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Epileptic seizures are neurological dysfunctions that are manifested in abnormal
electrical activity of the brain. Behavioural correlates, such as convulsions, are
sometimes associated with seizures. There are, however, seizures that do not
have clear external manifestations. These non-convulsive seizures can be detected
only by monitoring brain activity. Accumulating evidence suggests that non-
convulsive seizures are particularly common in intensive care units (ICUs), even
among patients with no prior seizures. Presence of seizures is a medical emergency
that requires fast intervention.
Electroencephalogram (EEG) can be used to monitor brain’s electrical activity.
In EEG, potential differences are measured from different sites on the subject’s
scalp. Long-term measurements generate a lot of data and manually reviewing all
of it is an exhausting task. There is a clear need for an automatic seizure detection
method.
In this study, three methods are proposed for seizure detection. We compute
instantaneous frequency and signal power from EEG and quantify the evolution
of these features. The first method measures the length of the path that feature
vectors create in the feature space. The second method compares the latest step
to the average step. The last method encloses the background activity in a convex
hull and classifies epochs that breach the hull.
The third method was found to have the best overall performance. It can poten-
tially detect 11 out of 19 seizure patients in the database. The database consists
of recordings from 179 ICU patients. Most of the false positive detections were
caused by muscle artefact, other signal artefacts, or rudimentary detection logic.
The developed methods have good potential in detecting certain types of seizures.
Before reporting final performance numbers, the algorithm must be complemented
with a spike detection algorithm and a proper artefact detection algorithm.
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Epileptinen kohtaus on neurologinen häiriötila, joka ilmenee aivojen epänor-
maalina sähköisenä toimintana. Joihinkin kohtauksiin liittyy ulkoisia merkkejä,
kuten lihaskouristuksia. Kohtauksia, joihin ei liity selkeitä ulkoisia merkkejä,
kutsutaan ei-konvulsiiviksi. Ne voidaan tunnistaa vain seuraamalla aivojen
sähköistä toimintaa. Ei-konvulsiivisten kohtauksien on osoitettu olevan erityisen
yleisiä tehohoitopotilailla – myös sellaisilla potilailla, joilla ei ole aiemmin ollut
kohtauksia. Epileptinen kohtaus on pikaista interventiota vaativa vakava tila.
Aivosähkökäyrällä (elektroenkefalografia, EEG) voidaan tutkia aivojen
sähköistä toimintaa. Datan läpikäynti käsin on aikaavievää, joten teho-
hoitoon sopivalle, automaattiselle ja reaaliaikaiselle analyysimenetelmälle on
suuri tarve.
Tässä diplomityössä esitellään kolme menetelmää, jotka soveltuvat signaalipiirtei-
den evoluution seuraamiseen. Kultakin EEG-kanavalta määritetään kaksi piir-
rettä: hetkellinen taajuus ja signaalin teho. Ensimmäinen menetelmä mittaa piir-
reavaruuteen muodostuvan polun pituutta aikatasossa. Toinen menetelmä ver-
taa kutakin piirreavaruudessa otettua askelta edellisiin askeliin. Kolmannessa
menetelmässä määritetään dynaamisesti edellisistä piirrevektoreista konveksi
kuori ja tutkitaan kuoren ulkopuolelle osuvia piirrevektoreita.
Kolmas menetelmä osoittautui tutkimuksessa parhaaksi. Menetelmällä pystyttiin
tunnistamaan 11 tietokannan 19:sta kohtauksista kärsineestä potilaasta. Tieto-
kannassa on EEG-mittauksia 179 tehohoitopotilaalta. Suurin osa vääristä detek-
tioista johtui EEG:ssä näkyvästä lihastoiminnasta, artefaktoista tai alkeellisesta
tunnistuslogiikasta.
Menetelmän todellista suorituskykyä on liian aikaista arvioida.
Menetelmää pitää täydentää EEG-piikit sekä artefaktat luotettavasti tun-
nistavilla algoritmeilla.

Avainsanat: EEG, epileptinen kohtaus, epilepsia, wavelet-analyysi, Hilbert-
muunnos, tehohoito
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1 Introduction

The brain works by transmitting electrical signals between neurons. One way to
investigate the electrical activity of the brain is to record scalp potential resulting
from brain activity. This method is non-invasive; all measurements are made outside
the head and no wounds or scars are made. The recorded signal, i.e., potential dif-
ference between two positions, is called electroencephalogram (EEG). The word has
its origins in Greek: (enkephalos) means the brain—or literally ”inside
the head”—and (gramma) means letter or writing.

Recording and investigating signals arising from inside the head has been an
active field of research for more than 100 years. However, only during the last
50 years or so, with the breakthrough of digital technology, has EEG become a
standard method in medical practice. There are also other methods for monitoring
the activity of the brain. Magnetoencephalogram captures the magnetic field caused
by electrical activity and functional magnetic resonance imaging can reveal changes
in hemodynamics inside the brain. In clinical practice, however, EEG is by far the
most common method.

EEG signal can be described by its dominant frequency and power. If the signal
has very low power it is called suppressed, or in the extreme case when there is no
electrical activity, isoelectric. There is a standard way of attributing Greek letters
to different frequency bands. Division of frequencies into these bands was justified
by early EEG findings. Nowadays, the most important function of the division is
the standardization of EEG vocabulary.

Activity lower than 4Hz is called delta (δ) activity. Theta (θ) activity is the
range of 4–8 Hz, alpha (α) is 8–13 Hz, beta is (β) 13–30 Hz, and activity above
30Hz is called gamma (γ) activity.

In addition to describing these general features of the signal, neurologists also
look for signs of neurological dysfunctions. Interpreting EEG is a very demanding
task. Certain artefacts can mimic brain activity and there is often an overwhelming
amount of data.

Epileptic seizures form one class of neurological dysfunctions. People with epilepsy
have recurrent, unprovoked seizures. However, also people who do not suffer from
epilepsy may have seizures [1]. During seizure, there is abnormal electrical activity
in the brain. This abnormality is reflected on scalp potentials and hence can be
recorded with EEG. Behavioural manifestation can range from subtle finger twitch-
ing to convulsions where muscles contract and relax in an uncontrolled fashion,
resulting in involuntary body movements. It is also possible that no change in be-
haviour is seen, or that the change is very subtle. Such seizures are detectable
reliably only by monitoring the brain’s electrical activity.

Patients treated in intensive care units (ICUs) are critically ill. Because of their
critical condition, ICU patients are often artificially ventilated and sedated. This
helps them withstand care-giving operations. Critically ill patients tend to have
neurological problems, too.

Lately, it has been shown that a considerable amount of ICU patients suffer from
seizures. Some seizures are convulsive and can thus be noticed by the bedside staff
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and treated accordingly. The majority of seizures encountered in ICUs, however,
are non-convulsive. If the unit does not have a protocol to monitor brain activity
and to constantly review the data, these seizures will not be detected, or they will
be detected when the possibility to intervene has already passed.

Seizures constitute a medical emergency and have to be medicated. If medication
is not started promptly, effects on the patient can be detrimental. [2]

There are different types of non-convulsive seizures. We are focusing on seizures
that follow a dynamical pattern where signal characteristics change consistently
between samples. In other words, we are looking at gradual changes, or evolution,
in time-courses of signal features.

This thesis is a part of a larger project where ICU neuromonitoring practices
as a whole are updated. The main goal of this thesis is to develop and evaluate
algorithms for detecting non-convulsive seizures. More specifically, the developed
methods should detect seizures of evolutionary type. Furthermore, seizures that
cannot be detected by developed methods should be identified, as well as the main
causes for false positive detections.

Sect. 2 provides a brief introduction to EEG, seizures and to the prior art. In
Sect. 3, data set and employed mathematical methods are described. Features that
are extracted from EEG and fed to detection algorithms are presented in Sect. 4.
The detection algorithms developed for the task are described in Sect. 5. The
main results of the development work are presented in Sect. 6, and their impact is
discussed in Sect. 7.

The author has contributed all material presented from Sect. 4.2 onwards, with
the exception of the idea of algorithm I.
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2 Background

This thesis is a part of a larger effort to renew brain state monitoring practices
in ICUs. A novel electrode cap and an artefact rejection algorithm were being
developed in parallel with this thesis. The goal of the project as a whole is to provide
the ICU staff an easy-to-use means for monitoring their patients’ neurological states.
Furthermore, the staff should be able to easily interpret the information provided
by the algorithms and gain objective evidence to support decision making.

Using the full conventional EEG measurement set-up is time-consuming [3]. The
novel electrode cap is designed to be as easy as possible to put on the patient and to
align with anatomical landmarks. It can maintain a good electrical contact through-
out prolonged recordings. To facilitate the set-up process and data processing, we
are using only a subset of the full electrode montage.

Artefact rejection is a critical part of any biomedical signal processing applica-
tion. We want to ensure that only high-quality data are passed on after this step.
In the ICU, several abnormal EEG patterns are present because the patients are in
a critical condition and the environment is anything but calm and controlled. This
makes it difficult to design a reliable artefact rejection algorithm. We use additional
information from accelerometers integrated to the electrode cap to detect motion
artefacts accurately [4].

At the heart of the concept is the signal processing algorithm. The algorithm
should provide an accurate picture of the patient’s state and address the prob-
lem of non-convulsive seizures that are nowadays mostly undetected and, therefore,
untreated. This thesis focuses on the development of the EEG signal processing
algorithm. The rest of this section is devoted to familiarizing the reader with the
environment and the techniques used.

2.1 Basics of EEG

First human EEG was recorded by Hans Berger in the 1920s. As a pioneer in the
field, it was he who coined the term electroencephalogram. His work was based
on initial animal brain function studies performed by Richard Caton in the 19th
century. Caton and Berger described several normal and abnormal EEG patterns,
among them α and β waves. [5]

In the field of seizure detection, the earliest studies were performed in the 1930s
when Fisher and Lowenback described epileptiform spikes [6]. Throughout the latter
half of the 20th century, with the dawn of digital recording techniques and widely
accessible computing power, we have seen a surge of studies that describe both the
origins of EEG and what clinicians and researchers can infer from it. Today, EEG
is widely accepted as a standard measurement technique.

A modern EEG device consists of a set of electrodes, an amplifier, a data storage
unit, and a display unit. The electrodes are fixed to the subject’s scalp and con-
ductive gel is applied to the electrode–scalp interface. Electrode positions can be
chosen according to the standardized 10–20 system [7] (see Figs. 1 and 2) or by prior
information about patient’s etiology. In some cases, usability aspects might favour
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setting the electrodes on hairless area. Sub-hairline montage is a commonly used
way to facilitate electrode set-up. In this set-up, electrodes are placed on temples
and on forehead, near to the subject’s hairline.

An EEG channel, or derivation, at its simplest form consists of two electrodes
that are connected to an amplifier. The output signal is the amplified potential
difference between the electrodes. In the common reference mode, one electrode is
used as a reference for all other electrodes. A ground electrode can be used to reduce
mains interference. A collection of derivations is called a montage.

EEG practitioners are mainly interested in signals generated by brain activity.
Neurons communicate by releasing neurotransmitters in synaptic clefts. Neuro-
transmitters can selectively open and block receptors, causing a flux of ions from
the synaptic cleft to the post-synaptic cell or vice versa. The flux is driven by the
difference in intra-cellular and extra-cellular ion concentrations. The flux of ions
forms a current dipole. The amount of current resulting from a single synapse is
not enough to generate a measurable scalp potential. When a group of neurons
is activated simultaneously, the net effect can be measured on the scalp. Action
potentials do not produce easily measurable potentials at the scalp. [9]

EEG monitoring can provide information about brain activity. However, solving
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Figure 1: A sagittal view of electrode placement according to the international
10–20 system. Modified from the original figure by Malmivuo et al. [8].



5

Nasion

Inion

20%

20%

20%

20%

20%

20%

Pg1
Pg2

Fp1
Fp2

F7

F3

Fz F4

F8

A1

T3

C3 Cz C4

T4

A2

T5 P3 Pz
P4

T8

O1 O2

Figure 2: An axial view of electrode placement according to the international 10–20
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the inverse problem, i.e., solving the source dipole distribution given the potential
distribution at scalp, is a difficult task. Without a priori assumptions about the
source dipole distribution and regularization, the problem is not even well-defined.
In this thesis, we take the EEG signal as a real-valued time course per se, without
considering the actual electrical sources of the signal. The sources might provide
interesting information but hardly contribute to the algorithm under development.
Fig. 3 shows an example of adult EEG recorded in the ICU.

The use of EEG as a diagnostic tool has been hindered partly by the lack of
common vocabulary among practitioners. Lately, such a nomenclature has been
proposed by the American Association of Neurologists [10]. We will use that naming
convention in this thesis. For classifying EEG recordings, we follow the classification
scheme for comatose EEG proposed by Young et al. [11]. The scheme is presented
in Table 1.
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Figure 3: Normal adult EEG with reactivity and variability (category IA). Recorded
in the ICU. The black line marks baseline, grey lines show ±50 V values, and tick
marks are printed every second. The names of the derivations are indicated on the
left side of each signal.

2.1.1 Common artefacts

The goal of EEG monitoring is to infer the neurological state of the patient. Arte-
facts can contaminate the measurement and even lead to a false diagnosis. Arte-
facts can be divided into physiological and mechanical artefacts. Electromyogram
(EMG), electrooculogram (EOG), electrocardiogram (ECG), ballistic effect, and
glossokinetic potential are examples of physiological artefacts. EMG is caused by
muscle activity and is typically manifested in high-frequency frontally predominant
activity. EOG reflects the movement of eyeballs. Since there is a voltage between
the cornea and the retina, the eyeball acts like a dipole, also contributing to the
scalp potential. EOG is best seen in frontal electrodes. ECG is caused by electrical
activity of the heart. The ballistic effect overlays a pulse-synchronized signal on
EEG due to pulsation of blood.

Typical mechanical artefacts are mains interference, mechanical movement of
the electrodes and bed vibrations. Moving electrode leads also cause an artefact.
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Table 1: Comatose EEG classification scheme [11].

Category Subcategory

I δ or θ > 50% of record A. With reactivity
(not θ coma) B. Without reactivity

II Triphasic waves
III Burst–suppression A. With epileptiform activity

B. Without epileptiform activity
IV α/θ/spindle coma

(unreactive)
V Epileptiform activity A. Generalized

(not in burst–suppression pattern) B. Focal/multifocal
VI Suppression A. 10 V to 20 V peak-to-peak

B. <10 V peak-to-peak

This is evident if we consider the lead as a conductive rod that is moving in an
external field. Bending the leads can cause artefacts through the triboelectric effect.
Hirsch and Brenner have documented exemplary artefacts [10]. All these artefacts
are present in the ICU and extreme care must be taken to ensure that no wrong
decisions are made because of compromised signal quality.

We must bear in mind, however, that a signal component that we might consider
artefactual in the current application, might actually be the most interesting part
of the signal in another study. For example, if EEG of a sedated patient shows
increasingly high amount of EMG, we can conclude that the level of anaesthesia
might need adjustment [12].

2.1.2 Special EEG techniques

Special techniques complement the normal EEG recording scheme. Continuous EEG
(cEEG) means recording EEG continuously for extended periods of time. This leads
to challenges in electrode design and in data storage methods. The electrodes should
be designed so that their impedance levels do not deteriorate too much during long
recordings. Patient safety also becomes a concern as skin contact is maintained for
several hours or even days. Lengthy measurements result in huge amounts of data
that need to be processed and stored. However, evidence suggests that cEEG is
necessary to provide an accurate picture of the patient’s state [13–17].

In video EEG, a camera is used for recording video simultaneously with the
EEG. Video can help clinicians identify artefacts. It provides behavioural correlates
with EEG. Using depth electrodes to record electrocorticogram (ECoG) can provide
a less distorted and artefact-free signal and thus facilitate interpretation [10, 18].
ECoG is, however, an invasive modality.

Analysing hours of EEG data is extremely time-consuming. It would be advan-
tageous to be able to compress the data and present only the relevant epochs or
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trends to clinicians. Agarwal and Gotman have presented one example for summa-
rizing EEG data [19]. Even though such semi-automatic post-processing methods
have been designed, the fact remains that raw EEG signal must be available for
later review.

2.2 Seizures

Epilepsy is a term used for a group of neurological disorders. Individuals with
a diagnosis of epilepsy have recurrent, unprovoked seizures [1]. A seizure is an
abnormal electrical discharge in the brain [20]. Some people have genetic features
that elevate the risk of developing epilepsy. Epilepsy can also emerge due to a
structural abnormality. Idiopathic epilepsy means that the cause of the disorder
is unknown. Types of seizures, their intensity, frequency, and duration vary a lot
between patients, but it is common that the same pattern is repeated on each
occasion on a given patient. About 0.6% of the general population suffers from
epilepsy. The prevalence varies, however, between age groups. [21, 22]

Seizures can also occur in individuals without diagnosed epilepsy. In contrast to
epileptics, these seizures are not recurrent or they are provoked. ICU is an example of
an environment where seizures have been encountered in patients without a diagnosis
of epilepsy. Typical etiologies for patients whose first seizures are encountered in
the ICU are summarized in Table 2. All of the studies referenced here have listed
hemorrhages in the head as a common etiology.

Seizures can be divided into two groups according to behavioural correlates of
the electrographic activity. In convulsive seizures the patient has visible convulsions,
e.g., rhythmic jerking. If there are no visible changes, or if they are subtle, such as
nystagmus, eye deviation, or myoclonus, the seizure is called non-convulsive. For
non-convulsive seizures, cEEG remains the best available detection method. [14,16]

According to a generally accepted definition, when there is continuous or nearly
continuous seizure activity for a minimum of 30min, status epilepticus (SE) is di-
agnosed. SE is a medical emergency that requires intervention [2]. The correspond-
ing term for persistent non-convulsive seizures is non-convulsive status epilepticus
(NCSE). Seizures that emerge from background EEG are called isolated seizures.
Cyclic seizures show a pattern with seizures starting at almost constant intervals.

Prevalence estimates of seizures in the ICU are summarized in Table 3. Even
though there is a large variation in the numbers reported, it can be concluded
that seizures in the ICU are much more common than prevalence of epilepsy in
the general population would suggest. Strikingly many seizure patients have only
non-convulsive seizures.

Because cEEG monitoring is not a standard procedure, it is hard to estimate
the general prevalence of seizures in the critically ill. In retrospective studies, data
that was recorded before is reviewed and findings are reported. The fact that the
EEG was recorded in the first place means that there was an indication for doing
so. Thus, such studies may have selection bias. On the other hand, if a prospective
study is targeting only a specific group of patients, we cannot draw conclusions
about the general prevalence of the studied phenomenon.



9

Table 2: Common etiologies of ICU patients with seizures.

Study Etiologies

Young et al. [23] Multiple organ failure,
(Non-convulsive seizures) anoxic-ischemic encephalopathy,

subarachnoid or intracerebral
hemorrhage, prior seizures

Claassen et al. [16] Prior seizures, CNS infection
brain tumour, previous
neurosurgical intervention,
subarachnoid hemorrhage, decrease
in the level of consciousness

Alroughani et al. [24] Hypoxic-anoxic injury,
(NCSE) intracerebral hemorrhage,

stroke
CNS = Central nervous system.

There are two reasons why the prevalence of seizures in the ICU is elevated. First,
the patients are presented with a variety of therapeutic drugs that may lower seizure
threshold. Second, because the patients are critically ill, with possible multi-organ
dysfunctions, there are plenty of possible causes for cerebral disturbances. [25]

Seizures are treated using anti-epileptic drugs (AEDs). Standard treatment of
prolonged seizure activity consists of airway maintenance, oxygen, and intravenous

Table 3: Prevalence of seizures in ICU. Modified from a publication by Friedman
et al. [14]. Included only cEEG studies.

Percentage Percentage

of patients of seizure patients

Study N with seizures with only NCSz Design

Jordan [26] 124 35 74 Ret.
DeLorenzo et al. [27] 164 48 100 Pros.
Vespa et al. [28] 94 22 52 Ret.
Vespa et al. [29] 109 19 79 Pros.
Claassen et al. [16] 570 19 92 Ret.
Pandian et al. [30] 105 68 N/A (27% NCSE) Ret.
Jette et al. [31] 117 44 75 Ret.
Claassen et al. [32] 102 31 58 Ret.
Oddo et al. [33] 201 10 67 Ret.
Alroughani et al. [24] 451 Overall 9.3% NCSE Ret.
Ret. = retrospective, Pros. = prospective
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diazepam. During medication, the cause of seizures should be investigated. If the
condition worsens, intravenous anaesthesia, intubation, and ventilation are required.
Thiopentone or propofol can be titrated until a burst–suppression pattern is seen in
EEG. [2]

Accumulating evidence suggests that also non-convulsive seizures and seizure
activity that does not qualify as SE should be treated. A widely supported view
is to consider seizure activity longer than 5–10 min as a condition that requires
intervention [15]. Periodic epileptiform discharges (PLEDs) might not count as a
seizure, but initiating prophylaxis has been suggested as a reasonable action if such
patterns are found [34].

For non-convulsive seizures, seizure duration and delay to diagnosis have been
found to be associated with increased mortality. However, it should be noted that
this patient population consists of critically ill. It might be practically impossible
to tell whether the mortalities are caused by the original underlying etiologies or by
the neurological dysfunctions resulting from them. [14, 23]

EEG is the standard tool in seizure studies. Once EEG has been recorded, a
seasoned expert should give a report on the findings. Annotating seizures retro-
spectively is a very demanding task. There is a considerable disagreement even
among those skilled in the art as to where the begin and end annotations should
be placed [35]. To provide a concrete means for seizure classification, a scheme for
what should be called a seizure has been proposed (see Table 4). Our development
work is based on these criteria.

Table 4: Criteria for seizure detection [23].

Guideline: To qualify at least one of primary criteria and
one or more of secondary criteria, with discharges for more than 10 s
Primary criteria:

1. Repetitive generalized or focal spikes, sharp waves,
spike-and-wave or sharp-and-slow wave complexes at >3 s 1.

2. Criterion 1 at <3 s 1 and secondary criterion 4.
3. Sequential rhythmic waves and secondary criteria 1, 2, and 3

with or without 4.
Secondary criteria:

1. Incrementing onset: increase in voltage and/or increase or slowing
of frequency

2. Decrementing offset: decrease in voltage or frequency
3. Post-discharge slowing or voltage attenuation.
4. Significant improvement in clinical state or baseline EEG after AED
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2.2.1 Epileptiform EEG

The adjective epileptiform means something that is related to epilepsy [36]. Epilep-
tiform EEG thus refers to EEG patterns that are often found in epileptics. Epilep-
tiform patterns are abnormal, but as such they do not constitute a seizure. Even a
patient without seizures can have some epileptiform patterns present in the EEG.
EEG during seizure is called ictal and between seizures inter-ictal.

This subsection summarizes some common EEG findings in the critically ill.
More examples on how to interpret EEG findings in the critically ill are reported by
Hirsch and Brenner [10] and by Chong and Hirsch [34].

The first described indication of epileptiform activity was the presence of spikes.
An example of EEG with several spikes is shown in Fig. 4. A spike is a sharply
contoured waveform with a duration of 20–70 ms [9]. Spikes are longer in duration
than EMG activity. If spike rate exceeds 3 s 1 continuously for more than 10 s, the
EEG can be classified ictal [23]. Classification as ictal is warranted also if spike rate
is lower and there is a response to administrated AED (see Table 4).

Epileptiform discharges constitute a severe EEG finding. Fig. 5 shows an example
of generalized periodic epileptiform discharges (GPEDs). Generalized activity is
present on several channels on both hemispheres. Focal epileptiform activity is
visible only on a few derivations.

A very common EEG finding in the ICU is the burst–suppression pattern. An
example is shown in Fig. 6. This finding is abnormal but is not always related to
a neurological dysfunction. The burst–suppression pattern emerges also when the
patient is under heavy medication with sedatives. If medication is further increased,
the EEG would ultimately become totally suppressed, or isoelectric. The burst-
suppression pattern is often described by the amount of suppressed EEG in the
epoch. The example epoch has a burst–suppression ratio of about 75%. It should
be noted that the bursts may contain epileptiform discharges.

When reviewing an EEG recording with seizures, one can often notice a pattern
that evolves from the initial, only barely noticeable epileptiform patterns to a seizure
with periodic discharges followed by post-ictal suppression. It must be stressed,
however, that not all seizures follow the same pattern. Fig. 7 shows an example of
a seizure with quite clear on-set and very clear off-set. Even the unskilled in the art
can easily follow how signal frequency and amplitude evolve during the event.

Figure 4: Spikes. The black line marks baseline, grey lines show ±50 V values, and
tick marks are printed every second.
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Figure 5: GPEDs (generalized periodic epileptiform discharges). The black line
marks baseline, grey lines show ±50 V values, and tick marks are printed every
second.
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Figure 6: An example of a burst–suppression pattern. The black line marks baseline,
grey lines show ±50 V values, and tick marks are printed every second.

2.3 Development background

2.3.1 Neurological monitoring in ICUs

The motivation to use on-line neuromonitoring in ICU arises from several reports
describing the prevalence of non-convulsive seizures in critical care (see Table 3). In
many places, the current protocol allows EEG monitoring only if there is a doubt
of a neurological problem. In this case, an EEG technologist brings a portable EEG
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Figure 7: An example of a seizure recorded in ICU. Seizure on-set and off-set, as
annotated by a clinician, are marked with vertical red bars. The same seizure is also
used later on as an example when describing the developed algorithms. This seizure
follows a pattern typical for evolution seizures: increasing frequency followed by an
increase in amplitude and, finally, by post-ictal suppression. The black line marks
baseline, grey lines show ±50 V values, and tick marks are printed every second.
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system to the ICU, connects the electrodes and records for approximately 30min.
The data are later reviewed by a neurologist who decides which actions should be
taken. There are typically 1–2 assessments per day in a non-neurological ICU [14].

This scheme is inefficient for two reasons. First, there is no guarantee that a
seizure appears during those 30min. In a retrospective study, it was found that
only 56% of seizure patients had their first seizure during the first hour of the cEEG
recording. After 48 h, 93% of the patients had encountered their first seizure [16].
Second, in the current scheme, there is a considerable delay between the recording
and the possible intervention.

2.3.2 Prior art

Several algorithms have already been designed for seizure detection in epilepsy mon-
itoring units (EMUs) and for neonatal patients. ICU, however, has so far been out of
their scope. Gotman, a recognized researcher in the field, has reviewed the general
principles of seizure detection [37,38].

Many different approaches have been experimented with in order to produce
EEG features that are specific to seizures and yet sensitive and generic enough to
capture the majority of them. A selection of seizure studies is summarized in Table 5.
Seizure detection has been approached as a machine-learning problem consisting of
two main steps: generating features and designing a classifier.

The first methods in the field did not actually aim at seizure detection, but at
compressing data and highlighting events for neurologist’s later review. These semi-
automatic detection systems can speed up the reviewing process, but they impose a
delay to intervention. There are several reports describing widely used compression

Table 5: Summary of some published seizure detection algorithms.

Study Used features Classifier

Agarwal et al. [19] A, dominant frequency, K-means
energy

Gabor et al. [39] Frequency, time course SOM
Firpi [40] Wavelet & FFT RBF
Zandi et al. [41] Rhythmicity & energy LDA
Tezel et al. [42] Time course descriptors ANNAAF
Guo et al. [43] Wavelet line length ANN
Zandi et al. [44] Rhythmicity, consistency, CUSUM

relative energy
A = amplitude, SOM = Self-organizing map,

FFT = Fast Fourier transform, ANN = Artificial neural network,

RBF = Radial basis function ANN,

ANNAAF = ANN with adaptive activation function,

LDA = Linear discriminant analysis, CUSUM = Cumulative sum control chart
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tools such as compressed spectral array, density spectral array, spectrogram and
non-linear energy operator [17, 19, 45, 46].

In the past, the most widely applied tactics was to analyse the frequency content
of the signal by applying some variant of the Fourier transform. When using this
method, there is a considerable trade-off between time and frequency resolutions. If
spectrum is evaluated in short windows, the time resolution is fair, but the frequency
resolution is poor. If a longer window is used, the frequency resolution increases but
the information is less concentrated in time.

A more modern approach is to use wavelet transform. This method is more thor-
oughly presented in Sect. 3.2.1. Wavelet decomposition allows representing signal’s
properties in different scales. This way both the time and the frequency content can
be assessed with a relatively good resolution.

Some features derivable directly from the raw EEG have also been experimented
with. The most common features are signal power and zero crossings. They have a
very low computational complexity, which is an advantage when designing an on-line
algorithm.

When the features have been generated, it remains to devise the decision making
method. This is a typical problem of supervised learning. Given a development data
set with known desired outcomes, one should design a system that performs well in
the development data. Furthermore, the classifier should be able to generalize and
show good performance also in previously unseen evaluation data set. Annotations
made by a neurologist are often considered as the ground truth in the problem
setting.

Machine-learning methods that have been applied in this field include expert
systems, decision trees, clustering algorithms, self-organizing maps, and a variety of
artificial neural network configurations. While the sophisticated machine learning
techniques can enhance the performance of the algorithm, they can also be cumber-
some for the end-user to interpret. The simpler the system is, the easier it is for
specialists to learn to trust and to understand it.

Some seizure detection algorithms have been made available for EMUs and for
neonatal patients. We present here the most widely used systems.

Gotman has been involved in the field of EEG monitoring and seizure detection
since the 1970s. His algorithms are distributed by Stellate. First algorithms used a
decomposition of EEG into elementary waves and inspected their properties [47,48].
Another module was added to exclude common causes for false positive detections
[49].

Persyst Development Corporation also offers seizure detection software. The
algorithm, Reveal Rosetta, is also promised to hold potential for ICU use. The
structure of the algorithm is largely unpublished. [50]

CNET is a non-commercially distributed algorithm for seizure detection. It uses
cepstral features to describe EEG. [39]
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2.3.3 Design drivers for the new algorithm

The proposed monitoring scheme is summarized in Fig. 8. This thesis focuses on the
evolution indicator branch. According to previous work done in the development
team, it has been established that power of the wavelet transformed signal together
with instantaneous frequency (see Sect. 3.2) could serve as a good starting point for
the algorithm development.

Accumulating evidence shows that signal power and frequency content contain
information relevant for seizure detection. These features have been an integral part
in many studies (see Table 5) and they are also appreciated in the seizure criteria
(see Table 4). Primary criteria 1 and 2 remain out of the scope of these features, but
seizures that satisfy the third criterion should be detected. We can also conclude that
static variables or trends do not give the full picture of the patient’s state. Instead,
one must look for certain kind of dynamics in the feature values, or evolution. In
this thesis, we will use the term evolution to refer to continuous, consistent changes
in feature values. This definition excludes sudden jumps and changes that mostly
cancel out. Seizures with such characteristics are called evolution seizures in the
context of this work. Finally, it is desirable to keep the features and decision making
process as simple and tangible as possible.

Based on interviews with ICU doctors, we have established certain goals for the
development project. Naturally, the system should be reliable in terms of specificity

EEG Signal
0.5–32 Hz

Wavelet de-
composition

Wavelet de-
tails 16–32 Hz

Wavelet approxi-
mations 0.5–16 Hz

Wavelet sub-
band entropy

Spike detection
and counting

Instantaneous
frequency (IF ) and
power (LOGPOW )

Evolution indi-
cator derivation

Figure 8: Schematic overview of the seizure detection algorithm. Särkelä has pub-
lished a description of the wavelet subband entropy [51].
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and sensitivity. It must be able to detect both isolated seizures and prolonged ictal
activity. Ability to compress data and to present long-term trends that monitor how
the patient’s state has progressed would be a desirable feature. Finally, the system
should be user-friendly both in terms of visualization and in using the electrode cap.

The project aims at developing monitoring software that presents relevant infor-
mation at the bedside and at the event of seizure activity alerts both the bedside
staff and a neurologist. A summary containing the raw EEG could be sent to the
neurologist who has remote access to the information system. After administering
AED, the effect could be followed by both the neurologist and the bedside staff on
real time. The bedside staff cannot be constantly paying attention to the moni-
tor, and neurologists do not want any unnecessary disturbance caused by irrelevant
events. For these reasons, it is important to minimize false positive alerts.

By interviewing experts in the field, we have established the following goals for
the seizure detection algorithm:

• Every patient with seizures should be detected

• On each seizure patient, we should reach 80–90% sensitivity

• An acceptable rate of false positive detections is about 1 in 8 h

These are the ultimate goals of the project. At this stage, however, we can relax
the specifications since we are designing only one part of the final method. Spike
detection, for example, is an integral part of the final method but is not included in
the analyses conducted in this thesis.
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3 Materials and methods

3.1 Data set

The data for this study have been collected at London Health Sciences Centre,
Ontario, Canada. The patients included in the study were receiving critical care.

Data were collected using two different devices. A sub-hairline EEG was recorded
by a device manufactured by Datex-Ohmeda. Standard scalp EEG was recorded
by a device manufactured by XL-Tek. Data from both recordings were analysed
retrospectively by an expert neurologist, Dr. G. Bryan Young. Two devices were
used to study how sensitive and specific the limited-coverage sub-hairline montage
is compared to the standard 10–20 system.

Because of recent reports implying that sub-hairline EEG has low sensitivity
for detecting seizures [14, 52, 53], we will use normal scalp EEG recordings as the
development data. Unfortunately, in some recordings, periods of data had been
removed before the data were delivered. For our use, we extracted from the original
data files derivations F3–Cz, F4–Cz, T3–Cz, T4–Cz, P3–Cz, and P4–Cz.

Each recording was categorized according to the established method (see Ta-
ble 1). In addition, electrographic seizures were annotated by the expert. Results
of the data classification are presented in Table 6. Only ten first seizures for each
recording were annotated. Statistics of annotated seizures are given in Table 7.

Table 6: Findings in expert’s review of the data set. Classes I A and I B have been
collapsed into class I.

Young’s coma

classification N Percentage

I 67 37.4%
II 22 12.3%
III A 11 6.1%
III B 15 8.4%
IV 7 3.9%
V A 16 8.9%
V B 23 12.8%
VI A 19 10.6%
VI B 9 5.0%
Without classification: 6
Patients belonging to two classes: 16
Total patients: 179
Total recordings: 260 (>150 d of data)
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Table 7: Summary of seizure patients in the development data set. Durations refer
to annotated seizures. For each recording, only ten first seizures were annotated.
Sub-recordings from each subject have been pooled together for this table.

Identifier Min [s] Max [s] Median [s] N

case016 19 27 21 3
case035 34 399 111 13
case098 28 32 29 3
case101 9 36 h 357 25
case102 68 68 68 1
case103 26 45min 165 10
case104 9 105 19 4
case106 35 35 35 1
case109 88 88 88 1
case119 118 118 118 1
case122 41 54 42 3
case126 14 84 51 10
case130 15 15 15 1
case144 71 162 93 11
case156 66 66 66 1
case157 10 72 42 31
case159 48 94 61 3
case177 9 24 h 20 12
case178 8 79 48 5
Recordings with seizures: 28
Seizure patients: 19
Annotated seizures: 139

3.2 Mathematical methods

We will be working with a two-dimensional feature space. One feature captures
the instantaneous frequency of the signal and the other one measures signal power.
Signal power is computed from the stationary wavelet transform. For instantaneous
frequency computation, we apply the Hilbert transform. The transforms are briefly
explained below. For the interested, there are several thorough guides available [54–
56].

3.2.1 Wavelet transform

Traditional signal analysis methods rely on the Fourier transform and its variants.
In Fourier analysis, the signal is transformed to a new basis spanned by harmonic
functions. Taking inner products with the basis functions, we find out how much of
the signal is explained by each basis function. In the case of a harmonic basis, we
can immediately recognize which frequencies are present in the signal.
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A drawback with harmonic basis functions is their lack of time resolution. Be-
cause the basis functions are not localized in time, we cannot pinpoint how and when
the frequency content changes within the computation window. Sliding windows,
different windowing functions, and the short-time variant of the Fourier transform
have solved some of the issues.

Wavelet analysis approaches signal decomposition from another point of view.
Instead of non-localized harmonic functions, wavelet analysis makes use of square-
integrable, localized basis functions. The basis is formed by translations and dila-
tions of one basis-generating function called the mother wavelet.

The following discussion is mainly based on the documentation of the software
package used in this study [57]. The first introduced mother wavelet was the Haar
wavelet (see Fig. 9a). It is straightforward to show that it has the properties required
for a basis. In many applications, however, the Haar wavelet is not the optimal
choice. A simple example is representing a signal with a sloping line. We would
need a lot of Haar wavelets to represent such a simple signal.

An example of a more advanced mother wavelet and its transformation is shown
in Fig. 9b–c. From the graphs, it is not immediately clear that these functions, the
Daubechies-5 wavelets, constitute a basis. Daubechies wavelets, named after the
Belgian mathematician and physicist Ingrid Daubechies, are nowadays perhaps the
most widely used family of wavelets.

Let Φ (s, τ) be the mother wavelet. Basis functions are generated by dilating the
mother wavelet, or in other words, altering its scale s. Translations are achieved
by varying the parameter τ . This is how wavelet analysis provides a means for
multi-resolution analysis. We can inspect the transformed signal at different scales
by varying s.

We can now introduce continuous wavelet transform. We select a mother wavelet
and compute correlation between the signal x(t) and the basis functions:

w(s, τ) =

� ∞

−∞
x(t)

1√
s
Φ

�
t− τ

s

�
dt. (1)

Wavelet coefficients w respond similarly to matching signal patterns as a tuning
fork responds to matching sound—by gaining energy. Eq. (1) defined the continuous
wavelet transform. For computational purposes, a discrete variant is introduced as

a) b) c)

Figure 9: a) Haar mother wavelet, b) Daubechies-5 mother wavelet, c) scaled version
of the Daubechies-5 wavelet.
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wj,k =

� ∞

−∞
x(t)Φj,k(t)dt, (2)

where according to the widely used dyadic sampling s = 2−j, τ = k2−j, and Φj,k =
sj/2Φ(2jt− k). The variables j and k are integers.

So far we have discussed wavelets using graphs of mother wavelets and correla-
tions with the signal under study. It can be shown that the discrete wavelet trans-
form can also be formulated as a filtering problem. This implementation, the filter
bank method, is computationally very efficient. Mallat was the one to introduce
this algorithm [58].

One run through the filter bank breaks the signal x[t] into two parts: approxima-
tion xa[t] and details xd[t]. Approximation is the coarse scale that contains mainly
the trend of the signal. More specifically, it contains frequencies smaller than half
the bandwidth of the signal. Details capture the fine scales, or the upper half of the
bandwidth. Hence, each run divides the bandwidth of the signal in two. At step
j + 1, we have

xa
j [t] = xa

j+1
[t] + xd

j+1
[t]. (3)

The original signal can be restored from the approximations and details. Fig. 10
shows an example of wavelet coefficients at different levels. We also see how the
high-frequency burst is captured, and remains well focused in time, by the detail
part, while the approximation part provides the trend of the signal.

The major drawback of the basic discrete orthogonal wavelet transform is that it
is not time-invariant, meaning that coefficients of a delayed signal are not a delayed
version of the coefficients of the original signal. In signal processing, this would mean
that performance of a detector depends on when the signal arrives at the detector.
Obviously, such behaviour is detrimental to the credibility of the detector. The
stationary variant of orthogonal wavelet transform was first introduced by Pesquet
et al. [59]. All wavelet transforms in this thesis are carried out using the time-
invariant method.

3.2.2 The Hilbert transform

Johansson has presented a thorough review of different aspects of the Hilbert trans-
form [60]. The Hilbert transform f̂(t) of a function f(t) is defined by

f̂(t) =
1

π
P.V.

� ∞

−∞

f(ξ)

t− ξ
dξ, (4)

where P.V. denotes the Cauchy principal value of the integral. The transformation
stated above arises in several fields of mathematics. In signal processing, it is most
often used when creating an analytical signal from a real signal. Analytical form
z(t) of function f(t) is given by

z(t) = f(t) + if̂(t). (5)
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a)

b)

c)

Figure 10: An illustration of stationary wavelet transform with Daubechies-5 mother
wavelet. a) Signal containing a high-frequency burst superposed on a stationary
signal with Gaussian noise. b) First detail level captures most of the noise and the
burst. c) Second-level approximation. Units in this figure are arbitrary.

Analytical signals can be written using complex exponential function:

z(t) = A(t)eiφ(t), (6)

where

A(t) =
�
f(t)2 + f̂(t)2 (7)

and

ϕ(t) = arctan

�
f̂(t)

f(t)

�
. (8)

Knowing the phase of the signal, we can compute the instantaneous angular
frequency as

ω(t) =
dφ(t)

dt
. (9)

Frequency in Hz corresponds to ω/2π. In the case of multi-component signals,
instantaneous frequency represents the local frequency averaged over a few samples.

Above we have discussed continuous functions. EEG, however, is a discrete
signal. Deriving the discrete variant of the Hilbert transform is somewhat involved.
Suffice it to say that the algorithm utilizes fast Fourier transform.
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3.2.3 Signal power

Signal power is one of the simplest signal features. In this thesis, we compute signal
power from wavelet transformed EEG signal. Average signal power over N samples
is given by

P [t] =
1

N

t�

k=t−N+1

x[k]2. (10)

To obtain meaningful values for signal power, we must remove the DC component
before computation. This is done by applying a high-pass filter before the wavelet
decomposition.

In the analyses, we will use the instantaneous frequency as defined in the pre-
ceding subsection and base-10 logarithm of signal power.

3.3 Evaluation methods

Evaluating the performance of an algorithm is anything but a straightforward task.
To objectively assess its performance, we must put it into numbers. However, the
numbers we choose to present can have a drastic effect on the interpretation. Thus,
special attention must be paid on which error measure and performance measure we
report.

In general, there are two approaches to assessing how well an algorithm agrees
with expert opinion. The first method is to think of detections as binary events,
not paying attention to their durations. With this methodology, if the detection
made by the algorithm overlaps with that made by the expert, we count it as a true
positive detection (TP). Similarly, a detection that does not overlap with expert’s
annotation counts as a false positive detection (FP). This consideration gives us two
performance measures, any-overlap sensitivity (SeAO) and false positive rate (FPR):

SeAO =
Number of TP

Total amount of expert annotations
(11)

FPR =
Number of FP

Duration of the recording, annotated events excluded
(12)

The obvious shortcoming with these measures is that they do not measure how
well the detections cover the expert annotations or how long the false positive de-
tections are. In the extreme situation, an algorithm that marks the whole recording
with intermittent annotated seizures as a single detection would yield SeAO = 1
and FPR = 0, regardless of the number of annotations and their durations. For
a seizure-free recording of duration t, such an algorithm would have FPR = 1/t.
Throughout this thesis, the unit of FPR is h−1.

These shortcomings can be addressed by using integral measures. Instead of
merely checking whether the detection and the annotation overlap, we compute how
much they overlap. Similarly, for the false positive detections we compute how
big a proportion of detections occurring outside expert annotations take up of the
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seizure-free part of the recording. Now we can introduce integral sensitivity (SeInt)
and integral specificity (SpInt):

SeInt =
Duration of TP

Duration of expert annotations
(13)

SpInt =
Duration of FP

Duration of the recording excluding the annotated parts
(14)

With the integral measures, an algorithm that marks the whole recording as a
single detection would perform ideally in terms of SeInt but the value of SpInt would
reveal the culprit. These measures are informative if the algorithm is designed to
detect the whole annotated epoch. But if the algorithm is designed to detect only
the on-set or the off-set of the event, these performance measures are misleading.

Wilson has presented a discussion with some novel performance measures [61].
In publications, the most common numbers to present are SeAO and FPR.

What complicates the performance evaluation even more than the selection be-
tween different measures is the lack of rock-solid ground truth. When annotating
seizures, there is a considerable inter-expert discrepancy [35]. The differences are
most pronounced when annotating on-sets and off-sets of seizures. In author’s opin-
ion, the point of the most active ictal activity can be rather easily spotted, but
annotating the gradual on-set is rather ambiguous. This is extremely problematic
when considering SeAO as a performance measure. A detection occurring just before
or after the expert’s annotation might, actually, be a correct detection, but does not
count as a true positive detection. However, we cannot justify changing the on-set
and the off-set annotations, because such a detection may be caused by some other
change in the EEG than seizure on-set or off-set.

We are attempting to develop a detector that is sensitive for evolution in certain
signal characteristics. Evolution occurs typically throughout the seizure, but when
isolated seizures start to merge and the patient proceeds towards SE, the amount of
evolution diminishes [62]. If we consider SeInt as performance measure, we should
expect to see poor performance in prolonged ictal activity.

To address the challenges discussed above, we present one more performance
measure. From the clinical standpoint, the most important event is the first seizure.
If we can detect this event within a certain time frame, the staff can intervene and
further complications can be avoided. Since it is not critical that the method detects
the exact on-set of the annotated event, we relax the limits a bit by introducing first
event sensitivity (SeAO 1st). Let ∆t be the interval that spans from 3min before
the first on-set annotation to 10min after the on-set annotation. For each patient,
define:

SeAO 1st =

�
1, if there is a detection during ∆t
0, otherwise

(15)

Differences between the performance measures introduced here are summarized
in Fig. 11. In this example depicting a 1 h recording, there are two events annotated
by the expert. Three exemplary algorithm outputs are presented and the extend of
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∆t is illustrated. Table 8 lists the performance indicators’ values for the example
algorithms. By merely looking at the performance values, it is hard to say which
algorithm performs the best.

All these issues make the performance evaluation a difficult task. On the one
hand, putting performance in numbers is the only way to objectively assess how
well the algorithm works. On the other hand, the performance numbers can over-
simplify and mislead the audience and the researchers. We can conclude that since
no performance measure alone is ideal for our purposes, we will have to, at least to
some extent, trust our subjective assessments when comparing different methods.
Extra care should be taken when considering SeAO 1st, since the detection might
actually arise from an artefact.

Expert

∆t

Algorithm 1

Algorithm 2

Algorithm 3

Figure 11: Examples of different algorithm outputs and performance measures.

Table 8: Performance of example algorithms presented in Fig. 11

SeAO FPR SeInt SpInt SeAO 1st

Algorithm 1 1 0 0.13 1 1
Algorithm 2 0.5 2 0.03 0.88 1
Algorithm 3 1 0 1 0.36 1
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4 EEG feature space

4.1 EEG preprocessing

The preprocessing steps are summarized in Fig. 12. We start with a single-channel
signal. The signal is first down-sampled to 128Hz. Filtering is performed using a
low-pass equiripple FIR filter with stop-band at 50Hz and a high-pass equiripple FIR
filter with stop-band at 0.25Hz. Filters were designed in Matlab and had lengths
of 94 and 880 samples, respectively. Stop-band attenuation was set to 70 dB. Filter
lags are accounted for in the processing. Filtering effectively removed the mains
interference and the DC component.

In the second phase, artefact exclusion criteria are applied. When rejecting
artefacts, we prefer too strict criteria to too loose. Artefact detection is done to
ensure that what the algorithms process is likely to be related to the patient’s
brain activity. An amplitude criterion is used for detecting mechanical artefacts. In
addition, loose electrodes are detected by monitoring signal power in the 32–64 Hz
band.

The artefact-free signal is then transformed using stationary wavelet transform.
For further analysis, we select wavelet approximations from 0–16 Hz band. Using
this representation, we compute the features IF and LOGPOW . The features
are estimated in 1 s non-overlapping windows. Having filtered the features using a
median filter of length 21, we arrive at the final features.

4.2 Noise susceptibility of computed features

Fig. 13 shows the relationship between noisy signal amplitudes and computed LOGPOW
values. We use the mathematical notion of signal amplitude, i.e., half of the peak-
to-peak difference. Simulated values were obtained by using 3.5Hz sinusoids with
added Gaussian noise such that SNR ≈ 6 dB. In the figure, SNR is kept constant
and the amplitude of the carrier signal is varied. The feature performs well even in
the presence of small noise.

Peak-to-peak EEG difference below 10 V is considered suppressed [11]. Such
epochs will not yield any further analysis. From Fig. 14 we can see that this limit
maps to LOGPOW ≈ 1.7. Contrary to Fig. 13, Fig. 14 presents the data without
added noise.

While the signal power feature is robust against noise, the frequency feature is
not. Simulation results are shown in Fig. 15. The simulations were carried out with
Gaussian noise (µ = 0, σ2 =3 ( V)2). In this figure, the absolute amount of noise
was kept constant, meaning that the SNR varies with the carrier signal amplitude.
The noise parameters were selected according to a report describing the amount
EEG electrode noise [63]. The selected parameters represent typical values for good
electrical contact. Using this noise level, the IF readings become unreliable when
LOGPOW < 2.

Features have been computed using a 1 s window. The features are, to a large
extent, performing well with different frequencies as long as there are several cycles
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Figure 12: Preprocessing steps.
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Figure 13: Relationship between signal amplitude and LOGPOW values. Values
obtained from 3.5Hz sinusoid with added Gaussian noise.

within the computation window. But when using a 1 s window, frequencies lower
than 1Hz will not yield correct LOGPOW values. This effect is seen in the 0.5Hz
signal in Fig. 15. The computed LOGPOW values are translated a bit leftwards.

However, the noise susceptibility of IF is not a function of the computation
window length. Increasing the length of the computation window would give more
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Figure 14: Amplitudes of noise-free sinusoids and the corresponding LOGPOW
values. Clinically considered limit for suppression yields LOGPOW ≈ 1.7.
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Figure 15: Performance of IF variable in the presence of Gaussian noise. Straight,
coloured lines show the true frequency of the signal while circles depict the computed
IF values at different power levels. In this figure, the amplitude of the sinusoid is
varied and noise is kept constant. Distortions appear when LOGPOW ≤ 2 and
they are most pronounced in low frequencies.

reliable results in low frequencies in terms of LOGPOW but it would also degrade
temporal resolution.

The discussion above leads to the conclusion that as signal power diminishes
below a certain limit the frequency variable’s readings are not to be trusted. This
is a crucial piece of information when investigating different algorithms and sources
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of their possible shortcomings. The clinical limit of EEG suppression and the lower
bound of signal power that yields reliable frequency estimates are, luckily, almost
the same. When designing the algorithms, we have selected to exclude epochs where
the feature values might not be reliable and EEG is close to the limit of suppression.
At this stage the exclusion is based on binary logics. If EEG is close to the limit
of suppression, this causes unwanted jumps in feature values. A more sophisticated
way to handle EEG that is close to the suppression limit would be to design a spline
that would make the transition smooth.

Low-frequency signals are more susceptible to noise than high-frequency signals.
This is mostly due to the windowing parameters we selected. It is a widely appre-
ciated fact that low-frequency signals need more samples for reliable analysis than
high-frequency signals. One way to treat different frequencies equally would be to
consider the amount of cycles in the computation window.

4.3 Prototype seizure

Fig. 16 shows an example of EEG feature traces during an evolution seizure. This
single-channel example highlights the distinctive phases of a seizure and how the
changes are reflected in feature values. Before seizure on-set, the background activity
is stable. During seizure, we see first a clear increase in frequency and in power,
followed by a further increase in power and slowing of EEG. Finally, as the seizure
wanes, we see post-ictal suppression. See Fig. 7 for the EEG of this seizure.
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Figure 16: A prototype seizure. The black points represent feature values before
seizure, the red points correspond to the time marked as seizure by a clinician, and
the green points refer to the post-ictal period. Data points are sampled at 1Hz.
This is an actual seizure recorded on T4–Cz. See Fig. 7 for the EEG tracing of this
seizure.
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We will use this prototype seizure to show how different algorithms approach
the problem of detecting seizure-related evolution. It should be noted that while
this example seems like an easy one to be detected, seizures in reality come in all
shapes and sizes. This example is used merely for illustration purposes and by no
means represents a template. Finally, it should be noted that even though we use
single-channel data for visualization here, the algorithms process multichannel data,
allowing for comparisons between brain regions.

It is insightful to pay attention to how the specialist has annotated the seizure.
Feature values at the on-set cannot be distinguished from the background, but
the expert has already seen ictal patterns. In striking difference with automated
detection systems, specialists often review data rewinding forward and backward.
This allows them to spot the most easily detectable phase of seizure and then to
rewind back to fine-comb the channels to find the first indications. Same applies for
the end mark. Automated systems, however, should make annotations in real time,
without the possibility of returning back in time. For this reason, trying to optimize
the system to follow specialist’s annotations too strictly may not be a reasonable
goal for the development project.
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5 Developed algorithms

This section describes the algorithms that were developed in the course of this
thesis. Three algorithms were developed using a slightly different rationale in each
case. The three proposed algorithms use the same EEG features.

5.1 Algorithm I: Path length

The first attempt at detecting evolution arises from the rationale that as the seizure
proceeds, the steps in the feature space do not cancel out as much as they do
during inter-ictal epochs or in non-epileptiform EEG. Fig. 17 illustrates the idea.
Since consecutive steps do not cancel out, with proper filtering and computation
parameters, we should be able to derive an indicator that describes the length of
the feature trace as perceived by the human eye.

It is clear from the example seizure that if we compute normalized path length
in a given window, there should be an increase in the variable after seizure on-
set followed by decrease as the last seizure-related data points slide outside the
computation window.

Let x[t] and y[t] be the features that are being traced and �F [t] be a vector whose
components are x[t] and y[t]. Define difference over m samples as

∆�Fm[t] = �F [t]− �F [t−m]. (16)

For the computation, we need to define the computation window length N .
Define normalized path length (PL) as

PL[t] =
1

N

n=t�

n=t−N+m+1

||∆Fm[n]||2 . (17)

Both m and N were at first tuned by hand. The parameter m means the number
of samples over which the difference is sought. For example, using m = 5 means
that differences are considered over five samples and we obtain five difference values
for each 5 s block. After the computation, we apply a median filter of length m+1.
Increasing m decreases noise in PL.

The value of m was tuned by hand to m = 5. Computation window length is an
important parameter that was left to be optimized in Sect. 6.

To complete the path length algorithm, we compute a weight vector w[t] whose
purpose is to make the seizure-related evolutions more pronounced in the feature
values while attenuating effects of evolutions that are not likely to be seizure-related.
Fig. 18 illustrates the weight computation. Let

∆�fm[t] =
∆�Fm[t]���

���∆�Fm[t]
���
���
2

. (18)

The weighting term is then obtained as

w[t] = max
�
0,∆�fm[t] · �p

�
, (19)
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Figure 17: Illustration of path length computation. During the seizure the steps
do not cancel out as much as during normal activity. In the ictal phase they are
targeted towards higher frequency and amplitude values. Arrows show some vectors
∆�Fm for different t.

where �p represents the direction associated with seizure related evolutions. Trans-
lating the clinicians’ criteria into mathematics, we set �p at an angle of π/4 with the
positive x-axis. We set ||�p ||2 = 1, yielding weights in [0, 1]. Final, weighted path
length values are obtained as

PLW [t] = w[t] ∗ PL[t]. (20)

Fig. 19 shows the tracing of PLW during the prototype seizure. It is interesting
to note that the values start rising already before the annotated start of the seizure.
PLW is suitable for detecting seizures with evolution right from the beginning of
the measurement because it does not need history data.

∆�fm[t1]

�p

w1 = 0.91

∆�fm[t2]

�p

w2 = 0.71

∆�fm[t3]
�p

w3 = 0

Figure 18: Illustration of how weighting factors for path length computation are
obtained. Gray dashed lines mark the projections of normalized differences over m
samples (black) to the vector �p.
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To complete the detector, we need to define a threshold for the indicator. This
is done for PLW as well as for the other algorithms in Sect. 6.

5.2 Algorithm II: Random walk

The second algorithm is based on the idea that when there is no seizure activity,
the feature tracing resembles the path of a random walker. Each step seems to
be randomly drawn from an autoregressive process At seizure on-set, the process
changes from random to organized. Steps are no longer drawn from a stochastic
constant-mean process, but seem to correlate in direction and size. This algorithm
attempts at quantifying the change.

We start by defining one or more histories N . These histories form the memory
of the process. Using the histories, we define the average step as

�a[t] =

�t
n=t−N

���∆�Fm[n]
���

N
(21)

For each step, we compute an index indicative of the likelihood of the step being
ictal. Steps are computed considering the difference between the latest point and
the average value within a block of size b that is N seconds in the past. Averaging
is used for making the algorithm more robust. A step is computed by

F̄N [t] =
1

b

b�

k=1

∆�FN−1[t]. (22)

An index RWS representing the amount of steps taken by the random walker
can then be defined as

RWS =

����

����

�
F̄N,1[t]

a1
,
F̄N,2[t]

a2

�����

����
2

(23)
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Figure 19: Output of the algorithm I, PLW , showing the variable’s behaviour before
seizure (black), during seizure (red), and during post-ictal suppression (green).
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where subscripts 1 and 2 refer to the components of the vector.
Simply put, we compute how many average steps it would take in both x and y

directions to represent the difference between the last step and the average value N
seconds in the past. If the number is very small, we can conclude that the current
step does not stand out from the history data. A large value means that we can
immediately recognize the step as not being a part of the background activity. While
one could present arguments for using the norm ||·||∞, we have used the Euclidean
norm.

The original idea behind this algorithm was to consider the tracings of the fea-
tures as a path of a random walker. A random walker takes steps whose length and
direction are randomly selected from a given distribution. We gathered background
EEG and composed what was a best guess of the step distribution. Then, given a
step, one could easily check how probable would it be for the random walker to take
a step that would be longer than the one actually taken. This probability tends to
zero as step sizes grow. With small steps, the probability of a longer step is large,
an indication of the fact that the step does not stand out from the background.

The original idea was found to be too noisy and we let go of the probability
distribution and focused on the number of average steps it would take to make the
current step. This algorithm, being also computationally favourable, proved to be
more robust than the original one. RWS provides a similar trending feature as
PLW . Fig. 21 shows how the indicator behaves during the prototype seizure.

Adjustable parameters are limited to the length of the history N and the scope
of the step size m. The latter was selected by similar arguments as with the previous
algorithm, and N was left for later optimization. Also, we can choose to use a fixed
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Figure 20: Illustration of algorithm II. The average step has been defined from the
background activity. Two exemplary steps depict the idea of the algorithm (see also
Fig. 21).
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step size instead of adaptive steps when performing the comparison. Fixed step size
requires the determination of one more parameter, the representative step of the
background activity.

5.3 Algorithm III: Convex hull

Like the random walk algorithm, the convex hull algorithm is designed to detect
changes relative to background. The algorithm keeps track of history data with
detected evolutions excluded. Using these data, a borderline is constructed. The key
idea is that as long as the feature vectors stay within the boundaries, the changes
do not count as seizure-related changes. We have used a background window of
maximum 3min.

When a seizure starts, the computed EEG features, desirably, also change. De-
pending on the seizure and on the features used, the changes can be minuscule or
very large. The main point is that they do exhibit a change compared to the back-
ground. Defining background activity and its boundaries is a demanding task as
such. We use the concept of convex hull to establish the boundaries of the back-
ground activity. Fig. 22 shows a simplified example of how the algorithm works.

Let X = {�x1, �x2, . . . , �xk|�x1...k ∈ Rn, k ∈ N}. One way of defining the convex hull
of set X is

conv(X) =

�
k�

i=1

ai�xi|�xi ∈ X, ai ∈ R+,
k�

i=1

ai = 1, i ∈ N
�
. (24)

The notion of convex hull can be easily understood if one considers the points
of X scattered in a two-dimensional space and a rubber band that is stretched so
that whole X is inside the rubber band. When the rubber band is released, it takes
the form of conv(X). The same concept is readily generalized to larger dimensions.
Convex analysis is a well-established branch of mathematics and the problem of
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Figure 21: Output of the algorithm II, RWS, during the prototype seizure. The
computation was carried out with adaptive step sizes and a 180 s history.
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constructing the convex hull of a given set is studied thoroughly. In our application,
we use the quickhull algorithm [64].

Each time the feature vectors breach the hull, an elementary detection is made.
This elementary detection is subject to further tests to check whether it is seizure-
related or not. First, we compute the angle ν between the center-of-mass of the
background data and the most recent data point. Only a certain range of angles is
acceptable for seizure-related evolution. This is a way of translating the clinicians’
criteria for seizures into a set of rules.

The second test considers the duration of the elementary evolution. There is
a time threshold tmin that the feature vectors must remain outside the hull. If
the elementary detection is very brief, it will be discarded and considered normal
background activity. Discarded detections, as they now are a part of the background
activity, are used for updating the hull.

The final criterion before a detection is made is the maximum distance d to the
hull reached during the elementary detection. We use a threshold dmin to exclude
elementary detections that have remained very close to the hull.

Detection can end when feature vectors return inside the hull, close enough to its
border, or when maximum detection duration tmax is exceeded. When the detection
ends, the hull is reset.

The output of the algorithm is a vector CHS showing how many consecutive
steps have been taken outside the convex hull. This is in stark contrast with the
previously introduced algorithms that produce a trend. Parameters tmin and dmin

will be optimized like with other algorithms while the range of ν is selected based on
commonly accepted seizure criteria. An example output of the algorithm is shown
in Fig. 23. The decision-making structure of the algorithm is summarized in Fig. 24.
This algorithm is clearly more complex than the previous two algorithms.
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Figure 22: The background activity is confined in the convex hull (blue). Soon after
seizure on-set, the feature vectors leave the convex region. Dashed lines show the
range of directions relative to the center-of-mass that are considered acceptable for
seizure-related evolution. In the close-up figure, distance d is evaluated after five
consecutive steps outside the convex hull (tmin = 5).
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Figure 23: An example of the output of the algorithm III, CHS, during the proto-
type seizure.
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Figure 24: Flow chart of algorithm III. The binary variable evo is true when seizure
activity is detected and false otherwise.
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6 Results

Algorithms I and II produce trends. High indicator values mean that the effect
measured by the method is pronounced in the data. For example, path length has
a baseline value that corresponds to the amount of normal evolution in the EEG.
Slightly increased amount of evolution in EEG yields a slightly higher path length
value, and a large amount of evolution produces large output values. The random
walk algorithm works in a similar fashion. For these algorithms, we have to define
a threshold that allows us to separate ictal epochs from other data.

Algorithm III does not produce a trend. It uses more logics and tests than the
other algorithms. As a consequence, this method cannot be analysed in the same
way as the other algorithms. The output variable, CHS, depicts the number of
steps outside the convex hull. After tmin steps additional tests are performed. Based
on them, the counter is either reset or allowed to increase further. It follows that
CHS value of tmin+1 should count as a detection. Contrary to the other algorithms,
higher values of CHS do not mean that it is more likely that there is an on-going
seizure. It only means that tests have been passed and the hull has not yet been
reset. For this reason we cannot apply similar thresholding techniques as we will be
using for the other two algorithms.

In the first subsection we introduce the performance evaluation protocol. The
rest of the subsections each address one algorithm. After optimizing the detection
parameters, we present the results. At the end of each subsection we report prob-
lematic recordings. After presenting results for individual algorithms, we address
the question of selecting the most prominent one of them by comparing performance
values at both seizure detection and at avoiding false positive detections.

6.1 Performance evaluation protocol

All three proposed algorithms have internal parameters that should be optimized.
That is, however, computationally not possible. Computations were carried out
using a modern workstation with two quad-core processors running at 2.66GHz and
3GB of RAM. Using the whole database (see Table 6), 8 EEG derivations, and
computing feature values at 1Hz yields a running time of about 30 h for algorithm
III. Algorithms I and II run in about 12 h and 15 h, respectively. Some time savings
could be achieved by optimizing computation routines, but the fact remains that
sweeping the entire parameter space of even one algorithm is a demanding task. All
computations were carried out in Matlab version 6.5 [65]. The available version of
Matlab could not employ the whole potential of modern multi-core technology.

Because we cannot use statistical methods to pick up the optimal parameters,
we must resort to a manual selection procedure. In the following subsections we
will present three variants for each algorithm. First version, (v1), is selected so that
specificity is prioritized. Using this configuration, we will learn which patients are
the easiest ones to detect. We will also find out which of the non-seizure patients have
detections despite the strict criteria. Such patients have to be addressed separately.
Once the source of false detections is identified, we can complement the algorithm
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with a routine that detects and excludes such epochs.
Second configuration (v2) is designed so that sensitivity of the method is maxi-

mized, while keeping the amount of false detections at a reasonable level. With this
set-up, we can learn which patients are likely remain out of the scope of the method.
Again, these patients must be addressed separately, e.g., by spike detector.

Third configuration (v3) is selected between the two extrema. This configuration
represents a compromise and gives an idea of the realistic potential of the method
at the current development stage. This version is not presented for algorithm III
because of the method’s computational burden.

There is a considerable amount of subjective judging when picking the repre-
sentatives of each method. There is no reasonable way to pick the configurations
automatically. The author has used the same criteria with all methods when select-
ing parameter values, but this remains a source of subjectiveness in the study.

We present several performance measures for each algorithm. False positive
detections are reported only for patients with no annotated seizures. FPRw refers to
the duration-weighted average FPR. FPRpa refers to non-weighted patient averages,
obtained after pooling all recordings of each patient together. SeAO 1st refers to
SeAO when considering relaxed first annotated seizure of the patient (see Fig. 11).
Patient sensitivity is 1 for seizure patients that have any detections in SeAO sense.
In results, we present the value averaged over all seizure patients (SeAO pt). We
also report SeAO when all seizures in the database are considered (SeAO all szs), and
the average of patients’ SeAO values (SeAO pt szs). Integral specificities (SpInt) are
reported in the same fashion as FPR values. Finally, we report integral sensitivity
computed over all seizure records (SeInt).

We have to investigate the performance values as whole. Concentrating too much
on a single value can be misleading. The lack of one accepted performance value
can, unfortunately, introduce a bit of vagueness in the arguments presented below.

6.2 Performance of algorithm I

Since we are not interested in short transients that cause the indicator to rise above
the threshold, we need to establish a threshold also on the time axis. Based on
clinical guidelines, we set the threshold to 10 s. Thus, for a detection to be counted,
the indicator value shall exceed the threshold continuously for more than 10 s.

To obtain the three representative versions, we try out several threshold values.
We start with v2 using a low threshold. Next, we start gradually rising the threshold.
We are looking for a reasonable compromise between FPR and SeAO. The threshold
for v2 is set at the value from which further increase cannot be achieved without
significantly deteriorating detection capability.

For v1, we continue rising the threshold value until we find a limit that gives de-
tections only on the most pronounced seizures. Threshold for v3 is selected between
the extrema.

Results obtained using this scheme are summarized in Tables 9 and 10. PL30
refers to a 30 s history, PL90 to a 90 s history, PL180 to a 180 s history, and PLAVE
to the average of the three. The data show that PLAVE and PL30 are the most
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promising variants of this algorithm. PLAVE v3 achieves one of the highest SeAO 1st
values while still having overall FPR less than one. PL180 stands out as having the
worst performance values. Integral specificities are close to one with all window
lengths, implying that most false positive detections are short. In fact, because
IntSe values are also low, the true positive detections are in general much shorter
than the annotated seizures.

Using the v1 and v2 set-ups, we can identify problematic patients. Seizure pa-
tients are considered problematic if their SeAO or SeAO 1st values in the sensitive
set-ups are close to zero. From the group of non-seizure patients, we list patients
with FPR > 5 or SpInt < 0.9. Problematic patients are listed in Table 11.

6.3 Performance of algorithm II

Algorithm II can be evaluated using the same procedure as the previous algorithm.
RWL refers to 180 s adaptive window, RWSH to 90 s adaptive window, and RWLF

Table 9: Detection results for algorithm I. This table presents SeAO values. V1 refers
to the specific set-up, v2 to the sensitive set-up, and v3 to the compromise set-up.

PL180 PL90 PL30 PLAVE

Ident. v1 v2 v3 v1 v2 v3 v1 v2 v3 v1 v2 v3

case016 0 0.33 0.33 0 0.67 0 0.33 0.67 0.33 0 0.33 0.33
case035 0 0 0 0 0 0 0 0.08 0 0 0 0
case098 0 0.33 0 0 0.33 0 0 0.33 0 0 0.33 0
case101 0 0.24 0 0 0.32 0.04 0 0.24 0.04 0 0.16 0
case102 0 0 0 0 0 0 0 0 0 0 0 0
case103 0 0 0 0 0 0 0 0.20 0 0 0.10 0
case104 0 0 0 0 0 0 0 0 0 0 0 0
case106 0 0 0 0 0 0 0 1 0 0 1 0
case109 0 1 0 1 1 1 0 1 1 0 1 0
case119 1 1 1 1 1 1 0 1 0 0 1 0
case122 0 0.67 0 0.33 1 1 1 1 1 1 1 1
case126 0 0.90 0.10 0.70 0.90 0.90 0.90 1 0.90 0.90 0.90 0.90
case130 0 0 0 0 0 0 0 0 0 0 0 0
case144 0.10 0.90 0.10 0.70 0.90 0.90 1 1 1 0.80 1 1
case156 0 0 0 0 0 0 0 0 0 0 0 0
case157 0.03 0.03 0.03 0 0.03 0 0 0.13 0 0 0.03 0
case159 0 0 0 0 0 0 0 0 0 0 0 0
case177 0.17 0.42 0.33 0.33 0.42 0.33 0.25 0.42 0.33 0.25 0.42 0.33
case178 0 0 0 0 0 0 0 0.20 0 0 0 0
Thresholds:

24.2 17 22.4 30 20.5 27 55 32 30 36 24 50
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Table 10: Statistics for algorithm I.
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0 v1 0.43 0.61 0.05 0.21 0.04 0.07 0.99 0.99 0.01

v2 2.01 3.07 0.45 0.53 0.27 0.31 0.95 0.95 0.21
v3 0.66 1.04 0.20 0.32 0.07 0.10 0.99 0.99 0.03

P
L
90

v1 0.43 0.68 0.25 0.32 0.16 0.21 0.99 0.99 0.04
v2 2.42 3.64 0.40 0.53 0.29 0.35 0.96 0.96 0.18
v3 0.74 1.19 0.30 0.37 0.21 0.27 0.99 0.99 0.09

P
L
30

v1 0.38 0.78 0.30 0.26 0.19 0.18 1.00 1.00 0.05
v2 2.78 4.36 0.60 0.74 0.35 0.43 0.98 0.98 0.16
v3 0.56 1.04 0.35 0.37 0.22 0.24 1.00 0.99 0.07

P
L
A
V
E v1 0.36 0.97 0.25 0.21 0.17 0.16 0.99 0.99 0.04

v2 2.07 3.52 0.55 0.63 0.28 0.38 0.98 0.98 0.13
v3 0.84 1.60 0.50 0.26 0.20 0.19 0.99 0.99 0.07

Table 11: Detection problems with algorithm I.

Group Identifiers

Seizure patients case035, case102, case103, case104,
case130, case156, case157, case159,
case178

Non-seizure patients case006, case015, case017, case044,
case045, case050, case056, case066,
case090, case096, case116, case140,
case142, case146, case180

to 180 s fixed window.
Thresholds are set using a similar method as for the previous algorithm. We also

paid attention to the achieved FPRw values. Different versions are picked so that the
amount of false positives is about the same for all algorithms, making comparisons
possible.

Results for algorithm II are presented in Tables 12 and 13. RWSH v3 reaches
SeAO 1st of 0.53 with FPRw of 0.98, clearly outperforming both RWL and RWLF.
Table 14 lists problematic patients for this algorithm.
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Table 12: Detection results for algorithm II. This table presents SeAO values.

RWL RWSH RWLF

Ident. v1 v2 v3 v1 v2 v3 v1 v2 v3

case016 0 0 0 0 0.33 0 0 0.33 0.33
case035 0 0 0 0 0 0 0 0 0
case098 0 0 0 0 0 0 0 0 0
case101 0.20 0.76 0.32 0.08 0.28 0.20 0.24 0.84 0.60
case102 0 1 0 0 1 0 0 0 0
case103 0 0.10 0 0 0 0 0 0.20 0
case104 0 0 0 0 0 0 0 0 0
case106 0 1 0 1 1 1 0 1 0
case109 0 1 0 1 1 1 0 0 0
case119 1 1 1 0 1 1 0 0 0
case122 0 0.67 0 0.33 0.67 0.67 0.33 1 1
case126 0 0.80 0.30 0 0.70 0.50 0.40 0.90 0.90
case130 0 0 0 0 1 0 0 0 0
case144 0 0.50 0 0 0.40 0.10 0 1 0.90
case156 0 0 0 0 0 0 0 0 0
case157 0 0 0 0 0 0 0 0 0
case159 0 0.67 0 0.33 0.33 0.33 0 0.33 0
case177 0.17 0.33 0.25 0.08 0.33 0.25 0.17 0.58 0.25
case178 0 0.60 0 0 0.20 0 0 0 0
Thresholds:

88 65 80 86 68 75 52 30 40

6.4 Performance of algorithm III

The convex hull algorithm requires a slightly different approach. Since the algorithm
does not produce a trend like the other two algorithms, we cannot use the same
analysis methods. In this algorithm, there are two parameters that can be adjusted,
tmin and dmin.

We will first have to find out appropriate values for tmin. Based on experience, we
selected values of 5, 7, and 10 steps. Selecting dmin was done using same principles
as with the other algorithms. After running the algorithm for seizure recordings, we
inspected the values d obtained during or near to seizures. Based on this experiment,
we completed runs for the full database using parameters listed in Table 15.

Because of the computational complexity of this algorithm, we could not afford
to perform similar performance assessment as with the other algorithms. Instead,
we selected only a specific and a sensitive version for each tmin value. Results are
presented in Tables 16 and 17. Problematic patients for this method are listed in
Table 18.

The largest effect of different tmin values is seen in case130 where tmin = 10 does
not yield a detection while the other designs do. In the other recordings the effect
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Table 13: Statistics for algorithm II.
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L v1 0.84 0.93 0.16 0.16 0.06 0.07 0.99 0.99 0.01
v2 1.72 1.97 0.53 0.63 0.35 0.44 0.99 0.99 0.11
v3 1.04 1.16 0.21 0.21 0.11 0.10 0.99 0.99 0.03

R
W

S
H v1 0.69 0.75 0.16 0.32 0.05 0.15 1.00 1.00 0.03

v2 1.25 1.35 0.63 0.68 0.23 0.43 0.99 0.99 0.14
v3 0.98 1.06 0.53 0.47 0.14 0.27 0.99 0.99 0.08

R
W

L
F v1 0.30 0.63 0.21 0.21 0.09 0.06 1.00 1.00 0.03

v2 2.01 3.29 0.47 0.47 0.40 0.33 0.98 0.97 0.15
v3 0.82 1.55 0.37 0.32 0.29 0.21 0.99 0.99 0.08

Table 14: Detection problems with algorithm II.

Group Identifiers

Seizure patients case035, case098, case102, case103,
case104, case130, case156, case157,
case178

Non-seizure patients case004, case006, case015, case017,
case021, case039, case046, case047
case075, case083, case090, case119
case128, case168, case179, case180,
vic005

of tmin is rather small. As expected, the algorithm becomes more specific as dmin is
increased. This algorithm has a slightly lower integral specificity measures than the
other two algorithms. This results from the nature of this algorithm; it attempts to
capture the whole epoch that does not fit the background.
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Table 15: Set-ups used for algorithm III.

tmin dmin

5 0.33, 0.53, 0.77, 1.1, 1.2
7 0.5, 0.75, 1.2, 1.35
10 0.5, 0.75, 1.1, 1.35

Table 16: Results for selected specific (v1) and sensitive (v2) parameter combinations
of algorithm III. This table presents SeAO values.

tmin= 5 tmin= 7 tmin= 10

Ident. v1 v2 v1 v2 v1 v2

case016 0.33 0.67 0.33 0.67 0.33 1
case035 0 0.15 0 0.15 0.08 0.15
case098 0.33 0.33 0.33 0.33 0.33 0.67
case101 0.36 0.80 0.36 0.80 0.48 0.84
case102 0 1 0 1 0 1
case103 0 0.10 0 0.30 0 0.50
case104 0 0 0 0 0 0
case106 1 1 1 1 1 1
case109 1 1 1 1 1 1
case119 1 1 0 1 0 1
case122 1 1 1 1 1 1
case126 0.90 1 0.90 1 1 1
case130 1 1 1 1 0 0
case144 0.90 0.90 1 0.90 0.90 0.90
case156 0 0 0 0 0 0
case157 0.03 0.10 0.03 0.19 0.03 0.32
case159 0 0 0 0 0 0
case177 0.33 0.42 0.33 0.42 0.42 0.42
case178 0 0 0 0 0 0
dmin

1.2 0.77 1.35 0.75 1.35 0.75
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Table 17: Statistics for algorithm III.
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v1 0.62 1.06 0.47 0.63 0.30 0.43 0.99 0.99 0.24
v2 1.82 2.58 0.63 0.79 0.45 0.55 0.97 0.97 0.33

t m
in
=

7

v1 0.54 0.83 0.47 0.58 0.30 0.38 0.99 0.98 0.23
v2 2.05 2.85 0.63 0.79 0.48 0.57 0.96 0.96 0.37

t m
in
=

10

v1 0.63 0.92 0.42 0.58 0.33 0.35 0.98 0.98 0.22
v2 1.99 2.67 0.58 0.74 0.54 0.57 0.95 0.94 0.40

Table 18: Detection problems with algorithm III.

Group Identifiers

Seizure patients case035, case104, case156
case157, case159 case178

Non-seizure patients case006, case007, case013, case015,
case017, case021, case085, case086,
case090, case107, case116, case140,
case142, case171, case173, case180,
vic005
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6.5 Comparison between the algorithms

In this subsection, we will highlight differences in how well the introduced algorithms
perform. We will address both the problem of detecting seizures and the problem
of false positive detections.

6.5.1 Detecting seizure patients

In the following comparisons, we consider both the specific and the sensitive variants
of each algorithm. If we look at the problem from the clinical standpoint, paying
attention mostly to the measure 1st ES, we cannot see much difference between
the algorithms. By this measure, all algorithms identify correctly about 60% of the
seizure patients. However, not all algorithms detect the same patients. Algorithm
I performs poorly for case102, while other methods work well in that recording.
Algorithm III outperforms the others in case103. In case177, algorithm II does not
give a detection in SeAO 1st sense. In most recordings, the results do not differ
between algorithms.

Looking at the measure SeAO pt, we can see that algorithm III performs the
best. Even the specific version detects on average 60% of seizures of each patient.
The sensitive version of algorithm III gives detections in SeAO sense for all patients
except for case104, case156, case159, and case178. Algorithm I does not provide
additional information in these recordings, but algorithm II does detect seizures in
case159 and in case178. To summarize, in SeAO sense none of the algorithms detect
seizures of recordings case104 and case156.

A drastic difference in performance is seen if we look at SeInt. The specific version
of algorithm III reaches 0.23, while for algorithms I and II we get 0.05 and 0.03,
respectively. Similar performance gap is seen with the sensitive versions.

A summary of overall seizure detection potential is presented in Table 19. Po-
tentially useful algorithms for each patient are marked by a cross. An algorithm is
considered useful if detects most seizures of the patient in SeAO sense.

If we look at the detection results as a whole, we can say that case035, case103,

Table 19: Summary of seizure detection potential of different methods. A cross
indicates that the method has potential in detecting seizures of the corresponding
patient.
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case104, case156, case157, case159, case177, and case178 cannot be reliably detected
by any of the methods presented. These recordings fall into three main categories:

1. SE recordings

2. Recordings with abundant spikes

3. Recordings with seizures that have no evolution in feature values

Case035 and case177 are near to SE, which means that ictal activity is con-
stantly present and there might not be that much evolution left. In visual analysis
only minuscule changes in feature values were seen during seizures. According to
preliminary results with the spike detector developed in parallel with this project,
we can see that case103, case157, case159, and case177 have a lot of spikes. Hence,
they do not fall into the group of seizures the methods presented in this thesis are
designed for. The rest belong to the third category. In seizures of case104, case156,
and case178 there are no notable changes in the feature values. For these seizures,
another strategy must be used. It should be noted that case156 had been cropped
in hospital and there was only little data outside the annotated seizures. This pre-
vented adaptive methods from detecting the seizures.

To conclude, we note that algorithm III performs generally the best out of the
three proposed methods. There are, however, occasions when the other two methods
provide useful additional information.

6.5.2 False positive detections

Table 20 presents data from analysis conducted with the identified problematic
non-seizure recordings. We can see that there are four main causes for false positive
detections:

1. Abundant EMG

2. Other artefacts

3. Naive detection logic

4. Detections arising from non-epileptiform EEG patterns.

An example of an EMG burst shown in Fig. 25. Corresponding feature values are
shown in Fig. 26. Recordings with intermittent EMG bursts yield a lot of detections,
especially with algorithm I.

Detection of artefacts was done in a rudimentary way and certain kinds of arte-
facts were, despite the rather strict criteria, passed on to the algorithms. This was
especially problematic for adaptive methods. In particular, algorithm II was found
to be very prone to artefacts.

We used a simple method to generate detections: if indicator value was above
given threshold for more than 10 s, a detection was made. A more sophisticated
method, merging together short nearby detections in different channels, would have
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Table 20: Summary of patients with most false positive detections. Causes of false
detections are listed for each algorithm.

Source Reason for false positive detections

Identifier algorithm I II III

case004 II – Artefacts –
case006 ALL Further expert review needed

case007 III EMG – EMG
case013 III – – 1 EMG detection
case015 All EMG EMG EMG
case017 All EMG – 1 EMG detection
case021 II, III EMG EMG EMG
case039 II EMG EMG and –

artefacts
case044 I EMG and – –

detection logic
case045 I EMG – 1 EMG detection
case046 II – Detection logic –
case047 II Artefacts
case050 I EMG –
case056 I High IF – –

case066 I Detection logic – –
case075 II – EMG and 1 EMG detection

artefacts
case083 II – Artefacts –
case085 III – Detection logic 1 long detection
case086 III – – EMG and

artefacts
case090 All EMG EMG EMG
case096 I Drop in IF Detection logic –
case107 III EMG EMG
case116 I, III EMG – EMG
case119 II EMG and –

slow waves
case128 II – Artefacts –
case140 I, III EMG and – 1 EMG detection

artefacts
case142 I, III EMG and Artefacts EMG

artefacts
case146 I Modified burst–suppression

case168 II – Artefacts –
case171 III EMG – EMG
case173 III EMG – EMG
case179 II – Detection logic –
case180 All EMG EMG EMG
vic005 II, III – Detection logic β EEG
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Figure 25: Example of EEG with a burst of EMG. The black line marks baseline,
grey lines show ±50 V values, and tick marks are printed every second.
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Figure 26: Feature tracings showing an EMG burst. Data starts at the same instance
as the EEG tracing of Fig. 25. On-set of the burst, at about 10 s from the start, is
seen as rapid increase in both feature values.

enhanced performance numbers. Adaptive methods were also found to be initialized
with too little data in the buffer. This caused several detections, especially when
using algorithm II, at the starts of the recordings.

One EEG pattern was discovered to cause several false positive detections. Fig. 27
shows an example of a modified burst–suppression pattern. During bursts, there is
a strong β component. Faster activity is suppressed intermittently and a higher
amplitude δ activity is present. This pattern causes large fluctuations in the feature
values, leading to several detections. See Fig. 28 for corresponding feature traces.
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Figure 27: Modified burst-suppression pattern. This recording shows a rare pattern
with alternating δ activity (suppression) and bursts of β activity. This 28 s example
shows one cycle. The black line marks baseline, grey lines show ±50 V values, and
tick marks are printed every second.
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Figure 28: Feature tracing showing several cycles of modified burst–suppression
pattern. Data starts at the same instance as the EEG tracing of Fig. 27. Bursts are
associated with rapid increase in IF and decrease in LOGPOW .
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7 Discussion

The methods presented in this thesis provide a novel way of investigating seizure
activity in EEG. Instead of looking at snapshots of EEG or at absolute values of
signal features, we approach the problem using the paradigm that in certain cases
seizures cause systematic changes in signal properties. Absolute feature values are
also important; most of the current methods use them and they seem to perform
well in some patient populations. Our methods focus on dynamic changes in feature
time courses.

During the study, several compromises had to be made. Despite the difficulties,
eventually a protocol for assessing the performance of the three proposed methods
was laid out. Analyses conducted in this study mark the way for future research.
The proposed methods proved to hold potential for seizure detection.

7.1 Study

Throughout the study we have been cautious about reporting statistical variables
and about drawing conclusions based solely on numbers. This has been an informed
decision. We justify this approach by two arguments.

There is no single widely accepted performance measure for a seizure detection
algorithm. Some attempts have been made, e.g., by Wilson [61], but in author’s
opinion the best overall measure is still escaping the researchers. One factor com-
plicating the design of such a measure is the lack of proper specifications. It is easy
to define how a perfect algorithm would work, but defining what is rather good or
comparing two almost perfect algorithms is a difficult task. In author’s opinion,
the field lacks a common way of reporting results and describing performance. This
leads to ambiguous reports and difficulties in making comparisons between methods.

Providing a dozen performance measures might be an accurate description of
how well the algorithm performs, at least for researches with a background in science
and technology. But we cannot expect medical staff to be specialists in statistics.
Designing a widely accepted and simple performance measure might be a utopia but
could also be worth striving for.

Another source of inaccuracy lies in what we consider as the ground truth. For
this study, we had obtained the opinion of one seasoned expert, Dr. Bryan Young.
Even though our consultant is a recognized specialist, we cannot guarantee that
there are no mistakes in the annotations. And even if there would not be any bigger
mistakes, another neurologist could have a different opinion regarding the exact on-
sets and off-sets of seizures. The best way to overcome this challenge would be to
obtain dictations from other specialists and then to combine them. So far this has
been limited by resources available for the project, but there are plans to obtain
more dictations from other specialists.

In the presence of these two factors, we decided not to emphasize too much the
statistical numbers and, instead, tried to look at the methods in a more general way.

Statistical optimization methods are very useful when designing algorithms. In
this study, we wanted to investigate the potential of three proposed algorithms. This
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led to a situation where we could not afford optimizing any of them in a statistically
satisfying way. We made an informed decision that it is more useful to try and
understand the general potential of the proposed methods than to blindly pick one
of them and attempt at tuning it to its full potential.

While the absence of statistical methods could be seen as a scientific shortcom-
ing in the study, it has allowed us to gain a more thorough understanding of the
characteristics of the proposed methods. Such experience is invaluable when taking
the next steps in the development process.

7.2 Characteristics of the designed algorithms

The most intuitive algorithm is the path length algorithm. When evaluating the
method, certain problems were discovered. First and foremost, there were a lot
of detections because of EMG. Second problem is that the method is not scale-
invariant. In some recordings, we could notice a clear rise in path length values
during seizures, proving the idea of the algorithm correct, but the total obtained
path length values were far too low to yield detections.

Third problem with the path length method was its poor specificity. We wanted
to sensitize the method for seizure-related events and added the weighting factor.
However, we found some seizures in the database that do show evolution in feature
values but not in the direction we used. Results could be somewhat different if the
direction of the weighting vector �p was optimized or if a different weighting scheme
was implemented.

Overall, the path length algorithm was found to work somewhat well. In most
cases its performance numbers were not as good as those of the other algorithms but
it showed consistently acceptable results. The most appealing feature of the path
length algorithm is its simplicity.

During evolution, the path traced by the features seems be drawn from a deter-
ministic process. When there is no seizure activity, the path looks like a collection
of randomly placed edges. The random walk algorithm was designed to quantify
this change. We studied auto-regressive processes and the theory of random walk.
Statistical tests were applied to understand if there really was a transition from
a random or auto-regressive process to another process at seizure on-set. It was
quickly established that such methods are not robust enough for our application
and that a new method should be designed.

The random walk algorithm quantifies changes in feature values rather well. Like
the path length algorithm, it produces a trend. The output value is proportional to
the amount how much the current step differs from the past steps.

In the analyses reported here, we have seen that this method has a rather good
performance. In several cases it seems to outperform the path length algorithm.
While the scaling problem is less pronounced with this method, some seizures were
still missed because of it. A bit surprisingly, this method seems to be the most
robust against EMG. The current implementation was perhaps a bit faulty because,
according to the analysis of false positive detections, this method is the one most
susceptible to artefacts. It is hard to estimate how much the performance could
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be improved by re-programming the routines and how much of the susceptibility
is due to the actual method. It should be noted that the random walk algorithm
was the only one that did not have any kind of directional preference for evolution
implemented; the path length algorithm made use of weighting vector �p and convex
hull algorithm used the sector of accepted angles ν relative to the center-of-mass.

The last of the proposed methods, the convex hull algorithm, was based on the
visual remark that during seizures the feature values often enter new areas in the
feature space. As we know, these deviations can occur in various scales. Therefore,
it would be advantageous to detect all such changes. We started bounding the
background in rectangles and ellipses but quickly abandoned such shapes as they
were too unstable. The notion of convex hull proved to be a good choice for this
task.

This method proved to be the most complex one to implement. There are several
special cases that need to be addressed. The implementation was tested but we can
be fairly certain that the current implementation still has limitations. These special
cases most likely have caused an excessive amount of long false positive detections.

The convex hull algorithm achieved its goal: it is capable of detecting events on
all scales, making it the most sensitive one of the proposed methods. Performance
numbers are in favour of developing this method further.

7.3 Main findings of the study

Algorithm III, the convex hull algorithm, was seen to have the best overall per-
formance. However, there were recordings in which the other methods were more
accurate. The convex hull algorithm is potentially useful in 11 out of 19 seizure pa-
tients included in the study. The developed methods detected almost all evolution
seizures.

Most of the seizure patients that remained out of the scope of the developed
methods have a lot of spikes. They are in the domain of the spike detector. Because
the spike detector is still under development, we cannot provide any exact perfor-
mance numbers here. Suffice it to say that after running spike detector, most likely
only two patients will remain undetected.

According to visual review, the seizures in recording case104 seem to have evo-
lutionary characteristics but the evolution occurs in such a low frequency that it is
not captured by the features used in this study. Case178 is similar to case104.

At the current stage, all methods produce too many false positive detections.
EMG was found to be a major contributor to those detections. While at first glance
it might seem a problem easily dealt with, there are some complicating factors.
Defining which patterns count as EMG activity is already a hard task as such. But
most importantly, we do not want to lose the capability of detecting convulsive
seizures. During convulsions there is typically a high amount of EMG in EEG.

In this study, we applied a very straightforward detection logic: if indicator value
is above a given threshold for more longer than 10 s, a detection is made. There
was no minimum time that detection should be off before it can be raised again.
Fine-tuning the detection logic could improve the results. This type of problem
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was seen with the path length algorithm. Implementing a proper way of handling
multichannel data could also improve the performance numbers.

Artefacts proved to be a real nuisance. Even though we applied rather strict
criteria to exclude artefactual signal epochs, some of them still got through to the
algorithms. Especially the random walk algorithm was found to be sensitive to
artefacts. We remind the reader that in parallel with this study, a new method for
detecting movement artefacts was being developed. We hope that in the future a
designated algorithm can handle artefact detection reliably.

With the adaptive methods, random walk and convex hull, a different detection
logic problem was encountered. When the buffer was not full, e.g., at the beginning
of each recording, the outputs from these algorithms were noisy. On the one hand,
we should always ensure that the buffer is full before any computations are made.
On the other hand, because of cropped recordings we would then have lost several
seizures. This issue is specific to this stage of development and should not be a
problem if these methods are implemented for on-line monitoring.

We reported only one EEG pattern that causes excessive amount of false positive
detections. Keeping in mind that there is more than 150 d of data, this is not a bad
result. However, after taking care of the current problems, like EMG, we will most
likely find more EEG patterns that need special attention.

7.4 Guidelines for future development

In the future, we will try to combine the good sides of each algorithm. One possible
scheme is to use the convex hull algorithm for making elementary detections. After
making such a detection, the following epoch is subject to further testing. Tests
could comprise of path length, spike rate, distance, or random walk, to name a few
possibilities. Using the convex hull algorithm would help reduce false positives and
would also solve the scaling problem.

It is evident that in the next step we will have to start integrating evolution
detector, spike detector, and artefact detector into one package. So far each method
has been developed separately. Only when all these methods are put together can
we get realistic performance numbers of the seizure detection algorithm.

At the same time we need to continue to develop our database. The more
data there is available for development, the better generalization properties we can
expect. Getting another neurologist to annotate the recordings can be costly, but it
would increase the creditability of the database. Having a large and well-maintained
database is a valuable asset as such.

On a side note, we should keep in mind also the lack of a single proper perfor-
mance measure for this type of studies. If we could agree with the experts on how
they define good performance and translate it into a performance indicator, it would
be useful for the entire community.
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8 Conclusions

This thesis addressed the problem of detecting seizures that have an evolutionary
pattern. Three methods were proposed and implemented. Their performance was
assessed using both statistical methods and visual review. We found that the convex
hull algorithm reached the best overall performance level. The idea of that method
is to enclose background activity in a convex hull. When the hull is breached, further
tests are conducted to deduce whether the event is related to seizure activity or not.

We got evidence that the convex hull method alone, however, does not suffice.
It needs to be developed further, possibly by integrating other methods into it. In
the next phase, we must also address false positive detections with more rigour than
we did in this study.

While the results obtained in this study are encouraging, it is too early to com-
pare them with those of published methods. Before an overall assessment can be
made, our method needs to be fine-tuned and must incorporate a proper artefact
detector and a spike detector.
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