 = µ0/2 = 0.5. A
partial memoization technique is beneficial here.

Another concern which arose previously when solving for steady state distribu-
tions, is the effect of truncating the state space on the accuracy of the results. The
closer to instability, the higher will be the probability of reaching the upper bound-
aries of the state space, which represent blocking states (user is denied access to
the system and considered lost forever). While this is a perfectly valid model, it is
not the one we studied, and the results in this situation would be far from the ones
wanted.

We will therefore avoid computing the gain in unstable cases, and consider with
precautions the results found close to stability region boundaries.

The same goes with the basic policy. Serving at all times at rate (µ1, µ1) makes
the system two independent queues, and the stability condition is max(λ1, λ2) < µ1.
Computing a gain value when the basic system is unstable makes no sense: its
average number of users is infinite.

Given the stability conditions described earlier for the optimal policy, we know
that any load stable for π0 is stable for π̃ (see Figure 31).

λ1µ0

λ2

µ0

µ1

µ1

π0 & π̃

π̃

π̃

λ1µ0

λ2

µ0

µ1

µ1

π0 & π̃

π̃

Figure 31: Stability of the basic and the optimal policies in high and low interference

We will therefore restrict the parameter space to the values that keep both the
basic and the optimal policies stable. That is, λ1 and λ2 in the range [0, µ1].

Finally, a sampling resolution δ is to be chosen. Keeping in mind that we have
three parameters, the computation time will be bounded in O(1/δ3). Actually, since
the range of the λi varies according to µ1, we chose a variable δ: instead of fixing

50

the resolution, we fix the number of equidistant values for every parameter to some
value N . Taking symmetry in account, the number of samples is finally close to N3

2
.

Figures 32 and 33 show the gain for two examples of µ1. As foreseen, the gain
tends to increase drastically near the stability limit, so we should instead concentrate
on the lower loads. With this in mind, for µ1 = 0.2, that is in the high interference
case, G ranges to about [5,10], and for µ1 = 0.8, to about [1.2,1.5].

These represent the general tendency of the results, and make perfect sense.
When interference is high to begin with, interference mitigation can be very effi-
cient. When interference was low anyway, there is less room for improvement. See
Appendix C for complete tabulated results.

0.00

0.05

0.10

0.15

0.20

Λ1

0.00

0.05

0.10

0.15

0.20

Λ2

0

20

40

Figure 32: G for µ1 = 0.2

0.0
0.2

0.4
0.6

0.8
Λ1

0.0

0.2

0.4

0.6

0.8

Λ2

2

3

Figure 33: G for µ1 = 0.8

51

7 Fairness

So far, we only considered the optimization of the total number of users, including
both queues without distinction. The low interference case led to a single optimal
policy, for which we can attempt to measure fairness. The high interference led to a
whole set of policies, meaning that we can optimize fairness as well, in the context
of optimal policies with respect to the total number of users.

We will consider the system “fair” if the average delays in each queue T̄1 and T̄2

are close to each other. Ideally, a perfectly fair system would have T̄1 = T̄2. In order
to measure the fairness, we introduce the expression |T̄1− T̄2|. This could in fact be
called “unfairness”, since its value is zero for a perfectly fair system, and increases
with the difference between the T̄i.

7.1 Low interference

From a truncated transition matrix representing the Markov process of the optimal
policy, we compute a steady state distribution, which itself is used to compute the
average numbers of users in each queue N̄1 and N̄2. From Little’s formula comes
T̄i = N̄i/λi. Figure 34 shows an example of |T̄1 − T̄2| as a function of the arrival
rates λ1 and λ2, for µ1 = 0.8.

0.2

0.4

0.6

0.8

Λ1

0.2

0.4

0.6

0.8

Λ2

0

2

4

6

8

Figure 34: |T̄1 − T̄2| for µ1 = 0.8

Without surprise, the functions T̄1 and T̄2 are symmetrical to one another with
respect to the λ1 = λ2 line. Furthermore, for λ1 < λ2, T̄1 < T̄2.

We can safely generalize this example to all low interference cases. Indeed, since
the two queues are served with the same rate most of the time, the one with the

52

lowest load will have the lowest average delay. And since the policy is strictly
identical for all low interference cases, this should be general as well.

In other words, the system is biased towards the queue with the lowest arrival
rate, and is fair only if the two arrival rates are equal.

7.2 High interference

In high interference, there is still a degree of freedom. Indeed, we know that any
policy that never serves both queues at the same time will be optimal for the total
number of users. It may be possible to choose a policy that also optimizes fairness
as a secondary objective.

n1

n2

“01”

“10”

n2 = n1 · λ2λ1

Figure 35: Heuristically fair optimal policy

Although no proof is given, the policy presented in Figure 35 seems to be a good
candidate. It is a simple switching curve of equation

n2 = n1 ·
λ2

λ1

.

We can see heuristically how fair this policy can be: the switching curve acts as a
state “attractor”. Indeed, below the curve, only the queue 1 is served, which makes
n1 decrease. Similarly, above the curve, only the queue 2 is served, which makes n2

decrease. Therefore, most of the time, the current state will tend to be close to the
switching curve—as represented by the arrows on Figure 35—and we can assume

N̄2 ' N̄1 ·
λ2

λ1

,

which gives an approximation of the fairness condition

N̄1

λ1

' N̄2

λ2

T̄1 ' T̄2.

53

Note that among policies determined by linear switching curves, this one is the
closest to fairness (any other coefficient would lead to T̄1 6' T̄2). Of course, it is
possible that another type of switching curve, or even a policy not determined by a
switching curve at all, is in fact more fair.

54

8 Dynamic analysis of some OFDMA reuse pat-

terns

This section is largely based on [3], and originally constituted an introductory work
to get acquainted with mathematical software.

Orthogonal Frequency-Division Multiple Access (OFDMA) allows for the divi-
sion of the bandwidth into subbands, the widths and power levels of which can
be selectively chosen for different classes of users, depending in particular on their
position in the cell. This combined with careful network planning—in this case
frequency reuse patterns—can significantly reduce inter-cell interference and thus
increase the capacity of the network.

Frequency reuse schemes are usually evaluated in static scenarios (see references
in [3]), which do not take into account the random nature of traffic: a fixed number
of users are placed randomly in a network, and capacities are computed. However in
real systems, users come and go randomly, making the number of active connections
time dependent. We consider here a downlink network in which users request files
of random sizes from random locations, at random time instants. The objective is
to determine the capacity of a cell, defined as the maximum traffic that leads to a
stable queuing system.

8.1 Reuse patterns

Frequency reuse consists of dividing the available bandwidth into a fixed number of
subbands, and assigning them to cells or subcells geographically. The point is to
increase the distance between areas that use the same bands, in order to reduce the
interference that each one causes on the others.

We consider here “full”, “hard”, “soft” and “fractional” reuse. For each we
provide an example in an hexagonal network. Note that the figures show only one
tile, which would be repeated to form a bigger network. Each color represents one
frequency band, and two colors side by side indicate that both bands are used in
the given area.

For a given reuse pattern, we call 1/K the reuse factor, that is, the fraction of
bandwidth used by each cell.

Full reuse This is the most basic assignment of frequencies, and does not actually
reduce interference. Indeed, every cell uses the full frequency band, as shown in
Figure 36.

Hard reuse The frequency band is divided into a fixed number of subbands,
normally allocated to cells according to a regular pattern. Figure 37 shows for
instance a reuse factor of 1/K = 1/3, that is there are 3 subbands, and each cell
therefore uses 1/3 of the total bandwidth. More generally, with hard reuse, 1/K < 1.

55

Figure 36: Full reuse, 1/K = 1

Figure 37: Hard reuse, 1/K = 1/3

Soft reuse The frequency band is divided into a fixed number of equally large
subbands. The users in the cell are divided between “near” users and “far” users,
depending on their distance to the base station, or quite equivalently their SINR
(Signal to Interference and Noise Ratio). The far users use a pattern similar to hard
reuse, while the near users use the remaining bands. The reuse factor is equal to 1,
since each cell uses every subband. Figure 38 shows an example with 3 subbands.

We see here two variable parameters appear: the near/far distance separation,
and the near/far power ratio.

Fractional reuse The frequency band is divided into: one “near” band used by
all near users, and the rest into any number of equally wide “far” subbands as a
hard reuse scheme for the far users (Figure 39). Note that 1/K < 1, hence the name
“fractional” reuse.

There are now three parameters: the near/far distance and the near/far power
ratio (as for soft reuse), plus the near/far bandwidth ratio.

56

Figure 38: Soft reuse, 3 subbands, 1/K = 1

Figure 39: Fractional reuse, 3 “far” subbands, 1/K < 1

8.2 Teletraffic model

For each class of users (that is, every subband used in a certain cell), denote R(u)
the throughput that would be achieved by a user whose position is u ∈ C in the cell,
if there were no other users in his class. With fair sharing of the radio resource (in
time and/or frequency), and N(t) active users in the class at time t, this throughput
becomes R(u)/N(t).

Each active user is downloading a file at rate R(u)/N(t). We assume that u is
fixed for the duration of the transfer. However, the number of active users does vary,
and therefore a flow of size s started at time t0 will finish at a time t1 such that

t1∫
t0

R(u)

N(t)
dt = s.

The rate of generation of flows (that is, of arrival of clients) being λ, and its ge-
ographic distribution δ(u), we know that new flows arrive at rate λδ(u) du in an in-
finitesimal area around u ∈ C. For the purpose of simplification, we assume that this
flow density is uniform, and that C has a unit area. Therefore, δ(u) = 1, ∀u ∈ C.

Flows are assumed to be independent and identically distributed, with average
size σ. Therefore the average traffic intensity generated by the cell is λσ bit/s.

57

Markov process The N(t)-dimensional vector X(t) of the positions of the active
users of the cell form a Markov process. We have already seen that the arrival
transition is done at rate ∫

C

λδ(u) du = λ.

The completion rate on the other hand, for a user at u ∈ C is equal to

R(u)

N(t)σ
.

Averaged for N(t) users distributed on C according to distribution δ(u), the overall
average service time becomes (see [3]):∫

C

σ

R(u)
δ(u) du.

We therefore have a load of

ρ = λ

∫
C

σ

R(u)
δ(u) du.

Stability For the queue to be stable, the load must be less than one, which gives
the condition

λσ <

∫
C

δ(u)

R(u)
du

−1

.

We call this maximum sustainable traffic the “capacity” C of the cell for the given
class of users.

Full and hard reuse In these reuse schemes, each cell has only one class of users.
The capacity is thus directly

C =

∫
C

δ(u)

R(u)
du

−1

.

Soft and fractional reuse Denoting the “near” and “far” regions C1 and C2, each
class is an independent queue and the previous result is applicable to each:

C1 =

∫
C1

δ(u)

R1(u)
du

−1

, C2 =

∫
C2

δ(u)

R2(u)
du

−1

.

58

In order for the whole cell to constitute a stable system, both queues must be stable,
and the overall capacity is set on the most constraining class:

C = min(C1, C2).

The relative values of C1 and C2 depend on the partitioning of the cell into
the regions C1 and C2. Intuitively, the capacity for one class is a strictly decreasing
function of the area of the region: since λ is constant on the cell, a smaller sub-region
means less arrivals, for the same service rate. As the sum of areas of the two regions
is constant, C1 and C2 are one increasing and the other decreasing. Therefore their
minimum C reaches its maximum for C1 = C2 and the corresponding regions C∗1 and
C∗2 .

8.3 Radio model

The radio channel is characterized by additive white Gaussian noise (AWGN) and
therefore by Shannon’s formula

R(u) = W lg(1 + η(u)),

where W is the width of the considered band in Hz, and η(u) the SINR at point
u. The throughput R(u) that we saw already is of course in bit/s. This channel
coding being quite optimistic compared to actual technology (this is the maximum
attainable rate, using arbitrarily complex codings), it will give an upper bound for
the results on the capacity.

We ignore thermal noise and fast fading to concentrate on the interference only.
Placing the cell’s base station at the origin, and calling B the set of interfering base
stations, the SINR is simply

η(u) =
|u|−α∑

v∈B |u− v|−α
,

with α = 3.5. Since no noise is actually considered, this is actually a Signal to
Interference Ratio (SIR).

With directional antennas, an angular path loss is added:

h(θ) =
|θ|
θ0

h0 dB,

with h0 = 9 dB the angular path loss at sector edge (that is, at θ0 degrees).

8.4 Network topology

6 types of network are studied:

• Linear and hexagonal. In linear networks, we use 2 subbands, 3 for hexagonal.

• Unsectorized and sectorized, that use directional antennas. Linear cells have
two sectors, hexagonal cells have three sectors.

59

• Regular and randomized (only for sectorized cells). The base stations are
distributed uniformly in a disk of area 1/4 around their original positions.
Antennas in hexagonal cells also take a direction uniformly distributed in a
cone of angle π/3 around their original direction.

8.5 Computing capacity gains

Given the complexity of the expression of C, no symbolic result can be expected.
Unfortunately, even numerical computation is quite challenging. Indeed, it requires:

• Fixing arbitrarily the network size, and placing the base stations. A network
too small is unrepresentative, since it underestimates interference, and a bigger
one implies long computation times.

• Computing the power levels from each base station to each point of the central
cell, in order to get a SIR and R(u). See an example of SIR in an hexagonal
network, for hard reuse, in Figure 41.

• Integrate over the cell. Although this is fine in linear networks, it so hap-
pens that mathematical software has difficulties integrating over odd shapes
(hexagons, intersected with circles in the case of soft reuse). Fixed step, Monte
Carlo or other methods for numerical integration are quite inefficient and slow.

Furthermore, in the soft and fractional cases, we have respectively 2 and 3 vari-
able parameters, that we need to optimize. This requires deciding on a resolution
and sampling, thus multiplying the number of integrations. The very large amount
of computation forces to severely decrease the resolution, and therefore lose preci-
sion.

So that they take any kind of meaning, results for random networks have to be
averaged over a large number of network instances, here 100. The time to compute
grows by as much.

On the other hand, it is proved in [3] that the optimal fractional scheme (in
terms of near/far bandwidth ratio) is never better than the soft reuse scheme for
the same near/far distance and power ratio parameters. We therefore omitted this
scheme in the computations.

Finally, we decided to fix the hexagonal network size to a total of 81 base stations,
as shown in Figure 40. In full reuse, every base station interferes, while in hard reuse
with reuse factor 1/3, only the highlighted base stations do.

For the linear networks, computation is a lot less intensive, so the network size
can be augmented until a reasonable convergence of the result is found. See for
instance Figure 42 for the details of signal and interference in full and hard reuse in
a seemingly infinite linear network.

60

Figure 40: The considered hexagonal network, for full and hard reuse

Figure 41: SIR in the considered hexagonal network, hard reuse

8.6 Results

For each network, the capacities in the hard and soft reuse are compared to the
basic full reuse scheme. The resulting gain is given in the following tables.

Linear networks

Network Hard reuse Soft reuse

Unsectorized, regular 26% 53%
Sectorized, regular 17% 39%

Sectorized, random 16% 43%

61

−5 −4 −3 −2 −1 0 1 2 3 4 5
10

−15

10
−10

10
−5

10
0

10
5

10
10

10
15

distance from base station (cell radius = 0.5)

signal
interference (full)
interference (hard)
sir full
sir hard

Figure 42: SIR in the (almost) infinite unsectorized linear network

Since computation is easy enough to allow big networks and convergence, these
results should be fairly accurate. We note that reuse patterns indeed have a positive
impact on the capacity. The random sectorized network, arguably close to reality,
gives an improvement of 43% by applying soft reuse.

Reuse patterns are clearly beneficial to linear networks.

Hexagonal networks

Network Hard reuse Soft reuse

Unsectorized, regular 1% 20%
Sectorized, regular -7% 3%

For hexagonal networks, on the other hand, the results should be considered
inconclusive. Indeed, the sensitivity to network size makes it difficult to reach ac-
curate numbers. Furthermore, computation times are almost prohibitive for one
network, all the more for 100. Therefore, random networks—supposedly the closest
to reality—have been omitted.

However, the tendency, while increasing network size, is to get poorer gains4.
Furthermore, in the case of soft reuse, the gain is optimized with respect to near/far
distance and near/far power ratio. It is reasonable to consider these numbers as
upper bounds for the actual values. Assuming this, soft reuse seems to be beneficial

4The increasing number of interfering base stations have apparently a greater impact on hard
and soft reuse than on full reuse.

62

only in unsectorized regular networks, with a maximum gain of 20%. If a real-
life situation presents a rather regular network, it might be that soft reuse would
improve its performance.

63

9 Summary

9.1 Accomplished work

We considered in this thesis the fact that two neighboring base stations in a cellular
network interfere, thus reducing each other’s signal to noise ratio and therefore the
capacities of the cells. From a traffic point of view, this is translated to lower service
rates, which lead to higher average number of users in the queues, and therefore
higher average delays.

In order to improve the quality of service, we explored two ways of mitigating
the interference between cells.

Time scheduling We first studied whether it was beneficial to allow base stations
to be turned off part of the time. Indeed, intuitively, when a cell has few or no users,
turning it off has little impact on its own delays, but the reduced interference can
greatly improve its neighbors’ condition.

We modeled the situation between two interfering base stations, and found that
the results articulated around one condition on the parameters, splitting them into
two cases. Denoting µ0 the service rate of a station when the other one is off, and
µ1 its service rate when the other one is on and interferes, the cases depend on the
relative order of the total service rate of the system when both stations are on, or
only one:

• Low interference: 2µ1 > µ0. Despite the interference, having both stations on
leads to a higher service rate than having a single station on.

• High interference: 2µ1 ≤ µ0. Because of the interference, having both stations
on leads to a lower service rate than having a single station on.

To define a set of policies to study, we considered that at each new event (arrival
or departure) in the system, a mode should be chosen among the following three:

• Station 1 on, station 2 off

• Station 1 off, station 2 on

• Station 1 on, station 2 on

depending on the number of users in each cell n1 and n2.
Then by two different methods (first by direct proof, then by Markov Decision

Process and numerical policy improvement) we found the optimal policy. That is,
the policy that minimizes the average total number of users in the system5. The
optimal policy depends on the degree of interference:

• Low interference: always keep both stations on, except when one queue is
empty, in which case, serve only the other one.

5Actually, the policy is not only average-optimal, but stochastically optimal, as proven by the
first method.

64

• High interference: never serve both queues at the same time, and if one queue
is empty, serve the other one. Note that this does not define a unique policy,
but a condition that indicates if a certain policy is optimal.

We then compared this optimal policy to the system in which no time scheduling
is done—that is where both stations are always on—by computing numerically the
ratio between the average number of users in each. This gain is of course highly
dependent on all the system parameters, and a complete parameter space exploration
was done. The general result is that

• in low interference, the order of magnitude of the improvement is between 1
and 2. The optimal policy is close to the original one, and there is little room
for improvement at all.

• in high interference situations, on the other hand, the average number of users
can be reduced by a factor up to 10.

An additional benefit of the optimal policy is that it greatly increases the stabil-
ity region—in other words, the capacity of the cells—, especially in high interference.
While some loads would make the original system unstable, they are supported by
the time scheduled one.

Finally, we considered fairness in the system. While all the previous results
concern the average total number of users, fairness is the measure of the difference
of quality of service between the two cells. In low interference, there is a unique
optimal policy, and fairness depends highly on the parameters: the cell with the
lowest average delay is the one with the lowest arrival rate.

In high interference, on the other hand, a whole set of policies is optimal (re-
garding the total), and fairness can be accomplished as a secondary objective. The
policy “serve cell 1 if n2 < n1 · λ2/λ1, and vice versa”—where λi is the arrival rate
in cell i—has been heuristically decided to be a good candidate.

Reuse patterns As an additional method for reducing inter-cell interference, we
studied several frequency reuse patterns, that is, assignment of frequency subbands
to geographical areas.

Although results were inconclusive for hexagonal cellular networks, linear net-
works can greatly benefit from soft reuse.

Soft reuse—in the case of linear networks—consists of dividing the band into
two equally large subbands, and dividing each cell into “near” and “far” regions.
Frequency subbands are then assigned alternatively so that a neighbor cell’s “far”
band is own’s “near” band, and vice versa.

By carefully adjusting the separation between near and far users and the near/far
power ratio, capacity gains up to 43% are achievable on randomized networks.

For hexagonal networks, the observed gain—even for undersized networks—were
modest.

65

9.2 Future work

We present here a few suggestions for future work based on this one: ideas left
unexplored, because they were out of the scope of this thesis, or by lack of time.

Asymmetrical service rates We assumed that both base stations had the same
service rates (µ0 when alone, µ1 with interference), but different arrival rates (λi)
to model the fact that the cells might have the same equipment, but be of different
size or be located in areas with different population. The model could be extended
to accommodate for different service rates in each cell.

This is basically the model studied in [2].

Number of cells A similar model could be applied to a network of three stations
instead of two. The state space would become 3-dimensional, and the conditions on
the system parameters might become quite intricate. A symbolic analysis may be
impossible, but applying numerical policy improvement would be trivial (although
limited by the state space size).

Combining reuse patterns and time scheduling In the present model, each
cell has only one class of users, all sharing the same service rate. By applying a soft
reuse pattern, each cell could have two classes of users (near and far), whose service
rates depend on the surrounding cells’ being on or off, and using the same subbands
or not.

To model a linear network, where the reuse factor is 1/2, it would become 2 cells,
with two sub cells each (near/far users), which makes 4 user classes, each with 1
arrival rate and 2 service rates. That is, 12 parameters, and a 4-dimensional state
space. For a hexagonal network with 3 cells and 3 subbands, it becomes 6 user
classes, each having 1 arrival rate and 4 service rates6, which makes 30 parameters
and a 6-dimensional state space. Simplifications (like symmetry) would probably be
needed to get any result, even numerical, but the study might have interest.

Radio model Finally, no radio model was taken in account to actually determine
the service rates µ0 and µ1. We separated every part of the study into “low” and
“high” interference based on their relative values, but never determined if either one
was realistic.

6Station alone, one interfering, the other interfering, both interfering.

66

References

[1] T. Bonald, S. Borst, and A. Proutière, “Inter-cell coordination in wireless data
networks,” Euro. Trans. Telecoms. 2006, vol. 17, pp. 303–312, 2006.

[2] I. Verloop and R. Núñez-Queija, “Asymptotically optimal parallel resource as-
signment with interference,” Queuing Systems, vol. 65, pp. 43–92, 2010.

[3] T. Bonald and N. Hegde, “Capacity gains in some frequency reuse schemes in
OFDMA networks,” IEEE Globecom 2009, 2009.

[4] “Long Term Evolution (LTE): An Introduction – Ericsson White Paper,” 2009.

[5] Motorola, “Long Term Evolution (LTE): A Technical Overview,” 2008.

[6] R. Bellman, Dynamic Programming. Princeton University Press, 1957.

[7] R. Howard, Dynamic Programming and Markov Processes. Cambridge, Mas-
sachusetts: Technology Press-Wiley, 1960.

[8] R. Howard, “Semi-Markovian Decision Processes,” International Statistical In-
stitute Bulletin, 1962.

[9] S. Ross, Applied probability models with optimization applications. San Fran-
cisco: Holden-Day, 1970.

[10] J. Little, “A Proof of the Queueing Formula L = λW ,” Operations Research,
vol. 9, pp. 383–387, 1961.

[11] G. Fayolle and R. Iasnogorodski, “Two coupled processors: the reduction to a
Riemann-Hilbert problem,” Z. Wahr. verw. Geb., vol. 47, pp. 325–351, 1979.

67

A Pyramid sequence

In Section 4.5 we compute the value of Vk(x1, x2), which depends on the 5 neighbor-
ing states at the previous level k− 1. The dependency thus propagates one state at
a time until level k = 0 is reached, and at each level, the states that are concerned
can be represented as a diamond shape, as shown in Figure A1.

D1 = 1 D2 = 5 D3 = 13

Figure A1: First terms of the “diamond” sequence

Calling Dk the number of attained states in level k, we get a “diamond” sequence.
One can notice that to go from Dk to Dk+1, we add k states on each of the 4 sides
of the diamond. This gives the simple recursive definition:

D1 = 1

Dk+1 = Dk + 4k.

It is then quite simple to derive an explicit expression:

Dk = 1 + 4
k−1∑
i=1

i

Dk = 1 + 4
k(k − 1)

2
Dk = 1 + 2k(k − 1).

Then to get the desired result, let us call it Pk for “pyramid” sequence, we simply
consider the series associated to the Dk sequence:

Pk =
k∑
i=1

Di

Pk =
k∑
i=1

1 + 2i(i− 1)

Pk = k + 2
k∑
i=1

i2 − 2
k∑
i=1

i

Pk = k + 2
k(k + 1)(2k + 1)

6
− 2

k(k + 1)

2

Pk =
2k3 + k

3
.

68

B Minimum of exponentially distributed variables

Consider two independent exponentially distributed variables P ∼ Exp(p) and
Q ∼ Exp(q), and their minimum X = min(P,Q). The problem is to determine
the probability that each variable will actually be the minimum. In our case (Sec-
tion 3.1), these are potential transition times, and the objective is to determine with
what probability will a particular transition occur first. Without loss of generality,
let us compute this probability for the variable P :

P [X = P] = P [min(P,Q) = P] = P [P < Q]

=

∫∫
x>0
y>0

1x<yP [(P,Q) = (x, y)] dx dy

=

∞∫
y=0

y∫
x=0

p exp(−px) · q exp(−qy) dx dy

=

∞∫
y=0

q exp(−qy)

y∫
x=0

p exp(−px) dx dy

=

∞∫
y=0

q exp(−qy)(1− exp(−py)) dy

=

∞∫
y=0

q exp(−qy) dy − q
∞∫

y=0

exp(−(p+ q)y) dy

= 1− q

p+ q

=
p

p+ q
.

This result can be generalized. First note that for any number of independent
exponentially distributed variables Xi ∼ Exp(qi),

min
i

(Xi) ∼ Exp(Σiqi).

Indeed:

P [min(Xi) > x] = P [X1 > x,X2 > x, . . .]

=
∏
i

P [Xi > x]

=
∏
i

exp(−qix)

= exp(−(Σiqi)x).

69

Then, using the notation

X = min
i

(Xi), Xi ∼ Exp(qi),

apply the previous result to Xj and mini 6=j(Xi):

P [X = Xj] = P [min
i

(Xi) = Xj] = P [Xj < min
i 6=j

(Xi)]

=
qj

qj +
∑

i 6=j qi

P [X = Xj] =
qj∑
i qi
.

70

C Tabulated results for the gain of the optimal

policy

Each table is for a fixed value of µ1. The rows and columns are for regularly
increasing values of λi, such that the first one is 0, and the last is equal to µ1.
For instance, for the first table, where µ1 = 0.1, the λi take the values

0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 1

Note that the values for λ1 = λ2 = 0 make little sense and result from the ratio of
two numbers that have no meaning. Indeed when the load is inexistent, the Markov
Process is not irreducible, and solving for the equilibrium distribution by finding
the nullspace of the transition matrix does not apply.

Furthermore, as discussed before, the closer to the stability limit, the less accu-
rate and reliable the value prove to be.

µ1 = 0.1

11.000 12.250 13.857 16.000 19.000 23.500 30.991 45.572 77.572 130.500
11.000 10.889 11.676 12.952 14.778 17.407 21.405 28.103 41.192 70.048 118.220
12.250 11.676 12.000 12.893 14.361 16.607 20.125 26.114 37.915 64.096 108.170
13.857 12.952 12.893 13.429 14.551 16.429 19.500 24.851 35.530 59.404 99.907
16.000 14.778 14.361 14.551 15.333 16.852 19.500 24.267 33.950 55.805 93.167
19.000 17.407 16.607 16.429 16.852 18.000 20.227 24.439 33.213 53.271 87.833
23.500 21.405 20.125 19.500 19.500 20.227 22.000 25.649 33.557 51.974 84.000
30.991 28.103 26.114 24.851 24.267 24.439 25.649 28.658 35.674 52.524 82.183
45.572 41.192 37.915 35.530 33.950 33.213 33.557 35.674 41.610 56.805 84.108
77.572 70.048 64.096 59.404 55.805 53.271 51.974 52.524 56.805 69.900 94.523
130.500 118.220 108.170 99.907 93.167 87.833 84.000 82.183 84.108 94.523 116.000

µ1 = 0.2

5.444 6.000 6.714 7.667 9.000 11.000 14.329 20.805 34.950 58.000
5.444 5.333 5.657 6.206 7.000 8.148 9.897 12.830 18.559 31.132 51.803
6.000 5.657 5.750 6.107 6.722 7.679 9.187 11.765 16.851 28.087 46.708
6.714 6.206 6.107 6.286 6.728 7.500 8.786 11.045 15.569 25.652 42.489
7.667 7.000 6.722 6.728 7.000 7.593 8.667 10.634 14.660 23.733 39.000
9.000 8.148 7.679 7.500 7.593 8.000 8.864 10.553 14.125 22.299 36.167
11.000 9.897 9.187 8.786 8.667 8.864 9.500 10.908 14.047 21.401 34.000
14.329 12.830 11.765 11.045 10.634 10.553 10.908 11.997 14.689 21.260 32.675
20.805 18.559 16.851 15.569 14.660 14.125 14.047 14.689 16.842 22.585 32.823
34.950 31.132 28.087 25.652 23.733 22.299 21.401 21.260 22.585 27.278 36.175
58.000 51.803 46.708 42.489 39.000 36.167 34.000 32.675 32.823 36.175 43.500

71

µ1 = 0.3

3.593 3.917 4.333 4.889 5.667 6.833 8.775 12.549 20.743 33.833
3.593 3.481 3.651 3.958 4.407 5.062 6.061 7.739 11.015 18.161 29.665
3.917 3.651 3.667 3.845 4.176 4.702 5.542 6.983 9.830 16.084 26.222
4.333 3.958 3.845 3.905 4.120 4.524 5.214 6.443 8.916 14.401 23.350
4.889 4.407 4.176 4.120 4.222 4.506 5.056 6.090 8.230 13.042 20.944
5.667 5.062 4.702 4.524 4.506 4.667 5.076 5.925 7.762 11.976 18.944
6.833 6.061 5.542 5.214 5.056 5.076 5.333 5.995 7.544 11.210 17.333
8.775 7.739 6.983 6.443 6.090 5.925 5.995 6.443 7.694 10.838 16.173
12.549 11.015 9.830 8.916 8.230 7.762 7.544 7.694 8.586 11.179 15.728
20.743 18.161 16.084 14.401 13.042 11.976 11.210 10.838 11.179 13.071 16.726
33.833 29.665 26.222 23.350 20.944 18.944 17.333 16.173 15.728 16.726 19.333

µ1 = 0.4

2.667 2.875 3.143 3.500 4.000 4.750 5.998 8.421 13.639 21.750
2.667 2.556 2.648 2.833 3.111 3.519 4.143 5.193 7.243 11.675 18.596
2.875 2.648 2.625 2.714 2.903 3.214 3.719 4.591 6.319 10.083 15.979
3.143 2.833 2.714 2.714 2.816 3.036 3.429 4.142 5.589 8.776 13.780
3.500 3.111 2.903 2.816 2.833 2.963 3.250 3.817 5.015 7.697 11.917
4.000 3.519 3.214 3.036 2.963 3.000 3.182 3.610 4.581 6.814 10.333
4.750 4.143 3.719 3.429 3.250 3.182 3.250 3.538 4.292 6.115 9.000
5.998 5.193 4.591 4.142 3.817 3.610 3.538 3.666 4.197 5.628 7.922
8.421 7.243 6.319 5.589 5.015 4.581 4.292 4.197 4.458 5.476 7.183
13.639 11.675 10.083 8.776 7.697 6.814 6.115 5.628 5.475 5.969 7.013
21.750 18.596 15.979 13.780 11.917 10.333 9.000 7.922 7.182 7.011 7.295

µ1 = 0.5

2.111 2.250 2.429 2.667 3.000 3.500 4.332 5.944 9.377 14.500
2.111 2.000 2.046 2.159 2.333 2.593 2.992 3.666 4.979 7.783 11.955
2.250 2.046 2.000 2.036 2.139 2.321 2.625 3.157 4.213 6.482 9.833
2.429 2.159 2.036 2.000 2.034 2.143 2.357 2.761 3.593 5.400 8.039
2.667 2.333 2.139 2.034 2.000 2.037 2.167 2.454 3.086 4.490 6.501
3.000 2.593 2.321 2.143 2.037 2.000 2.045 2.222 2.672 3.717 5.174
3.500 2.992 2.625 2.357 2.167 2.045 2.000 2.064 2.342 3.061 4.029
4.332 3.666 3.157 2.761 2.454 2.222 2.064 2.000 2.101 2.518 3.074
5.944 4.979 4.213 3.593 3.086 2.672 2.341 2.100 1.994 2.121 2.357
9.377 7.783 6.482 5.400 4.490 3.717 3.060 2.515 2.116 1.949 1.965
14.500 11.955 9.833 8.038 6.500 5.169 4.018 3.053 2.332 1.946 0.000

72

µ1 = 0.6

1.741 1.833 1.952 2.111 2.333 2.667 3.221 4.293 6.535 9.667
1.741 1.667 1.698 1.775 1.895 2.073 2.347 2.809 3.706 5.584 8.180
1.833 1.698 1.667 1.692 1.764 1.892 2.105 2.477 3.215 4.767 6.879
1.952 1.775 1.692 1.667 1.691 1.768 1.921 2.210 2.802 4.059 5.732
2.111 1.895 1.764 1.691 1.667 1.693 1.787 1.995 2.452 3.442 4.715
2.333 2.073 1.892 1.768 1.693 1.667 1.700 1.829 2.159 2.903 3.812
2.667 2.347 2.105 1.921 1.787 1.700 1.667 1.714 1.918 2.432 3.015
3.221 2.809 2.477 2.210 1.995 1.829 1.714 1.666 1.740 2.031 2.329
4.293 3.706 3.215 2.802 2.452 2.159 1.918 1.740 1.653 1.712 1.769
6.535 5.584 4.767 4.059 3.442 2.903 2.432 2.031 1.712 1.507 1.369
9.667 8.180 6.879 5.732 4.715 3.812 3.015 2.329 1.769 1.369 0.000

µ1 = 0.7

1.476 1.536 1.612 1.714 1.857 2.071 2.428 3.114 4.506 6.216
1.476 1.429 1.449 1.500 1.580 1.697 1.878 2.182 2.770 3.959 5.382
1.536 1.449 1.429 1.445 1.494 1.580 1.724 1.975 2.469 3.469 4.623
1.612 1.500 1.445 1.429 1.445 1.498 1.603 1.801 2.205 3.027 3.931
1.714 1.580 1.494 1.445 1.429 1.447 1.512 1.657 1.974 2.629 3.303
1.857 1.697 1.580 1.498 1.447 1.429 1.452 1.543 1.774 2.271 2.737
2.071 1.878 1.724 1.603 1.512 1.452 1.429 1.462 1.607 1.952 2.238
2.428 2.182 1.975 1.801 1.657 1.543 1.462 1.428 1.480 1.675 1.811
3.114 2.770 2.469 2.205 1.974 1.774 1.607 1.480 1.418 1.455 1.466
4.506 3.959 3.469 3.027 2.629 2.271 1.952 1.675 1.455 1.315 1.222
6.216 5.382 4.623 3.931 3.303 2.737 2.238 1.811 1.466 1.222 0.000

µ1 = 0.8

1.278 1.312 1.357 1.417 1.500 1.625 1.833 2.229 2.985 3.659
1.278 1.250 1.262 1.293 1.341 1.411 1.519 1.700 2.047 2.702 3.248
1.312 1.262 1.250 1.260 1.290 1.343 1.430 1.583 1.880 2.438 2.866
1.357 1.293 1.260 1.250 1.260 1.293 1.358 1.481 1.728 2.192 2.514
1.417 1.341 1.290 1.260 1.250 1.262 1.303 1.394 1.591 1.964 2.193
1.500 1.411 1.343 1.293 1.262 1.250 1.265 1.323 1.468 1.754 1.904
1.625 1.519 1.430 1.358 1.303 1.265 1.250 1.271 1.364 1.564 1.650
1.833 1.700 1.583 1.481 1.394 1.323 1.271 1.250 1.283 1.396 1.431
2.229 2.047 1.880 1.728 1.591 1.468 1.364 1.283 1.242 1.262 1.252
2.985 2.702 2.438 2.192 1.964 1.754 1.564 1.396 1.262 1.177 1.121
3.659 3.248 2.866 2.514 2.193 1.904 1.650 1.431 1.252 1.121 0.000

73

µ1 = 0.9

1.123 1.139 1.159 1.185 1.222 1.278 1.370 1.542 1.823 1.890
1.123 1.111 1.117 1.131 1.152 1.184 1.233 1.315 1.468 1.715 1.762
1.139 1.117 1.111 1.116 1.130 1.154 1.195 1.265 1.399 1.611 1.643
1.159 1.131 1.116 1.111 1.116 1.131 1.162 1.220 1.333 1.512 1.532
1.185 1.152 1.130 1.116 1.111 1.117 1.136 1.180 1.271 1.418 1.429
1.222 1.184 1.154 1.131 1.117 1.111 1.118 1.146 1.215 1.330 1.334
1.278 1.233 1.195 1.162 1.136 1.118 1.111 1.122 1.166 1.248 1.248
1.370 1.315 1.265 1.220 1.180 1.146 1.122 1.111 1.127 1.175 1.170
1.542 1.468 1.399 1.333 1.271 1.215 1.166 1.127 1.107 1.114 1.103
1.823 1.715 1.611 1.512 1.418 1.330 1.248 1.175 1.114 1.076 1.050
1.890 1.762 1.643 1.532 1.429 1.334 1.248 1.170 1.103 1.050 0.000

µ1 = 1

Obviously, when µ1 = 1 = µ0, the basic policy and the optimal policy are in fact
identical. The values 0 at the border indicate instability.

1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

	Abstract
	Preface
	Contents
	Symbols and abbreviations
	Introduction
	Technological background: 3GPP LTE
	Evolved UMTS Terrestrial Radio Access Network
	System Architecture Evolution
	Simplified models

	Theoretical background
	Markov processes
	Markov decision processes

	Time scheduling of two interfering base stations
	Queuing model description
	Stochastically optimal policy in low interference
	Stochastically optimal policy in high interference
	Stability conditions
	Numerical considerations
	Direct Markov process solving

	Policy improvement
	Optimal static policy, low interference
	Optimal static policy, high interference
	Policy improvement iteration
	Numerical policy improvement

	Quantifying the improvement
	Gain

	Fairness
	Low interference
	High interference

	Dynamic analysis of some OFDMA reuse patterns
	Reuse patterns
	Teletraffic model
	Radio model
	Network topology
	Computing capacity gains
	Results

	Summary
	Accomplished work
	Future work

	References
	Pyramid sequence
	Minimum of exponentially distributed variables
	Tabulated results for the gain of the optimal policy

