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The focus of this thesis is on numerical simulation of local wind fields governed by

the incompressible and time-dependent Navier-Stokes equations. A Large Scale Com-

putational Fluid Dynamics Finite Element code ELMER is used to resolve the local

wind fields in Scharffenbergbotnen, Antarctica, and thus provide information of pos-

sible snow re-distribution patterns. It is assumed that the winds play a big role in

the formation of Blue Ice Areas, which at Scharffenbergbotnen have been utilized as a

proxy for reconstruction of paleoclimatological data.

The main objective is to resolve the wind field patterns and not the actual distribution

of the snow. This is done by using a Variational Multiscale Method with the Finite

Element Method. This method is considered to be a powerful tool for solving high

Reynolds-number turbulent flows. The goal of this thesis is to get an understanding on

whether the local winds combined with the katabatic winds that occur in these areas

can achieve the strengths to clear the blue ice areas of the usually forming densifying

snow layer that accumulates on the ice.

Our results clearly indicate that the magnitude of the absolute velocity and shear stress

increase at the blue ice areas. However, due to the lack of data and by assumptions

of the applied methods, this is rather a proof of concept, and the results have to be

interpreted qualitatively rather than quantitatively.
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Tässä diplomityössä tarkoituksena on tehdä numeerista mallinnusta paikallisista tuu-

lista Scharffenbergbotnenissa, Antarktiksella. Mallintamiseen käytetään kokoonpuris-

tumattomia ja ajasta-riippuvaisia Navier-Stokes yhtälöitä. Elementtimenetelmä ohjel-

maa ELMER:iä käytetään paikallisten ilmavirtojen mallintamiseen, jotta voitaisiin saa-

da käsitys tuulien vaikutuksesta lumen siirtymiseen sinisillä jäillä. Scharffenbergbot-

nenin siniset jäät ovat olleet tärkeä paleoklimatoloogisen tiedon lähde. Tutkimuksen

pääasiallinen tarkoitus on kuitenkin ilmavirtausten laskeminen eikä lumen jakautumi-

sen mallintaminen.

Ilmavirtojen ratkaisemiseen käytetään niin sanottua Variational Multiscale menetelmää

elementtimenetelmän yhteydessä. Menetelmää pidetään erittäin tehokkaana välineenä

turbulenssin ratkaisemiseen. Tavoitteena on saada tietoa siitä, voivatko paikalliset tuu-

let yhdessä alueella vallitsevien katabaattisten ilmavirtojen kanssa olla paikallisesti niin

voimakkaita, että ne ”puhdistaisivat” kyseiset sinisen jään alueet lumesta.

Tulokset viittaavat siihen, että absoluuttinen tuulen nopeus sekä leikkausjännitykset

sinisten jäiden alueilla ovat selvästi muita alueita voimakkaammat. Käytetty malli on

tosin hyvin yksinkertaistettu ja simuloimiseen käytetty data oli erittäin rajallinen. Näin

ollen tutkimustuloksia voidaan lähinnä pitää suuntaa antavina ja aikaisempia käsityksiä

vahvistavina. Tutkimusta voidaan siis pitää kvalitatiivisena.
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1 Introduction

1.1 Background

Antarctica is the fifth largest continent in the world, and approximately 98 % of it is

covered by ice, the average thickness being about 2 km, and the ice sheets cover an

area of about 14× 106 km2. It is in average also the driest, coldest and most windy

place on Earth. The average precipitation is less than 2.5 cm annually (Greve &

Blatter, 2009).

Because of these extreme conditions, Antarctica plays an important role in the

global climate system, and it is important to understand the dynamics of the glaciers

in Antarctica in the present and in the past.

The ice cores in Antarctica provide researchers with extremely valuable data of

the climate history. The central and currently interesting questions are:

• What effect does the changing climate have on the glaciers in the polar regions?

• How fast will the see level rise because of these changes?

• How will these changes affect the global environment?

The main objective of this study is to improve our understanding of the local

wind fields in the Scharffenbergbotnen (SBB) glacier, Antarctica. Especially to

understand their effect on the so called Blue Ice Areas (BIAs), which cover about

0.8 − 1.6 % of the entire surface area of Antarctica. A BIA is an area where the

ice surface is clear of snow, and therefore reflects a blueish color (Bintanja, 1999;

Sinisalo, 2007).

The BIAs can be of special interest when studying climate changes because many

of them have very old layers of ice at the surface, and they may therefore provide pa-

leoclimatological data that cannot be found anywhere else (Sinisalo, 2007; Grinsted,

2006). In fact, most of the BIAs are located close to hills and mountains, where

the ice sheets tend to creep up along the mountain slopes towards the surface. This

tendency is further explained in Figure 1.

Antarctica is the only place on Earth were one can find these BIAs, which are

believed to exist because of the extreme conditions, such as high elevations, local

topography, katabatic winds, low temperatures and little precipitation. Katabatic

winds originate from temperature differences, leading to a cold and more dense

air mass to fall down the mountain slopes at very high velocities (Sinisalo, 2007;

Grinsted, 2006).
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Figure 1: Stagnation ice flow at the end of a valley is shown in the left Figure.
The right Figure shows an upward flow induced by an obstacle. ELA stands for the
equilibrium line altitude, which acts as a separation line between the snow covered
accumulation area and the ablation area, namely the BIA. An isochrone represents
an individual annual layer, which creeps up towards the surface of the BIA. This
leads to a near-vertical formation of the annual layers. (Figures taken from Sinisalo,
2007)

In this thesis the focus will be on using the Finite Element Method (FEM) with a

suitable turbulence method for simulating the local wind fields in SBB. This study is

not directly connected to the dynamics of the ice or the change in climate. We rather

present the results of a simulation which aims to provide valuable information on

how the snow is removed depending on local wind fields in the SBB area. Antarctica

and the location of SBB is shown in Figure 2.

A photo of the mountains surrounding a blue ice area (bare glacier ice) in SBB

is presented in Figure 3, where the accumulated snow along the mountain slope is

also clearly visible. A rough outline of the area shown in Figure 3 and the BIAs is

presented in Figure 41.

The horizontal wind data points used for defining parts of the boundary conditions

of the model with respect to the Digital Elevation Model (DEM) (© Bundesamt

für Kartographie und Geodäsie, Frankfurt am Main, http://www.bkg.bund.de) and

the restricted area of our model are presented in Figure 6 in UTM29C coordinates.

1Northing stands for the distance to the equator, where locations that lie north of the equator
are assigned a value of 0 meters at the equator. In order to avoid negative numbers, locations south
of the equator are given a value of 10,000,000 meters at the equator, and the northing value reduces
towards the South Pole. Easting on the other hand is the distance in a eastward direction from a
reference point to the meridian that is specifically defined for the Universal Transverse Mercator
(UTM) zones. This concept is explained in Figure 5.
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Figure 2: The location of Scharffenbergbotnen (SBB) in Antarctica. The figure also
shows other BIAs of scientific interest, where YM indicates the Yamato Mountains,
Mt.M = Mt. Moulton, AH = Allan Hills and FM stands for the Frontier Mountain.
(Figure taken from Sinisalo, 2007)

Figure 3: The mountains surrounding Scharffenbergbotnen’s Blue Ice Area. The
accumulated snow along the mountain slope is also clearly visible. (Figure taken
from Sinisalo, 2007)

3



Figure 4: The Scharffenbergbotnen area, with the location of the Blue Ice Areas
(light gray), exposed rocks on top of hills and mountains (dark gray) and moraines
(black). (Figure taken from Sinisalo, 2007)

Figure 5: Description of northing and easting.
(Figure taken from http://www.maptools.com/UsingUTM/UTMdetails.html)
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Figure 6: Alignment of the horizontal wind data points (red crosses) in relation to
the DEM (black dots) and the restricted model area (pink dots) in the UTM29C
coordinate frame.

1.2 Focus of the thesis and Large Scale Computational Fluid Dy-

namics

A Large Scale Computational Fluid Dynamics (LSCFD) finite element code ELMER

(http://www.csc.fi/english/pages/elmer) is used to resolve the local wind fields in

the SBB area, and thus make it possible to investigate the snow re-distribution

patterns. The main focus will still be on resolving the wind field patterns and not

the actual re-distribution of the snow.

Due to the chaotic nature of turbulence, the analysis and modeling of such flows

is anything but straight forward. However, because of powerful supercomputers, the

field of computational fluid dynamics has grown and made it possible to numerically

solve complex flows. A transient simulation with the newly developed Variational

Multiscale method (VMS) (Bazilevs et al. , 2008) is used to model the turbulent

flow above the SBB glacier. The VMS method has been introduced as a powerful

tool for solving computational problems where a large range of scales have to be

dealt with, like our simulation where the flow becomes turbulent at larger Reynolds

numbers (Bazilevs et al. , 2008; Rautaheimo, 2001). The VMS-method is therefore

suitable for turbulent flow problems where the Direct Numerical Simulation (DNS)

5



is not feasible (Bazilevs et al. , 2008).

A turbulent flow includes swirls and eddies of different sizes which are caused

when the turbulent kinetic energy is transferred down the turbulence energy cas-

cade. The size ratio between these eddies can be large, and this is one of the main

problems when solving LSCFD problems involving high Reynolds numbers (Rauta-

heimo, 2001). In order to resolve all the scales, one should use a very fine grid

spacing which for many cases will not be feasible to compute. Thus, many turbu-

lent models, involving empirical parameters and assumptions on how to model a

flow without solving all the scales, have been established.

1.3 Problem setup

ELMER has been intensively used in ice sheet simulations (Zwinger & Moore, 2009;

Gillet-Chaulet et al. , 2006) and it is currently also applied to the ice flow in SBB

(based on communications with Dr. Thomas Zwinger (CSC — IT Center for Science,

Finland) and John Moore, Professor of Global Change and Earth System Science

(University of Lapland and Beijing Normal University)). This and the newly imple-

mented VMS method gave us the motivation to also study the wind fields in SBB

by using ELMER, and hence the FE-method.

In our model we make the assumptions that by choosing suitable boundary con-

ditions and initial conditions we may restrict the area to contain only the valley and

its surrounding mountains. This is, however, a very difficult task for an area like

the one we are dealing with. Many problems arise, namely:

• How high should the model be extruded in order to avoid having the effects

of the top boundary conditions interfere with the flow at the lower part of the

model?

• How big a model should be used in order to resolve the flow in the area of

interest, and what effect will a reduced model domain have on the results?

• How should the inflow, outflow and other boundary conditions be chosen in

order to get a valid simulation and achieve convergence? The difficulty of

choosing the initial and boundary conditions will be discussed in more detail

in Section 2.

Since the VMS method used in ELMER does not have a suitable solver imple-

mented for compressible flows, an incompressible solver will be used in this work.

6



The formation of katabatic winds is caused by temperature differences and the re-

sulting flow of heavier, cold air along the flanks of the ice sheet. By imposing

incompressibility, we ignore this effect inside the valley. This, nevertheless, is justi-

fied, as SBB resides on the margin of the ice sheet and the katabatic winds reaching

the valley are formed hundred kilometers inland (van As & van den Broeke, 2006).

Hence it is justified to ignore the density effects inside the valley and prescribe

the katabatic winds as an incoming wall bounded jet entering the domain via its

boundaries.

The goal of this thesis is to get an understanding on whether the local

winds combined with the katabatic winds that occur in these areas can

achieve the strengths to clear the BIAs (of the usually forming densifying

snow layer that accumulates on the ice) . This is, however, rather a proof of

concept and the research is considered qualitative.

Many assumptions have been made and the ERA-interim wind data (Berrisford

et al. , 2009) provided information only on the average wind speeds and directions

around SBB, but it does not contain information on temporal storms or local kata-

batic winds. Therefore the assumptions of the katabatic winds in the area were

formed only on references (Luijting, 2009; Parish & Cassano, 2003; Zammett &

Fowler, 2006) that describe the general nature and profiles of these winds. The di-

rection of the katabatic winds used in this thesis is based on examining the DEM of

the surrounding area (assuming that the direction is aligned with the steepest gra-

dient of the upstream terrain) and discussions with Dr. Anna Sinisalo (University

of Oslo).

In Section 2 the incompressible Navier-Stokes equations that describe the flow

are explained. The basics of turbulence modeling along with a formulation of the

VMS method are presented in Section 3, followed by the Sections Model Mesh and

Model Setup. We introduce the wind data that we used for setting the boundary

conditions of the FEM-model in Section 6. The results are presented in Section 7,

followed by the conclusions in Section 8.
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2 Navier-Stokes equations

The Navier-Stokes equations (NSE) were derived by the French mathematician

L.M.H. Navier (1785-1836) and the British mechanican G. G. Stokes (1819-1903)

by directly applying Newton’s second law to the motion of a fluid, and adding the

assumptions that the total stress acting on a fluid particle is the sum of a diffusing

viscosity times strain and an isotropic pressure (Rautaheimo, 2001).

For a Newtonian fluid in plain shear flow the shear stress τ is linearly dependent

on the strain rate du
dy by the following equation

τ = µ
du

dy
, (1)

where du
dy is the velocity gradient perpendicular to the direction of shear and µ is

the viscosity.

The Navier-Stokes equations describe the flow of a fluid, and for an incompressible

flow the solution of these equations yield the velocity and the pressure of the fluid

at a given point and time.

The concept of a continuum was first introduced by the French mathematician A.

L. Cauchy in the 19th century. The modeling of a fluid or a solid as a continuum

made it possible to deal with field variables, and the idea is that the object (fluid

or solid) fills the space completely and no discontinuity exist. Further, a continuum

should be continually sub-dividable into infinitesimal elements that have the same

properties as those of the parent material or element.

In this chapter the incompressible Navier-Stokes equations are derived from the

fundamental physical laws, i.e. conservation of mass, and conservation of momen-

tum. We will first present them in the form of continuum mechanics and then

derive from these laws the differential equations describing the behavior of fluid

flows. The material properties are then used to describe the constitutive equations

and relations.

2.1 The description of velocity

In fluid mechanics the Eulerian description of velocity is usually used, meaning

that one is observing the flow from a fixed observers point of view (Layton, 2008;

Batchelor, 2000), namely the velocity is expressed as a function of the fixed spatial

coordinates x, y, z and the time t.

An alternative way to look at motion would be the Lagrangian way (Layton,

2008; Batchelor, 2000). There the velocity depends on the material coordinates X,
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Y ,Z and the time, meaning that the motion is observed by following the path of an

individual fluid particle as it moves through space and time (the observer is moving

with the flow).

The concept of velocity is described in Figure 7, where ~um denotes the velocity of

the control volume V (t) at time t and ~u denotes the flow velocity.

Figure 7: The description of velocity, where V (t) describes the control volume at
time t, and V (t+ ∆t) describes the control volume at time t+ ∆t.

The Eulerian and Lagrangian descriptions are as follows:

Euler: ~um ≡ ~0,

Lagrange: ~um ≡ ~u|∂V (t),

where ∂V (t) is the boundary of the control volume.

2.2 The divergence theorem

The divergence theorem in vector form is∫
∂V
~n · ~u(~x, t) dS =

∫
V
∇ · ~u(~x, t) dV. (2)
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The divergence theorem states that the flux of any vector field ~u(~x, t) out through a

”closed” surface ∂V equals the volume integral of the divergence inside the surface.

The divergence of a tensor ∇ · ¯̄τ in an arbitrary orthonormal frame {~ei} is by

Einstein notation τij,j(~x)~ei, where the subscripts ij, j denote the partial derivative

of the ij component with respect to j. This means that

(∇ · ¯̄τ)i = (
3∑
j=1

∂τij
∂xj

)~ei.

The divergence theorem for tensors is∫
∂V

¯̄τ~n dS =

∫
V
∇ · ¯̄τ dV. (3)

2.3 The transport theorem

The transport theorem also known as the Reynolds transport theorem (O. Reynolds

(1842 - 1912)) states that

d

dt

∫
V (t)

~G(~x, t) dV =

∫
V (t)

∂

∂t
~G(~x, t) dV +

∫
∂V (t)

~G(~x, t)(~n · ~u) dS, (4)

for a vector field ~G. This means that the total change from the initial state inside

a volume V (t) equals the local change plus the flux trough the surface.

2.4 The Cauchy stress tensor

The stress acting on a volume inside of a continuum is described by the Cauchy

stress tensor ¯̄σ. This is usually divided into two tensors, namely the isotropic part

p ¯̄I, and the anisotropic part ¯̄T, which describes the deviatoric stress caused by the

viscosity (Layton, 2008). Therefore we have

¯̄σ = −p ¯̄I + ¯̄T, (5)

where ¯̄I is the 3x3 identity matrix.

¯̄σ =


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 , (6)
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where σii, with i = 1, 2, 3, denotes the normal stresses and σij , with i, j = 1, 2, 3

and i 6= j, denotes the shear stresses.

The relation σij = σji for all i, j = 1, 2, 3, where i 6= j is due to the conservation

of angular momentum, which will be explained later in this section. The relation

states that the Cauchy stress tensor ¯̄σ is symmetric. The symmetry of the Cauchy

stress tensor means that there are six independent stresses. The traction field on a

surface with an outward normal ~n is given by

~t = ¯̄σ~n. (7)

2.5 Conservation of mass

The equation for the conservation of mass in a continuum

d

dt

∫
V (t)

ρ(~x, t) dV = 0, (8)

states that the mass of the continuum in the control volume V (t) does not change

in time.

By applying the transport theorem (4) to Equation (8), the following form is

obtained for the conservation of mass∫
V (t)

∂ρ

∂t
dV +

∫
∂V (t)

ρ(~n · ~u) dS = 0. (9)

Now by applying Gauss’ theorem (2) to the above equation, an integral form of

the equation integrated over the volume is obtained∫
V (t)

[
∂ρ

∂t
+∇ · (ρ~u)

]
dV = 0. (10)

Equation (10) holds for any volume V (t), leading to the time-dependent differential

equation

∂ρ

∂t
+∇ · (ρ~u) = 0, (11)

which has to be fulfilled. The equation states that the local change of density with

respect to time ∂ρ
∂t is balanced by the convection ∇ · (ρ~u). But since we are dealing

with a constant density, ρ = constant, this leads to the divergence of the velocity

field to be zero

∇ · ~u = 0. (12)
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2.6 Conservation of linear momentum

The principle of conservation of momentum is derived from Newton’s second law,

which states that the total force ~F acting on a body is equal to the temporal change
d
dt of its linear momentum m~u,

~F =
d

dt
(m~u). (13)

Thus the conservation of momentum for a continuum approach leads to

d

dt

∫
V (t)

(ρ~u) dV =

∫
∂V (t)

~t dS +

∫
V (t)

ρ~f dV, (14)

where ~t and ~f represent surface and body forces respectively.

By applying Reynolds transport theorem (4) to the vector ρ~u we get∫
V (t)

∂(ρ~u)

∂t
dV +

∫
∂V (t)

(ρ~u)(~n · ~u) dS =

∫
∂V (t)

~t dS +

∫
V (t)

ρ~f dV. (15)

The outer product is defined as

~a⊗~b =


a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

 , (16)

where ~a = (a1, a2, a3)T , ~b = (b1, b2, b3)T and the notation (·)T represents the trans-

pose.

By applying the definition of the outer product (16) and the divergence theorem

for tensors (3) to the term (ρ~u)(~n ·~u) = ρ(~u⊗~u)~n in equation (15), it may be written

as ∫
∂V (t)

ρ(~u⊗ ~u)~ndS =

∫
V (t)
∇ · ((ρ~u)⊗ ~u)dV. (17)

Since ρ is constant the term ∇ · ((ρ~u)⊗ ~u) in (17) becomes

∇ · ((ρ~u)⊗ ~u) = ρ∇ · (~u⊗ ~u). (18)

Due to the definition of the outer product (16) and (12) we write

∇ · (~u⊗ ~u) = (~u · ∇)~u+ (∇ · ~u)~u)︸ ︷︷ ︸
=0

= (~u · ∇)~u. (19)

12



The other surface integral in equation (15) becomes by using the divergence theorem

for tensors (3) and the definition of the traction field (7)∫
∂V (t)

~tdS =

∫
V (t)
∇ · ¯̄σdV. (20)

Substitution of equations (17) and (20) into equation (15) leads to∫
V (t)

ρ

[
∂~u

∂t
+∇ · (~u⊗ ~u)

]
dV =

∫
V (t)

[
∇ · ¯̄σ + ρ~f

]
dV. (21)

Since this must hold for every V (t), we get

ρ(
∂~u

∂t
+∇ · (~u⊗ ~u)) = ∇ · ¯̄σ + ρ~f. (22)

Using (19) we obtain

ρ(
∂~u

∂t
+ (~u · ∇)~u)−∇ · ¯̄σ = ρ~f. (23)

2.7 Conservation of angular momentum

The conservation of angular momentum for a continuum is

d

dt

∫
V (t)

~r × (ρ~u) dV =

∫
∂V (t)

~r × ~t dS +

∫
V (t)

~r × ρ~f dV, (24)

where ~r is the position vector from the origin ~0 to the position coordinate ~x, meaning

that ~r = ~x−~0. The surface integral in equation (24) can by applying the divergence

theorem for tensors (3) along with the relation (7) be expressed as a volume integral∫
∂V (t)

~r × ~t dS =

∫
V (t)
∇ · (~r × ¯̄σ) dV. (25)

By applying the theorem (4) to the lefthand side of equation (24) we get

d

dt

∫
V (t)

~r × (ρ~u) dV =

∫
V (t)

∂(~r × (ρ~u))

∂t
dV +

∫
∂V (t)

(~r × ρ~u)~n · ~u dS. (26)

Using (2) we get the following form of the surface integral in (26)∫
∂V (t)

(~r × ρ~u)~n · ~u dS =

∫
V (t)
∇ · [(~r × ρ~u)⊗ ~u]dV., (27)
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which leads to equation (26) taking the following form

d

dt

∫
V (t)

~r × (ρ~u) dV =

∫
V (t)

∂(~r × (ρ~u))

∂t
dV +

∫
V (t)
∇ · [(~r × ρ~u)⊗ ~u]dV. (28)

By insertions of (28) and (25) into (24) we get∫
V (t)

∂(~r × (ρ~u))

∂t
dV +

∫
V (t)
∇·[(~r×ρ~u)⊗~u]dV =

∫
V (t)
∇·(~r× ¯̄σ) dV +

∫
V (t)

~r×ρ~f dV,

(29)

which must hold for all V (t), leading to

∂(~r × (ρ~u))

∂t
+∇ · [(~r × ρ~u)⊗ ~u] = ∇ · (~r × ¯̄σ) + ~r × ρ~f. (30)

Equation (30) expressed in index notations reads

∂

∂t
(ρεijkrjuk) + (ρεijkrjukul), l = (εijkrjσkl), l + εijkrjρfk, (31)

where εijk is the Levi-Civita symbol, which is defined as follows

εijk =


1 if (i, j, k) is (1, 2, 3), (2, 3, 1) or (3, 1, 2),

−1 if (i, j, k) is (1, 3, 2), (3, 2, 1) or (2, 3, 1),

0 if i = j, i = k or j = k.

The equation for conservation of momentum (23) is used to simplify the above

expression. Applying the cross product ~r× from the left-hand side to (23) and

denoting in index notation, we obtain

∂

∂t
(ρεijkrjuk) + rj(ρεijkukul), l = rj(εijkσkl), l + εijkrjρfk.

⇒ ∂
∂t(ρεijkrjuk) + (ρεijkrjukul), l − ρεijkukulrj, l

= (εijkrjσkl), l − εijkσklrj, l + εijkrjρfk.

(32)
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By substracting equation (32) from (31) we get

ρεijkukulδjl = εijkσklδjl

⇒ ρεijkukuj = εijkσkj

⇒ 1
2(ρεijkukuj + ρεikjujuk) = 1

2(εijkσkj + εikjσjk)

⇒ ρεijk(ukuj − ujuk) = εijk(σkj − σjk)

⇒ εijk(σkj − σjk) = 0.

For i = 1 this leads to

ε123(σ32 − σ23) + ε132(σ23 − σ32) = 0

⇒ σ32 = σ23.

For i = 2 and i = 3 we get σ13 = σ31 and σ12 = σ21 respectively, which implies that

the Cauchy stress tensor is symmetric due to the conservation of angular momentum.

2.8 Constitutive equations

For a Newtonian compressible fluid equation (5) becomes (Layton, 2008)

¯̄σ = 2µ¯̄ε− 2

3
µ(∇ · ~u) ¯̄I − p ¯̄I, (33)

where µ is the viscosity of the fluid, and the coefficient −2
3µ originates from the

Stokes hypothesis for compressible flow. ¯̄ε is the rate of strain tensor,

εij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

). (34)

Due to divergence free velocity field (12) of an incompressible flow we write (33)

as

¯̄σ = 2µ¯̄ε− p ¯̄I, (35)
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2.9 The incompressible Navier-Stokes equations with initial and

boundary conditions

Using condition (12) and by substituting (35) into (23) we get the incompressible

Navier-Stokes equations

∇ · ~u = 0 in Ω for t ∈ (0, T ) (36)

∂~u

∂t
+ (~u · ∇)~u) +∇p− 2µ∇¯̄ε(~u) = ~f in Ω for t ∈ (0, T ). (37)

The initial condition describes the velocity as vector components and the pressure

as a scalar inside the model domain. This is done by setting the conditions to

~u = ~u0 in Ω for t = 0, (38)

where Ω is the model domain.

The Dirichlet boundary condition imposed on a Partial Differential Equation

(PDE), describes the values a solution needs to take on the boundary of the do-

main. For the NSE this means setting the velocity on the boundary ∂Ω.

Dirichlet boundary condition:

~u |∂Ω = ~v. (39)

The Neumann boundary condition implemented on a PDE on the other hand spec-

ifies the values of the derivative of the solution on the boundary.

Neumann boundary condition:

σ~n |∂Ω = ~t. (40)

The mixed boundary conditions used in our work are described partly as Dirichlet

and partly as Neumann boundary conditions.

Mixed boundary condition:

~u · ~n |∂Ω = 0, (41)

and

(σ~n− ((σ~n) · ~n)~n) |∂Ω = ~0. (42)

It is important to understand that the closer the boundary condition is to the

area of interest, the more crucial it is to set the boundary condition as correctly as

possible.

The strong non-linearity with respect to the velocity (~u · ∇)~u in the acceleration
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term of the partial differential equation (37) is the cause of turbulence and the main

source of problems for numerical solutions of the Navier-Stokes equations.

Problems also arise when trying to define the initial and boundary conditions, at

least when dealing with more complex models, like the one discussed in this work.

The problem with turbulence modeling is that a careful and physically reasonable

description of the initial and boundary conditions does not guarantee a solution.

This is because numerical instabilities occur very easily in turbulence modeling, due

to the dominating nonlinear convection term. The large range of scales in turn leads

to extremely high computational costs if one is trying to achieve a solution by a DNS

approach.
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3 The Variational Multiscale method and turbulence

modeling

Under laminar conditions the flow of a fluid is considered to be regular and smooth,

but it does not have to be steady. Turbulent flow on the other hand is of chaotic

nature, thus the flow paths are irregular and unsteady.

The modeling of turbulent flows is considered to be one of the most challenging

areas in mathematics and Computational Fluid Dynamics (CFD), and no analyt-

ical solutions exist for any turbulent flows (Rautaheimo, 2001; Gravemeier, 2003).

Therefore all the solutions have to be obtained numerically, which can cause prob-

lems in many cases. Numerous ad hoc models for turbulence have been created in

order to solve such problems.

A Direct Numerical Simulation (DNS) where one tries to solve all the scales, is

not a feasible option for several turbulent flow problems. Vortices are continually

forming and breaking down, and size ratios exist in both laminar and turbulent

flows. The ratio between the largest and smallest eddies increases rapidly with the

Reynolds number, therefore making turbulent flows extremely costly to compute.

The big eddies turn into smaller ones, and the smallest ones are then finally dissi-

pated by the viscous forces at the Kolmogorov scale (Gravemeier, 2003; Rautaheimo,

2001).

Because of these size ratios the flow usually needs to be approximated by suitable

turbulence models, and ad hoc functions which are based on empirical information

and may not be suitable for all types of flows (Rodi, 1984).

Many numerical approaches exist for resolving the scalars and vectors in turbulent

flows, such as the time-averaging Reynolds Averaged Navier-Stokes (RANS) models

and other theoretical frameworks, where the basic concept is to resolve the large

eddies, and then to model the effect that the small eddies have on these larger

eddies by using ad hoc models based on experimental values and equations.

Some methods worth mentioning are the RANS equations with for example the

k-ε-model (which solves the k and ε equations) and the V 2F -model (which is a four

equation relaxation model, solving not only the k and ε functions, but also the to the

streamline perpendicular velocity fluctuations V 2 and a global relaxation function

f), Large Eddy Simulation (LES) and the VMS method. The VMS method will

be described in detail, because of our approach to use only the recently introduced

VMS-model (Hughes, 1995) for solving the flow.

Usually the results of these turbulence models are much smoother than the ac-

tual flow. However, what is lost in exactness of the solution is compensated in the
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decreased computational cost. The main idea of using these approaches is to dra-

matically reduce the number of nodes needed for solving turbulent CFD problems

(Rautaheimo, 2001; Gravemeier, 2003).

3.1 LES and VMS turbulence model

LES is an approach where only the large scales are resolved in their complete reso-

lution, and the effect of the unresolved smaller scales on the flow is modeled. Hence,

the LES approach allows to reduce the number of nodes needed compared to a DNS

approach, and consequently also lowers the computational cost. This approach is

widely used especially in meteorology, where the large-scale turbulent motions are

of particular interest (John et al. , 2010).

The Variational Multiscale method (VMS) is an alternative method to the LES

method. The main difference between VMS and LES is that the VMS method

projects the scales into the function spaces rather than filtering them by spatial

averaging. In this way the VMS-method avoids several problems including the

problem of the spatial filtering and spatial differentiation not holding in bounded

domains or for non-constant filter widths, and the problem of choosing the correct

boundary conditions for the spatially averaged large scales, because these are not

known (John et al. , 2010).

3.2 The mathematics behind the VMS framework

The VMS method (Bazilevs et al. , 2007) also known as the Stabilized Method

(Hoffman & Johnson, 2006; Hoffman & Johnson, 2007), which is founded on the

weak form of the Navier-Stokes equations, was used for modeling the flow above

the SBB-area. A control of the equation residual is included in the method by

using a weighted least squares term in the variational formulation, which leads to a

automatic FEM turbulence model. The elements used in this work are continuous

isoparametric hexahedrals.

The time-discretization of the Navier-Stokes equation (37) is

0 = t0 < t1 < t2.... < tN = T,

where n = 1, 2, 3, ..., N, and

tn = n∆t.
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The backward Euler method

∂~u

∂t
≈ ~u n − ~u n−1

∆t
(43)

is used for time stepping. This leads to the time-discretized form of equation (37)

~un − ~u n−1

∆t
+ (~u n · ∇)~u n − 2µ∇ · ¯̄ε(~u n) +∇pn = ~f n, (44)

where ~u n = ~u(tn) and ~f n = ~f(tn).

The boundary condition on the parts of ∂Ω where a Dirichlet condition is applied

is

~u n|∂Ω = ~v (45)

and

~u n · ~n |∂Ω = 0 (46)

on the parts where a mixed condition is used.

Before we introduce the variational formulation of the time-discretized Navier-

Stokes equations we introduce the following notations: (·, ·) denotes the L2(Ω) -inner

product and (·, ·)E denotes the L2(E) -inner products.

The variational formulation without the stabilization term is stated as follows:

Find the pair (~u n, pn) ∈ Vv ×W such that

(
~u n − ~u n−1

∆t
, ~v) + ((~u n · ∇)~u n +∇pn, ~v)− 2µ(¯̄ε(~u n), ¯̄ε(~v)) = (~f n, ~v), (47)

∀~v ∈ V0,

(∇ · ~un, q) = 0 ∀ q ∈ W,

where Vv is the space for which the solution satisfies the boundary condition (45)

and V0 is the same space where ~v = 0 on the boundary. W is the space for the

pressure.

In order to solve equation (47) with the finite element method, the equation nat-

urally has to be discretized into subspaces. Thus we choose the following subspaces:

Vvh ⊂ Vv, V0
h ⊂ V0 and Wh ⊂ W,

which in turn leads to a problem for which we need to find ~uh ∈ Vvh and ph ∈ Wh
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such that

(
~u nh − ~u

n−1
h

∆t
, ~v) + ((~u nh · ∇)~u nh +∇pnh, ~v)− 2µ(¯̄ε(~u nh), ¯̄ε(~v)) = (~f n, ~v), (48)

∀ v ∈ V0
h, ∀ q ∈ Wh.

Equation (48) is stabilized by adding a stabilization term which leads to the

following form

(
~u nh − ~u

n−1
h

∆t
, ~v) + ((~u nh · ∇)~u nh +∇pnh, ~v)− 2µ(¯̄ε(~u nh), ¯̄ε(~v))

+
∑
E

δE((~u nh · ∇)~u nh +∇p n, (~u nh · ∇)~v +∇q)E

= (~f n, ~v) +
∑
E

δE(~f n, (~u nh · ∇)~v +∇q)E , (49)

∀ v ∈ V0
h, ∀ q ∈ Wh.

where the index E refers to an element and

δE = (
1

∆t
+
~u n

hE
)−1,

where hE represents the size of element E.

Numerous test cases and examples for the VMS method can be found in various

references such as: (Gravemeier, 2003; Gravemeier et al. , 2006; Bazilevs et al. ,

2008).
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4 Model mesh

The mesh for the model of the Scharffenbergbotnen area is presented in detail in

this section. The area is modeled using an extrusion perpendicular from the surface

to a fixed height covering the essential part of the Atmospheric Boundary Layer

(ABL), which is the lower part of the troposphere, where the surface of the earth is

considered to affect the flow through turbulent diffusion.

The mesh footprint was created by the mesh generation program GAMBIT and

the extrusion and the vertical mesh layering was done by coding new features into

the open source code ELMER. The scattered DEM data was used for calculation

of the surface elevation of the footprint nodes. The detailed sequence of the pre-

processing steps is explained in the following subsections.

4.1 SBB model: plain footprint mesh

The plane footprint mesh (in 2D) was created so that the characteristic length for

the elements in the valley was chosen to be 50 meters, see the red line in Figure

8. The characteristic length at the surface boundaries was chosen to be 300 meters

with a linear growth in element size from the line to the boundaries. Thus a finer

horizontal resolution was achieved in the valley where it mattered the most. The 2D

mesh consisted of 2552 bilinear rectangular surface elements and 2612 nodes, 118 of

the elements were edge elements.

4.2 The extrusion of the plain footprint mesh

The elevation of each element node is calculated from the surrounding DEM points

inside a radius R of 150 m. When evaluating the elevation of each node, the weight

factor w for each point in the DEM was calculated by choosing a value of χ = 1.2

for the contribution of weight and using the following equation for the weight factor

w = 1/rχ, (50)

where r is the distance from the node to the data point. The elevation of a node

is then calculated by the surrounding DEM data points inside the radius R by the

inverse distance method

ςn =
Σm
i ςi · wi
m

, (51)
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Figure 8: The mesh for the footprint of SBB, created by using the mesh generator
program GAMBIT. The red line indicates the position where the characteristic
length (50 meters) for the elements in the valley is applied. The characteristic
length for the elements on the boundaries was chosen to be 300 meters.

where ςn represents the calculated elevation value for the specific node, ςi is the

elevation value of the data point i and wi is the weight factor for that specific data

point in relation to the node location. A three-dimensional Figure of the DEM

covering the model area is presented in Figure 9. The surface elevation of the model

mesh is presented in Figure 10.

In order to create a mesh that works for the complex topology of Scharffenberg-

botnen we used a geometric series to define the distance between the vertical layers.

Uniform vertical layers would have lead to large computational costs or alternatively

a mesh that would be too coarse near the surface. The size of a layer is ∆zi, where

the subindex i represents the ith layer.

Smaller layers were used near the surface to achieve high accuracy where it mat-
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Figure 9: A three-dimensional plot of the DEM, with coordinates in the UTM29C
zone. The elevation is expressed in meters above sea level.

tered the most. The geometric series for the vertical resolution was created so that

the relation between the upper and lower layer is ∆zN/∆z1 = 10 = qN−1. The

constant q is

q = log−1
10 (

1

N − 1
) = 10

1
N−1 . (52)

This means that at a given point pi,j = (xp, yp) the distance from the surface to

the top of the model is the sum of the vertical layers at that given point. Namely∑N
i=1 ∆zi = ht(p)−hb(p), where N is the number of layers, and hb(p) is the elevation

at the bottom at the point pi,j , and ht(p) is the elevation at the top at the point

pi,j .

The geometric layering was accomplished by adapting an existing stand-alone

open source code, namely the ExtudeMesh.c file, which is downloadable at (http:

//www.elmerfem.org/wiki/index.php/ExtrudeMesh).
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Figure 10: The bottom surface of the mesh, created from the DEM in Figure 9.
The color scale shows the elevation up to 1500m above sea level, the white parts are
elevations of more than 1500m.

4.2.1 3D Mesh: Extruded footprint with a uniform z-value of 2500 m

at the top surface

The extrusion was chosen so that the upper surface of the model was at a uniform

z-value of 2500 meters and 20% of the entire height was chosen to consist of the

geometrically distributed layers, leading to a refinement with a thickness that de-

pends on the horizontal position. The ratio for the geometrical layers was chosen to

be q = 1.05. The number of boundary layers (geometrically distributed layers) was

chosen to be 15, and the total number of layers to 25. The final 3D mesh consisted

of 65300 nodes, 61248 elements, and 7936 boundary elements.

4.3 Definition of the model boundaries

The model domain and boundaries are defined as follows:

• Model domain Ω

25



• Model boundaries ∂Ω = ΓE
⋃

ΓW
⋃

ΓN
⋃

ΓS
⋃

Γtop
⋃

Γbed, where index E

stands for east, W for west, N for of the north boundary, S for the south

boundary, top stands for the upper surface with z = 2500m and bed stands for

the lower surface, where h = 0.

The mesh boundaries are presented in Figures 11 to 13.

Figure 11: The lower surface, east boundary and the south boundary of the extruded
mesh

The north, south and top boundaries where further split into subboundaries,

namely ΓN = ΓN1
⋃

ΓN2, ΓS = ΓS1
⋃

ΓS2 and Γtop = Γtop1
⋃

Γtop2.

The easting values (in UTM29C coordinates) for the boundaries where as follows:

ΓN1 = {4.42× 105 km > x > 4.41× 105 km},

ΓN2 = {4.41× 105 km > x > 4.32× 105 km},

Γtop1 = {4.42× 105 km > x > 4.41× 105 km},

Γtop2 = {4.41× 105 km > x > 4.32× 105 km},

ΓS1 = {4.42× 105 km > x > 4.39× 105 km},

and

ΓS2 = {4.39× 105 km > x > 4.32× 105 km}.
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Figure 12: The lower surface, west boundary and the north boundary of the extruded
mesh

Figure 13: The upper surface of the extruded mesh

These subboundaries are shown in Figures 14 to 15.
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Figure 14: The divided west and north boundary of the extruded mesh

Figure 15: The divided upper surface of the extruded mesh
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5 Model setup

5.1 Simulation with a katabatic flow profile

In order to avoid numerical instabilities we chose to first solve the wind field of

the model domain, by using an inflow that matched the east component of the

more easterly wind field (from the ECWMF re-analysis data), which was the mean

direction plus the standard deviation for the direction, see Table 1 (in Section 6)

and Figure 16 for the definition of this wind field.

Figure 16: The inflow boundary condition profile, EmaxD(h).

After solving the problem with this wind field we chose to include an inflow that

described that of an katabatic jet blowing in towards the valley of SBB. In order to

avoid a sudden impact to the flow, we used a linear time-ramp of 100 seconds for the

katabatic profile to reach its maximum strength. The exact initial and boundary

conditions are described in the following subsection.
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5.2 The initial and boundary conditions for the first simulation

The initial condition for the model domain was chosen to be that of the inflow

condition, therefore a sudden impact in the flow and numerical instabilities were

avoided. The profile used for describing the initial and inflow conditions was

EmaxD(h) ≈ −5.929

+5.384× 10−4 · h

−2.870× 10−6 · h2

+4.968× 10−9 · h3

−3.394× 10−12 · h4

+7.343× 10−16 · h5,

where h is the height above ground. The profile of the inflow was created from the

ECMWF wind data. The regression analysis of the data is explained in detail in

Section 6.

The initial condition for the first simulation was

u1 = EmaxD(h) and u2, u3 = 0 in Ω for t = 0,

where the notation u1 refers to the velocity component in the local x-direction (west

to east), notations u2 and u3 refer to the local y− (south to north) and z− directions.

The boundary conditions where

~u · ~n |ΓE
= EmaxD(h) and u2, u3 |ΓE

= 0

~u · ~n |Γtop2
⋃

ΓN2
⋃

ΓS2
= 0 and (σ~n− ((σ~n) · ~n)~n) |Γtop2

⋃
ΓN2

⋃
ΓS2

= ~0

~u |Γbed
⋃

Γtop1
⋃

ΓN1
⋃

ΓS1
= ~0

¯̄σ~n |ΓW
= ~0.

The time-step ∆t = 0.1 s was used for a time-span of 700 seconds.
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5.3 The initial and boundary conditions for the restart of the first

simulation

After running the first simulation for 700 seconds (where the inflow had past the

valley, where the BIAs exist), the simulation was restarted using an new inflow

profile with a linear 100 second time-ramp of the katabatic wind profile combined

with the earlier inflow profile at the east boundary. The profile of the katabatic wind

was described by a second degree polynomial with a max velocity of 30 m/s and a

height of 100 m. The function used for describing the katabatic velocity profile was

K(h) ≈ −1.776× 10−15

+1.200 · h

−1.200× 10−2 · h2 for 0 ≥ h ≤ 100

K(h) = 0 for h > 100,

where h is the height above ground.

The initial condition used for this simulation, was the solution of the velocity field

in the first simulation at 700 seconds from initialization ~uS , meaning that

~u = ~uS in Ω for t2 = 0,

where t2 = 0 is equivalent to t = 700 s.

The boundary conditions for the restart simulation where

~u · ~n |ΓE
= −1 · (EmaxD(h) +K(h) · t2/100) and u2, u3 |ΓE

= 0 for t2 < 100sec

~u · ~n |ΓE
= −1 · (EmaxD(h) +K(h)) and u2, u3 |ΓE

= 0 for t2 ≥ 100sec

~u · ~n |ΓN2
⋃

ΓS2
= 0 and (σ~n− ((σ~n) · ~n)~n) |ΓN2

⋃
ΓS2

= ~0

~u |Γbed
⋃

ΓN1
⋃

ΓS1
= ~0

¯̄σ~n |ΓW
= ~0

~u |Γtop1
⋃

Γtop2
= ~uS(z) where z = 2500m,
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where ~uS stands for the solution of the earlier run at t = 700 s. This may be

considered an artificial way of forcing the flow to stay inside the model domain.

But we believe that this choice of boundary condition at the upper surface would

not have any significant impact on the flow in the valley, since the profile of the

katabatic wind, only extended 100m above ground. The time-step ∆t = 0.1 s was

used for a time-span of 1000 seconds.
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6 Wind data

The wind patterns in Antarctica are mainly caused by a global pattern of atmo-

spheric circulation. Because of the shape of Antarctica the circulation of air becomes

relatively uniform, which complicates the weather patterns. Therefore Antarctica

has a number of so called weather ”bands”, which all have individual weather con-

ditions (Antarctic Connection, 2011).

The katabatic winds originate from temperature differences which means that

differences in air density and pressure occur, these winds move from areas of higher

pressure to areas of lower pressure. The colder air naturally has a higher pressure,

therefore the dense air higher up will flow fast towards the surface. The katabatic

winds at the coast of Antarctica may reach velocities of around 90 m/s (Antarctic

Connection, 2011).

6.1 Wind data of SBB

The boundary conditions and velocity profiles for the SBB model were created by

extracting reanalysis data from the ERA-Interim archive, ECMWF (Berrisford et al.

, 2009). The extracts from the ERA files were provided by Sami Saarinen, applica-

tion specialist at CSC, the Finnish IT Center for Science Ltd. As the ERA-Interim

data does not take katabatic Winds into account, assumptions on the katabatic wind

profiles had to be made from literature (Antarctic Connection, 2011).

The data was retrieved for 45 horizontal data locations in the surroundings of

Scharffenberbotnen, with lat long coordinates from −74.00 to −75.00 latitude and

348.00 to 350.00 longitude, with a horizontal resolution of 0.25 degrees in both

directions. The relations between the horizontal data points and the SBB model

are presented in Figure 6, Section 1. The vertical data column of the node on the

north east side of the model domain was used for creating the initial and boundary

conditions. The decision to use only one data column will be justified later in this

Section∗.

Each vertical column of the ERA-Interim data consisted of 11 levels, these levels

were expressed in pressure levels with units (hPa) and were then converted into

meters above ground to act as input for our model. The conversion was done

according to the ERA-Interm Archive (Berrisford et al. , 2009). The levels in meters

where: 2310 m, 1980 m, 1680 m, 1410 m, 1170 m, 950 m, 760 m, 600 m, 460 m, 240

m and 100 m, hence the resolution was not uniform for the vertical data points.

The reanalysis data was extracted for every 15th day of each month in the year

2009 and at 4 different times for each of these days, leading to a daily resolution of
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6 hrs. After plotting the directions and the magnitudes for each month, time and

elevation for the four points closest to the SBB model, we could clearly see that

the main wind directions were between north and east. These directions remained

steady up to an elevation of 1500 meters above ground, and in order to create

suitable inflow boundary conditions for the east and north border of our model, we

decided to use the wind data from the data column north east of the model domain∗.

The mean value for the wind directions and wind speeds were computed by creat-

ing a simple Matlab script to extract and evaluate the data. The mean wind speed

is

s(h) =

∑m
i=0 si(h)

m
, (53)

where si(h) denotes the specific speed at a specific time i and a specific height h

(meaning that the mean wind speed was calculated separately for each height), and

m is the number of time levels, so i = 1, 2, 3, ...,m.

The mean direction was calculated in the same way, except that the speed com-

ponent related to that direction and height was used as a weight factor for the

directions, thus making the equation for the mean direction

d(h) =

∑
di(h) · si(h)∑

si(h)
, (54)

where di(h) is the direction at a specific time and height.

The standard deviation of the sample, for the speed and direction at specific

heights were calculated by

S =

√∑
(a(h))− ai(h))2

m
, (55)

where a is denotes the sample value.

The velocity components in the north and east directions were calculated by

multiplying the speed and direction components, thus the north components Nh

were derived by Nh = sh · cos dh, where the subscript h means that this is done for

each height separately. From this of course follows that the east component was

calculated by Eh = sh · sin dh. The direction d at elevation h describes the angle (in

radians) of the wind from the east direction rotating counterclockwise, see Figure

17. The north and east components with the deviations in direction are calculated

by Nh = sh ·cos dh ± Sd and Eh = sh ·sin dh ± Sd, where Sd is the standard deviation

of the direction at the height h.

The directions at different heights describe the direction that the wind is blowing
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Figure 17: The definition of the direction, shown in radians

Table 1: Mean values for wind speed and wind direction at different heights above
ground

height [m] Direction [rad] Speed [m/s] SD Direction [rad] SD Speed [m/s]

2310 -2.4676 7.8546 1.3347 7.4005

1980 -2.3940 7.4804 0.64699 6.8055

1680 -2.1902 6.9478 0.42193 4.9980

1410 -1.9916 6.4681 0.70075 4.4356

1170 -1.9101 6.4544 0.67435 3.6588

950 -1.8294 6.4063 0.65819 3.7553

760 -1.8468 6.3927 0.66289 3.8004

600 -1.8500 6.4547 0.65429 3.9671

460 -1.8655 6.3809 0.67597 3.8554

240 -1.8633 6.3868 0.68579 3.8674

100 -1.8547 6.3769 0.67104 3.8516
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in at that specific height, meaning that a value of about −1.85 radians is a wind

blowing approximately from the north east, these values are presented in Table 1.

6.2 Regression analysis of the SBB wind data

In order to create suitable boundary conditions the wind profiles were approximated

to suite the model by fitting polynomials to the data points. This was done by using

the method of least squares, which minimizes the distance between the data points

and the polynomial.

The purpose of a regression analysis was to create a polynomial y(x) of nth degree

to fit a set of p pairs of data points (x1, y1), (x2, y2), (x3, x4), ..., (xp, yp), where p > n.

The differences between the original data and the approximated polynomial is

called the residual, and the method of least squares states that the polynomial best

suited to describe a set of data points, is the one for which the sum of the squares

of the residuals is the smallest.

The square of the residual for the data points of a nth degree polynomial is

r2
k = (yk − a0 − a1xk − a2x

2
k...− anxnk)2. (56)

Respectively the sum of the squares of the residuals for any polynomial of nth

degree is then

S =
m∑
k=1

(yk − a0 − a1xk − a2x
2
k...− anxnk)2 = r2. (57)

In order to minimize the equation (57) one has to set the gradient to be zero,

which leads to the following equation

∂S

∂aj
= 0, where j ∈ [0, n]. (58)

One way to solve the problem is to put the system in a matrix form
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m
∑
xk

∑
x2
k ...

∑
xnk∑

xk
∑
x2
k

∑
x3
k ...

∑
xn+1
k∑

x2
k

∑
x3
k

∑
x4
k ...

∑
xn+2
k

...
...

...
...

...∑
xnk

∑
xn+1
k

∑
xn+2
k ...

∑
x2
kn





a0

a1

a2

...

an


=



∑
yk∑
xkyk∑
x2
kyk

...∑
xnkyk


, (59)

and then solve the column with the unknowns (a0, a1, a2, ..., an) by using the

Gauss-Jordan elimination.

The approximated polynomials for the wind profiles are from 5th to 7th degree

polynomials, depending on the suitability. The profiles are presented in Figures B.1

- B.6 in Appendix B.
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7 Results

In this section we present the results of the simulation and discuss the effect they

might have on the snow redistribution. The results for the simulation of an inflow

condition of the katabatic profile with a 100 second time-ramp and a restart posi-

tion of 700 seconds from initialization with an eastern inflow along with the other

boundary conditions of the simulation are presented here. The simulation was run

until 1000 seconds from initialization.

7.1 Results of the katabatic wind simulation

Orthographic projections of the simulation are presented in Figures 19 - 25, where

the velocity vectors are plotted from the ground up to 15 m above ground. The

length and the color of the vectors describe the absolute velocity, and the velocity

direction is described by the direction of the vectors. The UTM29C coordinates are

plotted on the axes and the color scale describes the absolute velocity of the vectors,

which in the simulation results is cut off to 40 m/s, meaning that all velocities higher

than 40 m/s are presented as 40 m/s. The blue ice areas are shown in the figure

backgrounds as light gray areas, the exposed rocks on top of hills and mountains

are located at the dark gray areas and the moraines are indicated with black areas.

The borders present a rough outline of the area used in for our simulation domain.

There are clear re-circulation areas in the wake of the north east mountains (at

approximately 436-437 km easting, 1724.5-1725.5 km northing, 437.5-438 km east-

ing, 1724.5-1725.5 km northing and 438.5-439 km easting, 1723-1723.5 km northing)

where snow is observed to be accumulated (Sinisalo et al. , 2004), see Figures 21-24.

Higher velocities are found in the locations of the BIAs, especially as the katabatic

front approaches these areas. From Figure 18 it is clear to see that the magnitude of

the velocities above the BIAs is approximately only 7-10 m/s when the average wind

acted as the inflow profile. Figures 19-24, where the impact of the katabatic inflow

profile has reached the valley clearly indicate velocities of a much higher magnitude

(locally above 30 m/s) at these areas, suggesting that the average wind speeds as

such do not cause the snow to be ripped of the BIAs, but rather that the impact of

the incoming katabatic wind can cause temporal high velocity zones at these areas.
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Figure 18: Results of the simulation with the average wind profile acting as an
inflow condition. The solution is the flow field after 700 seconds from the start of
the initial simulation with only the east wind profile acting as an inflow. The vectors
are plotted from the ground up to 15 m above ground. The impact of the inflow
has already reached the end of the valley. The magnitude of the velocities above
the BIAs is approximately only 7-10 m/s.
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Figure 19: Results of the restart simulation with the katabatic profile acting as an
inflow profile. The solution of the flow is presented at 400 seconds from initialization.
The vectors are plotted from the ground up to 15 m above ground. The katabatic
flow has just reached the valley and a clear impact can be seen at the eastern part
of the larger BIA (located at approximately 435-439.5 km easting, 1722-1723.5 km
northing) where the velocities reach up to approximately 35 m/s.
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Figure 20: Results of the restart simulation with the katabatic profile acting as an
inflow profile. The solution of the flow is presented at 500 seconds from initial-
ization. The vectors are plotted from the ground up to 15 m above ground. The
katabatic flow still has a clear impact at the eastern part of the larger BIA (lo-
cated at approximately 435-439.5 km easting, 1722-1723.5 km northing) where the
velocities reach up to approximately 35 m/s. Re-circulation areas in the wake of the
north east mountains (locations at approximately 436-437 km easting, 1724.5-1725.5
km northing, 437.5-438 km easting, 1724.5-1725.5 km northing and 438.5-439 km
easting, 1723-1723.5 km northing) where snow is observed to be accumulated are
becoming more evident.
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Figure 21: Results of the restart simulation with the katabatic profile acting as an
inflow profile. The solution of the flow is presented at 600 seconds from initialization.
The vectors are plotted from the ground up to 15 m above ground. High magnitude
velocities (locally over 35 m/s) have stretched above most of the larger BIA (located
at approximately 435-439.5 km easting, 1722-1723.5 km northing). Extreme re-
circulation areas are also apparent at the locations where snow has been observed to
be accumulated (at approximately 436-437 km easting, 1724.5-1725.5 km northing,
437.5-438 km easting, 1724.5-1725.5 km northing and 438.5-439 km easting, 1723-
1723.5 km northing)
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Figure 22: Results of the restart simulation with the katabatic profile acting as an
inflow profile. The solution of the flow is presented at 700 seconds from initialization.
The vectors are plotted from the ground up to 15 m above ground. Velocities of
approximately 30-35 m/s are found above the entire larger BIA (located at approxi-
mately 435-439.5 km easting, 1722-1723.5 km northing). High magnitude velocities
are also apparent at the north east border of the smaller BIA (located at approxi-
mately 434-436 km easting, 1724-1725.5 km northing).
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Figure 23: Results of the restart simulation with the katabatic profile acting as an
inflow profile. The solution of the flow is presented at 800 seconds from initialization.
The vectors are plotted from the ground up to 15 m above ground.
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Figure 24: Results of the restart simulation with the katabatic profile acting as an
inflow profile. The solution of the flow is presented at 900 seconds from initialization.
The vectors are plotted from the ground up to 15 m above ground.
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Figure 25: Results of the restart simulation with the katabatic profile acting as an
inflow profile. The solution of the flow is presented at 1000 seconds from initializa-
tion. The vectors are plotted from the ground up to 15 m above ground.
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The transfer of linear momentum in turbulent flow close to the valley surface

happens at length scales, that are not resolved in our computational mesh. Their

effect on the flow then has to be modeled, which in our particular application is

achieved by the VMS method. In contrary to RANS, in VMS a turbulent viscosity

is not directly accessible and consequently a direct derivation of turbulent shear

stresses from the obtained velocity field is not possible. Instead, we use the Cauchy

stress tensor (and hence the molecular viscosity) to compute a surface shear stress

from the velocity field. This certainly is far from being a quantitative measure of the

effective (turbulent) wall shear stresses, nevertheless, its relative distribution points

out the location at the valley glacier, where enhanced surface stresses occur.

The shear stress at the surface is presented in Figures 26 - 32, with the location

of the Blue Ice Areas denoted by the dotted outlining, the exposed rocks on top of

hills and mountains are shown as a 45 degree dark gray pattern and the moraines

are located inside of the black bordered areas.

A general striking coincidence of accelerated flow and increased shear stress above

the larger BIA (at approximately 435-439.5 km easting, 1722-1723.5 km northing) in

the valley is clearly visible especially in Figures 19-22 and 26 - 29. These values seem

to peak as the katabatic front hits the valley, suggesting that the highest velocities

and shear stresses above the BIAs are caused by the sudden impact of an incoming

flow. The flow above the BIA in the northern part of the valley (at approximately

434-436 km easting, 1724-1725.5 km northing) does not seem to be prone to velocities

of the same magnitude as the larger one. We believe that variations in the inflow

direction would lead to greater velocities in this area.
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Figure 26: Results of the restart simulation with the katabatic profile acting as an
inflow profile. This Figure indicates the absolute shear stress at 400 seconds from
initialization. A clear increase in the absolute shear stress is evident at the eastern
border of the larger BIA (located at approximately 435-439.5 km easting, 1722-
1723.5 km northing). The impact of the katabatic wind profile is becoming evident
as the flow has just reached the valley, compare to Figure 19 where the velocity field
is shown at the same instant.
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Figure 27: Results of the restart simulation with the katabatic profile acting as an
inflow profile. This Figure indicates the absolute shear stress at 500 seconds from
initialization. An absolute shear stress with a relatively higher magnitude than the
other areas in the valley has stretched to cover a larger area (compared to the results
at 400 s, see Figure 26) at the larger BIA (located at approximately 435-439.5 km
easting, 1722-1723.5 km northing).
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Figure 28: Results of the restart simulation with the katabatic profile acting as an
inflow profile. This Figure indicates the absolute shear stress at 600 seconds from
initialization.
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Figure 29: Results of the restart simulation with the katabatic profile acting as an
inflow profile. This Figure indicates the absolute shear stress at 700 seconds from
initialization. An increased shear stress is still evident in the larger part of the area
covering the BIA located at approximately 435-439.5 km easting, 1722-1723.5 km
northing.
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Figure 30: Results of the restart simulation with the katabatic profile acting as an
inflow profile. This Figure indicates the absolute shear stress at 800 seconds from
initialization. Increased values of the absolute shear stress can still be found on the
northern border of the larger BIA (located at approximately 435-439.5 km easting,
1722-1723.5 km northing).
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Figure 31: Results of the restart simulation with the katabatic profile acting as an
inflow profile. This Figure indicates the absolute shear stress at 900 seconds from
initialization.
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Figure 32: Results of the restart simulation with the katabatic profile acting as an
inflow profile. This Figure indicates the absolute shear stress at 1000 seconds from
initialization.
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8 Conclusions

The simulations done in this work easily led to instabilities and convergence prob-

lems with the boundary conditions we used. Ideally, they would be embedded in

regional climate models (RCM) or weather models that provide transient boundary

conditions.

The compressibility should not be necessary to include in the equations since

we are only interested in solving the flow of the SBB area, neither should the in-

compressibility assumption be false from a gas-dynamical point of view (low enough

Mach-numbers) and from the temperature induced density difference (Raleygh num-

bers). In our point of view, as the katabatic winds build up further up the slope of

the ice sheet, a Boussinesq approximation is not even needed, as the inertia of the

arriving katabatic wind is so big that it is the dominating effect on the flow inside

the valley.

Our results of the simulations with the ERA-interim re-analysis data acting as the

inflow profiles do not confirm that the BIAs are formed solely due to average wind-

speeds and directions, as these winds do not cause very high velocities at these areas,

see Figure 18. The accumulation of snow in the area where snow is observed to be

accumulated (in the lee of the valley surrounding mountains) is partly explained by

our results, since there are clear re-circulations in these areas. However our results do

not provide strong enough evidence to verify the accumulation in these areas. These

simulations can not be considered very reliable because of the channeled boundary

conditions creating nozzles which lead to high velocity zones at some areas.

The katabatic wind simulation, with the inflow coming from the east, clearly

indicates that there is an increase in velocity exactly at the BIAs. These winds

as such could probably cause high enough speeds in this area to completely clear

the BIA’s, where parts of the old ice is believed to be ripped away from time to

time, forming a clear surface in these areas. However, the open question is still if

the high surface velocities are caused strictly by local pressure distributions causing

katabatic winds, or is the reason for the extremely powerful winds a larger pressure

area causing storms and katabatic winds to combine in these areas. We also need

to point out that this simulation was strictly based on an assumed profile and wind

direction, and this as such is not enough to be considered as an exact simulation

of the reality, but it can definitely be considered as a valuable indicator that the

local terrain actually causes the velocity gradients to increase at the exact positions

where the BIAs are located.

We suggest that these BIA’s might be cleared either by solely local katabatic winds
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or due to extremely powerful temporal storms combined with katabatic winds that

occur from time to time and cause wind speeds which would then lead to exaggerated

shear stresses on the surface of the BIA’s. Powerful surface forces would not only

have effects on snow redistribution but they might also cause the surface ice to be

ripped off. To verify this assumption, further research is necessary.
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Appendix A

Parts of the mesh extrusion

code

// Compute layer thickness dZ for linear refinement:

//---------------------------------------------------

double linearThickness(double S, double B, int levels)

{

double dZ = 0.0;

dZ = (S - B)/((double) levels - 1);

return dZ;

}

// Compute layer cordinate Z for geometric refinement:

//-----------------------------------------------------

double refinedHeight(double S, double B, int levels, int level)

{

double r = 1.2;

int n = levels-2;

double H = S-B;

double a = H*(1-r)/(1-pow(r, n+1));

double z = B;

int k = 0;

for(k = 0; k < level; ++k) {

z = z + a * pow(r, k);

}

return z;

}
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// Compute layer cordinate Z for geometric refinement at BL and uniform:

//-----------------------------------------------------

double refinedHeightBL (double S, double B, int levels,

int level, int GL, double p, double r)

{

int n = GL -1;

double BL = (S - B)*p;

double H = S-B;

double a = BL *(1-r)/(1-pow(r, n+1));

double z = B;

double dZ = (S - B - BL)/((double) levels - GL -1);

int k = 0;

for(k = 0; k < level; ++k) {

if(k<GL)

z = z + a * pow(r, k);

else

z = z + dZ;

}

return z;

}

// write extruded mesh

//--------------------

for (j=0,level=0;level<levels;++level){

for (k=0;k<nodesinpartition;++k){

l=100*k/pointsinlevel;

if (l>j){

j=l;

//printf("done: %3i percent\n", j);

}

// Geometrisesti tihennetty case:

//--------------------------------

double Z = refinedHeightBL(S[k], B[k],
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levels, level, GL, percentage, ratio);

fprintf(outfids[1],"%i -1 %e %e %e\n",

pointsinlevel*level + nodeinfo[k], X[k], Y[k], Z ); //

}

}
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Appendix B

Figures of the fitted polynomials
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Figure B.1: Polynomial of the north components of the wind with mean velocity
and direction
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Figure B.2: Polynomial of the east components of the wind with mean velocity and
direction
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Figure B.3: Polynomial of the north components of the (more northerly) wind with
a direction of the mean wind direction minus the deviation of the direction.
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Figure B.4: Polynomial of the east components of the (more northerly) wind with
a direction of the mean wind direction minus the deviation of the direction.
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Figure B.5: Polynomial of the north components of the (more easterly) wind with
a direction of the mean wind direction plus the deviation of the direction.
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Figure B.6: Polynomial of the east components of the (more easterly) wind with a
direction of the mean wind direction plus the deviation of the direction.
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