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Työssä esitellään stokastinen Galerkinin elementtimenetelmä (sGFEM) yhdessä
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Chapter 1

Introduction

The aim of numerical simulations is to model physical events and the behavior of
engineered systems. However, the simulation of a physical phenomenon is often
difficult even if there exists a good model for it. In many cases, the model is subject
to significant data uncertainties causing meaningless results. For this reason, the
uncertainties or the randomness must be realistically represented in the model. One
way to take the uncertainties into account is to treat them as random processes or
as random fields.

It is to be expected that physical problems that have been previously considered only
in a non-probabilistic framework, that is, problems where no apparent probabilistic
component is present, are going to be cast into a probabilistic framework. The
justification for such a claim can be found in the rapid development of computer
hardware and software as pointed out in [11]: the accuracy afforded on mathematical
models exceeds the accuracy and reliability of the input data, and thus it has become
important to quantify the effect of uncertainty in these problems.

Based on these facts, it is apparent that efficient methods to solve models with un-
certainty in model parameters, initial values, and boundary conditions are required.

Monte Carlo sampling, or one of its variants, is probably the most common method
in use to treat models with random parameters. In Monte Carlo sampling, the idea
is to generate independent realizations of the random inputs in the model based
on their prescribed probability distributions. For each realization, the parameters
of the model are fixed, and thus the problem becomes deterministic. By solving
the deterministic realizations of the problem using, for example, the finite element
method, an ensemble of solutions is obtained. This ensemble can then be used to
extract statistical information about the model, that is, the mean and the variance,
for instance. Other methods in practical use include perturbation methods, moment
equations, operator-based methods, and generalized polynomial chaos as pointed out
in [20] and references therein.

The generalized polynomial chaos (gPC) is a relatively recently developed method
which has become one of the most widely used techniques together with the Monte
Carlo sampling. The idea of the gPC is to express the stochastic solutions as or-
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thogonal polynomials of the input random parameters; different types of orthogonal
polynomials can be chosen to optimize the convergence. The gPC is essentially a
spectral representation of the solution in a random space, and the method exhibits
fast convergence when the solution depends smoothly on the random parameters as
mentioned in [20].

In this thesis, we introduce the stochastic Galerkin finite element method (sGFEM)
that employs the gPC. Moreover, we implement the sGFEM for a certain stochastic
linear elliptic boundary value problem and present numerical examples demonstrat-
ing the functionality of the sGFEM.

For readers interested in the gPC or sGFEM, we recommend the already twice cited
book Numerical methods for stochastic computations: a spectral method approach
by Dongbin Xiu together with the comprehensive reference list therein, and also the
book Stochastic finite elements: a spectral approach by Roger G. Ghanem and Pol
D. Spanos.

1.1 The model problem

In this work, we implement the sGFEM for the following stochastic linear elliptic
boundary value problem: find a random function

u(·, ·) : Ω× D̄ → R (1.1)

such that the following equations hold P -almost surely:
d
dx
(a(ω, x)ux(ω, x)) = 0, x ∈ D,

[u(ω, x)− z1(ω)a(ω, x)ux(ω, x)]x=−L = u1,

[u(ω, x) + z2(ω)a(ω, x)ux(ω, x)]x=L = u2,

(1.2)

where the domain of the problem, D = (−L,L), is an open interval in R, the set Ω
is the sample space of the product probability space of the random variables a, z1,
and z2, the variable ω belongs to the sample space Ω, the boundary values u1 and
u2 are known real valued constants, and ux denotes the derivative of u with respect
to the spatial variable x.

In the model problem, the random variables z1 and z2 are assumed to follow known
log-normal random distributions, and the random field a is assumed to be a log-
normal random field. The underlying Gaussian random field for a is assumed to have
a known finite mean field together with the commonly used exponential covariance
function of the form Va(x1, x2) = σ2 exp(−|x1 − x2|/b), where the parameter b is the
so-called correlation length and σ2 is the variance of the random field. Moreover,
the random variables are assumed to be independent of each other.

In the setting of electrical impedance tomography, the model problem can be con-
sidered as the conductivity equation reduced to one dimension which, at least on a
conceptual level, can be considered to represent a rod whose end points are held at
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potentials u1 and u2. The random variables z1 and z2 model the contact impedances
at the end points of the rod, and the random field a represents the conductivity in-
side the rod. Notice that it is impossible to know exactly the contact impedances
or the conductivity in real applications, and thus we are required to consider those
properties in a probabilistic framework. We are interested in determining how the
potential between the end points of the rod behaves, that is, what is the most prob-
able value of the potential together with the corresponding variance at a specific
point in the rod.

Since the conductivity and the contact impedances are by definition always non-
negative, we use log-normal random variables to characterize them instead of widely
used truncated normal distributions. On the negative side, log-normal random vari-
ables are more difficult to handle mathematically than plain normal distributions.

From a practical point of view, the one-dimensional case considered in this work
is not as interesting as its two- or three-dimensional counterparts would be. How-
ever, the purpose of this thesis is merely to introduce the basic techniques used in
the sGFEM and to prove the feasibility of the method by applying it to the one-
dimensional conductivity equation. Based on this work, it is conceptually easy to
implement the method for the two- or three-dimensional case and also for other
types of problems with only minor changes and/or adjustments.

This thesis is divided into two main parts. In Chapters 2–4, we introduce the
main necessary technical tools for understanding and implementing solvers based
on the sGFEM employing the gPC, that is, the Karhunen–Loève expansion for
the discretization of a random field and the generalized polynomial chaos expansion
required to express the stochastic solution. In Chapters 5–7, we formulate the model
problem, introduce and implement the stochastic Galerkin finite element method,
and present numerical examples demonstrating its functionality. At the end of this
thesis, we give some concluding remarks.



Chapter 2

Preliminaries

In this chapter, we briefly review the essential stochastic constructions and notations
used throughout this thesis. The material is mostly based on references [4] and [15].

First, we construct a probability space and define a random variable which are
mathematical tools used to model randomness. We proceed by introducing some
important characteristics associated with random variables, such as the expectation
and the variance. Moreover, we introduce Bochner spaces as they turn out to be the
natural function spaces for the solutions of the model problem. Finally, we discuss
random fields with the focus on Gaussian and log-normal behavior. We also review
properties of (multivariate) normal and log-normal random variables as they are
essential in developing the stochastic finite element method for the model problem
considered in this work.

2.1 Probability space

To model an experiment or a real-world process consisting of states that occur
randomly, a mathematical structure called probability space needs to be constructed.
Probability spaces consist of three parts:

1. A sample space, which is the set of all possible outcomes of the experiment;

2. A set of events, where each event is a set containing zero or more outcomes of
the experiment;

3. A function that associates a number called the probability of the event to each
event.

An event can be understood as a property which can be observed to hold or to not
hold after the experiment has been conducted, and the probability of an event can
be understood as the limit of the frequency with which the event is realized if the
experiment is repeated an infinite number of times.

4
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Before giving the exact definition of a probability space, we give definitions for a
sigma-algebra and for a probability measure. A sigma-algebra is used to describe
what kind of properties the set of events for a given sample space has, and a prob-
ability measure is used to associate a probability to each event.

Definition 2.1 (Sigma-algebra). Let Ω be a set with no special structure, and let
2Ω denote the set of all subsets of Ω, including the empty set ∅ and Ω itself. Then
a subset Σ of 2Ω is a sigma-algebra on Ω if it satisfies the following conditions:

1. The set Σ is not empty;

2. If a set A is in Σ then its complement Ac is also in Σ;

3. If {Ai}∞i=1 is a countable family of sets in Σ then their union

A =
∞∪
n=1

An

is also in Σ.

Definition 2.2 (Probability measure). A probability measure defined on a sigma-
algebra Σ on a set Ω is a function P : Σ → [0, 1] such that:

1. The measure of the entire set is equal to one: P (Ω) = 1;

2. For every countable collection {Ai}∞i=1 of pairwise disjoint sets, that is, i 6= j,
Ai ∩ Aj = ∅, in Σ it holds that

P
( ∞∪

i=1

Ai

)
=

∞∑
i=1

P (Ai).

A probability space is defined using a sample space, a sigma-algebra, and a proba-
bility measure as follows:

Definition 2.3 (Probability space). A probability space is a triplet (Ω,Σ, P ), where
the sample space Ω is an arbitrary non-empty set, Σ is a sigma-algebra on Ω, and
P is a probability measure on Σ.

Since our model problem contains three stochastic parameters, countable products
of probability spaces are needed. We review the definition of a product probability
space following closely [4]. For more information about higher dimensional random
variables, we refer the reader to [15].

Let (Ωk,Σk, Pk), where k ∈ N, denote a sequence of probability spaces. For a subset
J ⊂ N, we define the product

ΩJ =
∏
k∈J

Ωk



6

as the Cartesian product of the sample spaces Ωk for which k ∈ J . When J = N,
we write

Ω =
∏
k∈N

Ωk. (2.1)

We define the projection operator

pJ : Ω → ΩJ

as the restriction of ω ∈ Ω to ΩJ and the product of sigma-algebras

Σ =
⊗
k∈N

Σk (2.2)

as the smallest sigma-algebra such that any of the projections pj is measurable.
Moreover, the product measure of {Pk}k∈N, denoted by

P =
⊗
k∈N

Pk, (2.3)

is defined as the unique measure on Σ such that for every finite subset J ⊂ N and
arbitrary events Ej ∈ Σj (j ∈ J) it holds that

P
(
p−1
J

(∏
j∈J

Ej

))
=

∏
j∈J

Pj(Ej).

The product probability space (Ω,Σ, P ) of the probability spaces {(Ωk,Σk, Pk)}k∈N
is then defined as

(Ω,Σ, P ) =
⊗
k∈N

(Ωk,Σk, Pk) =
(∏

k∈N

Ωk,
⊗
k∈N

Σk,
⊗
k∈N

Pk

)
. (2.4)

We recall how the independency of events is defined and what is meant by the
P -almost sure property.

Definition 2.4 (Independency). Let (Ω,Σ, P ) be a probability space. Two events
A ∈ Σ and B ∈ Σ are said to be independent if P (A∩B) = P (A)P (B). A possibly
infinite collection of events {Ei}i∈I ⊂ Σ is an (mutually) independent collection if
for every finite subset J ⊂ I it holds that

P
(∩

i∈J

Ei

)
=

∏
i∈J

P (Ei). (2.5)

Definition 2.5 (Negligible set). Let (Ω,Σ, P ) be a probability space. A negligible
set for P is a subset A of Ω such that there exists a set B in Σ satisfying A ⊂ B
and P (B) = 0.

Definition 2.6 (Almost surely). A property holds almost surely (a.s.) if it holds
outside a negligible set.
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By the definition of a negligible set, the almost surely property holds with respect
to the underlying probability measure. If we want to emphasize the dependency on
the measure P , we say P -almost surely, or P -a.s.

For the construction of probability measures on R, we define the Borel sigma-algebra
on R and the cumulative distribution function induced by a probability measure.

Definition 2.7 (Borel sigma-algebra on R). The Borel sigma-algebra on R, denoted
by B, is the smallest sigma-algebra on R that contains all open sets of R.

The Borel sigma-algebra on R can also be characterized with intervals of the form
(−∞, a], where a is a real number; see [15] for a proof. A set is called a Borel set if
it belongs to the Borel sigma-algebra on R.

Definition 2.8 (Cumulative distribution function for a probability measure). The
function F (x) = P ((−∞, x]) induced by a probability measure P on (R,B) is the
cumulative distribution function for the probability measure P .

The knowledge of the cumulative distribution function for a probability measure
uniquely characterizes the probability measure; see [15] for a proof. Thus, in princi-
ple, we know the complete probability measure itself if we know the corresponding
distribution function. In particular, for any Borel set A, the distribution function
allows us to determine the probability P (A).

The cumulative distribution function may often be written using its probability
density function.

Definition 2.9 (Probability density function). A function f is a probability density
function for a cumulative distribution function F if f ≥ 0,

∫∞
−∞ f(x)dx = 1, and it

holds that

F (x) =

∫ x

−∞
f(u)du. (2.6)

Two important distributions used throughout this thesis are the normal or Gaussian
distribution N (µ, σ2) and the log-normal distribution lnN (µ, σ2) with parameters
µ ∈ R and σ2 > 0. The probability density function for the normal distribution is

f(x) =
1√
2πσ2

exp[−(x− µ)2/(2σ2)], (2.7)

and that for the log-normal distribution is

f(x) =

{
0, if x ≤ 0,

1

x
√
2πσ2

exp[−(ln x− µ)2/(2σ2)], if x > 0.
(2.8)

The normal distribution N (0, 1) is also known as the standard normal distribution.
We extend the class of normal distributions N (µ, σ2) to include parameters µ ∈ R
and σ2 = 0, where N (µ, 0) denotes the law of the constant random variable equal
to µ (Dirac’s mass).
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2.2 Random variable

A real-valued random variable on a probability space is defined as follows:

Definition 2.10 (Real-valued random variable). Let (Ω,Σ, P ) be a probability
space. A function X : Ω → R is a real-valued random variable or simply a random
variable (r.v.) if X is a measurable function with respect to the Borel sigma-algebra
on R, that is, X−1(B) ∈ Σ for all Borel sets B ∈ B.

Definition 2.11 (Distribution measure). IfX is a r.v. then the distribution measure
or law of X is the collection of the probabilities

PX(B) = P (X ∈ B) = P ({ω : X(ω) ∈ B}) (2.9)

for all B ∈ B.

The distribution measure PX of a real-valued random variable X is a probability
measure on R, and thus PX is entirely characterized by the distribution function FX

of X:

FX(x) = PX((−∞, x]) = P (X ≤ x).

If the random variable X follows the Gaussian distribution N (µ, σ2), the random
variable Y = exp(X) is said to be a log-normal random variable following the
distribution given by (2.8), that is, the logarithm of a log-normal random variable
is normally distributed.

The justification for the probability density function of a log-normal random variable
(2.8) can be deduced from (2.7) by making the change of variables y = exp(x). We
have x = ln y and dx = dy/y, and thus it holds for a > 0 that

P (Y ≤ a) = P (X ≤ ln a)

=

∫ ln a

−∞

1√
2πσ2

exp[−(x− µ)2/(2σ2)]dx

=

∫ a

0

1

y
√
2πσ2

exp[−(ln y− µ)2/(2σ2)]dy.

Usually we are interested to determine certain statistics about a random variable,
such as the expected value, the variance, and higher moments. After we have ac-
quired the relevant statistics, we make decisions based on this information. Defi-
nitions for the most often used statistics are given below. We assume that X is a
(continuous) random variable with a probability density function f and that all the
integrals converge.

Definition 2.12 (Expected value). The expected value of X, denoted by µX or
E[X], is defined as

µX = E[X] =

∫
R
xf(x)dx. (2.10)
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Definition 2.13 (Variance). The variance ofX, denoted by σ2
X or Var[X], is defined

as

σ2
X = Var[X] =

∫
R
(x− µX)

2f(x)dx = E[X2]− E[X]2. (2.11)

Definition 2.14 (Moment, centered moment). For a non-negative integer n, the
nth moment of X, denoted by E[Xn], is defined as

E[Xn] =

∫
R
xnf(x)dx, (2.12)

and the nth centered moment of X, denoted by E[(X − µx)
n], is defined as

E[(X − µx)
n] =

∫
R
(x− µx)

nf(x)dx. (2.13)

The expected value of an arbitrary real-valued function of X, g(X), denoted by
E[g(X)], is defined as the L2-inner product of f and g:

E[g(X)] =

∫
R
g(x)f(x)dx. (2.14)

For a normally distributed random variableX with the probability densityN (µ, σ2),
the expected value is µ, the variance is σ2, and the centered moments are obtained
by evaluating the integral

E[(X − µ)n] =
1√
2πσ2

∫ ∞

−∞
(x− µ)n exp[−(x− µ)2/(2σ2)]dx.

When n is odd, the integrand is an odd function and the integral vanishes. When
n is even, say n = 2k, we obtain by integrating by parts that

E[(X − µ)2k] = σ2(2k − 1)E[(X − µ)2(k−1)],

and thus the centered moment for a normally distributed random variable X is

E[(X − µ)n] =

{
0, if n is odd,
1 · 3 · 5 · · · (n− 1)σn, if n is even.

(2.15)

The moments of a log-normally distributed random variable X with the probability
density lnN (µ, σ2) can be calculated by using the standard formula

E[Xn] =

∫ ∞

0

xn−1 1√
2πσ2

exp[−(ln x− µ)2/(2σ2)]dx

which can be easily evaluated to give

E[Xn] = exp(nµ+ n2σ2/2) (2.16)



10

by making the change of variables y = ln x, completing the square, and using the
fact that the normal density function integrates to one. In particular, we obtain the
expected value

µX = E[X] = exp(µ+ σ2/2) (2.17)

and the variance

σ2
X = Var[X] = E[X2]− E[X]2 = (exp(σ2)− 1) exp(2µ+ σ2). (2.18)

Because log-normal random variables can be described with the help of normal dis-
tributions, we are only required to consider the probability distribution function
for the multivariate normal distribution in the case of finite number of independent
standard Gaussian random variables in what follows. Let X denote a vector con-
sisting of n independent standard Gaussian random variables (X1, . . . , Xn). Then
the probability density function for X is

f(x) =
1

(2π)n/2
exp

(
− 1

2
xTx

)
, (2.19)

where x is a n-dimensional vector (x1, . . . , xn)
T ∈ Rn.

To complete this section, we recall how independency, orthogonality, and orthonor-
mality of random variables are defined.

Definition 2.15 (Independency of random variables). Two random variables X
and Y with probability densities fX(x) and fY (y) are said to be independent if for
every a, b ∈ R, the events {X ≤ a} and {Y ≤ b} are independent events as defined
in (2.5), that is, the joint density function of X and Y , fX,Y (x, y), can be written in
the form

fX,Y (x, y) = fX(x)fY (y). (2.20)

Definition 2.16 (Orthogonality, orthonormality). Random variables {Xm}, where
m is a positive integer, are said to be orthogonal if for all positive integers m and n
it holds that

E[XmXn] = 0 when m 6= n, (2.21)

and orthonormal if it holds that

E[XmXn] = δmn, (2.22)

where δmn is the Kronecker’s delta:

δmn =

{
0, if m 6= n,
1, if m = n.

Recall that Gaussian random variables are independent if and only if they are or-
thogonal; see [15] for a proof.
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2.3 Bochner spaces

In addition to countable products of probability spaces introduced in Section 2.1,
tensor products of Hilbert spaces and Bochner spaces are required to describe the
stochastic parameters and the solution of the model problem. In this section, we
review those concepts following closely [4].

Let (H1, 〈·, ·〉) and (H2, 〈·, ·〉) be two real Hilbert spaces with associated inner prod-
ucts. For each ϕ1 ∈ H1 and ϕ2 ∈ H2, let ϕ1 ⊗ϕ2 denote the bilinear form acting on
H1 ×H2:

(ϕ1 × ϕ2)〈ψ1, ψ2〉 = 〈ψ1, ϕ1〉H1〈ψ2, ϕ2〉H2 .

Let E be the set of all finite linear combinations of such forms, and define an inner
product on E by extending

〈ϕ1 ⊗ ϕ2, ψ1 ⊗ ψ2〉E = 〈ϕ1, ψ1〉H1〈ϕ2, ψ2〉H2

through linearity to the whole of E . It can be shown that 〈·, ·〉E is well defined and
positive definite. The tensor product of H1 and H2, denoted by H1 ⊗H2, is defined
as the completion of E with respect to the inner product 〈·, ·〉E . It is possible to show
that if {ψk}k∈N and {ϕl}l∈N are orthonormal bases for H1 and H2, respectively, then
{ψk ⊗ ϕl}k,l∈N is an orthonormal basis for H1 ⊗ H2. This construction extends
immediately to the tensor product of any finite number of Hilbert spaces.

Bochner spaces together with countable tensor products of probability spaces are
the natural function spaces for the solutions of the model problem and also for the
solutions of similar stochastic partial differential equations. Bochner spaces are a
generalization of Lp-spaces to functions taking values in a Banach space which is not
necessarily the space of real or complex numbers. Given a measure space (T,Σ, µ)
and a Banach space (X, ‖ · ‖X), the Bochner space Lp

µ(T ;X) is defined as

Lp
µ(T ;X) =

{
f : T −→ X :

∫
T

‖f(t)‖pXdµ(t) <∞
}

(2.23)

with the norm ‖f‖Lp
µ(T ;X) = (

∫
T
‖f‖pXdµ(t))1/p when 1 ≤ p <∞ and as

L∞
µ (T ;X) =

{
f : T −→ X : ess sup

t∈T
‖f(t)‖X <∞

}
(2.24)

with the norm ‖f‖L∞
µ (T ;X) = ess supt∈T ‖f(t)‖X when p = ∞.

If p = 2 and the underlying Banach space X is a separable Hilbert space, we have
the decomposition

L2
µ(T ;X) w L2

µ(T )⊗X,

where ⊗ denotes the tensor product between Hilbert spaces. In particular, the
Bochner space L2

µ(T ;X) is itself again a Hilbert space.
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2.4 Random fields

In many applications, uncertainties in physical quantities vary in time and/or in
space. Thus, it is essential to be able to model varying uncertainties mathematically.
Stochastic processes or random fields are one way to perform such modeling, where
the phrase stochastic process is associated with uncertainty in time, and the phrase
random field with uncertainties in space; mathematically these two terms are usually
defined in the same way. In our model problem, we are mainly concerned with spatial
behavior, and thus we talk about random fields in what follows.

In this section, we present definitions and properties of random fields which will be
utilized in the subsequent chapters.

A random field in a given physical region of space can be understood as a set of
random variables indexed by the possible positions in the region.

Definition 2.17 (Random field). Let (Ω,Σ, P ) be a probability space, and let
D ⊂ Rn denote a bounded physical domain, where n is a positive integer. A
random field is a jointly measurable function from Ω×D to R with respect to the
sigma-algebra Σ on the sample space Ω and the Borel sigma-algebra on the domains
D and R:

a(·, ·) : Ω×D → R. (2.25)

We assume that for a given random field, the mean field and the covariance function
are known.

Definition 2.18 (Mean field, covariance function, variance). For a random field a,
the mean field is defined as

Ea[x] = E[a(·, x)] =
∫
Ω

a(ω, x)dP (ω) (2.26)

and the covariance function as

Va(x1, x2) = E[(a(·, x1)− Ea[x1])(a(·, x2)− Ea[x2])]

=

∫
Ω

(a(ω, x1)− Ea[x1])(a(ω, x2)− Ea[x2])dP (ω). (2.27)

The variance of the random field a is given by Vara[x] = Va(x, x).

For the mean field and the covariance function to exist in the L2-sense, we must
require the random field to have finite second moments, that is, a ∈ L2

P (Ω;L
2(D)).

Definition 2.19 (Square-integrable random field). A random field a is a square-
integrable random field if a belongs to the Bochner space L2

P (Ω;L
2(D)).

In engineering applications involving random fields, we usually have no exact knowl-
edge about the underlying random field itself; instead, we have some samples from
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the random field. In principle, we could use the samples to calculate an approxi-
mation for the mean field and for the covariance function. However, the number
of available samples is usually quite small, and thus we are more likely to get a
sufficient approximation only for the mean field, if any at all.

Luckily, besides the samples, we often have some a priori knowledge about the un-
derlying covariance function. This knowledge can be used to device a suitable can-
didate for the covariance function. The prior information may have been obtained,
for example, from some physical property relevant to the application.

Another possibility for knowing the covariance function is to have access to the
two-point-correlation function of the random field.

Definition 2.20 (Two-point-correlation function). For a random field a, the two-
point-correlation function is defined as

Ca(x1, x2) =

∫
Ω

a(ω, x1)a(ω, x2)dP (ω). (2.28)

An assumption equivalent to knowing the mean field Ea and the covariance function
Va is to know the mean field Ea and the two-point-correlation function Ca, since

Va(x1, x2) = Ca(x1, x2)− Ea[x1]Ea[x2].

Both the covariance function and the two-point-correlation function can be under-
stood to describe how two points in the random field are related.

Because the covariance function is usually assumed to have some specific form, it is
important to know whether or not a given function is a valid covariance function.
More precisely, we want to know whether there exists a random field with a given
mean field and covariance function.

The concept of positive definiteness is fundamental when describing the class of
covariance functions.

Definition 2.21 (Positive semidefinite function). A function Va ∈ L2(D × D) is
positive semidefinite on D if

0 ≤
n∑

k=1

n∑
j=1

ckVa(xk, xj)cj (2.29)

holds for any positive integer n, for any sequence of complex weights {ci}ni=1, and
for all xk, xj ∈ D. Note that, in particular, the right-hand side of (2.29) is required
to be real.

The class of covariance functions on D can be shown to coincide with the the class
of positive semidefinite functions on D; see [1] for a proof. We refer the reader
to [1, 17] for an introduction to positive semidefinite functions and for examples of
widely used covariance functions.
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Gaussian random fields and log-normal random fields are important in engineering
applications; they are reasonable models for many natural phenomena and they can
be specified using only expectations and covariances.

Definition 2.22 (Gaussian random field). A random field

a(·, ·) : Ω×D → R (2.30)

is said to be a Gaussian random field if the distribution of a(·, x) is Gaussian for
every choice of x ∈ D.

Since normal distributions are completely specified if the expectations and covari-
ances are known, see [15] for a proof, it is enough to know the mean field and the
covariance function of a Gaussian random field to characterize it.

Definition 2.23 (Log-normal random field). A random field a is a log-normal ran-
dom field if the logarithm of a is a Gaussian random field, that is, log-normal random
fields are of the form exp(g(ω, x)), where g is a Gaussian random field.

Notice that a log-normal random field can be characterized by defining the mean
field and the covariance function of the underlying Gaussian random field g.

In our model problem, we are considering a one-dimensional rod [−L,L], where the
electrical conductivity is uncertain and can vary from point to point. The uncertain
conductivity can be modeled using a random field. We make the assumption that
the electrical conductivity at each point in the rod follows a log-normal distribution,
that is, the random field is a log-normal random field. The underlying Gaussian
random field is assumed to have a known finite mean together with the covariance
function of the exponential form

Va(x1, x2) = σ2 exp(−|x1 − x2|/b), (x1, x2) ∈ [−L,L]× [−L,L], (2.31)

where σ2 and b are positive parameters. The parameter b is called the correlation
length, since it reflects the rate at which the correlation decays between two points.



Chapter 3

Karhunen–Loève expansion

In the previous chapter, we introduced random fields as a tool for taking uncertain-
ties into account in a model. However, to handle a random field numerically, we
need to expand it as a Fourier-type series, that is, discretize the random field in
the stochastic dimension. Several such expansions exist based on a complete set of
deterministic basis functions with corresponding random coefficients; the Karhunen–
Loève expansion is one such expansion [16]. To be more precise, the Karhunen–Loève
expansion is a representation of a random field as an infinite linear combination of
the orthonormal eigenfunctions of the integral operator defined by the covariance
function of the random field. Thus, the deterministic basis used in the Karhunen–
Loève expansion depends on the random field in question.

The Karhunen–Loève expansion is our preferred choice for the expansion of the
random field since it is an optimal linear approximation in the mean-square sense if
truncated after the first, say M , terms. This result is well known; see [12].

In this chapter, we review the theory of the Karhunen–Loève expansion together with
providing auxiliary results which will be used in the subsequent chapters. Before
giving the definition for the Karhunen–Loève expansion, we state two theorems
required for the expansion: Mercer’s theorem and the Karhunen–Loève theorem
which relies on the former.

Theorem 3.1 (Mercer’s theorem). Let Va(x1, x2) be a continuous symmetric positive
semidefinite kernel

Va : D̄ × D̄ → R, (3.1)

where D̄ = [−L,L], and let TK be the associated integral operator

(TKφ)(x1) =

∫
D

Va(x1, x2)φ(x2)dx2. (3.2)

Then there exists an orthonormal basis {φm}m≥1 of L2(D) consisting of eigenfunc-
tions of the operator TK such that the corresponding sequence of eigenvalues {λm}m≥1

is nonnegative. The eigenfunctions corresponding to the nonzero eigenvalues are

15
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continuous on D, and Va has the representation

Va(x1, x2) =
∑
m≥1

λmφm(x1)φm(x2), (3.3)

where the convergence of the series is absolute and uniform in both variables.

For the proof of Mercer’s theorem, see [22].

Let Va be a continuous covariance function; a covariance function is symmetric and
positive semidefinite by the definition. Hence, by Mercer’s theorem, Va has the
decomposition

Va(x1, x2) =
∑
m≥1

λmφm(x1)φm(x2), (3.4)

where {λm}m≥1 are the positive eigenvalues and {φm}m≥1 are the corresponding
eigenfunctions of the integral operator associated to the covariance function Va.
That is, {λm}m≥1 and {φm}m≥1 are solutions to the integral equation∫

D

Va(x1, x2)φ(x2)dx2 = λφ(x1) for all x1 ∈ D, (3.5)

fulfilling the L2(D)-orthonormality condition∫
D

φm(x)φn(x)dx = δmn, (3.6)

where m and n are positive integers, and δmn is the Kronecker’s delta.

The sequence of the positive eigenvalues {λm}m≥1 used in the decomposition (3.4)
is assumed to be enumerated with decreasing magnitude and is either finite or tends
to zero as m approaches infinity.

Let a be a square-integrable random field with a finite mean field Ea and a continuous
covariance function Va. Then a can be written in the form

a(ω, x) = Ea[x] + α(ω, x), (3.7)

where α is a random field with a zero mean field and the covariance function Va. The
following Karhunen–Loève theorem gives an expansion for the zero mean random
field α. The proof of the theorem can be found in [2].

Theorem 3.2 (The Karhunen–Loève theorem). Let α be a square-integrable random
field with a zero mean field and a continuous covariance function Va. Let {φm}m≥1 be
an orthonormal basis for the space spanned by the eigenfunctions corresponding to the
nonzero eigenvalues associated with the integral operator defined by the covariance
function Va with φm being an eigenfunction corresponding to the eigenvalue λm > 0.
Then the random field α admits an expansion of the form

α(ω, x) =
∑
m≥1

√
λmYm(ω)φm(x), (3.8)
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where the family of random variables {Ym}m≥1 is determined by

Ym(ω) =
1√
λm

∫
D

α(ω, x)φm(x)dx. (3.9)

The expansion converges to α in L2(Ω) uniformly over D, that is,

E
[
(α(·, x)−

n∑
m=1

√
λmYm(·)φm(x))

2
]
→ 0 as n→ ∞, (3.10)

uniformly for x in D. The family of random variables {Ym}m≥1 satisfies

E[Ym] = 0 and E[YmYn] = δmn (3.11)

for all positive integers m and n, that is {Ym}m≥1 have zero mean and they are
orthonormal.

The Karhunen–Loève theorem together with Mercer’s theorem gives the Karhunen–
Loève expansion for a square-integrable random field:

Definition 3.3 (The Karhunen–Loève expansion). The Karhunen–Loève expansion
for a square-integrable random field a with a finite mean field Ea and a continuous
covariance function Va is given by

a(ω, x) = Ea[x] +
∑
m≥1

√
λmYm(ω)φm(x), (3.12)

where the family of random variables {Ym}m≥1 is determined by

Ym(ω) =
1√
λm

∫
D

(a(ω, x)− Ea[x])φm(x)dx. (3.13)

Because the Karhunen–Loève expansion is in general infinite, it is of little use in
numerical calculations as such. Thus, to numerically handle the expansion, it has
to be truncated after the first, say M , terms.

Definition 3.4 (The truncated Karhunen–Loève expansion). Let a be a random
field with the Karhunen–Loève expansion as given in Definition 3.3. Then the trun-
cated Karhunen–Loève expansion for the random field a is given by

aM(ω, x) = Ea[x] +
M∑

m=1

√
λmYm(ω)φm(x). (3.14)

A natural question to ask is how many terms to include in the series. Before ad-
dressing this question, we state results which characterize the uniqueness and the
error minimizing property of the expansion. The following two theorems are proved
in [12].
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Theorem 3.5 (Uniqueness of the expansion). The family of random variables ap-
pearing in an expansion of the type (3.12) are orthonormal if and only if the or-
thonormal functions {φm}m≥1 and the constants {λm}m≥1 are respectively the eigen-
functions and the eigenvalues of the associated integral operator for the covariance
kernel as given by (3.5).

Theorem 3.6 (Error minimizing property). The truncated Karhunen–Loève expan-
sion is an optimal approximation for the random field a in the sense that the mean-
square error ‖a− aM‖L2

P (Ω;L2(D)) resulting from a truncated linear representation of
the random field a is minimized.

The error minimizing property implies that for any other linear combination ãM
of M functions, the resulting error ‖a − ãM‖L2

P (Ω;L2(D)) is not smaller than for the
Karhunen–Loève expansion. However, nonlinear approximations may yield better
approximations as noted in [16]. We can calculate the L2

P (Ω;L
2(D))-error caused

by truncating the expansion as in (3.14) as follows:

‖a− aM‖L2
P (Ω;L2(D)) = E

[∫
D

(a(ω, x)− aM(ω, x))2dx

]
= E

[∫
D

( ∑
m>M

√
λmYm(ω)φm(x)

)2

dx

]
=

∑
m>M

λM , (3.15)

where in the last step the orthonormality conditions (3.6) and (3.11) have been used.
From (3.15) we notice that estimates for the eigenvalue decay in the Karhunen–
Loève expansion are crucial to obtain good a priori control over the error imposed
by truncating the expansion after M terms. It can be shown that for the pointwise
error ‖a− aM‖L∞(Ω×D) information about the eigenfunctions is also required. Thus,
the question about when to truncate the series is related to the properties of the
eigenvalues and the eigenfunctions. For more information, see [4] and references
therein.

From Definition 3.3, we see that a prerequisite for writing the Karhunen–Loève
expansion is the knowledge of the mean field and the covariance function of the
random field in question. Once we know the eigenvalues and the eigenfunctions
associated with the integral operator defined by the underlying covariance function,
probability density functions for the random variables {Ym}m≥1 in Definition 3.3
may be estimated from known sample input fields via (3.13). Thus, the calculation
of the Karhunen–Loève expansion for a random field can be summarized as follows:

1. Sample input fields from the random field;

2. Estimate the mean field and the covariance function for the random field. For
example, one may sample these functions from the available input fields and/or
assume some specific form for them;
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3. Solve the equation (3.5) for the firstM largest eigenvalues and eigenfunctions;

4. Use the sample input fields, the calculated M largest eigenvalues, and the
corresponding eigenfunctions to approximate the probability density functions
for the random variables {Ym}m≥1 as defined by (3.13).

The last step is unnecessary if the random field is assumed to be Gaussian: from
the properties of Gaussian random fields, we know that in this case the random
variables {Ym}m≥1 are also Gaussian. Furthermore, since the random variables are
orthonormal by the equation (3.11), the random variables must follow the standard
normal distribution and be mutually independent. We emphasize that the random
variables {Ym}m≥1 are not necessarily mutually independent if the random field is
not Gaussian.

From the summary above, we see that to apply the Karhunen–Loève expansion as a
general simulation tool, the eigenvalues and the eigenfunctions corresponding to the
covariance function of the random field must be known. Thus, it is essential to be
able to compute them efficiently and accurately. In practice, we are required to solve
the equation (3.5) for a given covariance function. This can be done analytically for
some covariance functions but if no analytic solution is possible, or if there is only
numerical information about the underlying covariance function, one needs to resort
to other methods to calculate the eigenvalues and the eigenfunctions. One possible
technique is the finite element method; see [18] for more information.

Since the log-normal random field in our model problem is uniquely determined by
a Gaussian random field, the sampling of the probability density functions for the
random variables {Ym}m≥1 is not discussed here. See [16] and references therein for
information about calculating statistics for random fields through sampling.

A log-normal random field a(ω, x) = exp(g(ω, x)) is used in our model problem.
Here g is a Gaussian random field with a mean field Eln

a [x] = µ(x) and a covariance
function V ln

a (x1, x2) = σ2 exp(−|x1 − x2|/b). In particular, g follows pointwise the
normal distribution N (µ(x), σ2). We could in principle write the Karhunen–Loève
expansion directly for a, but due to the log-normality of a and the Gaussian nature
of g, it is more convenient to work with the logarithm of a instead of a itself. Thus,
we utilize the following expansion for the logarithm of the random field a:

g(ω, x) = ln a(ω, x) = Eln
a [x] +

∑
m≥1

√
λmYm(ω)φm(x), (3.16)

where the random variables {Ym}m≥1 follow the standard normal distribution and
are mutually independent as implied by the Gaussian assumption on the random
field g. Moreover, {λm}m≥1 and {φm}m≥1 are the eigenvalues and eigenfunctions
corresponding to V ln

a .

Because we did not expand the random field a, but rather the logarithm of a, we are
still required to define the truncated exponential Karhunen–Loève expansion which
is defined similarly to Definition 3.4.
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Definition 3.7 (The truncated exponential Karhunen–Loève expansion). Let ln a
be a random field with a Karhunen–Loève expansion as in (3.16). Then the truncated
exponential Karhunen–Loève expansion for the random field a is defined as

aM(ω, x) = exp
(
Eln
a [x] +

M∑
m=1

√
λmYm(ω)φm(x)

)
, (3.17)

where Eln
a is the mean field of ln a.

The truncation errors associated with the truncated exponential Karhunen–Loève
expansion are more involved than in the case of truncated Karhunen–Loève expan-
sion; see [4] for more information.

The domain D of the model problem is assumed to be the one-dimensional interval
(−L,L), and hence the associated eigenvalue problem (3.5) adopts the following
form: ∫ L

−L

σ2 exp(−|x1 − x2|/b)φm(x2)dx2 = λmφm(x1) for all x1 ∈ D. (3.18)

This eigenvalue problem can be solved analytically [12]. The eigenvalues are

λm = 2σ2b
/
(α2

mb
2 + 1), (3.19)

and the corresponding eigenfunctions are

φm(x) =

 cos(αmx)
/√

L+ sin(2αmL)
2αm

, if m is odd,

sin(αmx)
/√

L− sin(2αmL)
2αm

, if m is even,
(3.20)

where α2k−1 corresponds to the kth solution of

1− αb tan(αL) = 0 (3.21)

and α2k corresponds to the kth solution of

αb+ tan(αL) = 0. (3.22)

Thus, the calculation of the stochastic expansion for the random field used in the
model problem is reduced to solving the equations (3.21) and (3.22).



Chapter 4

Polynomial chaos

We found out in the previous chapter that the knowledge of the mean field and
the covariance function of a square-integrable random field is a prerequisite for the
Karhunen–Loève expansion. In practice, such statistics can be assumed to be known
for the stochastic input parameters of the model but clearly not for the response
statistics. Thus, the Karhunen–Loève expansion cannot be used to describe the
solution’s random behavior. An alternative expansion is thus required.

One method to represent the solution is to use a series of suitably chosen orthogonal
polynomials of the random variables appearing in the input parameters. For exam-
ple, if the input parameters are Gaussian random variables, the orthogonal polyno-
mials are the Hermite polynomials, and the corresponding expansion is known as
the polynomial chaos expansion [21].

In this chapter, we introduce the polynomial chaos expansion for a random variable
and show how to calculate approximations for the statistical properties of the ran-
dom variable using such expansion. We start with general information about poly-
nomial chaos before giving the exact representation of the corresponding expansion.
We restrict our attention to results which will be required in the following chapters.
For more information about the polynomial chaos expansion, we refer the reader
to [12, 20]. The material presented here is based on the references [4, 12, 20, 21].

Wiener originally defined the polynomial chaos in terms of the Hermite polynomi-
als of random variables. If some other orthogonal polynomials than the Hermite
polynomials are used to construct the chaos, the term generalized polynomial chaos
(gPC) is used instead of the polynomial chaos; see [21] for more information. We
want to point out that based on the references we have used, there seems to be
no standard convention for the terminology and notations used when discussing
polynomial chaos expansions.

As the polynomial chaos expansion is in essence a projection onto the space spanned
by the orthogonal polynomials of the input random variables, the rate of convergence
of the expansion depends on the smoothness of the solution as a function of the input
random variables. It is shown in [21] that when the used polynomials are orthogonal
with respect to the probability density function of the random variables appearing in

21
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Table 4.1: Correspondence between the distribution of the input random variable
and the optimal generalized polynomial chaos basis polynomials. Parameters a, b
are real numbers and N is a positive integer.

Distribution gPC basis polynomials Support
Continuous Gaussian Hermite (−∞,∞)

Gamma Laguerre [0,∞)
Beta Jacobi [a, b]
Uniform Legendre [a, b]

Discrete Poisson Charlier {0, 1, 2, . . .}
Binomial Krawtchouk {0, 1, 2, . . . N}
Negative binomial Meixner {0, 1, 2, . . .}
Hypergeometric Hahn {0, 1, 2, . . . N}

the input parameters, the convergence of the polynomial chaos expansion is optimal
in the L2-sense. Moreover, [21] demonstrates numerically that if for a certain process
the preferred gPC basis polynomials are not used, the solution still converges but
the rate of convergence can be substantially lower.

Table 4.1, cited from [20], lists orthogonal gPC basis polynomials for some standard
probability distributions together with the supports of the corresponding densities.
The table can be used to select the preferred basis polynomials if the distribution
of the input parameters is known. If the distribution of the random input does not
belong to the basic types of distributions listed in Table 4.1 or if it is not explicitly
known, see [21] for the gPC representation of arbitrary random inputs.

4.1 Hermite polynomial chaos

In our model problem, the uncertainties are represented by log-normal random vari-
ables. Therefore, we may consider the (generalized) polynomial chaos expansion in
the setting of orthonormal Gaussian random variables and use the original terminol-
ogy introduced by Wiener, that is, we use the term polynomial chaos (PC) instead
of generalized polynomial chaos (gPC).

Definition 4.1 (Polynomial chaos, homogeneous chaos). Let {Ym}∞m=1 be a set of
orthonormal Gaussian random variables with zero mean and unit variance. Let Ĥp,
where p is a non-negative integer, denote the space of all polynomials in {Ym}∞m=1

of degree not exceeding p. Then the polynomial chaos of order p, denoted by Hp, is

the set of all polynomials in Ĥp which are orthogonal to Ĥp−1, and the homogeneous
chaos of order p, denoted by H̄p, is the space spanned by the polynomial chaos Hp.

In the following, we denote by Hp(Yi1 , . . . , Yip) a member of the polynomial chaos
of order p in the variables (Yi1 , . . . , Yip). Due to the orthogonality of the Hermite
polynomials with respect to the standard Gaussian density, the general expression for
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the polynomial chaos of order p is given by the p-dimensional multivariate Hermite
polynomial

Hp(Yi1 , . . . , Yip) = exp
(1
2
YTY

)
(−1)p

∂p

∂Yi1 · · ·Yip
exp

(
− 1

2
YTY

)
, (4.1)

where Y denotes the vector consisting of p Gaussian random variables (Yi1 , . . . , Yip)
with zero mean and unit variance. The vector Y follows the multivariate Gaussian
distribution as given by (2.19). The expected value of a p-dimensional multivariate
Hermite polynomial is zero if the arguments are orthonormal Gaussian random
variables, that is,

E[Hp(Yi1 , . . . , Yip)] = 0.

See [12] for the construction of the general expression (4.1).

It is proved in [9] that the system consisting of all polynomial chaoses is orthogonal
and complete in L2

P (Ω) and that every square integrable random variable f ∈ L2
P (Ω)

admits the following representation:

f(ω) = c0H0 +
∞∑

i1=1

ci1H1(Yi1(ω))

+
∞∑

i1=1

i1∑
i2=1

ci1i2H2(Yi1(ω), Yi2(ω))

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

ci1i2i3H3(Yi1(ω), Yi2(ω)Yi3(ω))

+ . . . , (4.2)

where ci1···ip is a real-valued coefficient and the series converges in L2
P (Ω). The

representation given by (4.2) is known as the polynomial chaos expansion of f . For
the succeeding development, we rewrite the polynomial chaos expansion of f in the
form

f(ω) =
∞∑
j=0

ĉjΨj(Y(ω)), (4.3)

where a one-to-one correspondence exists between Ψj(Y) and Hp(Yi1 , . . . , Yip) and
also between the coefficients ĉj and ci1···ip . The expansion (4.3) is assumed to be
carried out in the order indicated by the expansion (4.2), that is, the contribution
of the lower order polynomials is accounted for first.

The correspondence can be easily characterized by using multi-indices and graded
lexicographic ordering (single-indices). Table 4.2, cited with small modifications
from [20], illustrates the correspondence between multi-indices and single-indices
in the case of four Gaussian random variables, that is, {Ym}4m=1. See [20] for the
construction of multi-indices and graded lexicographic ordering.
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Table 4.2: An example of the graded lexicographic ordering of the multi-indices i in
the case of four dimensions.

|i| Multi-index i Single-index j Ψj(Y1, Y2, Y3, Y4)
0 (0 0 0 0) 0 1

1 (1 0 0 0) 1 Y1
(0 1 0 0) 2 Y2
(0 0 1 0) 3 Y3
(0 0 0 1) 4 Y4

2 (2 0 0 0) 5 Y 2
1 − 1

(1 1 0 0) 6 Y1Y2
(1 0 1 0) 7 Y1Y3
(1 0 0 1) 8 Y1Y4
(0 2 0 0) 9 Y 2

2 − 1
(0 1 1 0) 10 Y2Y3
(0 1 0 1) 11 Y2Y4
(0 0 2 0) 12 Y 2

3 − 1
(0 0 1 1) 13 Y3Y4
(0 0 0 2) 14 Y 2

4 − 1

3 (3 0 0 0) 15 Y 3
1 − 3Y1

(2 1 0 0) 16 Y 2
1 Y2 − Y2

(2 0 1 0) 17 Y 2
1 Y3 − Y3

...
...

...
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Due to the orthogonality of the homogeneous chaos of order p and the properties
of the multivariate Hermite polynomials, the random variables {Ψj}∞j=0 satisfy the
following conditions:

E[Ψj] = 0, E[ΨiΨj] = 0, i 6= j, i, j = 1, 2, . . . , Ψ0 ≡ 1. (4.4)

As in the case of the Karhunen–Loève expansion, the infinite dimensional polyno-
mial chaos expansion (4.3) has to be replaced with a finite expansion in practical
computations. By restricting the number of Gaussian random variables used in the
expansion to n and the maximum degree of the polynomial chaos to p, we define
the n-dimensional polynomial chaos expansion of order p as follows:

Definition 4.2 (The n-dimensional polynomial chaos expansion of order p). The n-
dimensional polynomial chaos expansion of order p of f ∈ L2

P (Ω) is the restriction of
(4.3) containing only n of the uncorrelated random variables {Ym}∞m=1, say {Ym}nm=1,
and where the maximum degree of the polynomials of {Ym}nm=1 is p.

In the limit, when both n and p tend to infinity, we recover the polynomial chaos ex-
pansion as defined in (4.3). The convergence of the n-dimensional polynomial chaos
expansion depends on n as well as on the choice of the used subset {Ym}nm=1. For
our model problem, the subset will be composed of the first n− 2 random variables
in the Karhunen–Loève expansion for the random field describing the conductivity
together with two random variables describing the contact impedances.

Example 4.3. The two-dimensional polynomial chaos of infinite order is written in
a fully expanded form as

f(ω) = c0H0 + c1H1(Y1) + c2H2(Y2)

+ c11H2(Y1, Y1) + c21H2(Y2, Y1) + c22H2(Y2, Y2)

+ c111H3(Y1, Y1, Y1) + c211H3(Y2, Y1, Y1) + c221H3(Y2, Y2, Y1)

+ c222H3(Y2, Y2, Y2) + . . . .

The total number of expansion terms in an n-dimensional polynomial chaos expan-
sion of order p, denoted by P +1, is determined by the number of dimensions used,
n, and by the highest polynomial order, p, of the polynomials {Ym}nm=1, and can be
given with the help of basic combinatorics as the sum

P + 1 = 1 +

p∑
s=1

(n+ s− 1)!

s!(n− 1)!
,

which can be further simplified into the form

P + 1 =
(n+ p)!

n!p!
. (4.5)

Note that the total number of terms in the expansion increases faster than expo-
nentially when n and/or p is increased. Thus, the size of the expansion can grow
too large for any computer to handle even for reasonably small values of n and p.
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Remark 4.4. It is known that the span of {Xk}k∈N0 is dense in L
2
P (Ω) if and only if

the (Hamburger) moment problem is determinate, that is, the distribution function
FX of X is uniquely defined by the sequence of its moments

E[Xn] =

∫
R
xnFX(x), n = 0, 1, 2, . . . .

Thus the (generalized) polynomial chaos expansion in one basic random variable
X converges if and only if the distribution function of X is determinate. For ex-
ample, all distributions listed in Table 4.1 are determinate and, more specifically,
the normal distribution is determinate. However, the log-normal distribution can
be easily shown to be indeterminate by using Krein’s condition [19]. For this rea-
son, we consider log-normal random variables through normally distributed random
variables.

4.2 Response statistics

A polynomial chaos expansion for a given function is an analytic representation of
the function in terms of random variables. Therefore, the calculation of the response
statistics is straightforward.

In the model problem, we are interested in calculating the mean field and the vari-
ance of the solution random field u. Let

û(ω, x) =
P∑

j=0

ĉj(x)Ψj(Y(ω))

be the n-dimensional polynomial chaos expansion of order p for the random field u.
Then the mean field of u can be approximated as

E[u(·, x)] ≈ E[û(·, x)] = E
[ P∑

j=0

ĉj(x)Ψj(Y(·))
]
= ĉ0(x), (4.6)

and the corresponding covariance function as

Vu(x1, x2) ≈ Vû(x1, x2)

= E[(û(·, x1)− ĉ0(x1))(û(·, x2)− ĉ0(x2))]

=
P∑

j=1

E[Ψ2
j(Y(·))]ĉj(x1)ĉj(x2), (4.7)

where the orthogonality of the polynomials {Ψj}Pj=0 was used. The approximation
for the variance is thus

Varu[x] ≈
P∑

j=1

E[Ψ2
j(Y(·))]ĉ2j(x). (4.8)

Other statistical properties of the random field can be approximated in an analogous
way by applying the corresponding definitions to the polynomial chaos expansion of
the random field.



Chapter 5

Problem setting

In this chapter, we formulate the stochastic boundary value problem considered in
the rest of this work. We continue by giving the variational (weak) formulation for
the problem and proving that it is well-posed in the sense of unique solvability.

Let the domain of the problem, D = (−L,L), be an open interval in R. Sup-
pose that (Ωi,Σi, Pi), i = 1, 2, 3, are given probability spaces, and let (Ω,Σ, P ) =
⊗3

i=1(Ωi,Σi, Pi) denote their product probability space as defined in (2.4). Moreover,
let zi : Ωi → R, i = 1, 2, be square-integrable random variables with finite expected
values and known probability distributions. Finally, assume a(·, ·) : Ω3 × D̄ → R
to be a square-integrable random field with a finite mean field whose probability
distribution is also known.

We consider the following stochastic linear elliptic boundary value problem: find a
random function

u(·, ·) : Ω× D̄ → R (5.1)

such that the following equations hold P -almost surely:
d
dx
(a(ω, x)ux(ω, x)) = 0, x ∈ D,

[u(ω, x)− z1(ω)a(ω, x)ux(ω, x)]x=−L = u1,

[u(ω, x) + z2(ω)a(ω, x)ux(ω, x)]x=L = u2,

(5.2)

where ω ∈ Ω, u1 and u2 are known real valued constants, and ux denotes the
derivative of u with respect to the variable x.

The random coefficients a, z1, and z2 are assumed to be independent and uniformly
bounded from above and below, that is, for some positive real numbers amin, amax,
zmin, and zmax it holds that

P (ω ∈ Ω : amin < a(ω, x) < amax for all x ∈ D̄) = 1 (5.3)

and

P (ω ∈ Ω : zmin < zi(ω) < zmax) = 1, i = 1, 2. (5.4)

27



28

Remark 5.1. The conditions (5.3) and (5.4) do not hold for log-normal random
variables as they can take values arbitrarily close to zero or infinity with a positive
probability. Hence, if a, z1, and z2 were log-normal random variables or fields – as
they are in our numerical tests – their behavior should in principle be restricted,
or the assumptions (5.3) and (5.4) should be relaxed substantially. However, in
our case this is not required: we are performing the calculations numerically with
a computer, and thus the underlying hardware based limits can be assumed as the
limits for the random variables. Moreover, we want to note that our decision to
work with (unrestricted) log-normal random variables did not cause any numerical
instabilities in the numerical studies of Section 6. See [3, 4, 14] for information
about how the assumptions (5.3) and (5.4) can be relaxed and how the log-normal
random variables can be suitably restricted.

We start by giving the variational formulation for the problem. Recall that the
Hilbert space

Hp = L2
P (Ω;H

1(D)) =
{
v : Ω → H1(D) :

∫
Ω

‖v(ω)‖2H1(D)dP (ω) <∞
}

is equipped with the norm

‖v‖2L2
P (Ω;H1(D)) =

∫
Ω

‖v(ω)‖2H1(D)dP (ω) = E[‖v‖2H1(D)],

where

‖v‖2H1(D) = ‖v‖2L2(D) + ‖vx‖2L2(D) =

∫
D

v(x)2dx +

∫
D

vx(x)
2dx

and the derivative of v with respect to the variable x, that is, vx, is understood
in the weak sense. The Sobolev space H1(D) contains all L2(D) functions whose
first weak derivative is also in L2(D). For more information about Sobolev spaces,
see [10], for example.

By multiplying the first equation of (5.2) with a test function v ∈ HP , integrating
by parts, using the given boundary conditions, and taking the expected value, we
obtain the variational formulation for the problem: find u ∈ HP such that for all
v ∈ HP it holds that

B(u, v) = F (v), (5.5)

where

B(u, v) = E
[ ∫

D

a(ω, x)ux(ω, x)vx(ω, x)dx

+
1

z2(ω)
u(ω, L)v(ω, L) +

1

z1(ω)
u(ω,−L)v(ω,−L)

]
(5.6)

and

F (v) = E
[ 1

z2(ω)
u2v(ω,L) +

1

z1(ω)
u1v(ω,−L)

]
. (5.7)
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We continue by proving that the variational formulation of the problem is well-posed
in the sense of unique solvability. To this end, we must show the continuity of the
linear functional F and the bilinear form B, i.e., that for some constant C > 0 it
holds that

|F (v)| ≤ C‖v‖HP
for all v ∈ HP

and
|B(u, v)| ≤ C‖u‖HP

‖v‖HP
for all u, v ∈ HP ,

and the coercivity of B, i.e., that for some constant C > 0 it holds that

B(v, v) ≥ C‖v‖2HP
for all v ∈ HP .

To reach this goal, we need the algebraic inequality

|x|+ |y| ≤
√

2(x2 + y2), x, y ∈ R, (5.8)

and the so-called trace theorem.

Theorem 5.2 (The trace theorem). Let D be a bounded open set in Rn and suppose
that D has a piecewise smooth boundary ∂D. In addition, suppose that D satisfies
the cone condition. Then there exists a bounded linear mapping

γ : H1(D) → L2(∂D), ‖γv‖L2(∂D) ≤ C‖v‖H1(D), (5.9)

where C is a constant depending on D but not on v, such that γv = v|∂D for all
v ∈ C1(D̄).

The proof of the trace theorem may be found in [7].

Let us first prove the continuity of F . By taking absolute values, estimating the
random variables z1 and z2 from below by zmin, and including all constants in C > 0,
we obtain

F (v)2 ≤ E
[ 1

zmin

(|u1|+ |u2|)(|v(ω,−L)|+ |v(ω,L)|)
]2

= CE
[
|v(ω,−L)|+ |v(ω,L)|

]2
.

The generic constant C > 0 may change during the subsequent steps. We continue
by using (5.8) and the trace theorem to estimate the expectation from above, and
finally, by using Jensen’s inequality, we arrive at the desired result:

F (v)2 ≤ CE
[
‖v(ω, ·)‖L2(∂D)

]2
≤ CE

[
‖v(ω, ·)‖H1(D)

]2
≤ CE

[
‖v(ω, ·)‖2H1(D)

]
≤ C‖v‖2HP

.



30

The continuity of B is shown in a similar way. By taking absolute values and using
the assumptions on the random variables, we obtain

B(u, v)2 ≤ E
[
amax

∫
D

|ux(ω, x)vx(ω, x)|dx

+
1

zmin

(|u(ω, L)|+ |u(ω,−L)|)(|v(ω, L)|+ |v(ω,−L)|)
]2

≤ CE
[
‖ux(ω, ·)‖L2(D)‖vx(ω, ·)‖L2(D) + ‖u(ω, ·)‖L2(∂D)‖v(ω, ·)‖L2(∂D)

]2
where in the last step the inequality (5.8) is used. The desired result follows now
from the trace theorem and the Cauchy–Schwarz inequality:

B(u, v)2 ≤ CE
[
‖ux(ω, ·)‖L2(D)‖vx(ω, ·)‖L2(D) + ‖u(ω, ·)‖H1(D)‖v(ω, ·)‖H1(D)

]2
≤ CE

[
‖u(ω, ·)‖H1(D)‖v(ω, ·)‖H1(D)

]2
≤ CE

[
‖u(ω, ·)‖2H1(D)

]
E
[
‖v(ω, ·)‖2H1(D)

]
≤ C‖u‖2HP

‖v‖2HP
.

Poincaré–Friedrichs inequality, given below for the one-dimensional case, is required
for the coercivity of B.

Theorem 5.3 (Poincaré–Friedrichs inequality). Let D be as above. Then the rela-
tion

‖v‖L2(D) ≤ 2L‖vx‖L2(D) (5.10)

holds for all v ∈ H1
0 (D) = {v ∈ H1(D) | v(−L) = v(L) = 0}.

For the proof of Poincaré–Friedrichs inequality, see [7].

By estimating the bilinear form B from below with the help of the assumptions (5.3)
and (5.4), we obtain

B(v, v) ≥ E
[
amin‖vx(ω, ·)‖2L2(D) +

1

zmax

(|v(ω,−L)|2 + |v(ω,L)|2)
]

≥ CE
[
‖vx(ω, ·)‖2L2(D) + ‖v(ω, ·)‖2L2(∂D)

]
. (5.11)

Due to an extension of the trace theorem [10], we known that there exists a func-
tion hv ∈ H1(D) such that

hv(ω,−L) = v(ω,−L), hv(ω, L) = v(ω,L), (5.12)

and

‖hv(ω, ·)‖H1(D) ≤ C‖v(ω, ·)‖L2(∂D), (5.13)
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where the constant C does not depend on v. (Notice that (5.13) holds in this form
only in one dimension.)

By using the triangle inequality, we can estimate the norm ‖v(ω, ·)‖L2(D) from above
to obtain

‖v(ω, ·)‖L2(D) ≤ ‖hv(ω, ·)‖L2(D) + ‖(v − hv)(ω, ·)‖L2(D).

Because the function v − hv belongs to H1
0 (D), we can use Poincaré–Friedrichs

inequality to get

‖v(ω, ·)‖L2(D) ≤ C
(
‖hv(ω, ·)‖L2(D) +

∥∥∥ d
dx

(v − hv)(ω, ·)
∥∥∥
L2(D)

)
≤ C

(
‖vx(ω, ·)‖L2(D) + ‖hv(ω, ·)‖L2(D) + ‖hvx(ω, ·)‖L2(D)

)
≤ C

(
‖vx(ω, ·)‖L2(D) + ‖v(ω, ·)‖L2(∂D)

)
, (5.14)

where the last two steps follow from the triangle inequality, the definition of the
H1(D)-norm, and (5.13). Using (5.14) together with (5.8), we thus obtain the
estimate

‖v(ω, ·)‖2H1(D) ≤ C(‖vx(ω, ·)‖2L2(D) + (‖vx(ω, ·)‖L2(D) + ‖v(ω, ·)‖L2(∂D))
2)

≤ C(‖vx(ω, ·)‖2L2(D) + ‖v(ω, ·)‖2L2(∂D)). (5.15)

By combining (5.15) with (5.11), we obtain the desired result, namely,

E
[
‖v(ω, ·)‖2H1(D)

]
≤ CB(v, v), (5.16)

which proves the coercivity of B.

The unique solvability of (5.5) follows now from the Lax-Milgram lemma.

Theorem 5.4 (The Lax-Milgram lemma). Let B be a bounded, coercive bilinear
form on a Hilbert space H. Then for every bounded linear functional F ∈ H∗, where
the space H∗ denotes the space of all bounded linear functionals on H, there exists
a unique element u ∈ H such that

B(u, v) = F (v) (5.17)

for all v ∈ H.

The proof of the Lax-Milgram lemma may be found in [13].

Remark 5.5. Notice that if the random field a is assumed to be a constant, that
is, a(ω, x) ≡ a, it is straightforward to show that the model problem assumes the
analytic solution

u(ω, x) =
u2 − u1

2L+ (z1(ω) + z2(ω))a
x

+
(u1 + u2)L+ (u2z1(ω) + u1z2(ω))a

2L+ (z1(ω) + z2(ω))a
. (5.18)



Chapter 6

Stochastic Galerkin finite element
method

In this chapter, our aim is to introduce the main ideas behind the stochastic finite
element method, sFEM, and apply it to the model problem presented in the pre-
vious chapter. We start by discussing the sFEM in general, and then continue by
formulating the sFEM, or to be more precise, the stochastic Galerkin finite element
method, sGFEM, for the model problem. We also point out some issues faced when
implementing the sGFEM with a computer. Numerical examples illustrating the
sGFEM are provided in the next chapter.

The (deterministic) finite element method, FEM, can be characterized to be a
method for converting a continuum valued problem, such as a partial differential
equation, into a discrete problem. The differential equation is first presented in a
variational form, that is, the equation is required to hold only in a weak sense; an
equation holds in a weak sense if it holds with respect to suitable ”test vectors”
or ”test functions”. Formulating the problem in the variational form is in essence
the same as to require a solution to the original problem in the sense of distribu-
tions. Finally, some constraints are applied on the function space from which the
weak solution is sought for in order to discretize the space with a finite set of basis
functions.

For the subsequent development, we want to mention one specific FEM, namely the
Galerkin finite element method, GFEM1. The GFEM is a widely used FEM whose
key property is that the error of the weak solution is orthogonal to the corresponding
FEM solution space in the sense of ”energy inner product”. For more information
about the deterministic FEM, we refer to [7].

The idea of the sFEM is the same as that of the FEM: formulate the problem in a
variational sense, use a finite set of basis functions to discretize the problem, and
finally solve the discretized problem to obtain an approximate solution to the original
problem. However, in sFEM the problem is discretized in both, random and spatial,

1In some settings, the term GFEM corresponds to generalized finite element method.
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dimensions, or more precisely, in both parameter spaces: the discretization in the
spatial dimension is done in the same way as in the deterministic FEM, and the
discretization in the random dimension is usually performed using a (generalized)
polynomial chaos expansion introduced in Chapter 4.

Two extensively used stochastic finite element methods exist: the stochastic Galerkin
method, sGFEM, and the stochastic collocation method, sCFEM. The idea in the
sGFEM is to build on top of the GFEM by adding the polynomial chaos expan-
sion discretization of the random dimension over the standard discretization of the
spatial dimension, whereas the idea in the sCFEM is to first sample the solution
on a set of predetermined points in the random dimension and then interpolate the
obtained probability densities to the whole random dimension. In this work, we
consider only the sGFEM. For more information about the sFEM and the sCFEM,
see [3, 6, 11, 12].

We proceed by formulating the sGFEM for the model problem given by (5.2).

From now on, we assume the random variables z1 and z2 to be log-normal. We know
from Chapter 2 that z1 and z2 can be written in the form

z1(ω) = exp(µ1 + σ1Y1(ω)) and z2(ω) = exp(µ2 + σ2Y2(ω)),

where Y1 and Y2 follow the standard normal distribution. Furthermore, we assume
that a is a log-normal random field for which the mean field µ3(x) and the covariance
function of the underlying Gaussian random field are known. Finally, we suppose
that a can be approximated as a truncated exponential Karhunen–Loève expansion.
Hence, according to Definition 3.7, we can write:

a(ω, x) ≈ aM(ω, x) = exp
(
µ3(x) +

M+2∑
m=3

√
λmYm(ω)φm(x)

)
, (6.1)

where µ3(x) corresponds to Eln
a [x], and the indexing starts from 3 to distinguish

the random variables in the expansion from those used for z1 and z2. Recall that
the random variables {Ym}M+2

m=3 are orthogonal and follow the standard normal dis-
tribution. Note also that the random variables a, z1, and z2 were assumed to be
independent, and thus {Ym}M+2

m=1 are also independent.

From Chapter 4, we know that the random field u ∈ HP can be approximated in
the L2

P (Ω) sense as

u(ω, x) ≈ û(ω, x) =
P∑
i=0

ĉi(x)Ψi(Y(ω)), (6.2)

where Y is the random vector consisting of {Ym}M+2
m=1 and ĉi(x) is a suitable weight

function. We proceed by dividing the domain of the model problem D̄ = [−L,L]
into N −1 intervals with mesh size h = 2L/(N −1) using N ≥ 2 equally distributed
points {xi}Ni=1. We also introduce piecewise linear spatial basis functions {gi}Ni=1
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whose value is one at xi and zero at every xj, j 6= i, that is,

gi(x) =


x−xi−1

xi−xi−1
, if x ∈ [xi−1, xi],

x−xi+1

xi−xi+1
, if x ∈ [xi, xi+1],

0, otherwise,

and discretize the weight functions:

ĉi(x) ≈
N∑
k=1

dikgk(x), (6.3)

where {dik}Nk=1 ⊂ R are suitable constant coefficients. Thus, the field u is altogether
approximated as

u(ω, x) ≈ ũ(ω, x) =
P∑
i=0

N∑
k=1

dikΨi(Y(ω))gk(x). (6.4)

Besides discretizing the random field u, we have discretized the whole space HP ; any
random field v ∈ HP can be written as a linear combination of the basis functions
{gkΨi(Y)} in the limit when M , N , and P tend to infinity [7, 20].

After discretizing the space HP , the problem (5.5) is transformed into the form: find
constants {dik} ⊂ R such that the equation

B(ũ, ṽ) = F (ṽ), (6.5)

where ṽ = glΨj(Y), holds for all l = 1, . . . , N and j = 0, . . . , P . Expanding the
left-hand and right-hand sides of the equation (6.5) gives

B(ũ, ṽ) = E
[ ∫ L

−L

a(ω, x)
P∑
i=0

N∑
k=1

dikg
′
k(x)Ψi(Y(ω))g′l(x)Ψj(Y(ω))dx

+
1

z2(ω)

P∑
i=0

N∑
k=1

dikgk(L)Ψi(Y(ω))gl(L)Ψj(Y(ω))

+
1

z1(ω)

P∑
i=0

N∑
k=1

dikgk(−L)Ψi(Y(ω))gl(−L)Ψj(Y(ω))
]

and

F (ṽ) = E
[ u2
z2(ω)

gl(L)Ψj(Y(ω)) +
u1

z1(ω)
gl(−L)Ψj(Y(ω))

]
.

By moving the expectations inside the integral and using the properties of the func-
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tions {gi}Ni=1, we obtain

B(ũ, ṽ) =
P∑
i=0

N∑
k=1

dik

∫ L

−L

g′k(x)g
′
l(x)E[a(ω, x)Ψi(Y(ω))Ψj(Y(ω))]dx

+
P∑
i=0

E
[Ψi(Y(ω))Ψj(Y(ω))

z2(ω)

]
diNgl(L)

+
P∑
i=0

E
[Ψi(Y(ω))Ψj(Y(ω))

z1(ω)

]
di1gl(−L)

and

F (ṽ) = E
[Ψj(Y(ω))

z2(ω)

]
u2gl(L) + E

[Ψj(Y(ω))

z1(ω)

]
u1gl(−L).

Forming the equation (6.5) for all l = 1, . . . , N and j = 0, . . . , P produces a set of
N × (P + 1) algebraic equations which can be written in the form

Ad = J, (6.6)

where A is a symmetric block matrix of dimension N × (P + 1), and d and J are
block vectors. The ijth block matrix of A, Aij, is characterized by

{Aij}kl =
∫ L

−L

g′k(x)g
′
l(x)E[a(ω, x)Ψi(Y(ω))Ψj(Y(ω))]dx

+ δkNE
[Ψi(Y(ω))Ψj(Y(ω))

z2(ω)

]
δlN (6.7)

+ δk1E
[Ψi(Y(ω))Ψj(Y(ω))

z1(ω)

]
δl1,

the ith block of the vector d is given by di = (di1, . . . , diN)
T, and the jth block of

the vector J by

Jj =
(
E
[Ψj(Y(ω))

z1(ω)

]
u1, 0, . . . , 0,E

[Ψj(Y(ω))

z2(ω)

]
u2,

)T

, (6.8)

where 0 ≤ i, j ≤ P and 1 ≤ k, l ≤ N .

Next, we turn our attention to evaluation of the expectations and integrals in (6.6).
To this end, let h(ω, x) be an arbitrary random field that can be approximated using
the truncated exponential Karhunen–Loève expansion,

h(ω, x) ≈ h̃M(ω, x) = exp
(
h0(x) +

M∑
m=1

Ym(ω)hm(x)
)
, (6.9)

where the random variables {Ym} are independent and follow the standard normal
distribution. We want to use the expansion (6.9) to calculate an expectation of the
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type E[h(ω, x)Ψi(Y(ω))Ψj(Y(ω))]. We obtain

E
[
h(x)Ψi(Y)Ψj(Y)

]
≈ exp(h0(x))E

[
exp

( M∑
m=1

Ymhm(x)
)
Ψi(Y)Ψj(Y)

]
= exp(h0(x))(2π)

−M
2

∫ ∞

−∞
exp

( M∑
m=1

(ymhm(x)−
1

2
y2m)

)
Ψi(y)Ψj(y)dy.

By completing the square and making the change of variables

ỹm(x) = ym − hm(x), m = 1, . . . ,M,

we obtain

E
[
h(x)Ψi(Y)Ψj(Y)

]
≈ exp

(
h0(x) +

1

2

M∑
m=1

hm(x)
2
)

× (2π)−
M
2

∫ ∞

−∞
exp

(
− 1

2

M∑
m=1

ỹm(x)
2
)
Ψi(ỹ(x) + h(x))Ψj(ỹ(x) + h(x))dỹ

= exp
(
h0(x) +

1

2

M∑
m=1

hm(x)
2
)
E
[
Ψi(Ỹ(x) + h(x))Ψj(Ỹ(x) + h(x))

]
, (6.10)

where for each x ∈ [−L,L] each component of Ỹ(x) follows the standard normal
distribution and h(x) = (h1(x), . . . , hM(x)). Particularly, if the random field h can
be written in the form

h(ω, x) = exp(h0(x) + Y1(ω)h1(x)),

it holds that

E[h(x)Ψj(Y)] = exp
(
h0(x) +

1

2
h1(x)

2
)
E[Ψj(Ỹ1(x) + h1(x))]. (6.11)

Based on the formulas (6.10) and (6.11), the expectations in (6.7) and (6.8) are easy
to evaluate. By using the truncated exponential Karhunen–Loève expansion for a,
given by (6.1), we obtain that

E[a(ω, x)Ψi(Y(ω))Ψj(Y(ω))] ≈

exp
(
µ3(x) +

1

2

M+2∑
m=3

am(x)
2
)
E
[
Ψi(Ỹ(x) + a(x))Ψj(Ỹ(x) + a(x))

]
, (6.12)

where a(x) = (0, 0, a3(x), . . . , aM+2(x)) and am(x) =
√
λmφm(x). The expectation

E
[
Ψi(Ỹ(x) + a(x))Ψj(Ỹ(x) + a(x))

]
(6.13)
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can be calculated without any numerical evaluation of integrals: by expanding the
product of the two polynomials, namely,

Ψi(Ỹ(x) + a(x))Ψj(Ỹ(x) + a(x)), (6.14)

and replacing the different powers of Ỹm(x) using (2.15), which is allowed since the
random variables {Ỹm(x)}M+2

m=1 are independent, we obtain the value of (6.13). Since
the value of (2.15) depends only on the power of Ỹm(x) (every Ỹm(x) has zero mean
and unit variance), the calculation of (6.13) is reduced to a simple substitution rule:
expand all terms in (6.14) and replace all occurrences of Ỹm(x) with the value given
by (2.15) corresponding to the power of the Ỹm(x). Notice that the expectation
(6.13) is a multivariate polynomial in terms of a.

The other expectations in (6.7) and (6.8) can be calculated in a similar way by using
(6.11) and the fact that the reciprocal of a log-normal random variable lnN (µ, σ2)
can be given as exp(−µ− σY ), where Y follows the standard normal distribution.

Let us continue by discussing the integral∫ L

−L

g′k(x)g
′
l(x)E[a(ω, x)Ψi(Y(ω))Ψj(Y(ω))]dx. (6.15)

Notice first that the derivatives of the functions {gi}Ni=1 are piecewise constant and
are supported only on specific intervals of the domain D. Thus, the term g′k(x)g

′
l(x)

is constant on each subinterval and reduces the integration limits in (6.15). Fur-
thermore, we know from the previous paragraphs that the expectation in (6.15) is a
multivariate polynomial in terms of a. However, due to the exponential coefficient
in front of the expectation (6.13) in (6.12), the approximate expectation (6.12) is
not a multivariate polynomial but a sum of more complicated functions of a.

The integral (6.15) can be integrated term by term. If all possible terms of the
multivariate polynomial (6.13) are formed, multiplied with the corresponding expo-
nential coefficient, integrated over all possible supports of the term g′k(x)g

′
l(x), and

tabulated beforehand, the calculation of (6.15) is reduced into a simple substitution
task. Notice that when computing the required integrals, we are required to carry
out the integrations numerically because of the exponential coefficient. Numerical
integration is not discussed in this work; see [8] for information about the topic.
We want to emphasize that most of the cells in A are zero with a non-trivial pat-
tern. The sparsity and the symmetry of A should be taken into account in the
implementation of the sGFEM.

After forming the matrix equation (6.6) and solving it for the constants {dik}, some
post-processing is required to obtain the desired response statistics for the approx-
imate solution ũ. By using equation (6.3), we form the functions {ĉi}Pi=0. After
that, the solution ũ is written in the form of (6.2). Finally, the results presented in
Section 4.2 are used to calculate the desired response statistics for the approximate
solution ũ.

Numerical examples illustrating the sGFEM are presented in the next chapter.



Chapter 7

Numerical examples

We present five numerical examples about our model problem to demonstrate the
functionality of the stochastic Galerkin finite element method.

In the first two examples, the main focus is to study the effect of the variance of the
contact impedance random variables. We assume the random field a to be identically
one, and hence, from Remark 5.5 on page 31, we know the exact solution to the
model problem. Thus, we can validate the obtained sGFEM solutions in comparison
to a ground truth.

In the last three examples, the random field a is assumed to be as introduced in the
previous chapters. First, we justify the sGFEM by a simple example, where only
the first term of the truncated exponential Karhunen–Loève expansion is taken into
account. After that, we proceed by taking more terms into the expansion, that is,
we increase the number of stochastic variables in the model problem. Finally, we
consider large variances for some of the random parameters. Remark 5.5 cannot be
used for the exact solution in these examples because the random field is not identical
to a constant. Therefore, we are required to resort to Monte Carlo sampling, as
explained in Chapter 1, to obtain ”reference solutions” that we can use to evaluate
the solutions given by the sGFEM.

The domain corresponding to L = 1 and the boundary conditions u1 = 1 and
u2 = 2 were assumed for the model problem in all of our numerical examples.
The choices were purely arbitrary; we could have chosen other parameters as well.
Besides the domain and the boundary conditions, we are also required to specify
the distributions of the random variables a, z1, and z2, the number of terms in the
truncated exponential Karhunen–Loève expansion, M , and the discretization levels
N and p for the spatial and stochastic dimensions, respectively, for each example.
Recall that the parameter N is the number of piecewise linear functions used to
discretize the spatial dimension and that the parameter p is the maximum order of
the polynomial chaos expansion.

When the parameters M , N , and p have been specified, the dimension of the prob-
lem, or more precisely the size of the square matrix A in (6.6), is given by the
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Table 7.1: The number of unknowns as given by (7.1) for some values of the param-
eters M , N , and p.

p 0 2 4 6 8 10 11
N = 2,M = 0 2 12 30 56 90 132 156
N = 20,M = 1 20 200 700 1680 3300 5720 7280
N = 20,M = 4 20 560 4200 18480 60060 160160 247520

formula

N × (P + 1) = N × (2 +M + p)!

(2 +M)!p!
(7.1)

as can be seen from (4.5). In Table 7.1, the dimension of the problem is shown for
some values of the parameters M , N , and p. Notice that the size of the matrix A,
and thus the running time of the sGFEM, increases rapidly and becomes quite fast
infeasible if the parameter M and/or p is increased. Hence, it would be desirable
to be able to obtain good results with the sGFEM already when the parameters M
and p are relatively small.

Recall that the matrix A is sparse and symmetric so the numbers in Table 7.1 do
not tell the whole story. However, it is not trivial to discern whether a cell in the
matrix A is zero or not before expanding the products of the polynomial chaos
polynomials and imposing the substitution rules for the cells as explained in the
previous chapter. Thus, at first, we are required to consider A as a full matrix.

In the first two examples, the random field is assumed to be identical to a constant,
and thus, from Remark 5.5 we know that the exact solution is a first order polynomial
in the spatial dimension and is given by (5.18). Hence, it is enough to use two linear
functions to discretize the spatial dimension, that is, we use N = 2 in the first two
examples.

Example 1

In the first example, we fix the log-normal random variables z1 and z2 to follow the
probability density lnN (0, 1/4). By specifying the parameter p, we can calculate
the sGFEM solution for the problem as described in the previous chapter. Figure 7.1
shows the L2-errors in E[u] and in Var[u] as functions of p when the sGFEM solution
is compared against the exact solution.

Figure 7.2 shows how the sGFEM mean field and the sGFEM variance function
approach the corresponding exact solution. When p ≥ 1, the exact mean field (and
when p ≥ 2, the variance function) is practically impossible to distinguish from the
corresponding exact solution.
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From Figures 7.1 and 7.2, we can deduce that in this first example the sGFEM
works and that the corresponding numerical solution converges quickly to the exact
solution. This is not the case in the next example where the variance of the random
variable z2 is increased.

0 1 2 3 4 5
p

10-7

10-6

10-5

10-4

10-3

10-2

10-1
L2 -error in �[u]

0 1 2 3 4 5
p

10-7

10-6

10-5

10-4

10-3

10-2

10-1
L2 -error in Var[u]

Figure 7.1: The L2-errors in E[u] and in Var[u] for the first example as functions of
p when the sGFEM solution is compared against the exact solution.
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Figure 7.2: Left: the exact mean field (green) and the mean field given by the
sGFEM (red) for the first example when p = 0 and p = 1. Right: the exact variance
function (green) and the variance function given by the sGFEM (red) for the first
example when p = 1 and p = 2.

Example 2

In the second example, we let z1 still follow the log-normal probability density
lnN (0, 1/4), but we change the distribution of z2 to be lnN (0, 9), that is, we increase
the variance and expected value of z2 considerably. Figure 7.3 shows the L

2-errors in
E[u] and in Var[u] as functions of p when the sGFEM solution is compared against
the exact solution. From Figure 7.3, we see that the convergence of the mean field
and the variance function is much slower than in the first example. Moreover, the
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convergence of the solution is periodical with alternating intervals of slow and fast
convergence. The L2-error in the variance oscillates even more and does not decrease
much before p > 2.

Figure 7.4 shows how the sGFEM mean field (red) gradually approaches the exact
mean field (green) as a function of p. The analogous convergence is shown for the
variance function in Figure 7.5.

In order to understand why the convergence of the sGFEM is not as rapid as in the
first example, we take a closer look at the solution function u. In Figure 7.6, a slice
of the exact solution function u(ω, x) (green) is drawn as a function of Y2 in the
case when the random variable Y1 has the value 0 and the spatial variable x is fixed
to zero. Here Y1 and Y2 are the normally distributed random variables defining z1
and z2, respectively. The obtained sGFEM solution (red) is also drawn in the same
figure for different values of p.
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Figure 7.3: The L2-errors in E[u] and in Var[u] for the second example as functions
of p when the sGFEM solution is compared against the exact solution.

From Figure 7.6 it is apparent that the sGFEM solution tries to approximate the
exact solution as well as possible in the vicinity of zero, or more precisely on the
interval [−5, 0]. Outside this interval, the obtained sGFEM solution is poor when
compared to the exact solution. However, the situation is not as severe as Figure 7.6
would suggest: if we multiply the obtained sGFEM solution with the probability
density function for the random variable Y2, we obtain Figure 7.7 which is what we
should examine, or at least what we should examine in the case of the mean field,
because it gives the error in the sense of probability. Figure 7.7 demonstrates that
the probability density function of Y2 reduces the significance of the parts of the
sGFEM solution for which the correspondence with the exact solution is poor. We
may thus conclude that it is more important to approximate the exact solution well
in the vicinity of zero, as is the case in Figure 7.6, since the ”probability mass” of a
given point decreases rapidly when one moves away from the origin.
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Figure 7.4: The sGFEM mean field (red) and the exact mean field (green) for the
second example as functions of p.
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Figure 7.5: The sGFEM variance function (red) and the exact variance function
(green) for the second example as functions of p.
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In order to present the analogous visualization for the variance, one should first
square the solution function and then multiply it with the probability density. How-
ever, the resulting image would look qualitatively the same as Figure 7.7 with only
some difference in the size of the discrepancy between the exact and the sGFEM
solutions, and thus we omit such a consideration.

Nevertheless, Figure 7.6 gives us an idea of what may be causing the stalling and
oscillation in the L2-error of the variance function: near the origin the exact solution
decreases rapidly, and thus high order Hermite polynomials, that is, larger p, are
required to properly approximate the solution. Figure 7.8, where the same slice
is drawn for the first example, suggests that our hypothesis is accurate: when the
variance of the random variable z2 is reduced, the slope of the exact solution as a
function of Y2 is much smaller than in the second example, and thus the sGFEM
solution agrees well with the exact solution in the vicinity of zero already when
p = 2.

We expect to encounter same kind of phenomenon in the following examples where
a is a proper random field, that is, the speed of convergence for sGFEM is expected
to slow down when the variance of z1 and/or z2 is increased.
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Figure 7.6: The exact solution u (green) and the corresponding sGFEM solution
(red) for the second example as functions of Y2 and p when x = 0 and Y1 = 0.
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Figure 7.7: The exact solution u multiplied with the probability density function
of the random variable Y2 (green) and the corresponding sGFEM solution (red) for
the second example as functions of Y2 and p when x = 0 and Y1 = 0.
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Figure 7.8: The exact solution u (green) and the corresponding sGFEM solution
(red) for the first example as functions of Y2 and p when x = 0 and Y1 = 0.
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Examples 3 and 4

In the following two examples and in the one presented in the next section, the
random field a is not anymore assumed to be identical to a constant. Thus, we do
not have the analytical solution for the problem at our disposal as we did in the
previous two examples. Therefore, we evaluate the sGFEM via comparison with
”exact” solutions obtained by using extensive Monte Carlo simulations with the
same M and N .

Since there is no guarantee that the solution would anymore be a first order poly-
nomial in the spatial dimension, the number of piecewise linear functions used to
discretize the interval [−1, 1] is fixed to N = 20, instead of the previous N = 2, for
the remaining three examples. Moreover, the correlation length of the covariance
function for the random field a is assumed to be one, that is, b = 1. Recall that the
covariance function for the underlying Gaussian random field of a is

V ln
a (x1, x2) = σ2 exp(−|x1 − x2|/b).

Table 7.1 gives the number of unknowns for the examples to be considered in the
following.

In the third example, we fix the random variables z1 and z2 to follow the probability
densities lnN (0, 1/4) and lnN (0, 1), respectively. The Gaussian random field de-
termining the log-normal field a is assumed to be distributed pointwise as N (0, 4).
For simplicity, the mean field of a is set to a constant. Figure 7.9 shows the trend of
the eigenvalues in the exponential Karhunen–Loève expansion for the random field
a in this specific case. Due to (3.19), we know that if the variance of the under-
lying Gaussian random field of a is modified, the eigenvalues shown in Figure 7.9
are only multiplied by a constant, that is, the form of the figure stays the same.
In this example, we take into account only the first eigenvalue of the exponential
Karhunen–Loève expansion for the random field a, that is, the parameter M is as-
sumed to be one. Thus, the total number of random parameters in this example is
three.

The obtained results are shown in Figures 7.10–7.12. Figure 7.10 shows the L2-errors
in E[u] and in Var[u] as functions of p when the sGFEM solution is compared against
an accurate solution obtained via extensive Monte Carlo simulation. Figure 7.11
demonstrates how the sGFEM mean field approaches the Monte Carlo solution as
p increases and the same behavior is shown for the variance function in Figure 7.12.

The L2-error in E[u] decreases rapidly until, say p = 4, after which increasing p does
not seem to affect the error considerably. The same phenomena is eventually also
seen in the L2-error for Var[u] as the rate of the convergence slowly decreases when
p is increased. This may be a consequence of the interplay between the stochastic
and spatial errors; recall that N is held fixed.

We proceed by taking more eigenvalues from the Karhunen–Loève expansion into
account. Based on Figure 7.9, we use the parameter M = 4 for the fourth example,
meaning that the total number of the random parameters in the next example is
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six. The size of the problem is substantially larger than in the previous cases as can
be seen from Table 7.1.

Figures 7.13–7.15, which are arranged analogously to Figures 7.10–7.12, show the
results for the fourth example. These figures show that the sGFEM works well,
and that the convergence of the mean field and the covariance function is close to
being exponential. We do not show results beyond p = 6, as we did in the previous
examples, because the running time for our implementation of the sGFEM starts to
be frustrating long for larger values of p.

Notice that the shapes of the mean fields in Figures 7.11 and 7.14 and those of the
variances in Figures 7.12 and 7.15 differ quite a bit from each other. Consequently,
choosing M = 1, as in Example 3, is not a feasible option from a practical point
of view as it obviously results in a too large discretization error in the stochastic
dimension.
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Figure 7.9: Trend of the eigenvalues in the exponential Karhunen–Loève expansion
for the random field a as given by (3.19) in the case when σ = 2 and b = 1.

Example 5

In this last example, we see that the increase of the variance of the random field
changes the behavior of the sGFEM solution dramatically. We return to consider
only a single eigenvalue in the Karhunen–Loève expansion, that is, we fix M = 1,
and thus the total number of random parameters in this example is three. The
number of the piecewise linear functions used for the discretization of the spatial
dimension and the probability densities of the random variables z1 and z2 are as in
the third example. We increase the variance of the random field a by choosing the
probability density N (0, 25) for the underlying Gaussian random field. To sum up,
this last example is identical to the third one apart from the considerably higher
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Figure 7.10: The L2-errors in E[u] and in Var[u] for the third example as func-
tions of p when the sGFEM solution is compared against an extensive Monte Carlo
simulation. (M = 1, N = 20)
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Figure 7.11: The sGFEM mean field (red) and the Monte Carlo solution (green) for
the third example as functions of p.
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Figure 7.12: The sGFEM variance function (red) and the Monte Carlo solution
(green) for the third example as functions of p.
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Figure 7.13: The L2-errors in E[u] and in Var[u] for the fourth example as func-
tions of p when the sGFEM solution is compared against an extensive Monte Carlo
simulation. (M = 4, N = 20)
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Figure 7.14: The sGFEM mean field (red) and the Monte Carlo solution (green) for
the fourth example as functions of p.
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Figure 7.15: The sGFEM variance function (red) and the Monte Carlo solution
(green) for the fourth example as functions of p.
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variance for a.

The numerical results for the last example are visualized in Figures 7.16–7.18 in the
same way as for the previous two examples. These figures show that in this case
the sGFEM solution does not converge satisfactorily. To begin, the L2-error in E[u]
decreases as in the previous cases. However, after p = 6, the convergence of the
error slows down, starts to oscillate and finally begins to increase. The situation
with the error in the variance is even more severe: after p = 4, the error starts to
increase fast.

Figure 7.18 demonstrates that the variance of the sGFEM solution starts to oscillate
in an uncontrolled manner when p increases. This could indicate that the culprit
for the failing of the sGFEM is some kind of polynomial interpolation error taking
place in the numerical algorithm. However, we were not able to track down the exact
reason for the bad behavior of the sGFEM in this case. The same phenomenon is
eventually also seen if the variances of the other random variables, that is, z1 or z2
are increased. However, we were not able to reproduce the phenomenon in the case
when the random field a is assumed to be identical to a constant. We also used
different number of functions to discretize the spatial dimension with no meaningful
effect. Deducing the reason causing the failing of the sGFEM in the high variance
case is left for future studies.

The reader should note, however, that the variance of the random field a is enormous
in this example: according to (2.17) and (2.18) the expected value and variance of
a log-normal random variable defined by the distribution lnN (0, 25) are 268 · 103
and 5.18 · 1021, respectively. As a consequence, the failure of the sGFEM algorithm
cannot be considered as a disaster, and moreover one cannot even completely trust
the Monte Carlo simulations under these circumstances.
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Figure 7.16: The L2-errors in E[u] and in Var[u] for the last example as functions of p
when the sGFEM solution is compared against an extensive Monte Carlo simulation.
(M = 1, N = 20)
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Figure 7.17: The sGFEM mean field (red) and the Monte Carlo solution (green) for
the last example as functions of p.



54

�1.0 �0.5 0.0 0.5 1.0
x

0.0

0.5

1.0

1.5

2.0

2.5

�10�1 p=0

�1.0 �0.5 0.0 0.5 1.0
x

0.0

0.5

1.0

1.5

2.0

2.5

�10�1 p=1

�1.0 �0.5 0.0 0.5 1.0
x

0.0

0.5

1.0

1.5

2.0

2.5

�10�1 p=2

�1.0 �0.5 0.0 0.5 1.0
x

0.0

0.5

1.0

1.5

2.0

2.5

�10�1 p=3

�1.0 �0.5 0.0 0.5 1.0
x

0.0

0.5

1.0

1.5

2.0

2.5

�10�1 p=4

�1.0 �0.5 0.0 0.5 1.0
x

0.0

0.5

1.0

1.5

2.0

2.5

�10�1 p=5

�1.0 �0.5 0.0 0.5 1.0
x

0.0

0.5

1.0

1.5

2.0

2.5

�10�1 p=6

�1.0 �0.5 0.0 0.5 1.0
x

0.0

0.5

1.0

1.5

2.0

2.5

�10�1 p=7

�1.0 �0.5 0.0 0.5 1.0
x

0.0

0.5

1.0

1.5

2.0

2.5

�10�1 p=8

�1.0 �0.5 0.0 0.5 1.0
x

0.0

0.5

1.0

1.5

2.0

2.5

�10�1 p=9

�1.0 �0.5 0.0 0.5 1.0
x

0.0

0.5

1.0

1.5

2.0

2.5

�10�1 p=10

�1.0 �0.5 0.0 0.5 1.0
x

0.0

0.5

1.0

1.5

2.0

2.5

�10�1 p=11

Figure 7.18: The sGFEM variance function (red) and the Monte Carlo solution
(green) for the last example as functions of p.



Chapter 8

Conclusions

In this work, we introduced the stochastic Galerkin finite element method (sGFEM)
and implemented it for the conductivity equation in one spatial dimension. More
specifically, our model problem was a one-dimensional stochastic linear elliptic bound-
ary value problem that can be considered (in the setting of electrical impedance to-
mography) as the stochastic conductivity equation reduced to one dimension. The
conductivity coefficient of the model was assumed to be a log-normal random field
with a known mean field and covariance function. The contact impedances of the
model were also assumed to be stochastic and to follow known log-normal probability
densities.

Even though we implemented the sGFEM only for the one-dimensional conductivity
equation, we want to emphasize that the methods presented in this work can be
readily applied to higher dimensional problems with only minor changes and/or
adjustments required.

First, a brief review of the basic stochastic constructions and notations required in
the work was given. After that, we continued by presenting a method to discretize
random fields, namely, the Karhunen–Loève expansion, to numerically treat the
random field describing the stochastic conductivity coefficient. While it was possible
to use the Karhunen–Loève expansion to discretize the conductivity, it turned out
that other techniques were needed to describe the random behavior of the solution
potential. Thus, we were required to introduce the polynomial chaos expansion.
Subsequently, we gave the precise formulation of the model problem and proved
the corresponding variational formulation to be well-posed in the sense of unique
solvability. Finally, the sGFEM was introduced and applied to the model problem.
Numerical examples were given to illustrate the feasibility of the technique.

According to the numerical tests, the sGFEM approach was found to be a feasible
choice when the variances of the initial stochastic parameters were not too large.
Finding the exact reason for the failure of the method in the high variance case was
left for future studies.

In order to use the sGFEM as a general numerical tool, the number of unknowns
required by the method should be substantially reduced: in the current implemen-
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tation the system matrix becomes rapidly unfeasibly large when the number of
stochastic parameters or the maximum order of the polynomial chaos expansion is
increased. Luckily, some algorithms have already been proposed to substantially
reduce the number of unknowns; see [5], for example. The investigation of such
methods is also left for future studies.

In the numerical tests, we did not address the running time of the stochastic Galerkin
finite element method compared to other methods such as Monte Carlo based tech-
niques, since for a fair comparison, we should have optimal implementations of the
methods in hand. However, based on literature references, the stochastic finite el-
ement method should outperform the Monte Carlo methods especially in the case
when there are many stochastic parameters in the model; see [5].

As was mentioned in the introduction, we are mainly interested in the two- or three-
dimensional cases in real life applications involving the conductivity equation. Since
the stochastic dimension of the sGFEM is added over a standard finite element
solver, the transition to higher dimensional problems does not involve new mathe-
matical theory in the stochastic dimension from what is already presented in this
work. However, the introduction of a two- or three-dimensional finite element solver
for the method in a higher dimensional case increases substantially the workload.
Because of this, the implementation of the sGFEM in more practical settings is also
left for future studies.
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