
Aalto University

School of Science

Degree Programme of Computer Science and Engineering

Kimmo Puputti

Mobile HTML5:
Implementing a Responsive Cross-Platform Application

Master’s Thesis
Kirkkonummi, May 15, 2012

Supervisor: Professor Petri Vuorimaa, Aalto University
Instructor: Risto Sarvas D.Sc.(Tech.)

Aalto University
School of Science
Degree Programme of Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Kimmo Puputti

Title:
Mobile HTML5: Implementing a Responsive Cross-Platform Application

Date: May 15, 2012 Pages: ix + 70

Professorship: Media Technology Code: T-111

Supervisor: Professor Petri Vuorimaa

Instructor: Risto Sarvas D.Sc.(Tech.)

In twenty years, the Web has become an integral part of our everyday lives. The
rapid growth of the smartphone market has brought the Web from our home desks
to anywhere we are, and enabled us to access this vast source of information at
any time.

However, the proliferation of mobile devices and platforms has raised new prob-
lems for application development. The growing amount of different platforms and
their distinct native technologies make it hard to develop applications that can
be accessed with all these devices.

The only combining factor in all these platforms is the browser, and it is be-
coming the universal application platform. We cannot afford anymore to build
applications for the silos and walled gardens of single platforms, and building
cross-platform applications is essential in the modern mobile market.

In this work, I introduce the HTML5 (HyperText Markup Language version 5)
specification as well as several related specifications or specification drafts for
modern web development. I also present several tools and libraries for mobile
web development.

I implemented a mobile web application and a network utility library, and assessed
the practical performance of the modern tools and APIs (Application Program-
ming Interface). In this work, I present the tools and techniques for performance
optimization of mobile web applications.

Keywords: mobile, HTML5, cross-platform, performance

Language: English

ii

Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan tutkinto-ohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Kimmo Puputti

Työn nimi:
Mobiili HTML5: Suorituskykyisen ja alustariippumattoman sovelluksen toteutus

Päiväys: 15 toukokuuta 2012 Sivumäärä: ix + 70

Professuuri: Mediatekniikka Koodi: T-111

Valvoja: Professori Petri Vuorimaa

Ohjaaja: Tohtori Risto Sarvas

Kahdenkymmenen vuoden aikana webistä on tullut oleellinen osa
jokapäiväistä elämäämme. Mobiilimarkkinoiden huikea kasvu on tuonut
webin kotipöydiltämme mukaamme missä ikinä olemmekin ja mahdollistanut
tämän laajan tietovaraston käyttämisen milloin tahansa.

Mobiililaitteiden käytön räjähdysmäinen kasvu on kuitenkin nostanut uusia
haasteita ohjelmistokehitykselle. Monien eri alustojen natiiviteknologiat poikkea-
vat toisistaan, ja ohjelmistojen kehittäminen kaikille näille alustoille on haastavaa.

Ainoa yhteinen tekijä näissä alustoissa on WWW-selain (World Wide Web), jos-
ta on tulossa universaali ohjelmistoalusta. Enää ei voida kehittää ohjelmistoja
vain tiettyjen suljettujen alustojen käyttäjille, ja alusta-riippumattomuudesta on
tullut oleellinen osa mobiilimarkkinoita.

Tässä työssä esittelemme HTML5-standardin sekä muita siihen liittyviä stan-
dardeja sekä standardiluonnoksia, jotka tuovat uusia ominaisuuksia ja helpotuk-
sia web-kehitykseen. Esittelemme myös useita työkaluja ja tekniikoita moderniin
web-kehitykseen mobiililaitteille.

Toteutimme mobiililaitteissa toimivan web-ohjelmiston sekä kirjaston tiedon si-
irtämiseen mobiiliverkoissa, ja arvioimme modernien työkalujen ja rajapintojen
käytännön suorituskykyä. Tässä työssä esitämme useita työkaluja ja tekniikoita
web-ohjelmistojen suorituskyvyn optimointiin mobiililaitteille.

Asiasanat: mobiili, HTML5, alusta-riippumattomuus, suorituskyky

Kieli: Englanti

iii

Acknowledgements

I would like to thank my supervisor, Professor Petri Vuorimaa, for the valu-
able comments and instructions for this work; my instructor, Doctor Risto
Sarvas, for giving me a valuable point of view to see this work in the proper
context as a whole; and my colleague, Jarno Rantanen, for making the demo
application for the utility library documented in this work. I would also like
to thank my employer, Futurice, for giving me time to write this work and
to do satisfying projects, such as the practical part of this work, every day
with different customers.

Mostly, I would like to thank my wife Maija for the valuable support and
my firstborn son Leo who was born during the writing of this work. You are
the light of my life.

Kirkkonummi, May 15, 2012

Kimmo Puputti

iv

Abbreviations and Acronyms

3G 3rd Generation Mobile Telecommunications
API Application Programming Interface
Ajax Asynchronous JavaScript and XML
AppCache Application Cache
Blob Binary Large Object
CDN Content Delivery Network
CORS Cross-Origin Resource Sharing
CPU Central Processing Unit
CSS Cascading Style Sheets
CSS3 Cascading Style Sheets level 3
DNS Domain Name System
DOM Document Object Model
ETag Entity Tag
GPS Global Positioning System
HTML HyperText Markup Language
HTML5 HyperText Markup Language version 5
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IP Internet Protocol
IT Information Technology
JSON JavaScript Object Notation
MVC Model-View-Controller
MathML Mathematical Markup Language
OS Operating System
OpenGL R© ES Open Graphics Library for Embedded Systems
REST Representational State Transfer
RTMP Real Time Messaging Protocol
SDK Software Development Kit
SQL Structured Query Language
SVG Scalable Vector Graphics

v

TCP Transmission Control Protocol
TTL Time To Live
UA User-Agent
URL Uniform Resource Locator
W3C World Wide Web Consortium
WHATWG Web Hypertext Application Technology Working

Group
WWW World Wide Web
WebGL Web Graphics Library
WiFi Wireless Local Area Network (WLAN)
XHTML eXtensible HyperText Markup Language
XML Extensible Markup Language

vi

Contents

Abbreviations and Acronyms iv

1 Introduction 1
1.1 Research Questions . 4
1.2 Structure of This Work . 4

2 HTML5 5
2.1 Semantic Markup . 6
2.2 Extensibility . 7
2.3 Media . 8
2.4 Canvas 2D Context . 8
2.5 Form Enhancements . 8
2.6 Session History Manipulation 9
2.7 Offline Web Applications . 9

2.7.1 Application Cache . 9
2.7.2 Data Storage . 10
2.7.3 Detecting Network State 11

2.8 Drag and Drop . 11
2.9 SVG and MathML . 11

3 Other Related Specifications 13
3.1 Cascading Style Sheets . 13
3.2 WebGL and Typed Arrays . 15
3.3 Touch Events . 16
3.4 Files . 16
3.5 Web Real-time Communication 16
3.6 Web Sockets . 17
3.7 Server-Sent Events . 18
3.8 Web Workers . 18
3.9 Analytics and Timing . 19
3.10 Page Visibility and Timer Control 19

vii

3.11 Cross-Origin Resource Sharing 20
3.12 Device APIs . 20

3.12.1 Geolocation . 20
3.12.2 Device Orientation . 21
3.12.3 User Media . 21

3.13 Other . 21

4 Tools and Techniques 23
4.1 Single-Page applications . 24
4.2 JavaScript MVC Libraries . 24
4.3 Responsive Design . 26
4.4 Progressive Enhancement . 26
4.5 User Interface Libraries . 27

4.5.1 jQuery Mobile . 27
4.5.2 jQTouch . 27
4.5.3 Sencha Touch . 29

4.6 Hybrid Applications . 29
4.7 Performance Guidelines . 30

5 Use Case 36
5.1 Conference Application Requirements 36
5.2 JSONCache Requirements . 37

6 Implementation and Results 38
6.1 Conference Application . 38
6.2 JSONCache JavaScript Library 40
6.3 Targeting Different Platforms 42

6.3.1 Device Detection . 43
6.3.2 Feature Detection . 44

6.4 Targeting Different Screens . 46
6.5 Handling Different Orientations 48
6.6 Handling Mobile Networks . 49

6.6.1 Minimizing Data Transfer 49
6.6.2 Caching . 49
6.6.3 Preloading . 50
6.6.4 Offline Support . 50
6.6.5 Handling Interruptions 51

6.7 Animations . 52
6.8 Following JavaScript Best Practices 52

6.8.1 JSLint . 52
6.8.2 Lazy initialization . 53

viii

6.8.3 Efficient DOM Manipulation 53
6.8.4 Efficient Event Handling 53

6.9 Performance Analysis . 54
6.9.1 YSlow . 54
6.9.2 Page Speed . 55

6.10 Summary of Results . 59

7 Conclusions 62
7.1 Further Work . 62
7.2 Discussion . 63

ix

Chapter 1

Introduction

Twenty years after its birth, the Web has become one of the defining tech-
nological innovations that knows no geographical, political, or ideological
boundaries. The world wide platform built on top of the physical Internet is
deeply integrated into our daily lives. This powerful tool that was built on
egalitarian principles is now taken for granted, just like old innovations such
as electricity. [4]

In parallel with the rapid growth of the Web, mobile phones have evolved
from briefcase-sized “portable” telephony devices into modern pocket-sized
computers. The mobile revolution has already changed the world as we see
it, and more people have access to the Web from a mobile device than from
an Internet-connected desktop computer. [15]

The Web is not constrained into (desktop and laptop) computers and
mobile phones, though. Tablets, TVs, ebook readers, watches, and even
household appliances are connecting to the Internet and have web browsers.
For the first time in history, we have a truly ubiquitous digital medium. [15]

Universal accessibility and openness are the keys to being the ubiquitous
information platform of the digital age [4]. Now the Web is closer in accom-
plishing its original principles in equality and universality; anyone can access
this vast source of open information from anywhere, with any device. All
you need is a web browser that supports the open standards of the Web.

The goal of the Web is to serve humanity.

– Tim Berners-Lee [4]

Being the universal digital medium, mobile devices has some unique char-
acteristics that other mass media lack. Mobile is personal, always-on, always-
carried medium with a built-in payment channel. Mobile is in your pocket
at the moment you have your creative impulse. [15]

1

CHAPTER 1. INTRODUCTION 2

Mobile OS Type Skill Set Required
Apple iOS C, Objective C
Google Android Java (Harmony flavored, Dalvik VM)
RIM BlackBerry Java (J2ME flavored)
Symbian C, C++, Python, HTML/CSS/JS
Windows Mobile .NET
Windows 7 Phone .NET
HP Palm webOS HTML/CSS/JS
MeeGo C, C++, HTML/CSS/JS
Samsung bada C++

Table 1.1: Required developer skill sets for different mobile platforms accord-
ing to [9]

These characteristics have made mobile device applications a multibillion-
dollar business. Five years after Apple published its game-changing iPhone
and the App Store, touch screen mobile phones and tablets from different
device manufacturers have spread all over the world. [9, 10, 15]

However, this proliferation of mobile devices and platforms has raised a
serious issue for application developers: fragmentation. Not only are there
multiple target platforms, but even within the platforms there are different
versions with different feature sets, not to mention different devices with
varying capabilities. [9]

Table 1.1 shows the required developer skill sets for different platforms.
As we see, each platform has its own programming language and SDK (Soft-
ware Development Kit). A lot of knowledge and resources are needed to
provide cross-platform applications for these platforms. Making several inde-
pendent applications with the native tools is also very expensive, and adding
features or just maintaining all these different applications becomes costly.
[9]

Some developers are forced to make compromises due to resourcing or
budgeting, and build their applications only for one platform. This might
be fine for independent developers, but a lot of potential customers or users
are left out of these walled gardens. Big corporations or public organizations
cannot afford leaving out large shares of the mobile market (see smartphone
sales by operating system in Figure 1.1). [4]

Being cross-platform is essential in today’s mobile market. And if the
required skills and resources for the native tools are not present, other options
have to be considered. All mobile devices have a web browser, and the Web
is becoming the universal application platform. [43, 55]

In the 20 years of its lifetime, the Web has evolved from a simple system

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Worldwide Smartphone sales by operating systems in 4Q 2011
according to http://www.gartner.com/it/page.jsp?id=1924314

for sharing documents into a massively popular, world wide application and
information distribution environment [55]. During the so-called Web 2.0
revolution, the Web grew into a platform for interactive applications with
the help of technologies like Ajax (Asynchronous JavaScript and XML) [19].

The Web is not without its problems, however. The viral spreading of
mobile phones has raised the need for a feature-rich technology stack for
building scalable applications that can handle the whole spectrum of devices,
screen sizes, and form factors that are used to access the Internet. This is
the need that HTML5 with all the related tools and APIs have promised to
solve.

Performance is the foundation of a great user experience [9]. By perfor-
mance, I mean the speed of downloading, initializing and using an application
as perceived by the user as well as the responsiveness and smoothness of the
user interface influencing the overall user experience.

Native tools have been carefully optimized to provide the best possible
performance and responsiveness, and web applications are often unfavorably
compared to them. In the end, however, the received savings in develop-
ment time, deployment, cost-efficiency, and cross-platform support can often
outweigh the possible compromises. [9, 15]

In this work I look at the performance of HTML5 as a cross-platform
application platform for different device form-factors. To study the perfor-

http://www.gartner.com/it/page.jsp?id=1924314

CHAPTER 1. INTRODUCTION 4

mance, I built a real-world HTML5 application and a JavaScript library and
fine-tuned the performance to get the best possible user experience. I then
asses these optimizations and the compromises that had to be made.

1.1 Research Questions

Knowing the reasons and motivation for cross-platform HTML5 and the im-
portance of application performance and responsiveness:

• RQ1: What are the main problem areas in mobile web development?

Mobile web development is a large problem area, and dealing with
relatively new technologies and large amounts of devices, finding the
main problems is crucial for this work.

• RQ2: Do HTML5 and related specifications solve these problems?

There are a lot of new specifications and APIs for web development.
Do these specifications solve the problems identified in answering RQ1?

• RQ3: What other practical means do we have to solve these problems?

Not all problems can be solved with specifications and new standard
APIs. What other practical means and techniques can be used to solve
the problems identified in RQ1?

I introduce the HTML5 specification and other related standards in a
generic way, but the practical research is constrained into using the new
APIs in a real-world mobile application. Thus not all APIs are applicable or
needed, but the ones used are deployed for real end users and examined in
the current browser implementations. Being a large topic, this work focuses
especially on the performance aspect of the latest APIs and their current im-
plementations to get a good overview of the application of the specifications
in a real-world scenario.

1.2 Structure of This Work

In Chapter 2 and Chapter 3 I introduce HTML5 and related specifications
and APIs for modern web development. In Chapter 4 I present some of the
latest tools, frameworks and libraries for building mobile web applications.

In Chapter 5 I introduce the practical part of this work and its require-
ments, and in Chapter 6 I present the implementation details and results of
the practical research. In Chapter 7 I sum up the work and discus further
work ideas.

Chapter 2

HTML5

HTML5 is a cross-platform and device form-factor agnostic markup language
for defining structured documents. It is a backward compatible revision of
older HTML standards bringing lots of new functionality, removing unneeded
features, and officially documenting some “de facto” standards already sup-
ported by some or several web browsers. [46]

In the early 2000s, W3C (World Wide Web Consortium) was developing
XHTML (eXtensible HyperText Markup Language) and XForms standards
to be the future of the Web. Many parts of these standards were backward
incompatible and required very strict and error-free authoring. Being frus-
trated with this vision that was seen as impractical for the real world, a group
of web browser vendors and other interested parties had a competing vision
of the future of the Web: evolving HTML4 to include additional features
maintaining backward compatibility. W3C members did not agree with this
vision, and as a result, the WHAT Working Group was born. WHATWG
(Web Hypertext Application Technology Working Group) defines itself as a
“loose, unofficial, and open collaboration of Web browser manufacturers and
interested parties”1. [46]

According to a study2 made by Opera in 2008, more than 95% of web
sites do not pass markup validation. Therefore, to maintain backward com-
patibility and practicality, it is crucial to have a well defined error handling
mechanism.

Having the browser vendors and web development community support
behind them, after several years the WHATWG work was finally accepted
by W3C and a joint effort was started to standardize HTML5. There are still
differences in the W3C and WHATWG specifications in what features they
include in the main standard and what are separated in other specifications

1http://www.whatwg.org/news/start
2http://dev.opera.com/articles/view/mama-key-findings/

5

http://www.whatwg.org/news/start
http://dev.opera.com/articles/view/mama-key-findings/

CHAPTER 2. HTML5 6

or leaved out, but the main goal is to develop the standards together with
browser vendors to get usage feedback while the specifications are being
made. This results in many features being available in modern web browsers
while the HTML5 and related standards are not yet finished. As a drawback,
however, the implementations might change between browser versions, and
developers must take extra effort in detecting the supported features. [46]

In this work, I look at HTML5 beyond the main specifications, and take
into account also related standards that affect modern web application de-
velopment. Also, the differences between the W3C and the WHATWG spec-
ifications are not separated since they are not clear-cut. This is the practical
view that, in my opinion, the web development community has on HTML5.

2.1 Semantic Markup

Google did a study3 in 2005 of a sample of over a billion HTML documents
about the popular class names, elements, attributes and related metadata.
This analysis had a large impact on which elements and attributes were
considered in the upcoming HTML5 standard.

HTML5 defines several new elements and attributes. The objective is to
make the markup more semantic for developers and for content processors
such as search engines and screen readers.

The specification aims for a more semantic structure of HTML by drop-
ping many presentational features. The rationale behind this is explained
with the following reasons [23]:

• Media-independent markup works for more users and yields better ac-
cessibility

• Having style-independent markup separates document structure from
its layout and makes maintenance easier

• Separating styling results in smaller document sizes.

Each element in HTML5 is in zero or more content categories that group
elements with similar characteristics [23]:

• Metadata content: Content that sets the behavior of the document,
sets its relationships to other documents, or conveys other information
of the document.

Examples: link, meta, script, title

3http://code.google.com/webstats/

http://code.google.com/webstats/

CHAPTER 2. HTML5 7

• Flow content: Most content that is used in the body of a document.

Examples: a, article, audio, div, header, form, nav, p

• Sectioning content: Content that defines the scope of headings and
footers.

Examples: article, aside, nav, section

• Heading content: Content that defines a header of a section.

Examples: h1, h2, hgroup

• Phrasing content: Content that holds or marks up the text of the
document.

Examples: abbr, audio, canvas, img, em

• Embedded content: Content that imports another resource or inserts
content from another vocabulary into the document.

Examples: audio, embed, iframe, img

• Interactive content: Content that is intended for user interaction.

Examples: a, button, menu, select

2.2 Extensibility

HTML5 defines the main constructs of a semantic and accessible docu-
ment. However, some specific use cases require a more precise and context-
dependent and fine-grained semantics. Also, web browsers might introduce
new features that must conform to the standards. This is why HTML5 is
made extensible for adding more semantics or additional features on top of
the existing standard.

There are several ways to extend HTML5. The simplest approaches in-
clude using the defined general attributes with certain vocabularies. For
example, microformats4 and Schema.org5 define common elements and class
names with certain semantics for defining document metadata.

HTML5 also defines explicit mechanisms for extending the markup struc-
ture. Using data-*="" and rel attributes, meta tags, or a generic microdata
mechanism, the semantics of the content can be enhanced for automatic rea-
soning and machine readability. [23]

4http://microformats.org/
5http://schema.org/

http://microformats.org/
http://schema.org/

CHAPTER 2. HTML5 8

2.3 Media

Multimedia support is crucial for modern applications. HTML5 defines ele-
ments and APIs for audio, video, subtitles, and embedded content.

Previously to use these rich content types, developers have had to rely on
third-party plugins and browser extensions. Not having to rely on plugins
and extensions has been one of the main goals of the HTML5 standard for
improving the openness and accessibility of web content.

2.4 Canvas 2D Context

HTML5 defines the canvas element. It is a resolution-dependent bitmap
canvas for dynamically rendering graphics. It can be used, for example, for
graphs, games, or other visuals. [23]

The Canvas 2D Context specification draft [24] defines a JavaScript API
for programmatically drawing on the 2D canvas surface. The API defines
functions for drawing shapes, paths, text, gradients, and images on the canvas
and other functions for handling the bitmap data.

2.5 Form Enhancements

Forms are an essential construction in interactive HTML documents. How-
ever, due to their relative simplicity in terms of expressiveness and the lack
of proper accessibility features, developers have been forced to build lots of
JavaScript solutions to enhance and fix some of these problems.

HTML5 brings several enhancements to forms. New input types for num-
bers, dates, email addresses, etc. obsolete the need of scripted widgets by
using native platform controls. New form attributes like placeholder and
autofocus bring easy-to-use accessibility and usability improvements and
also reduce the need for scripting. [23]

These additions and enhancements work especially well in mobile context
where user input is slow and cumbersome. For example, by having a numeric
input field lets the mobile platform open the numeric keyboard by default,
which greatly improves the usability of forms. Automatic form validation
in the client side also reduces the need for unneeded page refreshes since
the browser can show error messages in invalid fields without any JavaScript
validation.

CHAPTER 2. HTML5 9

2.6 Session History Manipulation

HTML was originally designed to be based on documents and hyperlinks
between these distinct documents with each of them having a unique URL
(Uniform Resource Locator). This hyperlinked structure, however, does not
suit well for web applications with dynamic content and interactively chang-
ing user interface.

Two of the basic functionalities that users are accustomed to are book-
marking and going back and forth in the session history. Traditionally these
have been compromised in dynamic Ajax applications or handled with a lot
of extra work.

HTML5 addresses these issues by allowing the developers dynamically
manipulate the session history. The history stack can be changed and used
for navigation and even the browser address bar can be changed without
extra page refreshes. [23]

2.7 Offline Web Applications

By design, web sites have always needed a working network connection. Ap-
plications, however, should be able to work offline or in unreliable and flaky
networks. Especially mobile networks are unreliable [65], which has raised
the need for offline support in HTML5.

There are several ways to enable offline support in HTML5 applications.
I present these approaches in the following sections.

2.7.1 Application Cache

AppCache (Application Cache) is a relatively simple way to indicate all re-
sources needed for offline functionality. A manifest file is defined in the
HTML document, and within the file there are sections for resources that
should always or never be cached as well as fallback URLs for resources that
are not cached but with which the fetching fails. In addition to the simple
manifest file listing offline resources, JavaScript events are defined for cache
changes. [23]

CHAPTER 2. HTML5 10

Example manifest file:

CACHE MANIFEST

Example manifest version 1.

The resources in this section are cached for offline use.

CACHE:

js/scripts.js

css/styles.css

img/sprite.png

http://example.org/external-image.jpg

The resources in this section require the user to be online.

NETWORK:

/login

This section defines resources and their fallback

URLs if they are inaccessible.

FALLBACK:

/ /offline.html

2.7.2 Data Storage

Storing data in the client side has traditionally been constrained into using
cookies, but HTML5 specifies new options for data persistence.

Two different key/value storages are defined: localStorage and
sessionStorage. The API is same with both of these, but with
sessionStorage, the data is persisted only for the current browser session.
These interfaces are very simple and easy to use, but are constrained into
storing only textual data. [28]

Two more expressive storage APIs have been specified: client side SQL
(Structured Query Language) database [28] and the Indexed Database [42].
The client side SQL database defines an asynchronous and transactional
JavaScript API for a SQL database. Although being very expressive, due
to the relative complexity compared to simple and scalable key/value stor-
age options, it is yet to be seen if the client side SQL storage will be accepted
by the browser vendors and developers.

Indexed Database provides synchronous and asynchronous APIs for stor-
ing and querying large amounts of structured data. The transactional API
can be used for more complex persistency needs than with the simple key/value

CHAPTER 2. HTML5 11

storages, and it provides a native JavaScript API that does not involve the
relative complexities of SQL.

2.7.3 Detecting Network State

Knowing whether the user is online or offline can affect the user interface or
the response to user interactions. HTML5 defines functionality to detect the
current network status and events that are fired when the status changes.
[23]

Although providing important information, these network status indica-
tors are inherently unreliable [23]. Due to the distributed ad-hoc architecture
of the network and possible local or external proxies or middleware, the appli-
cation can never be sure if the network is connected or not. The only option
is just to attempt to make requests and wait for the response or possible
failure.

Therefore, applications should be designed to expect the network to work,
but to degrade gracefully when the connection is lost or seems to be unreli-
able.

2.8 Drag and Drop

Drag and Drop is a common interaction technique where elements can be
moved within the user interface from one place to another. Older browsers
have had proprietary solutions for this interaction pattern, but HTML5 stan-
dardizes the API.

The specification defines the element attributes and DOM (Document
Object Model) events for easily enabling and controlling draggable elements
and drop targets. Custom cross-browser JavaScript solutions have enabled
this interaction before, but little JavaScript code is needed with the new API.
The browser handles the interaction and the dynamic rendering, reducing the
interface lagging and the need for extra processing.

2.9 SVG and MathML

While not part of the HTML5 standard, the specification allows for em-
bedding SVG (Scalable Vector Graphics) [1] and MathML (Mathematical
Markup Language) [8] markup within HTML.

SVG is a markup language for describing two-dimensional vector graphics
in XML (Extensible Markup Language). The markup can be accessed with

CHAPTER 2. HTML5 12

the DOM API for creating dynamic and interactive functionality. Within an
HTML5 document, SVG markup can be embedded within the svg element.

MathML is an XML markup language for describing the structure and
content of mathematical notation. It can be embedded within an HTML5
document with the math element.

Both of these languages reduce the need of custom images, making the
content more accessible, dynamic, and enabling dynamic interaction with it.
Also, vector graphics can be scaled to fit the available space no matter what
the screen size is, which improves the cross-platform usefulness for different
device form factors.

Chapter 3

Other Related Specifications

There are lots of specifications related to HTML5 that are considered to be
part of the practical view of all the new Web APIs that are often referred
to as ’HTML5’. Some of these originate from the work of the WHATWG
and some from the work of W3C, some have been part of HTML5 at some
point but have been taken out of it into their own separate specifications, and
some are just new specifications for the Web that relate to what we can do
with HTML, CSS (Cascading Style Sheets), and JavaScript in modern web
applications. In the following sections, I introduce the specifications that are
of interest within the topic of this work.

3.1 Cascading Style Sheets

CSS Level 3 specifications introduce lots of new functionality for web ap-
plication styling. Well separated layout layer keeps the document structure
clean, and rich styling and effects capabilities reduce the need for scripting
and provide graceful fallback functionality for older user agents. By let-
ting the browser handle, for example, rich user interface animation effects
allows developers to easily optimize the responsiveness and performance of
their applications since the browser can use the most efficient techniques of
the platform to handle these effects. Below I list the main components and
specifications of the W3C CSS working group1.

• Selectors

CSS selectors are patterns that are used to match elements in a DOM
tree. The patterns can then be used to apply style rules to the matched

1http://www.w3.org/Style/CSS/members.en.php3

13

http://www.w3.org/Style/CSS/members.en.php3

CHAPTER 3. OTHER RELATED SPECIFICATIONS 14

elements. Selectors can also be used in JavaScript to select elements
for scripting.

CSS3 (Cascading Style Sheets level 3) defines a set of new selectors
[66] for powerful matching of elements in complex DOM trees. These
selectors are useful for rich interactive web applications and reduce the
need for scripting for element matching. Efficient selectors are also
important for performance optimization.

• Transforms

2D and 3D transforms [17] allow elements to be transformed in two-
dimensional or three-dimensional space. Elements can be translated,
rotated, and scaled in their coordinate space. The specification defines
several 2D and 3D transformation functions, which can be used in the
transforms.

Transforms can provide subtle but important user interface effects, or
they can be used for advanced interactive graphics. Combined with,
for example, timed animations or transitions, rich user interfaces can
be built with declarative CSS rules.

• Transitions

CSS transitions [30] allow element styles to change smoothly over a
specified duration, and they can be used for simple animations. Nor-
mally when the value of a CSS property changes, the result is seen
instantly, but with transitions, the changes can be timed and config-
ured for presentational effects.

• Animations

Simple animations between two layout states can be done with transi-
tions, but for more complex series of changes, CSS animations [31] can
be used.

The animations specification defines so-called keyframes, which can be
used to specify the progress of the animation between the start and
the end states. Animations can also be configured to repeat a certain
number of times, to alternate between the begin and end values, to
control the running and paused states, and to delay the start time.
[31]

• Media Queries

Older versions of HTML and CSS have already supported targeting
stylesheets and rules to certain media types like ’screen’, ’print’, or

CHAPTER 3. OTHER RELATED SPECIFICATIONS 15

’mobile’. Media queries expand on this technique by adding extra fea-
ture queries that can be used to apply styles for certain devices and
screen sizes. [63]

Media queries can be used to detect the device screen size and dimen-
sions, orientation, aspect ratio, color depth, etc. [63]. Detecting these
media features is especially useful when using the same HTML markup
for different device types. For example, a layout of a web application
might use more horizontal space when used on a desktop browser, but
on a mobile device the fragments of the layout might be stacked ver-
tically to avoid horizontal scrolling. Also background images might be
swapped into smaller ones with smaller screens.

• Web Fonts

Typography is an essential part of design. Traditionally web designers
have been constrained into only a few “web safe” fonts that are known
to be widely supported between different browsers and platforms.

CSS3 defines techniques to dynamically load custom fonts and specify
their properties [12]. However, different browsers still use different
formats and developers might have to provide the custom font files in
all the formats that they want to support.

3.2 WebGL and Typed Arrays

WebGL (Web Graphics Library) is a low-level 3D rendering API derived from
the OpenGL R© ES 2.0 (Open Graphics Library for Embedded Systems) [44]
and it is designed as a rendering context for the canvas element introduced in
HTML5. An interactive 3D graphics API in the browser is essential for game
development and creates a global platform for cross-platform games. WebGL
was originally developed by the Khronos Group2 and later the specification
work was participated by browser vendors and 3D developers. [41]

Being based on the OpenGL ES API, WebGL can run on many different
devices, such as desktop computers, mobile phones, tablets, and TVs. The
use is not constrained into games only; WebGL can also be used in 3D
modeling and design tools, simulations, data visualization, or in interactive
art.

Originated from the WebGL specification, typed arrays have been sepa-
rated into their own specification [22]. Traditional JavaScript arrays are not
typed, but due to performance reasons, WebGL API needed more efficient

2http://www.khronos.org/

http://www.khronos.org/

CHAPTER 3. OTHER RELATED SPECIFICATIONS 16

data structures for 3D graphics. These typed arrays can also be used in non-
graphics related contexts, for example, where efficient processing is needed
for large amounts of binary data.

3.3 Touch Events

User interface events have traditionally relied on the input device being a
pointer or a keyboard. Modern mobile devices and tablets, however, usually
have a touch screen. Pointer and keyboard events have been mapped into
the touch interaction, but proper touch events are needed to support the rich
interaction of touch input.

The Touch Events specification [6] defines a set of events for one or more
points of contact on a touch surface. The specification defines touchstart,
touchmove, touchend, and touchcancel events and several new attributes
for the event object. These enable developers to add functionality for rich
interaction such as swipes and multi-touch gestures.

3.4 Files

Local file system access is essential for native applications. JavaScript storage
and database APIs can be used for certain structured data for caching and
other purposes, but are cumbersome, for example, for large binary files of
arbitrary format. File API specifications [48, 57, 58] define interfaces for
creating, reading, writing, and manipulating local files and directories. Error
handling and security sandboxing are also specified in the APIs.

Two versions of the file handling APIs are defined: an asynchronous API
for normal file handling in the main thread and a synchronous API for file
handling in Worker threads (See Section 3.8). Text and binary files can
be manipulated in memory or as Blob (Binary Large Object) URLs with
the DOM API. These capabilities enable web applications to better optimize
network transfer and offline support with large files. Combined with the Drag
and Drop API (See Section 2.8) and Web Workers (See Section 3.8), HTML5
forms can be greatly enhanced and optimized with richer interactivity and
better performance.

3.5 Web Real-time Communication

Support for different multimedia such as audio and video playing is a crucial
first step into rich and interactive web applications. However, simply being

CHAPTER 3. OTHER RELATED SPECIFICATIONS 17

able to play a video or an audio file within an HTML document is not enough
for multimedia-rich applications.

Real-time media streaming and playing has been traditionally imple-
mented with Adobe Flash3 and RTMP4 (Real Time Messaging Protocol),
but the Web RTC API [3] brings the ability to do native media streaming
within HTML documents. Also a direct peer-to-peer streaming communica-
tion channel between two user agents is defined.

Combined with the getusermedia API [7] (see Section 3.12.3), streams can
be shown or recorded also from a local media source, such as a web camera.
These specifications have lots of security and privacy issues to handle, but
they promise very strong multimedia capabilities for web applications.

3.6 Web Sockets

Web Sockets API [13, 27] defines a two-way communication protocol for real-
time applications between a client, such as web browser, and a remote server.
Because HTTP (Hypertext Transfer Protocol) is a stateless protocol, highly
interactive applications have introduced many problems when attempting to
keep response times and latency low. Real-time applications such as chat
clients have been forced to rely on complex workarounds to overcome latency
issues.

The Web Socket connection can be open or secure, like HTTP and HTTPS
(Hypertext Transfer Protocol Secure). The API uses a single TCP (Trans-
mission Control Protocol) connection that is kept open and allows for traffic
in both ways. [13, 27]

The communication protocol specification defines a layer on top of TCP
that defines the connection handshaking with HTTP, an “origin”-based secu-
rity model, addressing and protocol naming mechanism for multiple services
on one port and multiple host names on a single IP (Internet Protocol)
address, mechanism to overcome TCP packet length limits, and a closing
handshake to help deal with proxies and other intermediaries. The intent of
Web Sockets is to provide a simple protocol that works well with HTTP and
the existing HTTP infrastructure, and that is as close to TCP as possible
taking possible security issues into account. [13]

3http://www.adobe.com/products/flashplayer.html
4http://www.adobe.com/devnet/rtmp.html

http://www.adobe.com/products/flashplayer.html
http://www.adobe.com/devnet/rtmp.html

CHAPTER 3. OTHER RELATED SPECIFICATIONS 18

3.7 Server-Sent Events

Server-Sent Events specification [26] defines a data stream format
text/event-stream that can be used to connect an event listener in the
client side to listen for events initiated by the server. These streams can be
used, for example, for real-time push notifications for data content updates.

The stream data format is very simple, and the API lets the browser han-
dle the message passing. This helps developers to avoid, for example, polling
a server for updates, which consumes a lot of computing and networking
resources.

3.8 Web Workers

The whole IT (Information Technology) industry has had a dramatic shift
into parallel computing in recent years. Multicore processors have appeared
even in mobile devices, and the number of cores is increasing in modern
CPUs (Central Processing Unit). This parallellization of processing poses
challenges and opportunities also for application developers. [2]

Following the trend of the computing industry, together with the prolifer-
ation of web technologies, web applications are becoming more capable and
processing-intensive. Introducing a traditional threading model and making
browser APIs (such as DOM) thread-safe would be an overkill solution and a
mismatch to the simplicity and backward compatibility requirements of the
Web.

JavaScript is by design single-threaded with an asynchronous event model.
The whole user interface also runs in the same thread, and therefore long
running JavaScript code freezes the whole interface during processing. The
traditional approach has been to split the code into small enough pieces, and
let the browser handle the scheduling of user interface events and JavaScript
processing. This programming model is very hard, and combined with un-
predictable browser garbage collection, user interface freezing might be hard
to avoid. [52]

Web Workers are the proposed solution for parallel computing in JavaScript.
They introduce a simple interface for sandboxed components with restricted
access to browser APIs and an asynchronous communication channel between
the worker and the main application. [29]

Web Workers are external JavaScript files initialized from a web site. The
worker runs in a separate OS-level (Operating System) thread and does not
affect the main user interface thread apart from the communication channel.

CHAPTER 3. OTHER RELATED SPECIFICATIONS 19

The simple API is easy to work with and enables the long-needed ability of
parallel computation in web applications.

3.9 Analytics and Timing

Proper analytics is crucial for performance research and optimization. JavaScript
timers have traditionally been used for timing and profiling client side inter-
actions, but they can only provide crude analytics of what happens after
the browser has started to parse the document and executes the JavaScript
timing code.

The Navigation Timing specification [62] defines accurate analytics of
events that happens since the user starts to navigate to the target page and
until the page is fully loaded. These numbers are much more relevant than
timing code supplied by the page itself, since they accurately match the user
perceived load time that usually starts already much earlier than what the
target page can time, for example, when a link is clicked on another page.

Timing APIs are also defined for resources [38] and general purpose user
action profiling [39]. The Performance Timeline specification [37] defines a
unifying interface to access these performance metrics.

3.10 Page Visibility and Timer Control

Avoiding unneeded work whenever possible is an important performance op-
timization concept. Modern browsers usually have a tabbed interface with
possibly dozens of web pages open at a time. In addition, many interface
functionalities use animations and effects to enhance the user experience, but
if the page is not visible, these effects have little value and might use the CPU
time in vain. Moreover, polling real-time data can use a lot of computing
resources even if the data is not visible to the user.

The Page Visibility specification [36] defines an API for JavaScript to
know whether the document is currently visible and a visibilitychange

event to get notified when the document visibility changes. In addition, the
Timing control for script-based animations specification [49] and the Efficient
Script Yielding specification [40] define means for requesting the browser to
manage the event queue for efficient animation and interface event handling.
For example, with the requestAnimationFrame function, the developer can
periodically request for execution time for smooth animations, and when the
page is not visible to the user, the browser can throttle the animation frame
frequency for not using CPU power when it might be needed more on another

CHAPTER 3. OTHER RELATED SPECIFICATIONS 20

page.

3.11 Cross-Origin Resource Sharing

Same-origin policy is an important security restriction in web browsers pre-
venting web applications to obtain data from other origins [59]. However,
mashups and applications using data from external data APIs have been
very popular in recent years, and techniques have been developed to over-
come the restrictions. These techniques have been unsafe and very limited,
so a need for cross-domain data sharing has risen.

The Cross-Origin Resource Sharing (CORS) specification [59] extends the
same-origin policy by allowing the HTTP layer to indicate allowed origins for
data transfer between separate origins. The specification defines new HTTP
headers for indicating allowed origins and for negotiating access control re-
strictions with preflight requests.

CORS is an important specification for modern web applications, since
data is very often distributed to different domains, for example, when using
a content delivery network. It also makes mashup development with external
data easier and safer.

Cross-domain resource usage can also be controlled with the means de-
fined in the Content Security Policy specification [54] and The From-Origin
Header specification [60]. The specifications define HTTP headers that can
be used to restrict certain content types to be allowed only from the given
origins. In addition to these specifications, the HTML5 Web Messaging spec-
ification [25] defines an API for cross-document messaging.

3.12 Device APIs

One of the main differences between native and web applications is the device
sensor access. In the following sections I present some specifications that
define APIs to access the device features from JavaScript.

3.12.1 Geolocation

Context is one of the main components of a personalized application [15].
Probably the most important aspect affecting the context is the physical
location of the user. However, only very crude and error-prone IP-based
detection techniques have been available for web sites.

CHAPTER 3. OTHER RELATED SPECIFICATIONS 21

The Geolocation API defines a standardized JavaScript API for web ap-
plications to query the location of the user. The API is agnostic of the un-
derlying location information sources; the source might usually be the GPS
(Global Positioning System) chip on a mobile device or a WiFi (Wireless Lo-
cal Area Network, WLAN) network with a known location. The coordinates
and their accuracy are provided by the API. [47]

The implementations usually provide some sort of privacy protection by
asking the user whether they want to grant the application access to the
physical location of the user.

3.12.2 Device Orientation

Knowledge of the physical orientation of a device and changes in the orien-
tation enable, for example, highly interactive games with rich input mech-
anisms. Typical sensor sources for the orientation include gyroscopes, com-
passes, and accelerometers [5].

The Device Orientation specification [5] defines APIs and events to access
this sensor data through an abstraction layer. The data can be used for rich
interaction and gestures for a wide array of applications.

3.12.3 User Media

The getusermedia specification [7] defines means for accessing multimedia
streams from local devices. The streams can be audio, video, or both, and
the source device can be, for example, the web camera on a desktop computer
or the microphone on a mobile device.

The getUserMedia function can be used to request access to a multimedia
stream, and the stream can then be handled, for example, with the File API
(see Section 3.4) for recording to a file, or used as a source in an audio or a
video element.

3.13 Other

There are also lots of other specifications, drafts, and proposals for other
device feature and sensor data access. Below I list some of these.

• Web Notifications [21] for displaying simple notification to the user

• Fullscreen [61] for controlling fullscreen display of the application

• Pointer Lock [50] for controlling input pointers

CHAPTER 3. OTHER RELATED SPECIFICATIONS 22

• Clipboard [53] for using copy, cut, and paste operations

• Gamepad [20] for a low-level interface to gamepad devices

• Battery Status [33] for accessing information about the battery status
of the device

• Vibration API [32] for accessing the vibration mechanism of the de-
vice

• Network Information [35] for an interface to access the underlying
connection information or the device

• Contacts [56] for an interface to access the address book of the user

• Web Intents5 for service discovery and inter-application communica-
tion.

5http://webintents.org/

http://webintents.org/

Chapter 4

Tools and Techniques

With all the hype and trending surrounding HTML5 and mobile web applica-
tions, several libraries and tools have been developed to help building these
applications. Fling [16] represents a typical anatomy of a mobile HTML5
application as shown in Figure 4.1.

Figure 4.1: HTML5 Mobile Application Anatomy according to [16].

In this chapter, I present tools, libraries, and techniques for building
modern web applications.

23

CHAPTER 4. TOOLS AND TECHNIQUES 24

4.1 Single-Page applications

In recent years, the movement from traditional interlinked documents to in-
teractive web applications has had a profound effect on the architecture of
web applications. Traditional web sites have structured backend architec-
tures often with a database layer, a layer for business logic, and a layer for
generating the HTML documents from a template. The frontend usually
uses CSS for layout and styling and some JavaScript for enhancing forms or
some interactive components on the page.

These conventional three-tiered web applications [34] often use an MVC
(Model-View-Controller) [18] framework for separating the data, logic, and
presentation layers in the backend. However, the latest trend in web appli-
cation development has been having only a simple REST (Representational
State Transfer) [14] API as a backend data layer, and using a JavaScript
MVC framework in the frontend. Thus the whole application logic and pre-
sentation has moved to the client side, with the backend only working as a
data persistency layer.

Using modern JavaScript storage APIs (see Section 2.7.2), even the data
persistency and application state layer can be in the client side, with backend
only working as an application and data delivery layer. In addition to the
client side data persistency, the storage APIs can be used to store the user-
specific application state.

Single-page applications might introduce bigger initial page load, but af-
ter the startup, the network is only used when interacting with the backend
data API. This makes the applications faster and more responsive, and mini-
mizes the effects that unreliable networks have on the application usage since
separate page views do not require a new document request.

4.2 JavaScript MVC Libraries

Due to the recent trend to move application logic from the backend to the
frontend, JavaScript code bases have grown into large applications that need
a proper modular structure. Several frameworks have been developed to
structure JavaScript applications into well-separated modules and layers.

Many of the JavaScript application frameworks are derived from the
MVC architecture pattern adapting it to the design needs and requirements
of browser-based applications. Example frameworks include Backbone.js1,

1http://backbonejs.org/

http://backbonejs.org/

CHAPTER 4. TOOLS AND TECHNIQUES 25

Spine2, ember3, batman.js4, Knockout5, and JavaScriptMVC6.
One popular framework nowadays is Backbone.js, which I also chose

for the application described in Chapter 5. Backbone.js is an open source
JavaScript framework providing the essential components and structures for
building large JavaScript applications. Backbone.js provides the following
components:

• Model

Models provide the domain-specific data layer of the application. They
provide data manipulation, persistency, and serialization methods as
well as an event handling mechanism for data changes.

• Collection

Collections are ordered sets of models. They can be used to observe
and manipulate models as a group. They can also be used to filter
specific models for some purposes.

• Router

Routers provide methods for routing between pages of an application
by observing and modifying the URL. URLs can be mapped to events
and actions for client-side application navigation.

• History

The History utility is used together with Routers to handle the ap-
plication navigation to preserve the back button functionality and the
bookmarking of certain pages in the application.

• Sync

The Sync utility provides data synchronization to the backend.

• View

Views are structures that help organizing the user interface into logical
parts. They usually observe certain models or collections for changes,

2http://spinejs.com/
3http://emberjs.com/
4http://batmanjs.org/
5http://knockoutjs.com/
6http://javascriptmvc.com/

http://spinejs.com/
http://emberjs.com/
http://batmanjs.org/
http://knockoutjs.com/
http://javascriptmvc.com/

CHAPTER 4. TOOLS AND TECHNIQUES 26

and update themselves independently of each other when the underly-
ing data changes. They are often used together with some templating
library, such as Mustache7 or Handlebars8.

4.3 Responsive Design

Responsive design is a way to design a web page to fit to varying sizes of
screens and devices. The traditional way to design a web page is to compro-
mise on a certain width based on the expected desktop screen sizes of the
target audience and to lay out the elements of the page to the chosen width.

Using Media Queries (see Section 3.1), we can provide tailored layouts
for different screen sizes. For example, we can swap the images to smaller
ones for mobile devices or hide some elements to make the layout cleaner on
small screens. This enables us to use the same code base to target all devices
and screens.

4.4 Progressive Enhancement

Modern web sites and web applications are accessed with a huge variety of
devices and form-factors with varying capabilities, and supporting all the
possible browsers your users might have becomes a huge burden on develop-
ers. New standards support and APIs in latest browsers seem tempting and
valuable, but having to support also less-capable browsers prevent developers
from using a single solution for all browsers.

The goal of progressive enhancement is to provide universal access to a
web site or an application no matter what capabilities the browser or the user
has. Parker et al. define the three key principles of progressive enhancement
[45]:

• Start with clear content and well-structured markup.

• Maintain strict separation of layout and presentation.

• Unobtrusively layer in advanced behavior and styling, with careful con-
sideration of accessibility implications.

Often the design is started “mobile first” meaning that the simplest and
the most universal bottom layer of the application is designed for the least-
capable browsers with very little screen estate. This forces the design to be

7http://mustache.github.com/
8http://handlebarsjs.com/

http://mustache.github.com/
http://handlebarsjs.com/

CHAPTER 4. TOOLS AND TECHNIQUES 27

simple and semantic, and filters out any extra markup that is not needed
for the semantic presentation of the content and functionality. In addition,
by designing first to browsers that might not even have CSS support forces
a clear separation of layout and content as well as makes the clean markup
easier to style and enhance [45].

Using feature detection (see Section 6.3.2), more layers are added on
top of the clean markup. The objective is to use unobtrusive JavaScript to
enhance the markup to avoid breaking parts of the page or the whole site
with careless scripting. By using feature detection, we ensure that we take
the most out of the latest browsers by using their full capabilities, and at the
same time, keeping the application accessible and functional in less-capable
browsers. This also makes the applications future-proof when browsers are
updated and new APIs and features are implemented in them. [45]

4.5 User Interface Libraries

User Interface libraries help in developing mobile web applications fast by
providing finished and tested widgets and user interface components that
can be combined and configured easily. I present some popular frameworks
in the following sections.

4.5.1 jQuery Mobile

jQuery Mobile9 is a client side framework optimized for touch devices. The
user interface is based on HTML5 and the jQuery JavaScript framework10.
The aim of the project is to provide a progressively enhanced web framework
for as many devices as possible. Figure 4.2 shows example components in
the framework.

jQuery Mobile is an open source project sponsored by large mobile and
media companies. The user interface is fully theamable and there are several
third-party extensions and widgets to the framework.

4.5.2 jQTouch

jQTouch11 is a lightweight open source library for high-end smartphones and
tablet devices. It only supports the WebKit browser engine 12 used in iOS,

9http://jquerymobile.com/
10http://jquery.com/
11http://jqtouch.com/
12http://www.webkit.org/

http://jquerymobile.com/
http://jquery.com/
http://jqtouch.com/
http://www.webkit.org/

CHAPTER 4. TOOLS AND TECHNIQUES 28

Figure 4.2: jQuery Mobile user interface components. http://jquerymobile.

com/demos/1.0.1/

Android, Blackberry, and WebOS devices. It provides customizable themes
and user interface components, as well as helpers for handling touch input.
Figure 4.3 shows example components of the library.

Figure 4.3: jQTouch user interface. http://jqtouch.com/preview/demos/

main/

http://jquerymobile.com/demos/1.0.1/
http://jquerymobile.com/demos/1.0.1/
http://jqtouch.com/preview/demos/main/
http://jqtouch.com/preview/demos/main/

CHAPTER 4. TOOLS AND TECHNIQUES 29

4.5.3 Sencha Touch

Sencha Touch13 is an open source HTML5 mobile web application framework
for iPhone, Android, and Blackberry devices. The framework is fully theam-
able and comes with a large set of user interface components. It also provides
helpers for touch input handling. Figure 4.4 shows example components of
the library.

Figure 4.4: Sencha Touch user interface. http://dev.sencha.com/deploy/

touch/examples/kitchensink/

4.6 Hybrid Applications

Sometimes application stores can be a valuable marketing path, and visi-
bility in these stores can bring a lot of users to an application. The stores
also provide easy billing of applications themselves, and solutions for in-app
billing. [10]

Fortunately, modern smartphone and tablet platforms provide a user in-
terface component to embed a web browser view into a native application.
This web view component can be used to build parts or even the whole appli-
cation with web technologies. For example, the web view can take the whole
available screen space of the application, and show a local HTML document
together with local assets like CSS and JavaScript files and images.

13http://www.sencha.com/products/touch

http://dev.sencha.com/deploy/touch/examples/kitchensink/
http://dev.sencha.com/deploy/touch/examples/kitchensink/
http://www.sencha.com/products/touch

CHAPTER 4. TOOLS AND TECHNIQUES 30

These applications that use a native web view wrapper with parts of the
application built with web technologies are called hybrid applications. The
level of native versus web technologies can vary, and everything is possible
from fully utilizing web technologies with just a simple native wrapper to a
native application with just a simple static HTML document.

Several tools have been developed to build hybrid applications. One of
these is PhoneGap 14, which is an open source HTML5 application platform
for building native applications with web technologies. PhoneGap provides
native wrappers for all of the largest mobile platforms, and exposes extra
JavaScript APIs that are not accessible in normal web pages. These APIs
are based on the latest specifications, and they can be used to access device
functionality that has previously been inaccessible using JavaScript.

With tools like PhoneGap, developers can build native applications using
familiar web technologies with access to native features and device APIs.
These hybrid applications have only one code base that is deployed for several
smartphone platforms, and the applications can be submitted to application
stores.

4.7 Performance Guidelines

There are several web application performance best practices and related
guidelines. According to Souders [51], only 10–20% of the end user response
time is spent generating and transferring the HTML document from the web
server to the client. Therefore, most of the optimization should be done in the
frontend for best improvement opportunities. Below I list the performance
guidelines defined by Souders [51].

• Make Fewer HTTP Requests

According to Souders, 80–90% of the end user response time is spent
downloading components on a page other than the requested HTML
page. Therefore, the simplest way to improve the response time is to
reduce the number of HTTP requests needed to get all the required
components.

There are several ways to reduce the number of needed HTTP requests.
Combining images into sprites, inlining images, or combining separate
JavaScript and CSS files results in fewer components needed to down-
load on a page.

14http://phonegap.com/

http://phonegap.com/

CHAPTER 4. TOOLS AND TECHNIQUES 31

• Use a Content Delivery Network

As web applications are deployed and become accessible worldwide, la-
tency might become an issue for users far from the application’s web
servers. Geographically distributed servers allow for serving the appli-
cation as close to the user as possible.

• Add an Expires Header

Avoiding an HTTP request altogether is the best option for reducing
the response time when downloading the components on a page. Good
caching strategies help browsers to know which resources are valid and
for how long until they should be updated.

The Expires header in HTTP tells the client how long a resource is
valid, and especially far future Expires headers reduce the need for
downloading and updating the components on a page after the initial
download.

• Gzip Components

Compressing HTTP responses is an easy and effective way to reduce the
size of the data needed to transfer across the network. Compression is
supported widely in web browsers and the impact of reduced response
sizes is huge. Using Gzip, the response size is reduced generally about
70%.

• Put Stylesheets at the Top

Putting the CSS files to the top of the document allows the page to
load progressively and the browser to show visual feedback to the user
as early as possible.

• Put Scripts at the Bottom

Because scripts block parallel downloads, they should be included to
the page after all other resources. They also block progressive rendering
of all content below them in the HTML document, and should therefore
be at the bottom of the document.

• Avoid CSS Expressions

CSS expressions are a way to dynamically set CSS properties in Internet
Explorer by evaluating a JavaScript code in a stylesheet. However,
despite the obvious upsides, the expressions are evaluated at such a
high frequency that they negatively impact the performance.

CHAPTER 4. TOOLS AND TECHNIQUES 32

• Make JavaScript and CSS External

There are performance tradeoffs between making JavaScript and CSS
external versus inlining them in the HTML document. In the typical
case, however, making them external enables the browser to leverage
the HTTP caching semantics and thus reduces the needed network
transfer.

• Reduce DNS Lookups

Apart from cached DNS (Domain Name System) lookups, the browser
typically needs 20–120 milliseconds to look up the IP address for a
given hostname. The cache lifetime of a lookup depends on the TTL
(Time To Live) value of the DNS record and having the components
of a page distributed across several domains might accumulate into a
noticeable response time.

There is also a trade-off between unique hostnames and allowed parallel
connections and therefore these settings should be configured based on
the application architecture and needs.

• Minify JavaScript

Because JavaScript is an interpreted language that must be sent to the
web browser as source code, minifying the code reduces the required
network transfer. Minifiers and obfuscators optimize the size of the
source code by stripping extra whitespace and comments as well as re-
naming variables and function names to shorter ones without changing
the interpreted behavior of the code.

• Avoid Redirects

Rerouting any component on a page takes time, and avoiding any kind
of redirects improves the response times.

• Remove Duplicate Scripts

Including a resource several times serves no purpose but is actually
quite common. Developers should make sure to include resources only
once.

• Configure ETags

ETags (Entity Tag) are a mechanism in HTTP for servers and browsers
to validate cached resources. The typical default values set by com-
monly used web servers might hurt performance, and should thus be
configured properly to address the application architecture and needs.

CHAPTER 4. TOOLS AND TECHNIQUES 33

• Make Ajax Cacheable

Highly dynamic web sites have a lot of Ajax [19] functionality, and
developers should make sure all the requested URLs for data fetching
follow the performance best practices such as having proper caching in
place.

In addition to the performance rules [51], Souders also specifies additional
techniques to improve performance [52]:

• Splitting the Initial Payload

Nowadays, web sites include a lot of resources and JavaScript function-
ality, but only a small part of the downloaded components are used
in the typical use cases of the application. Splitting the resources into
bundles that can be lazily downloaded when first needed reduces the
initial payload needed to transfer on application startup.

• Loading Scripts Without Blocking

Most browsers block the downloads of other resources when scripts are
being downloaded and executed. There are several ways to circumvent
this behavior to allow browsers to download scripts in parallel with
other resources as well as with other script files.

• Coupling Asynchronous Scripts

Related to the previous item, when using parallel downloads with
scripts that are dependent on each other, race conditions might oc-
cur due to the varying order of download and execution. Therefore,
asynchronous scripts dependent on each other should be coupled to
preserve the correct order of execution.

• Positioning Inline Scripts

Inline scripts do not introduce an HTTP request, but they can still
block parallel downloads of other resources and they might affect also
the progressive rendering of the page. With the correct positioning of
the scripts, these problems can be handled properly.

• Writing Efficient JavaScript

After networking, the obvious place to optimize the runtime speed of
a web application is the JavaScript code.

Because the whole user interface and the JavaScript code run in the
same browser thread, there can be only one thing happening at a time.

CHAPTER 4. TOOLS AND TECHNIQUES 34

Long running functions block the user interface from updating and can
result in bad user experience.

Splitting the running code into properly sized chunks, appropriately
leveraging the asynchronous patterns of JavaScript in the application
architecture, understanding the details and slow parts of the DOM API,
and using several JavaScript programming best practices can result in
big improvements in the perceived application performance. [64]

• Scaling with Comet

For real-time data-driven applications, there are various optimization
techniques related to optimizing the constant data transfer between
the server and the client. The collection of there various technologies
is unofficially called Comet.

• Going Beyond Gzipping

Although Gzipping is widely supported in web browsers, there are cases
when it is not supported or when the support is not indicated. Stripping
extra content such as unneeded whitespace and comments reduces the
payload size for uncompressed responses. There are also ways to detect
Gzip support if the client does not directly indicate that.

• Optimizing Images

Images typically tend to account for a large portion of the page weight,
and since the page weight is highly correlated to the response time,
images are a natural target for optimization. There are several ways to
optimize images either with lossy or lossless conversions.

• Sharding Dominant Domains

By tuning the amount of unique hostnames used for serving all the
resources of an application, parallel downloads can be better leveraged.
Also, by using HTTP 1.0 with proper Keep-Alive headers or HTTP 1.1
with proper persistent connections the parallel downloads can be tuned
for better performance.

• Flushing the Document Early

Some web application frameworks allow flushing parts of the docu-
ment to the user before the whole document is generated. This enables
progressive rendering and gives faster feedback to the user and thus
improves the perceived performance.

CHAPTER 4. TOOLS AND TECHNIQUES 35

• Using Iframes Sparingly

Iframes enable developers to embed a separate HTML document inside
another document. They are useful in sandboxing external documents
in the same view, but the iframe element is the most expensive DOM
element related to the page performance.

• Simplifying CSS Selectors

There are several ways to choose elements in CSS stylesheets to apply
the defined properties to. Some selectors are faster than others and
some have terrible performance.

Chapter 5

Use Case

The Qt Developer Days1 is a conference for developers using the Qt cross-
platform application and user interface framework2. I created a mobile web
application with contextual and personalized session information and daily
schedule for the conference.

In this chapter I present the implementation requirements for the con-
ference application as well as the requirements for the JSONCache network
utility library.

5.1 Conference Application Requirements

The target group for the conference application was mobile developers at-
tending the Qt Developer Days conference. Therefore, I could expect a good
technical knowledge and high-end mobile devices from the target audience.

A native version of the application was built for devices with Qt support,
and the HTML5 application was for all other devices. The main target
devices were iPhone, Android devices, Windows Phone 7 devices, and iPad.
In addition to these, the application was tested on devices running Symbian
and Meego, as well as desktop browsers.

The conference was expected to have some thousands of attendees, of
which a few hundred was expected to use the web application. In conferences
of this size, network connectivity and reliability is often a problem. Also,
mobile networks other than the WiFi network supplied by the conference
might be too expensive for users that come from other countries. This is
why offline support was needed.

1http://qt.nokia.com/qtdevdays2011/
2http://qt.nokia.com/

36

http://qt.nokia.com/qtdevdays2011/
http://qt.nokia.com/

CHAPTER 5. USE CASE 37

The client wanted high interactivity and personalization in the appli-
cation. Users could save interesting sessions to their favorites, which were
shown in the home view of the application. The home view was expected to
be contextual in taking into account the current time and showing the ongo-
ing sessions and the remaining time for them, as well as the time left for later
favorite sessions to start. Current time was also expected to be indicated in
the agenda view, where a red line was to be drawn to the current time for
easily visualizing the ongoing sessions. By default, the agenda view should
show the ongoing day of the conference if possible.

The user interface was required to use the touch input interactions for
panning and zooming the floor maps of the conference venue. Also, the
client wanted a touchable star rating widget on the feedback form for easy
and visual session rating on touch screens.

To sum up, the main requirements are as follows:

1. Cross-platform support for high-end touch screen smartphones and
tablets

2. Flexible design and layout to take the available screen into account

3. Personalized (session favorites) and contextual experience taking the
current date and time into account

4. Offline support

5. Floor map view with pinch-to-zoom gesture and panning support

6. Rich agenda and track view with sessions shown visually in a timeline.

5.2 JSONCache Requirements

JSONCache was designed as a JavaScript network utility library for unreli-
able mobile networks. It is used in Ajax data requests with JSON (JavaScript
Object Notation) data. The main idea was to avoid refetching data that was
already fetched and to handle network interruptions without the user noticing
anything. The requirements are as follows:

7. Cache data in the client side (localStorage) to avoid fetching data that
has already been transferred

8. Attempt to fetch the data multiple times if the requests fail for some
reason.

Chapter 6

Implementation and Results

I implemented two example cases: a mobile web application for a developer
conference and a networking library for data caching and fetching multiple
times. Here I present the architecture, components and the implementation
details I used for fulfilling the requirements listed in Chapter 5 and the tech-
niques I used and the compromises I had to make to tackle the problems
in mobile web development. I used tools introduced in Chapter 4 and APIs
introduced in Chapter 2 and Chapter 3.

6.1 Conference Application

The conference schedule1 is a single-page application (see Section 4.1) with
a lightweight backend written in Python using the Django Web Framework2.

The backend provides the static assets (JavaScript, CSS, images, etc.)
and an API for persisting session feedback to a MySQL3 relational database.
It also generates the HTML5 AppCache (see Section 2.7.1) offline cache man-
ifest file based on the categorized device type.

The frontend is a JavaScript application written using the Backbone4

MVC framework (see Section 4.2). Other JavaScript libraries include Under-
score5 for data manipulation, jQuery6 for DOM API abstraction, Handlebars7

for templating, and Modernizr8 for feature detection. The HTML5 Mobile

1http://m.qtdevdays2011.qt.nokia.com/
2https://www.djangoproject.com/
3http://www.mysql.com/
4http://backbonejs.org/
5http://underscorejs.org/
6http://jquery.com/
7http://handlebarsjs.com/
8http://www.modernizr.com/

38

http://m.qtdevdays2011.qt.nokia.com/
https://www.djangoproject.com/
http://www.mysql.com/
http://backbonejs.org/
http://underscorejs.org/
http://jquery.com/
http://handlebarsjs.com/
http://www.modernizr.com/

CHAPTER 6. IMPLEMENTATION AND RESULTS 39

Figure 6.1: Conference schedule application architecture.

CHAPTER 6. IMPLEMENTATION AND RESULTS 40

Boilerplate9 was used as an initial markup structure for the application. The
architecture of the application is shown in Figure 6.1. Wireless networks can
be unreliable in conference settings, so offline support was also added using
several different JavaScript techniques and HTML5 APIs.

The application was designed for touch screens on various platforms and
screen sizes. The layout adjusts to the available space and provides rich
interactive components. Integration to social networking services was also
added as an additional functionality. Figure 6.2 shows an example view in
the application.

6.2 JSONCache JavaScript Library

JSONCache is a lightweight JavaScript library for fetching JSON data in
unreliable networks. The library was designed especially to handle unreliable
mobile networks with connection problems and short interruptions. The goal
is to avoid networking as long as possible and failing gracefully if the network
connection is not stable.

JSONCache provides two main functionalities: data caching and attempt-
ing to fetch the data multiple times.

The caching layer uses the client side localStorage (see Section 2.7.2) cache
of HTML5. Data requests can be done using the JSONCache API which
always checks the local cache first before opening any network connections.
If the data is already in the cache, the cached data is checked for validity and
if the data is not expired, it is returned immediately. If the data is not in the
cache or it is expired, a new network request is made and the received data is
cached and returned. The expiration time of a data item can be configured
in the library settings.

JSONCache also tries to fetch the data multiple times to handle small
interruptions in network connections. For example, when a user leaves his or
her work place and uses a web application, the mobile device changes from
the workplace WiFi network to the 3G (3rd Generation Mobile Telecommu-
nications) network, there is a short interruption in the connection, and any
ongoing network requests are affected.

If a data fetch fails, a new fetch is issued after a timeout (defined in the
configuration). On subsequent attempts the timeout is increased, and after
a defined number of attempts the fetch error is issued.

9http://html5boilerplate.com/mobile

http://html5boilerplate.com/mobile

CHAPTER 6. IMPLEMENTATION AND RESULTS 41

Figure 6.2: Session details view on an iPad.

CHAPTER 6. IMPLEMENTATION AND RESULTS 42

Figure 6.3 shows an interactive demo of the JSONCache library. The
demo10 simulates the caching and fetching functionality of the library by
demonstrating an unreliable network based on the configuration.

Figure 6.3: Interactive JSONCache demo.

6.3 Targeting Different Platforms

Despite the web browser being the unified environment for different plat-
forms, there are lots of differences between various devices. The form factors
vary from tiny mobile screens to touch screen tablets and desktop monitors
and each device and platform has its own feature set. Browsers also have
known bugs that have to be handled.

10http://kpuputti.github.com/JSONCache/demo/index.html

http://kpuputti.github.com/JSONCache/demo/index.html

CHAPTER 6. IMPLEMENTATION AND RESULTS 43

Device Platform User-Agent
Samsung Nexus S Android 2.3.4 Mozilla/5.0 (Linux; U; Android 2.3.4;

en-us; Nexus S Build/GRJ22) Ap-
pleWebKit/533.1 (KHTML, like
Gecko) Version/4.0 Mobile Sa-
fari/533.1

Apple iPhone iOS 3.1.3 Mozilla/5.0 (iPhone; U; CPU iPhone
OS 3 1 3 like Mac OS X; de-de)
AppleWebKit/528.18 (KHTML, like
Gecko) Version/4.0 Mobile/7E18 Sa-
fari/528.16

Apple iPad iOS 5.0 Mozilla/5.0 (iPad; CPU OS 5 0
like Mac OS X) AppleWebKit/534.46
(KHTML, like Gecko) Mobile/9A334

Unknown Android Opera/9.80 (Android; Opera
Mini/6.5.26571/26.1023; U; de)
Presto/2.8.119 Version/10.54

Table 6.1: Example User-Agent strings.

Therefore, means to detect the user’s device are needed (see requirements
1 and 2 in Section 5.1). Here I present two such means: device detection and
feature detection. Both of these were used in our conference application.

6.3.1 Device Detection

The User-Agent (UA) HTTP header contains detailed information of the web
browser and the platform where the request originates from. As can be seen
from Table 6.1, we can extract platform- and browser-specific information
from the UA header.

In the conference application, device detection was used in the backend to
provide a different offline AppCache manifest (see Section 2.7.1) to different
device groups. The detection was also used in defining the assets to be
preloaded in the application. The devices were divided into four categories
based on the rules defined in Table 6.2. There were serious limitations in
this approach, and compromises had to be made.

First, there is no way to surely know if the device actually is what it
reports itself to be. Second, the most important thing to know when gen-
erating the screen-specific assets in the manifest file would have been the
screen size. However, this information is not present in the UA header. I

CHAPTER 6. IMPLEMENTATION AND RESULTS 44

Rule Device Type
’iPad’ in UA highres
’iPhone’ in UA iphone
’Android 3’ in UA highres
’mobile’ (case insensitive) in UA mobile
’MIDP’ in UA mobile
’Opera Mobi’ in UA mobile
’Opera Mini’ in UA mobile
otherwise (desktop computer) highres

Table 6.2: Device type detection rules.

could have listed all the assets for all the devices, but then the list of offline
assets would have grown too much and, for example, have large images also
for older mobile phones.

Despite the drawbacks, the received advantages of this approach out-
weighed the possible compromises. The worst that could happen was that
the device was wrongly classified and some graphics assets were not down-
loaded for offline use.

Getting platform and browser information from the UA header might look
tempting and useful, but it is considered a bad practice to detect a device
from it and providing device-specific bug fixes or additional features. The
header can easily be changed and some browsers or browser plugins even pro-
vide preconfigured values for certain browsers or devices for spoofing. Also,
the device-specific bug fixes might become obsolete with browser and plat-
form updates, and the application might break due to invalid expectations.
This is why feature detection is generally the recommended option whenever
possible.

6.3.2 Feature Detection

Feature detection is an important concept in designing with progressive en-
hancement (See Section 4.4). A lot of the HTML5-related JavaScript APIs
are still unsupported in several platforms, but browser developers are con-
stantly filling in the gaps. Therefore, it is important to check whether a
certain feature is supported and to provide graceful fallback mechanisms for
browsers lacking the functionality.

Doing run-time feature detection provides the possibility to give addi-
tional functionality to modern browsers and instant support for devices that
add the support for the feature in the lifetime of the application. In the

CHAPTER 6. IMPLEMENTATION AND RESULTS 45

conference application, I used the Modernizr feature detection library11 to
check for HTML5 features.

For example, the user could add sessions to his or her favorites by clicking
the star in the agenda (see Figure 6.4) or on the session details view. The
favorites were then listed on the home view (see Figure 6.5) together with
information about the time left for them to begin (see requirements 3 and 6
in Section 5.1).

Figure 6.4: Agenda view with stars to add favorites on an iPhone (left) and
on a device running Android (right).

I used HTML5 localStorage for storing the favorites in the user’s web
browser. By using Modernizr, I detected localStorage support and showed
the favorite stars only in browsers that supported the functionality. For
all other browsers, the stars were simply hidden and users could not add
favorites.

11http://www.modernizr.com/

http://www.modernizr.com/

CHAPTER 6. IMPLEMENTATION AND RESULTS 46

Figure 6.5: Home view without favorites (left) on a device running Windows
Phone 7 and with favorites (right) on a device running Android.

6.4 Targeting Different Screens

Probably the biggest difference in various devices and form factors is the
screen and its size, resolution, and dimensions. Web applications should ad-
just to the available space and flexibly handle screen orientation and window
size changes (see requirement 2 in Section 5.1).

First, to target mobile and tablet platforms, the viewport meta informa-
tion should be indicated in the document. The following tag was used in the
conference application:

<meta name="viewport" content="width=device-width,

initial-scale=1.0">

The viewport meta tag was first introduced in Apple’s iPhone and after-
wards ported to other platforms, such as Android. The possible configuration

CHAPTER 6. IMPLEMENTATION AND RESULTS 47

Property Description Value
height Height of the viewport. pixel value or ’device-

height’
width Width of the viewport. pixel value or ’device-width’
initial-scale Initial zoom level. float value (0.01–10)
minimum-scale Minimum zoom level. float value (0.01–10)
maximum-scale Maximum zoom level. float value (0.01–10)
user-scalable Enables/disables zoom. ’yes’ or ’no’
target-densitydpi Visual pixel density. dpi value, ’device-dpi’,

’high-dpi’, ’medium-dpi’, or
’low-dpi’

Table 6.3: Viewport meta tag configuration for Android according to http:

//developer.android.com/guide/webapps/targeting.html

options and default values might vary between platforms. Values accepted
by Android are shown in Table 6.3. iOS devices also support these same
properties.

If I do not set the viewport configuration tag, the device uses its own
default values for the properties. For example, the default value for the
width property is 980 pixels in iOS12, which is clearly defined for web sites
targeting desktop browsers. Without setting this value to something smaller
and more appropriate in a mobile context, the whole application is very wide
and has small and unreadable text in the initial zoom level.

In the viewport configuration I used for the conference application (as
defined above), I set the viewport width to ’device-width’. This makes the
application width to adjust to the visual pixels of the device screen and works
well with screens of different sizes and dimensions. The only other viewport
property I set is the initial scaling. This is set to 1.0 to force the browser to
render the application without any initial zooming.

In addition to the viewport configuration, I used media queries (see Sec-
tion 3.1) to use better background images for high-resolution screens. I also
dynamically set the map view (see Figure 6.6) images based on the screen
dimensions so that I could provide smaller images for smaller screens and
high resolution images for tablets and other devices with larger screen estate
(see requirement 5 in Section 5.1).

12https://developer.apple.com/library/safari/documentation/
appleapplications/reference/SafariHTMLRef/Articles/MetaTags.html

http://developer.android.com/guide/webapps/targeting.html
http://developer.android.com/guide/webapps/targeting.html
https://developer.apple.com/library/safari/documentation/appleapplications/reference/SafariHTMLRef/Articles/MetaTags.html
https://developer.apple.com/library/safari/documentation/appleapplications/reference/SafariHTMLRef/Articles/MetaTags.html

CHAPTER 6. IMPLEMENTATION AND RESULTS 48

Figure 6.6: Floor map view on a device running Nokia Belle (previously
Symbian Belle).

6.5 Handling Different Orientations

As shown in the previous section, screen sizes and dimensions vary between
devices. In addition to handling different resolutions and dimensions, we
must also handle screen orientation changes. The width and height of the
touch screens are usually different, and the user can hold the device either in
portrait or in landscape mode and at any point switch between the two (see
requirement 2 in Section 5.1).

In the conference application, I wanted to have different header and footer
background images for different orientations. I also needed to redraw the
agenda view when the screen width changes since the items on the schedule
needed to be dynamically positioned to the available space.

Mobile browsers fire an ’orientationchange’ event whenever the device
orientation changes. The application listened to this event, inferred the ori-

CHAPTER 6. IMPLEMENTATION AND RESULTS 49

entation from the screen dimensions, and executed the wanted functionality
for the event. I also had to do a fallback for Mobile Internet Explorer browser
to listen to the window resize event because the browser does not support
the orientation change event.

6.6 Handling Mobile Networks

One of the biggest problems in mobile web applications is the network that is
often slow and unreliable [65]. Our conference application was designed for a
context where the application cannot trust on the networking but should still
manage to handle interactions and persist application state (see requirement
4 in Section 5.1). Also being a conference where people come from around
the world, the network data transfer cost might be surprisingly high, and
thus bandwidth should be saved whenever possible.

6.6.1 Minimizing Data Transfer

The best approach to minimize data that needs to be transferred is to avoid
the transfer whenever possible, for example, with proper caching. However,
with initial download or with dynamic data, the second best option is to
minimize the size of the data needed to be transferred.

First, I made sure the data was minimized and compressed with Gzip.
Second, using JSON instead of XML in Ajax requests saves bandwidth [9]
and needed effort from the browser to process the data. Third, using the
offline manifest ensured that the application assets and data needed to be
downloaded only once, and using localStorage I could store the application
state locally to the browser avoiding the network completely.

6.6.2 Caching

Caching on different levels of the application stack is one of the most impor-
tant optimizations that should be done. Caching can be done in the client
side using HTML5 storage APIs (see Section 2.7.2), on the HTTP level let-
ting the browser handle it complying to the HTTP caching header semantics,
or in various levels of the backend application stack.

In the conference application, I put the most focus on the HTTP caching.
Following the performance guidelines specified in Section 4.7, I created unique
URLs for all different versions of all static resources (images, CSS files,
JavaScript files, and the AppCache manifest file) and set a far future ex-
pires header to them. This way I could tell the browser to cache all resources

CHAPTER 6. IMPLEMENTATION AND RESULTS 50

as far as possible and updating the resources was handled by changing the
version number in their corresponding URLs.

In addition to the HTTP-level caching, using the AppCache manifest
file to tell the browser to cache all needed resources to a more persistent
offline cache, which minimized needed downloads on application startup if
the resources were already in the cache (see requirement 4 in Section 5.1).
The effect of this was clearly seen in the application log files, where the
manifest file was first downloaded with the referenced other files on the first
page load, but on subsequent page loads only the manifest file was requested
for changes.

Client side caching was used in saving the user specific state in the con-
ference application and experimented with the JSONCache library specified
in Section 6.2. Using localStorage, I could persist data in the browser and
avoid networking if the cached data is still relevant.

JSONCache handles the localStorage caching automatically, with only
user configuration needed for setting the data lifetime. Every time the data
is requested again, the local cache is checked first, and networking can be
avoided altogether (see requirement 7 in Section 5.2).

6.6.3 Preloading

One way to prevent user interface slowness due to flaky networks is to preload
resources and data that is expected to be used later on. In the conference
application I predownloaded background images and other graphics in the
application initialization.

For example, downloading the header and footer background images for
both orientations made the device orientation change more responsive be-
cause otherwise the browser would have started to download the images af-
ter the orientation had already changed. With preloaded images the browser
just had to switch the image and render it instantly without any networking.

6.6.4 Offline Support

Using HTML5 AppCache offline manifest file and storing application state
in localStorage, I provided full offline compatibility for the conference ap-
plication. With the offline manifest, I specified the needed resources for all
device types as categorized by the rules defined in Section 6.3.1. The of-
fline cache also made subsequent application startups faster since the cache
is more persistent than the HTTP cache in browsers.

The offline support was especially critical for the conference application
since the conference ended up having indeed a very bad wireless network.

CHAPTER 6. IMPLEMENTATION AND RESULTS 51

Without the offline support, users would not have been able to check the
session schedule during the conference.

However, the only thing needing the network was the session feedback
functionality. The application had a feedback form for all sessions, and the
submitted data was persisted in the backend. In offline mode, this function-
ality was not available. Going further, I could extend the offline support by
saving the given feedback, for example, to localStorage and sending it later
to the backend server when the network connection is open again.

I had some problems in developing the application when using the offline
manifest. In development mode, I want changes to be shown immediately,
and I had to conditionally use the offline manifest based on the environment.

Using the offline manifest poses several additional problems. First, the
whole cache is made invalid if only a single resource returns a 404 Not Found
HTTP status code. Second, if there are updates in the cache, the updates are
indicated in the JavaScript events, but the updated resources are available
only in the second page load after the updates. Therefore, updates do not
show up immediately when the application is refreshed, and I had to show
an additional confirm dialog for informing the user about updates so that
they could refresh the page again. This has a somewhat noticeable impact
on the application user experience, but was seen as a needed compromise to
get the latest conference schedule data and interface updates.

6.6.5 Handling Interruptions

Small interruptions are common in mobile networks [65]. For example, the
user might have a stable network connection, but after walking into an el-
evator the connection drops for a moment. Then after exiting the elevator
the device reconnects to the network. Applications should expect these in-
terruptions and should not fail immediately with brief interruptions in flaky
networks.

JSONCache library introduced in Section 6.2 had a functionality to over-
come these issues. The library tries to download the requested data multiple
times, and fails only when the configured maximum attempt count is reached
(see requirement 8 in Section 5.2). With every iteration, a timeout is set for
a new request, and the timeout is increased after each failed attempt. This
approach works very well, and together with localStorage caching lets data
updates circumvent small network interruptions failing only when the net-
work connection seems to be completely down.

CHAPTER 6. IMPLEMENTATION AND RESULTS 52

6.7 Animations

Animation and transitions, if not overused, can be a valuable addition to
the user experience of an application. For example, having a simple sliding
animation between different views makes the application more uniform and
pleasing to the eye.

There are several ways to animate elements in a web application. The
simplest is to use CSS3 animations (see Section 3.1). However, the perfor-
mance of the animations is not yet good enough for a cross-platform mobile
application. I tried to animate the view changes in our conference applica-
tion, but even a simple cross-fade did not have good enough performance in
all target platforms.

Using progressive enhancement techniques (see Section 4.4) I could have
provided enhanced experience for the platforms that support animations well,
but only iOS devices performed well enough, so for simplicity I did not use
any animations.

6.8 Following JavaScript Best Practices

There are lots of best practices and conventions that have been developed
by the web developer community. A lot of these tried and tested techniques
are outlined in the HTML5 Mobile Boilerplate13 that I used as a base for the
conference application. Here I present some techniques and tools that help
to improve application performance and reduce bugs.

6.8.1 JSLint

JSLint14 is a code quality tool for JavaScript. There are several JavaScript
features that are suboptimal for performance or code maintainability [11].
JSLint also checks for JavaScript syntax and convention violations, which is
valuable because the code will be sent in the source form to be interpreted
by the browser.

I had automatic JSLint checking integrated in the GNU Emacs15 editor
that I used for all JavaScript programming, which helped to notice common
errors as early as possible and made the code cleaner.

13http://html5boilerplate.com/mobile
14http://jslint.com/
15http://www.gnu.org/software/emacs/

http://html5boilerplate.com/mobile
http://jslint.com/
http://www.gnu.org/software/emacs/

CHAPTER 6. IMPLEMENTATION AND RESULTS 53

6.8.2 Lazy initialization

Postponing work as long as possible is a valuable optimization technique. In
lazy initialization, initialization work is minimized in application startup to
render the initial view fast. Additional views are then initialized only when
they are requested.

Implementing lazy initialization needs more work than simply doing all
initialization work in the application startup, but the received benefits are
worth the extra effort. In the conference application I tried to postpone all
work to be done as late as possible and doing as little work as possible for
faster execution.

6.8.3 Efficient DOM Manipulation

After mobile network issues and data transfers, DOM manipulation is one
of the first things to optimize for performance. There are several known
performance issues, but the biggest and most common issue is updating a
number of elements at once. [64]

The application might, for example, refresh the contents of a list, and
with an overly simplistic (but still common) implementation would create
the list items and add them to the list container one by one. This causes
the browser to reflow the page after each insertion and might add up to user
interface artifacts and slowness. [64]

One approach to handle updating several elements at once is to use doc-
ument fragments. With document fragments, several elements can be added
to one fragment, which can then be added to the element container. This
has no effect on the DOM tree itself, but it requires only one reflow from
the browser. One other solution is hiding the container while its contents is
modified, and showing it after the modifications are done. [64]

I used these techniques in the conference application to minimize user
interface reflows to improve the perceived performance.

6.8.4 Efficient Event Handling

In an interactive web application, there are lots of event listeners and handler
functions. For example, a list of dozens or hundreds of items might have
one or even several event handlers for each item in the list. This obviously
becomes a burden especially in mobile devices with limited processing power
and memory.

One way to minimize event listeners is to use event delegation [64]. In
event delegation only one event listener is attached to a parent element of

CHAPTER 6. IMPLEMENTATION AND RESULTS 54

the elements that we want to observe. Then, in the parent event handler we
check the target element of the event and execute the wanted functionality
based on the target.

One other optimization for touch screens is to use native touch events
instead of traditional mouse events such as click. Mobile browsers typically
have a delay or 300 milliseconds after a touchstart event until the click event
is fired16. This is because the browser waits if the user is doing a double
tap instead of a single tap and a delay is needed before a double tap can be
excluded. If we bind our event handlers to the touch events instead of click
events, we can immediately dismiss this delay altogether and make the user
interface components a lot more responsive.

I used event delegation and touch events, for example, in the main navi-
gation of the conference application to get the best performance and respon-
siveness in changing the page views. I also used touch events in the session
rating form seen in Figure 6.7.

6.9 Performance Analysis

I made a quantitative analysis of the conference application performance by
using two different tools: YSlow and Page Speed. These tools analyze the
performance practices of a web page and provide optimization guidelines.
Many of the rules used in these tools are derived from or based on the guide-
lines defined by Souders [51, 52] and specified in Section 4.7.

6.9.1 YSlow

YSlow is a website analyzer originally developed by Steve Souders. It checks
the website against the rules defined in Section 4.7. I analyzed the conference
application performance using YSlow. The results of the analysis are seen in
Figure 6.8 and Figure 6.9.

The only sections where an A grade (best grade) was not achieved, were in
“Use a Content Delivery Network” and in “Minify JavaScript and CSS”. The
CDN (Content Delivery Network) notice was not seen as important because
the application was not designed for world-wide intensive use with lots of
users, but rather for a single conference use with some hundreds of users.

The minification section notice explained in the details that inline script
tag contents should be minified. This was somewhat a limitation in the
tool itself, since the inline script tags were the HTML templates for the

16http://code.google.com/mobile/articles/fast_buttons.html

http://code.google.com/mobile/articles/fast_buttons.html

CHAPTER 6. IMPLEMENTATION AND RESULTS 55

Figure 6.7: Touchable session rating stars on a device running Android.

single-page application JavaScript code. The type attribute of the tags was
text/x-handlebars-template, which complies with the generic extension
mechanism as specified in the HTML5 specification draft [23]. Thus this was
not seen as a problem.

6.9.2 Page Speed

Page Speed17 is an open-source project by Google for analyzing and optimiz-
ing web site performance best practices. I used the Google Chrome browser
extension to analyze the conference application against the performance rules
defined in Page Speed. The results are shown in Figure 6.10.

17http://code.google.com/speed/page-speed/

http://code.google.com/speed/page-speed/

CHAPTER 6. IMPLEMENTATION AND RESULTS 56

Figure 6.8: YSlow results grade.

CHAPTER 6. IMPLEMENTATION AND RESULTS 57

Figure 6.9: YSlow results statistics.

CHAPTER 6. IMPLEMENTATION AND RESULTS 58

Figure 6.10: Page Speed results for the conference application.

CHAPTER 6. IMPLEMENTATION AND RESULTS 59

I was very happy with the Page Speed score of 92 out of 100. A lot of
the performance rules analyzed by Page Speed are similar to the guidelines
listed in Section 4.7, but there are also additional rules.

The only real problem in the score was the ’Optimize Images’ rule. I
had not optimized the images used in the application, but instead used the
images provided by the designers. Going further, I could have saved a lot of
bandwidth by optimizing the images with tools such as Pngcrush18.

Of the other notes in the results, ’Defer parsing of JavaScript’ could have
been avoided by adding a ’defer’ attribute to all the script tags in the docu-
ment. The reason for this rule is that scripts block page rendering as defined
in Section 4.7. However, since I followed the guideline ’Put Scripts at the
Bottom’, this rendering issue is avoided. The only script in the document
head was Modernizr, which must be included before the page is parsed be-
cause it creates the essential HTML5 tag support for older browsers and must
do so before the tags are parsed.

The ’Minify JavaScript’ note was probably due to the Handlebars tem-
plating library not being minified. All the JavaScript libraries were included
in their minified form, but Handlebars library was only available unminified.
I also did not want to minify it myself to avoid breaking any functionality.
All other JavaScript files were minified and combined to avoid extra HTTP
requests.

The ’Minify CSS’ note was not seen as important since CSS compression
does not yield big improvements and because the CSS files were already
delivered Gzipped. The ’Remove query strings from static resources’ note
means that query parameters like ’?123’ should be removed from the end
of the URLs because they might not be cached in some proxies. I did not
change this because the query strings in the static assets were an essential
part of our caching strategy.

6.10 Summary of Results

In this chapter, I presented techniques and tools to handle problematic areas
in mobile web development. I used several APIs defined in HTML5 and
related specifications to tackle these practical challenges.

First challenge was to handle the varying screens and device form-factors
(see requirements 1 and 2 in Section 5.1). Feature detection with media
queries (see Section 3.1) and the Modernizr library proved to be a very prac-
tical and working solution for targeting styles for different device types. Cus-

18http://pmt.sourceforge.net/pngcrush/

http://pmt.sourceforge.net/pngcrush/

CHAPTER 6. IMPLEMENTATION AND RESULTS 60

tom meta tags in the document as well as orientation handling events were
invaluable in setting the viewport dimensions and handling changes in it.
However, screen dimension and orientation handling have lots of differences
between mobile browsers, and due to the differing APIs and plain browser
bugs, handling varying screens and form-factors needed a lot of testing to
get the application layout work properly.

Handling mobile networks is a huge challenge in building mobile web
applications (see requirement 4 in Section 5.1). I presented many solutions
such as minimizing data transfer, caching on different application layers,
preloading resources, and adding offline support with HTML5 APIs. These
techniques need a lot of know-how and experience, and might not be trivial
to implement.

The offline capabilities defined in HTML5 specifications were very valu-
able and adding offline support ended up being rather simple for a single-page
application. However, handling interruptions and unreliable networks is more
complex, which is why I developed the JSONCache utility library for caching
and fetching data multiple times in unreliable networks (see requirements 7
and 8 in Section 5.2). In my testing, the library worked very well, and using
this approach can have a big effect on the end-user experience.

Defining cross-browser stylesheets for different mobile and tablet devices
is hard. The CSS support varies between platforms and platform versions,
and usually the group of target devices for testing ends up being very large.
Animations were a huge pain point in CSS. Adding an animation is very sim-
ple using the CSS3 animation rules, but the performance in mobile browsers
is very poor to say the least. This is why I dropped all animations from the
page changes in the conference application. I hope this is one area where
future platform and mobile browser updates put focus on, since animations
are an essential part of the user experience of an application.

I provided many techniques for efficient scripting in mobile web applica-
tions. In my view, the architecture as well as the DOM and event handling
are the most important areas for performance optimization. I provided so-
lutions like lazy initialization, document fragments, and event delegation as
well as introduced the JSLint tool for automatically checking code quality.

Last, I did a quantitative web performance best practices analysis on
the conference application. Using the YSlow and Page Speed tools, I got
very high scores and explained the areas for further improvement. These
automatic tools are valuable in optimizing the overall performance, since
they point out the most problematic areas for improvement, and many of
the solutions can be very simple, such as configuring the web server without
even touching the application itself.

CHAPTER 6. IMPLEMENTATION AND RESULTS 61

To answer the research questions posed in Section 1.1, I sum up as follows:

• RQ1: What are the main problem areas in mobile web development?

The main problems are targeting different types and sizes of screens
and resolutions, handling the unreliable networks and offline modes,
and user interface performance, especially with animations.

• RQ2: Do HTML5 and related specifications solve these problems?

The specifications offer a good way to target different screens with
media queries, but browsers have a lot of differences that have to be
tested for.

Offline support is relatively easy to provide, but handling interruptions
and unreliability have to be tailored in the application architecture.

Performance optimization is the job of the application developer, and
animation performance is hard to optimize for, leaving future updates
for the browsers as the only viable option.

• RQ3: What other practical means do we have to solve these problems?

Custom meta tags are very useful for configuring the viewport and
sound architectural choices and best practices help optimizing the ap-
plication performance.

Chapter 7

Conclusions

In this chapter I present the further improvements for our implementations
and the final conclusions of this work.

7.1 Further Work

At the time of implementing the conference application, I used the presented
tools, YSlow and Page Speed, for analyzing the performance best practices of
the application. However, there are other and newer tools especially targeted
for analyzing mobile web application performance practices. For example,
the online version of Page Speed offers rules for mobile performance opti-
mization1, which add some mobile-specific optimizations. This service would
probably offer a better alternative for mobile web application optimization
than the versions I used in the performance analysis.

One of the major optimizations I was aware of, but did not do, was opti-
mizing images. This was a rather large area where I could have had significant
improvements in the application performance. Going further, combining sev-
eral images into one large image sprite would reduce the number of HTTP
requests, and using lossless or lossy image optimization tools, the size of the
images could be further reduced.

The conference application targeted the high-end smartphones that the
users were expected to have in a developer conference. However, a typical
mobile web application does not have this advantage in its target users. Using
progressive enhancement techniques, we can start from the lowest performing
devices and build from there up to the latest and best-performing devices.
This also goes with the very idea of the Web by providing a truly open and
universal access to the applications.

1http://code.google.com/speed/page-speed/docs/mobile.html

62

http://code.google.com/speed/page-speed/docs/mobile.html

CHAPTER 7. CONCLUSIONS 63

7.2 Discussion

The Web revolutionized the way we communicate, consume and produce
information in ways that could not have been foreseen twenty years ago. In
addition, the mobile revolution has spread the Web from our home desks to
anywhere we are, to be used at any time of the day. The roots of the Web
lie in openness and universal accessibility for everyone, and today more and
more people can afford a device to access the vast information spread all over
the Web.

One crucial factor in the universality is the open standards used for defin-
ing the protocols and APIs of the Web. HTML5 tackles many of the growing
pains of the Web by defining standards to handle all the devices capable of
accessing the Internet. The set of new specifications or specification drafts
is very large, and growing all the time.

In this work, I introduced the latest specifications and drafts related to
modern web application development. Some of these specifications already
have very good implementations in several browsers, but some are just very
early drafts. I also presented modern tools and libraries for developing mobile
web applications.

Performance is one of the main components of a successful and usable ap-
plication. In this work, I took a practical focus on performance optimization
of mobile web applications. I also tackled other problem ares in developing
these HTML5 applications.

I implemented a schedule application for a developer conference and a
utility library for handling unreliable mobile networks. The conference ap-
plication was successfully used in two conferences by hundreds of people, and
the received feedback was excellent. I had to solve a lot of problems and re-
search solutions in areas that were new to me. I used the latest HTML5 and
related APIs in several parts of the implementation.

The Web is living very interesting times, and universality in geography
and device types is growing. The browser is the culmination point of all the
new development of the Web, and the new open standards make the browser
a powerful platform for a vast array of different applications.

Keeping the Web open and accessible for everyone is the key for techno-
logical advancement and innovation in the future. The Web is here to stay,
and with the potential of HTML5 and other modern tools, we can build pow-
erful applications that improve our day-to-day lives, as well as applications
that revolutionize our lives. There is grandeur in this view, but without ide-
alism and relentless pursue of universal accessibility, the full potential of the
Open Web might never be reached.

Bibliography

[1] Andersson, O., et al. Scalable Vector Graphics (SVG) Tiny 1.2
Specification. W3C Recommendation, W3C, Dec 2008. Available at:
http://www.w3.org/TR/SVGTiny12/. Accessed 6-Febuary-2012.

[2] Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer,
K., Kubiatowicz, J., Morgan, N., Patterson, D., Sen, K.,
Wawrzynek, J., et al. A View of the Parallel Computing Landscape.
Communications of the ACM 52, 10 (2009), 56–67.

[3] Bergkvist, A., Burnett, D. C., Jennings, C., and Narayanan,
A. WebRTC 1.0: Real-time Communication Between Browsers. W3C
Editor’s Draft, W3C, Jan 2012. Available at: http://dev.w3.org/2011/

webrtc/editor/webrtc.html. Accessed 11-Febuary-2012.

[4] Berners-Lee, T. Long Live the Web. Scientific American 303, 6
(2010), 80–85.

[5] Block, S., and Popescu, A. DeviceOrientation Event Specification.
W3C Editor’s Draft, W3C, Jul 2011. Available at: http://dev.w3.org/

geo/api/spec-source-orientation.html. Accessed 12-Febuary-2012.

[6] Brubeck, M., Moon, S., and Schepers, D. Touch Events version
1. W3C Candidate Recommendation, W3C, Dec 2011. Available at:
http://www.w3.org/TR/touch-events/. Accessed 7-Febuary-2012.

[7] Burnett, D. C., and Narayanan, A. getusermedia: Getting access
to local devices that can generate multimedia streams. W3C Editor’s
Draft, W3C, Dec 2011. Available at: http://dev.w3.org/2011/webrtc/

editor/getusermedia.html. Accessed 11-Febuary-2012.

[8] Carlisle, D., Ion, P., and R., M. Mathematical Markup Language
(MathML) Version 3.0. W3C Recommendation, W3C, Oct 2010. Avail-
able at: http://www.w3.org/TR/MathML/. Accessed 6-February-2012.

64

http://www.w3.org/TR/SVGTiny12/
http://dev.w3.org/2011/webrtc/editor/webrtc.html
http://dev.w3.org/2011/webrtc/editor/webrtc.html
http://dev.w3.org/geo/api/spec-source-orientation.html
http://dev.w3.org/geo/api/spec-source-orientation.html
http://www.w3.org/TR/touch-events/
http://dev.w3.org/2011/webrtc/editor/getusermedia.html
http://dev.w3.org/2011/webrtc/editor/getusermedia.html
http://www.w3.org/TR/MathML/

BIBLIOGRAPHY 65

[9] Charland, A., and Leroux, B. Mobile Application Development:
Web vs. Native. Communications of the ACM 54, 5 (2011), 49–53.

[10] Cortimiglia, M., Ghezzi, A., and Renga, F. Mobile Applications
and Their Delivery Platforms. IT Professional 13, 5 (2011), 51–56.

[11] Crockford, D. JavaScript: The Good Parts. O’Reilly Media / Yahoo
Press, 2008.

[12] Daggett, J. CSS Fonts Module Level 3. W3C Editor’s Draft, W3C,
Oct 2011. Available at: http://dev.w3.org/csswg/css3-fonts/. Ac-
cessed 7-Febuary-2012.

[13] Fette, I. RFC 6455: The WebSocket protocol. Status:
Internet Draft . Available at: http://tools.ietf.org/html/

draft-ietf-hybi-thewebsocketprotocol-17. Accessed 8-February-
2012.

[14] Fielding, R. T. Architectural Styles and the Design of Network-Based
Software Architectures. PhD thesis, University of California, 2000.

[15] Fling, B. Mobile Design and Development: Practical Techniques for
Creating Mobile Sites and Web Apps. O’Reilly Media, Inc., 2009.

[16] Fling, B. Anatomy of a HTML5 Mobile App. Available at: http://

pinchzoom.com/posts/anatomy-of-a-html5-mobile-app/. Accessed 22-
Febuary-2012.

[17] Fraser, S., Jackson, D., Hyatt, D., Marrin, C., O’Connor,
E., and Schulze, D. CSS Transforms. W3C Editor’s Draft, W3C,
Feb 2012. Available at: http://dev.w3.org/csswg/css3-transforms/.
Accessed 12-Febuary-2012.

[18] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Professional, 1995.

[19] Garrett, J. J. Ajax: A New Approach to Web Applications. Adap-
tive path 18 (2005). Available at: http://www.adaptivepath.com/ideas/
ajax-new-approach-web-applications. Accessed 5-January-2012.

[20] Graham, S., and Mielczarek, T. Gamepad. W3C Editor’s
Draft, W3C, Feb 2012. Available at: http://dvcs.w3.org/hg/gamepad/

raw-file/default/gamepad.html. Accessed 22-Febuary-2012.

http://dev.w3.org/csswg/css3-fonts/
http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-17
http://tools.ietf.org/html/draft-ietf-hybi-thewebsocketprotocol-17
http://pinchzoom.com/posts/anatomy-of-a-html5-mobile-app/
http://pinchzoom.com/posts/anatomy-of-a-html5-mobile-app/
http://dev.w3.org/csswg/css3-transforms/
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://dvcs.w3.org/hg/gamepad/raw-file/default/gamepad.html
http://dvcs.w3.org/hg/gamepad/raw-file/default/gamepad.html

BIBLIOGRAPHY 66

[21] Gregg, J. Web Notifications. W3C Editor’s Draft, W3C, Sep 2011.
Available at: http://dev.w3.org/2006/webapi/WebNotifications/

publish/Notifications.html. Accessed 22-Febuary-2012.

[22] Herman, D., and Russell, K. Typed Array Specification. Editor’s
Draft, Dec 2011. Available at: https://www.khronos.org/registry/

typedarray/specs/latest/. Accessed 8-Febuary-2012.

[23] Hickson, I. HTML 5. W3C Editor’s Draft, W3C, Jan 2012. Avail-
able at: http://dev.w3.org/html5/spec/Overview.html. Accessed 31-
January-2012.

[24] Hickson, I. HTML Canvas 2D Context. W3C Editor’s Draft, W3C,
Feb 2012. Available at: http://dev.w3.org/html5/2dcontext/. Ac-
cessed 2-February-2012.

[25] Hickson, I. HTML5 Web Messaging. W3C Editor’s Draft, W3C,
Jan 2012. Available at: http://dev.w3.org/html5/postmsg/. Accessed
12-Febuary-2012.

[26] Hickson, I. Server-Sent Events. W3C Editor’s Draft, W3C, Feb
2012. Available at: http://dev.w3.org/html5/eventsource/. Accessed
11-Febuary-2012.

[27] Hickson, I. The WebSocket API. W3C Editor’s Draft, W3C, Feb
2012. Available at: http://dev.w3.org/html5/websockets/. Accessed
8-Febuary-2012.

[28] Hickson, I. Web Storage. W3C Editor’s Draft, W3C, Feb 2012. Avail-
able at: http://dev.w3.org/html5/webstorage/. Accessed 6-February-
2012.

[29] Hickson, I. Web Workers. W3C Editor’s Draft, W3C, Feb 2012.
Available at: http://dev.w3.org/html5/workers/. Accessed 9-Febuary-
2012.

[30] Jackson, D., Hyatt, D., Marrin, C., and Baron, L. D. CSS
Transitions. W3C Editor’s Draft, W3C, Jan 2012. Available at: http:

//dev.w3.org/csswg/css3-transitions/. Accessed 12-Febuary-2012.

[31] Jackson, D., Hyatt, D., Marrin, C., Galineau, S., and Baron,
L. D. CSS Animations. W3C Editor’s Draft, W3C, Feb 2012. Available
at: http://dev.w3.org/csswg/css3-animations/. Accessed 12-Febuary-
2012.

http://dev.w3.org/2006/webapi/WebNotifications/publish/Notifications.html
http://dev.w3.org/2006/webapi/WebNotifications/publish/Notifications.html
https://www.khronos.org/registry/typedarray/specs/latest/
https://www.khronos.org/registry/typedarray/specs/latest/
http://dev.w3.org/html5/spec/Overview.html
http://dev.w3.org/html5/2dcontext/
http://dev.w3.org/html5/postmsg/
http://dev.w3.org/html5/eventsource/
http://dev.w3.org/html5/websockets/
http://dev.w3.org/html5/webstorage/
http://dev.w3.org/html5/workers/
http://dev.w3.org/csswg/css3-transitions/
http://dev.w3.org/csswg/css3-transitions/
http://dev.w3.org/csswg/css3-animations/

BIBLIOGRAPHY 67

[32] Kostiainen, A. Vibration API. W3C Editor’s Draft, W3C, Feb 2012.
Available at: http://dev.w3.org/2009/dap/vibration/. Accessed 22-
Febuary-2012.

[33] Kostiainen, A., and Lamouri, M. Battery Status API. W3C Edi-
tor’s Draft, W3C, Feb 2012. Available at: http://dvcs.w3.org/hg/dap/

raw-file/tip/battery/Overview.html. Accessed 22-Febuary-2012.

[34] Laine, M., Shestakov, D., Litvinova, E., and Vuorimaa, P. To-
wards unified web application development experience. IT Professional,
99 (2011), 1–1.

[35] Lamouri, M. The Network Information API. W3C Editor’s Draft,
W3C, Feb 2012. Available at: http://dvcs.w3.org/hg/dap/raw-file/

tip/network-api/index.html. Accessed 22-Febuary-2012.

[36] Mann, J., and Jain, A. Page Visibility. W3C Editor’s Draft, W3C,
Feb 2012. Available at: http://dvcs.w3.org/hg/webperf/raw-file/

tip/specs/PageVisibility/Overview.html. Accessed 11-Febuary-2012.

[37] Mann, J., and Wang, Z. Performance Timeline. W3C Editor’s
Draft, W3C, Jan 2012. Available at: http://dvcs.w3.org/hg/webperf/

raw-file/tip/specs/PerformanceTimeline/Overview.html. Accessed
11-Febuary-2012.

[38] Mann, J., Wang, Z., and Quach, A. Resource Timing. W3C
Editor’s Draft, W3C, Jan 2012. Available at: http://www.w3c-test.

org/webperf/specs/ResourceTiming/. Accessed 11-Febuary-2012.

[39] Mann, J., Wang, Z., and Quach, A. User Timing. W3C Editor’s
Draft, W3C, Jan 2012. Available at: http://dvcs.w3.org/hg/webperf/

raw-file/tip/specs/UserTiming/Overview.html. Accessed 11-Febuary-
2012.

[40] Mann, J., and Weber, J. Efficient Script Yielding. W3C Edi-
tor’s Draft, W3C, Jul 2011. Available at: http://dvcs.w3.org/hg/

webperf/raw-file/tip/specs/setImmediate/Overview.html. Accessed
11-Febuary-2012.

[41] Marrin, C. WebGL Specification. Editor’s Draft, Jan 2012. Avail-
able at: https://www.khronos.org/registry/webgl/specs/latest/. Ac-
cessed 8-Febuary-2012.

http://dev.w3.org/2009/dap/vibration/
http://dvcs.w3.org/hg/dap/raw-file/tip/battery/Overview.html
http://dvcs.w3.org/hg/dap/raw-file/tip/battery/Overview.html
http://dvcs.w3.org/hg/dap/raw-file/tip/network-api/index.html
http://dvcs.w3.org/hg/dap/raw-file/tip/network-api/index.html
http://dvcs.w3.org/hg/webperf/raw-file/tip/specs/PageVisibility/Overview.html
http://dvcs.w3.org/hg/webperf/raw-file/tip/specs/PageVisibility/Overview.html
http://dvcs.w3.org/hg/webperf/raw-file/tip/specs/PerformanceTimeline/Overview.html
http://dvcs.w3.org/hg/webperf/raw-file/tip/specs/PerformanceTimeline/Overview.html
http://www.w3c-test.org/webperf/specs/ResourceTiming/
http://www.w3c-test.org/webperf/specs/ResourceTiming/
http://dvcs.w3.org/hg/webperf/raw-file/tip/specs/UserTiming/Overview.html
http://dvcs.w3.org/hg/webperf/raw-file/tip/specs/UserTiming/Overview.html
http://dvcs.w3.org/hg/webperf/raw-file/tip/specs/setImmediate/Overview.html
http://dvcs.w3.org/hg/webperf/raw-file/tip/specs/setImmediate/Overview.html
https://www.khronos.org/registry/webgl/specs/latest/

BIBLIOGRAPHY 68

[42] Mehta, N., Sicking, J., Graff, E., Popescu, A., and Or-
low, J. Indexed Database API. W3C Editor’s Draft, W3C, Feb
2012. Available at: http://dvcs.w3.org/hg/IndexedDB/raw-file/tip/

Overview.html. Accessed 6-February-2012.

[43] Mikkonen, T., and Taivalsaari, A. Apps vs. Open Web: The
Battle of the Decade. In 2nd Annual Workshop on Software Engineering
for Mobile Application Development (2011).

[44] Munshi, A., and Leech, J. OpenGL R© ES Common Profile Specifica-
tion Version 2.0.25. Common Profile Specification, Nov 2010. Available
at: http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_

2.0.25.pdf. Accessed 8-Febuary-2012.

[45] Parker, T., Toland, P., Jehl, S., and Wachs, M. C. Design-
ing with Progressive Enhancement: Building the Web That Works for
Everyone. New Riders Publishing, 2010.

[46] Pilgrim, M. HTML5: Up And Running. O’Reilly Media / Google
Press, 2010.

[47] Popescu, A. Geolocation API Specification. W3C Candidate Rec-
ommendation, W3C, Sep 2010. Available at: http://www.w3.org/TR/

geolocation-API/. Accessed 6-Febuary-2012.

[48] Ranganathan, A., and Sicking, J. File API. W3C Editor’s
Draft, W3C, Feb 2012. Available at: http://dev.w3.org/2006/webapi/

FileAPI/. Accessed 10-Febuary-2012.

[49] Robinson, J., and McCormack, C. Timing control for
script-based animations. W3C Editor’s Draft, W3C, Jan 2012.
Available at: http://dvcs.w3.org/hg/webperf/raw-file/tip/specs/

RequestAnimationFrame/Overview.html. Accessed 11-Febuary-2012.

[50] Scheib, V. Ppointer Lock. W3C Editor’s Draft, W3C, Feb 2012.
Available at: http://dvcs.w3.org/hg/pointerlock/raw-file/default/

index.html. Accessed 22-Febuary-2012.

[51] Souders, S. High Performance Web Sites. O’Reilly Media, 2007.

[52] Souders, S. Even Faster Web Sites. O’Reilly Media, 2009.

[53] Steen, H. R. M. Clipboard API and events. W3C Editor’s
Draft, W3C, Feb 2012. Available at: http://dev.w3.org/2006/webapi/

clipops/clipops.html. Accessed 22-Febuary-2012.

http://dvcs.w3.org/hg/IndexedDB/raw-file/tip/Overview.html
http://dvcs.w3.org/hg/IndexedDB/raw-file/tip/Overview.html
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
http://www.khronos.org/registry/gles/specs/2.0/es_full_spec_2.0.25.pdf
http://www.w3.org/TR/geolocation-API/
http://www.w3.org/TR/geolocation-API/
http://dev.w3.org/2006/webapi/FileAPI/
http://dev.w3.org/2006/webapi/FileAPI/
http://dvcs.w3.org/hg/webperf/raw-file/tip/specs/RequestAnimationFrame/Overview.html
http://dvcs.w3.org/hg/webperf/raw-file/tip/specs/RequestAnimationFrame/Overview.html
http://dvcs.w3.org/hg/pointerlock/raw-file/default/index.html
http://dvcs.w3.org/hg/pointerlock/raw-file/default/index.html
http://dev.w3.org/2006/webapi/clipops/clipops.html
http://dev.w3.org/2006/webapi/clipops/clipops.html

BIBLIOGRAPHY 69

[54] Sterne, B., and Barth, A. Content Security Pol-
icy. W3C Editor’s Draft, W3C, Feb 2012. Available at:
http://dvcs.w3.org/hg/content-security-policy/raw-file/tip/

csp-specification.dev.html. Accessed 12-Febuary-2012.

[55] Taivalsaari, A., and Mikkonen, T. The Web as an Application
Platform: The Saga Continues. In Software Engineering and Advanced
Applications (SEAA), 2011 37th EUROMICRO Conference on (2011),
IEEE, pp. 170–174.

[56] Tibbett, R. Contacts API. W3C Editor’s Draft, W3C, Feb
2012. Available at: http://w3c-test.org/dap/contacts/. Accessed 22-
Febuary-2012.

[57] Uhrhane, E. File API: Directories and System. W3C Editor’s
Draft, W3C, May 2011. Available at: http://dev.w3.org/2009/dap/

file-system/file-dir-sys.html. Accessed 10-Febuary-2012.

[58] Uhrhane, E. File API: Writer. W3C Editor’s Draft, W3C, May 2011.
Available at: http://dev.w3.org/2009/dap/file-system/file-writer.

html. Accessed 10-Febuary-2012.

[59] Van Kesteren, A. Cross-Origin Resource Sharing. W3C Editor’s
Draft, W3C, Dec 2011. Available at: http://dvcs.w3.org/hg/cors/

raw-file/tip/Overview.html. Accessed 11-Febuary-2012.

[60] Van Kesteren, A. The From-Origin Header. W3C Editor’s Draft,
W3C, Feb 2012. Available at: http://dvcs.w3.org/hg/from-origin/

raw-file/tip/Overview.html. Accessed 12-Febuary-2012.

[61] Van Kesteren, A., and Çelik, T. Fullscreen. Editor’s Draft, Feb
2012. Available at: http://dvcs.w3.org/hg/fullscreen/raw-file/tip/

Overview.html. Accessed 22-Febuary-2012.

[62] Wang, Z. Navigation Timing. W3C Editor’s Draft, W3C,
Nov 2011. Available at: http://www.w3c-test.org/webperf/specs/

NavigationTiming/. Accessed 11-Febuary-2012.

[63] Wium Lie, H., Çelik, T., Glazman, D., and Van Kesteren,
A. Media Queries. W3C Candidate Recommendation, W3C, Jul 2010.
Available at: http://www.w3.org/TR/css3-mediaqueries/. Accessed 7-
Febuary-2012.

http://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
http://dvcs.w3.org/hg/content-security-policy/raw-file/tip/csp-specification.dev.html
http://w3c-test.org/dap/contacts/
http://dev.w3.org/2009/dap/file-system/file-dir-sys.html
http://dev.w3.org/2009/dap/file-system/file-dir-sys.html
http://dev.w3.org/2009/dap/file-system/file-writer.html
http://dev.w3.org/2009/dap/file-system/file-writer.html
http://dvcs.w3.org/hg/cors/raw-file/tip/Overview.html
http://dvcs.w3.org/hg/cors/raw-file/tip/Overview.html
http://dvcs.w3.org/hg/from-origin/raw-file/tip/Overview.html
http://dvcs.w3.org/hg/from-origin/raw-file/tip/Overview.html
http://dvcs.w3.org/hg/fullscreen/raw-file/tip/Overview.html
http://dvcs.w3.org/hg/fullscreen/raw-file/tip/Overview.html
http://www.w3c-test.org/webperf/specs/NavigationTiming/
http://www.w3c-test.org/webperf/specs/NavigationTiming/
http://www.w3.org/TR/css3-mediaqueries/

BIBLIOGRAPHY 70

[64] Zakas, N. C. High Performance JavaScript. O’Reilly Media / Yahoo
Press, 2010.

[65] Zandy, V. C., and Miller, B. P. Reliable Network Connections.
In Proceedings of the 8th annual International Conference on Mobile
Computing and Networking (2002), ACM, pp. 95–106.

[66] Çelik, T., Etemad, E. J., Glazman, D., Hickson, I., Linss, P.,
and Williams, J. Selectors Level 3. W3C Recommendation, W3C,
Sep 2011. Available at: http://www.w3.org/TR/selectors/. Accessed
12-Febuary-2012.

http://www.w3.org/TR/selectors/

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Research Questions
	1.2 Structure of This Work

	2 HTML5
	2.1 Semantic Markup
	2.2 Extensibility
	2.3 Media
	2.4 Canvas 2D Context
	2.5 Form Enhancements
	2.6 Session History Manipulation
	2.7 Offline Web Applications
	2.7.1 Application Cache
	2.7.2 Data Storage
	2.7.3 Detecting Network State

	2.8 Drag and Drop
	2.9 SVG and MathML

	3 Other Related Specifications
	3.1 Cascading Style Sheets
	3.2 WebGL and Typed Arrays
	3.3 Touch Events
	3.4 Files
	3.5 Web Real-time Communication
	3.6 Web Sockets
	3.7 Server-Sent Events
	3.8 Web Workers
	3.9 Analytics and Timing
	3.10 Page Visibility and Timer Control
	3.11 Cross-Origin Resource Sharing
	3.12 Device APIs
	3.12.1 Geolocation
	3.12.2 Device Orientation
	3.12.3 User Media

	3.13 Other

	4 Tools and Techniques
	4.1 Single-Page applications
	4.2 JavaScript MVC Libraries
	4.3 Responsive Design
	4.4 Progressive Enhancement
	4.5 User Interface Libraries
	4.5.1 jQuery Mobile
	4.5.2 jQTouch
	4.5.3 Sencha Touch

	4.6 Hybrid Applications
	4.7 Performance Guidelines

	5 Use Case
	5.1 Conference Application Requirements
	5.2 JSONCache Requirements

	6 Implementation and Results
	6.1 Conference Application
	6.2 JSONCache JavaScript Library
	6.3 Targeting Different Platforms
	6.3.1 Device Detection
	6.3.2 Feature Detection

	6.4 Targeting Different Screens
	6.5 Handling Different Orientations
	6.6 Handling Mobile Networks
	6.6.1 Minimizing Data Transfer
	6.6.2 Caching
	6.6.3 Preloading
	6.6.4 Offline Support
	6.6.5 Handling Interruptions

	6.7 Animations
	6.8 Following JavaScript Best Practices
	6.8.1 JSLint
	6.8.2 Lazy initialization
	6.8.3 Efficient DOM Manipulation
	6.8.4 Efficient Event Handling

	6.9 Performance Analysis
	6.9.1 YSlow
	6.9.2 Page Speed

	6.10 Summary of Results

	7 Conclusions
	7.1 Further Work
	7.2 Discussion

