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Chapter 1

Introduction

Future networks are expected to offer significantly improved coverage and ca-

pacity. Embedding small base stations in a macro-cellular network appears

to be one of the most promising techniques for desired coverage and capacity

improvement for all users including those around the cell edge. On the other

hand, carrier frequencies allocated for the networks are high and hence vul-

nerable to severe radio propagation losses, especially at the cell edge. Thus, to

meet the coverage and capacity requirements of the networks under the con-

ventional cellular network architectures, there is a need to increase the density

of base stations significantly, which result in high deployment cost that could

not be accepted by operators. Therefore, small cells, relay nodes and femto-

cells, are being considered as cost-effective solutions to meet the requirements.

Networks with co-channel deployment of different types of base stations are

referred to as heterogeneous networks.

In heterogeneous network, interference between macrocell and femtocell/relay

node, as well as between individual femtocells/relay nodes, is one of the major

challenges. Analytical expressions for different radio link performance mea-

sures are important since they can be used to investigate the effects of co-

channel interference theoretically. Generating and discussing analytical ex-

pressions for the widely used radio link performance measures is the primary

aim of this thesis. As objectives, two key research questions will be addressed

in this work:

1. What is the probability of a given node in a radio link of a heterogeneous

1



CHAPTER 1. INTRODUCTION 2

network be out of a given quality of service?

This question will be addressed by producing expressions for a measure

called the outage probability.

2. What is the largest average transmission rate that can be achieved in a

given radio link within a heterogeneous network?

This question will be addressed by producing expression for a measure

called the average capacity.

There are many research works which have analyzed the effects of co-channel

interference in different fading channel models for both macrocellular and mi-

crocellular mobile radio systems. Most of the works for macrocellular systems

have assumed the same statistical fading channel model for the desired signal

and interfering signals; whereas, most of the works for microcellular systems

have assumed different statistical models for the desired signal’s channel and

interfering signals’ channels. Furthermore, almost all the works for both sys-

tems have performed the analysis in terms of only one of the key radio link

performance measure, namely outage probability. In this thesis work, the focus

is on interference for a heterogeneous network with in a fading environment

scenario that is common in presence of femtocells and relay nodes, namely

Rician/Rayleigh. In this scenario, the desired signal and the interfering sig-

nals subjected to different statistical channel models such that Rician fading

channel for the desired signal and Rayleigh fading channels for the interfering

signals. We present a detailed analysis and discussion on outage probability

and average capacity for the Rician/Rayleigh scenario.

The research methods which are used in this thesis are literature review,

and mathematical and numerical analysis with the help of Mathematica, Mat-

lab, and tables and handbooks of integrals, series, and special functions. The

literature review is conducted to get the overall understanding of statistical

fading channel models, performance measures in fading channels and previ-

ous studies on co-channel interference. Statistical probability distributions

used to model fading channels are studied in detail. These distributions are

Gaussian, chi-square, Rayleigh, Rician, lognormal, Nakagami, and Weibull.

Furthermore, the thesis includes a detailed analysis and discussion of average
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bit error probability (BEP), outage probability, and average capacity in the

absence of interference.

The rest thesis is structured as follows:

� Chapter 2 deals with the radio link model used in the thesis. It discusses

the basic concepts, mainly wireless linear time-invariant channels, and

assumptions required to formulate a suitable link model.

� Chapter 3 discusses the characterization and application of probability

distributions which are relevant to model fading channels. Furthermore,

the different statistical fading channel models are described in detail.

� Chapter 4 analyzes and discusses radio link performance measures for

fading channels in the absence of co-channel interference. The key per-

formance measures which are considered in the analysis are average BEP,

outage probability, and average capacity.

� Chapter 5 presents analysis of outage probability and average capacity

for the Rician/Rayleigh fading environment scenario. First the analysis

will be made for a single interferer scenario, and then there will be an

extension to multi-interferer situations.

� Chapter 6 concludes the thesis work by pointing out its accomplishments

and recommends further extensions for the research.



Chapter 2

Link Level Signal Model

The purpose of this chapter is to give a brief discussion on a digital commu-

nication link-level signal model that is used throughout this thesis.

2.1 Communication System Model

Figure 2.1 shows the block diagram of a conceptual communication system that

is usually employed in the mathematical analysis of information transmission.

The model is introduced by C. E. Shannon, the father of information theory, in

the mid 20th century. It comprises blocks denoting information source and sink,

designed transmitter and receiver, and transmission channel. The information

required to be transmitted successfully to the information sink is generated

at the information source. The transmitter and the receiver are digital signal

processors that are designed for a successful transmission. The behavior of

the transmission medium that cannot be influenced by the system engineer is

depicted by the channel block, residing at the center of the model diagram.

Figure 2.1: Communication system model

The design of a successful communication system requires a good model for

the transmission channel. In other words, having a good description of the

4



CHAPTER 2. LINK LEVEL SIGNAL MODEL 5

communication channel enables better design of the system. So far, experts

have worked hard to describe phenomena accompanying different channels, and

at the same time to come up with some descriptive and simple mathematical

models for further analysis of the system. Actually, there are three channel

models that are commonly used in the analysis of a communication system

[1]. These models are Additive White Gaussian Noise (AWGN), Linear Time

Invariant (LTI) and Linear Time Variant (LTV) channels.

AWGN channel is the simplest channel model that considers only a single

channel impairment: noise n(t). The model is depicted in Figure 2.2 and it

does not take into account the effect of any fading or distortions. This model is

usually used to come up with tractable mathematical models of communication

system functionalities so that a better understanding of a system without

fading and other distortions is possible. Furthermore, this model is well suited

for wired and satellite communication.

Figure 2.2: AWGN channel model

The second model, LTI channel model, includes deterministic linear distor-

tion in addition to the random AWG noise. Here, the deterministic distortion

is modeled by a linear time invariant filter with an impulse response of c(t).

This model is usually applied to analyze and design the functionalities of both

transmitter and receiver since linearity and time invariability properties of the

filter enables usage of good mathematical tools.

Most wireless channels are time variant due to the mobility of the trans-

mitter and receiver and hence the third model called as LTV channel is used.

In this model, time varying filter with impulse response h(τ, t) is used. Here

h(τ, t) is the response of the channel at time t due to an impulse applied at

time t − τ [2]. This model is more complex than LTI channel. As a result,

LTI channel model may still be used given that the channel is varying slowly
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compared to the time scale of the communication processes analyzed. LTI and

LTV channels models are shown in Figure 2.3 and Figure 2.4 respectively.

Figure 2.3: LTI channel model

Figure 2.4: LTV channel model

Keeping in mind that wireless channels are in the focus of this thesis, un-

derstanding of LTV channels and the overall system model from analytical

point of view is important. Therefore, brief and short discussion on signal

and system modeling, and LTV channels will be covered in the coming two

sections.

2.2 Signal and System Model

Almost all types of wireless transmission are passband communication, where

the system signal energy is concentrated in a region close to a given carrier

frequency f0. Thus, the transmitted signal, the channel and the noise that

are involved in a given wireless communication system are all passband since

out-of-band components are filtered away. From the theory of signals and

systems, it is known that the bandpass signal and stochastic processes take

the following form:

sp(t) = A(t) cos(2πfot+ θ(t)). (2.1)

Though wireless communication is bandpass, its baseband equivalent model

is usually applied for system analysis and design. This is because bandpass
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systems are not as convenient as the baseband system from analysis and sim-

ulation perspectives; and furthermore, digital signal processing takes place at

baseband. In the baseband equivalent model, the baseband equivalent of each

signal or stochastic process s(t) is obtained from its passband equivalent sp(t)

according to the following formulation:

sp(t) = A(t) cos(2πfot+ θ(t))

= A(t) cos(θ(t)) cos(2πfot)− A(t) sin(θ(t)) sin(2πfot)

= si(t) cos(2πfot)− sq(t) sin(2πfot)

= Re{s(t)ej2πfot} (2.2)

where

si(t) = A(t) cos(θ(t)), (2.3)

sq(t) = A(t) sin(θ(t)), (2.4)

and

s(t) = si(t) + jsq(t). (2.5)

It is clear that the passband sp(t) is real valued but its baseband equivalent

s(t) is complex valued.

A simple LTI passband system shown in Figure 2.5 can be modeled and

analyzed with its baseband equivalent shown in Figure 2.6. Reference [2] has

shown that the input-output relationships of the bandpass and its equivalent

baseband model are very similar. Here we will briefly present the analysis.

Figure 2.5: Simple passband system

Figure 2.6: Baseband equivalent model
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Provided that the Fourier transform of a given signal s(t) is defined as

S(f) =

∫ ∞
−∞

s(t)e−j2πfotdt, (2.6)

we have

Yp(f) = Hp(f)Xp(f), (2.7)

where Yp(f), Hp(f) and Xp(f) are the Fourier transforms of yp(t), hp(t) and

xp(t), respectively, shown in Figure 2.7.

Obviously, real valued passband signal spectrum Yp(f) possesses both pos-

itive and negative frequency spectrum, denoted by Y +
p (f) and Y −p (f), re-

spectively. The baseband equivalent signal Y (f), which is the Fourier trans-

form of y(t), can be expressed with the positive spectrum Y +
p (f) as Y (f) =

2Y +
p (f +fo). The same formulation is also valid for the other baseband equiv-

alent signals. Therefore,

Y (f) = 2Y +
p (f + fo)

= 2Yp(f + fo)U(f + fo)

= 2Hp(f + fo)Xp(f + fo)U(f + fo)

=
1

2
{2Hp(f + fo)U(f + f0)}{2Xp(f + fo)U(f + fo)}

=
1

2
H(f)X(f), (2.8)

where H(f) and X(f) are the Fourier transform of h(t) and x(t), and U(f) is

the Fourier transform of the unit step signal u(t), which is defined as

u(t) =

1 t ≥ 0

0 t < 0.
(2.9)

Now the similarity between the passband and its baseband equivalent is clearly

seen from equation 2.7 and equation 2.8. Therefore, it is reasonable to analyze

a passband system using its baseband equivalent. Furthermore, the system

equivalence justification is also described in detail in Appendix 2 of [3].
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2.3 Wireless LTV Channels

The basic effects of wireless channel on a transmitted signal are delay, large

scale and small scale attenuation, and non-linear dispersion of power in time

and frequency. These effects are mainly caused by free space propagation, ab-

sorption, wall attenuation and multipath propagation due to reflection, diffrac-

tion, and scattering. Furthermore, the wireless medium is characterized by

time variation which is unpredictable to the user of the channel. This unpre-

dictability leads to the need of statistical channel model. For these reasons,

the channel is modeled as a linear time-varying random filter whose impulse

response can be expressed as a set of complex baseband channel gains at a

given time t and a given delay τ , h(τ, t).

Fading is a general term used to give a picture of a wireless channel affected

by some type of selectivity. When a channel varies as a function of time,

frequency or space in a given window of interest, it is said that the channel

possesses selectivity in that window. In contrast, a channel has coherence,

which is opposite of selectivity, if it does not change as a function of time,

frequency or space over a specified window of interest. Classifying a wireless

channel dependency on time, frequency and space as coherent or selective is

an essential concept in channel modeling.

A wireless channel shows temporal selectivity which is mostly caused by the

motion of either of the transmitter, receiver, scatterer or any combination of

them. The motion results in time variation of the phases of the signals of

the paths in the multipath propagation. Due to these phase variations as a

function of time, the signals interfere constructively or/and destructively in

different ways at different time giving variable amplitude at the receiver. It

is said that a wireless channel has temporal coherence in a given period of

time Tc if the envelope of an unmodulated carrier wave transmitted through

the channel is almost static over Tc. The average largest value of Tc is called

coherence time, and it measures approximately the time interval over which

the channel appears static. A wireless channel shows frequency selectivity due

to the time dispersion effects of the multipath propagation. It is also said

that a wireless channel has frequency coherence over a given frequency range

Bc if the envelope of a transmitted carrier does not change over Bc. The
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average largest value of Bc is called coherence bandwidth and is the measure

of an approximate range of frequencies over which the channel appears static.

Furthermore, a wireless channel has spatial selectivity if the magnitude of a

carrier wave change over a spatial displacement of the receiver, and coherence

distance Dc is the approximate distance that a wireless receiver can move with

the channel appearing to be static. While frequency incoherence is caused by

multipaths arriving with different time delays, spatial incoherence is caused

by multipaths arriving from different directions in space.

The transmitted signal characteristics affect the selection of an appropriate

wireless channel model. Suppose we are transmitting digital information over

the channel by modulating a basic pulse with signaling interval of T . If the

transmitted signal bandwidth B is greater than the coherence bandwidth of

the channel Bc, then the signal is subject to different gains and phase shifts

across the band; and therefore, the channel is said to be frequency selective.

On the other hand, if the signal bandwidth B is smaller than the coherence

bandwidth Bc, the channel is called flat fading or frequency non-selective.

In this case all the frequency components in the signal experience the same

attenuation and phase shift. The relation between the signaling interval T

and channel coherence bandwidth Tc determines whether the channel is slow

or fast fading channel. When T is smaller than Tc, the channel attenuation

and phase shift are essentially fixed for the duration of at least one signaling

interval. When this condition holds, the channel is called slow fading channel.

On the contrary, when T is larger than the channel coherence time Tc, the

channel is said to be fast fading. Furthermore, if the distance traversed by

a receiver is greater than the coherence distance Dc of the channel, it is said

that the channel experiences small-scale fading. If the converse is true, the

channel experiences large-scale fading.

A wireless channel is often modeled as block fading such that the channel

gain is considered constant within a given transmission block while varying

independently between different blocks.
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2.4 Signal Model Description

In this thesis, the wireless channel is considered to be flat and block fading

channel. Flat fading channel is a simple and reasonable model for narrowband

systems. In the current OFDM systems, flat fading model is visible within a

single OFDM sub-carrier. OFDM modulates low symbol rate data in parallel

multiple narrow band sub-carriers. As a result, the multipath delay spread

becomes short relatively to the symbol duration. Therefore, the transmitted

signal experiences almost the same fading by the channel within the bandwidth

of the sub-carrier.

Let us consider Figure 2.4 where the low-pass equivalent x(t) is transmitted

over the wireless channel with an impulse response of h(τ, t). The equivalent

low-pass received signal y(t) can be expressed as follows:

y(t) =

∫ ∞
−∞

H(f ; t)X(f)ej2πftdf. (2.10)

The H(f ; t) and X(f) are the Fourier transform of h(τ ; t) and x(t) respec-

tively. Considering the channel as flat fading implies that H(f ; t) is constant

in the frequency within the bandwidth occupied by x(t). Therefore, equation

2.10 can be simplified to

y(t) = H(0; t)

∫ ∞
−∞

X(f)ej2πftdf = H(f0; t)x(t) = H(0; t)x(t). (2.11)

The frequency f0 can be selected to be any frequency within the bandwidth of

the signal x(t). Since the signal is low-pass, zero is taken as the best selection

for f0. Furthermore, the block fading assumption of the channel implies that

there is no time variability of the channel in a given block of units. Thus,

H(0; t) can be equated with a time-domain complex random variable, let say

hc, for each group. Equation 2.11 is reduced to

y(t) = hcx(t). (2.12)

The overall model used throughout this thesis is depicted in Figure 2.7 and
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the model can also be described with the following equation:

r(t) = hcx(t) + n(t), (2.13)

in which x(t) denotes the transmitted signal and it can be expressed as x(t) =∑∞
k=−∞ akp(t − kT ), where ak denotes the digital transmitted symbol that

depends on the modulation technique used by the system, p(t) denotes the

pulse shape that is used to transmit the symbols, T denotes the symbol period,

hc is time invariant complex random process that describes the channel, and

n(t) is additive white Gaussian noise.

Figure 2.7: Radio link model

In practical cellular systems, interference from neighbouring co-channel trans-

missions exists at a given target receiver in addition to the desired signal.

Therefore, in the presence of interference from M neighbouring transmitters,

the above interference free link model is modified as depicted in Figure 2.8. In

this case, the signal r(t) is written as

r(t) = hcx(t) +
M∑
m=1

hcmxm(t) + n(t) (2.14)

where x(t) is the desired transmitted signal, {xm(t) : m = 1, 2, . . .M} is

the set of interference signals, hc is the channel experienced by the desired

signal, {hcm : m = 1, 2, . . .M} is a set of the channel experienced by the

M interference signals, and n(t) is the additive white Gaussian noise at the

receiver.

Understanding the statistical modeling of the wireless channel is an impor-

tant step in the analysis and modeling of wireless communication systems.

Consequently, statistical fading channel models and related distributions are
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Figure 2.8: Link model in the presence of multiple interfering transmitters

the core part of the discussion in the next chapter.



Chapter 3

Statistical Distributions and

Channel Modeling

Probability distribution is an essential tool for a thorough understanding of

statistical channel modeling. Therefore, this chapter first covers the required

basics of probability theory and then it proceeds to a detailed description of

distributions that are used to model fading channels. Finally, with the help

of the distribution tools, statistical fading channels modeling is discussed and

analyzed in detail.

3.1 Basics in Probability Theory

In probability theory, the set of all possible outcomes of a random trial is called

sample space. Random variable is a real-valued function which is defined on

the sample space.

The cumulative distribution function (CDF) of a random variable X is a

function FX(x) : < → [0, 1] defined as follows:

FX(x) = P{X ≤ x}, (3.1)

where P{z} is the probability of an event z.

A random variable X is continuous if there is an integrable function fX(x) :

14
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< → <+ such that for all x ε <

FX(x) =

∫ x

−∞
fX(w)dw. (3.2)

The function fX(x) is called probability density function.

For a given random variable X, the definitions of the kth raw moment, mean

(expected value), variance, moment generating function, and characteristic

function are all given below:

E[Xk] =

∫ ∞
−∞

xkfX(x)dx, µX = E[x] =

∫ ∞
−∞

xfX(x)dx,

VAR[X] = E[(X − µX)2] =

∫ ∞
−∞

(x− µX)2fX(x)dx,

MX(s) = E[esx] =

∫ ∞
−∞

esxfX(x)dx,

φX(w) = E[ejwx] =

∫ ∞
−∞

ejwxfX(x)dx.

MGF and CF are useful tools for statistical analysis. It can be seen from

definitions that φX(w) = MX(jw). If all raw moments of X does not exist,

then certainly MX(s) does not exist but the converse is not true. Furthermore,

φX(w) always exists and E[Xk] = dkMX(s)
dsk

|s=0.

Suppose that {Xj : j = 1, 2, . . .m} is a set of m random variables.

Then their joint statistical behavior is characterized by joint PDF denoted

by f(x1, x2, . . . , xm). These random variables are called independent from one

another iff

f(x1, x2, . . . , xm) = fX1(x1)fX2(x2) . . . fXm(xm), (3.3)

and they are said identically distributed if

fX1(x) = fX2(x) = . . . = fXm(x). (3.4)

Variables can be both independent and identically distributed (iid).

Function of a random variable provides another random variable with its

own PDF. Suppose g is an invertible and monotonical function of a single
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random variable X such that Y = g(X). Then the PDF of Y in terms of the

PDF of X is given by

fY (y) = | d
dy
g−1(y)|fX(g−1(y)). (3.5)

The maximum and minimum of a given set of random variables {Xj : j =

1, 2, 3, . . .m} are also random variables. If Xmax denotes the maximum and

Xmin denotes the minimum, then the following equations are valid for the two

random variables:

P{Xmax ≤ x} = P{X1 ≤ x,X2 ≤ x,X3 ≤ x, . . . , Xm ≤ x}, (3.6)

P{Xmin ≥ x} = P{X1 ≥ x,X2 ≥ x,X3 ≥ x, . . . , Xm ≥ x}. (3.7)

In digital communication, signal from an information source, communication

channel and noise generated at the receiver are usually random and functions of

time. At any given time instant, the value of each of them is a random variable.

Therefore, they can be characterized by a collection of random variables which

is called as random process or stochastic process.

3.2 Distributions for Fading

3.2.1 Gaussian/Normal Distribution

LetX be a random variable that follows Gaussian distribution with parameters

µ and σ (usually denoted X ∼ N(µ, σ2)). Then its PDF, CDF, MGF, Mean

and Variance are given in Table 3.1. In the table, the error function is defined

fX(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , FX(x) =
1

2

[
1 + erf

(
x− µ
σ
√

2

)]
.

E[xk] = (−iσ
√

2 · sgn(µ))kU

(
−k
2
,
1

2
,
−µ2

2σ2

)
.

MX(s) = eµs+
1
2
σ2s2 , E[X] = µ, VAR[X] = σ2.

Table 3.1: Characterization of Gaussian distribution
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by the relation

erf(z) =
2√
π

∫ z

0

e−t
2

dt, [4, eqn 7.1.1] (3.8)

and the confluent hypergeometric function U(·, ·, ·) is defined in [4, eqn 13.1.3].

In the real axis, erf(−∞) = −1, erf(0) = 0, erf(∞) = 1 and erf(−x) = −erf(x).

The general formula for the raw moments of X is complicated due to the

confluent hypergeometric function, but the moments can be computed easily

for small values of k using the formula E[Xk] = dkM(s)
dsk

[0] . Furthermore, the

central moments are

E[(x− µ)n] =


(2k)!σ2k

2kk!
, for n = 2k,

0, for n = 2k + 1.
(3.9)

The distribution fulfils the following properties:

� If X ∼ N(µ, σ2), and a, b ∈ <, then aX + b ∼ N(aµ+ b, a2σ2).

� If {Xi, i = 1, 2, . . . , n} are independent variables such thatXi ∼ N(µi, σ
2
i ),

then
∑n

i=1Xi ∼ N(
∑n

i=1 µi,
∑n

i=1 σ
2
i ).

Gaussian distribution has nearly a 300 years history since it was discovered

by de Moivre in 1733, and a large number of related literatures have been

written in this period. This distribution is used as a model for many complex

phenomena in various fields of science. Majority of the scientific community

agree that the justification for the success of this distribution is Central Limit

Theorem, which will be stated below. Reference [5] describes other additional

key characteristics of Gaussian distribution that contribute for its wide usage.

Central Limit Theorem [6]: Let {Xi : i = 1, 2, . . . , N} be statistically

independent random variables with E[Xi] = µi and VAR[Xi] = σ2
i . Then, the

random variable

Y = lim
N→∞

1√
N

N∑
n=1

(Xi − µi) (3.10)

is asymptotically normally distributed with the expected value E[Y ] = 0 and

the variance VAR[Y ] = σ2
Y = limN→∞

1
N

∑N
n=1 σ

2
i .
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In general the sum of a large number of independent factors is usually con-

sidered as normally distributed random variable. Noise in communication

system, for instance, is often considered as Gaussian distributed variable.

3.2.2 Central and Noncentral Chi-square Distribution

Central Chi-square Distribution

Let {Xi : i = 1, 2, . . . , n} be iid variables such that Xi ∼ N(0, σ2), ∀i. Then

X =
∑n

i=1X
2
i is defined as a chi-square random variable with n degrees of

freedom. Its description is given in Table 3.2. In the description we employ

fX(x) =

{
1

2
n
2 Γ(n

2
)σn
x
n
2
−1e−

x
2σ2 , x > 0,

0, x ≤ 0.

For n = 2m, FX(x) =

{
1− e

−x
2σ2
∑m−1

j=1
1
j!

( x
2σ2 )j, x > 0,

0, x ≤ 0.

E[Xk] =

(2σ2)k Γ(m+k)
(m−1)!

, for n = 2m,

(2σ2)k
Γ(m+k+ 1

2
)

Γ(m+ 1
2

)
, for n = 2m+ 1.

MX(s) =

(
1

1− 2σ2s

)n
2

, E[X] = nσ2, VAR[X] = 2nσ4.

Table 3.2: Characterization of central chi−square distribution

the Gamma function

Γ(z) =

∫ ∞
0

tz−1e−tdt. [4, eqn 6.1.1] (3.11)

Gamma function possesses poles at 0,−1,−2, . . ., and it admits the following

identities: Γ(1) = 1, Γ(1
2
) =
√
π, and Γ(x + 1) = xΓ(x). As can be seen from

Table 3.2, FX(x) is given only for n = 2m. This is due to the fact that there

is no closed-form expression for n = 2m+ 1.

Chi-square random variable is a special case of two parameter gamma ran-

dom variable with a shape parameter n
2

and a scale parameter 2σ2 [7]. In
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addition, if n = 2, then it is equal to exponential distribution with mean 2σ2.

Noncentral Chi-square Distribution

Let {Xi : i = 1, 2, . . . , n} be independent variables with the same variance but

different means such that Xi ∼ N(µi, σ
2). Then X =

∑n
i=1X

2
i is defined as

a noncentral chi-square random variable with n degrees of freedom. In the

following we use notation a =
√∑n

i=1 µ
2
i . Table 3.3 gives characterization of

noncentral chi-square distribution.

fX(x) =

{
1

2σ2 ( x
a2 )

n−2
4 e−

a2+x

2σ2 In
2
−1( a

σ2

√
x), x > 0,

0, x ≤ 0.

For n = 2m, FX(x) =

{
1−Qm( a

σ
,
√
x
σ

), x > 0,

0, x ≤ 0.

E[Xk] =

(2σ2)ke−
a2

2σ2 (m+k−1)!
(m−1)!

M(m+ k,m, a2

2σ2 ), for n = 2m,

(2σ2)ke−
a2

2σ2
Γ(m+k+ 1

2
)

Γ(m+ 1
2

)
M(m+ k + 1

2
,m+ 1

2
, a2

2σ2 ), for n = 2m+ 1.

MX(s) =

(
1

1− 2σ2s

)n
2

e
a2s

1−2σ2s , E[X] = nσ2 + a2, VAR[X] = 2nσ4 + 4σ2a2

Table 3.3: Characterization of noncentral chi-square distribution

In Table 3.3 we used the Modified Bessel function of the first kind and

order v, the generalized Marcum Q function, and the confluent hypergeometric

function. Their definitions are given as follows:

Iv(z) = (
1

2
z)v

∞∑
k=0

(1
4
z2)k

k!Γ(v + k + 1)
, [4, eqn 9.6.10] (3.12)

Qm(c, d) =

∫ ∞
d

x(
x

c
)m−1e−

x2+c2

2 Im−1(cx)dx, [8] (3.13)

M(a, b, z) =
Γ(b)

Γ(b− a)− Γ(a)

∫ 1

0

eztta−1(1− t)b−a−1dt. [4, eqn 13.2.1] (3.14)

See (3.11) for Γ(·) and (3.12) for Iv(z).

Closed-form expression of the CDF for n = 2m+ 1 does not exist.
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Some authors define both central and noncentral chi-square distributions

in a slightly different way than we did. The difference occurs because some

authors consider the variance of the normally distributed variables to be equal

to unity. Let X ′ be central chi-square variable according to the unit variance

definition and let X be central chi-square variable according to the definition

which was discussed. It can be shown that X ′ is related with X as

X ′ =
1

σ2
X. (3.15)

The same relation is valid for the noncentral chi-square definitions. Therefore,

a simple mapping of functions or values according to one definition to the

corresponding functions or values according to other definition is possible.

Chi-square distributions are used in the analysis of wireless systems. For

instance, the randomly time-varying multiple-input multiple-output (MIMO)

channel is characterized by NR×NT channel matrix, H, of elements hij, where

hij is the equivalent lowpass channel impulse response between the jth transmit

antenna and the ith receiver antenna. The performance of MIMO systems is de-

termined by a squared Frobenius norm parameter ||H||2F =
√∑NR

i=1

∑NT
j=1 |hij|2.

For the commonly used fading channel model, {hij} is assumed as iid complex-

valued zero mean Gaussian. In this case, ||H||2F is a chi-squared variable with

2NRNT degrees of freedom. Therefore chi-square distribution is a useful tool

in the analysis of the performance of MIMO systems.

3.2.3 Rayleigh Distribution

Let {Xi : i = 1, 2, . . . , n} be iid zero mean Gaussian random variables such

that Xi ∼ N(0, σ2), ∀i. Then X =
√∑n

i=1X
2
i is defined as a generalized

Rayleigh random variable. When n = 2 in the equation, we get the Rayleigh

distribution. Its PDF, CDF, MGF, raw moments, mean and variance are given

in Table 3.4. For special functions M(·, ·, ·) and Γ(·), see (3.14) and (3.11).

Rayleigh distribution is used to model small-scale fading in wireless com-

munication channel when the channel is characterized by a large number of

scatterers and there is no dominant path or a line of sight connection. For in-

stance, urban areas in mobile communication mostly have this kind of channel.
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fX(x) =

{
x
σ2 e
− x2

2σ2 , x > 0,

0, x ≤ 0,
FX(x) =

{
1− e

−x2

2σ2 , x > 0

0, x ≤ 0.

E[Xk] = (2σ2)
k
2 Γ

(
k

2
+ 1

)
, MX(s) = M

(
1,

1

2
,
1

2
σ2s2

)
+

√
π

2
σse

σ2s2

2 .

E[X] = σ

√
π

2
, VAR[X] =

(
4− π

2

)
σ2.

Table 3.4: Characterization of Rayleigh distribution

According to central limit theorem of subsection 3.2.1, the baseband equiva-

lent impulse response of a channel with a large number of scatterers can be

modeled by a zero mean complex Gaussian process. Therefore, the envelope

of the channel impulse response is the square root of the sum of the squares

of two zero mean Gaussian random processes. By definition, this process is

Rayleigh. Furthermore, based on extensive measurements of the envelope of

the received signal at the receiver, [9], [10] and [11] suggested Rayleigh process

as a suitable model in urban and suburban areas.

3.2.4 Rician Distribution

Let {Xi : i = 1, 2, . . . , n} be independent Gaussian random variables with same

variance but different mean such that Xi ∼ N(µi, σ
2), ∀ i. Then X =√∑n

i=1 X
2
i is defined as a generalized Rician random variable. When n = 2

in the equation, we get the Rician distribution. In what follows, we denote

a =
√∑n

i=1 µ
2
i . The Rician distribution descriptions are given in Table 3.5.

For the special functions Qm(c, d) and M(a, b, z) in Table 3.5, see (3.13) and

(3.14). Rician distribution does not have a closed form MGF.

Rice process is chosen as a suitable model of wireless channel when there

is a dominant path or line of sight connection between the transmitter and

receiver. Rural areas in mobile communication, for instance, usually possess

this kind of channel. In the presence of a dominant or line-of-sight component,

we get the sum of the scattered components and line of sight components at

the receiver. According to central limit theorem of subsection (3.2.1), the

baseband equivalent of the sum is a complex Gaussian process. Furthermore,
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fX(x) =

{
x
σ2 e
−x

2+a2

2σ2 I0(ah
σ2 ), x > 0,

0, x ≤ 0,
FX(x) =

{
1−Q1

(
a
σ
, x
σ

)
, x > 0

0, x ≤ 0.

E[Xk] = (2σ2)
k
2 e−

a2

2σ2 Γ

(
1 +

k

2

)
M

(
1 +

k

2
, 1;

a2

2σ2

)
, E[X2] = 2σ2 + a2.

E[X] = σ

√
π

2
M

(
−1

2
, 1;− a2

2σ2

)
, VAR[X] = E[X2]− (E[X])2.

Table 3.5: Characterization of Rician distribution

due to the dominant path, the mean of the real part is different from zero. So

the envelope of the impulse response is a Rice process. The scenario is similar

with a sinusoidal wave plus random noise which has been treated by Rice

[12]. In addition, the analysis based on experimental data in [13] shows that

Rician distribution is more accurate than Rayleigh, Nakagami and Weibull

distributions in modeling the signal statistics in rural areas. Nakagami and

Weibull distribution will be discussed in the subsections (3.2.6) and (3.2.7),

respectively.

3.2.5 Lognormal Distribution

Let X be a normally distributed random variable such that X ∼ N(µX , σ
2
X).

Then the variable

R = 10
X
10 (3.16)

is a lognormally distributed random variable (we denote R ∼ Log-N(µi, σ
2
i )).

Lognormal distribution is characterized by Table 3.6. The constant ξ in Table

3.6 denotes 10/ ln 10.

The characteristic function of R is not obtainable in closed form but can be

approximated by a Gauss-Hermite expansion:

φR(w) ∼=
1√
π

Np∑
n=1

Hxn exp

(√
2σXxn + µX

10
jw

)
, (3.17)

where xn are the zeros and Hxn are the weight factors of the Np-order Hermite
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fR(r) =

{
ξ

σX
√

2πr
exp

(
− (10 log10 r−µX)2

2σ2
X

)
, r > 0,

0, r ≤ 0.

FR(r) =

{
1−Q

(
10 log10 r−µX

σX

)
, r > 0,

0, r ≤ 0,
E[Rk] = exp

(
k

ξ
µX +

1

2
(
k

ξ
)2σ2

X

)
.

E[R] = exp

(
µX
ξ

+
1

2
(
σX
ξ

)2

)
, VAR[X] = E[R2]− (E[R])2.

Table 3.6: Characterization of lognormal distribution

polynomial [14]. If {Ri : i = 1, 2, . . . , n} is a set of n independent lognormally

distributed variables such that Ri ∼ Log-N(µi, σ
2
i ), ∀i, then

n∏
i=1

Ri ∼ Log-N

(
n∑
i=1

µi,
n∑
i=1

σ2
i

)
. (3.18)

Lognormal distribution is used to model large-scale fading which is caused

by shadowing. Though measurements show that lognormal distribution is a

suitable model for shadow fading [11], there is no satisfactory justification of

the model. Thus, lognormal model of the shadow fading is just an acceptable

practical tool for modeling shadow fading without a good explanation from

the propagation point of view. The product of a large number of positive in-

dependent random variables might also be modeled by lognormal distribution.

3.2.6 Nakagami Distribution

A Nakagami-distributed random variable X is characterized by Table 3.7. In

Table 3.7, the following notations are used: Ω = E[X2] and m = Ω2

E[(X2−Ω)2]
.

Parameter m is usually called fading figure and the distribution is defined only

for m ≥ 1
2
. The incomplete gamma function needed in Table 3.7 is defined as

γ(u, x) =

∫ x

0

tu−1e−tdt. (3.19)

Nakagami distribution does not have a general closed form MGF.

Nakagami random variable becomes a Rayleigh random variable when m =
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fX(x) =

{
2

Γ(m)
(m

Ω
)mx2m−1 exp

(
−mx2

Ω

)
, x > 0,

0, x ≤ 0.

FX(x) =

{
γ(m,m

Ω
x2)

Γ(m)
, x > 0,

0, x ≤ 0,
E[xk] =

Γ
(
m+ k

2

)
Γ(m)

(
Ω

m

) k
2

.

E[X] =
Γ(m+ 1

2
)

Γ(m)

(
Ω

m

) 1
2

, VAR[X] = Ω

(
1− 1

m

(
Γ(m+ 1

2
)

Γ(m)

)2
)
.

Table 3.7: Characterization of Nakagami distribution

1. Furthermore, Nakagami PDF possesses larger tails than Rayleigh PDF

when 1
2
≤ m ≤ 1 but the converse is true when m > 1.

Though Nakagami distribution is initially proposed as empirical model for

short wave ionospheric propagation, nowadays it is used to model small-scale

fading as that of Rayleigh, Rice and Weibull distribution. As it is a two

parameter distribution, it provides more flexible and accurate adaptation to

a probability density functions which follow from experimental measurement

results. Consequently, it can describe different fading environments. Because

of this feature, the distribution is used widely in performance analysis these

days. Experimental results show that this distribution is the best model of

fading in certain special conditions. For example, it is suggested by [15] as the

best fit for the distribution of the signals received in urban radio multipath

channels.

Nakagami distribution is also used to describe the amplitude of received k

branch Rayleigh fading signal after maximum ratio diversity combining. In

this case the shape factor m of the distribution is equal to k.

3.2.7 Weibull Distribution

Let X be a random variable that follows a 2-parameter Weibull Distribution

with a scale parameter α > 0 and a shape parameter β > 0. Then, it is

characterized by Table 3.8, see (3.11) for Γ(z).

Though there is no general closed-form solution found for the MGF, it is

given in power series form in Table 3.8 since all the raw moments are known.
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fX(x) =

{
β
α

( x
α

)β−1e−( x
α

)β , x > 0,

0, x ≤ 0,
FX(x) =

{
1− e−( x

α
)β , x > 0,

0, x ≤ 0.

MX(s) =
∞∑
n=0

snαn

n!
Γ

(
1 +

n

β

)
, E[Xk] = αkΓ

(
1 +

k

β

)
.

E[X] = αΓ

(
1 +

1

β

)
, VAR[X] = α2

[
Γ

(
1 +

2

β

)
− Γ2

(
1 +

1

β

)]
.

Table 3.8: Characterization of Weibull distribution

Moreover, it has also other closed-form expressions when the shape parameter

β is integer or rational. The expressions are derived and given in [16], [17] and

[18]. When β = 1, a Weibull PDF reduces to the exponential PDF, and when

β = 2, it reduces to the Rayleigh PDF.

Weibull distribution is another mathematical model for small-scale fading

in wireless communication. Empirical studies have shown that Weibull distri-

bution is an effective model of both indoor and outdoor propagation [19, 20].

Furthermore, reference [21] describes Weibull Distribution as a less complex

and accurate description for the outdoor multipath fading channel than some

of the other existing models.

3.3 Statistical Channel Modeling

Let us start by referring to the link level signal model which we described in

the first chapter with the help of Figure 2.7. We recall equation (2.13) as

r(t) = hcx(t) + n(t). (3.20)

The transmitted signal x(t) is multiplied by the complex channel hc and then

AWG noise with a one-side power spectral density No is added at the receiver

to give r(t).

The fading channel is usually modeled with Rayleigh, Rician, Nakagami,

Weibull, or/and lognormal distribution depending on the nature of the radio

propagation environment. The aforementioned distributions and their role to

model small-scale or large-scale fading were discussed in the previous section.
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If Es is the signal energy per transmitted symbol, then the instantaneous

SNR at the receiver which we denote by γ is given as

γ = h2Es
No

, (3.21)

where h = |hc|. Note that h is the amplitude of the complex channel hc and we

will use the notations throughout the thesis accordingly. Then the expected

SNR, denoted by γ̄, is

γ̄ = E[γ] = E

[
h2Es
No

]
=
Es
No

E[h2]. (3.22)

Thus,

γ =
γ̄

E[h2]
h2. (3.23)

Notice that γ is a function of the fading channel random variable h. The

PDF of h can be obtained from the previous section according to the fading

channel model chosen. Then, the PDF of γ can be computed from the PDF

of h based on Equation (3.5).

fγ(γ) =
∣∣∣ ddγ√E[h2]

γ̄
γ
∣∣∣ fh (√E[h2]

γ̄
γ
)

= 1
2

√
E[h2]
γ̄γ

fh

(√
E[h2]
γ̄
γ
)

(3.24)

Rayleigh Fading Channel

In Rayleigh fading channel model, h is considered to be Rayleigh random

variable. Therefore, using the mean and variance expressions of Table 3.4,

E[h2] = VAR[h] + (E[h])2 =

(
4− π

2

)
σ2 +

(
σ

√
π

2

)2

= 2σ2. (3.25)

Then using (3.25) and the PDF expression in Table 3.4, (3.24) reduces into

fγ(γ) =
1

γ̄
e−

γ
γ̄ , γ > 0. (3.26)

Notice from (3.26) that γ is an exponential random variable with a scale
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parameter γ̄. Therefore,

Fγ(γ) =

∫ γ

−∞
fγ(w)dw = 1− exp

(
−γ
γ̄

)
, γ > 0, (3.27)

Mγ(s) =

∫ ∞
−∞

esγfγ(γ)dγ =
1

1− γ̄s
, for s < 0. (3.28)

It can also be shown that γ is a central chi-square random variable with two

degrees of freedom and parameter σ =
√

γ̄
2
.

Rician Fading Channel

In this model, h is considered to be Rician random variable. Therefore, from

Table 3.5, we get that

E[h2] = 2σ2 + a2. (3.29)

In Rician fading channel, there is a parameter called Rician K-factor which is

defined as

K =
a2

2σ2
. (3.30)

Then E[h2] can also be expressed in terms of K as

E[h2] = 2σ2 + a2 = 2σ2

(
1 +

a2

2σ2

)
= 2σ2(1 +K). (3.31)

Using the PDF expression in Table 3.5 and (3.31), Equation (3.24) is simplified

into

fγ(γ)=
(1 +K)e−K

γ̄
exp

(
−(1 +K)γ

γ̄

)
I0

(√
4K(1 +K)γ

γ̄

)
, γ > 0. (3.32)

Refer (3.12) for I0(z). It can be seen from (3.32) that γ is non-central chi-

square random variable with parameters a =
√

Kγ̄
K+1

and σ =
√

γ̄
2(K+1)

. There-

fore, using CDF and MGF expressions of non-central chi-square variable which
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are given in Table 3.3, we obtain

Fγ(γ) = 1−Qm

(
√

2K,

√
2(K + 1)γ

γ̄

)
, γ > 0, (3.33)

Mγ(s) =
K + 1

K + 1− γ̄s
exp

(
Kγ̄s

K + 1− γ̄s

)
. (3.34)

See (3.13) for Qm(·).

Nakagami Fading Channel

In Nakagami fading channel model, the amplitude of the channel impulse re-

sponse is considered to be Nakagami random variable. Thus, from the notation

used in Table 3.7, we get

E[h2] = Ω. (3.35)

Then substituting the PDF in Table 3.7 into (3.24), the PDF of γ becomes

fγ(γ) =
mm

Γ(m)γ̄m
γm−1e−

mγ
γ̄ , γ > 0, (3.36)

We can show from (3.36) that γ is gamma-distributed random variable with

shape parameter m and scale parameter γ̄
m

. Consequently,

Fγ(γ) =
Γ(m, mγ

γ̄
)

Γ(m)
, γ > 0, (3.37)

Mγ(s) =
(

1− γ̄

m
s
)−m

. (3.38)

Weibull Fading Channel

Here h is a Weibull random variable. Therefore, from Table 3.8, we get that

E[h2] = α2Γ

(
1 +

2

β

)
. (3.39)

Substituting (3.39) and PDF of h from Table 3.8 in (3.24) gives

fγ(γ) =
β

2bγ̄

(
γ

bγ̄

)β
2
−1

e−( γ
bγ̄

)
β
2
, γ > 0, (3.40)
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where b = 1/Γ
(

1 + 2
β

)
. Refer (3.11) for Γ(·).

Notice from 3.40 that γ is also a Weibull random variable with a shape

parameter equal to β
2

and scale parameter equal to bγ̄. Therefore, using CDF

and MGF in Table 3.8,

Fγ(γ) = 1− exp

[
−
(
γ

bγ̄

)β
2

]
, γ > 0, (3.41)

Mγ(s) =
∞∑
0

(bγ̄)nsn

n!
Γ

(
1 +

2n

β

)
. (3.42)

Lognormal Fading Channel

Modeling only large-scale fading due to shadowing is important for the anal-

ysis of communication system performance if the receiver has the ability to

average out or eliminate the effect of small-scale fading. In this situation, the

SNR is directly modeled with lognormal distribution. Thus,

fγ(γ) =
ξ

σX
√

2πγ
exp

(
−(10 log10 γ − µX)2

2σ2
X

)
, γ > 0, (3.43)

where ξ = 10
ln(10)

.

Composite Fading Channel

Some environments comprise small-scale fading superimposed on the lognor-

mal large-scale fading. In this kind of environment, the receiver plays with the

instantaneous signal corrupted by the composite fading due to both multipath

and shadowing. Therefore, the channel is modeled with composite fading chan-

nel. Reference [22] discusses the widely accepted Nakagami-lognormal fading

channel model. The composite gamma/lognormal PDF of the SNR is given as

follows:

fγ(γ)=

∫ ∞
0

mmγm−1

wmΓ(m)
e−

mγ
w

ξ√
2πσXw

exp

(
−(10 log10w − µX)2

2σ2
X

)
dw. (3.44)

In the analysis, the average of the Nakagami-distributed SNR follows lognor-

mal distribution. The integral cannot be calculated in closed-form.
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Rayleigh-lognormal distribution used for modeling Rayleigh-lognormal en-

vironment has also a complicated integral. Thus, this distribution is usu-

ally approximated by K-distribution [23]. The Weibull-lognormal environment

characterization is also discussed in [24].



Chapter 4

Link-level Performance

Measures in Fading Channels

In this chapter, some widely used radio link performance measures in fading

channels are presented. The co-channel interference from neighbouring trans-

missions is not considered. First, we will summarize expressions for average

bit error probability (BEP) with the binary phase shift keying (BPSK) mod-

ulation scheme in Rayleigh, Rician, Nakagami, and Weibull fading channels.

Then computations and resultant expressions of outage probability/outage ca-

pacity and average capacity will be presented for the aforementioned channel

models.

4.1 Average BEP of BPSK

Bit error probability is one of the key performance measures in wireless com-

munication and it is defined as the error probability in transmission of a single

bit. Average BEP calculation of a wireless communication system is dependent

on the modulation scheme and channel model which are used by the system.

In what follows, average BEP for Rayleigh, Rician, Nakagami, and Weibull

fading channel models with BPSK modulation scheme are calculated. The

average BEP computation for the general quadrature amplitude modulation

can be easily managed if the computation for BPSK is understood well [25, 26].

With Binary Phase Shift Keying (BPSK), the BEP in AWGN channel, de-

31
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noted by Pb, is obtained as

Pb = Q
(√

2γ
)
, [2, eqn 4.3-13][27] (4.1)

where the variable γ denotes symbol SNR. Note also that symbol SNR is the

same with bit SNR in case of BPSK modulation scheme. The Gaussian Q

function is defined as

Q(x) =
1√
2π

∫ ∞
x

e−
t2

2 dt. [2, eqn 2.3-10] (4.2)

In fading channels where γ is corrupted by the random fading channel, (4.1)

can be taken as the instantaneous BEP expression and the average BEP, which

we denote by P̄b, is calculated by integrating it over SNR distribution:

P̄b =

∫ ∞
0

Pbfγ(γ)dγ =

∫ ∞
0

Q
(√

2γ
)
fγ(γ)dγ, (4.3)

where fγ(γ) is the PDF of the SNR. Various PDF expressions has been com-

puted in the previous chapter for different fading channel models.

Before we start analyzing (4.3) for fading channel models, let us first make

the equation suitable for integration by substituting Q(
√

2γ) with an alterna-

tive expression. Craig has developed the following alternative expression for

Q(x) of (4.2) in [28]:

Q(x) =
1

π

∫ π
2

0

exp

(
− x2

2 sin2 θ

)
dθ, for x ≥ 0. (4.4)

After using this alternating expression and MGF definition, given in section

3.1 of Chapter 3, equation (4.3) can be reduced into form

P̄b =
1

π

∫ π
2

0

Mγ

(
− 1

sin2 θ

)
dθ. (4.5)
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Rayleigh Fading Channel

Substituting MGF expression (3.28) of Rayleigh fading channel, (4.5) becomes,

P̄b =
1

π

∫ π
2

0

1

1 + γ̄
sin2 θ

dθ. (4.6)

This integration is further modified as follows:

P̄b =
1

π

∫ π
2

0

(
1− γ̄

γ̄ + sin2 θ

)
dθ

=
1

2
− γ̄

π

∫ π
2

0

1

γ̄ + sin2 θ
dθ. (4.7)

Here we can apply the indefinite integral given in [29, eqn 2.562.1]:

∫
dx

a+ b sin2 x
=

1√
a(a+ b)

arctan

(√
a+ b

a
tanx

)
, for a > 0 (4.8)

By combining (4.7) and (4.8), we obtain

P̄b =
1

2

(
1−

√
γ̄

γ̄ + 1

)
. (4.9)

Rician Fading Channel

Let us substitute the Rician fading channel MGF expression (3.34) into (4.5),

then we get

P̄b =
1

π

∫ π
2

0

(K + 1) sin2 θ

(K + 1) sin2 θ + γ̄
exp

(
− Kγ̄

(K + 1) sin2 θ + γ̄

)
dθ. (4.10)

The integration in (4.10) does not admit closed-form solution.

Nakagami Fading Channel

MGF for Nakagami fading channel is given in equation (3.38). When it is

combined with (4.5), we obtain

P̄b =
1

π

∫ π
2

0

(
sin2 θ

sin2 θ + c

)m
dθ, (4.11)
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where c = γ̄
m

. This integral has the same form with the integral computed in

Appendix 5A of [25]. Using the result, (4.11) becomes,

P̄b =


1
2

[
1−

√
γ̄

m+γ̄

∑m−1
k=0

(
2k
k

) (
m

4(m+γ̄)

)k]
, m integer

1
2
√
π

√
γ̄
m

(1+ γ̄
m)

m+ 1
2

Γ(m+ 1
2

)

Γ(m+1) 2F1

(
1,m+ 1

2
;m+ 1; m

m+γ̄

)
, otherwise

(4.12)

where 2F1(·, ·; ·; ·) is the Gauss hypergeometric function [4, eqn 15.1.1].

Weibull Fading Channel

To the best of the author’s knowledge, general closed form MGF of a Weibull

random variable is not available in literature. Though we can proceed comput-

ing (4.5) with the MGF expressions which are given in [16], [17] and [18] for

an integer or rational shape parameter, yet, the resulting formulas will contain

integrals that cannot be computed in closed form. Therefore, for further BEP

analysis for a Weibull fading channel has been omitted.

Numerical results for the average BEP expressions of AWGN channel, Ray-

leigh, Rician, and Nakagami fading channels, equations (4.1), (4.9), (4.10),

and (4.12), respectively, are depicted in Figure 4.1.

4.2 Outage Probability and Outage Capacity

Fading channels are characterized by rapidly changing channel. On the other

hand, acceptable communication typically calls for a minimum threshold signal

level. Therefore, outage probability Pout is one of the most common perfor-

mance measures in wireless communication systems. It is defined as the prob-

ability that the system SNR falls below a certain quality of service threshold,

ε:

Pout = P{γ < ε} =

∫ ε

0

fγ(x)dx = Fγ(ε). (4.13)

Note from (4.13) that the outage probability is the cumulative distribu-

tion function of γ evaluated at ε. Therefore, using CDF expressions (3.27),

(3.33), (3.37), and (3.41) for Rayleigh, Rician, Nakagami, and Weibull fading

channels, respectively, we can get the corresponding fading channel outage
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Figure 4.1: Average BEP versus average SNR of BPSK in AWGN, Rayleigh,
Rician (K = 0 dB, 6 dB, 12 dB ) and Nakagami (m = 2,m = 4) channels

probability expressions. The resulting expressions are given as follows. For

Rayleigh fading channel, it is found that

Pout = Fγ(ε) = 1− exp

(
− ε
γ̄

)
, (4.14)

and for Rician fading channel, we have

Pout = Fγ(ε) = 1−Qm

(
√

2K,

√
2(K + 1)ε

γ̄

)
. (4.15)

Furthermore, for Nakagami fading channel,

Pout = Fγ(ε) =
Γ(m, mε

γ̄
)

Γ(m)
, (4.16)
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and for Weibull fading channel,

Pout = Fγ(ε) = 1− exp

[
−
(
ε

bγ̄

)β
2

]
, (4.17)

where b = 1/Γ
(

1 + 2
β

)
.

Outage capacity, which we denote by C(Pout), has been defined as the max-

imal transmission rate for a given outage probability and it is calculated as

C(Pout) = BW · log2(1 + ε(Pout)) (4.18)

where BW is the bandwidth of the system and ε(Pout) is the value of SNR

which is calculated from (4.14), (4.15), (4.16), or (4.17) for a given outage

probability Pout. Note that ε(.) is the inverse of CDF and it usually does not

admit a closed-form expression but is calculated numerically.

4.3 Average Capacity

Channel capacity defines the maximum data rate that can be sent over the

channel with asymptotically small error probability. It represents an opti-

mistic upper bound for practical communication schemes; therefore, it serves

as a benchmark against which to compare the spectral efficiency of all practical

transmission schemes. Based on available information at the transmitter and

receiver about the time-varying channel and type of adaptive transmission pol-

icy used by the transmitter, various definitions are used to calculate capacity of

flat fading channel [30, 31, 32]. We will follow the definition of capacity in case

the transmitter cannot adapt its transmission strategy relative to the channel

fade information which is available at only the receiver. Given that BW is

the bandwidth of the system, Ergodic capacity is obtained by averaging the

capacity of an AWGN channel. Therefore, AWGN channel capacity, denoted

by CAWGN , and average capacity, denoted by C, are formulated, respectively

as follows:

CAWGN = BW · log2(1 + γ), (4.19)



CHAPTER 4. LINK-LEVEL PERFORMANCE MEASURES 37

C =

∫ ∞
0

BW · log2(1 + γ)fγ(γ)dγ. (4.20)

With the help of the logarithmic identity loga(b) = logc(b)
logc(a)

, equation (4.20) is

simplified into form

C =
BW

ln(2)

∫ ∞
0

ln(1 + γ)fγ(γ)dγ. (4.21)

Rayleigh Fading Channel

Substituting PDF expression of Rayleigh fading channel given in (3.26) into

(4.21), we find that

C =
BW

ln(2)γ̄

∫ ∞
0

ln(1 + γ) exp

(
−γ
γ̄

)
dγ (4.22)

Performing change of integration variable to y = 1 + γ, Equation (4.22) is

reduced into

C =
BW

ln(2)γ̄
exp

(
1

γ̄

)∫ ∞
1

ln(y) exp

(
−y
γ̄

)
dy (4.23)

Then using the integration∫ ∞
1

e−µx ln(x)dx = − 1

µ
· Ei(−µ), [29, eqn 4.331.2] (4.24)

Equation (4.23) becomes

C = − BW

ln(2)
exp

(
1

γ̄

)
Ei

(
−1

γ̄

)
, (4.25)

where Ei(·) is the exponential integral function, defined in [29, eqn 8.211.1] as

Ei(x) = −
∫ ∞
−x

e−t

t
dt =

∫ x

−∞

et

t
dt. (4.26)

Further discussion about average capacity in Rayleigh Fading channel can be

found from [32] and [33].
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Rician Fading Channel

Making use of the PDF of γ from (3.32), (4.21) is simplified for Rician fading

channel into

C =
BW

ln(2)

∫ ∞
0

ln(1 + γ)
(1 +K)e−K

γ̄
exp

(
−(1 +K)γ

γ̄

)
× I0

(√
4K(1 +K)γ

γ̄

)
dγ. (4.27)

To the best knowledge of the author, this integral does not have closed-form

expression, but [33] and [34] give clear methods to express it in an infinite

series form. The expression which is given in [34] is

C =
BW

ln(2)

(1 +K)e−K

γ̄

∞∑
n=0

1

(n!)2

[
K(1 +K)

γ̄

]n

×G3,1
2,3

K + 1

γ̄

∣∣∣∣∣∣∣
−1− n, −n

0, −1− n, −1− n

 , (4.28)

where Meijer’s G-function Gm,n
p,q (·) definition is given in [29, eqn 9.301].

Nakagami Fading Channel

Using the PDF expression in (3.36), Equation (4.21) is reduced into form

C =
BWmm

ln(2)γ̄mΓ(m)

∫ ∞
0

γm−1 ln(1 + γ)e−
mγ
γ̄ dγ. (4.29)

For integer m, the integration in (4.29) is solved in Appendix B of [32]. Using

the result from there and the identity Γ(m) = (m−1)! for an integer m, (4.29)

becomes

C =
BW

ln(2)
e
m
γ̄

m∑
k=1

(
m

γ̄

)m−k
Γ

(
−m+ k,

m

γ̄

)
, (4.30)
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where Γ(·, ·) is the incomplete gamma function which is defined as

Γ(α, x) =

∫ ∞
x

e−ttα−1dt. [29, eqn 8.350.2] (4.31)

Making change of summation parameter such that l = m− k,

C =
BW

ln(2)
e
m
γ̄

m−1∑
l=0

(
m

γ̄

)l
Γ

(
−l, m

γ̄

)
. (4.32)

Furthermore, reference [34] has formulated a closed form expression for C when

m is arbitrary. The expression is presented as follows:

C =
BW

ln(2)

1

Γ(m)

(
m

γ̄

)m
G3,1

2,3

m
γ̄

∣∣∣∣∣∣∣
−m, 1−m

0, −m, −m

 . (4.33)

Detailed analysis of channel capacity for Nakagami fading channel is presented

in [35].

Weibull Fading Channel

We follow the same procedure for Weibull fading channel as we used for pre-

vious channels. Thus, substituting (3.40) into (4.21), we get

C =
BW · β

2 ln(2)(bγ̄)
β
2

∫ ∞
0

γ
β
2
−1 ln(1 + γ) exp

[
−(bγ̄)−

β
2 γ

β
2

]
dγ. (4.34)

Equation (4.34) has been solved and expressed in closed form in terms of

Meijer’s G-functions in [36] and it is presented here as follows:

C=
β(bγ̄)

−β
2

2 ln(2)

BW
√
kl−1

(2π)
k+2l−3

2

Gk+2l,l
2l,k+2l

(bγ̄)−
βk
2

kk

∣∣∣∣∣∣∣
I(l,−β

2
), I(l, 1− β

2
)

I(k, 0), I(l,−β
2
), I(l,−β

2
)

 ,
(4.35)

where

I(n, ξ) ,
ξ

n
,
ξ + 1

n
, . . . ,

ξ + n− 1

n
, (4.36)
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ξ is an arbitrary real value and n is a positive integer. Moreover, l
k

= β
2

where

k and l are positive integers. Depending up on the value of β, a set with

minimum values of k and l can be properly chosen (e.g., for β = 1.4 we have

to choose k = 10 and l = 7).

Numerical results based on the expressions (4.19), (4.25), (4.28), (4.32), and

(4.35) are shown in Figure 4.2. Only small number of terms are significant in

case of the Rician infinite series average capacity expression. For instance, the

expression converges with only the first 10 terms for K = 3 dB and K = 6 dB

within the considered average SNR range (0 dB-25 dB). Anyhow the first 50

terms are used to generate the numerical result.
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Figure 4.2: Normalized average capacity versus average SNR in AWGN,
Rayleigh, Rician (K = 3 dB, N = 50), Nakagami (m = 3), and Weibull
(β = 1.4) channels



Chapter 5

Analysis of Co-channel

Interference

In this Chapter, the outage probability and average capacity of Rician/Rayleigh

fading environment are computed and discussed. In Rician/Rayleigh fading

environment, the desired signal experiences Rician fading channel and the in-

terfering signals experience Rayleigh fading channels. Investigation of the sce-

nario is important since it is highly probable that we face it in the future

heterogeneous networks. In the first section, we cover revision of previous

works on co-channel interference (CCI). The second section deals with Ri-

cian/Rayleigh scenario and its motivation. Then outage probability and aver-

age capacity computations and discussions are carried out for single interferer

scenario in the following sections. Two expressions are found and presented for

the outage probability: closed-form and infinite series expression. For average

capacity an infinite series expression is found. Finally there is a section which

describes how we can extend the results of the single interferer scenario into

multi-interferer scenario.

5.1 Overview of Co-channel Interference In-

vestigation

Large subscriber capacity and efficient use of spectrum are usually among

the main objectives of cellular network design. Since the frequency spectrum

41



CHAPTER 5. ANALYSIS OF CO-CHANNEL INTERFERENCE 42

available for use in a cellular mobile radio system is limited, frequency reuse

is an important feature to meet the objectives. The problem with reusing

frequency band over relatively short distances is that co-channel interference

is likely to occur. Though frequency reuse schemes of cellular systems are

designed so that the interference between cells is minimized, CCI is always

challenge. In the process of an improvement of capacity and coverage, small

cells (femto cells and relay nodes) are being introduced in the conventional

cellular networks. Hence CCI is continued to be seen as a major problem also

in future cellular networks.

There have been extensive studies performed on CCI effects on the perfor-

mance of the conventional macrocellular mobile radio systems (e.g. [37, 38,

39]). The same statistical characteristics has been assumed for the desired and

interfering signals, which is reasonable for large cell systems. Rayleigh, Nak-

agami, lognormal, and superimposed Rayleigh/lognormal or Nakagami/log-

normal models have been used to describe the environment.

Microcellular radio systems’ performance in the presence of CCI has been

also investigated [40, 41, 42, 43]. The usual logical assumption in microcellular

systems is that the desired and interfering signals experience different fading

channels. Rician/Rayleigh [40, 42], Rician/Nakagami [42], Rayleigh/Rician

[42], Nakagami/Rician [42], and Nakagami/Nakagami [41] fading scenarios has

been considered in these studies.

Almost all of the studies in the cases of both macrocellular and micro-

cellular systems show the effect of CCI based on outage probability anal-

ysis. References [40, 42] have also presented analytical and numerical re-

sults of outage probability in the same fading environment we are heading to,

Rayleigh/Rician. The closed-form outage probability computation result that

will be presented here is in agreement with the results of the references. An

infinite series expression is also found for the outage probability in this work.

Furthermore, we will present average capacity computation and discussion.
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5.2 Rician/Rayleigh Fading Scenario

Relay nodes and femtocells are being considered as among the major solutions

to meet the coverage and capacity requirements of future networks [44, 45].

The deployment of relay nodes and femtocells in the conventional network

result in a heterogeneous network; furthermore, the introduction of the small

cells comes with different new challenges and interference is one of those.

The interference scenarios and characteristics in a heterogeneous deploy-

ment can be significantly different than in a homogeneous deployment [44, 46].

In [46], the different interference scenarios that exist between macrocell and

femtocell, and among femtocells are defined. Some examples of interference

scenarios that exists in heterogeneous deployments are provided in [44]. We

can learn from those scenarios that it is highly probable to have a situation

where the desired signal experiences line-of-sight condition and the interfer-

ing signals experience non-line-of-sight condition in case of both uplink and

downlink communication. Therefore, studying Rician/Rayleigh fading envi-

ronment is important and it is in the focus of the Chapter from now onwards.

We will consider single interferer scenario at the beginning because of two

reasons. First, it is common to have only one strong interferer situations in

heterogeneous deployment [47]; and second, it is straightforward to extend the

results for multi-interferer scenarios. There will be a discussion on how we can

extend the single interferer scenario results to the multi-interferer ones in the

last section of the Chapter.

The single interferer scenario which is going to be analyzed is shown in

Figure 5.1. Transmitter Tx1 transmits the desired signal and transmitter Tx2

transmits the interfering signal. As can be seen from the figure, the channel

of the interfering signal is considered to have no dominant path. As a result,

its amplitude is modeled with Rayleigh distribution. Whereas, the desired

signal channel is considered to have a dominant path and hence its amplitude

is modeled with Rician distribution. The two channels can be considered as

independent since the distance between Tx1 and Tx2 is much more greater

than the wavelength of carrier signals used.

Referring Figure 2.8 and equation (2.14), the scenario is modeled by Figure

5.2 and equation (5.1) which are given below.
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Figure 5.1: Rician/Rayleigh Scenario

Figure 5.2: Link model in the presence of a single interfering transmitter

r(t) = hcx(t) + hc1x1(t) + n(t). (5.1)

where hc and hc1 are the complex baseband channels of the desired and in-

terfering signals, respectively, x(t) and x1(t) are the transmitted desired and

interfering signals, respectively, and n(t) is additive white Gaussian noise.

In a system where we have both interference and noise channel impairments,

signal to interference plus noise ratio (SINR) characterizes the performance of

the system. Therefore, in our case, the SINR at the receiver, denoted by γ,

is given below provided that Prx1, Prx2 and Pn are the received desired signal
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power, received interference power, and noise power, respectively:

γ =
Prx1

Pn + Prx2

=
γ1

1 + γ2

, (5.2)

where γ1 = Prx1

Pn
is the desired SNR and γ2 = Prx2

Pn
is the interference SNR.

The SNR γ1 is affected by the Rician fading channel and the SNR γ2 is

affected by the Rayleigh fading channel in a way described by (3.21). PDF

and CDF of γ1 and γ2 can be obtained from Chapter 3. Thus,

fγ1(γ) =
(1 +K)e−K

γ̄1

exp

(
−(1 +K)γ

γ̄1

)
I0

(√
4K(1 +K)γ

γ̄1

)
,

Fγ1(γ) = 1−Qm

(
√

2K,

√
2(K + 1)γ

γ̄1

)
, (5.3)

where γ̄1 is the average of γ1 and K is the Rician K factor. Furthermore,

fγ2(γ) =
1

γ̄2

e
− γ
γ̄2 , Fγ2(γ) = 1− exp

(
− γ

γ̄2

)
, (5.4)

where γ̄2 is the average of γ2.

In the coming computations, we consider interference limited system which

is a reasonable assumption for small cells. Therefore, we approximate the

SINR as

γ =
γ1

1 + γ2

=
γ1

γ2

· γ2

1 + γ2

=
γ1

γ2

·

(
1− 1

γ2

+

(
1

γ2

)2

− · · ·

)
γ2 > 1

∼=
γ1

γ2

= γ̃ γ2 � 1. (5.5)

Here γ̃ is SIR and it is not only an approximation of SINR but also a

tight upper bound. Consequently, the outage probability and average capacity

results which we are going to compute using γ̃ will be a lower bound and an

upper bound results, respectively.
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5.3 Outage Probability

Using the definition given in the previous Chapter here by replacing γ with γ̃,

outage probability for a certain quality of service threshold, ε, is

Pout = P{γ̃ < ε} = P{γ1

γ2

< ε}. (5.6)

Since γ1 and γ2 are considered as independent, equation (5.6) reduces into a

form,

Pout = 1− P{γ1

ε
≥ γ2} = 1−

∫ ∞
0

Fγ2

(x
ε

)
fγ1(x)dx. (5.7)

Substituting CDF of γ2 from (5.4) in to the integral expression of (5.7) gives

Pout = 1−
∫ ∞

0

[
1− exp

(
− x

γ̄2ε

)]
fγ1(x)dx. (5.8)

Since, by definition, ∫ ∞
0

fγ1(x)dx = 1, (5.9)

equation 5.8 reduces into

Pout =

∫ ∞
0

[
exp

(
− x

γ̄2ε

)]
fγ1(x)dx. (5.10)

Substituting the PDF of γ2 from equation (5.4) gives

Pout =

∫ ∞
0

(1 +K)

γ̄1

exp

(
−K −

(
1

γ̄2ε
+

(1 +K)

γ̄1

)
x

)
× I0

(√
4K(1 +K)x

γ̄1

)
dx. (5.11)

Changing variable of integration in equation 5.11 to

y =

√
2(γ̄1 + γ̄2(K + 1)ε)x

γ̄1γ̄2ε
, (5.12)
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we have

x =
γ̄1γ̄2εy

2

2(γ̄1 + γ̄2(K + 1)ε
, (5.13)

and

dx =
γ̄1γ̄2εy

(γ̄1 + γ̄2(K + 1)ε
dy. (5.14)

Then equation 5.11 becomes

Pout =
γ̄2(K + 1)ε

γ̄1 + γ̄2(K + 1)ε

∫ ∞
0

y exp

[
−
(
K +

y2

2

)]
× I0

(√
2γ̄2K(K + 1)ε

γ̄1 + γ̄2(K + 1)ε
y

)
dy. (5.15)

Addition and subtraction of γ̄2K(K+1)ε
γ̄1+γ̄2(K+1)ε

in the argument of the exponential

expression in (5.15), and rearrangement of terms gives

Pout =
γ̄2(K + 1)ε

γ̄1 + γ̄2(K + 1)ε
exp

(
−Kγ̄1

γ̄1 + γ̄2(K + 1)ε

)
∫ ∞

0

y exp

[
−

( 2γ̄2K(K+1)ε
γ̄1+γ̄2(K+1)ε

+ y2

2

)]
I0

(√
2γ̄2K(K + 1)ε

γ̄1 + γ̄2(K + 1)ε
y

)
. (5.16)

Then by mapping the integral using the definition of generalized Marcum

function given in (3.13), we obtain

Pout =
γ̄2(K + 1)ε

γ̄1 + γ̄2(K + 1)ε
exp

(
−Kγ̄1

γ̄1 + γ̄2(K + 1)ε

)
×Q1

(√
2γ̄2K(K + 1)ε

γ̄1 + γ̄2(K + 1)ε
, 0

)
. (5.17)

In [25, eqn 4.23], the following identity is given:

Q1(α, 0) = 1 α ≥ 0 (5.18)

Therefore,

Pout =
γ̄2(K + 1)ε

γ̄1 + γ̄2(K + 1)ε
exp

(
−Kγ̄1

γ̄1 + γ̄2(K + 1)ε

)
. (5.19)
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In addition to the closed-form expression given in Equation (5.19), the out-

age probability admits the following infinite series expression:

Pout =
∞∑
n=0

[
Kn

n!
e−K

]
I( (K+1)γ̄2ε

γ̄1+(k+1)γ̄2ε

)(1 + n, 1), (5.20)

where Ip(a, b) is the ratio of the incomplete beta function and complete beta

function as defined in [29, eqn 8.392] (See A.3). The derivation of Equa-

tion (5.20) is based on the CDF of single noncentral F distribution and is

given in Appendix A.

Both the closed-form and infinite series expressions are verified in Figure 5.3.

The figure shows the simulated results and analytical results of outage prob-

ability for γ̄1 = 25 dB, γ̄2 = 15 dB, K = 6 dB. The simulation results are

generated considering both SIR and SINR, and in both case the number of

simulation samples taken is 105. The series expression of the outage prob-

ability is truncated to 501 first terms. Only two curves are visible in the

figure. The two analytical results and the simulated result which considers the

SIR are overlapped and give the bottom curve. The top curve represents the

simulated result of outage probability which considers SINR. The difference

between the two curves comes due to the interference limited system assump-

tion and approximation. Though 500 is taken as an upper limit for the infinite

series outage probability expression, the convergence comes much sooner for

all instances checked.

Numerical results of outage probability and outage capacity are given in

Figure 5.4, Figure 5.5, and Figure 5.6. It can be observed that the higher the

average SNR ratio, the lower the outage probability; and the higher Rician

K factor, the lower the outage probability. The figures also show that the

difference of outage probability between different values of K increases when

we increase the average SNR ratio. Therefore, in heterogeneous networks,

where strong LOS is expected, assuming Rayleigh faded desired signal (K = 0)

is highly probable to lead to wrong conclusions.
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Figure 5.3: Outage probability versus threshold quality of service for simulated
and analytical results

5.4 Average Capacity

The same definition of average capacity which is given in (4.20) is used here

by replacing γ with γ̃ = γ1

γ2
:

C =
BW

ln(2)

∫ ∞
0

ln(1 + γ)fγ̃(γ)dγ. (5.21)

Therefore, computing average capacity needs an expression for fγ̃(γ). Since γ1

and γ2 are considered independent, we get the following expression using [48,

eqn 6-43]:

fγ̃(γ) =

∫ ∞
0

yfγ1(γy)fγ2(y)dy. (5.22)

Using the PDF expressions in (5.3) and (5.4),

fγ̃(γ) =
(1 +K) exp(−K)

γ̄1γ̄2∫ ∞
0

y exp

(
−
(

1

γ̄2

+
(1 +K)γ

γ̄1

)
y

)
I0

(√
4K(K + 1)γy

γ̄1

)
dy (5.23)
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Figure 5.4: Outage probability versus threshold quality of service for different
values of γ̄1

γ̄2

The integration is solved and fγ̃(γ) admits the following closed-form expres-

sion:

fγ̃(γ) =
(K + 1)3γ̄2

2 γ̄1γ + (K + 1)γ̄2γ̄
2
1

(γ̄1 + (K + 1)γ̄2γ)3
exp

(
−Kγ̄1

γ̄1 + (K + 1)γ̄2γ

)
. (5.24)

Though the PDF of γ̃ could be expressed with a closed-form expression as

given in equation (5.24), equation (5.21) cannot be solved using this expres-

sion. Therefore, we proceed our computation by producing an infinite series

expression for the PDF of γ̃.

Let N1 = 1
γ̄2

+ (K+1)γ
γ̄1

and N2 =
√

4K(K+1)γ
γ̄1

. Then using the series expression

of I0(z),

I0(z) =
∞∑
n=0

(
z
2

)2n

(n!)2
, [29, eqn 8.447.1] (5.25)
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Figure 5.5: Outage probability versus γ̄1

γ̄2
for different values of threshold qual-

ity of service

and the integral ∫ ∞
0

xne−µxdx = n!µ−n−1, [29, eqn 3.351] (5.26)

fγ̃(γ) reduces into an infinite series expression of the form,

fγ̃(γ) =
(1 +K) exp(−K)

γ̄1γ̄2

∞∑
n=0

(
1
4
N2

2

)n
n!

(n+ 1)N−n−2
1 . (5.27)

Substituting (5.27) into (5.21) gives

C =
BW

ln(2)

(1 +K) exp(−K)

γ̄1γ̄2

∞∑
n=0

n+ 1

n!

∫ ∞
0

(
1
4
N2

2

)n
Nn+2

1

ln(1 + γ)dγ (5.28)
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Figure 5.6: Outage capacity versus outage probability for different values of
γ̄1

γ̄2

By replacing N1 and N2 with their corresponding expressions, we get

C =
BW

ln(2)

(1 +K) exp(−K)

γ̄1γ̄2

∞∑
n=0

n+ 1

n!

(
K(K + 1)

γ̄1

)n
×
∫ ∞

0

γn ln(1 + γ)(
1
γ̄2

+ (K+1)γ
γ̄1

)n+2dγ

=
BW

ln(2)

exp(−K)

γ̄2

∞∑
n=0

(n+ 1)Kn

n!

(
K + 1

γ̄1

)n+1

Ic, (5.29)

where

Ic =

∫ ∞
0

γn ln(1 + γ)(
1
γ̄2

+ (K+1)γ
γ̄1

)n+2dγ. (5.30)
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Let

a =
1

γ̄2

and b =
K + 1

γ̄1

. (5.31)

Then by changing the variable of integration of Ic to y = a + bγ, we have

γ = y−a
b

and dγ = 1
b
dy, and the integral reduces into a form

Ic =

∫ ∞
a

(
y−a
b

)n
ln
(
1 + y−a

b

)
byn+2

dy. (5.32)

Using binomial theorem [4, eqn 3.1.1],(
y − a
b

)n
=

1

bn

n∑
k=0

(
n

k

)
(−a)n−kyk. (5.33)

After substituting (5.33) into (5.32) and rearranging terms, it can be found

that

Ic =
1

bn+1

n∑
k=0

(
n

k

)
(−a)n−k

∫ ∞
a

yk−n−2 ln

(
1 +

y − a
b

)
dy (5.34)

An integration by parts and then the change of the variable of integration to

z = a
y

gives

∫ ∞
a

yk−n−2 ln

(
1 +

y − a
b

)
dy =

ak−n−1

n− k + 1

∫ 1

0

zn−k

1−
(
1− b

a

)
z
dz. (5.35)

Using the integral in [4, eqn 15.3.1], it can be found that∫ 1

0

tn−k

1− st
dt =

1

n− k + 1
2F1(1, n− k + 1, n− k + 2, s) (5.36)

where 2F1(., .; .; .) is the Gauss hypergeometric function [4, eqn 15.1.1]. There-

fore, (5.35) becomes∫ ∞
a

yk−n−2 ln

(
1 +

y − a
b

)
dy

=
ak−n−1

(n− k + 1)2 2F1

(
1, n− k + 1, n− k + 2, 1− b

a

)
. (5.37)
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Then substituting (5.37) into (5.34) gives,

Ic=
1

abn+1

n∑
k=0

(
n

k

)
(−1)n−k

(n− k + 1)2 2F1

(
1, n− k + 1, n− k + 2, 1− b

a

)
. (5.38)

In conclusion, substituting equation (5.38) into equation (5.29) and replacing

a and b with their corresponding expressions, we get

C =
BW exp(−K)

ln(2)

∞∑
n=0

(n+ 1)Kn

n!

n∑
k=0

(
n

k

)
(−1)n−k

(n− k + 1)2

× 2F1

(
1, n− k + 1, n− k + 2, 1− (K + 1)γ̄2

γ̄1

)
. (5.39)

The analytical result is verified by creating numerical results for the nor-

malized Ergodic capacity definitions

C

BW
=

1

ln(2)

∫ 100,000

0

∫ 100,000

0

ln(1 +
γ1

γ2

)fγ1(γ1)fγ2(γ2)dγ1dγ2, (5.40)

and

C

BW
=

1

ln(2)

∫ 100,000

0

∫ 100,000

0

ln(1 +
γ1

1 + γ2

)fγ1(γ1)fγ2(γ2)dγ1dγ2, (5.41)

as shown in Figure 5.7. As can be seen from the figure, the analytical result

and the numerical result of equation (5.40), which considers SIR, fit well. The

curve of the numerical results of equation (5.41) is below the curve for the

analytical result. Thus, we can see that the analytical result is a tight upper

bound as stated before due the approximation used.

Numerical result of the average capacity is given in Figure 5.8. The infinite

series expression converges with the first 30 terms for K = 12 dB with in the

considered range of average SNR ratio (0 − 10). For K = 6 dB, K = 3 dB,

and K = −40 dB, it converges only with the first 12, 8 and 1 terms with in

the range. Anyhow, the reference numerical result has been generated using

100 terms.
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Figure 5.7: Normalized average capacity versus average of γ1 for Ergodic ca-
pacity definition and analytical result

5.5 Extension of Single Interferer Case to Multi-

interferer Case

When there are M interfering signals from neighbouring transceivers, the re-

ceived signal is modeled as given in equation (2.14). It is assumed that each

interfering signal SNR is corrupted by corresponding Rayleigh fading chan-

nel independently. This assumption is reasonable since the interfering signals

transmitters are much far away from each other relative to the wavelength of

the signals.

Let γ1 be SNR of the desired Ricain signal and {γi : i = 2, 3, . . . ,M + 1}
be SNRs of M independent Rayleigh interfering signals such that fγi(γ) =
1
γ̄i

exp
(
− γ
γ̄i

)
. Then the SINR is given and approximated as

γ =
γ1∑M+1

i=2 γi + 1
≈ γ1∑M+1

i=2 γi
=
γ1

S
= γ̃, (5.42)

where S =
∑M+1

i=2 γi and γ̃ is the SIR which is a tight upper bound for the

SINR. Here, as in the case of single interferer scenario, the SIR γ̃ is used for

the computation; hence, the resultant outage probability and average capacity
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Figure 5.8: Normalized average capacity versus γ̄1

γ̄2

will be again tight lower bound and upper bound, respectively. The PDF of

S is given by [49] when γ̄i 6= γ̄j for ∀ i 6= j:

fS(γ) =
M+1∑
i=2

Di,M+1 ·
1

γ̄i
exp

(
− γ
γ̄i

)
=

N+1∑
i=2

Di,N+1fγi(γ), (5.43)

where Di,M+1 =
∏

j 6=i
γ̄i

γ̄i−γ̄j . The CDF of S is obtained from (5.43) and is given

as follows:

FS(γ) =

∫ γ

0

fS(t)dt =
M+1∑
i=2

Di,M+1Fγi(γ). (5.44)
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5.5.1 Extension of Outage Probability

In case of multi-interferer, outage probability, denoted by P ′out, is given as

P ′out = P{γ̃ < ε} = 1−
∫ ∞

0

FS

(x
ε

)
fγ1(x)dx. (5.45)

Substituting equation (5.44) gives,

P ′out = 1−
M+1∑
i=2

Di,M+1

∫ ∞
0

Fγi

(x
ε

)
fγ1(x)dx. (5.46)

Then using equation (5.7), P ′out becomes

P ′out = 1−
M+1∑
i=2

Di,M+1 [1− Pout] , (5.47)

where Pout is the outage probability expression computed for a single interferer

of γi. Therefore, utilizing the closed-form expression given by equation (5.19),

we get

P ′out=1−
M+1∑
i=2

Di,M+1

[
1− γ̄i(K + 1)ε

γ̄1 + γ̄i(K + 1)ε
exp

(
−Kγ̄1

γ̄1 + γ̄i(K + 1)ε

)]
. (5.48)

We can also get an infinite sum expression for the multi-interferer case using

equation (5.20).

5.5.2 Extension of Average Capacity

The average capacity denoted by C ′ in case of multi-interferer is computed as

C ′ =
BW

ln(2)

∫ ∞
0

ln(1 + γ)fγ̃(γ)dγ. (5.49)

Utilizing expression in [48, eqn 6-43], we get

fγ̃(γ) =

∫ ∞
0

yfγ1(γy)fS(y)dy. (5.50)
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Then substituting equation (5.43), equation (5.50) reduces into a form

fγ̃(γ) =
M+1∑
i=2

Di,M+1fγ′(γ). (5.51)

where γ′ = γ1

γi
. Finally, by using fγ̃(γ) expression in (5.51), equation (5.49)

reduces into a form

C ′ =
M+1∑
i=2

Di,M+1C, (5.52)

where C is the average capacity computed for the single interferer case, given

in Equation (5.39), in here γ̄i replaces γ̄2.

The above analysis for extending single interferers expressions to multi-

interferer ones are valid if and only if γ̄i 6= γ̄j,∀ i 6= j with in the set {γi : i =

2, 3, . . . , N + 1}. Actually the validity of this condition is highly probable in

practical heterogeneous cellular networks. On the other hand, the extension

analysis admits complexity when γ̄i = γ̄j for some or all different i and j. In

this case, the sum of the interference SNRs follows Erlang distribution when

all SNR’s are equal or a different distribution whose PDF is computed in [50]

when only some of them are equal.



Chapter 6

Conclusions

Heterogeneous networks are expected to improve coverage and capacity of fu-

ture networks though there is additional interference challenges to be investi-

gated. Therefore, understanding a heterogeneous network fading environments

and the effects of co-channel interference is important for further measures such

as mitigating the interference related problems. This work analyzes co-channel

interference in Rician/Rayleigh fading scenario of heterogeneous network.

In the thesis, the first research question was to find the probability that

a node of heterogeneous network is not able to reach a given quality of ser-

vice requirement. A proper answer for this question is given in Chapter 5.

Analytical and numerical results are presented for outage probability for the

heterogeneous network fading scenario: Rician/Rayleigh. Two analytical ex-

pressions, closed-form and infinite sum, are found. We can deduce the follow-

ing observations from the numerical results of outage probability in case of the

single interferer scenario: the higher the Rician K factor, the lower the outage

probability; the higher the ratio of the average SNRs, the lower the outage

probability.

Finding maximum average transmission rate that we can achieve in a given

radio link within a heterogeneous network was the second question aimed to

be addressed. For the Rician/Rayleigh scenario, an infinite sum expression for

average capacity is presented in Chapter 5, enabling us to answer the question

in case of different parameter selections. Furthermore, the results help us to

understand how much the strength of the dominant path of the desired signal
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and co-channel interference affects the maximum average transmission rate

achieved by a radio link.

Both the outage probability and average capacity expressions found and

presented in this work are tight bounds. The reason for this is that we have

approximated the SINR by its tight upper bound SIR throughout the analysis

of both performance measures. Therefore, the outage probability result is a

tight lower bound and the average capacity result is a tight upper bound of

the corresponding results without the approximation.

Understanding properties of Gaussian, chi-square, Rayleigh, Rician, lognor-

mal, Nakagami, and Weibull distribution are important to understand the sta-

tistical models of fading channels. In addition to their properties, the reasons

why we apply the distributions have also been studied in Chapter 3. Further-

more, a thorough analysis of fading channel performance measures, including

average BEP, in the absence of co-channel interference are covered in Chapter

4. Outage probability admits closed-form expression for Rayleigh, Rician, Nak-

agami and Weibull fading channel; whereas average BEP admits closed-form

expression only for Rayleigh and Nakagami fading channel. Again average ca-

pacity has closed-form expressions for Rayleigh, Nakagami, and Weibull fading

channel, and infinite sum expression for Rician fading channel.

In this work, we were concentrated on Rician/Rayleigh fading scenario. It

is recommended to extend the analysis for the other fading channel models

for both desired signal and interfering signals since the other models may also

fit well depending on the environment. Understanding average BEP in the

presence of co-channel interference is also relevant and has not discussed or

analyzed here. In the analysis, the intention was always to attain a closed-form

expressions primarily, and then, if the closed-form could not be found, to attain

an infinite sum expression with fast convergence. This task required sometimes

heavy mathematical tools. Therefore, in some cases, there is a possibility to

come up with an alternative less complex and suitable expressions.
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Appendix A

Infinite Series Outage

Probability Expression

Assume that the variable γ1 is a non-central chi-square random variable with

two degrees of freedom, and parameters: a =
√

Kγ̄1

K+1
, σ1 =

√
γ̄1

2(K+1)
. Further-

more, assume that γ2 is a central chi-square random variable with two degrees

of freedom and parameter σ2 =
√

γ̄2

2
.

Let γ′1 and γ′2 are the unit variance chi-square definition correspondence of

γ1 and γ2, respectively. Hence, using their relationship as described in (3.15),

γ =
γ1

γ2

=
σ2

1γ
′
1

σ2
2γ
′
2

=
γ̄1

(K + 1)γ̄2

X (A.1)

where X =
γ′1
γ′2

which is the quotient of unit variance definition noncentral and

central chi-square random variables.

It can be seen [51, 52] that X is a single noncentral F distributed random

variable with two degree of freedom for both the noncentral and central chi-

square random variables, and noncentral parameter λ = a2

σ2
1

=
Kγ̄1
K+1
γ̄1

2(K+1)

= 2K.

In [51, eqn 30.10] and [52], the CDF of the noncentral F distributed random

variable Y with v1 degree of freedom for noncentral chi-square variable, v2

degree of freedom for the central chi-square variable, and noncentral parameter
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of λ is given:

FY (y/v1, v2, λ) =
∞∑
n=0

[(
1
2
λ
)n

n!
e−
−λ
2

]
I( v1y

v2+v1y

)(1

2
v1 + n,

1

2
v2

)
(A.2)

where Ip(·, ·) is the ratio of the incomplete beta function and complete beta

function as defined in [29, eqn 8.392]. It is given as follows:

Ix(p, q) =
1

B(p, q)

∫ x

0

tp−1(1− t)q−1dt, (A.3)

where B(p, q) =
∫ 1

0
tp−1(1− t)q−1dt. Therefore, using (A.2), the CDF of X can

be written as

FX(x/2, 2, 2K) =
∞∑
n=0

[
Kn

n!
e−K

]
I( x

1+x) (1 + n, 1) . (A.4)

Using Equation (A.1) and scaling properties of CDF, we can conclude that

Pout = Fγ(ε) = FX

(
(K + 1)γ̄2

γ̄1

ε

)
. (A.5)

Finally combining (A.4) and (A.5), we get

Pout =
∞∑
n=0

[
Kn

n!
e−K

]
I( (K+1)γ̄2ε

γ̄1+(k+1)γ̄2ε

)(1 + n, 1). (A.6)
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