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Abstract 

Penetration of renewable energy such as wind and solar has been increasing rapidly in 
the grid. Due to intermittent properties of these sources, power generation cannot be 
scheduled as well as predicted easily. A sunny day can result in power variation from 
solar energy than predicted. Similarly, power generated from the wind power have 
different profile every day and can change in quick time. So excess generation from 
these renewable sources may result in over frequency problem in the network. Thus it 
has increased the necessity of frequency control reserves which can be activated 
instantaneously for stability of power network.   

This thesis deals with the potential of using heating energy required for house via 
electric space heater as frequency responsive reserves during excess generation from 
renewables. Daily heat loss from a house is calculated on hourly basis with respect to 
external temperature. Electric space heater stores the equivalent amount of heating 
energy to compensate loss during the off peak period when price of electricity is cheap. 
During excess generation from renewables, off peak storing of required heating energy 
is altered to instantaneous feeding to act as frequency reserves. 

Keywords:  Renewable Energy, Over frequency, Frequency responsive load, 
Instantaneous Heating. 
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CHAPTER 1 

Introduction  

1.1 Background 

Electricity has become vital element in economic development. Technical 

progress, industrialization, and the need for the modern comfort have increased 

its importance. Increased production in electricity translates into a better quality 

of life and the creation of wealth. Electricity demand is the result of the customer 

needs and depends upon season, type of day, time of day, and other factors such 

as weather and country specific factors [1]. The energy production concept was 

primarily based on demand basis: if there is a demand for more power, utility 

company would simply increase its generating capacities to meet the essential 

demand. Power has been vital part of our life, so this has added pressure on the 

utility company to look out for every possible means of energy production. 

The required electricity has been produced from various means ranging from 

nonrenewable resources such as fossil fuel, nuclear reactor to renewable sources 

such as the sun, the water and the wind. Electricity production process involves 

extensive and expensive procedure, thus each unit is associated with certain cost.  

Along with that the world attention has significantly focused on the issue related 

to the environment. Global warming and climate change have resulted in 

substantial increase in the demand for the renewable technology. Several 

renewable sources such as the wind, sunlight and water have been identified and 

corresponding technologies are expanding for each source. Renewable energy 

has high cost of production and installation. Nevertheless, it has been highly 

appreciated as they tend to directly reduce the pollution. Government authorities 

have started to take positive actions for the promotion of renewable energy and 

formulating policies to encourage their usage. Penetration of renewable energy 

such as wind and solar has been increasing rapidly in the grid. These sources 

generate electricity throughout the year without creating any adverse effect on 

the environment. 
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Renewable sources such as the wind and the sun have positive benefits from an 

environmental point of a view. However, these resources are characterized by a 

variable output impacting grid stability and security of system [2]. The 

fundamental  issue  in  the  operation  and  control  of  electric  power  systems  is  to  

maintain the balance between generation and demand. Due to the intermittent 

properties of renewable sources, power generation cannot be scheduled as well 

as predicted easily. A sunny day can result in power variation from solar energy 

than predicted. Similarly, the power generated from the wind power has different 

profile every day and can change in quick time. Such scenario can have adverse 

effect on the power system stability and may lead to over frequency problem in 

the grid. Thus it has increased the necessity of frequency control reserves which 

can be activated instantaneously for stability of power network. 

Traditionally, spinning reserve has been supplied from the generators during 

system emergency and load has been underutilized [2]. System operator uses 

automatic and manual control mechanisms to match the supply according to 

variation in demand [3]. Demand can play active role in control of power system 

balance. Electric loads can actually be turned on or off in response to frequency 

deviation observed in the power system. Installing a frequency sensor and 

appropriate control intelligence, loads can respond autonomously to frequency 

variation and provide fast reserve to the system [4]. 

1.2 Aim of the work 

The  overall  aim  of  the  work  was  to  study  the  demand  response  potential  of  

utilizing heating energy via electric space heater to compensate the heat loss 

from a house to act as a frequency reserve. Heat loss from the house according 

to external temperature is calculated. So, with the obtained load profile, potential 

of using it as a frequency reserve during excess generation is studied. 
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CHAPTER 2 

2.1 Power System Stability 

A synchronous electrical power system consists of: 

a. Network that connects 
b. Synchronous generators  
c. Demand. 

The network can further be divided into transmission network and distribution 

network. Power produced from large generators is transmitted via transmission 

networks. The distribution network is used to transmit power to consumers at 

lower voltage levels. Synchronous machines maintain synchronization with one 

another through restoring forces. These forces act whenever synchronized 

machine tends to accelerate or decelerate with respect to other machines. Hence, 

synchronous machines can detect and react to a frequency change events on the 

system automatically. Generators also have governors that detect and react to 

frequency changes [5].  

Electricity demand in a power system varies continuously; hence ideally supply 

should exactly match and balance in real time. Any aberration of the balance 

reflects as a fluctuation of system frequency from its nominal value. Furthermore, 

due to the unavailability and unviability of large storage infrastructure, the 

balancing  procedure  has  to  be  done  in  real  time.  Balancing  is  done  by  adjusting  

mechanical power input to the prime mover of generator. The procedure takes 

some time to adjust the generated power due to the steps to be taken while 

changing the mechanical power [6]. System operator uses automatic and manual 

control mechanisms to match the supply according to the variation in demand. 

Moreover, deregulated power systems use commercial arrangements to procure 

and dispatch technical services to control frequency and voltage, thus ensuring 

stability of the power system [6]. 

Frequency is controlled by three control loops in a power system. The Union for 

the  Coordination  of  Transmission  of  Electricity  (UCTE)  of  European  

Transmission System Operator has classified them as Primary, Secondary, and 
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Tertiary Regulation [3]. These regulation schemes have different operating time 

scales. 

Governors are used for primary regulation [6]. Automatic Generation Control 

(AGC) performs secondary regulation by automatically adjusting the power 

output electric generators within control area [6]. Accordingly, tertiary control 

changes the output of generators such that the contributing secondary regulation 

will be ready to regulate subsequent load mismatch [6].These regulation schemes 

can include one or more control subsystem(s) such as the load frequency control, 

the economic dispatch control, the environment dispatch control, and the security 

dispatch control [6]. Figure 1 shows the activation of primary, secondary, and 

tertiary control during frequency deviation.  

 

                Figure 1 : Operation of Primary, secondary and tertiary regulation [2]. 

 

2.2 Load Management
Load management is the deliberate control or influencing of customer load in 

order to shift the time and use of electric power and energy [7]. Load management 

concepts are used to reduce the average cost of electricity, improve load factor, 

and reduce the need for generation capacity by shifting electricity use from peak 

to off- peak periods. Furthermore, Load Management can improve system 

efficiency by reducing the share of electric energy generated from relatively 

inefficient units [7]. Load Management includes a set of objectives designed to 

control and modify the pattern of demand over various customer of a power 

utility. The control and modification allows the utility system to meet the energy 
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demand  at  all  times  [8].  Load  management  can  be  applied  to  all  loads  such  as  

industrial load, cooling load, heating load, and lightening load. 

Load  management  was  first  introduced  in  the  70’s  with  an  aim  to  reduce  the  

operating cost while maintaining the reliability of the electric power network [9]. 

Traditionally, the electric power system has been designed to respond to the 

instantaneous demand of customer for electric power and loads had been 

uncontrolled. This resulted in large peaks and valleys in power demand which had 

to be incorporated by the generating unit. Energy storage system using large 

pumped hydro plants were added by utility companies with an aim of reducing 

large swings at the primary generating plants. However, the other part of the 

power system has to respond to the swings in demand thus affecting stability of 

the overall system. 

Load management basically operates at the customer end to control the power 

demand. This operation may be initiated by either or both of utility company and 

the customer. It is useful because of the potential to conserve energy and capital in 

both the production and the distribution of the electric power. It helps the power 

system engineer to economize the system operation by making the best use of its 

available generation capacity. 

2.2 Some basic Terminology 

2.2.1 Connected load 
It is the rating (in kW) of the all the energy consuming equipment installed on the 
consumer premises. 

2.2.2 Maximum load demand 
It refers to the maximum load, which a consumer can use at any instant of time. 

The ratio of the maximum demand and connected load is called Demand Factor 
and is expressed as: 

=  

Daily load curve of the consumer is obtained by plotting the load demand of the 

consumer  against  the  time  in  hours  of  a  day.  Similarly,  weekly,  monthly,  and  

annual load curves can be presented. The ratio of average load to the maximum 

load is called load factor and is given as: 
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=  

A load factor of unity implies that the average load and the maximum load are 

equal, resulting in the constant load curve throughout day. Lower values of load 

factor indicate the occurrence of the peak value in the load curve. Annual load 

curve provides information about the time of the year they need for effective load 

management technique. 

2.3 Methods of Implementation

2.3.1 Direct load control
In this method, the utility company directly controls some specific consumer load 

during the peak hours. The operation of controllable load is postponed during the 

peak period or in case of emergencies. Loads such as space heater, water heaters, 

air conditioners, and swimming pool pumps are the prime candidates for the direct 

load control. Instant control of load may cause discomfort to the consumer. 

However customers can be offered economic incentives through time dependent 

price rates of electricity to compensate for the inconvenience [7].  

2.3.2 Interruptible Load Tariffs
In this method, consumer is encouraged to change their energy consumption 

pattern by providing incentive rates. Consumer has to interrupt or reduce the 

power demand during the peak hours and in the emergency conditions [8]. This 

requires active involvement of the consumer. Industrial consumer can take the 

advantage of such tariffs by operating at off- peak periods when the tariff would 

be low compared to the peak period. Interruptible load tariffs mainly aim to 

reduce the consumer demands during the peak periods by shifting the use of 

electrical equipment to off-peak period [7]. 

2.3.3 Time of Use Tariffs
It is based on the peak load pricing theory. The price of electricity is high during 

the peak period and lower during the off peak period. It can be considered as an 

involuntary way for the consumers to adjust the usage of electricity in different 

times considering the difference in price at that time. Thus, it motivates the 

consumer to shift their consumption from expensive peak periods to inexpensive 

off peak period [8].  



 

7 
 

2.3.4 Thermal Storage:
The main objectives of load management using thermal storage is to store heat to 

space and water heating during the off-peak periods and use the stored heat during 

the peak period. It requires the installation of thermal energy storage at the 

consumer side which can be controlled by both the consumer and the utility [8].  

2.3.5 Distribution system loss Reduction:
This is one of the concepts used by the utility company to decrease their 

operational cost. Utility company benefits financially with the released system 

capacity. Thus, released system capacity delays a costly expansion and reduces 

the aging of components [8]. Industrial sector is accountable for large losses 

compared to other consumers. Thus, the  utility company is focusing to save 

energy by minimizing losses occurring in industries. Similarly, industries are also 

trying to minimize the loss to reduce the cost of energy consumption [8]. 

Capacitor installment, voltage modification, and transformer load monitoring are 

some of the methods being implemented to reduce the distribution system loss. 

2.4 Techniques of load Management

2.4.1 Peak Clipping: 
 

Peak clipping focus on decrement of load during the peak periods to get the load 

profile suitable for the utility. Shortage of energy during the peak period forces 

utility company to reduce the voltage in the consumer to directly control the load 

during the peak hours [8]. The shape of load profile obtained with the application 

of peak clipping technique is shown in Figure 2. 

 

Figure 2: Peak clipping [8].  
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Peak clipping control is used to reduce capacity requirements, operating costs, and 

dependence on critical fuel. This direct load control technique is suitable for 

utility company which does not have enough generating capabilities during the 

peak hours. 

2.4.2 Valley Filling: 

 

                Figure 3: Valley filling [8]. 

 

The shape of the load profile obtained with the valley filling technique is as 

shown in Figure 3.With the aid of the valley filling technique the load is built up 

during the off-peak periods. Addition of load at the right price will help to reduce 

the average cost of electricity to all consumers as well as the load factors of the 

power plant [8].  

2.4.3 Load Shifting:
In this technique the peak loads are shifted to off peak time periods. Load is 

shifted in such a way that it does not change the overall consumption by the 

consumer. It includes both the advantages of peak clipping and valley filling by 

moving existing loads from on-peak hours to off peak hours [8].  

 

Figure 4: Load shifting [8]. 
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2.5 Penetration of Renewable Energy 
 

The penetration of decentralized and renewable energy resources in the power 

system is expected to increase considerably in the near future. Renewable energy 

accounted for one quarter of global power capacity [10]. Figure 5 shows the 

growth of renewable energy in the share of global electricity production from the 

year 1998 to 2010. 

 

 

            Figure 5: Renewable source electricity production excluding hydraulic (TWh) [11].    

             

The share of hydropower and renewable energy is 312 GW in electricity 

production which is an increase of 25% compared with the year 2009 [10]. 

Respectively, global wind power capacity and solar PV capacity increased by 

approximately 30 GW and 17 GW during the year 2010 [10].  

 In the European Union, renewables accounted for an estimated 41% of newly 

installed electric capacity in 2010 [10]. PV accounted for more than half of the 

total share. The share of electricity from renewable energy in the EU was 
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approximately 20% of total electricity produced in 2009 (42% composed of non-

hydropower) [10].  

The dependency on renewable energy is continuously growing as their prices 

continue to fall; consequently share of global electricity production from 

renewable energy continues to grow.  

European Commission has set following targets for 2020 in Climate Change and 

Energy [12]. 

a.  Lower the greenhouse gas emissions by 20%  

b. Generate 20% of energy from renewables  

c. Increase 20 % in Energy Efficiency. 

Germany, leads the vision with almost 20 % of electricity generation from 

renewables till the end of 2011 [13].  About 5000 MW of wind power is currently 

installed in the Nordic grid [14]. Figure  6  shows the  amount  of  registered  wind  

power installed till 2009 and estimated goal for 2020. 

 

Figure 6: Wind power installed till 2009 and estimation for 2020 in Nordic 

countries [14]. 

 Wind power generation in the Nordic countries is expected to increase in coming 

decades as shown in Figure 6. Finland has set a target of 2500 MW by 2020. 

Similarly, Sweden has targeted 4550 MW from wind power 2020. The total 

amount of wind power capacity can be estimated to increase up to 15-20 GW by 

2020 [14]. Wind power and solar power precede the other renewable energy in 
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terms of penetration in the power system [10]. Wind power is expected to grow 

rapidly, with Germany alone intending to increase the wind capacity to 45,750 

MW in 2020 [15]. Figure 9 shows the growth of world wind capacity from the 

year 1996 to 2010. 

 

Figure 7: World wind capacity from the year 1996 to 2010 [10]. 

The wind power capacity reached 198 GW during the year 2010 which is an 

increment of approximately 24% compared to 2009. EU installed approximately 

9.5 GW of wind power in 2010 [10]. Hence total installed capacity reached to 84 

GW.  

Total existing wind power capacity in the end of 2010 was enough to meet an 

estimated 2–2.5% of global electricity consumption [10]. Existing wind capacity 

installed in the EU by the end of 2010 met 5.3% of the region’s electricity 

consumption. 

Solar Photovoltaic energy also observed an increment throughout the globe with 

an estimated 17 GW of PV capacity added in the year 2010 [15]. PV capacity 

across the world reached approximately to 40 GW at the end of 2010 [10]. Figure 

8 shows the growth of PV capacity from the year 1996 to 2010 [12]. 
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Figure 8: Solar PV, existing world capacity, 1995-2010 [12] 

The European Union dominated the global PV market occupying 80% 

approximately of the total installation of 13.2GW. During the first quarter of 

2011, Germany generated 2.75 TWh of electricity with PV, an increase of 87% 

over the same period in 2010 [10]. 

 
The share of electricity from the renewable sources is growing exponentially in 

recent years. Moreover, environmental pressure and increasing fuel price seems to 

push countries to install renewable energy. This is expected to increase in the 

future as the support for production of renewable energy has been put as the 

national targets and policies. It is foreseeable that renewable energy will 

predominantly occupy a major share in the final energy production. It also 

benefits from environmental point of a view however these renewable resources 

are characterized by a variable output impacting grid stability and security of 

system.   
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CHAPTER 3 

 

3.1   Effect on Frequency of power system with large penetration of 
renewable energy
In recent years, energy systems both in the developed and the emerging 

economies are undergoing rapid changes due to the emphasis on renewable 

resources at the policy level and the demand response. This is leading to an 

intense transition from the current centralized infrastructure towards the massive 

introduction of distributed generation, responsive and controllable demand and 

active network management throughout the system. Unlike the conventional 

generation methods, the output from the renewable sources do not follow the 

traditional generation/load correlation and they have strong dependencies on 

environmental conditions. Thus induced condition from a system perspective is 

posing new challenges associated with the monitoring and controlling demand-

supply balance.  

High penetration of renewables considerably affects the frequency stability of 

power system since the wind and the solar photovoltaic generation has neither 

inertia nor primary frequency response. The variability and uncertainty that is 

inherent in renewable generation technologies adds the variability and uncertainty 

in  the  existing  system  and  can  have  considerable  effects  on  operations [2]. 

Variability is the expected change in generation and demand balance .Uncertainty 

is the unexpected change in generation and demand balance from what was 

anticipated [2]. Intermittent and variable output renewable energy sources such as 

wind farms will contribute larger random fluctuations to the load/generation 

balance as their relative size increases [16]. When, the total supply of energy is 

different than the total demand, system operators must start operating reserves to 

correct the energy imbalance. At any instant if the demand exceeds supply, the 

system frequency falls. Conversely, frequency rises if the power supply exceeds 

demand. For an example, Germany PV had a system with a capacity of more than 

19  GW  at  the  end  of  June  2011  which  accounts  for  3.5%  of  energy  from  

renewables was connected to the grid [17]. Maintaining power system stability 

has become increasingly difficult for operators. Power generators connected to 

low voltage grid including PV systems were required to disconnect from the 
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public grid as soon as the grid frequency exceeded 50.2 Hz [17]. Studies have 

shown that in Germany, 9 GW of solar capacity have to be disconnected when the 

system frequency reaches 50.2 Hz [17]. Similarly, power system with significant 

amount of wind power is experiencing problems for balancing the power 

fluctuation caused by regional wind speed fluctuations [18, 19, 20].  

 Thus induced variability and uncertainty on system because of the penetration of 

renewables where output power may increase or decrease unexpectedly have led 

to the importance of both upward and downward frequency reserves. 

3.2 Demand Side Management (DSM) 
Demand Side Management (DSM) commonly refers to programs implemented by 

the  utility  companies  to  control  the  energy  consumption  at  the  customer  side  of  

the  meter  [21].  DSM  is  employed  to  use  the  available  energy  more  efficiently  

without installing new generation and transmission infrastructure. Figure 9 shows 

the concept of DSM integration of energy Efficiency, Energy Conservation and 

Demand Response. 

 

Figure 9: Demand Side management Concept Integration [21]. 

DSM can be categorized as follows depending on the timing and the impact of the 

applied measures on the customer process [21]. 

3.2.1 Energy Efficiency
It refers to the permanent installation of energy efficient technologies for the 

reduction of energy losses in existing systems. The main aim of energy efficiency 
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is to maintain a comparable level of service with the reduction in energy usage 

[22]. Examples of energy efficiency are: 

 Replacing incandescent light bulbs with compact fluorescent bulbs 

 Use of automatic thermostats 

 Promotion of home automation devices 

 

3.2.2 Energy Conservation 
It deals with making a behavioral choice or change in consumer. The change may 

last  for a short  time instant or may be incorporated into a habit  of lifestyle [22].  

Examples of energy conservation are: 

 Lowering thermostat temperature by certain degree to reduce energy 

consumption during winter 

 Opening window in summer instead of using air conditioner. 

 Shutting off electrical appliances such as television, computer when they 

are not in use.  

3.2.3 Demand Response (DR).
Demand Response is related to electricity market and price signals. Customer 

connects or disconnect load in response to a signal from a service provider. These 

are different from conservation because the activity in terms of energy 

consumption is not necessarily reduced, rather shifted to another time period. DR 

initiatives often include information and communication technologies such as 

Advance Metering Infrastructure (AMI), to maximize the user's awareness of his 

energy consumption and the related cost in a time basis [22]. DR does not 

necessarily reduce energy consumption, only consumption patterns are influenced.  

Theoretically, the generation and demand can contribute equally to the frequency 

control as reserves. However, demand response is the most underutilized 

reliability  resource  in  power  system.  Power  system  was  controlled  with  the  

services from large power plant. Hence, it was a complex procedure to monitor 

the real time operation of distributed small sized loads. Historic demand response 

programs have focused on reducing overall electricity consumption and shaving 

peaks but have not been typically used for immediate reliability response [23]. 
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More recently demand response is being explored and used in reliability services 

of the power system. These all have been possible due to advances in 

communication technology and controls. Moreover, with the preconceptions 

concerning load response capabilities and misunderstandings of power system 

physical reliability needs, use of responsive load is limited. [23]. 

3.3 Frequency Responsive loads.
Supply and demand must always be balance in power system real time. Reserves 

from generation side, including extra capacity of online generators, back up 

generation are used by system operators to maintain the power system at balanced 

condition. If the power system stability was difficult to maintain after application 

of all available reserves, power system operator either shedded the load or trip the 

generating units as a last measure of action to maintain frequency within 

acceptance level [23].  

Demand can play active role in power system balance control. Electric loads can 

actually be turn on or off in response to frequency deviation observed in the 

power system. Installing a frequency sensor and appropriate control intelligence, 

loads can respond autonomously to frequency variation and provide fast reserve to 

the system [4]. Household appliances including electric heating, refrigerators, 

freezers, and water heaters are ideal candidates due to their considerable volume 

and the possibility of instantaneous control [4].  

Researchers have studied using demand as frequency responsive reserves. In the 

past, utility company had been utilizing load management program [24]. A 

market-based demand management program using low frequency relay to control 

industrial loads is studied in [25]. A similar program is implemented in New 

Zealand power system [24]. In Finland, 1000-MW demands from wood 

processing, chemical, and metal industry are used as frequency controlled as well 

as manual reserves [26]. Studies have been mainly preformed on larger industrial 

loads. A pilot project using the Comfort Choice Technology for controlling air 

conditioners to provide reserve was carried out by the Long Island Power 

Authority in 2003 [27].The study done by Pacific Northwest National Laboratory 

(PNNL) also has suggested that individual household appliances such as 

refrigerators and air conditioners are suitable for temporary disconnection and can 
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provide fast reserve within seconds [28].Similarly, application of electric heater to 

manage frequency disturbances has been presented in [28]. 

3.4 Spinning Reserves from Frequency Responsive Loads 
Spinning reserve has been traditionally supplied from the generators which play 

important function during system emergency. They are called upon in the event of 

a genuine system emergency such as loss of transmission line or short coming of 

generated power. Using load to supply spinning reserve would provide another 

source of revenue, increases reliability of the power system. Moreover it decreases 

the energy bills of the customer because reserve generation would be freed up to 

supply energy. As mentioned in Section 2.9, potentially different types of loads 

can supply contingency reserves to the power system but they should exhibit 

following characteristics [27]. 

3.4.1 Storage
It is difficult to store power or energy directly. So, any load that has some storage 

in its operation process or if some energy can be injected to it,then it can be a 

good candidate to supply reserves. Thermal storage loads such as building 

heating/cooling, water heating, refrigeration and compressed air, water pumping 

are best examples of load that can serve as spinning reserves [27]. 

3.4.2 Control Capability
The responsive load must be controllable such that it is able to respond to 

curtailment requests from the utility company [27]. 

 3.4.3 Notification Requirements
Power system contingency should be diagnosed as soon as possible. Thus, load 

that requires short notification time are best suited for contingency reserves. 

Thermal loads, water pumping, air compression can be used as contingency 

reserves because these process generally do not require advance notification 

curtailment [27].  

3.4.4 Response Speed
The load used as contingency reserve must accomplish the given task as soon as it 

has been notified, without wasting anytime. Studies have shown that load 

response can exceed generator response. Thermal loads can provide full response 

instantaneously [27].  
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3.4.5 Size
The size of each responsive load is small. However, the aggregate size needs to be 

large enough to be useful. Aggregate size is a very important index to offer more 

reliability resource for spinning reserve [27].  

3.4.6 Minimal Cost
When responsive load is used as the spinning reserve provider, saving is made in 

the investment to build the generator and transmission devices. Moreover, 

controller and communication device needs to be installed at the load side. When 

responsive load work as spinning reserve provider, the price compensation for 

customer is also considered [27].  

Frequency responsive loads are typically smaller than individual generator and 

they  provide  statistical  rather  than  a  deterministic  resources.  Moreover,  their  

participation depends upon customer acceptance. Variation in hourly price of 

energy and associated services makes it economically unviable for customer 

allowing their loads to participate in providing reserves. Similarly, in some 

situation because of lack of flexibility load cannot be interrupted. Results have 

shown that aggregations of small responsive loads can provide greater reliability 

than fewer numbers of large generators [27]. Result of study in Figure 10 shows 

that large numbers of individually less reliable responsive loads can provide 

greater aggregate reliability than fewer large generators [27]. In the research, 

contingency reserves were being supplied by six generators capable of providing 

100MW of response with 95% reliability. Study found that 74% of all six 

generators could respond to contingency events and the  probability that at least 

five will respond is 97%. In contrast, contingency reserve being supplied from 

aggregation of 1200 responsive loads of 500 kW with 90% reliability delivered 

typically 540 MW but never delivered less than 520. The results illustrate that 

aggregate load response is much more predictable [27]. 
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Figure 10 : Larger numbers of individually less reliable responsive loads can 

provide greater reliability than fewer large generators [27]. 

If individual generators used in contingency reserve fails to respond, it leads to 

serious consequences in power system. Thus system operator has to observe the 

real time response of the generator supplying contingency reserves. In contrast 

individual loads are small and the failure of an individual load respond is 

insignificant to bulk system reliability. Similarly, responsive loads can support a 

monitoring system to inform the system operator of the resource availability. 

Moreover, forecasting for accurate assessment of available spinning reserve from 

responsible load is also possible. Such forecast could be based on expected 

temperature and humidity, day type and time of day [27].  

When the supply becomes greater than the demand to mitigate over frequency 

different energy storage schemes are used. Excess energy in the electrical form 

cannot be stored in the same form; hence it is stored in the form of 

electromagnetic, electrochemical, kinetic or potential energy [29]. Each scheme 

requires energy conversion from one form to another.  

Figure 17 shows the different energy storage schemes used in the electric power 

system. Batteries, Flywheel, Super conducting Magnetic Energy Storage (SMES), 

and capacitors are used depending on amount of power required to be stored [30]. 
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Figure 11:  Specific power Vs. Energy Storage scheme used [30]. 

3.5 Energy Storage Schemes 

3.5.1 Energy Efficient Super Capacitor Energy Storage System
These are made up of carbon and have large effective surface. These systems can 

have a capacitance value up to the range of thousands of farad. Moreover,  

absence of electrochemical reaction for energy conversion and presence of  

electric charge absorption and desorption phenomenon during charging and 

discharging  they charges or discharges gives these system long life [31].    

3.5.2 Super conducting Magnetic Energy Storage (SMES)
SMES system stores energy in the magnetic field generated by the DC current 

flowing through a super conducting coil. Super conducting coils are kept at 

cryogenic temperature maintained by a cryostat or dewar containing helium or 

nitrogen vessels. SMES units are connected to an AC power system by a 

conversion/conditioning system [30].  

 

Figure 12 : Typical SMES System [30]. 
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3.5.3 Battery Energy Storage System 
Batteries store electric energy through electrochemical reaction. It consists of low 

voltage/power battery modules connected in parallel and series to match required 

capacity. Most important features battery system incorporate are high energy 

density, and capability, cycling capability, life span. A power conversion interface 

is required to connect to AC system because charge is stored as DC in battery 

system. Battery Energy system is frequently used in several power system 

applications such as area regulation, area protection, spinning reserve, and power 

factor correction [29]. 

 

3.5.4 Flywheel Energy Storage System  
Flywheel energy system consists of Flywheel (FW), Electrical Machine (EM), 

Power Electronic system (PE) and Supply Lines (L) all equipped are with 

bidirectional power flow feature as shown in Figure 13. JFW,  FW and PFW are the 

resultant inertia, angular speed, and power stored in the flywheel respectively. 

Decrease in FW results  in  energy  being  taken  out  from  flywheel.  Similarly,  

increase in FW results is energy being fed to the flywheel. Hence, during excess 

of power in the system when PFW < 0, machine is operating as motor. Similarly, 

when PFW >0, electrical machine is operating as generator [31].  

 

Figure 13: Flywheel Energy Storage System [31]. 

Reliability, long life, and fast response as compared to other energy storage have 

resulted  in  extensive  use  of  Flywheel  energy  system  [31].  Figure  14  shows  the  

working of flywheel in power system. PG and PFW are the wind turbine power and 

flywheel power respectively. So when ever PG fluctuates from its average value 
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PGav, flywheel will come into operation. When PG>  PGav, power is fed to the 

flywheel, thus charging it and vice versa. 

 

Figure 14: Charging and discharging of flywheel according to fluctuation in wind 

power [31]. 

Section 3.5 explains the commonly used energy storage system for power system 

stability and regulation. Technically, they seem to provide better solution to the 

stability  of  the  system.  However,  utility  companies  suffer  financially  each  time  

these energy storage systems are activated as generated excess power has to be 

dumped so that the power system maintains its stability. Section 2.9 and 2.10 

explains that frequency responsive loads can provide better economic solution to 

the  utility  company.  Whenever  over  frequency  occurs  in  the  power  system,  

frequency responsive loads can be activated and energy can be transferred to these 

loads. 
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CHAPTER 4 

4. Discussion and Results
A novel approach of utilizing heating energy via electric space heater to 

compensate heat loss from a house as frequency reserve has been tried to explore 

in this section. Electric space heater stores heating energy required for a house 

during off peak period. Amount of heating energy stored in the electric space 

heater during off peak period is approximately equal to the heat loss occurring 

from the house round the clock. Thus stored energy is then discharged during the 

rest of the day to maintain the required indoor temperature. 

As explained in section 2.5, the penetration of renewable energy such as wind 

power, and solar photovoltaic is increasing in the existing power system. 

Uncertainty and variability are always associated with renewable energy. Any 

unpredicted excess power produced from the renewables resources at any time 

have to be disposed or consumed immediately. If not disposed, stability of power 

system will be affected as it leads to the over frequency problem in the grid. 

Electric space heater exhibit properties required for a frequency responsive load as 

explained in Section 3.4. Hence, fixed time operation of electric space heater to 

store heating energy can be modified to instantaneous operation whenever excess 

energy from the renewables is generated to control the over frequency. For that, 

heat  loss  from  a  house  must  be  known  any  instant.  Heat  loss  from  a  house  is  

dependent on external temperature. So, with known heat loss profile the required 

heating energy to compensate heat loss can be estimated. Thus, during excess 

generation from the renewables above estimated heating energy can serve as 

frequency reserves. 
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4.1 Calculation of Heat loss from a House 
Heat is a form of energy which transfers among particles in a substance by means 

of kinetic energy of that particle. It is a state quantity and is expressed in terms of 

joules [32]. Similarly, transfer of heat due to temperature difference is often 

known as heat flow and is expressed in terms of watt (W). 

Heat transfer occurs between two systems due to of temperature difference 

between  them.  Heat  flows  from  the  warmer  system  to  the  cooler  system  until  a  

thermal equilibrium is reached between these systems. Heat transfer occurs via 

conduction, convection, and radiation. 

Heat loss through a house depends upon difference in inside and external 

temperature of house, insulation and area of building materials. Heat loss from 

house mainly occurs via fabric heat loss (Qf) and heat loss through ventilation 

(Qv) [33].   

Mathematically, fabric heat loss can be expressed as  

Q × ( )  …………………  (4.1) 

Q A × T × U ……………………………………………………………..   (4.2) 

where,  

Qf = Fabric heat loss [W] 

A= Area of the house element from which heat is being transferred [m2] 

T= Difference in internal and external temperature [°C or K] 

U= Coefficient of thermal conductivity [W/m2 K] 

U values also often known as heat transfer coefficient represent the conductivity 

of different elements of house. It is defined as the rate of heat flow in watts (W) 

through an area of 1 square meter (m) for a temperature difference across the 

structure of 1 °C degree centigrade or Kelvin (K). It is also inverse of thermal 

resistance (R) and has SI units of W/m2 K. These values are country specific and 
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the U value used for different elements of house in this thesis is as recommended 

by Ministry of Environment, Finland as shown in Table 1 [34]. 

Elements of the House U values (W/m2°C) 

External wall 0.25 

Floor 0.16 

Roof 0.25 

Windows 1.8 

Doors 0.9 

 

Table 1:   U values required for different elements of house in Finland. 

A typical Scandinavian house is considered in this thesis for calculation of heat 

loss [35]. The layout and dimension of the house is presented in Appendix A.  

The indoor temperature is maintained according to customer thermal comfort 

label. ASHRAE 55-2004 and ISO 7730 have defined thermal comfort as ‘speci c 

combination of thermal conditions that will elicit the desired physiological state of 

comfort’. World Health Organization (WHO) recommends temperature of the 

main living area to be 21° C and for the rest of the home to be 18° C [36]. 

The indoor temperature has been set as given in Table 2 for the week days and 

weekends. 

Setting Time 
 

Temperature to be 
maintained 
weekdays 
 

Temperature to 
be maintained 
weekend  
 

Wake 6:00 to 8:00  21° C 21° C 

Day 8:00 to 18:00  16° C 21° C 

Evening 18:00 to 22:00 21° C 21° C 

Sleep 22:00 to 6:00 16° C 16° C 

 

Table 2: Setting of Indoor Temperature for weekdays and weekends [36]. 

The external temperature used in this thesis is taken from Kainuu Region of 

Finland is as shown in Figure 15. 
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Figure 15: External Temperature from 1st July 2008 to 31st June 2009. 

 

The maximum temperature in summer is 27.2 °C and minimum temperature in 

winter was -28.7 °C. 

Given  the  dimensions  of  the  building  elements,  U  values  and  the  indoor  

temperature, for a given external temperature, fabric heat loss can be calculated 

using Equation 4.1. 

Similarly, heat losses through ventilation (Qv) can be calculated as [33]: 

Q = N × V × Sp. T …………………………………………………… (4.3) 

 where, 

Q = heat losses through ventilation [W] 

N = Air change Rate 

V = Volume of Room being considered [m3] 

 Sp. = specific heat factor of the air [kJ/kg K]  

The value of air change rate and specific factor of the air used in the calculation 

are appended in Appendix B. 
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Heat loss through each element of building can be calculated using Equation 4.1 

and 4.2. Furthermore, calculated heat loss from all the elements of the house is 

then summed up to get total heat loss from the house on hourly basis.  

 

 
Figure 16: Correlation between external temperature and heat loss from the 

house. 

 

Figure 16 shows that heat loss from a house is correlated with temperature. The 

correlation coefficient between external temperature and heat loss from the house 

is -0.9681. It explains that when external temperature is minimum, heat loss will 

be high and vice versa. During winter the external temperature is low and the heat 

loss from the house will be high. Heating energy equivalent to losses from house 

required to maintain the indoor temperature at desired level. Similarly, during 

summer the indoor temperature becomes lower than the external temperature and 

thus creating a reverse heat flow from outside to inside. Hence, heating energy 

would not be required. The heat loss from house according to external temperature 

for different month on hourly basis are shown in Figure 17, 18 , 19 , 20, 21, 22 for 

the year 2010. 
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Figure 17: Heat Loss and External Temperature for January and February, 2009 
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Figure 18: Heat Loss and External Temperature for March and April, 2009 
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Figure 19: Heat Loss and External Temperature for May and June, 2009 
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Figure 20: Heat Loss and External Temperature for July and August, 2009 
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Figure 21: Heat Loss and External Temperature for September and October, 2009 

 

 

 

 

 

0 100 200 300 400 500 600 700 800
0

2

4

6
Heat loss vs external temp,September

 H
ea

t l
os

s(
kW

) 

Hours

0 100 200 300 400 500 600 700 800
-10

0

10

20

Te
m

pe
ra

tu
re

(°
 C

)

Hours

0 100 200 300 400 500 600 700 800
0

2

4

6
Heat loss vs external temp,October

 H
ea

t l
os

s(
kW

) 

Hours

0 100 200 300 400 500 600 700 800
-10

0

10

20

Te
m

pe
ra

tu
re

(°
 C

)

Hours



 

33 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Heat Loss and External Temperature for November and December, 2009 
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As seen from Figures 17, 18, 19, 20, 21, 22 heat losses from a house vary 

according to the external temperature. It is high during the winter period from 

November to March and decreases during summer when external temperature 

sometimes will be even higher than indoor temperature. Figure 23 shows the 

average temperature and hourly heat loss from home on hourly basis throughout 

the year.  

 
 

Figure 23: Hourly Average Temperature and Heat loss on monthly basis. 

                                                                                                                                                                                                                                                          

4.2 Power System Frequency Dynamics
Generator inertia is stored in rotating masses (rotor, turbines(s) and shaft) in the 

form of kinetic energy. When there is sudden increase in generated output power 

it results to increase in speed of the machine or frequency. Mathematically, 

Kinetic energy stored in rotating mass can be expressed as [5]. 

=    ………………………………………………………….. (4.4) 

Where  

  = Energy Stored in the rotating masses [Ws].  
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For the Nordic system,  = 300,000 MWs.                                                                                                                             

 J= Inertia of the machine [kg.m2].  

  = Rotational velocity of the machine [rad/s]. 

The inertia constant (H) is the stored energy at synchronous speed per volt-ampere 

rating of machines and provides an indication of the duration that generator can 

provide nominal power with the help of kinetic energy stored in rotating machines 

[46]. Mathematically it can be expressed as follows [5]. 

= =  ………….………………………………………..…… (4.5) 

where S is the nominal apparent power of generator (VA). 

Similarly, the relation between change in load balance and energy stored is given 

by 

=  ……………………………………………………………........... (4.6) 

Where  = Pgenerated- Pload. 

Solving for  from Equation 4.4, we get 

 ………………………………………………………………... (4.7) 

Rearranging Equation 4.4, we get  

 =  …………………………………………………………………..  (4.8) 

Substituting Equation 4.8 in Equation 4.7, we get 

=  …………………………………………………………………... (4.9) 

With = 2 , Equation 4.9 can be rearranged as 

=  …………………………………………………………….......... (4.10) 

Equation 4.10 can be generalized as 
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) = ( ) )
…………………………………………………………... (4.11) 

Thus, the rate of change of frequency at any instant mainly depends upon the 

change in load balance and the frequency at that instant. 

Frequency is an indicator of the balance between electricity generation and 

consumption [37]. Frequency stability is a  high priority for a stable operation of 

power system because synchronization and stability of power system is dependent 

on the system frequency. Thus, system frequency has to be maintained within the 

specified range. Normal operation of the continental European grid is between 

49.95 and 50.05 Hz [38]. Normal range of frequency in Nordic power system is 

from 49.90 to 50.10 Hz [14]. Frequency should not fluctuate out of the range for 

more than 1200 minutes per year [38]. The standard EN50160, allows a frequency 

deviation up to +/- 0.5 Hz if there is a sudden change in generation or load.  

Equation 4.10 shows that the system frequency remains constant if net change in 

load balance is zero. i.e.  =0. A positive or negative change in load balance 

results either increase or decrease in the system frequency from its nominal value 

respectively. 

Figure 26 shows the flowchart for calculating the frequency of Nordic power 

system using Equation 4.11. Initially, the Nordic system frequency is assumed to 

be balanced at 50 Hz. When change in net load is zero, frequency remains 

constant at 50 Hz. But during excess generation (Egen), change in net load ( ) is 

positive, thus it increases the system frequency. The Matlab code for frequency 

calculation is presented in Appendix C. System frequency is calculated for excess 

power that is going to be injected on  hourly basis.  
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Figure 24: Flow chart for System frequency calculation 

 

Figure 25: Frequency deviation of Nordic Transmission System with injection of 

excess power from renewables. 
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With a  continuous injection of excess energy (Egen) generated as shown in Figure 

25, the frequency of the Nordic transmission will deviate from the limit unless the 

generating unit are tripped off or energy storage schemes are activated as 

explained in section 3.5. 

4.3 Frequency Reserves Treating Hourly Loss as Required Heating 
Energy.  
 

Heat loss profile for a house calculated in Section 4.1 has been treated as the 

minimum heating energy required at that instant. So, excess generated energy can 

dumped to mitigate over frequency problem. The excess generated energy (Egen) 

equivalent to required heating energy (Hreq) at that instant can be transferred.  

The  output  power  data  used  in  simulation  in  this  thesis  is  taken  from the  power  

produced  by  the  wind  power  from  Eastern  Denmark.  It  is  assumed  as  excess  

generation that is going to be injected into the Nordic transmission system so that 

the output power variation becomes realistic throughout the year. Secondly, it is 

assumed that there are 50,000 houses to get considerable amount of frequency 

responsive loads calculated in Section 4.1 via electric space heater. 

Excess generation (Egen) occurring on hourly basis is matched with required 

heating energy (Hreq). If heating energy (Hreq) is more than excess generation 

(Egen), excess generated energy (Egen)  equivalent  to  heating  energy  (Hreq) is 

transferred to electric space. Thus, change in load balance ( P) equals to zero at 

that instant and frequency remains constant. Remaining required heating energy is 

stored or charged during the off peak period. 

Similarly, if excess generation (Egen) is more than the amount of required heating 

energy (Hreq), excess generation equivalent required heating energy (Hreq) at that 

hour is transferred to the electric space heater. However, the leftover excess 

generation is injected to the system and will cause an equivalent positive net load 

change and the system frequency increases. In the next hour, if excess generation 

(Egen) still exceeds required heating energy (Hreq), equivalent leftover excess 

generation is again injected to the system. The system frequency will increase 

again and attain the value based on positive change in load balance caused by the 
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amount of cumulative excess generation that was injected into the system. If the 

system frequency is going to increase more than 50.1 Hz, the generating units 

must be cut off from the system. Thus, in such scenario frequency of power 

system cannot be controlled to remain within operational limits.   

However, if we can reduce or if possible nullify the amount cumulative of leftover 

excess energy injected in the system to lower the positive load balance ( P) 

frequency can be decreased to retain its nominal value (50 Hz). For that operation, 

the availability of remaining heating energy is checked in the next hour. If there is 

still demand of heating energy after consuming the excess generation, energy 

equivalent to remaining heating energy is transferred from the system to the space 

heater. This procedure is continued till the frequency reaches 50 Hz. 

The flowchart for matching excess generation with available heating energy on 

hourly basis is shown in Figure 28. Difference between required heating energy 

and possible excess generation is calculated. Then, possible values of change in 

load balance ( P) on hourly basis hourly basis is manipulated as explain above 

and stored in Frequency Varying Load. In Cumsum array current value of leftover 

excess generation is stored and in Prevcumsum array cumulative values of 

leftover excess generation is stored. The Matlab code for balancing excess 

generation (Egen) with required heating is (Hreq) is presented in Appendix C. 
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Figure 26: Flowchart for P calculation utilizing heating energy. 

 

Now, with thus obtained value of change in load balance on hourly basis the 

system frequency is calculated. Flowchart presented on Figure 27 shows the 

calculation of Nordic Transmission System after utilizing the heating energy 

available as frequency controlled reserves. . 
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Figure 27: Flowchart for Controlling Frequency of Nordic Transmission System. 

The required heating energy for round the clock is usually stored during the night 

time when the  electricity  price  is  cheap.  The  off  peak  period  of  eight  hours  has  

been considered for this and it spans from 12 midnight to 8 am in the morning. 

The price used in calculation has been downloaded from Nord pool Spot for the 

year 2010. 

Similarly, price of using energy as a frequency reserve is also calculated. The cost 

of energy used for heating instantaneously to compensate excess generation is 

calculated using the price of electricity set for that time. Any leftover heating 

energy after utilizing in frequency control is stored during the off peak period.  

The hourly price of electricity set for balanced condition is used in calculating the 

energy cost for using frequency reserves. The cost of using energy for heating 

load during frequency control has always came greater than the off peak period.  
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4.4 Simulation Result. 
 

With the available required heating energy profile and assumed probable excess 

generation, each day was simulated on hourly basis throughout the year. During 

summer the heating energy requirement is almost zero, thus it is obvious 

frequency control is not possible.     

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: Frequency Control Using heating energy for Jan 1. 
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As seen from Figure 28, the required heating energy (Hreq) is more than the excess 

generation (Egen).  The  excess  generation  (Egen) can has been transferred to the 

heating load thus ensuring the stability of the network.  

The cost of storing heating energy in off peak period is € 0.0074077 per kWh per 

customer. During frequency control customer has to pay € 0.017782 per kWh. The 

difference between using energy during frequency control and off peak hour is € 

0.010374 kWh. This is due to the fact that electricity price at balanced condition is 

used.  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 29: Frequency Control Using Heating Energy for Jan 14. 
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generation (Egen) with required heating energy (Hreq), leftover excess generation 

of  215  to  50  MW  is  injected  into  the  system.  Thus  it  will  increase  the  system  

frequency from its nominal value of 50 Hz to 50.06 Hz. However, after 6th hour 

required heating energy (Hreq) becomes greater than excess generation (Egen) for 

few more hours. Thus frequency will now remain constant 50.06 Hz. As, kinetic 

energy stored (Wk) of the Nordic system is very high, frequency will decrease to 

50 Hz at very slow rate. So to decrease frequency quickely, availability of 

remaining required heating energy can be utilized. Equivalent amount of energy 

can be released from the system to fulfill remaining required heating energy. 

Hence, it will aid in the decrease in frequency to its nominal value of 50 Hz. The 

cost of storing heating energy in off peak period is € 0.0061985 per kWh per 

customer. During frequency control customer has to pay € 0.011709per kWh. The 

difference between using energy during frequency control and off peak hour is € 

0.0055103 kWh.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: Frequency Control Using Heating Energy for Feb 4. 
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In this case, initially the frequency rises as available required heating energy 

(Hreq) is less than the excess generation (Egen). Once, required heating energy 

(Hreq) becomes greater than excess generation (Egen), the leftover remaining 

heating energy can be used to decrease the frequency as explained for Figure 29. 

The cost of storing heating energy in off peak period is € 0.005895 per kWh per 

customer. During frequency control customer has to pay € 0.011575 per kWh. 

The difference between using energy during frequency control and off peak hour 

is € 0.0056798. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Frequency Control Using Heating Energy for March 18. 

In this case, similar to Figure 30 when the excess generation (Egen) is greater than 
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in off peak period is € 0.005275 per kWh per customer. During frequency control 

customer has to pay € 0.0085364 per kWh. The difference between using energy 

during frequency control and off peak hour is € 0.0032615 kWh. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32: Frequency Control Using Heating Energy for April 10. 

 In this case, initially the required heating energy (Hreq) is greater the excess 

generation (Egen). Thus frequency can be maintained at its nominal value. After 
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enough to match it. Thus the system frequency goes on increasing and generating 

unit has to be tripped off before it crosses the 50.1 Hz limit.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33: Frequency Control Using Heating Energy for April 14. 

This case is similar to Figure 32 but frequency is controlled before it deviates 

from specified operational limits. Here, required heating energy (Hreq) is initially 

more than the excess generation (Egen). As excess generation (Egen) becomes more 
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Figure 33. The cost of storing heating energy in off peak period is € 0.0035064 

per kWh per customer. During frequency control, customer has to pay                          

€ 0.0083195 per kWh. The difference between using energy during frequency 

control and off peak hour is € 0.0048131 kWh. 

Accordingly frequency control using heating energy required for different days 

are shown in Figures below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34: Frequency Control Using Heating Energy for May 8. 

The cost of storing heating energy in off peak period is € 0.0031074 per kWh per 

customer. During frequency control customer has to pay € 0.0075261 per kWh. 

The difference between using energy during frequency control and off peak hour 

is € 0.0044187. 
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Figure 35: Frequency Control Using Heating Energy for August 8. 

In this case, the excess generation is always greater than the required heating 

energy. Hence, system frequency cannot be maintained within the limit even with 

the application of the required heating energy as frequency reserve. Similar 

scenario can be found almost throughout the summer. Heating energy requirement 

is almost zero. Thus heating energy cannot provide frequency reserve. 
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Figure 36: Summary of simulations. 

Figure 36 shows the summary of simulations with treatment of required heating 

energy for a house as frequency control reserves. Excluding the summer period, 

heating energy required for a house has the potential to serve as frequency reserve 

for 116 days throughout the year for assumed excess generation. Simulation 

shows that for 20 days in January, 15 days in February, 16 days in March, and 18 

days in April the over frequency problem can be mitigated. Similarly for 13 days 

in May, 10 days in October, 11 days in November, and 13 days in December the 

heating energy required for house can operate as frequency control reserves. 

Similarly the cost of both off peak heating and for frequency reserve has been 

calculated for each day. As the balanced price was considered for both period, off 

peak heating cost still seems to be less expensive than compared to instant 

heating.  
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CHAPTER 5 

Conclusion  
 This  thesis  reviews  the  effect  on  power  system  frequency  with  variability  and  

uncertainty associated with the power produced from renewable energy. 

Traditionally, the spinning reserve has been supplied from the generators during 

system emergency and load has been underutilized. Demand can play active role 

in control of power system balance. Electric loads can actually be turned on or off 

in  response  to  frequency  deviation  observed  in  the  power  system.  Thus,  thesis  

discusses the application of frequency responsive load as spinning reserves. 

Thesis also studies desirable characteristics the load should possess to be used as a 

spinning reserve in frequency control.  

Thesis studies demand response potential of heating energy required for a house 

via electric space heater as frequency responsive reserves. The heat loss from a 

house with respect to external temperature was calculated on hourly basis. So, 

with obtained load profile, the simulation was performed in Matlab to control the 

frequency for probable excess generation occurring on hourly basis throughout the 

year. The results has shown that 116 out of 356 days, heating energy required for 

the  house  was  able  to  maintain  the  frequency  with  in  limit.  During  summer  the  

heating load are almost zero so it was not possible to control the frequency. 

Similarly, cost of using heating energy as frequency reserve was calculated and 

compared with that off peak heating. The above conclusions are based on 

simulation and the reported results in the literature. Experimental validation could 

not  be  done  here,  which  is  left  as  a  future  work  to  confirm the  results  from the  

simulations. This thesis considers only heating energy via electric space heater to 

be used as frequency responsive loads. Other loads such as refrigeration and 

compressed air, water pumping, electric vehicles charging also can be considered 

as frequency responsive load. Once the energy consumption of profile of these 

loads is known then, they can also be integrated with heating energy profile and 

used for frequency control.   
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APPENDIX A 

Layout of the house 
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Dimension of the House 

Section of the Apartment Length(m) Breadth(m) Area Volume 
Sitting room 5,4 4,8 25,92 63,504 
Family Room 5,8 4,1 23,78 58,261 
Kitchen 4,5 3 13,5 33,075 
Dinning Room 2,5 1,8 4,5 11,025 
Cloark Room 2,3 2,9 6,67 16,3415 
Bed Room 1 3,9 2,9 12,15 29,7675 
Bed Room 2 

  
23,27 57,0115 

Total Area 
  

109,79 
 

     
     
     
     Sitting room 

  
Area 

 Surface Element 
    External Wall 1 
  

1,344 
 External Wall 2 excluding window 

  
1,27008 

 Window(16% of wall) 
  

0,24192 
 External Wall 3 (excluding adjacent to 

lobby)  
  

0,924 
 External wall ( adjacent to lobby) 

  
0,21 

 Floor Area 
  

25,92 
 

     
     Family Room 

    External wall 1 including window 
  

1,148 
 Window(16% of wall) 

  
0,18368 

 External wall 1 excluding window 
  

0,96432 
 Door to Lobby 

  
2,52 

 Floor Area 
  

23,78 
 

     Dining Room 
    External  wall 1 adjacent to kitchen room 
  

0,504 
 External wall 2 in dinnig room 

  
0,504 

 External Wall 3 in Dinning room including 
window 

  
0,7 

 Window(16% of wall) 
  

0,112 
 External Wall 3 in Dinning room excluding 

window 
  

0,588 
 Door 

  
0,21 

 Floor Area 
  

4,5 
 

     
     Kitchen 

    External wall 4 in the kitchen including 
window 

  
0,84 

 Window(16% of wall) 
  

0,1344 
 External wall 4 in the kitchen excluding 

window 
  

0,7056 
 

Floor Area 
  

13,5 
 
 

     Bed Room1 
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External wall to bed room 1 including 
windows 

  
1,288 

 Window(16% of wall) 
  

0,20608 
 External wall to bed room 1 including 

windows 
  

1,08192 
 Floor Area 

  
12,15 

 
     Cloark Room 

    External Wall including window 
  

0,644 
 Window(16% of wall) 

  
0,10304 

 External Wall excluding window 
  

0,54096 
 Floor Area 

  
6,67 

 
     
     Bed Room 2 

    External wall 1 
  

2,016 
 External wall 2 including windows 

  
0,532 

 Window(16% of wall) 
  

0,08512 
 External wall in the bathroom including 

window 
  

0,504 
 Window of bathroom(16% of wall) 

  
0,08064 

 External wall in the bathroom excluding 
window 

  
0,42336 

 Floor Area 
  

23,27 
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APPENDIX B 

Values of Air Change Rate, Specific Factor of the Air 
Room Temp Air Change 
Lounge sitting room 21 1,5 
Living room 21 1,5 
Dining room 21 1,5 
Kitchen 18 2 
Breakfast room 21 2 
Hall 18 2 
Cloakroom 18 2 
Toilet 18 2 
Utility Room 18 1,5 
Study 21 1,5 
Games Room 21 1,5 
Bedroom 18 1 
Bedroom/en suite 18 2 
Bedsitting 21 1,5 
Bedroom/Study 21 1,5 
Landing 18 2 
Bathroom 22 2 
Dressingroom 21 1,5 
Storeroom 16 1 
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APPENDIX C 

Matlab code for System Frequency Calculation  
load('hrly_gen'); % Possible Excess Generation % 
f0=50;           %Intial System Frequency % 
w=300000  % Kinetic Energy Stored in Nordic Transmission Network,MWs% 
message = 'trip off'; 
Excess_Genration = hrly_gen    
for i=2:length(Excess_Genration)+1 
    system_frequency(1)=f0; 
    new_Systemfrequency=system_frequency(i-1); 
   Next_HourExcess_Generation=Excess_Genration(i-1); 
    const_a = new_Systemfrequency; 
    system_frequency(i)=const_a +(new_gen*const_a)/(2*w); 
    if system_frequency(m)>=50.1 
        message 
        break 
    end 
end 

 

Matlab Code for matching Excess generation with Required Heating Energy 

profile and calculation of System Frequency 

load('Required_heating_energy')% Load Required Heating Energy Data on 

Hourly Basis%  
load('Excess_gen');% Load Possible Excess Generation Data on Hourly 

Basis% 
Difference=Excess_gen-Required_heating_energy;              
net_change_ofload=zeros(size(Difference)); 
cumusum=0;  %  Initial leftover Excess generation Injected into the 

system% 
previouscumusum=0; % Cumulative of leftover Excess generation 

Injected into the system% 
for i=1:length(Excess_energy) 
    cumusum=cumusum+Excess_energy(i); 
    cumusum; 
    if(cumusum < 0) 
        if (previouscumusum >0) 
            net_change_ofload(i)=-previouscumusum; 
        else 
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            net_change_ofload(i)=0; 
        end 
        cumusum = 0; 
    else 
        net_change_ofload(i)=Excess_energy(i); 
    end 
    previouscumusum=cumusum; 
end 

 

f0=50; %Initial System Frequency% 
w=300000; 
message = 'trip off'; 
new_freq=f0; 
 for j = 2:length(net_change_ofload)+1 
     system_frequency(1)=f0; 
     new_Systemfrequency=system_frequency(j-1); 
     new_net_change_ofload=net_change_ofload(j-1); 
     const_a = new_Systemfrequency; 
     system_frequency_tobe_maintain(j) = const_a 

+(new_stable_freqload*const_a)/(2*w); 
     if system_frequency_tobe_maintain(j)>=50.1 
         message 
         break 
     end 
 end 
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 Balancing Excess Generation and Required Heating Energy Profile. 
January 1  

Hourly Possible 
Excess 

Generation(Egen) 

Hourly Required 
Heating 

Energy(Hreq) 

Difference 
Between Egen 

and Hreq 

Net Change in  
Load 

balance( P) 
System 

Frequency 
137 221,6166326 -84,6166326 0 50 
168 224,6386776 -56,6386776 0 50 
168 227,6607226 -59,6607226 0 50 
165 233,7048126 -68,7048126 0 50 
152 245,7929925 -93,7929925 0 50 
127 255,8664758 -128,8664758 0 50 
133 317,314724 -184,314724 0 50 
116 326,3808589 -210,3808589 0 50 
114 285,0795774 -171,0795774 0 50 
113 292,1310157 -179,1310157 0 50 
95 291,1236674 -196,1236674 0 50 

107 273,9987458 -166,9987458 0 50 
117 275,0060941 -158,0060941 0 50 
122 288,1016224 -166,1016224 0 50 
145 297,1677574 -152,1677574 0 50 
152 314,292679 -162,292679 0 50 
132 302,204499 -170,204499 0 50 
121 298,1751057 -177,1751057 0 50 
136 352,5719155 -216,5719155 0 50 
135 352,5719155 -217,5719155 0 50 
133 357,6086572 -224,6086572 0 50 
108 369,6968371 -261,6968371 0 50 
70 317,314724 -247,314724 0 50 
56 328,3955556 -272,3955556 0 50 
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January 14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Hourly Possible 
Excess 

Generation(Egen) 

Hourly Required 
Heating 

Energy(Hreq) 

Difference 
Between Egen 

and Hreq 

Net Change in  
Load 

balance( P) 
System 

Frequency 
424 208,5211043 215,4788957 215,4788957 50,01795657 
430 212,5504976 217,4495024 217,4495024 50,03608387 
386 217,5872393 168,4127607 168,4127607 50,0501284 
343 217,5872393 125,4127607 125,4127607 50,06058994 
281 215,5725426 65,4274574 65,4274574 50,06604884 
247 214,5651943 32,4348057 32,4348057 50,06875531 
227 264,9326108 -37,9326108 -37,9326108 50,06558991 
244 262,9179141 -18,9179141 -18,9179141 50,06401135 
243 211,5431493 31,4568507 31,4568507 50,06663611 
239 208,5211043 30,4788957 30,4788957 50,0691794 
238 205,4990593 32,5009407 32,5009407 50,07189156 
213 198,447621 14,552379 14,552379 50,073106 
215 199,4549693 15,5450307 15,5450307 50,07440332 
205 205,4990593 -0,4990593 -0,4990593 50,07436167 
204 209,5284526 -5,5284526 -5,5284526 50,07390028 
238 221,6166326 16,3833674 16,3833674 50,07526757 
246 237,7342059 8,2657941 8,2657941 50,07595743 
245 248,8150375 -3,8150375 -3,8150375 50,07563902 
257 307,2412407 -50,2412407 -50,2412407 50,07144592 
264 317,314724 -53,314724 -53,314724 50,06699668 
233 340,4837355 -107,4837355 -107,4837355 50,0580277 
181 351,5645672 -170,5645672 -170,5645672 50,04379749 
154 322,3514656 -168,3514656 -168,3514656 50,02975591 
144 326,3808589 -182,3808589 -182,3808589 50,01454846 
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March 18 

Hourly Possible 
Excess 

Generation(Egen) 

Hourly Required 
Heating 

Energy(Hreq) 

Difference 
Between Egen 

and Hreq 

Net Change in  
Load 

balance( P) 
System 

Frequency 
242 182,3300477 59,6699523 59,6699523 50,0049725 
259 182,3300477 76,6699523 76,6699523 50,01136229 
278 182,3300477 95,6699523 95,6699523 50,0193366 
221 183,3373961 37,6626039 37,6626039 50,02247637 
159 185,3520927 -26,3520927 -26,3520927 50,02027937 
123 184,3447444 -61,3447444 -61,3447444 50,01516524 
132 231,6901159 -99,6901159 -99,6901159 50,00685521 
175 229,6754192 -54,6754192 -54,6754192 50,0022983 
204 173,2639128 30,7360872 30,7360872 50,00485976 
269 166,2124745 102,7875255 102,7875255 50,01342621 
268 162,1830811 105,8169189 105,8169189 50,02224666 
254 155,1316428 98,8683572 98,8683572 50,03048935 
265 152,1095978 112,8904022 112,8904022 50,03990262 
260 156,1389912 103,8610088 103,8610088 50,04856462 
220 163,1904295 56,8095705 56,8095705 50,05330335 
214 168,2271711 45,7728289 45,7728289 50,05712181 
162 174,2712611 -12,2712611 -12,2712611 50,05609804 
194 176,2859578 17,7140422 17,7140422 50,05757587 
210 238,7415542 -28,7415542 -28,7415542 50,05517798 
180 249,8223858 -69,8223858 -69,8223858 50,04935303 
145 251,8370825 -106,8370825 -106,8370825 50,04044115 
197 263,9252625 -66,9252625 -66,9252625 50,03485953 
197 233,7048126 -36,7048126 -36,7048126 50,03179867 
199 249,8223858 -50,8223858 -50,8223858 50,02756077 
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April 14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Hourly Possible 
Excess 

Generation(Egen) 

Hourly Required 
Heating 

Energy(Hreq) 

Difference 
Between Egen 

and Hreq 

Net Change in  
Load 

balance( P) 
System 

Frequency 
152 156,1389912 -4,1389912 0 50 
176 158,1536878 17,8463122 17,8463122 50,00148719 
152 160,1683845 -8,1683845 -8,1683845 50,00080647 
145 162,1830811 -17,1830811 -9,6779277 49,99999997 
93 163,1904295 -70,1904295 0 49,99999997 
95 161,1757328 -66,1757328 0 49,99999997 

118 207,513756 -89,513756 0 49,99999997 
148 203,4843627 -55,4843627 0 49,99999997 
168 149,0875528 18,9124472 18,9124472 50,001576 
186 150,0949012 35,9050988 35,9050988 50,00456819 
230 149,0875528 80,9124472 80,9124472 50,01131151 
215 147,0728562 67,9271438 67,9271438 50,01697339 
232 143,0434629 88,9565371 88,9565371 50,02438895 
233 130,9552829 102,0447171 102,0447171 50,03289682 
232 98,72013634 133,2798637 133,2798637 50,04401078 
226 104,7642263 121,2357737 121,2357737 50,05412266 
191 114,8377096 76,1622904 76,1622904 50,06047639 
181 126,9258896 54,0741104 54,0741104 50,06498801 
125 193,4108794 -68,4108794 -68,4108794 50,0592797 
57 198,447621 -141,447621 -141,447621 50,04747842 
44 200,4623177 -156,4623177 -156,4623177 50,03442751 
37 205,4990593 -168,4990593 -168,4990593 50,02037625 
30 157,1463395 -127,1463395 -127,1463395 50,00977641 
15 172,2565644 -157,2565644 -117,4442125 49,99998748 
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