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Abstract 

Cognitive Radio (CR) is widely expected to be the next Big Bang in wireless 

communications. In a CR network, the secondary users are allowed to 

utilize the frequency bands of primary users when these bands are not 

currently being used. For this, the secondary user should be able to detect 

the presence of the primary user. Therefore, spectrum sensing is of 

significant importance in CR networks.  

In this thesis, we consider the antenna selection problem over fading 

channels to optimize the tradeoff between probability of detection and 

power efficiency of CR systems. We formulate a target function consists of 

detection probability and power efficiency mathematically, and use energy 

detection sensing scheme to prove that the formulated problem indeed has 

one optimal sensing time which yields the highest target function value.  

Two modeling techniques are used to model the Rayleigh fading channels; 

one without correlations and one with correlations on temporal and 

frequency domains. For each model, we provide two scenarios for average 

SNRs of each channel. In the first scenario, the channels have 

distinguished level of average SNRs. The second scenario provides a 

condition in which the channels have similar average SNRs. The antenna 

selection criterion is based on the received signal strength; each simulation 

is compared with the worst case simulation, where the antennas are 

selected randomly.  

Numerical results have shown that the proposed antenna selection 

criterion enhanced the detection probability as well as it shortened the 

optimal sensing time. The target function achieved the higher value while 

maintaining 0.9 detection probability compared to the worst case 

simulation. The optimal sensing time is varied by other parameters, such 

as weighting factor of the target function.  

Keywords: Cognitive radio; spectrum sensing; energy detector; energy 

efficiency 

Language: English 
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1 Chapter 1 

 

Introduction 

 

In recent years, the increasing popularity of diverse wireless technologies 

has generated a huge demand for more bandwidth. As the interest of 

consumers in wireless services has been greatly developed, the traditional 

approach to spectrum regulation has caused a crowded spectrum with most 

frequency bands already assigned to different licensees [1]. The 

development of new applications and usage of mobile internet access has 

caused even higher demand for the spectrum.  

It is reported that the allocated spectrum experiences low utilization. In 

fact, recent measurements by Federal Communications Commission (FCC) 

have shown that 70% of the allocated spectrum in US is not utilized [2]. 

These factors have been working as a driving force to draw the concept of 

spectrum reuse.  

 Cognitive radio (CR) is the core technology behind spectrum reuse. There 

have been a large amount of academic research as well as application 

initiatives in this area. The fundamental idea of CR is to automatically 

sense and make efficient use of any available radio frequency spectrum at a 

given time [3]. Two main entities are introduced, primary user and 

secondary users. Primary users are the owners of the licensed spectrum 

while the secondary users transmit and receive signals over the licensed 

spectra or portions of it when the primary users are inactive [1]. Namely, 

the secondary radio periodically monitors the radio spectrum, intelligently 

detects occupancy in the different frequency bands and then 

opportunistically communicates over the spectrum holes with minimal 

interferences to the active primary users [4]. In order to do so, secondary 
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users are required to frequently perform spectrum sensing so detection the 

presence of the primary users should be done properly. It is required for 

secondary users to detect the presence of active primary users with high 

probability and empty the channel or limit the transmission power.   

Identification and detection of primary user signals, thus, are essential 

tasks for a CR system. This process gets challenging when there exists wide 

variety of primary users, secondary user interference, variable propagation 

losses and thermal noise. Under those harsh and noisy environments, speed 

and accuracy of measurement are the main metrics to determine the 

suitable spectrum sensing technique for CR [1].  

In a heavily shadowed or fading environment, spectrum sensing is 

hampered by the uncertainty resulting from channel randomness. In such 

cases, a low received energy may be due to a faded primary signal rather 

than a white pace. As such, a secondary user has to be more conservative so 

as not to confuse a deep fade with a white space, thereby resulting in poor 

spectrum utilization [18].  

In this thesis, simple energy detection is chosen as the underlying spectrum 

sensing scheme. The energy detector is one of the simplest spectrum 

sensing methods [5]. It works well when the signal to noise ratio (SNR) is 

high. However, in wireless channels, signals often suffer from shadowing or 

fading, which may lead to a very low SNR. Under these circumstances, the 

energy detector might determine that a deeply shadowed or faded channel 

is unoccupied, causing large interferences to the primary user [6]. 

Simulation results of [7] suggest that the performance of energy-detector 

degrades in shadowing/fading environments.  

Using fewer antennas is recommended from a complexity standpoint as the 

efficiency of system resources including the total transmission power grows 

approximately linearly with the number of users. We should note that 

under practical circumstances, spectrum sensing is performed with limited 

resources [6]. Therefore, the efficiency of resource usage is a crucial design 

parameter.  In order to improve the efficiency of spectrum sensing, finding 

an optimum number of secondary users has been proposed [6].  

The main focus of this thesis is to extend these works [4, 6, 20] by finding 

an optimum sensing time over fading channels. The performance of 
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spectrum sensing in fading environments is quantified and the effects of 

the proposed antenna selection method are studied. Particularly, by taking 

the resource usage efficiency into account, a novel spectrum sensing 

algorithm has been devised; after initial sensing, antennas with a more 

deeply faded channel are selected and removed. Spectrum sensing with 

relatively less-faded antennas are continued during dedicated sensing. 

There exists an optimal check point which increases overall performances 

such as power efficiency and probability of detection.    

In this thesis, we focus on the optimal check point for spectrum sensing by 

accounting for power efficiency. Static additive white Gaussian noise 

(AWGN) channels and Rayleigh fading channels are examined.  

This thesis is organized as follows. In Chapter II, the spectrum sensing 

methodologies are shown after the system model and notations are 

introduced. The proposed optimum sensing time and antenna selection 

scheme will be shown in the Chapter III. Chapter IV presents the 

numerical results of proposed schemes over fading and non-fading 

circumstances and discussions on them. Finally in Chapter V we conclude 

the main results of this thesis.  
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2 Chapter2 

 

Spectrum Sensing Preliminaries 

 

In this chapter, the general model for spectrum sensing is presented. Then 

we introduce the energy detection scheme and analyze the relationship 

between the probability of detection and the probability of false alarm. We 

also derive the average detection probability over Rayleigh channel.  

 

2.1 Scenario Description 

The primary and secondary users are located in the same area. As shown in 

Fig. 1, spectrum sensing is performed by a secondary sensing node (SU) 

which is equipped with multiple antennas. Since neither the locations of 

the primary transmitters (PU) nor the locations of the primary receivers 

are known, secondary users have to collect spectrum availability 

information from the entire region [19].   

 

Fig.  1 The considered scenario 
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2.2 General Model for Spectrum Sensing  

The goal of spectrum sensing is to determine if a licensed band is not 

currently being used by its primary owner. This in turn may be formulated 

as a binary hypothesis testing problem, which will be discussed in the next 

part.  

We first introduce the signal model that will be employed in our analysis. A 

Cognitive (or secondary) user detects the presence of ongoing primary 

user‟s transmission using a hypothesis test. When the primary user is not 

active, the received signal at the secondary user can be represented as 

           (1) 

where      is the signal received by the secondary user and      is noise.  

When the primary user is active, the received signal is given by  

                    (2) 

Under this hypothesis, the signal      is transmitted by the primary users 

and received by secondary users over a channel     . When the channel is 

non-fading,       is constant. On the other hand, when the channel is 

fading,      includes multipath and fading effects. It is assumed that noise 

samples      are independently and identically distributed (i.i.d.) with zero 

mean and variance  [|    | ]    
 . The goal of spectrum sensing is to make 

a decision, i.e. to choose between    and  , based on the received signal [9].  

 

2.2.1 Theory of Hypothesis Testing 

We consider a group of   cognitive users in the presence of a 

primary transmitter. The received signals are corrupted by noise [8]. 

There are two hypothesis; hypothesis 0, or   , denotes the absence of 

the primary user and hypothesis 1    denotes the presence of the 

primary user.  

The probability density function (PDF) under each hypothesis is 

shown in Fig. 2 (a) and in Fig. 2 (b), where the threshold value for 

each hypothesis is denoted as  . Under each hypothesis the PDFs 
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are with the difference in means causing the PDF under     to be 

shifted to the right.  

 

Fig.  2 (a) Theory of hypothesis testing; probability of detection and 

probability of missed detection 

 

Fig. 2 (b) Theory of hypothesis testing; probability of false alarm 

Generally, two probabilities are of interest for indicating the 

performance of a sensing algorithm.  

(i) Probability of detection,     defines the probability of the 

sensing algorithm having detected the presence of the 

primary signal at the hypothesis   .Thus, in Fig. 2 (a), under 

the hypothesis   , the PDFs bigger than the threshold value 

  is defined as the detection probability. The PDFs smaller 

than the threshold   is defined as probability of missed 

detection,   .  

(ii) Probability of false alarm,   , defines at the hypothesis   , 

the probability of the sensing algorithm claiming the 

presence of the primary signal. That is, if we decide    , but 

   is true, it is called a false alarm error. In Fig. 2 (b), the 

PDFs exceeding the threshold under the hypothesis    is 

defined as    .  
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More methodological approach to these two probabilities will be 

discussed in the section 2.3.2. This setup is termed the Neyman-

Pearson (NP) approach to hypothesis testing or to signal detection. 

The threshold is found from the false alarm constraint. 

Within the context of opportunistic spectrum access, the probability 

of detection determines the level of interference-protection provided 

to the primary licensee while the probability of false-alarm is the 

percentage of white spaces falsely declared occupied. Therefore, a 

sensible design criterion is to minimize     while guaranteeing that 

   remains above a certain threshold set by the regulator.  

These two probabilities are unavoidable to some extent but may be 

traded off against each other. The primary user receives better 

protection when the probability of detection is high. Also, the 

secondary user has more chances to find and use the available 

frequency bands when the probability of false alarm is low.  

It is not possible to reduce both error probabilities simultaneously. A 

typical approach is to hold one probability fixed while minimizing 

the other [10]. Though there can be different methods to measure 

the performance of a sensing algorithm, optimization of a sensing 

algorithm is shown to be achieved when we maximize     for a given 

   at a fixed number of samples.  

 

2.3 Energy Detector 

The secondary users are required to sense and monitor the radio spectrum 

environment within their operating range to detect the frequency bands 

that are not occupied by primary users. In this section we discuss the most 

popular spectrum sensing scheme, the energy detector.   

The energy detector employs a non-coherent detection technique, which 

does not require prior knowledge of pilot data [1].  
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Fig.  3 Block diagram of an energy detector 

Fig. 3 depicts the block-diagram of an energy detector. As the figure shows, 

the energy detector consists of a low pass filter to remove out of band noise 

and adjacent channel interference, an analog to digital converter as well as 

a square law device to compute the energy.  

The local spectrum sensing is accomplished by the energy detection [7]. An 

energy detector is implemented at each secondary user by calculating a 

decision metric out of all samples and antennas used. The purpose of 

energy detection is to make a correct decision between two hypotheses after 

observing samples. The energy detection should be carried out over all 

logical channels defined by the CR network.  Assuming that the channel is 

time-invariant during the sensing process, the energy detection on the 

given channel is performed by accumulating the energy of samples and 

comparing it with the predefined threshold, to decide whether signal is 

present or not [16].   

 

2.3.1 Test Statistics 

In order to properly set the stage for the discussion, we start with an 

analysis of local energy detection. We denote that the normalized 

output of the integrator in Fig. 3 by   which serves as the decision 

statistic. The test statistic for the energy detector is given by,  

     
 

 
∑|    | 
 

   

 (3) 

where N is the number of samples. The test statistic      is a 

random variable whose PDF       is a Chi-square distribution with 

   degrees of freedom for complex valued case [11].  
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2.3.2 Probabilities of Detection and False Alarm 

Under hypothesis   , if ε is chosen as the detection threshold, the 

probability of false alarm is then given by  

                 |    ∫        
 

 

 (4) 

where   is the available sensing time.  

The PDF of this test statistics under    may be written as,  

      
         

      
 (5) 

where   is the time-bandwidth product and      is the gamma 

function. After integration, the probability of false alarm is  

   
        

    
 (6) 

The incomplete gamma function is expressed as  

       ∫          
 

 

 (7) 

As expected,    is independent of SNR since under    there is no 

primary signal present.  

On the other hand, under the hypothesis   , for a chosen threshold   

the probability of detection can be represented as 

                 |    ∫        
 

 

 (8) 

where       is the PDF of the test static      which can be written as,  

      
      

     
 

      
  (  

   

 
) (9) 

where         is the confluent hyper-geometric limit function and   is 

the SNR is defined as   . Therefore, the probability of detection can 

be written as 
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     (√     √ ) (10) 

The generalized Marcum Q-function         is as  

         ∫
  

    

 

 

  
     

            (11) 

where         is the      th order modified Bessel function of the 

first kind.  

As discussed above, if the decision is    when there is a primary 

user present, it is called missed detection and its probability is 

represented as   . The missed detection probability is  

              (12) 

In the CR system, the probability that the presence of the primary 

user is not detected should be minimized to prevent unexpected 

interference to the primary user such that the probability of false 

alarm is maintained below a certain level. The fundamental tradeoff 

between    and    has different implications. High    results in 

missing the presence of primary user with high probability, which in 

turn increases the interference inflicted on the primary licensee. On 

the other hand, a high    inevitably results in low spectrum 

utilization since the false-alarms increase the number of missed 

opportunities. 

2.3.2.1 Approximations for the Probability of Detection and False 

Alarm 

In this section, we introduce the approximations for the detection 

probability and false alarm probability in closed form.  

From the central limit theorem, we approximate the probabilities of 

detection and false alarm as follows. First, for a large  ,       can be 

approximated as a Gaussian random variable with mean 

  {
  

                               

       
                  

 (13) 

and variance 



20 
 

   {

 

 
  |    |    

     
                                                            

 

 
  |    |   |    |     

    
       

                       

 (14) 

If we focus on the circularly symmetric complex Gaussian (CSCG) 

noise case, than the probability of false alarm can be approximated 

by 

         ((
 

  
   )√ + (15) 

and Q    is the complementary distribution function of the standard 

Gaussian.  

     
 

√  
∫     ( 

  

 
)

 

 

   (16) 

We focus on the complex-valued phase-shift keying (PSK) signal and 

CSCG noise case. Based on the PDF of the test static, the probability 

of detection can be approximated by 

         ((
 

  
     )√

 

    
, (17) 

Note that   
  
 

  
  is the received SNR of the primary user measured 

at the secondary receiver of interest, under the hypothesis   .  

The   function is monotonically decreasing since     is a 

cumulative distribution function (CDF), which is monotonically 

increasing. Thus,   has an inverse that we denote as    . Therefore, 

equation (17) can be represented in a different way for the detection 

threshold  ,  

((
 

  
     )√

 

    
,       ̅   (18) 

where the target probability of detection is denoted as  ̅ . Also, for 

the probability of false alarm, the equation can be shown as 
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(
 

  
   )√          (19) 

Thus, the equation of    can be changed into the equation of       ̅  . 

As  

(
 

  
     )√

 

    
⏟              

     ̅  

 √      (
 

  
   )√ 

⏟        
       

  √   
(20) 

    (     ̅  √     √  ) (21) 

In a similar way, the probability of detection for a target probability 

of false alarm is given by 

    (
 

√    
(   ( ̅ )  √  )) (22) 

2.4 Detection over Rayleigh Fading Channels 

In the previous section, we discussed the detection scheme over non-fading 

channel. The exact expression of detection probability is given in (10) and 

the probability of false alarm is given in (6).  

In a fading environment, unlike non-fading environment, the distributions 

and consequential probabilities do not follow previously given formulas 

anymore since the SNR has different distributions. Note that the 

probability of false alarm, however, remains the same under any fading 

channel since it is considered for the case of no signal transmission and as 

such is independent of SNR [7].  

On the other hand, when the channel is varying because of fading effects, 

previously given equations on probability of detection represents 

probability of detection conditioned on the instantaneous SNR. Therefore, 

by averaging the conditional probability of detection over the SNR fading 

distribution, we can find the expressions in closed form of detection 

probability in fading channels.   
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          ∫   
 

 √    √           (23) 

where       is the probability of distribution function of SNR under fading.  

Under Rayleigh fading, the signal amplitude follows a Rayleigh distribution. 

In this case, the SNR follows an exponential PDF, 

     
 

 ̅
    ( 

 

 ̅
* (24) 

where  ̅ is the average SNR.  

Therefore, in Rayleigh fading, a closed-form formula for    may be obtained 

as follows.  
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      ̅ 
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(25) 

Fig. 4 illustrates the complementary receiver operating characteristic (ROC) 

curve of AWGN and Rayleigh fading channel. The average SNR value  ̅ is 

assumed to be 5 dB, where   is also selected to be  .  



23 
 

 

Fig.  4 Complementary ROC           under Rayleigh fading 

  ̅             AWGN curve is provided for comparison. 

We can generally infer that            curves have low slopes for         . 

We also notice that there is a significant effect on the performance of the 

energy detector by Rayleigh fading. The effect of Rayleigh fading gets more 

obvious as    drops     ;    reaches up to    , which would result in poor 

spectrum utilization.   

 

2.4.1 Fading Channel Modeling 

The Rayleigh fading process appears in many physical models of 

mobile radio channels. Many algorithms have been proposed for the 

generation of correlated Rayleigh variates, such as a sum-of-

sinusoids (SOS) approach and the inverse discrete Fourier transform 

(IDFT) algorithm. Several problems have been found in the designs. 

For example, in the case of SOS designs, it has been found that the 

classical Jakes‟ simulator produces fading signals that are not wide-

sense stationary [23]. On the other hand, the IDFT technique has a 

disadvantage that all samples are generated with a single FFT 

operation, while it has some advantages on its high quality and the 

fact that itself works as an efficient fading generator [24]. These 

motivated the research for a fading simulator which can produce 

statistically accurate variates [15].  
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In this thesis, two modeling techniques have been used; one is a 

simple Rayleigh fading channel assuming a coherent channel, while 

another one is a general autoregressive (AR) modeling approach for 

the accurate generation of a time-correlated Rayleigh process.  

 

2.4.1.1 Simple Rayleigh Channel Modelling 

Under this modeling, we assume that there is no correlation in 

temporal and frequency domains. The phase has uniform 

distribution and the magnitude is Rayleigh distributed. Simply, the 

signal can be represented by 

  √      (26) 

where           and           are two independent normal 

distributions.  

 

2.4.1.2 Autoregressive Model 

A complex AR process of order   can be generated via the time 

domain recursion 

 [ ]   ∑  

 

   

 [   ]       (27) 

where      is a complex white Gaussian noise process with 

uncorrelated real and imaginary components. This process is termed 

an autoregression in that the sequence  [ ] is a linear regression on 

itself with      representing the error [13]. For generating Rayleigh 

variates the driving noise process      has zero mean and 

variance   
 . There is a condition on the AR coefficients; all roots of 

the following polynomial are within the unit disc in the complex 

plane.  

        ∑   
 

 

   

 (28) 
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Since the frequency response is 

     
 

  ∑               
 
   

 (29) 

The corresponding power spectral density (PSD) of the       process 

is [13] 

       
  

 

|  ∑               
 
   |

  (30) 

The relationship between parameters of an AR process and the 

autocorrelation function (ACF)    [ ] is [13], 

   [ ]  

{
 

  ∑  [ ]   [   ]             
 

   

 ∑  [ ]   [  ]    
 

 

   
          

 (31) 

These equations are called the Yule-Walker equations. Though there 

is a nonlinear relationship between the ACF and the parameters of 

an AR process, when the desired ACF samples    [ ]  for   

        are given, we may find the AR model coefficients by solving 

the set of linear p Yule-Walker equations. In matrix form the upper 

equations become for           

[

   [ ]    [  ]     [      ]

   [ ]    [ ]     [      ]
 

   [   ]
 

   [   ]
 
 

 
   [ ]

]

⏟                              
   

[

 [ ]
 [ ]
 

 [ ]

]   [

   [ ]
   [ ]

 
   [ ]

] 
(32) 

Since    
      and each element along diagonal is the same,     is 

hermitian Toeplitz. By using the Levinson-Durbin recursion in      , 

these equations may be solved. The matrix      inherits the positive 

semi-definite property from the ACF and it will be singular only if 

the process is purely harmonic and consists of p-1 or fewer sinusoids 

[14]. In all other cases, the inverse    
   exists and the Yule-Walker 

equations are guaranteed to have the unique solution  

      
    (33) 
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where   [ [ ]  [ ]    [ ]]  and    [   [ ]    [ ]      [ ]]
  [8]. 

Though AR models have been used with success to predict fading 

channel dynamics for the purposes of Kalman filter based channel 

estimation and for long-range channel forecasting, low-order AR 

processes do not provide a good match to the desired band limited 

correlation statistics [15].  
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3 Chapter 3 

 

Proposed Antenna Selection Methods 

 

In the previous chapter, the relationship between the probability of 

detection and the probability of false alarm has been established. In this 

chapter, we study the fundamental tradeoff between probability of 

detection and power efficiency and discuss how the sensing time can be 

optimized in order to maximize the probability of detection and the power 

efficiency.  

 

3.1 Problem Formulation 

In this section, we present the detailed formulation of finding the optimal 

sensing time. First, we start with showing the given conditions. Consider a 

CR network with   antennas. Each antenna collects   samples during the 

sensing time. The received     data matrix    is represented as  

  (

        
     

        
     

 
    

 
    

 
 

 
    

, (34) 

Among several evaluation methods for CR network throughput, we analyze 

two points of views; one is probability of detection and another is power 

efficiency.  
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3.1.1 From the View of Probability of Detection 

As mentioned before, when we collect more data from a bigger 

number of samples  , it is more likely to detect a signal with higher 

probability. This can be verified by the equation (17) in the previous 

section.  

The probability of detection over the number of samples under a 

non-fading channel is illustrated in Fig. 5 where the detection 

probability keeps increasing as more numbers of samples are 

utilized. In Fig. 5, we have chosen                      and 

probability of false alarm       .  

 

Fig.  5 Probability of Detection                 

We observe that detection probability increases as more samples are 

used.  

 

 

 

0 50 100 150 200 250 300 350 400
0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94
Pd ( K=2, N=400, k=1 )

P
ro

b
a
b
ili

ty
 o

f 
D

e
te

c
ti
o
n



29 
 

3.1.2 From the View of Power Efficiency 

On the other hand, the disadvantage of increasing the number of 

antennas is a substantial penalty in power consumption due to the 

required replication of the transmit/receive chains [25]. Also, since 

sensor networks are typically power limited, we need to invent 

power allocation strategies that optimally make use of the available 

radio resources.  

Generally speaking, the more samples we collect for the sensing, the 

more power would be consumed but the higher detection probability 

would be obtained during the spectrum sensing process. Thus, there 

exists a tradeoff between power consumption and probability of 

detection on spectrum sensing; one gets higher probability of 

detection but has to consume more energy instead. As the sender 

and the receiver are supposed to spend energy to transmit and 

receive signals during sensing, intuitively, the power consumed 

would get lower if we could decrease the number of antennas in use.  

Subsequently, one may face the issues regarding selection of 

antennas; how to select them, what antennas to choose, and by 

which criteria we choose them. Selecting the antennas which would 

yield performances would be favorable to achieve improved 

throughputs, such as probability of detection. With this reason, 

there have been continuous research efforts on the selection of 

antennas and sensors in CR networks [6] [16] [20]. Especially under 

the fading channels, where signals are deteriorated, selection of 

proper antennas carries more significance.  

In the previous section, Fig. 4, we have illustrated that    under the 

Rayleigh fading channel reaches 1 much more drastically comparing 

to    under the AWGN channel. We observed that comparing that of 

AWGN channel scenario, the detection performance showed 

significant degradation under Rayleigh fading scenario. Degradation 

of detection probability endangers detection performance under the 

hypothesis 1. Therefore, under fading conditions, it becomes even 

more important to select antennas with less-faded channels to 

maintain a certain level of performance.  
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3.2 Proposed Scheme 

Above, we discussed the tradeoff between probability of detection and 

power efficiency. Yet higher probability of detection is in need for the 

improvement of sensing performance, collecting many samples to do so 

would not allow reducing power consumption. We will show that this 

tradeoff can be efficiently, in terms of probability of detection and power 

efficiency, alleviated by finding the optimal sensing time.   

Recall the received data matrix (34) in a primary signal detection problem. 

Assume that we collect only n samples, where      . We call this   a 

„check point‟ of the sensing time. Then we select   antennas (     ) 

which are assumed to be in a faded channel to shut down. Thus, after the 

checkpoint, there are only     secondary antennas employed for     

samples.  

 

Fig.  6 Example of proposed scheme for K antennas and N samples 

Fig. 6 shows an example of the received data matrix under this new scheme. 

After sensing   samples of   antennas, the system selects   antennas, 

which are considered to be more faded than others, to remove.  

We have discussed that shutting down antennas with faded channel 

increases overall power efficiency. The detailed formulation of an equation 

on the efficiency of resources will be represented in the following subsection.  
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3.2.1 Efficiency of Resources 

In this subsection, we present that removal of n numbers of 

antennas leads to deduction of resource usage. Recall the received 

data matrix Y (34). Assume that a power of     is required for 

each secondary users to have the antennas RF-chain switched on for 

the duration of the measurement and process it. Therefore, sensing 

using   antennas with   samples takes        in power.  

Consider a case of shutting down one antenna (   ), after   

samples of sensing; this saves         in power. Thus, if k 

antennas are chosen to be shut down after   samples of sensing, we 

save           in power compared to that collect all   data 

samples for   antennas.  

Power efficiency is proportional to the energy saved during the 

sensing process by shutting down antennas. That is, power efficiency 

should be an indicator of how much energy could be saved compared 

to the sensing of whole samples of all antennas. Therefore, we may 

represent the power efficiency   as follows.  

       
       

   
 (35) 

For example, in the case within the number of shutting down 

antennas is fixed into 1 (   ), the power efficiency      becomes 

       
     

   
 (36) 

We should note that this efficiency represents power efficiency, or 

network efficiency, as a certain amount of power is required for each 

secondary user to send the signal measurement. By shutting     

antennas down, we can improve the efficiency of power compared to 

sensing whole   sampling time series.  
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Fig.  7 Efficiency curve             

Fig. 7 shows power efficiency      under      and        with 

varied   values. As this figure shows, upper equation of efficiency 

has bigger values as more number of antennas   is removed. Also for 

a given number of  , the efficiency is improved when less number of 

samples   is employed before the check point. As we have seen in 

the previous section, however, probability of detection increases 

when more number of samples is employed. Probability of detection 

has a tendency to increase when the bigger number of n is employed. 

Since we face with this tradeoff, we will discuss on finding optimum 

sensing time of CR network in the next section.  
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3.3 Optimum Sensing Time 

Our aim of this thesis is to derive the target function of the CR system. The 

existence of an optimal sensing time is expected, that jointly maximizes the 

probability of detection and minimizes power consumption under given 

parameters. As there is a tradeoff between the probability of detection and 

power efficiency, the target function in this thesis is defined as 

                         (37) 

where      .    is proportional to the number of sensing samples  , 

while        decreases as more number of samples are employed; thus, the 

constant   controls the overall level of this target function as well as it 

controls this target function to have a maximum point.  

The tradeoff between two standards can be explained as followings.  

(i)    ; The detection performance is regarded as a more 

important factor.  

(ii)    ; Power efficiency is regarded as more important than the 

performance.  

One notices that there may exist some range for   which keeps the target 

function into a function in which the optimal sensing time could be found. 

It would be varied by other parameters, such as probability of false alarm, 

the size of the data matrix, and so on.  

Another focus to be set in this target function is how to obtain   . In this 

target function, the threshold value to calculate    is obtained by fixing   . 

From the equation (19), the threshold   is defined as  

  (
       

√ 
  )  

  (38) 

Therefore, by using this target function, we can obtain the optimum value 

of check point, n, for different channel models. Also, we can conclude the 

optimal number of shut-down antennas for given number of check point 

and matrix size. 
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3.4 Antenna Selection 

In this section, we discuss the antenna selection schemes employed in this 

thesis. Also, the worst case simulation criteria to compare with these 

selection schemes will be shown.   

 

3.4.1 The Antenna with the Highest Signal Strength 

In this thesis, the antenna selection scheme is performed for the 

channel where primary users are present. The sensing is performed 

to select the dedicated antenna, and the only selected antennas keep 

track of the activity of primary users in the dedicated sensing 

phrase.  

By utilizing the fact that CR nodes involved in the spectrum sensing 

can measure the signal strength of active primary user signals, the 

proposed scheme selects the antennas with the highest signal 

strength as a dedicated antenna for the specified channel [16]. That 

is, the selected CR antenna has the highest signal strength among 

involved antennas. This scheme requires additional feedback 

information to report the signal strength for selecting the dedicated 

antenna.  

 

3.4.2 Random Antenna Selection 

The worst case is considered as a benchmark to compare criterions 

of removing antennas. In this case, antennas to remove are 

randomly selected, and overall performance is compared with other 

criterions.  
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4 Chapter 4 

 

Numerical Results and Discussions 

 

In this chapter, we present numerical results of the proposed scheme for 

the CR system. As mentioned, we assume Rayleigh fading channels for 

modeling multipath fading environments.  

 

4.1 Non-Fading Channel 

In this section, we consider the cases of non-fading channel to investigate 

the relationships between system parameters and numerical results. The 

target function is obtained from the approximate expressions of probability 

of detection (17) and false alarm (15). Because this simulation is based on 

the formulas, the antenna to shut down was randomly chosen. Therefore, 

this might be considered as the worst case simulation over non-fading 

channels. We set the SNR is equal to -10 dB, and probability of false alarm 

is set into    .  

 

4.1.1 Effects of Weighting Factor  𝛂 

To investigate the effects of weighting factor  , size of the received 

data matrix is fixed while   is varied. First we consider the case of 

received data matrix size 2    , where two antennas are receiving 

signals and overall sensing period is 400.  
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Fig.  8 Target function over non-fading channels                    

Fig. 8 illustrates the target function performance under various 

range of  . When   is set into a relatively smaller value, the target 

function tends to have bigger value overall; this is because the slope 

of efficiency function        is much steeper than the one of    curve. 

It is also notable that the target function does not always have a 

point whose derivative is 0 therefore the optimum check point exists 

only within the constrained ranged of  .  

As we can see from here, optimization of the target function, or to 

find the optimum sensing time exists under certain range of  . In 

Fig. 8 we can also observe that the optimum check point which 

maximizes the target function tends to have lower value as    gets 

bigger. Larger   decreases the overall portion of detection 

probability of the target function. Therefore, it is natural in this case 

the optimal sensing time   is relatively a smaller number to 

maintain a certain level of detection probability for maximizing the 

target function. This can be re-listed as follows;  

(i)   Ą 0; since the detection performance is regarded as more 

important factor, more number of samples are favorable to 

maximize the target function.  
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(ii)    Ą 1; power efficiency is considered more significant than the 

detection performance. Therefore the sooner antennas shut down, 

the higher value of the target function is achieved.    

4.1.1.1 Meaningful Range of 𝛂 

Because the target function has a maxim point only within a certain 

range of  , it is necessary to figure out the meaningful range of   . 

We present the results of the target functions with altered   . In Fig. 

8, we observed that with   value of 0.15, the target function does not 

have a maximum point, rather it keeps increasing. On the other 

hand, with bigger   values, the target functions have points which 

maximize them. In Fig. 9, the case with bigger   is considered with 

same other parameters.  

 

Fig.  9 Target function over non-fading channels for different   values 

The target function has a maximum point except the case of         

Therefore, we can conclude that under the given condition, the 

meaningful range of   roughly lies on between 0.2 and 0.35. As in 

this case, meaningful range of   is varied depending on the 

parameters used in the simulation. Those further parameters and 

their effects are discussed in the next subsections.  

 

0 50 100 150 200 250 300 350 400
0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74
J, Target function

n

 

 

alpha=0.2

alpha=0.25

alpha=0.3

alpha=0.35

alpha=0.4



38 
 

4.1.2 Effects of Sensing Time  

Another case is simulated based on more number of time series 

samples with a same number of antennas. Fig. 10 illustrates the 

target function with two antennas and doubled sensing time.  

 

Fig.  10 Target function over non-fading channels               

     

Both the probability of detection and efficiency function got changed 

as more numbers of time series samples are employed. Fig. 11 and 

Fig. 12 are the figures of detection probability and efficiency 

function. Comparing figures 5 and 11, as expected, probability of 

detection is increased as many samples are adopted and the slope of 

efficiency function gets less steeper compared to the case of 400 

samples. 
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Fig.  11 Detection probability over 

non-fading channels        
             

 

Fig.  12 Efficiency function curve 
                   

 

Due to this change, the range of   to fix the target function to have a 

maximum point is altered. The meaningful range of   , in this case, 

is in between 0.05 and 0.25, as in Fig. 10. Another notable thing 

yielded by these changes is overall level of the target function. 

Compared to the case of      , we can find that the overall level of 

the target function is highly increased.  

 

4.1.3 Effects of the Number of Antennas 

Consider now the case when there is one more antenna with same 

parameters.  
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Fig.  13 Target function over non-fading channels                    

Fig.13 illustrates a case with three antennas employed under the 

same conditions. As the number of antennas increases, the optimum 

sensing time decreases. Thus, it is considered better from the view of 

power efficiency and detection performance to shut down an antenna 

earlier when we adopt more number of antennas. Under this 

condition, the meaningful range of   exists between 0.1 and 0.2.  

 

4.1.4 Effects of False Alarm Probability 

Fig. 14 shows the target function under non-fading channel when 

the false alarm probability is set into 0.2.  
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Fig.  14 Target function over non-fading channels                   

As we have seen in the previous section and in Fig. 2, the increase of 

false alarm probability means lower value of threshold. Because of 

this reason, probability of detection is increased as well. The overall 

rise of the target function is also due to this reason. Under this 

condition, the meaningful range of   exists between 0.1 and 0.25.  

Table 1 Comparison of target function over non-fading channels 

  

K = 2 

N = 400 

   = 0.1 
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   = 0.1 
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413 0.879
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318 0.868
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260 0.838
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163 0.827
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0.2 0.739
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305 0.841
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143 0.804
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45 0.794

6 

141 
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204 0.816

3 

45 - - 0.768

4 

61 

0.3 0.678
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114 - - - - - - 

0.35 0.659

2 

32 - - - - - - 

Meaningful 

range of    

0.2 ~ 0.35 0.05 ~ 0.25 0.1 ~ 0.2 0.1~0.25 

 

Table 1 summarizes comparison between simulation results on 

variables which we consider and the meaningful range of   for each 
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case. Max. J indicates a maximum point of the target function  , and 

Opt. n indicates the optimum sensing time  .  

The results of searching for meaningful range of   demonstrate that 

when more number of samples are given, smaller     is required for 

the target function J, owing to the fact that increase of the  number 

of samples yields improvements on the overall level of probability of 

detection.   

 

4.2 Fading Channel 

In this section, we investigate the performance of proposed sensing 

selection methods under various conditions. We compare the results 

obtained from the simulations of antenna selection schemes and the 

random antenna selection scheme. As previously discussed, the worst case 

simulation is based on the case where the removing antennas are chosen 

randomly. If the performance of the case which is employing the suggested 

criteria overwhelms that of random selection of antennas, it can be seen 

that the suggested criterion is creditable to use.  

Like previous examinations, we assume that there are two antennas and 

each antenna collects 400 samples during the sensing time.  

A fundamental parameter determining the quality of detection is the 

average SNR, which mainly depends on the primary user‟s transmitted 

power as well as its distance to the secondary users. Since our goal is to 

achieve optimum sensing time over the proposed antenna selection method, 

let us set the two scenarios of average SNR. In the first scenario, the 

averages SNR of two antennas have big differences. In the second scenario, 

the average values of two antennas are similar. The first scenario shows an 

environment in which one antenna is experiencing rather severe fading, 

while another one is in a better condition. The second scenario shows an 

environment where two antennas are under similar but slightly different 

average SNRs.  

We set   value into the range of 0.15 to 0.35. Also, probability of false alarm 

is set into 0.1. 
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4.2.1 Channels with No Correlations Assumed 

In this subsection, we model and compare the results of the Rayleigh 

fading channel assuming that there are no correlations in temporal 

and frequency domains.  

 

4.2.1.1 Channels with Distinguished Average SNR 

In this section, we proceed to show the numerical results of the 

scenario where one antenna is under 3 dB of average SNR, while 

another is under -17 dB of average SNR.  

4.2.1.1.1 Worst Case Simulation 

Fig. 15 illustrates the detection probability when the average SNR 

over two antennas have relatively big differences. The noticeable 

difference compared to the previous simulations on non-fading 

channel lies on the fact that detection probability can be 

approximated 1 at       as the number of samples   increases. 

This is due to the fact that the average SNR assumed in this 

simulation   ̅               is improved compared to the 

assumption we used in the non-fading channels  ̅         . We 

obtain highly improved detection probability that it reaches 0.9 

at      . This will be compared with the results from other 

selection methods.  

 

Fig.  15 Detection probability over 

Rayleigh fading channels for the 

random antenna selection 

  ̅               

 

Fig.  16 Target function over 

Rayleigh fading channels for the 

random antenna selection 

  ̅               
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Subsequently, the target function in Fig. 16 has its peak point 

followed by linear drop.  

The upper simulations are based on the case that the average SNR 

of two antennas has big difference each other. The average SNR of 

one antenna was fairly good, where another one was under a bad 

condition.  

 

4.2.1.1.2 Selection Based on Signal Strength 

In this subsection, we investigate simulation results of the selection 

based on the signal strength. Fig. 17 illustrates the curve of 

detection probability. The average SNRs are fixed as same as the 

previous simulation; 3 dB and -17 dB respectively for two antennas. 

We observe that the detection probability has much higher value 

even before it saturates approximately to 1 compared to the worst 

case, not to mention that it saturates earlier. To specify, the 

saturation point under this scheme is at     , and the detection 

probability reaches 0.9 at     .  

 

Fig.  17 Detection probability over Rayleigh fading channels for the 

proposed selection method   ̅               
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Fig.  18 Target function over Rayleigh fading channels for the proposed 

selection method   ̅               

Fig. 18 depicts the target function over Raleigh fading channels for 

the proposed selection scheme. It is noticeable that the overall level 

and maximum points of target functions are higher than those of the 

worst case simulation, as shown in Fig. 18 and Fig. 16. The target 

function for this antenna selection scheme reaches its maximum 

point much earlier than one of worst case. The detailed comparisons 

of the target function from different selection schemes are shown in 

Table 2.  

Table 2 Comparison of target function over Rayleigh fading channels 
  ̅             

  

Worst case simulation Selection based on signal strength 

J when 
       

Max. J Opt. n J when 
       

Max. J Opt. n 

0.15 0.8343 0.9045 100 0.8479 0.9168 40 

0.2 0.8114 0.8735 95 0.8265 0.8894 38 

0.25 0.7885 0.8429 91 0.8052 0.8622 37 

0.3 0.7656 0.8126 88 0.7839 0.8351 35 

0.35 0.7427 0.7825 86 0.7625 0.8081 34 

 

Clearly, we see that the selection method based on the signal 

strength drives improvements. Not only the target function reaches 

its maximum point earlier but also it achieves higher performance. 
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Also, the target function achieves the higher value while 

maintaining 0.9 of detection probability; that is, using this selection 

method enables the system to shut down much earlier than the 

random antenna selection scheme. By doing so, the overall energy 

efficiency is increased maintaining this improved detection 

probability.  

 

4.2.1.2 Channels with Similar Average SNR 

To compare the previous simulations of another scenario where the 

two antennas are under similar fading, we construct a case with two 

antennas, whose average SNR are -4 dB and -7 dB respectively.  

4.2.1.2.1 Worst Case Simulation 

The probability of detection over Rayleigh fading channel for the 

random antenna selection scheme has been shown in Fig. 19. As 

depicted in this figure, the detection probability under this condition 

underperforms that of previous simulation which assumed that 

there are big differences between antennas.    

 

Fig.  19 Detection probability over 

Rayleigh fading channels for the 

random antenna selection 

  ̅               

 

Fig.  20 Target function over 

Rayleigh fading channels for the 

random antenna selection 

  ̅               

The simulated target function results are depicted in Fig. 20. Unlike 

the previous case, the performance of the target function is not a 

linear function after its peak point; rather each of the target 

functions has an optimum sensing time.  
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Compared to the scenario where the two antennas have big 

differences, results suggest a significant loss in terms of detection 

probability. We observed that when only one channel is deeply faded, 

it is more likely to have a much better performance on detection 

probability even we select one antenna to remove randomly. 

However, when two channels are moderately faded with similar 

amount, the detection probability performance is significantly 

degraded.  

 

4.2.1.2.2 Selection Based on Signal Strength 

The following Fig. 21 and Fig. 22 depict the probability of detection 

and the target function with the same conditions but average SNR of 

-4 dB and -7 dB respectively.  

 

Fig.  21 Detection probability over 

Rayleigh fading channels for the 

proposed selection method 
  ̅               

 

Fig.  22 Target function over 

Rayleigh fading channels for the 

proposed selection method 
  ̅               

As expected, selection based on signal strength improves the 

performance of detection, compared to the worst case simulation for 

the same level of average SNRs (shown in Fig. 19 and Fig. 20). Both 

the detection probability and the target function showed increase 

through its overall range. In the case of detection probability, it 

reaches 0.9 at      when the antennas are selected based on 

signal strength; however, when selected randomly, the detection 

probability reaches 0.9 at     . This indicates that more than half 

of the sensing time and energy can be saved with this scheme. The 
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detailed comparison of the target functions in Fig. 20 and Fig. 22 is 

illustrated in Table 3.  

Table 3 Comparison of target function over Rayleigh fading channels   ̅  
              

  
Worst case simulation 

 

Selection based on signal strength 

J when 
       

Max. J Opt. n J when 
       

Max. J Opt. n 

0.15 0.8311 0.8648 208 0.8369 0.8816 127 

0.2 0.8081 0.8294 173 0.8155 0.8504 110 

0.25 0.7851 0.7973 120 0.7942 0.8209 86 

0.3 0.7621 0.7688 92 0.7728 

7720.7515 

0.7930 73 

0.35 0.7391 0.7421 77 0.7515 0.7659 66 

 

It has been shown in the comparison that a higher level of the target 

function can be achieved by employing the proposed selection 

scheme, as well as the optimum sensing point can be efficiently 

shortened. The effectiveness of the proposed scheme becomes more 

obvious when the weighting factor   has smaller value. 

We conclude that antenna selection based on signal strength 

contributes to improvement on the performance over coherent 

Rayleigh channels, as the both two case simulations for the antenna 

selection based on received signal strength is outperform the 

performance those of the worst case simulation.   

Furthermore, under the circumstances in which some channels are 

experiencing severe fading compared to others, the proposed 

antenna selection scheme particularly shows more achievements; 

not only higher detection probability can be obtained, the system 

maintains desirable power efficiency.  
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4.2.2 Channels with Correlations: AR Modeling  

In this section, we compare random antenna selection scheme and 

the proposed antenna selection method in AR-modeled Rayleigh 

fading channels.  

AR modeling and its results on generating channel fading would be 

greatly varied upon the orders of the AR model, maximum Doppler 

frequency, the symbol frequency, and so on. The filter length to 

generate the channel coefficients, also, has a significant role to 

decide how much the channel is faded.  

In this thesis, we have employed maximum Doppler frequency of 

150Hz, symbol frequency of 3ksps. In the filter, the first   samples 

are ignored, where   denotes the order of AR model. Over many 

observations on simulations, we decided to employ AR(50) model as 

it is qualified to provide more proper conditions for this thesis 

research.  

 

4.2.2.1 Channels with Distinguished Average SNR 

In this subsection, we illustrate the worst case simulation results 

over different orders of AR-modeled Rayleigh fading channels to 

compare them. We also present the performance over AR(50) 

modeled Rayleigh fading channels when the average SNR values are 

distinguished each other.  

4.2.2.1.1 Worst Case Simulation 

First, we investigate the worst case simulation under AR(100) 

modeled Rayleigh fading as a comparison with AR(50) modeled 

Rayleigh fading.  

Fig. 23 and Fig. 24 show the detection probability and the target 

function over AR(100) modeled Rayleigh channels for different 

values of weighting factor  . The average SNR of 3 dB and -17 dB 

are used for two antennas respectively.   
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Fig.  23 Detection probability over AR(100) modeled Rayleigh fading 

channels for the random antenna selection   ̅               

 

Fig.  24 Target function over AR(100) modeled Rayleigh fading 

channels for the random antenna selection   ̅               

From Fig. 23, one sees that detection probability saturates at 

     . Also, from Fig. 24, one notes that the optimum sensing time 

under this condition exist around       .  
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Table 4 Worst case simulation over AR(100) modeled Rayleigh fading 

channels   ̅               

  Maximum point of J Optimum sensing time n 

0.15 0.8984 122 

0.2 0.8667 107 

0.25 0.8356 101 

0.3 0.8051 94 

0.35 0.7752 88 

 

Table 4 illustrates the simulation results under AR(100) modeled 

Rayleigh fading. We compare this results with the ones of AR(50) 

modeled Rayleigh fading. Fig. 25 and Fig. 26 show the detection 

probability and the target function in AR(50) modeled Rayleigh 

fading channels. 

 

Fig.  25 Detection probability over AR(50) modeled Rayleigh fading 

channels for the random antenna selection   ̅             

The average SNR values are 3 dB and -17 dB for two antennas. The 

detailed comparison of AR-modeled Rayleigh fading channels is 

shown in Table 4. The detection probability reaches its saturation 

point earlier than that in AR(100) modeled Rayleigh fading channels.  

0 50 100 150 200 250 300 350 400
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

n

P
ro

b
a
b
ili

ty
 o

f 
D

e
te

c
ti
o
n

Pd



52 
 

 

Fig.  26 Target function over AR(50) modeled Rayleigh fading channels 

for the random antenna selection   ̅               

Also, from Fig. 26, the target function achieves higher maximum 

point than AR(100) modeled Rayleigh fading channel, as illustrated 

in Table 4. Therefore, the optimum   decreases when the order of 

the AR model decreases; as expected, one can achieve better 

performance using less samples. 

We have adopted AR(50) model for the rest of our experiments 

because its performance is close to that of simulations on the 

channels without correlations as shown in Fig. 25 and Fig. 15. Also, 

lower-order AR processes have been reported to not provide a good 

match to the desired band limited correlation statistics [15].  

4.2.2.1.2 Selection Based on Signal Strength 

Up to this point, we have dealt with random selection of antennas, 

or the worst case simulation, where the antennas experience AR-

modeled Rayleigh fading. We also made a comparison between 

different scenarios; one scenario where the values of average SNRs 

have big differences and another one where they are more similar. 

Intuitively, the performance of the latter scenario underperforms 

the one of the former scenario. Moreover, random selection will 

degrade this performance of sensing even more. This is due to the 

fact that under random selection method even such antennas with 
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strong average SNR are likely to be selected and shut down. In this 

subsection, further simulation results for the selection based on 

signal strength are provided.  

We consider the case where the average SNR values are set into 3 

dB and -17 dB. The probability of detection has been plotted in Fig. 

27.  

 

Fig.  27 Detection probability over 

AR(50) modeled Rayleigh fading 

channels for the antenna selection 

based on signal strength   ̅  
             

 

Fig.  28 Target function over AR(50) 

modeled Rayleigh fading channels 

for the antenna selection based on 

signal strength   ̅               

As expected, selection based on signal strength improves the 

performance of detection in this case. In the worst case simulation, 

detection probability saturates at       and it reaches 0.9 

at      . On the other hand, when the antennas are selected 

according to its received signal strength, detection probability 

saturates at      and reaches 0.9 at      . Clearly, the latter 

selection method enables users to obtain higher detection probability. 

This positive effect can be also observed when we compare the target 

function illustrated in Fig. 28 with Fig. 26.  

Table 5 presents the comparison between the target functions 

obtained from previous simulations.   
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Table 5  Comparison on target function over AR(50) modeled Rayleigh 

fading channels   ̅               

  
Worst case simulation  Selection based on signal strength 

J when 
       

Max. J Opt. n J when 
       

Max. J Opt. n 

0.15 0.8365 0.9082 83 0.8456 0.9169 39 

0.2 0.8134 0.8781 82 0.8244 0.8896 35 

0.25 0.7903 0.8482 80 0.8031 0.8628 30 

0.3 0.7672 0.8184 78 0.7819 0.8362 28 

0.35 0.7441 0.7887 77 0.7607 0.8097 27 

 

We observe from this table that for a given condition, selection based 

on signal strength will be needed to deliver improved performance. 

The results shown in Fig. 28 suggest that antenna selection based 

on signal strength is more effective than random selection in that 

the maxima of the target function is increased for all given   and the 

optimum sensing time   can be decreased as well.  

 

4.2.2.2 Channels with Similar Average SNR 

In this subsection, we present the numerical results of detection 

performance, when the channel is modeled into AR(50) Rayleigh 

fading and the average SNR values are similar to each antenna.  

4.2.2.2.1 Worst Case Simulation 

Fig. 29 and Fig. 30 depict the detection probability and the target 

function as a function of the sensing time,  , under AR(50) modeled 

Rayleigh fading ( ̅ = -4  dB and -7  dB for two antennas) for different 

  values. The decision threshold is modified such that       . The 

channel to be shut down is chosen randomly.  
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Fig.  29 Detection probability over 

AR(50) modeled Rayleigh fading 

channels for the random antenna 

selection   ̅               

 

 

Fig.  30 Target function over AR(50) 

modeled Rayleigh fading channels 

for the random antenna selection 
  ̅               

As seen in these figures, the detection probability is degraded 

significantly compared to the scenario where the two antennas have 

relatively different average SNRs. For comparison, we have also 

plotted Fig. 25 and Fig. 26.  

Results indicate that sensing under similar fading has a significant 

negative impact on the detection performance when random 

selection is employed. The optimum sensing time and corresponding 

maximum point of the target function is shown in the following table 

5. Those results will be compared with the ones from the selection 

based on signal strength. 

4.2.2.2.2 Selection Based on Signal Strength 

Fig. 31 provides a plot of detection probability versus the sensing 

time under AR(50) modeled Rayleigh fading when the average SNR 

values have smaller differences. The average SNRs of two antennas 

are -4 dB and -7 dB. For this curve, the decision threshold   is 

chosen such that       . Comparing to Fig. 27, the result indicates 

a significant degradation in terms of detection performance.  

However, when we compare Fig. 31 with Fig. 29, we can discover 

that antenna selection based on signal strength cancels the 

deleterious impact of degraded overall average SNR effectively. For 

example, detection probability of the antenna selection method 
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based on the received signal strength reaches 0.9 at     , while 

the one of the worst case simulation reaches 0.9 at      .  

 

Fig.  31 Detection probability over 

AR(50) modeled Rayleigh fading 

channels for the antenna selection 

based on signal strength   ̅  
             

 

Fig.  32 Target function over AR(50) 

modeled Rayleigh fading channels 

for the antenna selection based on 

signal strength   ̅               

Comparing figures 32 and 30 for the same sensing time, as expected, 

there is an improvement of the performance when employing the 

antenna selection method based on signal strength in the scenario 2, 

where two antennas are more similar. The detailed comparison 

between these two figures is given in Table 6.  

Table 6 Comparison on target function over AR(50) modeled Rayleigh 

fading channels   ̅               

  
Worst case simulation 

 

Selection based on signal strength 

J when 
       

Max. J Opt. n J when 
       

Max. J Opt. n 

0.15 0.8097 0.8389 310 0.8265 0.8399 214 

0.2 0.7794 0.7972 282 0.8019 0.8082 120 

0.25 0.7490 0.7584 232 0.7772 0.7801 106 

0.3 0.7187 0.7230 206 0.7526 0.7532 91 

0.35 0.6882 0.6896 187 0.7279 0.7283 49 

 

As shown in this comparison table, the target function under the 

antenna selection method based on signal strength achieves higher 

maximum points for all weighting factors  . We also see that the 

optimum sensing point   can be much shortened by adopting this 

antenna selection method.  
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Thus, we conclude that the detection performance can be less 

affected by degraded overall average SNR when the antenna 

selection is based on signal strength.  
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5 Chapter 5 

 

Conclusions and Future Work 

 

This chapter concludes the main results achieved in this thesis. Some 

possible future research directions based on this thesis are discussed as 

well.  

 

5.1 Conclusions 

Spectrum sharing and access are important issues facing opportunistic 

communication in multiuser cognitive radio systems. In this thesis, we 

studied an optimum sensing time with the proposed antenna selection 

schemes as a means to improve the performance of sensing based 

opportunistic spectrum access under fading for the CR system.  

User priorities pose unique design challenges that are not faced in 

conventional wireless systems. In an environment with multiple primary 

and secondary users, the tradeoff between detection performances and 

power efficiency exists. To characterize the tradeoff, we set up a target 

function which consists of the detection probability and power efficiency. 

Then we identify the optimum amount of sensing time that maximizes the 

target function.  

The optimum check point is defined as the stop point for sensing which 

maximizes the target function between the probability of detection and 

power consumption. The proposed scheme on the antenna selection selects 

ones with the highest signal strength as the dedicated antenna for the 

channel where a primary user is active. This scheme is compared with a 
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worst case simulation, in which the antennas to be shut down are selected 

randomly.  

Assumptions on the received data matrix are as follows; there are two 

antennas and the sensing time is 400. We first analyzed the results of 

altered variables under non-fading. The results from the non-fading 

channel simulations indicate that the weighting factor   has a meaningful 

range in the target function which largely depends on other parameters.  

For the Rayleigh fading channels, two modeling techniques were considered. 

The first one is modeling coherent channels in which there is no correlation 

on temporal and frequency domains. The second technique is AR modeling 

which models the correlations on temporal and frequency domains. Over 

each fading channel the two selection methods are employed. For 

comparison, we have settled two scenarios for each selection method; 

scenario 1 where there exist big differences on the average SNR between 

antennas, and scenario 2 where there exist smaller differences between 

them. Compared to the scenario 2, scenario 1 provided the better 

performance results. It has one channel whose average SNR is in a good 

condition.  

In a fading environment without correlations, the results of the scenario 1 

where the two antennas have distinguishing average SNRs showed that the 

proposed selection criteria increased the maximum point of the target 

function up to 3%, in which the optimum sensing time was shortened into 

40% of the worst case simulation. This is particularly important from the 

perspective of power efficiency. The results of the scenario 2 where the 

average SNRs are more similar showed comparable improvements on the 

performance enhancement of the target function. The optimum sensing 

time was shortened into 60% ~ 90% of the worst case simulation, which is a 

smaller improvement than in the first scenario. Also, the effectiveness of 

the proposed selection criteria got lowered as the weighting factor   

increased. 

In a fading environment with correlations on temporal and frequency 

domains, the results of scenario 1 showed that the proposed selection 

criteria increased the maximum point of the target function up to 3% in 

which the optimum sensing time was shortened into 35% ~ 47% of the 

worst case simulation. The results of scenario 2 showed up to 6% of 
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improvement on the maximum points of the target functions. The optimum 

sensing time using the proposed selection criteria was shortened into 26% ~ 

70% of that of the worst case simulation. The effectiveness of the proposed 

selection criteria gets better as the weighting factor   increased.  

The results indicate that in both Rayleigh fading models, the proposed 

criteria can provide enhancements to both detection performance and 

power efficiency. When the channel is modeled as Rayleigh fading without 

correlations, the performance is more stable with less variation. Especially 

in the scenario 1, the improvements on the performance are flat for 

different   values. Therefore, we can conclude that the proposed selection 

scheme may yield more stable and expected improvements when the 

channels have different average SNR. This is due to the white Gaussian 

noise added in the process of AR modeling.  

Using the antenna selection scheme based on signal strength we have 

proved that there indeed exists an optimal sensing time which achieves the 

best tradeoff. Computer simulations have shown that for two Rayleigh 

fading models and two different scenarios for average SNRs, the target 

function achieves higher value while maintaining 90% detection probability 

when the proposed antenna selection criteria is employed. The optimal 

sensing time decreases up to 26% at most compared to the worst case 

simulation.   

 

5.2 Possible Future Work 

While we studied the optimum check point and the antenna selection 

methods over fading channels, more research needs to be done to develop 

efficient antenna selection schemes and methods to optimize performance 

in such a setting. In a fading environment with correlations, the 

performance under the scenario where the average SNRs of antennas are 

more similar is varied by which weighting factor is employed. In such a 

scenario, an optimum weighting factor is yet to be found. In other words, 

through more observations and mathematical verifications, it would be 

possible to find the optimum weighting factor for this scenario.    
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It is well-known that the energy detector‟s performance is susceptible to 

uncertainty in noise power [26]. In such cases, alternative detection 

schemes such as cyclic feature detection [27] may be employed. 

Performance analysis of spectrum sensing in this case can be the subject of 

future research.  
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