
Marcin Nagy

Using FEC for Rate Adaptation of
Multimedia Streams

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Helsinki 12.06.2012

Thesis supervisor:

Prof. Jörg Ott

Thesis instructor:

M.Sc. Varun Ranjit Singh

A’’ Aalto University
School of Electrical
Engineering



aalto university
school of electrical engineering

abstract of the
master’s thesis

Author: Marcin Nagy

Title: Using FEC for Rate Adaptation of Multimedia Streams

Date: 12.06.2012 Language: English Number of pages:9+122

Department of Communications and Networking

Professorship: Networking Technology Code: S-38

Supervisor: Prof. Jörg Ott

Instructor: M.Sc. Varun Ranjit Singh

The available path capacity in the Internet is variable. Changeable amount
of cross traffic generated by other network nodes leads to fluctuations of queue
size, which causes additional packet latency, and to congestion, resulting in packet
drops from intermediate routers. Therefore multimedia senders need to adapt
their sending rates in order to provide the best available media quality perceived
by the receiver, and avoid any losses caused by congestion.

In this work, we investigate possibility of using Forward Error Correction
(FEC) not only for error recovery, but also for rate adaptation. We create two new
RTP rate adaptation algorithms, i.e. FEC Based Rate Adaptation (FBRA), and
Non-FEC Based Rate Adaptation (N-FBRA) and evaluate them in the Internet
environment. The first part of the work is conducted in the ns-2 simulator, and
it concerns comparison of our algorithms against TFRC for RTP in 3 scenarios:
a) variable link capacity b) constant link capacity with 1 RTP flow competing
against many TCP flows, c) constant link capacity with 2 RTP flows competing
against many TCP flows. The second part of the work is conducted in the AMuSys
platform, which is also created in this work. It concerns evaluation of the FBRA
performance in the Dummynet emulator.

Keywords: Internet, Multimedia, Video Communication, RTP, RTCP, FEC,
Rate adaptation, Error resillence



iii

I would like to convey my sincere thanks to:

Professor Jörg Ott

For motivating, giving invaluable pieces of advice,
always having open doors and appreciating my efforts

M.Sc. Varun Ranjit Singh

For being source of great solutions, excellent guide,
and all fruitful scientific discussions

Professor Raimo Kantola

For smooth transfer to the Aalto University,
help and understanding

My Parents, My Sister, and My Family

For support during whole my studies, understanding,
and all the love

and Kornelia

For being the greatest person in my life,
always keeping faith in my abilities, pushing me to go beyond them,

and tolerating all my pitfalls



iv

Contents
Abstract ii

Contents iv

Abbreviations ix

1 Introduction 1
1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contribution of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Scope and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Multimedia communication and the Internet 6
2.1 Video coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Network traffic types . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Internet multimedia environment characteristics . . . . . . . . . . . . 10

2.3.1 Internet environment . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Mobile environment . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Multimedia transport protocols 14
3.1 Real-time Transport Protocol (RTP) . . . . . . . . . . . . . . . . . . 14
3.2 Real-time Transport Control Protocol (RTCP) . . . . . . . . . . . . . 15
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Error resilience mechanisms for conversational
video communications 19
4.1 NACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Slice Size Adaptation (SSA) . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Reference Picture Selection (RPS) . . . . . . . . . . . . . . . . . . . . 21
4.4 Forward Error Correction with Uneven Error Protection . . . . . . . 21
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Rate adaptation of multimedia flows 26
5.1 Congestion in the Internet . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Introduction to rate adaptation . . . . . . . . . . . . . . . . . . . . . 27
5.3 Congestion indicators in multimedia flows . . . . . . . . . . . . . . . 28

5.3.1 Packet losses and discards . . . . . . . . . . . . . . . . . . . . 29
5.3.2 One-way delay (OWD) and Round-trip time (RTT) . . . . . . 29
5.3.3 Sending rate (BRS), Receive rate (BRR), Goodput (GP) . . . 30
5.3.4 Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.5 Other indicators . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.6 Summary of congestion indicators . . . . . . . . . . . . . . . . 32



v

5.4 Rate adaptation metrics . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4.1 Peak Signal-to-Noise Ratio (PSNR) . . . . . . . . . . . . . . . 35
5.4.2 Average Bandwidth Utilisation (ABU) . . . . . . . . . . . . . 37
5.4.3 Average/Instant Sending Rate/Goodput and other metrics . . 37

5.5 Example of rate adaptation algorithm: TFRC for RTP . . . . . . . . 37
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Rate adaptation algorithms 40
6.1 FEC Based Rate Adaptation algorithm (FBRA) . . . . . . . . . . . . 40
6.2 Non-FEC based rate adaptation algorithm (N-FBRA) . . . . . . . . . 51

7 Evaluation 55
7.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.1.1 Extensions to ns-2 simulator . . . . . . . . . . . . . . . . . . . 56
7.1.2 Simulation settings . . . . . . . . . . . . . . . . . . . . . . . . 56
7.1.3 Simulation scenarios . . . . . . . . . . . . . . . . . . . . . . . 57

7.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2.1 Variable link capacity scenario with one RTP flow: Compar-

ative study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2.2 Single RTP flow competing for constant link capacity against

many TCP flows: Comparative study . . . . . . . . . . . . . . 72
7.2.3 Two RTP flows competing for constant link capacity against

many TCP flows: Comparative study . . . . . . . . . . . . . . 81
7.3 Real-world implementation . . . . . . . . . . . . . . . . . . . . . . . . 94
7.4 Evaluation of real-world implementation . . . . . . . . . . . . . . . . 97

7.4.1 Constant link capacity with single RTP flow scenario . . . . . 98
7.4.2 Variable link capacity with single RTP flow . . . . . . . . . . 105
7.4.3 Constant link capacity with two RTP flows . . . . . . . . . . . 111

8 Conclusions and future work 117

References 119

List of Figures
1 Internet traffic composition in North America in fall 2011. Picture

adopted from [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Nielsen’s Law of Internet bandwidth. Picture adopted from [2] . . . . 2
3 Video communication system. Picture adopted from [3] . . . . . . . . 7
4 Group of Pictures arrangement (a) for streaming scenario (b) for con-

versational scenario. Picture adopted from [3] . . . . . . . . . . . . . 8
5 Encapsulation of H.264 stream into RTP payload. Picture adopted

from blog.radvision.com/voipsurvivor/ . . . . . . . . . . . . . . . . . 9
6 Link characteristics in multimedia environment. Picture adopted from

[3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11



vi

7 Multimedia environments. Picture adopted from [3] . . . . . . . . . . 13
8 RTP header. Picture adopted from [4]. . . . . . . . . . . . . . . . . . 15
9 RTP and RTCP overview. Picture adopted from [5]. . . . . . . . . . . 15
10 RTP and RTCP flow diagram. Picture adopted from [5]. . . . . . . . 16
11 Difference between standard RTCP report interval and extended feed-

back profile (RTP/AVPF). Picture adopted from [5]. . . . . . . . . . . 16
12 Basic RTCP report headers. Picture adopted from [4]. . . . . . . . . . 18
13 Concept of FEC sender and receiver operation. Picture adopted from

[5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
14 Example of ULP: The first FEC packet has only level 0 protection for

packets A and B. Protection operation is performed only on parts of
these packets, leaving other parts of them unprotected. The second
FEC packet also has level 0 protection for packets C and D, but it
also gives level 1 protection for less important parts of packets A, B,
C and D. Picture adopted from [5]. . . . . . . . . . . . . . . . . . . . 23

15 ULP FEC packets format. Picture adopted from [6]. . . . . . . . . . . 24
16 Congested queue in the router. Picture adopted from [3]. . . . . . . . 26
17 Modes of rate adaptation. Picture adopted from [3]. . . . . . . . . . . 28
18 RTCP XR headers. Picture adopted from [7]. . . . . . . . . . . . . . . 34
19 Decomposition of image into luma part (brightness), and chrominance

(colour components). Picture adopted from Wikipedia en.wikipedia.org. 36
20 Extension headers for RTP/RTCP in TFRC algorithm. Picture adopted

from [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
21 FBRA state machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
22 N-FBRA state machine . . . . . . . . . . . . . . . . . . . . . . . . . . 51
23 Link capacity change pattern . . . . . . . . . . . . . . . . . . . . . . 57
24 Variable link capacity network settings . . . . . . . . . . . . . . . . . 58
25 RTP against TCP competition scenario network settings . . . . . . . 58
26 Two RTP sessions against TCP competition scenario network settings 59
27 Graphs for the FBRA algorithm for 50ms delay . . . . . . . . . . . . 61
28 Graphs for the N-FBRA algorithm for 50ms delay . . . . . . . . . . . 62
29 Graphs for the TFRC algorithm for 50ms delay . . . . . . . . . . . . 63
30 Graphs for the FBRA algorithm for 100ms delay . . . . . . . . . . . . 65
31 Graphs for the N-FBRA algorithm for 100ms delay . . . . . . . . . . 66
32 Graphs for the TFRC algorithm for 100ms delay . . . . . . . . . . . . 67
33 Graphs for the FBRA algorithm for 240ms delay . . . . . . . . . . . . 69
34 Graphs for the N-FBRA algorithm for 240ms delay . . . . . . . . . . 70
35 Graphs for the TFRC algorithm for 240ms delay . . . . . . . . . . . . 71
36 RTP vs. TCP competition in 50ms scenario with FBRA used . . . . 75
37 RTP vs. TCP competition in 50ms scenario with N-FBRA used . . . 76
38 RTP vs. TCP competition in 100ms scenario with FBRA used . . . . 79
39 RTP vs. TCP competition in 100ms scenario with N-FBRA used . . 80
40 2 RTP vs. TCP competition in 50ms scenario with FBRA used . . . 85
41 2 RTP vs. TCP competition in 50ms scenario with N-FBRA used . . 86
42 2 RTP vs. TCP competition in 100ms scenario with FBRA used . . . 91



vii

43 2 RTP vs. TCP competition in 100ms scenario with N-FBRA used . 92
44 Video platform sender and receiver architecture . . . . . . . . . . . . 95
45 Ping experiment illustrating Dummynet RTT issues . . . . . . . . . . 96
46 Network setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
47 Time charts for 50ms delay constant link capacity scenario . . . . . . 102
48 Time charts for 100ms delay constant link capacity scenario . . . . . 103
49 Time charts for 240ms delay constant link capacity scenario . . . . . 104
50 Time charts for 50ms delay variable link capacity scenario . . . . . . 108
51 Time charts for 100ms delay variable link capacity scenario . . . . . . 109
52 Time charts for 240ms delay variable link capacity scenario . . . . . . 110
53 Time charts for 50ms delay RTP competition scenario . . . . . . . . . 114
54 Time charts for 100ms delay RTP competition scenario . . . . . . . . 115
55 Time charts for 240ms delay RTP competition scenario . . . . . . . . 116

List of Tables
1 Summary of important RTCP extensions . . . . . . . . . . . . . . . . 33
2 Conditions of FBRA state transition illustrated in the figure 21. . . 42
3 Conditions of N-FBRA state transition illustrated in the figure 22. . 51
4 Overall metrics for 50ms delay in variable link capacity scenario . . . 60
5 Overall metrics for 100ms delay in variable link capacity scenario . . 64
6 Overall metrics for 240ms delay in variable link capacity scenario . . 68
7 Overall metrics for 50ms delay in single RTP flow against one TCP

flow scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8 Overall metrics for 50ms delay in single RTP flow against two TCP

flows scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9 Overall metrics for 50ms delay in single RTP flow against three TCP

flows scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
10 Overall metrics for 100ms delay in single RTP flow against one TCP

flow scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
11 Overall metrics for 100ms delay in single RTP flow against two TCP

flows scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
12 Overall metrics for 100ms delay in single RTP flow against three TCP

flows scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
13 Overall metrics for 50ms delay in two RTP flows against one TCP

flow scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
14 Overall metrics for 50ms delay in two RTP flows against two TCP

flows scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
15 Overall metrics for 50ms delay in two RTP flows against three TCP

flows scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
16 Overall metrics for 100ms delay in two RTP flows against one TCP

flow scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
17 Overall metrics for 100ms delay in two RTP flows against two TCP

flows scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



viii

18 Overall metrics for 100ms delay in two RTP flows against three TCP
flows scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

19 Overall metrics for 50ms delay in constant link capacity scenario . . . 99
20 Overall metrics for 100ms delay in constant link capacity scenario . . 100
21 Overall metrics for 240ms delay in constant link capacity scenario . . 101
22 Overall metrics for 50ms delay in variable link capacity with single

RTP flow scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
23 Overall metrics for 100ms delay in variable link capacity with single

RTP flow scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
24 Overall metrics for 240ms delay in variable link capacity with single

RTP flow scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
25 Overall metrics for 50ms delay in two RTP flows competition scenario 111
26 Overall metrics for 100ms delay in two RTP flows competition scenario112
27 Overall metrics for 240ms delay in two RTP flows competition scenario113

List of Algorithms
1 FEC based rate adaptation algorithm (FBRA) . . . . . . . . . . . . . 44
1a Function used when the FBRA is in the s++ state . . . . . . . . . . 45
1b Function used when the FBRA is in the s+ state . . . . . . . . . . . 46
1c Function used when the FBRA is in the u state . . . . . . . . . . . . 46
1d Function used when the FBRA is in the d state . . . . . . . . . . . . 47
1e Function used when the FBRA is in the s- state . . . . . . . . . . . . 48
1f Rate adaptation help procedures . . . . . . . . . . . . . . . . . . . . . 49
1f Rate adaptation help procedures - continued . . . . . . . . . . . . . . 50
2 Non-FEC based rate adaptation algorithm . . . . . . . . . . . . . . . 52
2a Function used when the N-FBRA is in the u state . . . . . . . . . . . 52
2b Function used when the N-FBRA is in the d state . . . . . . . . . . . 53
2c Function used when the N-FBRA is in the s- state . . . . . . . . . . . 54



ix

Abbreviations
3GPP 3rd Generation Partnership Project
ABU Average Bandwidth Utilisation
AQM Active Queue Management
ARQ Automatic Repeat reQuest
DCCP Datagram Congestion Control Protocol
ECN Explicit Congestion Notification
FEC Forward Error Correction
FTP File Transfer Protocol
GOP Group of Pictures
HTTP Hypertext Transfer Protocol
IETF Internet Engineering Task Force
ISP Internet Service Provider
ITU International Telecommunication Union
ITU-T ITU Telecommunication Standardization Sector
MTU Maximum Transmission Unit
NACK Negative Acknowledgement
NAL Network Adaptation Layer
NAT Network Address Translator
PSNR Peak Signal-to-Noise Ratio
PSTN Public Switched Telephone Network
QoS Quality of Service
RAN Radio Access Network
RLC Radio Link Control
RPS Reference Picture Selection
RTT Round-trip Time
RTCP Real-time Transport Control Protocol
RTP Real-time Transport Protocol
SDP Session Description Protocol
SIP Session Initiation Protocol
SMTP Simple Mail Transfer Protocol
SNMP Simple Network Management Protocol
SSA Slice Size Adaptation
SSRC Synchronisation Source
TCP Transmission Control Protocol
TFRC TCP Friendly Rate Control
UDP User Datagram Protocol
UEP Unequal/Uneven Error Protection
VCL Video Coding Layer
VoIP Voice over Internet Protocol
VRC Video Redundancy Coding
VVoIP Video and Voice over IP



1

1 Introduction
The very quick expansion of the Internet in the last 15 years has changed our

world significantly, as most of information is shared and consumed in the network.
Even very old traditional media (e.g. newspapers, radios) move some of their services
to the Internet to provide subscribers with quick access to information. For example,
in 2008 the BBC World Service transmission on short waves was stopped in Europe,
and moved to the Internet. This simple example shows that media in the Internet
have become very popular recently. Recent report of comScore [9] states that in
May 2011 there were more than 147 millions of YouTube [10] users only in the USA.
Furthermore Sandvine Global Internet Phenomena Report for Fall of 2011 [1] reveals
that real-time entertainment traffic in the Internet has exceeded 53% of all traffic
in North America (see fig. 1). Another report issued by Cisco [11] predicts that
video traffic will continue to increase significantly and should take about 90% of all
consumer Internet traffic by 2015.

Figure 1: Internet traffic composition in North America in fall 2011. Picture adopted
from [1]

Emergence of Voice over Internet Protocol (VoIP) applications together with
the flat rate pricing pattern made voice calls over the Internet very popular. This
trend is also profitable for the operators, as operating and maintenance costs of data
networks are lower than similar costs in the PSTN. Many currently available appli-
cations (e.g. Skype [12], Gizmo Project [13]) have also support for Video and Voice
over IP (VVoIP). Based on all above findings, one can predict grow of popularity of
VVoIP services in the Internet.

According to the Nielsen’s Law of Internet bandwidth [2] high-end user’s connec-
tion speed growas about 50% each year or doubles every 21 months (see fig. 2). On
the other hand the computing power should increase by 60% every year or double



2

every 18 months, according to the Moore’s Law. It can be concluded that computing
power growth occurs quicker than bandwidth grow. Therefore, as the multimedia
traffic increases and there are no widely deployed congestion control mechanisms
for it (except for HTTP streaming), it seems that such mechanisms must be cre-
ated to allow so many multimedia applications to compete fairly for limited network
resources and guarantee end-users satisfactory experience.

Figure 2: Nielsen’s Law of Internet bandwidth. Picture adopted from [2]

1.1 Challenges

Video telephony applications must share the bandwidth with other network ap-
plications like BitTorrent [14], Web browsers, etc. As network bandwidth is limited,
they have to compete for it, which sometimes leads to the congestion situation in-
creasing delays in packet transmission and ultimately their losses.

To combat this problem congestion control mechanisms were introduced. TCP
congestion control algorithms are the most popular mechanisms. They are based
on the feedback loop in which the receiver sends an Automatic ReQuest (ARQ)
containing information about (un-)successful reception of sent packets. This feed-
back information is then further used by the TCP congestion control algorithms to
adapt the sending rate. Although TCP is not optimised for usage with real-time
content, it is very often used in HTTP streaming scenarios due to wide deployment
of web browsers and HTTP capabilities of NAT and firewall traversals. However,
as RTCWeb seems to become a popular solution linking web browsers with RTP
protocol, it seems that the is a need to develop congestion control algorithms for
use with RTP over UDP.

1.2 Problem Statement

In January 1984 John Nagle predicted problem of congestion collapse in RFC
896 [15]. The actual collapse was not observed until October 1986 when the NFSnet
backbone dropped its capacity by three orders of magnitude. Similar problems



3

started to recur and they were not solved until Van Jacobson’s 1988 paper [16] was
published.

Concepts presented in [16] led to development of TCP 4.3BSD Tahoe which
divided transmission into two different phases: the slow start and the congestion
avoidance. Congestion control in Tahoe is based on altering the congestion window
size, which is defined as the total number of packets in transit. Every transmission
begins in the slow start phase where the window is incremented for every successfully
received acknowledgement. This phase lasts until the window size exceeds ssthresh
value or a packet loss occurs. This is followed by the congestion avoidance phase
in which the congestion window is incremented every round trip time provided that
there are no duplicate ACKs received. Furthermore, Tahoe uses fast retransmit
concept allowing the sender to retransmit potentially lost packet after receiving
three duplicate ACKs instead of waiting for the ACK timeout.

In 1990 a new version of TCP called 4.3BSD Reno was introduced. This im-
plementation extended Tahoe’s capabilities by adding fast recovery functionality.
Consequently the sender is allowed to stay in the congestion avoidance phase with
its window halved if the fast retransmit procedure succeeds. However, TCP Reno
does not resolve the problem of poor performance when burst losses occur. This
problem is tackled in the newer version of TCP called New Reno, where the window
is maintained full during the fast recovery phase by sending new packets for every
received ACK that makes partial progress in the sequence number space. Another
important development in TCP congestion control was the introduction of selective
acknowledgement options in RFC 2018 [17]. Addition of this functionality makes
the sender aware exactly which packets get lost, and therefore it can retransmit just
the missing ones, instead of the block of packets beginning with the first missed
packet.

The congestion control algorithms in above presented TCP versions are based
purely on packet losses. However, there are also TCP algorithms based on other
congestion indicators. The oldest one of them is TCP Vegas, which was developed
at the University of Arizona in 1994. Unlike previously introduced TCP algorithms,
TCP Vegas tries to predict incoming congestion based on increasing round trip time
values. Therefore, as very accurate RTT estimation is required TCP timestamps
option (RFC 1323) [18] must be used. Finer RTT estimation in comparison to
previously mentioned TCP versions, allows also Vegas to calculate retransmission
timeout (RTO) more precisely, and therefore quicker respond to encountered packet
loss. Other interesting version of TCP taking advantage of precise RTT measure-
ments is Hybla, which is intended to improve transmission performance for long
delay networks, as well as for heterogeneous networks containing wireless links.

The very recent research concentrates on creating good TCP congestion control
algorithm for high speed networks with high latency between end nodes. Exam-
ples belonging to this group are BIC (Binary Increase Congestion control) and CU-
BIC. Both these algorithms provide unique window growth function. BIC calculates
proper window value using the binary search algorithm between the before reduc-
tion window size and the after reduction one. CUBIC provides the window growth
function which has similar properties to the BIC ones, but it is mainly based on



time elapsed since last window reduction, which makes its performance independent
of RTT values, and therefore more friendly to other TCP flows.

All above briefly presented versions of TCP congestion control algorithms are
mostly optimised for transmissions where tight delay constraints are not critical.
On the other hand, as video conversational communication is delay-sensitive, the
end-points must be able to adapt to changing network conditions taking into ac-
count also delay constraints. Media packets are sent using the Real-time Transport
Protocol (RTP) which is most often run over User Datagram Protocol (UDP) which
does not provide any congestion control mechanism. Therefore responsibility for
all congestion control is put on applications. Existence of delay constraints makes
dependence entirely on packet losses, and RTT estimation insufficient. As a result,
applications should be able to process larger set of congestion indicators and try
to predict forthcoming congestion in advance to prepare itself for it by reducing
its sending rate. This adaptation to network conditions allows making the video
communication successful though the video quality is a bit worse. In addition, it
also leaves some of the burden from the network, allowing it to quicker combat
congestion situation and return to its normal condition.

1.3 Contribution of the Thesis

We investigate possibility of using error recovery mechanism (FEC) [6] also
for rate adaptation. Furthermore, we analyse behaviour of available congestion
indicators in the Internet multimedia environment. Finally, we link FEC with these
indicators to create a new rate adaptation algorithm and test its performance in
various scenarios.

1.4 Scope and Goals

The Real-time transport Protocol (RTP) is used to transport real-time content
in the Internet, whereas its associated RTP Control Protocol transfers control in-
formation between the sender and the receiver. This control information contains
important data about reception quality and network conditions. Forward Error Cor-
rection (FEC) can be used together with RTP to transfer redundant media content
to the receiver which can be used to recover missing data. The thesis objective is
to combine FEC together with RTP and existing RTCP extensions standardised by
the Internet Engineering Task Force (IETF), and propose possible new rate adap-
tation algorithm for video communication. Application of this algorithm should not
be limited just to video transmission, but it should be used for all types requiring
real-time data delivery.

We want to apply possibly designed rate adaptation algorithm in different scenar-
ios inside the ns-2 simulator [19], where we evaluate performance. Furthermore, we
intend to reproduce identical scenarios in the real-world, using existing open-source
libraries and network emulators.



5

1.5 Structure

This is organised in the following way. Chapter 2 gives general overview of the
video communication in the Internet environment. In chapter 3 the Internet multi-
media traffic transport protocols are described. Chapter 4 describes error resilience
mechanisms which are available in the network currently. Chapter 5 introduces
concept of the rate adaptation. It focuses on congestion indicators for multimedia
flows, and metrics allowing to compare usability of different rate adaptation solu-
tions. Chapter 6 presents two rate adaptation algorithms (FEC Based Rate Adapta-
tion algorithm and Non-FEC Based Rate Adaptation algorithm) which were created
specially for the purpose of this thesis. Chapter 7 presents evaluation of designed
algorithms. It is divided into two main parts. The first one presents results obtained
in ns-2 simulator [19], and the second one presents results from real-world testing
environment. The final chapter concludes the thesis and presents observations on
possible future continuation work.



6

2 Multimedia communication and the Internet
This chapter describes multimedia technology in the Internet with specific focus

put on the video communication. It also discusses characteristics of the Internet
that are important for multimedia communication.

Figure 3 illustrates upstream channel of the video communication system. Any
other Internet multimedia system looks similar to the one presented in the pic-
ture. For instance, the audio communication system should look the same with
the video camera substituted for the microphone and the screen substituted for the
loudspeaker. Generally speaking every Internet communication system is divided
into three main parts: the sender, the receiver, and the network part. In the video
system the sender part comprises the video camera, the encoder, and the packetizer.
The video camera is responsible for acquisition of video in the form of raw data
(e.g. in RGB or YUV format). Having obtained data, the video camera relays it to
the encoder block where raw data are compressed and encoded into video frames.
The encoder delivers frames to the packetizer which encodes them into data packets,
fragments packets exceeding Maximum Transmission Unit (MTU) size into smaller
ones, and encapsulates them in application specific headers. The next sub-part of
the system is the sender buffer which schedules packet transmission based on ex-
isting network situation. The network part connects communicating users. Packets
traverse the network through several routers and versatile physical media (e.g. op-
tical fibre). Packets experience transmission and queuing delays, and may also get
corrupted or lost.

The receiver part of the system transfers received packets into raw data that are
displayed on the desktop screen. Received packets are delivered to the receiver buffer
which reorders them and passes them to the depacketizer. The receiver buffer also
drops packets arriving too late to be played. The depacketizer combines fragmented
packets, removes application specific headers, and reconstructs compressed frames.
They are passed further to the decoder which decompresses them into raw data form
that allows for their display on the desktop screen.

Video communication can be divided into two general types: video streaming
and conversational video. In the streaming type, packets flow only in one direction
(from a server to a client), whereas in the conversational communication packets
are transmitted in both directions. The second important difference between both
modes of communication concerns packet delay constraints. In conversational video,
delivery of a sent packet cannot exceed some fixed value (3GPP recommends 400ms)
in order to keep conversation quality on satisfactory level. This constraint does not
apply to streaming scenario, in which receiving application may stop playing packets
for a moment and restart it after receiving high delayed packets.



7

Figure 3: Video communication system. Picture adopted from [3]

2.1 Video coding

Video compression is the key element of the communication system, as it allows
consuming far less network resources. Video consists of sequences of static pictures
(frames) which are displayed on the screen. As neighbouring frames do not differ
much from each other, it is pointless to send whole information about every frame.
As a result, the encoder divides frames into three different types to utilise network
resources better:

• Intra-coded picture (I-frame)

• Predicted picture (P-frame)

• Bi-predictive picture (B-frame)

An I-frame is a static picture which is compressed spatially. It contains infor-
mation about whole picture, and can be decoded independently without any other
frame. Because of this, its size is significantly larger than size of other frames. De-
coding of P- and B-frames depend on other past or future frames. This feature allows
conveying only difference between dependent frames, thus saving a lot of network
resources.

A P-frame holds information only about changes from previous I- and P-frames.
For instance, if car motion on a static background is to be encoded, it is sufficient to
encode one static I-frame, and a series of P-frames consisting just information with
car’s movement. A B-frame encodes differences between previous and succeeding I-
and P-frames, thus allowing for even higher compression.



8

As conversational video has very strict requirements concerning packet delivery
delay, it is very important to encode and decode data at very high speed. As a result,
B-frames, which depend on future frames causing additional coding delay, are not
used in this type of video communication. On the other hand when the video is
just streamed delay tolerance is much higher and playout delay is also higher, the
receiver has enough time to wait for arrival of the B-frame, perform proper packet
reordering and display the picture on the screen.

Neighbouring frames form Group of Pictures (GOP). Examples of GOPs are
presented in the figure 4. Figure 4a presents GOP for video streaming, whereas 4b
shows example of conversational video GOP. In the former picture, the B-frames
appear inside GOP, whereas in the latter one, only the I- and B-frames are present.

(a) GOP for streaming

(b) GOP for conversational video

Figure 4: Group of Pictures arrangement (a) for streaming scenario (b) for conver-
sational scenario. Picture adopted from [3]

One of the most advanced video coding standard is H.264 [20]. It has been widely
adopted as an audio-video coding format by many telecommunications associations
like ITU, or 3GPP. H.264 standard divides coding process into two separate layers:
the video coding layer (VCL) and the network adaptation layer (NAL). The VCL



9

compress video data and also adds redundant information which improves error re-
silience of the compressed stream. Selected error resilience mechanisms are discussed
later. As the VCL is designed to be independent from the underlying network tech-
nology, the NAL is responsible for adaptation of generated stream to various network
environments. This layer encapsulates stream into Network Adaptation Layer Units
(NALUs), which are transported inside RTP payload [21]. Details of H.264 RTP
payload format is defined in [22], and presented in the figure 5.

(a) One NALU per packet

(b) Multiple NALUs per packet

(c) Fragmented NALU

Figure 5: Encapsulation of H.264 stream into RTP payload. Picture adopted from
blog.radvision.com/voipsurvivor/



10

2.2 Network traffic types

Network traffic can be divided into two fundamental types: elastic traffic and
inelastic traffic. Elastic traffic requires absolute transfer reliability, but its comple-
tion is not limited by time constraints. It is the traditional traffic in the Internet, for
which the network was designed. Typically elastic traffic is used together with the
Transmission Control Protocol (TCP), which has its own built-in congestion control
mechanisms allowing the sender and the receiver to use highest possible end-to-end
capacity between them. Examples of application protocols generating elastic traffic
include Hypertext Transfer Protocol (HTTP), Simple Network Management Proto-
col (SNMP), Telnet, Simple Mail Transfer Protocol (SMTP), File Transfer Protocol
(FTP).

On the other hand, inelastic traffic does not tolerate high delay, as it has
real-time constraints. However, to achieve expected Quality of Service (QoS) level,
absolute reliability is not required. Most often inelastic traffic is used together with
the User Datagram Protocol (UDP), which does not have any congestion control
mechanisms. As a result, capacity usage of UDP-based applications depend on
application’s data generation rate. However, as such applications may be unaware of
availability of network resources, they may require preferential treatment. Examples
of such applications include: stock-ticker quotes, live TV, on-line gaming, video
conferencing, etc. RTP protocol, which details are covered in the next section, is
very often used as the application protocol by this traffic.

2.3 Internet multimedia environment characteristics

Generally there are three main characteristics of the multimedia environment,
which are illustrated in the figure 6. These are: path capacity, network latency and
losses.

Path capacity characteristic depends on environment conditions and can be
static or time-varying. In the wired/fixed Internet capacity is most often constant,
and can be:

• used exclusively by one flow

• shared by many flows on one machine

• shared by many flows on many machines by means of Ethernet, WLAN, etc.

When the channel is used by just one flow, its entire capacity can be utilised.
However, when multiple flows are present, they must compete for the channel and
be fair to other ones, so as to optimise network resources utilisation [23]. In such
case congestion may result from unfair capacity utilisation by some applications, or
from limited network bandwidth in a bottleneck link.

In mobile and wireless network channel capacity changes dynamically and un-
predictably. Capacity fluctuations are caused by user mobility and variable physical
conditions over the air interface.



11

Network latency is the period of time needed by a packet to go from the sender
to the receiver. It can be measured also as the round-trip (sum of upstream and
downstream latency). However, round-trip network latency measurement may be
affected by network’s asymmetry which might be caused by variations of queuing,
processing and physical propagation delay experienced on both directions of the
network.

Networks can be divided into high latency networks and low latency net-
works. In former ones, the latency is close to acceptable real-time constraints and
leaves very small room for queuing and processing delays. In latter ones, there is
much more room for delays caused by queuing and processing.

Losses in the network are caused by routers dropping arriving packets when
their queues are full, and by bit-error losses. Losses resulting from intermediate
packet router drop are called congestion losses, and are prevailing source of losses
in the Internet. Elastic traffic flows using TCP are able to respond properly to such
losses. On the other hand, bit-error losses are caused by interference and fading
in the wireless environment, or by packet corruption in the wired one. It is very
difficult to distinguish type of loss, as most of them in the Internet are congestion
losses, TCP response to bit-error losses is very poor, as TCP regards every loss as
the congestion loss. Inelastic traffic may additionally suffer from packets arriving
too late, and thus becoming useless.

Figure 6: Link characteristics in multimedia environment. Picture adopted from [3].



12

Sections below briefly discuss features of different multimedia environment in
terms of these characteristics.

2.3.1 Internet environment

The Internet (see fig.7a) connects globally millions of computers worldwide. Core
of the network is built by routers responsible for forwarding packets between end
stations. Routers use routing algorithms to choose the most suitable route for the
packet. However, as network load varies, and routers may apply traffic engineering
policies (e.g. load balancing resulting in forwarding packets using multiple paths),
two consecutive packets may experience different end-to-end delay, which accounts
for packetisation and serialisation delays. Most of the Internet traffic is transported
over optical fibres, which have very low bit-error rates. As a result, almost all packet
losses in the Internet are congestion losses. Link capacity is almost constant for the
short period of time. Capacity may change in the longer period of time, as Internet
Service Providers (ISPs) may differentiate amount of bandwidth available for the
user based on his/her subscription.

2.3.2 Mobile environment

The mobile environment (see fig.7b) comprises Radio Access Network (RAN)
and the core network, which is very similar in its features to the Internet. In RAN,
traffic is controlled on the link layer by Radio Link Control (RLC), which may work
in acknowledged mode, unacknowledged one, and transparent one. As multimedia
applications send inelastic traffic and link layer delays should be minimised, un-
acknowledged mode is mostly used by them. However, usage of this mode forces
applications to implement their own rate adaptation and error resilience mecha-
nisms. The RLC also controls payload size that can be carried over the channel in a
particular time. This size varies, as fading, interference, hand-overs appear because
of user mobility. Network latencies experienced by packets are potentially higher
than in the Internet, because of unpredictability of radio channel conditions, and
additional queuing at the base station, and varies from 30-80ms to a few 100ms.
Furthermore, the radio interface is much more sensitive to bit-error losses than the
wired interface. In this environment, bit-error losses are much more frequent, and
it is extremely difficult to distinguish between bit-error losses and congestion ones.

It is also possible to have the heterogeneous environment in which Internet
and mobile links are simultaneously present. Such environment characteristics are
very similar to these of the mobile environment.

2.4 Summary

The typical video communication system consists of the sender device, the re-
ceiver device, and the network between them. The sender side comprises the video
camera, the encoder, the packetizer, and the sender buffer. The receiver side is
built of the receiver buffer, the de-packetizer, the decoder, and the screen. Video
stream is encoded before sending by dividing its raw data into different frames (I-,



13

P-, and B-frame). Delay constraints makes usage of B-frames for conversational
video impossible.

Traffic in the Internet can be divided into two main groups. Elastic traffic is not
time critical, but it demands absolute reliability. On the other hand, inelastic traffic
can tolerate small losses, but it must be delivered within required time boundaries.

Path capacity in the wired Internet is rather stable. However, user mobility
and various physical conditions over the radio interface cause capacity fluctuations
in the wireless networks. Losses in the wired networks result almost always from
congestion. In the wireless ones, source of losses is harder to determine, as it may
be caused not only by congestion, but also by errors coming from interference and
fading effects.

(a) Internet environment

(b) Mobile environment

Figure 7: Multimedia environments. Picture adopted from [3]



14

3 Multimedia transport protocols
Multimedia traffic can be transported by HTTP (so-called HTTP streaming),

or by RTP. HTTP streaming works over TCP and this makes it sensitive to following
potential issues:

• TCP guarantees in order packet delivery, which may cause head of line blocking

• TCP is reliable, but does not take into accounts delays

• TCP has its own congestion control mechanism, which may be unsuitable for
codec demands

However, due to presence of web browsers in almost all types of devices, and
HTTP ability to traverse Network Address Translators (NATs) and firewalls, HTTP
streaming is the most widely used multimedia transport protocol. It is manly used
in streaming applications, however, as Skype shows it may also be used for conver-
sational ones.

Generally the conversational communication can be successfully performed on
top of TCP if the network conditions are good enough [24]. However, as TCP
has its own built-in congestion control algorithm, and there is nothing to create
specifically for the multimedia congestion control purpose in HTTP streaming, this
work focuses on rate adaptation algorithms for multimedia traffic transported over
RTP, and rest of this chapter concentrates on this protocol.

3.1 Real-time Transport Protocol (RTP)

Real-time Transport Protocol (RTP) [4] is the standard application-layer
protocol for transmission of data with real-time characteristics (e.g. audio, video)
over IP networks. RTP can work with different transport protocols: TCP, UDP and
DCCP (Datagram Congestion Control Protocol). Usage of RTP over TCP makes
it sensitive to previously mentioned TCP issues. Although DCCP connects advan-
tages of UDP (no reliability and ordering) and TCP (built-in congestion control),
experimental results from 2007 [25] show that RTP performs worse over DCCP than
UDP, and even TCP. Therefore, RTP is most often used together with UDP.

Every RTP packet header (see fig. 8) carries sequence number, timestamp, Syn-
chronisation Source identifier (SSRC) and payload type. Sequence number increases
by one for every sent packet, and allow the receiver to detect packet losses and re-
order them if received in wrong sequence. Timestamp represents sampling instant of
the first octet in the RTP data packet or video frame. It allows the receiver to know
when the packet should be played. If two packets have identical timestamps, but
different sequence numbers, they belong to the same frame which was fragmented
at the sender side, because of MTU size limitation. Payload type uniquely identifies
content of the packet, allowing the receiver to understand it, and process it correctly.
SSRC allows unambiguously distinguish media sources participating in the session.
Its value is chosen randomly, in such a way that no two sources in one session can



15

have identical value. Although it is little possible that two sources choose identical
SSRC value, RTP standard defines mechanisms to resolve such conflicts.

Apart from end stations, the RTP standard defines also middle-boxes like
mixers and translators. The former ones create a new media stream from one or
more incoming streams. This solution is often used in conference bridges, as it re-
duces bandwidth demands for the receivers. The latter ones operate on the transport
level, and may perform e.g. IPv4-IPv6 translation, or multicast-unicast adaptation.

Figure 8: RTP header. Picture adopted from [4].

3.2 Real-time Transport Control Protocol (RTCP)

Real-time Transport Control Protocol (RTCP) is the completion of RTP.
It provides feedback from the receiver to the sender on quality of received transmis-
sion. Figure 9 presents general functionality of these two protocols.

RTCP functionality is based on periodical sending of transmission and re-
ception quality reports (see fig. 10). There are two types of RTCP reports. Sender
Reports (SRs) provide information related to media playout, whereas Receiver Re-
ports (RRs) contain long-term reception statistics.

Figure 9: RTP and RTCP overview. Picture adopted from [5].



16

Figure 10: RTP and RTCP flow diagram. Picture adopted from [5].

RFC 3550 states that RTCP reports must not exceed 5% of the RTP session
bandwidth. Furthermore, as for some high bit-rates session 5% can be a lot, it
also states that minimum RTCP report interval should be 5 ± 2.5 seconds. This
rule makes congestion control extremely challenging, as the sender only knows long-
term statistics, and does not have the most recent data to quickly react to changing
situation. Therefore, extended feedback profile (RTP/AVPF) [26] was defined in
RFC 4585. This standard allows receivers to send feedbacks more frequent than in
the original specification. It releases minimum RTCP report interval rule, but it
still maintains 5% bandwidth rule, so as to keep the protocol scalable. Figure 11
presents difference between RTCP report intervals in both standards.

Figure 11: Difference between standard RTCP report interval and extended feedback
profile (RTP/AVPF). Picture adopted from [5].



17

RTCP Sender Reports carry information about number of bytes and packets
sent. They may be used for sending rate calculations by the receiver. They also
contain RTP and NTP timestamps, which allow for synchronisation needed for play-
back. RTCP Receiver Reports contain following reception statistics: fraction lost
informing about losses in the last interval, cumulative lost, highest received sequence
number telling the sender if any packet was received in the last interval. They also
contain timestamps of last SR reception and delay since its last reception. These
timestamps allow sender to calculate Round-trip Time (RTT). RTCP report headers
are presented in the figure 12.

RTP media session may also be supported by RTCP extensions providing more
detailed information on reception statistics. Moreover, Forward Error Correction
(FEC) may be used together with RTP to provide more protection for RTP packets.
RTCP extensions and FEC are described in later chapters.

3.3 Summary

Multimedia traffic is transported in the Internet either by HTTP streaming, or
by RTP. HTTP streaming is the less natural method of transport, as it makes the
content sensitive to issues resulting from TCP nature. RTCP is associated with
RTP and is responsible for conveying information about transmission quality. RTP
is run most often over UDP which does not guarantee reliable delivery and have
built-in congestion control mechanisms. Thus, to ensure reliable usage of RTP,
error resilience and rate adaptation functionality must be added in the application
layer. These mechanisms are described thoroughly in the next two chapters.



18

(a) Sender Report header

(b) Receiver Report header

Figure 12: Basic RTCP report headers. Picture adopted from [4].



19

4 Error resilience mechanisms for conversational
video communications

Most of multimedia communications do not have guarantee of reliable delivery.
As errors on the receiver side are unavoidable, it is very important to minimise
distortions by means of error control mechanisms. Such mechanisms may be able to
recover lost or corrupted data, conceal error effects, or mitigate error propagation.
Generally error control methods can be divided into three groups: source coding
methods, channel coding ones, and end-to-end application/transport ones.

Source coding methods concern all error resilience mechanisms managed by the
video codec. They may be applied by error resilient encoding, interactive error
control and error concealment. Error resilient encoding concept is based on adding
redundant bits to the generated video stream which can be used by the receiver to
detect errors, reduce or stop its propagation, and help its concealment. For instance,
H.263+ coding standard uses concept of Video Redundancy Coding (VRC). In this
standard current P-frame is predicted directly from the previous frame. As a result
loss of just one frame breaks whole prediction frame. VRC divides video stream into
several substrates, so that current frames are not predicted only from the last frame.
Consequently loss of a single frame breaks prediction frame just for one sub-stream,
and not for the whole stream, which is much easier to conceal [27]. Interactive error
control requires cooperation between the encoder and the decoder. In this group of
mechanisms, the decoder sends feedback containing information about correctness
of received stream which may be used by the encoder to adapt its policy to current
network conditions. Reference Picture Selection (RPS), which is described below
in more detail, is the example of such mechanism. In error concealment methods
the decoder tries to mitigate effect of loss by interpolating missed frame region
from adjacent regions or frames. Furthermore, H.264 introduces new error resilience
tools like: Parameter Sets, Flexible Macroblock Ordering (FMO) and Redundant
Slices (RS) [21]. Parameter Sets contain information about sequence of pictures,
and slices belonging to a single picture. If delivered reliably to the decoder (e.g. by
out-of-band methods like SDP in SIP) they greatly improve error resilience. Flexible
Macroblock Ordering allows to assign macroblocks to slices in an other order than
the scan order. Consequently, if packet containing information about slice group
gets lost and FMO is used, other packets containing information about different
slices provide much more data about whole frame which facilitates job for error
concealment mechanisms. Redundant Slices are sent parallely to other primary
slices, but they are encoded with lower quality. If the primary slice is received by
the decoder, the RS is discarded. However, if the primary slice is lost, the RS may
be used to properly decode picture.

Channel coding methods refer to error control mechanisms implemented on the
physical and link layer. They include application of error resilient block or con-
volutional codes (e.g. Reed-Solomon codes, or Viterbi algorithm) on the physical
channel.



20

Transport layer mechanisms are realised by means of lost packet retransmission,
Forward Error Correction (FEC) [6], and interleaving. Retransmissions are
based onNegative Acknowledgement (NACK) feedback, whereas FEC concept
uses additional redundant packets to recover lost data. Both of these mechanisms
are described in detail below. Interleaving idea makes use of the fact that human
perception can easier tolerate individual losses than burst ones. In this mechanism
sequence of video frames is reordered using some distribution pattern before being
sent, so that neither two adjacent frames are sent one after another. The receiver
must know distribution pattern to reorder packets back. As a result, in case of burst
losses it is less likely that two consecutive frames are lost, and single losses are easier
to conceal. Because it is necessary to reorder received packets, this method is not
suitable for conversational services, as their delay budget does not allow for packet
reordering.

Examples of application layer mechanisms are Unequal Error Protection
(UEP) and robust scheduling. UEP closely cooperates with FEC and decides which
parts of packets are more important than others, and should receive better error pro-
tection by means of FEC, or different video encoding. Similar concept is used for
robust scheduling. In this method more important parts of picture data are sent
before less important ones. As a result, in case of unexpected throughput change,
it is still possible to play video with lower quality.

The rest of this chapter discusses in more detail four chosen mechanisms. Namely,
NACK, Slice Size Adaptation, Reference Picture Selection and Forward
Error Correction.

4.1 NACK

In RTP session the receiver is able to detect packet losses by detecting gaps in
sequence numbers of received packets. The receiver periodically sends RTCP reports
to the sender informing about general reception statistics. Extended feedback profile
(RTP/AVPF) [26] allows the receiver to send the generic NACK message indicating
which packets recently sent are regarded by the receiver as lost. When the packet
loss is detected, the receiver must check if it is allowed to send the NACK packet, as
it is constrained by RTCP session bandwidth limits, and decide based on perceived
RTT and playout buffer delay if the retransmitted packet does have a chance to be
delivered before it should be played. When the sender receives the NACK packet,
it retransmits all lost packets indicated in this message. RFC 4588 [28] defines
RTCP retransmission packet format which is used for resending the lost packet.
Retransmitted packets are sent in the different stream to the original ones. It is
necessary to separate these streams (either by creating different session, or by using
different SSRC), so as not to disrupt RTCP statistics and allow for usage of multiple
payload types inside one session.



21

4.2 Slice Size Adaptation (SSA)

Groups of macroblocks belonging to the same video frame form a slice. H.264
standard defines 5 slice types. Namely I-, P-, B-, SP-, and SI- slice. Macroblocks
inside slices I, P and B can be decoded in similar way to types of frames equivalent
to them (i.e. macroblocks inside I-slice can be decoded independently, and so on).
The other two slice types (Switching P - SP, Switching I - SI) are used for encoding
of efficient switch between bitstreams coded at various bit rates. Video coding
standards allow to adapt slice sizes to existing channel conditions. For lossy channels
it is possible to use slices containing just one macroblock, whereas in lossless ones
the slice may contain even whole picture. Usage of large slices improves coding
efficiency. However, if such slices exceed MTU of underlying link layer, they have to
be fragmented and it makes them more vulnerable to frame losses, as it is sufficient
just to loss a part of fragmented frame to regard whole frame as lost.

4.3 Reference Picture Selection (RPS)

Modern video codecs (e.g. H.263 [29], H.264) allow not only to use the most
recent video frame for predictive decoding, but also older reference ones. Therefore
if the encoder learns which pictures were correctly received by the decoder, it can
use one of these (previously buffered) pictures as the reference picture for inter-
prediction encoding. Usage of this method stops the temporal error propagation
caused by a lost packet. On the other hand, if older pictures are used as reference
ones, more bits must be used to encode new pictures, as differences between the
current picture and the older reference picture is greater than between the current
one and the most recent one.

The receiver conveys information about in-/correctly received frames using the
extended feedback profile (RTP/AVPF) defined in RFC 4585 [26]. It can operate
by reporting missing frames (NACK mode), or correctly received ones (ACK mode).
In either mode the encoder knows which frame can be used as the reference one. In
order to minimise feedback overhead, the mode of operation can be chosen based on
perceived number of frame losses. Feedback messages are carried and encapsulated
into RTCP reports using RFC 4585 rules.

4.4 Forward Error Correction with Uneven Error Protection

Forward Error Correction (FEC) is the error control method in which the
sender adds redundant data to its messages which can be used by the receiver to
recover original data that get lost over the channel during transmission. Redundant
data are obtained by performing mathematical operations on main data. As a result
of the mathematical operation, from k initial data packets, n (n>k) packets are
sent, and the receiver can obtain whole content if up to n-k packets were lost. These
operations may include parity, Reed-Solomon, or Hamming codes. This method was
invented by Richard Hamming in the late 1940’s and since then became the standard
channel coding mechanism.



22

Beside physical layer FEC, there is also FEC associated with transport/application
layer of multimedia streams [30]. As quality of multimedia conversations suffers from
unavoidable packet losses, and strict delay requirements of real-time conversations
limit applicability of lost packet retransmissions, it was proposed to additionally
protect packets with FEC. This method is very useful in scenarios where retrans-
missions are impossible and extra bandwidth is available.

The FEC-capable RTP sender takes a set of packets from the media stream and
performs mathematical operation (e.g. XOR) across them, generating FEC packets,
and sends them along it (see fig. 13). As a result, the receiver is able to recover any
packet used to generate the FEC packet. More advanced mathematical functions
(e.g. Reed-Solomon codes) give more protection to the original media stream by
allowing more packet losses, but they require more computational resources. The
smaller the set of packets used for FEC generation is, the better these packets are
protected. However, when these sets are too small, too much bandwidth may be
used by FEC leading to congestion. Generally packet protection given by FEC is a
trade-off between the available bandwidth and the protection strength.

(a) FEC sender

(b) FEC receiver

Figure 13: Concept of FEC sender and receiver operation. Picture adopted from [5].

Uneven Level Protection (ULP) was created to provide FEC protection in
scenarios where the available bandwidth is relatively small (e.g. wireless channels).
ULP concept is based on observation that not all parts of the media packet are of
the same importance. Therefore, it is sensible to provide different level of protection
to different packet fragments, and use more bandwidth for crucial packet parts.
Example of ULP concept is presented in fig. 14. Audio and video packets are
divided into parts of decreasing importance. For instance, in Audio Redundancy
Coding (ARC) the first payload part carries current audio sample followed by other
parts with samples of previous frames, which are less important, as they are only
used if primary encodings of these frames were lost. Video coding standards divide
frames into reference ones, which are used for future inter-picture prediction, and
non-reference ones. Consequently, the former are more important than the latter,
and FEC protection may be applied just to them, leaving non-reference frames
without protection.



23

FEC packets are sent in a separate stream, so that receivers which are not FEC-
capable can also participate in multimedia sessions. This approach may be very
useful for conference scenarios.

The sender constructs the FEC packet by placing it inside RTP payload (see
fig. 15a). Meaning of RTP header fields of FEC packets follows general RFC 3550
rules, limiting only payload type value to the dynamic range which is determined
by out-of-band signalling. This approach guarantees backward compatibility for
receivers without FEC support. The FEC header (see fig.15b) carries information
about RTP headers of protected packets. SN base field indicates sequence number
of lowest packet protected, whereas TS recovery, PT recovery, M, CC, X and P
carries values calculated by the protecting function based on values of these fields
in original RTP packets. length recovery field carries information about lengths
of payloads and RTP extensions (if present) of original RTP packets. The FEC
payload consists of multiple parts which are associated with every protection level.
Every part is divided into FEC level header and FEC level payload which carries
protection. The FEC level header contains information about protection length for
this level and the mask indicating which RTP packets are protected by this FEC
level.

Figure 14: Example of ULP: The first FEC packet has only level 0 protection for
packets A and B. Protection operation is performed only on parts of these packets,
leaving other parts of them unprotected. The second FEC packet also has level 0
protection for packets C and D, but it also gives level 1 protection for less important
parts of packets A, B, C and D. Picture adopted from [5].



24

(a) FEC packet structure

(b) FEC header format

(c) ULP level header format

Figure 15: ULP FEC packets format. Picture adopted from [6].



25

4.5 Summary

Performance of error resilience mechanisms highly depend on end-to-end delay
and channel packet loss ratio. Applicability of NACK is limited to low end-to-
end delay scenarios where packet losses are also not very frequent in order to keep
retransmission overhead in the acceptable level. Performance of RPS is proportional
to end-to-end delay and packet loss ratio, and it decreases along its increase. SSA
is applicable in most of scenarios. [31] does not define optimum usage scenario for
FEC with ULP , but it is expected to perform well in high delay scenarios where
repair cost by means of interactive mechanisms is high.

To sum up, there is more than one error resilience mechanism applicable for a
particular scenario, and there is a need to create the complex and adaptive error
resilience mechanism which would be able to adapt itself to existing conditions by
choosing subset of its mechanisms applicable for a particular scenario [31]. Usage of
error resilience mechanisms can be further extended if they are joined with addition
of congestion control mechanisms. By reducing the sending rate, we are able prevent
congestion errors from occurring if the network conditions do not allow for keeping
the rate. Furthermore, error resilience mechanisms help minimise effects of losses
caused by an inappropriate rate increase.



26

5 Rate adaptation of multimedia flows
This chapter focuses on rate adaptation of multimedia flows. It discusses problem

of congestion in the Internet, and its control methods. Later it describes congestion
indicators for multimedia flows. TCP Friendly Rate Control for RTP (TFRC for
RTP) [8] rate adaptation algorithm is presented in the end as the example.

5.1 Congestion in the Internet

The Internet is a packet switched network that unlike circuit switched networks
takes advantage of the statistical multiplexing giving better bandwidth utilisation.
Lack of any access control mechanisms in the core Internet concept allows injecting
unlimited amount of data into the network. As speed of links and router capabilities
are limited, packets buffering in the intermediate routers was introduced, so as to
queue incoming packets which cannot be handled instantly. Furthermore, as buffers
also have limited space, packets are dropped when the router buffer is filled above
some threshold. Figure 16 illustrates possible congestion scenario. In this example
the queues of A and P routers are not congested (blue colour in the figure), and
both of these routers forward packets to the B router, whose queue is more filled
(green colour in the picture). The B router and the X one, whose queue filling is
comparable to the B one, forward their packets to the C router, which is unable to
handle that many incoming packets. As a result, its queue gets full, and it starts to
drop newly arriving packets.

Providing satisfactory service for multiple flows, requires the network end-points
to adapt their rates to existing network conditions. TCP traffic has built-in conges-
tion control algorithms allowing rate adaptation and being fair to other TCP flows.
As multimedia flows are often sent over UDP, congestion control mechanisms must
be implemented for them at the application layer. Multimedia applications may
perform its rate adaptation by switching between codecs (e.g. PCM and GSM),
using variable bit rate codecs (e.g. SVC H.264), or by adjusting frame rates (e.g.
30 frames/s to 15 frames/s).

Figure 16: Congested queue in the router. Picture adopted from [3].



27

5.2 Introduction to rate adaptation

In order to implement rate adaptation, the sender must be informed about the
receive rate by the receiver in the feedback path. In TCP, receivers send feedback
packets acknowledging correct reception of sent segments. Based on these ACK
packets, TCP senders change their sending rates to adjust to current network sit-
uation. In multimedia traffic feedback is provided by RTCP reports, which are
sent far less often than TCP feedback. RFC 4585 defines extended feedback profile
(RTP/AVPF) [26] which allows sending more frequent feedback, but even when this
profile is used, its frequency may be lower than in the TCP case.

Rate adaptation methods are divided into three different types based on deci-
sion maker [32]. In sender driven rate adaptation the receiver collects network
statistics and conveys them to the sender which uses them to adapt its sending
rate (e.g. TFRC [33]). In receiver driven rate adaptation the receiver having
collected all required data chooses appropriate sending rate, and transfers it to the
sender which must adapt to it (e.g. TMMBR/TMMBN [34]). In network driven
rate adaptation an element in the network (e.g. RTP mixer) monitors network
conditions and in case of their change signals this information to the sender or re-
ceiver (e.g. TMMBR/TMMBN [34]). This type of rate adaptation is particularly
useful for conference scenarios where session participants have no knowledge about
network conditions for other participants.

In TCP congestion control algorithms it is possible to distinguish two main
phases: slow-start and congestion avoidance. In the slow-start phase TCP
senders aggressively increase their sending rates by expanding the congestion win-
dow for every acknowledgement of properly received data segment. In the second
phase the congestion window is increased additively with every received ACK, and
decreased multiplicatively when segment losses are reported.

In multimedia congestion control algorithms, it is more difficult to distinguish
phases of congestion control because of different requirements of the multimedia
traffic in comparison to the TCP one. As TCP guarantees end-to-end reliability by
retransmission of lost segments, it is not concerned so much with segment losses.
However, multimedia packets carry real-time data which should be delivered to the
receiver in time constrained by the delay budget. Delivery of multimedia packet
in time exceeding the delay budget makes them totally useless for the receiver.
Therefore congestion control algorithms of multimedia flows must primarily avoid
packet losses and discards, and look for sending rate increase only when the former is
ensured. As a result, congestion avoidance1 and congestion mitigation phases
can be distinguished.

In the congestion avoidance phase, the sender/receiver based on congestion met-
rics included in RTCP reports tries to detect if congestion may appear soon, or if
path capacity is underutilised. If congestion appearance is predicted, the sending
rate is decreased, whereas if link underutilisation is perceived, the sending rate can
be increased. However, it is also possible that RTCP feedback comes too late to

1This term should not be confused with TCP congestion avoidance. We use it because of lack
of any other meaningful term.



28

predict congestion appearance and path has already become congested. In such
situation the sender/receiver enters the congestion mitigation phase in which it ag-
gressively cuts its sending rate to minimise congestion effects on the transmission
quality.

In multimedia rate adaptation we distinguish three operation modes: over-
shooting, undershooting, and stability. In TCP rate adaptation similar modes
exist and their meaning is also identical. During overshooting the sending rate ex-
ceeds current link capacity which leads to increased queuing delays, packet discards,
and finally packet losses, therefore it should always be avoided. This mode can
be entered either by incorrect perception of available bandwidth, by unexpected
change of the path capacity, or by bandwidth probing as in TCP case. During
undershooting the sending rate is below available path capacity which leaves band-
width underutilised. This mode may result from conservative bandwidth estimation
by the sender/receiver, algorithm construction (in TCP case), or be used to quicker
mitigate congestion effects on the congested link. During stability mode the sender
maintains its sending rate around the path capacity. Figure 17 illustrates these rate
adaptation operation modes.

Figure 17: Modes of rate adaptation. Picture adopted from [3].

5.3 Congestion indicators in multimedia flows

RTCP feedback packets deliver receiver’s reception statistics to the sender. Ba-
sic RFC 3550 RTCP profile defines just four metrics for Receiver Reports (RRs)
losses, receiver rate, jitter and RTT. RTCP Sender Reports (SRs) carry information
about its sending rate. For conversational video, these metrics are insufficient, and
consequently IETF defines RTCP extensions allowing to convey additional data to
properly assess congestion situation. Many extensions were defined, among which



29

RTP Control Protocol Extended Reports (RTCP XR), presented in RFC 3611 [7],
provides the richest set.

5.3.1 Packet losses and discards

Packet losses in the network are divided into bit-error losses and congestion ones.
Bit-error losses are caused mainly by signal fading and interference, and therefore
appear randomly which makes them impossible to predict. Conversely congestion
losses result from over-utilisation of link capacity, and most often can be predicted.
Before packets get lost, a sequence of discarded packets arriving too late at the
receiver should appear. Therefore packet losses indicate state of heavy congestion
in the network, and packet discards provide early signs of incoming congestion.

Packet losses are reported in standard RTCP specification [4], which does not
include discard metric. Despite several proposals of conveying discards statistics
[35][36], no standard has been defined.

5.3.2 One-way delay (OWD) and Round-trip time (RTT)

One-way delay (OWD) is the amount of time needed for the packet to traverse
the network from the sender to the receiver. This time includes physical signal
propagation time, and delays caused by packet serialisation, its queuing in inter-
mediate routers, and processing by them. On the other hand, the Round-trip time
(RTT) is the amount of time needed for the packet to go from the sender to receiver
and back. As delay caused by propagation, serialisation and processing is almost
constant in the wired Internet, measurements of RTT/OWD vary only by queuing
delay. Thus, higher RTT may indicate increase of queuing delay, which is an early
sign of upcoming congestion. On the contrary the same conclusion cannot be made
in the mobile networks, where additional delay may result from retransmission of
corrupted frames caused by interference and fading effects.

RTT measurements are included in standard RTCP specification [4], and are
performed collaboratively by the sender and the receiver. The sender remembers
exact time of generating last SR, and the receiver informs it in the RR of delay
between sending its own RR and reception of the last SR. As a result, when the
sender gets RR, it is able to calculate RTT.

RTT = Timerecv_RR − Timesnd_SR − Timedelay (1)

where :

Timerecv_RR − reception time of last RR

Timesnd_SR − last SR sending time

T imedelay − receiver′s delay between SR reception and RR sending



30

Calculation of OWD is much more complicated, because clock synchronisation
between the sender and the receiver cannot be assumed. Very often it is assumed
that:

OWD =
RTT

2
(2)

However, equation above is only true if the network’s upstream and downstream
paths are symmetric, which is difficult to accurately determine. [37][38] present
algorithms allowing receiver to precisely evaluate packet OWD. The result may be
conveyed back to the sender using RTCP APP packet.

5.3.3 Sending rate (BRS), Receive rate (BRR), Goodput (GP)

Sending rate is the rate at which packets are injected into the network, whereas
receive rate indicates rate at which packets arrive at the receiver. Goodput is similar
to the receive rate, but it is calculated only based on properly received packets (i.e.
not discarded ones). Lower receive rate (or goodput) in comparison to sending
rate may indicate network congestion. The following equations presents how these
metrics can be calculated using content included in the RTCP reports.

Sending Rate(BRS) =


∑LPS

i=last_SRLPS
Si

T imenow−TimelastSR
calculated by the sender

octetnow−octetlast_SR

T imenow−Timelast_SR
calculated by the receiver

(3)

where :

Si − size of the packet i

octet − sender′s octet count value included in SR

Receive Rate(BRR) =

∑HSN
i=last_RRHSN

Si

Timenow − Timelast_RR

(4)

where :

Si − size of the packet i



31

Goodput(GP ) =

∑HSN
i=last_RRHSN

Ii × Si

Timenow − Timelast_RR

(5)

where :

Si − size of the packet i

Ii ∈ {0, 1}, where Ii = 0 when the packet i lost or discarded,

and Ii = 1 otherwise

The receiver may calculate sending rate from data included in standard SRs,
whereas receive rate can be calculated by the sender from RRs. For goodput calcu-
lation RTCP extensions containing discard metrics ([35][36]) must be used.

5.3.4 Jitter

RTP sources usually generate and send packets periodically. However, dynamic
network conditions may change packet’s OWD, making them appear aperiodically
at the receiver. Jitter is the estimate of the statistical variance mean of the RTP
packet inter-arrival time [4]. Increase of packet inter-arrival time indicates growing
congestion, whereas its decrease suggests possible end of congestion. RFC 3550 [4]
defines following method of jitter calculation:

Jm = Jm−1 +
Dm−1 − Jm−1

16
(6)

where :

m− 1, m are consecutively received packets

However, jitter metric is of limited usefulness, as it covers inter-arrival time in-
formation just about last 16 packets, whereas unless extended feedback profile
(RTP/AVPF) is used, almost all RRs cover period of time when more packets were
received. As a result, jitter metric, conveyed in the RR, usually does not contain
information about the whole report interval, but just about a fraction of it.

5.3.5 Other indicators

All above presented indicators are accessible in RFC 3550 [4] standard. We focus
mainly on them, because they are already included in the basic RTP standard, thus
they do not introduce any bandwidth overhead. However, there are many other
RTCP extensions allowing to transfer other important data for rate adaptation.
Few of them are briefly summarised in the table 1. Furthermore, in the course of
our work, we decided to use two additional extensions (Loss RLE Report Block and
Discard RLE Report Block) to gather more detailed information about the nature
of packet losses and discards. These two extensions are more precisely described in
the table 1 and their RTCP headers are presented in the figure 18.



32

5.3.6 Summary of congestion indicators

Congestion indicators provide essential information for rate adaptation. They
are observed by the sender, or the receiver, or collaboratively. Rate adaptation
algorithms often use just a subset of existing indicators. The rate adaptation driving
node senses all necessary indicators on its side, and gathers the remaining ones from
the RTCP reports. Based on input provided by the indicators, the driving node
decides which rate is correct in the current network situation.



33

Table 1: Summary of important RTCP extensions

Extension name Description
Detailed packet reporting Belongs to RTCP XR. Allows the sender to be

informed about sequence numbers of lost or du-
plicated packets, and exact reception times of
send packets

Receiver side RTT calculation Belongs to RTCP XR. Allows non-senders to cal-
culate their RTTs

Loss RLE Report Block Belongs to RTCP XR. Informs exactly which
packets were lost. This extension’s header is pre-
sented in the figure 18b. begin_seq and end_seq
defines boundaries of the beginning and the end
of the reported sequence number space. Chunks
can be represented as run length, bit vector, or
terminating null (see [7] for more details).

Discard RLE Report Block Belongs to RTCP XR. Informs exactly which
packets were discarded due to too early or too
late arrival. This extension’s header is presented
in the figure 18c. begin_seq and end_seq defines
boundaries of the beginning and the end of the
reported sequence number space. Chunks can be
represented as run length, bit vector, or termi-
nating null (see [7] for more details).

Duplicate RLE Report Block Belongs to RTCP XR. Informs exactly which
packets were duplicated

Statistics Summary Report Block Belongs to RTCP XR. Contains general re-
ception statistics not included in standard RR
(losses, duplicates, jitter, TTL)

VoIP Metrics Belongs to RTCP XR. Contains metrics for mon-
itoring VoIP calls (losses, discards, delay, analog
metrics, as well as, quality metrics)

Next Application Data Unit Standard 3GPP extension for Packet switched
Streaming Service (PSS). Contains information
to recreate receiver buffer (playout delay of the
first packet in the queue, free buffer space and
sequence number of the first buffered packet)

Feedback Messages Defined in RFC 4585. Contains transport-,
application-layer and payload specific feedback
extensions. These headers can convey infor-
mation about packet receptions (ACK/NACK
mode), RPS, Slice Loss Indication, etc.

Codec Control Messages Contains feedback information facilitating rate
adaptation for scenarios with mixers and trans-
lators



34

(a) RTCP XR common header

(b) Loss RLE header in RTCP XR

(c) Discards RLE header in RTCP XR

Figure 18: RTCP XR headers. Picture adopted from [7].



35

5.4 Rate adaptation metrics

Ultimate target of all rate adaptation algorithms is to minimise losses, and
simultaneously maximise bandwidth utilisation. An ideal algorithm would be able
to perfectly adapt to changeable network conditions by avoiding any congestion
losses and use entire bandwidth given to it. In reality such an algorithm does not
exist, but there are numerous other solutions which are designed based on some
trade-offs, and therefore they perform well in some scenarios, and bad in others.

In order to assess which algorithm is the best suited one for a particular sce-
nario, rate adaptation metrics providing objective tools of evaluation are used.
There are many available metrics which can be used for this task. In this work,
we present the brief description of three of them: Peak Signal-to-Noise Ratio
(PSNR), Average Bandwidth Utilisation (ABU), Average/Instant Send-
ing Rate/Goodput. These metrics are later used by us to evaluate performance
of algorithms developed for this work.

5.4.1 Peak Signal-to-Noise Ratio (PSNR)

PSNR is commonly used engineering metric to evaluate reconstruction quality
of image after its lossy compression. It compares the original signal power with the
noisy one. In terms of video communication, the original signal is the one obtained
by the video camera in YUV format, whereas the noisy one is the signal which was
compressed, sent over the network, and decompressed at the receiver.

PSNR calculation uses Mean Square Error (MSE) to evaluate difference
between the original video, and the received video. For video frame of size MxN
MSE is defined by the following formula:

MSE =
1

M ×N

∑
M,N

[I(m,n)− J(m,n)]2 (7)

where :

m = 1, 2, 3, . . . ,M

n = 1, 2, 3, . . . , N

I − original video frame

J − received video frame

The above formula is true only for monochrome video frames. Human eye is
much more sensible to picture luma (brightness) than to colour information carried
in chrominance (see fig. 19). Therefore the luma component (Y) in YCbCr picture
format is the weighted average of brightness information carried in RGB channels,
and the MSE formula can be modified to the following form:

MSEcolour =
1

3
×MSEmonochrome =

1

3

1

M ×N

∑
M,N

[I(m,n)− J(m,n)]2 (8)



36

PSNR is defined by the following formula in which MAXI is the maximum pixel
value:

PSNR = 10 log
MAX2

I√
MSE

= 20 log
MAXI√
MSE

(9)

Although PSNR is widely used to evaluate perception of video quality, it has
some limitations resulting from the nature of human brain. As PSNR calculation is
based entirely on MSE of pixels, it is possible that a picture with blurred foreground
has higher PSNR than an other picture with blurred background, whereas the hu-
man vision percepts quality of both such pictures differently. As PSNR has poor
correlation with human vision perception, there is done a lot of research in area of
finding alternative method of assessing video ([39] [40]) is done. Another important
finding of recent human’s vision research is the fact that human’s vision is more
sensitive to salient objects [41]. All these findings prove that PSNR is not the ideal
quality metric. However, as it is still the most widely applied one, we decided to
use it.

Figure 19: Decomposition of image into luma part (brightness), and chrominance
(colour components). Picture adopted from Wikipedia en.wikipedia.org.



37

5.4.2 Average Bandwidth Utilisation (ABU)

Average Bandwidth Utilisation metric, defined in [3], describes relation between
usage of network bandwidth by the video stream and the available bandwidth. ABU
can be calculated for sending rate, receive rate, and goodput. For values significantly
below 1 there is channel underutilisation, whereas values above 1 represent over-
utilisation. ABU is calculated from the following formula:

ABU =

∫
s(t)∫
c(t)

(10)

where :

s(t)− sending rate, or goodput, or receive rate

c(t) − channel bandwidth

As ABU is the function of time, it is also beneficial to plot Cumulative Distri-
bution Function (CDF) of all available ABU values to notice general trends.

5.4.3 Average/Instant Sending Rate/Goodput and other metrics

Quality of rate adaptation algorithms can also be evaluated with instant or aver-
age sending rate/goodput. The higher the value is, the better the algorithm provided
that it does not kill other flows with too high sending rate. General statistics can
also be used as metrics for evaluation of some algorithm aspects. These metrics are
very similar to average/instant sending rate/goodput. They may include cumulative
number of lost/discarded packets, average number of packets in the receiver buffer,
cumulative amount of time when the receiver buffer is empty, etc.

5.5 Example of rate adaptation algorithm: TFRC for RTP

TCP Friendly Rate Control [33] is the sender driven rate adaptation algorithm for
unicast UDP flows, which allows them to fairly compete for network bandwidth with
TCP flows. Unlike TCP-based congestion control mechanism, TFRC is designed to
ensure smooth sending rate with far smaller throughput variations over time than
TCP. Consequently TFRC is useful for multimedia applications where relatively
steady bandwidth is important. The algorithm is designed for best performance
in applications adapting their rates by varying number of packets sent in the time
interval. On the other hand, the multimedia applications require sending packets
in regular constant intervals, and they adapt their sending rates by varying packet
sizes. Therefore standard version of TFRC [33] is not optimal for these applications,
and they should use the modified algorithm version (TFRC-SP) defined in RFC
4828 [42].

TFRC is based on frequent feedback with 2 congestion indicators RTT and loss
event rate. As RTT is included in feedback packets, and is calculated cooperatively
by both sides, TFRC requires the sender to provide the receiver with packet sending



38

timestamp allowing to calculate RTT. TFRC’s operation is divided into the slow-
start phase and the congestion avoidance one. In the former the sender is allowed
to double its rate per RTT interval until first loss occur which begins the latter. In
the congestion avoidance phase the sender uses the TCP Throughput Equation
(11) to calculate its sending rate.

Xkbps =
seg_size

R×
√

2×b×p
3

+ tRTO × (3×
√

3×b×p
8

)× p× (1 + 32× p2)
(11)

Standard RTP defined in RFC 3550 [4] is not adapted for TFRC usage. Therefore
RTP/RTCP extensions were proposed in [8] to permit its usage with TFRC. [8]
defines TFRC feedback packet, which belongs to RTCP feedback loop, and should
be sent to the sender once per RTT, or for every received packet if RTT estimation
is not available. Such frequent feedback significantly increases overhead needed
for rate adaptation. Furthermore, it is often necessary to send TFRC feedback
encapsulated into compound RTCP reports, as many RTP/RTCP implementations
accept just compound reports. As a result, 5% session bandwidth rule defined for
RTP/AVPF profile [26] can be violated. [8] redefines feedback timing rules for
short delay networks (where delay < 20ms) to guarantee complying with 5% rule.
The feedback message conveys information about estimated data rate in the last
feedback interval, and loss event rate. Additionally it contains also timestamp of
the last received RTP packet, and delay between this packet reception and feedback
generation. These two elements are used by the sender to calculate RTT. RTCP
feedback extension header is presented in the figure 20b. Extension in RTP includes
additional 12 bytes informing the receiver of sender’s RTT estimation, and exact
packet sending timestamp. This extension header is presented in the figure 20a.

The algorithm operates in the following way. The receiver generates feedback
packet if it detects a new loss event, or if no feedback packet has been sent upon last
feedback timer expiry. The sender adapts the sending rate when the feedback packet
is received. If the loss event rate value equals 0, the sender is in the slow-start phase,
and it can approximately double its rate each round trip time. However, when the
loss occurs (the loss event rate is greater than 0), the sender enters the congestion
avoidance phase and calculates the rate using the (11) equation.



39

(a) RTP extension for TFRC

(b) RTCP extension for TFRC feedback

Figure 20: Extension headers for RTP/RTCP in TFRC algorithm. Picture adopted
from [8].

5.6 Summary

Internet is a packet switched network, which is vulnerable to congestion. Rate
adaptation methods can be divided into three types: the sender driven rate adap-
tation, the receiver driven one, and the network driven one. Three modes of rate
adaptation are distinguished: overshooting, undershooting, and stability. Network
conditions can be sensed using various congestion indicators. Performance of various
rate adaptation algorithms is evaluated using rate adaptation metrics.

For rate adaptation of multimedia flows it is essential to avoid any losses and look
for the rate increase only when the former is guaranteed. This approach is different
from the one appropriate for TCP flows, where packet delivery within specified delay
budget is not required, leaving more space for retransmissions of lost data.



40

6 Rate adaptation algorithms
This chapter describes two new RTP rate adaptation algorithms designed for this

thesis. They are called FEC Based Rate Adaptation (FBRA), and Non-FEC Based
Rate Adaptation (N-FBRA). Both of them use identical subset of RTCP extensions
to estimate network conditions and calculate sending rate. Additionally the FEC
based algorithm uses also FEC to boost packet recovery probability if the increase
of sending rate leads to packet losses.

6.1 FEC Based Rate Adaptation algorithm (FBRA)

The main idea behind this algorithm is usage of FEC for rate adaptation and
packet recovery simultaneously. By taking this approach it is possible to apply more
aggressive rate adaptation algorithm, as possible losses caused by wrong network
conditions judgement during congestion period may be recovered using FEC packets.

The algorithm has following states: s-,s+,s++,u,d. State names derive from the
words: s - steady, u - up, d - down. Additionally the minus sign means that FEC
packets are not generated, whereas the plus sign indicates creation of FEC data.
When the algorithm is in the "s-family" state, it does not change the sending rate.
When it is in the u state, it increases the sending rate, whereas in the d state, the
rate reduction occurs. The sending rate can increase only by the value of the FEC
rate. As a result, the FEC stream is switched off, and bandwidth released by it is
taken by the media stream. The s- state means that current rate is maintained,
and generation of FEC packets is switched off. In s+ and s++ states the rate is
also maintained, but FEC packets are also sent. These states are identical from
the application point of view. The only difference between them is that the s++
state can be entered only from the s+ state if network conditions are stable for 2
consecutive RTCP report intervals. The figure 21 illustrates the algorithm’s state
machine, labels are explained in the table 2.

The algorithm specifies following state transition rules. In the s- state, the
sending rate is kept constant, and FEC is not generated. The algorithm can stay in
this state if congestion cues indicate that there is no additional bandwidth to take,
or it can go to the s+ state by probing the path with FEC packets. Usage of FEC
stream gives more resistance to losses which may appear as a result of bandwidth
increase. Direct transition to the s+ state is not possible when the current sending
rate is higher than 90% of the highest rate recorded in the last 2 seconds. In such
case, the algorithm assumes that the current rate is close to the bandwidth limit, and
it must make sure that current rate is stable enough by enforcing mandatory state
in the current state for one more RTCP report interval. Obviously if the congestion
is detected, the algorithm goes from the s- state to the d one.

In the s+ state the algorithm maintains the sending rate, but it also sends
additional FEC packets. If the next RTCP report content shows congestion signs
the algorithm switches off the FEC stream and goes back to the s- state. Otherwise
it keeps the media and FEC rates constant and goes to the s++ state. It is also
possible that the FEC rate is decreased if the report content indicates that current



41

amount of FEC overhead may lead to congestion, whereas smaller overhead can be
appropriate. Similarly to the s- state, if the congestion is detected, transfer to the
d state occurs.

In the s++ state the algorithm keeps the rate constant and sends also FEC
data. If in this state the RTCP report does not indicate any congestion, transition
to the u state happens. Otherwise, the algorithm switches to either the d state. It
is also possible that the report content indicates an in-between situation (the RTT
is higher than expected, but there are no losses and discards). In such a situation,
the algorithm either goes back to the s- state, or it stays in the s++ state with the
FEC rate reduced.

In the u state the algorithm increases the sending rate by exchanging the FEC
rate for additional RTP rate. From this state, the algorithm may go only to the
s- state with the new sending rate value, or go back to the d state if congestion is
detected.

In the d state the sending rate is reduced. The rate decrease value is determined
from the congestion indicators, and it is described later in more detail. In most
cases the algorithm goes from this state to the s- one. However, if the congestion
is very heavy and the next RTCP report indicates that the rate reduction does not
resolve the problem, the algorithm cuts its rate once again and stays in the d state.

Finally the algorithm makes also use of early feedback RTCP report and report
reception timeout. The receiver sends the report earlier than expected if number
of packets in its buffer falls below 80% of its average value. As the sender is able
to estimate when it should expect to receive the next report, it determines that
every report received sooner than 1.5 of the median RTT value is the early feedback
report, and therefore always goes to the d state. In addition, the report reception
timeout is set to 2 seconds upon receive of every report. If no report is received in
2 seconds, this timeout is expired, and the algorithm enters the d state.

Transition from the s- to s+ state requires the algorithm to determine amount of
the FEC rate added to the media stream. This rate is calculated as the function of
the current sending rate. The FEC rate depends on the FEC interval (i.e. number
of media packets protected by a one FEC packet), which increases together with
the current sending rate. The FEC interval may take values between 2 and 14. In
number of simulations runs, it was concluded that for FEC interval values higher
than 14 recovery rate falls almost to 0, and rate adaptation gain from making smaller
sending rate increase steps is negligible.

The other very important feature of this algorithm is the network condition
estimation. This can be accomplished by usage of extended feedback profile (RFC
4585 [26]), which allows for quick response to changing network conditions. For
point-to-point RTP sessions RTCP transmission interval is almost always dependent
on the minimum possible transmission interval, as it is virtually impossible to reach
5% of session bandwidth in this scenario. Because in extended feedback profile
minimum RTCP transmission interval is not enforced, having conducted numerous
experiments, we decided to use value of double RTT as the RTCP interval. The
receiver may also send an early RTCP report, but then it must postpone time of
next report sending to maintain the two-RTT rule. The algorithm orders sending



42

the early feedback if number of packets stored in the receiver buffer falls below 80%
of its average value.

d U

S-

S+ S++

(1)

(2)

(3
)

(4
)

(5)

(6)

(7)

(8) (9.)

(1
0
)

(11)

(12)(1
3
)

Figure 21: FBRA state machine

Table 2: Conditions of FBRA state transition illustrated in the figure 21.

No. Transition conditions
1 no losses ∧ no recent discards ∧ CorrOWDup < 1.6 ∧

(CorrOWDup <= 1.1 ∨ CorrOWDdown <=1.05) ∧ maxCorr<0.9
2 no losses ∧ no discards ∧ CorrOWDup <= 1.2
3 no losses ∧ no discards ∧ CorrOWDup <= 1.1 ∧ CorrOWDdown <= 1.2
4 no losses ∧ no discards ∧ CorrOWDup <= 1.4
5 no losses ∧ no discards ∧ CorrOWDup <= 1.1 ∧ CorrOWDdown > 1.2
6 not recent losses ∨ (no recent discards ∧

(1.2 < CorrOWDup <= 1.6 ∨ previous state not s-))
7 not recent losses ∨ not recent discards ∨ 1.1 < CorrOWDup <= 1.6
8 no losses ∧ no discards
9 recent losses ∨ (not recent losses ∧ previous state s-) ∨ recent discards

∨ CorrOWDup > 1.6 ∨ (CorrOWDup > 1.2 ∧ CorrOWDdown > 1.05 ∧
previous state s-)

10 recent losses ∨ recent discards ∨ CorrOWDup > 1.2
11 recent losses ∨ recent discards ∨ CorrOWDup > 1.6
12 recent losses ∨ discards ∨ CorrOWDup > 1.4
13 ((recent losses ∨ discards) ∧ (previous state not d ∨ time

elapsed since last report < 2 × median RTCP interval)) ∨
CorrOWDup > 2.0

Moreover, the algorithm makes use of RTCP XR Loss RLE [7], and RTCP XR
Discard RLE [35]. Based on these extensions, the algorithm knows exactly which
packets were correctly received, which were lost, or discarded. Therefore, it may
calculate goodput perceived by the receiver in the last second, which is used for
the sending rate calculation. Furthermore, the algorithm divides losses into the



43

recent ones (status of last five packets in the report), and the overall losses in the
reported interval. If there are recent losses, the algorithm decides that congestion
takes place, and always reduces of the sending rate. On the other hand, presence of
the late losses indicates finished congestion, or a random loss, and therefore results
in keeping of the current sending rate.

In addition, if there are no losses and discards reported, we also use RTT/one-
way delay values to evaluate network conditions. The algorithm takes statistical
approach to these measurements by dividing current RTT/one-way delay value by
40th and 80th percentile of all previously collected values. This method is very
similar to the one presented in [32]. RTT/one-way delay value is stored only if the
report does not contain any losses. If current RTT/one-way delay value is low, the
algorithm decides that there is no congestion at the moment. Otherwise, it classifies
the situation as an early congestion indication, or on-going congestion, and takes
appropriate strategy to combat the problem. RTT/one-way delay takes different
values in different network conditions. Therefore to determine if value of RTT/one-
way delay is high/low in a particular situation, division result is compared against
a coefficient. If it is higher than the threshold, the high RTT state is determined,
otherwise the low state is sensed. Threshold values depend on current algorithm
state and were derived empirically in the series of experiments.

Finally, we introduce two procedures additional procedures: the undershooting
procedure and the bounceback procedure. The undershooting procedure is
always executed when the algorithm reaches the d state. It calculates the reduced
sending rate by subtracting double difference between the current sending rate and
the perceived goodput and taking 90% of obtained value. After that it checks if
following conditions are also fulfilled: the rate reduction cannot exceed 40% and the
new rate must be at least 32kbit/s. For details on the sending rate reduction see
the undershooting procedure pseudocode in algorithm 1f. Furthermore, in some
cases the algorithm orders to disable the rate adaptation for some period of time.
This action is required to prevent unnecessary rate reduction when the algorithm
predicts that signs of the current congestion will be visible in the future reports.
Therefore if such action is needed, the procedure stores value of currently perceived
goodput and calculates the rate adaptation disability period, which equals time
elapsed since the previous RTCP report multiplied by 1.125. When this period is
ended, the algorithm executes the bounceback procedure. This procedure examines
content of the most recent RTCP report, and if there are no signs of congestion,
increases the rate to either the 90% of goodput stored during the undershooting, or
the minumum rate of 32kbit/s. However, if the report shows congestion symptoms,
it once again enters the undershooting procedure, but for much shorter period (25%
of time elapsed since receiving the last RTCP report). If the repeated undershooting
does not succeed, the undershooting procedure is called once more, but this time the
period is longer (identical to the initial one), and rate adaptation is not disabled.
For details on making sending rate bounceback see the sending rate bounceback
procedure pseudocode in algorithm 1f.



44

Algorithm 1 FEC based rate adaptation algorithm (FBRA)
Require: Goodput, SendingRate, CurrentT ime(Now), AdaptationDisabilityT imeout
Require: MedianRTT, LastRTCP,CurrentState, FractionLost(FL), OWDnow

Require: Last5Losses(L5L), F ractionDiscard(FD), Last5Discards(L5D)
Require: ReportLength(RL)

1: CorrOWDdown = 40−percentilelossless(OWD)
OWDnow

2: CorrOWDup =
80−percentilelossless(OWD)

OWDnow

3: FECRate = SendingRate
FECInterval+1

4: NewFECRate← FECRate
5: if Now < AdaptationDisabilityT imeout then
6: NewState← s−
7: else if Now − LastRTCP < 1.5 ∗MedianRTT then
8: Undershoot(disable = true, timeout = Now − LastRTCP )
9: NewFECRate← 0

10: else if CurrentState = s++ then
11: StateS++
12: else if CurrentState = s+ then
13: StateS+
14: else if CurrentState = u then
15: StateU
16: else if CurrentState = d then
17: StateD
18: else
19: StateS-
20: end if

return (NewSendingRate,NewFECRate)



45

Subalgorithm 1a Function used when the FBRA is in the s++ state
1: function StateS++
2: if FL>0 then
3: if L5L>0 then
4: Undershoot(disable = true, timeout = Now − LastRTCP )
5: else
6: NewState← s−
7: NewFECRate← 0
8: end if
9: else if FD>0 then
10: if L5D>0 then
11: Undershoot(disable = true, timeout = Now − LastRTCP )
12: else
13: NewState← s−
14: end if
15: NewFECRate← 0
16: else
17: if CorrOWDup > 1.6 then
18: Undershoot(disable = true, timeout = Now − LastRTCP )
19: NewFECRate← 0
20: else if CorrOWDup > 1.1 then
21: NewState← s−
22: NewFECRate← 0
23: else if CorrOWDdown > 1.2 then
24: IncrementFECinterval
25: NewState← s++
26: else
27: NewState← u
28: NewSendingRate← SendingRate+ FECRate
29: NewFECRate← 0
30: end if
31: end if
32: end function



46

Subalgorithm 1b Function used when the FBRA is in the s+ state
1: function StateS+
2: if FL>0 then
3: if L5L > 0 ∧ RL>5 then
4: Undershoot(disable = true, timeout = Now − LastRTCP )
5: else
6: NewState← s−
7: end if
8: NewFECRate← 0
9: else if FD>0 then
10: if L5D > 0 ∧ RL > 5 then
11: Undershoot(disable = true, timeout = Now − LastRTCP )
12: else
13: NewState← s−
14: end if
15: NewFECRate← 0
16: else if L5L > 0 ∨ CorrOWDup > 1.6 then
17: Undershoot(disable = true, timeout = Now − LastRTCP )
18: else if CorrOWDup > 1.2 then
19: Undershoot(disable = false, timeout = Now − LastRTCP )
20: else
21: NewState← s++
22: end if
23: end function

Subalgorithm 1c Function used when the FBRA is in the u state
1: function StateU
2: if (FL > 0 ∧ L5L > 0) ∨ FD > 0 ∨ CorrOWDup > 1.4 then
3: Undershoot(disable = true, timeout = Now − LastRTCP )
4: else
5: NewState← s−
6: NewFECRate← 0
7: end if
8: end function



47

Subalgorithm 1d Function used when the FBRA is in the d state
1: function StateD
2: if (FL>0 ∧ L5L>0) ∨ FD>0 then
3: if PreviousState = d∧CurrentT ime−LastRTCPReportT ime > 2.0 ∗

MedianRTT then
4: NewState← s−
5: else
6: if FD>0 ∧ FL=0 then
7: Undershoot(disable = false, timeout = Now − LastRTCP )
8: else
9: Undershoot(disable = true, timeout = Now − LastRTCP )
10: end if
11: end if
12: else if CorrOWDup > 2.0 then
13: Undershoot(disable = true, timeout = Now − LastRTCP )
14: else
15: NewState← s−
16: end if
17: NewFECRate← 0
18: end function



48

Subalgorithm 1e Function used when the FBRA is in the s- state
1: function StateS-
2: if FL>0 then
3: if L5L > 0 ∨ CurrentState = s− then
4: Undershoot(disable = true, timeout = Now − LastRTCP )
5: else
6: NewState← s−
7: end if
8: NewFECRate← 0
9: else
10: if L5D>0 then
11: Undershoot(disable = true, timeout = Now − LastRTCP )
12: else
13: if CorrOWDup > 1.6 then
14: Undershoot(disable = true, timeout = Now − LastRTCP )
15: NewFECRate← 0
16: else if CorrOWDup > 1.1 ∧ CorrOWDdown > 1.05 then
17: if PreviousState = s− then
18: Undershoot(disable = true, timeout = Now − LastRTCP )
19: else
20: NewState← s−
21: end if
22: NewFECRate← 0
23: else
24: if maxCorr < 0.9 then
25: TurnOnFEC
26: else
27: if PreviousState = s− then
28: TurnOnFEC
29: else
30: NewState← s−
31: NewFECRate← 0
32: end if
33: end if
34: end if
35: end if
36: end if
37: end function



49

Subalgorithm 1f Rate adaptation help procedures
Require: LastSecondGoodput(LSGP ), ReportGoodput(RGP ), SendingRate(SR)
Require: CurrentState,Now
1: procedure Undershoot(disable, timeout)
2: if LSGP < SR then
3: Delta← SR− LSGP
4: PickedGoodput← LSGP
5: else if RGP<GP then
6: Delta← abs(SR−RGP )
7: PickedGoodput← RGP
8: else
9: NewSR← 0.9 ∗ SR
10: NewState← d return
11: end if
12: possibleRate← SR− 2 ∗Delta
13: if (SR < 2 ∗Delta) ∨ possibleRate < 0.6 ∗ SR then
14: if CurrentState = d ∨ PickedGoodput < 0.6 ∗ SR then
15: NewSR← max(0.6 ∗ SR,MinRate) . MinRate=32kbit/s
16: if NewSR = SR then
17: NewState← s−
18: else
19: NewState← d
20: end if
21: if disable then
22: DesiredGoodput← PickedGoodput
23: AdaptationDisabilityT imeout ← Now + min(1.125 ∗

timeout, RTCPTIMEOUT )
24: end if
25: else
26: NewSR← SR
27: NewState← s−
28: end if
29: else
30: NewSR← max(SR− 2 ∗Delta, 0.6 ∗ SR)
31: NewState← d
32: if disable then
33: DesiredGoodput← PickedGoodput
34: AdaptationDisabilityT imeout ← Now + min(1.125 ∗

timeout, RTCPTIMEOUT )
35: end if
36: end if
37: NewFecRate← 0
38: end procedure



50

Subalgorithm 1f Rate adaptation help procedures - continued
39: procedure SendingRateBounceback(Now)
40: if (L5L = 0) ∧ (L5D = 0) ∧ (CorrOWDup < 1.6) then
41: NewSR← max(0.9 ∗DesiredGoodput,MinRate)
42: else
43: if RepeatedUndershooting then
44: Undershoot(disable = false, timeout = Now − LastRTCP )
45: RepeatedUndershooting ← false
46: else
47: Undershoot(disable = true, timeout = 0.25∗ (Now−LastRTCP ))
48: RepeatedUndershooting ← true
49: end if
50: end if
51: end procedure



51

6.2 Non-FEC based rate adaptation algorithm (N-FBRA)

This algorithm is very similar to the FBRA, except that it does not use FEC.
The former algorithm has five states and in two of them FEC is used (s+, and s++).
Consequently, as the FEC part is removed, the state machine of the algorithm is
limited to just three states: s, u, d (see figure 22). The figure 22 illustrates the
algorithm’s state machine, labels are explained in the table 3. It uses the same
congestion indicators to evaluate network conditions, as the FBRA. Undershooting
mechanism is also identical, as well as, bounceback.

d U

S
(1)

(2)

(3)

(4)

(5)

(6)

(7)

Figure 22: N-FBRA state machine

Table 3: Conditions of N-FBRA state transition illustrated in the figure 22.

No. Transition conditions
1 no losses ∧ no recent discards ∧ (CorrOWDup <= 1.1

∨ CorrOWDdown <= 1.05) ∧ (maxCorr < 0.9 ∨ previous state s)
2 no losses ∧ no discards ∧ CorrOWDup <= 1.4
3 not recent losses ∨ (no recent discards ∧ CorrOWDup > 1.1

∧ CorrOWDdown > 1.05 ∧ previous state not s) ∨ (no recent
discards ∧ (CorrOWDup <= 1.1 ∨ CorrOWDdown <= 1.05) ∧
previous state not s

4 recent losses ∨ recent discards ∨ CorrOWDup > 1.6 ∨
(CorrOWDup > 1.4 ∧ CorrOWDdown > 1.05 ∧ previous state s)

5 (no losses ∧ CorrOWDup <= 2.0) ∨ ((recent losses ∨ discards)
∧ previous state d ∧ time elapsed since last report >= 2× median
RTCP interval

6 recent losses ∨ discards ∨ CorrOWDup > 1.4
7 ((recent losses ∨ discards) ∧ previous state not d ∧

time elapsed since last report < 2× median RTCP interval) ∨
CorrOWDup > 2.0

Similarly to the FBRA version it is possible to go to the d state from every state
if congestion is detected. The u state can be entered only from the s state. In
this state, the sending rate is increased by amount of hypothetical FEC rate for the
current rate (i.e. if the FBRA was used, the new sending rate equals the current
sending rate plus the hypothetical FEC rate). The FEC rate is calculated using



52

exactly the same method, as in the FBRA algorithm (i.e. as the function of current
sending rate). In summary, the difference between the N-FBRA and the FBRA is
lack of using FEC for bandwidth probing.

N-FBRA pseudo-code is presented in the algorithm 2.

Algorithm 2 Non-FEC based rate adaptation algorithm
Require: Goodput(GP ), SendingRate(SR), Now,AdaptationDisabilityT imeout
Require: MedianRTT, LastRTCP,CurrentState, FractionLost(FL), OWDnow

Require: Last5Losses(L5L), ReportLength(RL), F ractionDiscard(FD)
Require: Last5Discards(L5D)

CorrOWDdown = 40−percentilelossless(OWD)
OWDnow

CorrOWDup =
80−percentilelossless(OWD)

OWDnow

if Now < AdaptationDisabilityT imeout then
NewState← s−

else if Now − LastRTCP < 1.5 ∗MedianRTT then
Undershoot(disable = true, timeout = Now − LastRTCP )

else if CurrentState = u then
StateU

else if CurrentState = d then
StateD

else if CurrentState = s− then
StateS-

end if

Subalgorithm 2a Function used when the N-FBRA is in the u state
1: function StateU
2: if (FL > 0 ∧ L5L > 0) ∨ FD > 0 ∨ CorrOWDup > 1.4 then
3: Undershoot(disable = true, timeout = Now − LastRTCP )
4: else
5: NewState← s−
6: end if
7: end function



53

Subalgorithm 2b Function used when the N-FBRA is in the d state
1: function StateD
2: if (FL > 0 ∧ L5L > 0) ∨ FD > 0 then
3: if PreviousState = d ∧Now − LastRTCP < 2.0 ∗MedianRTT then
4: NewState← s−
5: else
6: if FD > 0 ∧ FL = 0 then
7: Undershoot(disable = false, timeout = Now − LastRTCP )
8: else
9: Undershoot(disable = true, timeout = Now − LastRTCP )
10: end if
11: end if
12: else if CorrOWDup > 2.0 then
13: Undershoot(disable = true, timeout = Now − LastRTCP )
14: else
15: NewState← s−
16: end if
17: end function



54

Subalgorithm 2c Function used when the N-FBRA is in the s- state
1: function StateS-
2: if FL > 0 then
3: if L5L > 0 then
4: Undershoot(disable = true, timeout = Now − LastRTCP )
5: else
6: NewState← s−
7: end if
8: else
9: if L5D > 0 then
10: Undershoot(disable = true, timeout = Now − LastRTCP )
11: else
12: if CorrOWDup > 1.6 then
13: Undershoot(disable = true, timeout = Now − LastRTCP )
14: else if CorrOWDup > 1.1 then
15: if PreviousState == s− then
16: Undershoot(disable = true, timeout = Now − LastRTCP )
17: else
18: NewState← s−
19: end if
20: else
21: if maxCorr < 0.9 then
22: FECRate← GetHypotheticalFECRate
23: NewSR← SR + FECRate
24: NewState← u
25: else
26: if PreviousState = s− then
27: FECRate← GetHypotheticalFECRate
28: NewSR← SR + FECRate
29: NewState← u
30: else
31: NewState← s−
32: end if
33: end if
34: end if
35: end if
36: end if
37: end function



55

7 Evaluation
This chapter presents evaluation of algorithms introduced in the previous chap-

ter. Evaluation comprises two parts algorithms simulation in ns-2 environment [19]
and real-world application implementation.

7.1 Simulation Environment

Creation of meaningful Internet simulation is a real challenge due to hetero-
geneous nature of the network, its immense size, and rapid changes it constantly
undergoes. Despite the fact that simulation scenarios are always simplified in com-
parison to the "real world", they are essential in initial evaluation of new solutions.
As simulation takes place in the abstracted model of the world, their results depend
on set of input parameters and therefore are repeatable. Results obtained in the
"real-world" are always related to a context in which they were conducted, thus
they are unrepeatable. As a result, simulation conclusions must be based on multi-
ple runs of simulations with diverse set of input parameters. "Real-world" network
represents just the Internet of today, whereas in abstracted world created in the sim-
ulator, solutions for the Internet of tomorrow can be tested and evaluated. Moreover
in the simulator it is possible to test a solution in a specified set of network condi-
tions evaluating its applicability for a particular environment. In "real-world" such
tests are much more expensive, and possibilities of meaningful evaluation in desired
scenarios are limited, as control over the Internet is beyond the solution developer.

On the other hand, simulations have many limitations. It is extremely important
and also difficult to create simulation scenarios which lead to right conclusions.
Past experience shows that it is practically impossible to predict Internet’s future
evolution (e.g. dominance of HTTP protocol), and thus have guarantee that the
simulated protocol/system would work in the real network. This is the problem in
designing possible solutions for the Internet of tomorrow which is mentioned in the
previous paragraph, as for example we never know what network traffic is applicable
for tomorrow. Therefore simulation scenarios must be carefully designed in order to
be versatile enough to cope well with heterogeneous network situations [43].

This work was evaluated in the Network Simulator 2 (ns-2), developed at the
University of California, Berkeley in 1997. The whole ns-2 project is open-source
and written in OTcl and C++. OTcl is used for writing simulation scripts, and
simple task, whereas C++ code performs heavy computations simulating network
behaviour. The simulator is the single-threaded and event-driven application. Its
heart is the scheduler which orders events execution sequence. The other notable
simulator feature is its own internal clock, which is used for distributing events on
the axis of time. The scheduler operates by selecting the earliest event, executing
it completely, advancing clock until time of new earliest event is reached, and again
executing the new event. In case when multiple events are to be executed in the
same time, the scheduler serialises them based on first scheduled - first dispatched
rule.



56

7.1.1 Extensions to ns-2 simulator

RTP/RTCP native implementation in ns-2 is very limited and does not com-
ply with RFC 3550 [4]. Therefore the first step to create the desired simulation
environment was proper RTP/RTCP module design. We decided to reuse existing
RTP/RTCP code for ns-2 which was developed by Mario Montagud Climent and
Fernando Boronat Seguí from Universidad Politécnica de Valencia [44].

We modified the RTP/RTCP code for ns-2 to be fully compliant with RFC
3550 [4] specification. In addition, we implemented extensions necessary for rate
adaptation. Firstly, we updated the code according to RFC 4585 [26] rules. This
was mainly concentrated on releasing minimum RTCP report interval 5 seconds
rule, and implementing early feedback module. Secondly, we extended the RTCP
module with necessary report headers: the Loss RLE, the Discards RLE, and the
RTCP APP header, which carries information about one-way delay. Thirdly, we
developed our implementation of the FEC module with ULP support, as it is not
part of standard ns-2 distribution. Finally we implemented three rate adaptation
algorithms: the FEC Based Rate Adaptation (FBRA), the Non-FEC Based Rate
Adaptation (N-FBRA) and the TFRC for RTP developed by Ladan Gharai.

7.1.2 Simulation settings

Design of a good simulation scenario is the very challenging task. Thus, we de-
cided to create a fairly simple simulation environment which follows rules suggested
by S. Floyd et al. in [43]. This article states that simple scenarios illustrating be-
haviour of underlying principles are often the best. Furthermore, it emphasise that if
conclusions derived in simple scenarios can be also applied in more complex scenar-
ios, it is even better. Finally, it stresses the fact that the simulator must implement
functionality which is exactly intended by the researcher. This point of validation
can be achieved due to the open-source nature of the ns-2, as other researchers can
confirm correctness of simulated solutions by re-running them, and modifying some
parameters.

Keeping in mind recommendations of the article [43], and using typical research
models presented in S. Floyd et al. in [45], the simple dumbbell topology was
chosen as the simulation scenario. As the work concerns unicast congestion control,
supporting measurements in forms of variable link characteristics and different router
queue types are additionally added [45]. As our research concentrates on rate control
in the Internet environment, where bit-error losses are very rare, simple duplex-links
not causing such errors are used. For all scenarios capacities of router queues are left
default (50 packets), and MTU is set to 1500 bytes. Furthermore, as the simulation
results analysis is performed on the packet level, it was decided not to differentiate
between different types of video frames, but to represent frames as dummy packets
of equal size corresponding to the instantaneous sending rate.



57

7.1.3 Simulation scenarios

Single RTP flow with variable link capacity
In this simulation scenario the dumbbell topology with two RTP nodes simulating

video conversation is used. These nodes are connected to the bottleneck link whose
capacity is variable. Access links have 100Mb/s bandwidth available, its delay is 1ms,
and Drop Tail queues. The reverse path is symmetrical. The bottleneck link delay
is static during the simulation, however, three further scenarios are distinguished,
as algorithm behaviour is simulated for link delays of 50ms, 100ms, and 240ms. The
link delay values were chosen to evaluate algorithm’s behaviour in a wide range of
possible delays from intra-continental (50ms) through trans-continental (100ms) to
the extreme one (240ms), which was taken from [3]. Furthermore, all experiments
are conducted for Drop Tail queues in bottleneck routers as well as for the RED
ones. Figure 24 illustrates this network topology.

The bottleneck link capacity varies between 100kb/s and 256kb/s and follow the
pattern presented in the figure 23a. It includes many types of capacity changes
from very rapid ones (e.g. capacity drops from max to min in the fraction of a
second) to smooth ones (e.g. capacity increases slowly and steadily). We believe
that such diverse pattern of capacity changes well verifies performance of presented
rate control algorithms in different situations. Both video senders begin their session
with sending rate of 128kb/s, and delay tolerance is 400ms. Finally, to add some
randomisation to obtained results, each simulation is repeated 30 times by making
30 seconds start time shift. As a result, all simulations are run over the channel
with identical link characteristics, but they start from different points. Figure 23
illustrates this randomisation.

(a) Variations of bottleneck link capacity (b) Variations of bottleneck link capacity if
flow start is shifted by 300 seconds

Figure 23: Link capacity change pattern



58

Figure 24: Variable link capacity network settings

Single RTP flow competing for constant link capacity against many
TCP flows

The purpose of this simulation experiment is to verify how well performs the
rate control algorithms if they have to compete for resources with a number of TCP
flows. Similarly to the previous scenario, the dumbbell topology with two RTP nodes
simulating video conversation is used. These nodes together with a number of TCP
nodes are connected to the bottleneck link. The reverse path is symmetrical. Unlike
the previous scenario, the capacity of the bottleneck link is constant and equal to
2Mb/s. Bottleneck link delay is also differentiated for cases of 50ms and 100ms
delay, and scenarios are further divided for ones with RED routers and Drop Tail
ones. Access links have constant capacities of 100Mb/s and 1ms delay. Similarly to
the previous scenario, video senders begin their sessions with initial sending rate of
128kb/s and delay tolerance is set to 400ms. The network topology is illustrated in
the figure 25.

Figure 25: RTP against TCP competition scenario network settings

Two RTP flows competing for constant link capacity against many
TCP flows

This simulation scenario is targeted at verification of rate control algorithm per-
formance when 2 video sessions must compete for resources with number of TCP
flows, and themselves simultaneously. This scenario is very similar to the previous
one, as the only difference between them is existence of two video sessions instead
of one. It is illustrated in the figure 26.



59

Figure 26: Two RTP sessions against TCP competition scenario network settings

7.2 Simulation results

This part is dedicated to presentation of simulation results. All results are
presented as the comparative study evaluating performance of three rate control
algorithms. Namely FEC based rate adaptation algorithm, its modification not de-
pending on FEC, and TFRC for RTP.

7.2.1 Variable link capacity scenario with one RTP flow: Comparative
study

Variable link capacity scenario with one RTP flow tests how well rate control
algorithms are able to adapt to changes of available bandwidth, which happen ac-
cording to the pattern illustrated in the figure 23a. Whole scenario analysis is divided
into three delay cases (50ms, 100ms, 240ms). Performance of algorithms is rated
based on Average Bandwidth Utilisation (ABU), and other general rate adaptation
metrics obtained in 30 simulation runs, where each run simulates video session of
900 seconds.

Simulation results for 50ms bottleneck delay:

Simulation results for 50ms delay clearly show that FBRA algorithm outperforms
all other ones. Figures 27a, 28a, 29a present time charts for one selected simulation
for each algorithm, and table 4 shows general metrics for each one. FBRA algorithm,
whose time charts are shown in the figure 27a, has the best bandwidth utilisation of
all simulated algorithms. It is able to quickly increase its encoding rate when the link
capacity goes up, and respond by reducing rate when there is not enough bandwidth.
Furthermore, unlike its version without FEC support (N-FBRA), it avoids TCP-
like behaviour when sending rate close to the link capacity limit is approached
(in fig. 28a high throughput variation over time is noticeable). FBRA algorithm
presents impressive delivery ratio exceeding 99%, as it significantly reduces number
of packets discarded at the receiver. Despite this results, usage of this algorithm
does not prevent under-flowing, which can be observed in the figure 27b around 90s,
600s, and 800s second of the simulation, from occurrence. Total underflow time for
other algorithms is far higher than for the FEC based one. Usage of early feedback



60

mechanism greatly helps to minimise underflow time, which is far lower for the FEC
based algorithm in comparison to its rivals. Figures 27c, 28c, 29c present ABU for
all simulated algorithms. Once again the FEC based solution outperforms others
by a huge margin with average ABU of 93.92% in comparison to 83.82% achieved
by the no FEC based algorithm. TFRC performs really badly in ABU, as its mean
is just 24.04%. In all three algorithms average sending rate is almost equal for both
sides of conversation, which proves that both flows are fair to each other.

Not much positive can be said about TFRC performance. In the figure 29a TFRC
is only able to function satisfactory at the beginning of the simulation run, when the
link capacity is constant. If the capacity changes the algorithm is unable to converge
to some reasonable value, but oscillates significantly between huge overshooting and
undershooting (spikes in the figure). Because of this also average sending rate is
much lower than in other considered algorithms. In addition, average underflow
time of 220.82 seconds makes this algorithm unsuitable for low delay conversational
multimedia sessions. Possible reasons of such a bad performance of TFRC are lack
of discarding packets consideration and relying just on RTT values for congestion
detection. In this TFRC implementation discards are considered, and treated as
losses. But even with this addition to TFRC the algorithm performs very poorly, as
more than 6300 packets are discarded by the receiver on average. Network condition
evaluation based purely on loss rate and RTT seems to be insufficient for satisfactory
rate adaptation.

Unfortunately in this scenario we are unable to show that FEC used in the
algorithm can be simultaneously applied to rate adaptation and error recovery. As
losses are hardly observed (average number of lost packets is just 2.13), it cannot be
concluded that FEC packets are unuseful for packet recovery. Such a low number of
losses results from the fact that only one flow uses whole link capacity, and router
queues are large enough to buffer all incoming packets. However, it can be concluded
that the FEC based algorithm is not sensitive to environments where losses are rare,
and discards prevail.

Table 4: Overall metrics for 50ms delay in variable link capacity scenario

Metric FBRA N-FBRA TFRC
avg. dev avg. dev avg. dev

Sending rate [kb/s] 178 1.50 161 6.27 92 5.50
Goodput [kb/s] 177 1.59 157 6.98 47 5.22

Delivery ratio [%] 99.39 0.15 97.48 0.58 50.88 2.58
FEC rate [kb/s] 8 0.32 - - - -

No. of lost packets 2.13 2.94 7.53 6.72 22.83 18.75
No. of discarded packets 191.5 40.20 553.83 87.52 6308.3 114.95
No. of recovered packets 0 0 0 0 0 0

No. of packets in recv. buffer 7.69 0.12 7.14 0.13 5.30 0.09
Underflow time [s] 7.90 1.66 23.88 3.61 220.82 4.14



61

0 100 200 300 400 500 600 700 800 900
time [s]

0

100000

200000

300000

400000

500000

se
nd

in
g 

ra
te

 [b
/s

]

Sending rate
FEC rate

0 100 200 300 400 500 600 700 800 900
time [s]

0

100000

200000

300000

400000

500000

se
nd

in
g 

ra
te

 [b
/s

]

Goodput
Recovered data
Discarded data

(a) Time chart presenting sending rate, FEC rate, goodput, recovered and discarded data
rates

(b) Receiver buffer (c) ABU: mean=93.92%

Figure 27: Graphs for the FBRA algorithm for 50ms delay



62

0 100 200 300 400 500 600 700 800 900
time [s]

0

100000

200000

300000

400000

500000

se
nd

in
g 

ra
te

 [b
/s

]

Sending rate

0 100 200 300 400 500 600 700 800 900
time [s]

0

100000

200000

300000

400000

500000

se
nd

in
g 

ra
te

 [b
/s

]

Goodput
Recovered data
Discarded data

(a) Time chart presenting sending rate, goodput and discarded data rates

(b) Receiver buffer (c) ABU: mean=83.82%

Figure 28: Graphs for the N-FBRA algorithm for 50ms delay



63

0 100 200 300 400 500 600 700 800 900
time [s]

0

100000

200000

300000

400000

500000

se
nd

in
g 

ra
te

 [b
/s

]

Sending rate

0 100 200 300 400 500 600 700 800 900
time [s]

0

100000

200000

300000

400000

500000

se
nd

in
g 

ra
te

 [b
/s

]

Goodput
Recovered data
Discarded data

(a) Time chart presenting sending rate, goodput and discarded data rates

(b) Receiver buffer

0 50 100 150 200 250
ABU[%]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

50ms delay
90% BW

(c) ABU: mean=24.04%

Figure 29: Graphs for the TFRC algorithm for 50ms delay



64

Simulation results for 100ms bottleneck delay:

Simulation results in scenario with 100ms delay are very similar to the previous
case. Example of time charts for this scenario are presented in the figures 30a, 31a,
32a, and table 5 shows overall metrics. Again the FBRA algorithm outperforms the
other algorithms by huge margin. Its performance is a bit worse than in 50ms delay
scenario, but the difference is only marginal, and results from lower delay budget
caused by higher physical propagation delay. Delivery ratio is maintained at the
impressive level of 99.30%, but underflow metrics are just slightly worse with average
underflow time slightly increasing. On the other hand, the N-FBRA algorithm has
better results on this scenario than in the previous one. Presumably this performance
improvement results from reduced number of states (the algorithm has just 3 states,
whereas the FEC based version has 5 ones) leading to quicker reactions which are
partially neutralised by the longer delay. Despite a bit better performance, the
algorithm still shows signs of TCP-like behaviour, when the sending rate approaches
the link capacity limit. The ABU in this scenario is slightly worse with mean value
of 89.70% (see figure 30c. The N-FBRA algorithm performs still far worse than
its FEC based counterpart, but slightly better than in the 50ms delay scenario.
The mean ABU value decreases from 83.82% to 82.15%, but this slump is lower
than for the FBRA algorithm. Delivery ratio slightly increases to 97.76% and mean
underflow time is reduced to 21.52s, but difference to its FEC supported counterpart
is still very significant.

TFRC still performs far worse than FBRA and N-FBRA algorithms. In this
scenario it behaves a bit more reliable than in the 50ms case, but delivery ratio of
about 50% is unacceptable. Its slight improvement in reliability results from higher
physical propagation delay which increases time for the algorithm to see effects of
rate adaptation, and therefore reduces a bit drastic changes in the sending rate.

Table 5: Overall metrics for 100ms delay in variable link capacity scenario

Metric FBRA N-FBRA TFRC
avg. dev avg. dev avg. dev

Sending rate [kb/s] 171 4.20 162 9.35 80 3.25
Goodput [kb/s] 170 4.21 158 10.43 42 2.91

Delivery ratio [%] 99.30 0.18 97.76 0.82 52.64 1.54
FEC rate [kb/s] 5 0.36 - - - -

No. of lost packets 4.73 4.82 4.10 5.37 3.67 7.74
No. of discarded packets 203.07 43.01 501.0 134.77 5361.0 85.06

Recovered packets 0 0 0 0 0 0
No. of packets in recv. buffer 6.88 0.21 6.39 0.12 4.87 0.09

Underflow time [s] 8.54 1.83 21.52 5.82 187.97 3.18



65

(a) Time chart presenting sending rate, FEC rate, goodput, recovered and discarded data
rates

(b) Receiver buffer

0 50 100 150 200 250
ABU[%]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

100ms delay
90% BW

(c) ABU: mean=89.70%

Figure 30: Graphs for the FBRA algorithm for 100ms delay



66

0 100 200 300 400 500 600 700 800 900
time [s]

0

100000

200000

300000

400000

500000

se
nd

in
g 

ra
te

 [b
/s

]

Sending rate

0 100 200 300 400 500 600 700 800 900
time [s]

0

100000

200000

300000

400000

500000

se
nd

in
g 

ra
te

 [b
/s

]

Goodput
Recovered data
Discarded data

(a) Time chart presenting sending rate, goodput and discarded data rates

(b) Receiver buffer

0 50 100 150 200 250
ABU[%]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

100ms delay
90% BW

(c) ABU: mean=82.15%

Figure 31: Graphs for the N-FBRA algorithm for 100ms delay



67

0 100 200 300 400 500 600 700 800 900
time [s]

0

100000

200000

300000

400000

500000

se
nd

in
g 

ra
te

 [b
/s

]

Sending rate

0 100 200 300 400 500 600 700 800 900
time [s]

0

100000

200000

300000

400000

500000

se
nd

in
g 

ra
te

 [b
/s

]

Goodput
Recovered data
Discarded data

(a) Time chart presenting sending rate, goodput and discarded data rates

(b) Receiver buffer

0 50 100 150 200
ABU[%]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

100ms delay
90% BW

(c) ABU: mean=22.08%

Figure 32: Graphs for the TFRC algorithm for 100ms delay



68

Simulation results for 240ms bottleneck delay:

Contrary to previous scenarios, in the 240ms delay case, there is no clear winner
between the FBRA algorithm and its no FEC based counterpart. Example of time
charts for this scenario are presented in the figures 33a, 34a, 35a, and table 6 shows
overall metrics. The FBRA algorithm suffers a lot from slower feedback response
caused by increased delay. Its delivery ratio is still very good, but falls below 99%
threshold with 98.9% result. However, the sending rate drop is very significant with
the mean value of 149kb/s. This fall is even better illustrated when comparing
mean ABUs. In 50ms, and 100ms delay scenarios mean ABUs have values around
90%, whereas in this case it is just 79.01%. On the other hand, the algorithm
without FEC support performs significantly better than the in previous cases. Its
average sending rate goes up, and surpasses the FBRA algorithm. As a result, ABU
metric is also better for this algorithm. The FEC based version still manages to
maintain its superiority in terms of reliability. Delivery ratio and underflow metrics
stay better in the FBRA algorithm, but their advantage is minimal. Generally it is
difficult to unambiguously state which algorithm performs better in this scenario.
Possibly PSNR tests, which will be performed in the "real-world" implementation,
may answer this question.

In this scenario TFRC performs performs far better thain the previous ones, but
67.83% of average delivery ratio is still very much below acceptable level. However,
it is noticeable that for 240ms delay the algorithm obtains its best results both in
terms of the sending rate and the reliability.

Table 6: Overall metrics for 240ms delay in variable link capacity scenario

Metric FBRA N-FBRA TFRC
avg. dev avg. dev avg. dev

Sending rate [kb/s] 149 3.76 160 2.78 97 5.58
Goodput [kb/s] 147.5 3.83 157.75 2.71 66 5.01

Delivery ratio [%] 98.90 0.25 98.62 0.42 67.83 1.52
FEC rate [kb/s] 5.5 0.14 - - - -

No. of lost packets 17.73 8.41 20.5 10.80 9.33 9.42
No. of discarded packets 250.93 52.33 344.67 94.31 4473.1 120.81

Recovered packets 0 0 0 0 0 0
No. of packets in recv. buffer 3.93 0.05 3.85 0.07 2.96 0.08

Underflow time [s] 11.05 2.22 15.09 4.19 162.05 5.24



69

(a) Time chart presenting sending rate, FEC rate, goodput, recovered and discarded data
rates

(b) Receiver buffer

0 50 100 150 200
ABU[%]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

240ms delay
90% BW

(c) ABU: mean=79.01%

Figure 33: Graphs for the FBRA algorithm for 240ms delay



70

0 100 200 300 400 500 600 700 800 900
time [s]

0

100000

200000

300000

400000

500000

se
nd

in
g 

ra
te

 [b
/s

]

Sending rate

0 100 200 300 400 500 600 700 800 900
time [s]

0

100000

200000

300000

400000

500000

se
nd

in
g 

ra
te

 [b
/s

]

Goodput
Recovered data
Discarded data

(a) Time chart presenting sending rate, goodput and discarded data rates

(b) Receiver buffer

0 50 100 150 200 250
ABU[%]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

240ms delay
90% BW

(c) ABU: mean=83.89%

Figure 34: Graphs for the N-FBRA algorithm for 240ms delay



71

800 1000 1200 1400
time [s]

0

100000

200000

300000

400000

500000

se
nd

in
g 

ra
te

 [b
/s

]

Sending rate

800 1000 1200 1400
time [s]

0

100000

200000

300000

400000

500000

se
nd

in
g 

ra
te

 [b
/s

]

Goodput
Recovered data
Discarded data

(a) Time chart presenting sending rate, goodput and discarded data rates

(b) Receiver buffer

0 50 100 150 200 250
ABU[%]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

240ms delay
90% BW

(c) ABU: mean=31.49%

Figure 35: Graphs for the TFRC algorithm for 240ms delay



72

Scenario discussion summary:

In three presented above scenarios it was shown that FEC protocol can be ef-
fectively used for rate adaptation. The FBRA algorithm outperforms other rate
control mechanisms in the two first scenarios, whereas in the third it losses to the
N-FBRA algorithm in terms of the sending rate, but still presents better reliability
performance. As lack of other flows competing for the link capacity reduces packet
losses to the minimum, it is impossible to verify in this scenario hypothesis that FEC
can be used for rate adaptation, as well as, for the error recovery. Confirmation of
this statement is presented in the next scenario. Furthermore, it is also shown that
sending rates obtained by both video session participants are almost equal which
proves mutual fairness of the session flows. Finally, it is important to note that the
same results were obtained for Drop Tail routers, as well as, for RED ones, which is
consistent with RED and Drop Tail behaviour for one flow in the queue.

TFRC performs very badly in all three cases. For higher delay, it is able to
maintain reasonable sending rate for a longer period of time when the link capacity
is constant. Higher delay causes slower sending rate changes which leads to reduction
of number of periods when the rate changes drastically.

7.2.2 Single RTP flow competing for constant link capacity against many
TCP flows: Comparative study

Constant link capacity scenario with one RTP flow and multiple TCP flows tests
how well rate control algorithms are able to compete for available bandwidth and
how fair they are towards other flows. Whole scenario analysis is divided into two
delay cases (50ms, 100ms). Furthermore, in each delay case RTP flow competes
against one, two, or three TCP sources. TCP traffic for each source is modelled as a
sequence of file downloads interleaved with idle periods (on-off traffic). Sizes of files
which are downloaded are obtained from the uniform distribution and take values
between 100kB and 1.5MB. Lengths of idle periods are drawn from the exponential
distribution with the mean value of 10. In all cases simulation time is 900 seconds,
bottleneck link capacity is 2Mbit/s and Drop Tail queues in routers are used.

Simulation results for 50ms bottleneck delay:

In this scenario, we can observe packet recoveries in the FBRA simulations.
Number of recoveries increases with the number of simultaneous TCP flows, as
the more flows are present in the link, the higher is the probability of packet loss.
The average number of recovered packets is very low, but number of lost packets
is also low. The recovery ratio is between 5-10% of all lost packets. The FBRA
algorithm achieves also very high delivery ratio above 99.75%. Analysis of time
charts presented in the figure 36 shows that the RTP flow is able to quickly ramp
up its sending rate to approach the link capacity limit, and also instantly give up
part of its bandwidth when a new TCP flow appears. The question is, if it does
not leave too much space for other flows, as its average sending rate is significantly



73

below TCP flow throughput, and tends to decrease with number of increasing TCP
flows. This effect can be explained by the fact that in the FBRA algorithm it is
necessary to have an interval of 4 subsequent RTCP reports with good reception
statistics to increase the sending rate. In the same time the TCP flow may quicker
increase its rate and take the available bandwidth. On the other hand, the RTP flow
driven by the N-FBRA algorithm seems to compete much better against TCP flows.
In the scenario of competition against just one flow, it achieves average sending
rate of around 1.5Mbit/s, whereas TCP gets roughly 540kbit/s. Difference between
TCP flows’ bandwidth and RTP one decreases, as number of TCP flows increases.
When RTP competes against 3 flows, its sending rate is 900kbit/s, while other flows
still obtain rates around 540kbit/s. Time charts presenting N-FBRA behaviour
are presented in the figure 37. This performance difference between FBRA and
N-FBRA results from reduced number of states the N-FBRA algorithm has to go
through in order to increase its rate. Similarly to the FBRA, the N-FBRA achieves
very impressive packet delivery ratio of around 99%. Flow driven by the N-FBRA
algorithm losses far more packets in comparison to the FBRA driven flow. However,
number of lost packets is still small for such a high sending rate. Overall metrics for
this scenario are presented in tables 7, 8, 9.

Table 7: Overall metrics for 50ms delay in single RTP flow against one TCP flow
scenario

Metric FBRA N-FBRA
avg. dev avg. dev

R
T
P

Sending rate [kb/s] 831.86 99.18 1503.97 114.46
Goodput [kb/s] 831.16 99.11 1487.22 106.68

Delivery ratio [%] 99.92 0.02 98.92 0.72
FEC rate [kb/s] 30.98 3.08 - -

No. of lost packets 65.23 16.74 1869.5 1436.0
No. of discarded packets 0 0 0 0

Recovered packets 2.9 1.19 0 0
No. of packets in recv. buffer 27.63 2.65 37.51 1.69

Underflow time [s] 0 0 0.0006 0.004

T
C
P Throughput in "on" state [kb/s] 952.61 134.42 541.34 88.81

"on" time [s] 258.75 27.56 345.42 38.75
Percentage of fair share 95.26 13.44 54.13 8.88



74

Table 8: Overall metrics for 50ms delay in single RTP flow against two TCP flows
scenario

Metric FBRA N-FBRA
avg. dev avg. dev

R
T
P

Sending rate [kb/s] 284.35 80.57 1149.93 139.55
Goodput [kb/s] 283.92 80.39 1140.44 134.14

Delivery ratio [%] 99.85 0.06 99.21 0.41
FEC rate [kb/s] 12.33 3.18 - -

No. of lost packets 51.67 25.83 941.03 643.27
No. of discarded packets 0 0 0 0

Recovered packets 4.27 2.11 0 0
No. of packets in recv. buffer 12.67 2.07 31.11 2.01

Underflow time [s] 0.048 0.06 0.006 0.01

T
C
P Throughput in "on" state [kb/s] 955.95 163.42 581.16 99.12

"on" time [s] 257.31 38.29 363.69 47.09
Percentage of fair share 143.39 24.51 87.17 14.87

T
C
P Throughput in "on" state [kb/s] 957.75 117.04 560.51 71.22

"on" time [s] 248.10 26.14 324.72 46.48
Percentage of fair share 143.66 17.56 84.08 10.68

Table 9: Overall metrics for 50ms delay in single RTP flow against three TCP flows
scenario

Metric FBRA N-FBRA
avg. dev avg. dev

R
T
P

Sending rate [kb/s] 184.89 30.91 898.55 138.54
Goodput [kb/s] 184.44 30.88 890.19 134.93

Delivery ratio [%] 99.75 0.06 99.11 0.29
FEC rate [kb/s] 8.32 1.17 - -

No. of lost packets 79.0 15.27 816.03 396.53
No. of discarded packets 0 0 0 0

Recovered packets 8.27 2.50 0 0
No. of packets in recv. buffer 10.52 0.75 25.30 2.49

Underflow time [s] 0.088 0.07 0.034 0.02

T
C
P Throughput in "on" state [kb/s] 839.94 118.71 560.75 82.32

"on" time [s] 275.97 32.78 355.0 40.91
Percentage of fair share 167.99 23.74 112.15 16.46

T
C
P Throughput in "on" state [kb/s] 823.80 90.94 547.60 71.22

"on" time [s] 260.57 26.93 348.60 44.18
Percentage of fair share 164.76 18.19 109.52 14.24

T
C
P Throughput in "on" state [kb/s] 819.97 114.75 527.82 77.63

"on" time [s] 235.10 31.60 317.73 39.16
Percentage of fair share 163.99 22.95 105.56 15.53



75

0 100 200 300 400 500 600 700 800 900
time [s]

0

500000

1000000

1500000

2000000

2500000

3000000

se
nd

ing
 ra

te 
[b

/s]

Sending rate
FEC rate
TCP 1 bandwidth

(a) Time chart presenting competition between RTP and TCP flow

0 100 200 300 400 500 600 700 800 900
time [s]

0

500000

1000000

1500000

2000000

2500000

3000000

se
nd

ing
 ra

te 
[b

/s]

Sending rate
FEC rate
TCP 1 bandwidth
TCP 2 bandwidth

(b) Time chart presenting competition between RTP and 2 TCP flows

(c) Time chart presenting competition between RTP and 3 TCP flows

Figure 36: RTP vs. TCP competition in 50ms scenario with FBRA used



76

0 100 200 300 400 500 600 700 800 900
time [s]

0

500000

1000000

1500000

2000000

2500000

3000000

se
nd

ing
 ra

te 
[b

/s]

Sending rate
TCP 1 bandwidth

(a) Time chart presenting competition between RTP and TCP flow

0 100 200 300 400 500 600 700 800 900
time [s]

0

500000

1000000

1500000

2000000

2500000

3000000

se
nd

ing
 ra

te 
[b

/s]

Sending rate
TCP 1 bandwidth
TCP 2 bandwidth

(b) Time chart presenting competition between RTP and 2 TCP flows

0 100 200 300 400 500 600 700 800 900
time [s]

0

500000

1000000

1500000

2000000

2500000

3000000

se
nd

ing
 ra

te 
[b

/s]

Sending rate
TCP 1 bandwidth
TCP 2 bandwidth
TCP 3 bandwidth

(c) Time chart presenting competition between RTP and 3 TCP flows

Figure 37: RTP vs. TCP competition in 50ms scenario with N-FBRA used



77

Simulation results for 100ms bottleneck delay:

For 100ms delay scenario, it can be observed that the average sending rate in-
creases when the FBRA and N-FBRA algorithms are used for the RTP flow, whereas
TCP flows achieve lower throughput than in 50ms delay scenario. Worse TCP per-
formance results from higher network latency limiting rate at which TCP segment
acknowledgements arrive at the sender. To sum up, the higher network latency is,
the lower is the total number of bytes sent by the TCP flow in the time unit. On
the other hand, the RTP flow is not limited by any window, and therefore it can
easier expand its sending rate by pushing back TCP flows. Simultaneously increase
of the RTP sending rate does not kill TCP transfers, as they are still able to achieve
average throughput of around 500kbit/s regardless 1, 2, or 3 TCP flows compete
in the same time. Packet recoveries are still observed when the FBRA algorithm
is used, but their average number is lower, as higher latency reduces delay budget
leaving less time for possible recovery of the lost packet. Average packet delivery
ratio maintains above 99% for FBRA and N-FBRA and underflow time is in all
cases below 2 seconds. In this scenario packet discards begin to appear, but they
don’t affect results very much, as they are very low in all cases. Again number of
lost packets for the N-FBRA driven flow is much higher than for the FBRA one,
but this difference results from much higher sending rate achieved by the former
algorithm. Example of time charts for this scenario are presented in the figures 38,
39, and tables 10, 11, 12 show overall metrics.

Table 10: Overall metrics for 100ms delay in single RTP flow against one TCP flow
scenario

Metric FBRA N-FBRA
avg. dev avg. dev

R
T
P

Sending rate [kb/s] 1308.48 62.58 1528.87 54.86
Goodput [kb/s] 1306.28 62.50 1519.06 50.78

Delivery ratio [%] 99.83 0.04 99.37 0.35
FEC rate [kb/s] 37.76 1.39 - -

No. of lost packets 170.43 45.70 976.8 579.61
No. of discarded packets 32.70 6.56 57.73 30.06

Recovered packets 4.7 2.44 0 0
No. of packets in recv. buffer 33.40 1.26 33.14 1.12

Underflow time [s] 0.45 0.11 0.47 0.19

T
C
P Throughput in "on" state [kb/s] 582.70 76.08 445.89 47.71
"on" time [s] 344.37 37.94 391.80 37.33

Percentage of fair share 58.27 7.61 44.59 4.77



78

Table 11: Overall metrics for 100ms delay in single RTP flow against two TCP flows
scenario

Metric FBRA N-FBRA
avg. dev avg. dev

R
T
P

Sending rate [kb/s] 840.01 73.24 1312.46 63.10
Goodput [kb/s] 837.42 72.99 1301.99 60.91

Delivery ratio [%] 99.69 0.06 99.21 0.25
FEC rate [kb/s] 26.52 1.80 - -

No. of lost packets 210.67 53.25 963.10 373.47
No. of discarded packets 34.20 5.58 44.7 15.01

Recovered packets 5.67 2.89 0 0
No. of packets in recv. buffer 23.17 1.62 28.75 0.66

Underflow time [s] 1.01 0.20 0.84 0.21

T
C
P Throughput in "on" state [kb/s] 581.28 79.63 416.78 49.05

"on" time [s] 355.40 38.00 416.03 35.20
Percentage of fair share 87.19 11.94 62.52 7.36

T
C
P Throughput in "on" state [kb/s] 564.09 74.11 405.00 48.33

"on" time [s] 332.60 35.23 393.53 44.42
Percentage of fair share 84.61 11.11 60.75 7.25

Table 12: Overall metrics for 100ms delay in single RTP flow against three TCP
flows scenario

Metric FBRA N-FBRA
avg. dev avg. dev

R
T
P

Sending rate [kb/s] 485.25 96.71 1074.14 108.07
Goodput [kb/s] 483.14 96.09 1064.36 105.10

Delivery ratio [%] 99.57 0.10 99.11 0.27
FEC rate [kb/s] 17.19 2.95 - -

No. of lost packets 193.40 68.89 884.83 336.06
No. of discarded packets 27.40 6.75 40.27 11.61

Recovered packets 6.80 3.07 0 0
No. of packets in recv. buffer 14.95 2.28 24.73 1.60

Underflow time [s] 1.64 0.27 1.26 0.20

T
C
P Throughput in "on" state [kb/s] 567.09 75.92 408.34 60.61

"on" time [s] 349.13 44.92 411.97 53.01
Percentage of fair share 113.42 15.18 81.67 12.12

T
C
P Throughput in "on" state [kb/s] 550.85 82.30 401.03 46.54

"on" time [s] 334.17 45.57 401.13 39.62
Percentage of fair share 110.17 16.46 80.21 9.31

T
C
P Throughput in "on" state [kb/s] 546.22 71.00 396.99 48.61

"on" time [s] 308.07 34.92 376.67 41.40
Percentage of fair share 109.24 14.20 79.40 9.72



79

0 100 200 300 400 500 600 700 800 900
time [s]

0

500000

1000000

1500000

2000000

2500000

3000000

se
nd

ing
 ra

te 
[b

/s]

Sending rate
FEC rate
TCP 1 bandwidth

(a) Time chart presenting competition between RTP and TCP flow

0 100 200 300 400 500 600 700 800 900
time [s]

0

500000

1000000

1500000

2000000

2500000

3000000

se
nd

ing
 ra

te 
[b

/s]

Sending rate
FEC rate
TCP 1 bandwidth
TCP 2 bandwidth

(b) Time chart presenting competition between RTP and 2 TCP flows

0 100 200 300 400 500 600 700 800 900
time [s]

0

500000

1000000

1500000

2000000

2500000

3000000

se
nd

ing
 ra

te 
[b

/s]

Sending rate
FEC rate
TCP 1 bandwidth
TCP 2 bandwidth
TCP 3 bandwidth

(c) Time chart presenting competition between RTP and 3 TCP flows

Figure 38: RTP vs. TCP competition in 100ms scenario with FBRA used



80

0 100 200 300 400 500 600 700 800 900
time [s]

0

500000

1000000

1500000

2000000

2500000

3000000

se
nd

ing
 ra

te 
[b

/s]

Sending rate
TCP 1 bandwidth

(a) Time chart presenting competition between RTP and TCP flow

0 100 200 300 400 500 600 700 800 900
time [s]

0

500000

1000000

1500000

2000000

2500000

3000000

se
nd

ing
 ra

te 
[b

/s]

Sending rate
TCP 1 bandwidth
TCP 2 bandwidth

(b) Time chart presenting competition between RTP and 2 TCP flows

0 100 200 300 400 500 600 700 800 900
time [s]

0

500000

1000000

1500000

2000000

2500000

3000000

se
nd

ing
 ra

te 
[b

/s]

Sending rate
TCP 1 bandwidth
TCP 2 bandwidth
TCP 3 bandwidth

(c) Time chart presenting competition between RTP and 3 TCP flows

Figure 39: RTP vs. TCP competition in 100ms scenario with N-FBRA used



81

Scenario discussion summary:

Two presented above scenarios show that the FBRA and N-FBRA rate adap-
tation algorithms can compete successfully for network bandwidth against multiple
TCP flows. Furthermore, it was also shown that FEC in the FBRA algorithm is not
only able to be used for rate adaptation, but that it can also recover some number
of lost packets. Comparison of these two algorithms performance indicates that the
N-FBRA algorithm competes much better against TCP flows than the FBRA one.
The reliability of the N-FBRA algorithm is slightly lower than its counterpart, but
its excellent sending rate performance can compensate for this loss.

Having analysed results, it is important to evaluate contribution of FEC to rate
adaptation. It is undeniable that the FBRA algorithm achieves excellent results
in terms of reliability. However, its sending rate performance differs widely from
its N-FBRA counterpart, which also achieves very good reliability results. There
is no simple answer to the question if usage of FEC for rate adaptation can be
justified. Probably there are scenarios (e.g. lossy network links) where the N-FBRA
driven flows achieve far worse reliability results. Furthermore, as it was shown in
the variable link capacity scenario results, the FBRA algorithm can outperform its
counterpart. Therefore it is impossible to definitely state that using FEC for rate
adaptation is pointless. Perhaps it could be possible to create a hybrid solution in
which the algorithm can switch between FBRA and N-FBRA algorithms depending
on the network situation.

7.2.3 Two RTP flows competing for constant link capacity against many
TCP flows: Comparative study

Constant link capacity scenario with two RTP flows and multiple TCP flows
tests how well rate adaptation algorithms are able to compete for available network
bandwidth against elastic flows and another multimedia flow. Whole scenario anal-
ysis is divided into two delay cases (50ms and 100ms). Additionally in each delay
case two RTP flows compete against one, two, or three TCP flows. TCP traffic is
modelled as a sequence of file downloads interleaved with idle periods (on-off traffic
type). File sizes are drawn from the uniform distribution within the range of 100kB
and 1.5MB. Idle period lengths are obtained from the exponential distribution with
the mean value of 10. In all delay cases simulation time is set to 900 seconds, bot-
tleneck capacity is 2Mbit/s and Drop Tail queues in routers are used.

Simulation results for 50ms bottleneck delay:

In the 50ms delay scenario, again N-FBRA driven RTP flows obtain much higher
average goodput than RTP flows driven by the FBRA algorithm. Sending rates of
RTP flow 1 and 2 differ significantly when the FBRA algorithm is used, but the rates
for both participants of the session in the same flow are comparable, which proves
that the FBRA algorithm assures fairness for both sides of the session. Difference
between flow sending rates decreases, as number of background TCP flows increases.



82

In comparison to the previous scenario, it can be stated that TCP throughput is
not affected by presence of another RTP flow, and multimedia flows tend to share
available bandwidth between them. However, it is also noticeable that cumulative
sending rate of 2 RTP flows is higher than the sending rate of the RTP flow in the
previous scenario. This means that overall link capacity utilisation increases with
the number of competing flows. In this scenario packet recoveries are also present
and they are a bit more frequent than in the previous scenario. This is logical
as number of losses also increase, as there is always one more flow in competition
for the network bandwidth. Observations concerning the N-FBRA performance are
very similar. Sending rate difference between RTP flows when it is used, is not
so significant, and for 3 TCP flows it becomes negligible. In this scenario also the
TCP throughputs do not seem to be in any way affected by the constant presence
of another RTP flow. Both algorithms achieve very high delivery ratio. The FBRA
algorithm exceeds 99% on average in every case, whereas the N-FBRA only in a
single case falls below 99%. Example of time charts for this scenario are presented
in the figures 40, 41, and tables 13, 14, 15 show overall metrics.

Table 13: Overall metrics for 50ms delay in two RTP flows against one TCP flow
scenario

Metric FBRA N-FBRA
avg. dev avg. dev

R
T
P

fl
ow

1

Sending rate [kb/s] 348.90 127.84 718.04 161.46
Goodput [kb/s] 348.58 127.49 714.71 159.99

Delivery ratio [%] 99.93 0.06 99.56 0.19
FEC rate [kb/s] 14.37 4.65 - -

No. of lost packets 34.83 35.44 381.53 201.29
No. of discarded packets 0 0 0 0

Recovered packets 1.93 1.75 0 0
No. of packets in recv. buffer 14.18 3.41 20.68 3.60

Underflow time [s] 0.001 0.007 0 0

R
T
P

fl
ow

2

Sending rate [kb/s] 584.23 154.39 871.15 168.53
Goodput [kb/s] 583.33 154.04 871.15 168.53

Delivery ratio [%] 99.85 0.05 99.34 0.27
FEC rate [kb/s] 22.89 5.23 - -

No. of lost packets 89.63 40.35 650.0 400.37
No. of discarded packets 0 0 0 0

Recovered packets 3.07 1.79 0 0
No. of packets in recv. buffer 20.28 4.20 23.61 3.70

Underflow time [s] 0.01 0.01 0.01 0.01

T
C
P Throughput in "on" state [kb/s] 924.86 158.38 506.27 80.50

"on" time [s] 263.30 35.32 379.03 49.04
Percentage of fair share 138.73 23.76 75.94 12.08



83

Table 14: Overall metrics for 50ms delay in two RTP flows against two TCP flows
scenario

Metric FBRA N-FBRA
avg. dev avg. dev

R
T
P

fl
ow

1

Sending rate [kb/s] 235.51 44.75 641.96 118.03
Goodput [kb/s] 234.80 44.62 637.33 116.18

Delivery ratio [%] 99.70 0.06 99.31 0.22
FEC rate [kb/s] 10.05 1.77 - -

No. of lost packets 88.20 20.62 526.60 225.92
No. of discarded packets 0 0 0 0

Recovered packets 5.50 2.96 0 0
No. of packets in recv. buffer 11.21 1.07 18.84 2.59

Underflow time [s] 0.14 0.09 0.01 0.02

R
T
P

fl
ow

2

Sending rate [kb/s] 178.43 38.54 690.40 108.67
Goodput [kb/s] 178.01 38.40 684.07 106.63

Delivery ratio [%] 99.77 0.06 99.10 0.23
FEC rate [kb/s] 7.99 1.70 - -

No. of lost packets 57.67 18.06 664.97 230.94
No. of discarded packets 0 0 0 0

Recovered packets 3.97 2.12 0 0
No. of packets in recv. buffer 9.93 0.79 19.64 2.40

Underflow time [s] 0.07 0.05 0.03 0.04

T
C
P Throughput in "on" state [kb/s] 914.53 131.22 489.59 60.34

"on" time [s] 264.60 32.98 385.70 42.16
Percentage of fair share 182.91 26.24 97.92 12.07

T
C
P Throughput in "on" state [kb/s] 918.08 125.55 478.48 56.47

"on" time [s] 247.57 29.89 361.33 35.40
Percentage of fair share 183.61 25.11 95.70 11.29



84

Table 15: Overall metrics for 50ms delay in two RTP flows against three TCP flows
scenario

Metric FBRA N-FBRA
avg. dev avg. dev

R
T
P

fl
ow

1

Sending rate [kb/s] 159.05 26.58 557.25 95.43
Goodput [kb/s] 158.28 26.42 551.83 93.56

Delivery ratio [%] 99.52 0.10 99.06 0.27
FEC rate [kb/s] 7.19 1.05 - -

No. of lost packets 140.0 24.08 609.27 219.73
No. of discarded packets 0 0 0 0

Recovered packets 9.47 2.54 0 0
No. of packets in recv. buffer 9.80 0.64 16.89 2.06

Underflow time [s] 0.21 0.10 0.03 0.03

R
T
P

fl
ow

2

Sending rate [kb/s] 125.08 16.69 556.28 83.00
Goodput [kb/s] 124.51 16.57 548.97 81.22

Delivery ratio [%] 99.54 0.11 98.71 0.26
FEC rate [kb/s] 5.99 0.73 - -

No. of lost packets 125.0 26.38 759.73 209.80
No. of discarded packets 0 0 0 0

Recovered packets 8.73 3.01 0 0
No. of packets in recv. buffer 9.08 0.32 16.60 1.80

Underflow time [s] 0.18 0.14 0.06 0.05

T
C
P Throughput in "on" state [kb/s] 809.90 136.05 484.53 56.39

"on" time [s] 289.50 44.50 383.50 36.82
Percentage of fair share 202.48 34.01 121.13 14.10

T
C
P Throughput in "on" state [kb/s] 796.88 91.04 471.42 45.36

"on" time [s] 269.0 29.13 354.03 36.75
Percentage of fair share 199.22 22.76 117.85 11.34

T
C
P Throughput in "on" state [kb/s] 798.29 123.98 465.43 39.74

"on" time [s] 258.23 38.75 328.13 30.30
Percentage of fair share 199.57 31.00 116.36 9.94



85

0 100 200 300 400 500 600 700 800 900
time [s]

0

500000

1000000

1500000

2000000

2500000

se
nd

ing
 ra

te 
[b/

s]
Total flow 1 SR
Total flow 2 SR

TCP flow 1

(a) Time chart presenting competition between 2 RTP and TCP flow

0 100 200 300 400 500 600 700 800 900
time [s]

0

500000

1000000

1500000

2000000

2500000

se
nd

ing
 ra

te 
[b/

s]

Total flow 1 SR
Total flow 2 SR

TCP flow 1
TCP flow 2

(b) Time chart presenting competition between 2 RTP and 2 TCP flows

0 100 200 300 400 500 600 700 800 900
time [s]

0

500000

1000000

1500000

2000000

2500000

se
nd

ing
 ra

te 
[b/

s]

Total flow 1 SR
Total flow 2 SR
TCP flow 1

TCP flow 2
TCP flow 3

(c) Time chart presenting competition between 2 RTP and 3 TCP flows

Figure 40: 2 RTP vs. TCP competition in 50ms scenario with FBRA used



86

0 100 200 300 400 500 600 700 800 900
time [s]

0

500000

1000000

1500000

2000000

2500000

se
nd

ing
 ra

te 
[b/

s]
Total flow 1 SR
Total flow 2 SR

TCP flow 1

(a) Time chart presenting competition between 2 RTP and TCP flow

0 100 200 300 400 500 600 700 800 900
time [s]

0

500000

1000000

1500000

2000000

2500000

se
nd

ing
 ra

te 
[b/

s]

Total flow 1 SR
Total flow 2 SR

TCP flow 1
TCP flow 2

(b) Time chart presenting competition between 2 RTP and 2 TCP flows

0 100 200 300 400 500 600 700 800 900
time [s]

0

500000

1000000

1500000

2000000

2500000

se
nd

ing
 ra

te 
[b/

s]

Total flow 1 SR
Total flow 2 SR
TCP flow 1

TCP flow 2
TCP flow 3

(c) Time chart presenting competition between 2 RTP and 3 TCP flows

Figure 41: 2 RTP vs. TCP competition in 50ms scenario with N-FBRA used



87

Simulation results for 100ms bottleneck delay:

In the 100ms delay scenario, results are very similar to the previous case. Again
the N-FBRA algorithm seems to be superior towards the FBRA one in terms of
average sending rate/goodput performance. Differences between sending rates of
particular flows when the FBRA algorithm is used are smaller than in the previous
case, and tends to become negligible with the increasing number of flows. Overall
results of the FBRA algorithm performance are better than in the 50ms delay case.
Sending rate and goodput are higher, as similarly to the one RTP flow competition
scenario TCP flows cannot accelerate as quickly as in the 50ms case due to increased
delivery time of packet acknowledgements. Number of lost and discarded packets
is low, as delivery ratio exceeds 99.4% in all simulated cases. Packet recoveries
are also observed, but they don’t exceed 5% of lost packets on average. Sending
rate differences between N-FBRA driven flows are enclosed in rather small interval
regardless of number of other flows. Average number of lost and discarded packets
is far higher than in the FBRA case, but it results from higher number of packets
sent in overall. Packet delivery ratio is also very impressive with all but one cases
significantly exceeding 99%. Example of time charts for this scenario are presented
in the figures 42, 43, and tables 16, 17, 18 show overall metrics.



88

Table 16: Overall metrics for 100ms delay in two RTP flows against one TCP flow
scenario

Metric FBRA N-FBRA
avg. dev avg. dev

R
T
P

fl
ow

1

Sending rate [kb/s] 538.65 116.52 799.41 167.06
Goodput [kb/s] 538.00 116.19 796.02 165.69

Delivery ratio [%] 99.88 0.05 99.59 0.14
FEC rate [kb/s] 18.74 3.47 - -

No. of lost packets 61.30 40.36 362.43 160.05
No. of discarded packets 9.93 3.58 10.67 3.84

Recovered packets 2.17 1.46 0 0
No. of packets in recv. buffer 15.95 2.67 19.01 3.36

Underflow time [s] 0.39 0.12 0.34 0.11

R
T
P

fl
ow

2

Sending rate [kb/s] 855.84 121.21 809.52 169.61
Goodput [kb/s] 853.87 120.81 804.86 167.30

Delivery ratio [%] 99.77 0.05 99.46 0.21
FEC rate [kb/s] 26.58 2.60 - -

No. of lost packets 186.20 50.41 497.80 272.58
No. of discarded packets 12.40 3.32 11.73 4.57

Recovered packets 4.43 2.25 0 0
No. of packets in recv. buffer 22.73 2.53 18.86 2.88

Underflow time [s] 0.54 0.14 0.49 0.15

T
C
P Throughput in "on" state [kb/s] 566.81 70.57 432.85 60.66

"on" time [s] 355.03 35.96 401.50 47.13
Percentage of fair share 85.02 10.59 64.93 9.10



89

Table 17: Overall metrics for 100ms delay in two RTP flows against two TCP flows
scenario

Metric FBRA N-FBRA
avg. dev avg. dev

R
T
P

fl
ow

1

Sending rate [kb/s] 432.69 97.19 706.61 140.71
Goodput [kb/s] 431.47 96.61 701.23 138.52

Delivery ratio [%] 99.73 0.03 99.27 0.24
FEC rate [kb/s] 15.87 2.99 - -

No. of lost packets 123.60 63.21 567.40 247.41
No. of discarded packets 12.63 3.57 13.43 3.60

Recovered packets 4.70 2.35 0 0
No. of packets in recv. buffer 13.50 2.21 16.90 2.59

Underflow time [s] 0.88 0.22 0.66 0.17

R
T
P

fl
ow

2

Sending rate [kb/s] 518.48 102.88 690.56 142.75
Goodput [kb/s] 516.52 102.23 684.08 140.31

Delivery ratio [%] 99.63 0.08 99.09 0.23
FEC rate [kb/s] 18.33 2.82 - -

No. of lost packets 189.57 66.64 652.73 267.87
No. of discarded packets 12.57 3.45 12.53 5.09

Recovered packets 3.63 2.04 0 0
No. of packets in recv. buffer 15.42 2.35 16.45 2.49

Underflow time [s] 1.13 0.22 0.89 0.19

T
C
P Throughput in "on" state [kb/s] 553.75 82.98 400.05 60.29

"on" time [s] 356.97 43.47 433.67 51.86
Percentage of fair share 110.75 16.60 80.00 12.06

T
C
P Throughput in "on" state [kb/s] 551.52 71.50 390.66 50.08

"on" time [s] 335.97 36.17 394.37 42.72
Percentage of fair share 110.30 14.30 78.13 10.02



90

Table 18: Overall metrics for 100ms delay in two RTP flows against three TCP flows
scenario

Metric FBRA N-FBRA
avg. dev avg. dev

R
T
P

fl
ow

1

Sending rate [kb/s] 304.54 45.75 581.02 93.10
Goodput [kb/s] 303.15 45.26 576.03 91.42

Delivery ratio [%] 99.55 0.13 99.17 0.23
FEC rate [kb/s] 11.52 1.80 - -

No. of lost packets 156.77 61.83 544.97 189.79
No. of discarded packets 10.97 3.11 12.77 4.31

Recovered packets 6.30 2.05 0 0
No. of packets in recv. buffer 10.57 1.04 14.67 1.90

Underflow time [s] 1.50 0.30 0.91 0.24

R
T
P

fl
ow

2

Sending rate [kb/s] 319.55 51.81 622.88 123.16
Goodput [kb/s] 317.71 51.38 614.87 120.13

Delivery ratio [%] 99.43 0.11 98.76 0.36
FEC rate [kb/s] 12.11 1.80 - -

No. of lost packets 200.57 59.58 805.73 324.55
No. of discarded packets 10.67 3.26 10.43 4.76

Recovered packets 5.80 2.15 0 0
No. of packets in recv. buffer 10.93 1.15 15.23 2.11

Underflow time [s] 1.71 0.28 1.20 0.23

T
C
P Throughput in "on" state [kb/s] 542.62 70.92 383.67 57.65

"on" time [s] 362.40 40.79 418.83 51.60
Percentage of fair share 135.66 17.73 95.92 14.41

T
C
P Throughput in "on" state [kb/s] 527.49 55.43 365.18 42.33

"on" time [s] 342.63 30.10 420.20 34.79
Percentage of fair share 131.87 13.86 91.30 10.58

T
C
P Throughput in "on" state [kb/s] 529.88 91.09 363.05 45.25

"on" time [s] 306.03 42.66 376.33 42.04
Percentage of fair share 132.47 22.77 90.76 11.31



91

0 100 200 300 400 500 600 700 800 900
time [s]

0

500000

1000000

1500000

2000000

2500000

se
nd

ing
 ra

te 
[b/

s]
Total flow 1 SR
Total flow 2 SR

TCP flow 1

(a) Time chart presenting competition between 2 RTP and TCP flow

0 100 200 300 400 500 600 700 800 900
time [s]

0

500000

1000000

1500000

2000000

2500000

se
nd

ing
 ra

te 
[b/

s]

Total flow 1 SR
Total flow 2 SR

TCP flow 1
TCP flow 2

(b) Time chart presenting competition between 2 RTP and 2 TCP flows

0 100 200 300 400 500 600 700 800 900
time [s]

0

500000

1000000

1500000

2000000

2500000

se
nd

ing
 ra

te 
[b/

s]

Total flow 1 SR
Total flow 2 SR
TCP flow 1

TCP flow 2
TCP flow 3

(c) Time chart presenting competition between 2 RTP and 3 TCP flows

Figure 42: 2 RTP vs. TCP competition in 100ms scenario with FBRA used



92

0 100 200 300 400 500 600 700 800 900
time [s]

0

500000

1000000

1500000

2000000

2500000

se
nd

ing
 ra

te 
[b/

s]
Total flow 1 SR
Total flow 2 SR

TCP flow 1

(a) Time chart presenting competition between 2 RTP and TCP flow

0 100 200 300 400 500 600 700 800 900
time [s]

0

500000

1000000

1500000

2000000

2500000

se
nd

ing
 ra

te 
[b/

s]

Total flow 1 SR
Total flow 2 SR

TCP flow 1
TCP flow 2

(b) Time chart presenting competition between 2 RTP and 2 TCP flows

0 100 200 300 400 500 600 700 800 900
time [s]

0

500000

1000000

1500000

2000000

2500000

se
nd

ing
 ra

te 
[b/

s]

Total flow 1 SR
Total flow 2 SR
TCP flow 1

TCP flow 2
TCP flow 3

(c) Time chart presenting competition between 2 RTP and 3 TCP flows

Figure 43: 2 RTP vs. TCP competition in 100ms scenario with N-FBRA used



93

Scenario discussion summary:

In two above presented cases, it was proven that 2 RTP flows can successfully
compete for network bandwidth against many TCP flows and against each other.
Furthermore, this scenario shows that RTP flows within the same session are fair
to each other, as sending rates of participating parties are comparable. In terms of
competition between different session, when the FBRA algorithm is used differences
between flows are higher than in the N-FBRA case. However, it is very important
to state that no situation in which one flow kills another one was observed.

Similarly to results from the one RTP flow competition scenario, question about
FEC contribution is hard to answer. Undeniably FBRA algorithm’s delivery ratio
never falls below 99%, which makes this algorithm superior in terms of reliability.
On the other hand FEC usage introduces additional delay in the bandwidth ramp
up process which makes this algorithm worse the N-FBRA one in the competition
performance. In comparison to the one RTP flow competition scenario, the sending
rate results are better for the FBRA algorithm which leads to the conclusion that
its usability increases with number of flows competing for the bandwidth.



94

7.3 Real-world implementation

Ns-2 simulator is a very convenient tool to evaluate how newly created solution
can perform in the current and future Internet. However, it has also some limitations
making ns-2 obtained results a bit different to the real world. First of all, ns-2 works
as the standalone application modelling only the network part of the system. On the
other hand, in the reality network application behaviour is more complicated and
depends not only on the core application and the network, but also on system kernel
and device drivers. These components may have significant effect on the system
performance and they are impossible to simulate in the "idealised world", which
ns-2 is. Furthermore, in our simulation scenarios video packets are represented only
as dummy packets. As a result, there is no division for I- and P-frames resulting
in impossibility of calculating PSNR metric. Therefore, having successfully tested
performance in the simulator, it is vital to check if the system can also function well
in the real world.

When testing system performance in the real Internet, it is very difficult to draw
any conclusions, as the actual traffic situation in the network is always unknown.
As a result, to obtain any meaningful results, it is necessary to collect very large set
of data over a long period of time covering wide range of traffic situations. To avoid
performing these time consuming experiments, Adaptive Multimedia System
Toolset was designed.

The Adaptive Multimedia System Toolset (AMuSys) uses available open-
source library to provide a generic framework for testing video applications. It can be
divided into two main parts: multimedia tools and networking ones. The multimedia
tools are implemented using open-source GStreamer library [46]. At the moment it
has only bindings available for H.264 video usage, but it can be easily extended in
the future to provide functionality for other multimedia standards. This part was
implemented as the standard GStreamer pipeline. Data can be acquired from live
camera, or be injected into the pipeline from a file. Because the GStreamer file source
component does not have any clocking properties, process of reading data from file
is implemented separately and data are injected into the pipe using the application
source component. The GStreamer library includes built-in standard RTP library,
but its functionality is insufficient to perform rate adaptation. The networking
component was created on top of the open-source JRTP library [47] developed at
the Hasselt and Maastricht University. The core library is fully compliant with RFC
3550 [4]. As rate adaptation requires additional functionality, the basic library was
extended with few additional modules. The most important addition is the FEC
module which is fully compliant with RFC 5109 [6]. By default the library performs
protection operation as the XOR function. However, there are bindings created
to allow developers apply their own protection method. Furthermore, the library
also provides extended feedback profile RFC 4585 [26], but only for point-to-point
sessions. In addition, 4 extensions to RTCP headers from RFC 3611 [7] were added
(loss RLE, discard RLE, LRRT,DLRR). To allow communication between all these
components and avoid multithreading issues standard Linux libevent library was
used. The sender application is single threaded, and is driven by events generated by



95

the libevent, and callbacks of received RTCP packets invoked by the JRTP library.
Inside these callbacks actual rate adaptation is performed. The receiver application
architecture is more complicated, as it consists of two threads. The first thread is
responsible for interaction with the network part of the system. It periodically polls
JRTP library for received packets, and with the help of libevent generates events of
pushing these packets to the decoder, which entrirely operates in the second thread.
The general illustration of the RTP sender and the receiver architecture is presented
in the figure 44.

(a) Sender architecture (b) Receiver architecture

Figure 44: Video platform sender and receiver architecture

Networking part of the AMuSys is built using the Dummynet emulator [48].
This tool allows imposing additional packet delay (emulating physical data propa-
gation), changing link capacity in runtime, adjusting network interface queue, and
imposing probabilistic random packet losses. As this work is concentrated on con-
gestion control in the Internet environment, only link capacity, delay and queue size
settings are used. Sender and receiver applications use loopback interface to emulate
one-way video session between them. The RTP packets and RTCP SRs flow from
the sender to the receiver, whereas RRs are sent in the opposite direction.

The purpose of these experiments was to reproduce ns-2 scenarios presented
in the previous chapter, and compare rate the FBRA algorithm performance with
results obtained from the simulations. However, this cannot be achieved, because
of following limitations of the Dummynet:
• link delay set in the Dummynet varies in an unpredictable manner. Conse-

quently, it is impossible to draw certain conclusions from RTT measurements,
as an RTT sample result calculated by JRTP can be higher than it should be
for existing network conditions. This leads to worse bandwidth utilisation in
comparison to ns-2 results, as the FBRA algorithm may decide to reduce the
sending rate based on unjustified high RTT value. Furthermore it is also im-
possible to reproduce the RTP vs. TCP competition scenarios, as TCP flows
are unable to use more than 20% of available link capacity. Unpredictable
RTT issue is illustrated in the figure 45. In the presented experiment ICMP
packet of 8008 bytes size was being sent every 66ms (15 packets per second)
simulating constant bit rate traffic of 1 Mbit/s. Dummynet was set to emulate
2 Mbit/s constant link with one-way delay of 50ms. The ping statistics show
that average RTT value was 142ms, whereas it should be around 100ms. Very
bandwidth utilisation of TCP flows also results from these variable RTT val-
ues, as TCP Cubic version which highly relies on RTT is used by most Linux
machines.



96

• Capacities of network router queues are measured in bytes, and according to
[49] they should equal link capacity times RTT. Although it is possible to
define queue size in the Dummynet in bytes, random packet losses occur when
the link capacity is changed at runtime. Therefore, queue size is set for 50
packets.

Figure 45: Ping experiment illustrating Dummynet RTT issues



97

7.4 Evaluation of real-world implementation

The primary purpose of this work is to verify the hypothesis if the FEC can be
used for the rate adaptation and error recovery simultaneously. Therefore we decided
to limit evaluation of the real-world implementation only to the FBRA algorithm,
as it joins ideas of rate adaptation and error recovery. Furthermore, taking into
account above Dummynet limitations following testing scenarios were conducted:

• Constant link capacity with single RTP flow

• Variable link capacity with single RTP flow

• Constant link capacity with two RTP flows

The purpose of the first scenario is to verify how stable the FBRA algorithm
can perform when the link capacity is constant, and it does not have to compete
with other flows. The second scenario is targeted at simulating competition between
RTP flow and TCP flow. Change of the link capacity is similar to the effect when
a TCP flow takes/releases network bandwidth. Although this scenario does not
ideally reproduce RTP vs. TCP competition, there is no better solution to verify
this feature of the algorithm performance. The final experiment aims at verifying
fairness between RTP flows when they have to compete for the network bandwidth.

In all scenarios video session just in the upstream direction is emulated. It is
assumed that in the downstream direction results would be very similar. To make
PSNR measurements one well-known file presenting news broadcast is read and
sent over the network. On the receiver side the stream is decoded and stored in file.
PSNR is calculated based on comparison of the original file with the decoded one. In
order to evaluate value of PSNR the rate adaptation module of the sender logs all its
decisions, so that another session mirroring behaviour of the rate adaptation module
can be run on the lossless link. Assessment of PSNR is conducted by comparison of
the obtained PSNR value with the value achieved on the lossless link. However, it is
important to note that due to interference of various factors (e.g. task scheduling)
it is impossible to exactly reproduce the video session. Therefore the recreated
experiment is quasi-identical, and its deviation from the original status does not
influence results. Furthermore, all scenarios are divided into three separate cases in
which bottleneck delays of 50ms, 100ms, and 240ms are set.

Experiment setup is illustrated in the figure 46. It consists of two machines
connected with the Ethernet cable. To emulate desired network characteristics out-
going traffic is sent to the Dummynet driver, whereas the incoming traffic is left
untouched.



98

Figure 46: Network setup

7.4.1 Constant link capacity with single RTP flow scenario

Emulation results for 50ms bottleneck delay:

Generally speaking results obtained in the 50ms delay scenario are very stable.
The average sending rate is about 1160 kb/s, and the delivery ratio is 99.49%. It
is possible to observe Dummynet related issues, as despite never approaching the
link capacity limit, on average 2.3 packets are discarded in every run. Exemplary
graphs illustrating this problem in one run are presented in the figure 47. Graph 47c
visualises RTT measurements as the function of time. RTT variations are similar to
the effect which was observed in the ping experiment. Such RTT value oscillations
prevent the rate adaptation algorithm from obtaining higher throughput. The other
noticeable difference in comparison to ns-2 results is much higher FEC overhead, as
it exceeds 10% now, whereas in the simulator it was oscillating around 5%. This
unexpected increase also results from RTT instabilities, as transitions between en-
coding rate changes do not happen as smoothly as in the simulation scenario. Here
due to high RTT variations the rate adaptation algorithm very often does not go
through easily through s-,s+,s++,u sequence of states, but period of time spent in
s+ and s++ states is longer.

In the series of 10 runs, we were able to obtain average PSNR value of 45.20dB.
On the lossless channel average PSNR reached 45.32dB. Slight difference between the
lossy PSNR result and the lossless one indicates that the rate adaptation algorithm
does not cause deterioration of quality. All results of this scenario are presented in
the table 19.



99

Table 19: Overall metrics for 50ms delay in constant link capacity scenario

Metric FBRA
avg dev

Sending rate [kb/s] 1164.39 94.76
Goodput [kb/s] 1158.43 92.06

Delivery ratio [%] 99.51 0.54
FEC rate [kb/s] 148.35 7.31

No. of lost packets 0 0
No. of discarded packets 2.3 2.79

Recovered packets 0 0
PSNR [dB] 45.20 0.52

Lossless PSNR [dB] 45.32 0.64

Emulation results for 100ms bottleneck delay:

Results of the 100ms delay scenario are again very stable. The sending rate
is higher than for 50ms delay case and reaches almost 1300kbit/s on average. On
the other hand the reliability worsens, as the delivery ratio falls to 98.47%. There
are no observed packet losses, and all deteriorations result from about 50 packets
discarded on average. In this scenario it is easier to exceed the delay budget in
comparison to the previous case, as it is at the beginning smaller by 50ms. The
smaller budget together with unpredictable physical propagation delay is mainly
responsible for such a significant increase of discarded packets. Figure 48 presents
results of one scenario run. Looking at the figure 48b one can notice that most
of discards appear when the sending rate approaches the link capacity limit (for
example between 350th and 400th second of the run). However, all these discards
cannot be logically explained, as the capacity limit is exceeded only a few times,
and for a very short period of time, and it is unlikely that such a small overshooting
cause packet queuing exceeding the delay budget. Similarly to the previous case the
FEC overhead is also much higher than in the identical scenario conducted in the
ns-2 simulator, and the reason for this behaviour is identical to the one in the 50ms
delay case.

Average PSNR achieved on the lossy channel equals 43.80dB, whereas on the
lossless link 45.98dB was achieved. The difference between these values is much
higher than in the previous case, and it mainly results from significantly higher
number of discarded packets. All statistical results of this scenario are presented in
the table 20



100

Table 20: Overall metrics for 100ms delay in constant link capacity scenario

Metric FBRA
avg dev

Sending rate [kb/s] 1299.26 41.30
Goodput [kb/s] 1279.33 41.43

Delivery ratio [%] 98.47 0.48
FEC rate [kb/s] 149.76 4.13

No. of lost packets 0 0
No. of discarded packets 49.80 13.16

Recovered packets 0 0
PSNR [dB] 43.80 0.71

Lossless PSNR [dB] 45.98 0.30

Emulation results for 240ms bottleneck delay:

In the 240ms delay scenario, the results are significantly worse than in both
previous cases. The goodput is poor in comparison to the previous scenarios, as
well as, the delivery ratio which barely exceeds 97% border. Furthermore, the
average number of discarded packets also increases because of identical reasons, as
in the 100ms delay scenario. Because the rate adaptation algorithm orders sending
rate reduction based on appearance of discarded packets, much lower goodput can
be explained by relatively high RTT values, which increase unpredictably, leading
to discards, which finally makes the rate adaptation algorithm reduce the sending
rate. Figure 49 presents results of one scenario run, whereas the overall metrics are
presented in the table 21

The PSNR results are very bad for this scenario. The average value on the lossy
channel is 35.51dB, whereas on the lossless channel 42.60dB is achieved. Difference
of more than 7dB is hard to accept, in the case where only around 70 packets were
discarded on average. Such a huge difference implies that among these discarded
packets must be a lot of I-frames whose losses contribute more significant damages.
It is even more probable that I-frames must be among discarded packets, in our
observations it was found out that the Dummynet poorly handles larger packets
(I-frames).



101

Table 21: Overall metrics for 240ms delay in constant link capacity scenario

Metric FBRA
avg dev

Sending rate [kb/s] 787.24 27.67
Goodput [kb/s] 765.48 26.33

Delivery ratio [%] 97.24 0.53
FEC rate [kb/s] 93.78 3.75

No. of lost packets 0 0
No. of discarded packets 70.20 10.41

Recovered packets 0 0
PSNR [dB] 35.51 1.28

Lossless PSNR [dB] 42.60 0.37

Scenario discussion summary:

The purpose of this scenario is to evaluate how stable the FBRA algorithm
can perform in the real Internet. In terms of stability results are very good for
all subscenarios. Analysing time charts presented in the figures 47a, 48a, 49a, it
can be stated that the sending rate value oscillates around some average number
and changes "periodically" in the "sine wave" style. Results of this experiment are
unfortunately not completely accurate due to already explained RTT issues. If the
Dummynet emulator did not have these limitations, discards would not appear for
these sending rates values, and FEC overhead would be significantly lower. It is
possible that the FBRA algorithm would achieve far better sending rate, and be
able to almost keep it constant without making "sine wave" like fluctuations.



102

100 150 200 250 300 350 400 450
time [s] +1.3224356e9

0

500

1000

1500

2000

2500

se
nd

ing
 ra

te 
[kb

it/s
]

RTP rate
FEC rate
Link capacity

(a) Sending rate

100 150 200 250 300 350 400 450
time [s] +1.3224356e9

0

500

1000

1500

2000

2500

rec
eiv

e r
ate

 [k
bit

/s]

Goodput
Discard rate
Link capacity

(b) Goodput

100 150 200 250 300 350 400 450
time [s] +1.3224356e9

0.0

0.2

0.4

0.6

0.8

1.0

RT
T [

s]

Actual RTT
Optimal RTT

(c) RTT

Figure 47: Time charts for 50ms delay constant link capacity scenario



103

50 100 150 200 250 300 350 400
time [s] +1.3224409e9

0

500

1000

1500

2000

2500

se
nd

ing
 ra

te 
[kb

it/s
]

RTP rate
FEC rate
Link capacity

(a) Sending rate

50 100 150 200 250 300 350 400
time [s] +1.3224409e9

0

500

1000

1500

2000

2500

rec
eiv

e r
ate

 [k
bit

/s]

Goodput
Discard rate
Link capacity

(b) Goodput

50 100 150 200 250 300 350 400
time [s] +1.3224409e9

0.0

0.2

0.4

0.6

0.8

1.0

RT
T [

s]

Actual RTT
Optimal RTT

(c) RTT

Figure 48: Time charts for 100ms delay constant link capacity scenario



104

100 150 200 250 300 350 400 450
time [s] +1.3225145e9

0

500

1000

1500

2000

2500

se
nd

ing
 ra

te 
[kb

it/s
]

RTP rate
FEC rate
Link capacity

(a) Sending rate

100 150 200 250 300 350 400 450
time [s] +1.3225145e9

0

500

1000

1500

2000

2500

rec
eiv

e r
ate

 [k
bit

/s]

Goodput
Discard rate
Link capacity

(b) Goodput

100 150 200 250 300 350 400 450
time [s] +1.3225145e9

0.0

0.2

0.4

0.6

0.8

1.0

RT
T [

s]

Actual RTT
Optimal RTT

(c) RTT

Figure 49: Time charts for 240ms delay constant link capacity scenario



105

7.4.2 Variable link capacity with single RTP flow

Emulation results for 50ms bottleneck delay:
In the 50ms delay variable link capacity scenario, the main differences between

the ns-2 results, and the results obtained in the real Internet are much lower through-
put, and worse delivery ratio. Similarly to all previous real-world scenarios, obtained
results are far worse than in the identical experiment conducted in the ns-2 and un-
predictable variation of RTT is the root of differences. Time plots illustrating a
single experiment run are presented in the figure 50. RTT variations are far higher
in this scenario than in the previous one. It can be noticed in the figure 50c that
at one point it exceeds even 1 second, whereas its optimum value is 100ms. Such
a high amplitude of RTT variations leads to dramatic increase of the number of
packets discarded. Furthermore packet losses are also 10 times higher than in the
ns-2 simulations. This is also the effect of RTT variations, as RTCP reports are not
delivered to the sender in the appropriate time, therefore limiting its capabilities of
making a correct response to the network situation.

Concerning PSNR results, average values obtained on the lossy channel and the
lossless one differ only by 0.6dB. If we compare these results with the fact that more
than 300 packets are discarded on average, it can be concluded that most of lost or
discarded packets must contain P-frames. Results of this scenario are presented in
the table 22.

Table 22: Overall metrics for 50ms delay in variable link capacity with single RTP
flow scenario

Metric FBRA
avg dev

Sending rate [kb/s] 107.85 5.84
Goodput [kb/s] 104.60 4.85

Delivery ratio [%] 97.03 0.98
FEC rate [kb/s] 17.72 0.58

No. of lost packets 22.80 26.51
No. of discarded packets 288.0 78.90

Recovered packets 0 0
PSNR [dB] 27.22 0.84

Lossless PSNR [dB] 27.84 1.79

Emulation results for 100ms bottleneck delay:
In the 100ms delay scenario, results are similar to the 50ms delay case. The

average sending rate is almost equal, but the goodput is a bit worse. There is a
significant increase in the number of discarded packets in comparison to the previous
case. This boost is the result of the smaller delay budget available in this scenario.
To sum up, again the real-world results are much different from the ones obtained
in the ns-2, and the RTT issue is the main reason for this. Time plots of one
experiment run are presented in the figure 51. It can be observed in many places on



106

these plots that despite almost constant bandwidth underutilisation, packet RTTs
increase significantly above the optimum value, and packet discards appear.

Average PSNR value obtained on the lossy channel is lower by 3dB to the lossless
result. This significant difference in comparison to the previous case indicates that
some I-frames must be lost/discarded. This scenario results are presented in the
table 23.

Table 23: Overall metrics for 100ms delay in variable link capacity with single RTP
flow scenario

Metric FBRA
avg dev

Sending rate [kb/s] 107.54 1.65
Goodput [kb/s] 102.24 1.26

Delivery ratio [%] 95.08 0.90
FEC rate [kb/s] 16.65 0.40

No. of lost packets 15.30 13.89
No. of discarded packets 450.0 116.82

Recovered packets 0 0
PSNR [dB] 25.45 0.69

Lossless PSNR [dB] 28.46 0.15

Emulation results for 240ms bottleneck delay:
Results of the 240ms delay scenario show constant bandwidth utilisation. The

average sending rate of 69kbit/s is far below the rate obtained in the ns-2. Delivery
ratio is almost equal to the previous case, as well as, the number of discarded packets
is. Such poor results are again difficult to reasonably explain, as the bandwidth
utilisation is during whole experiment way below the link capacity. There are almost
no losses, but unexpectedly recoveries appear. This is surprising, as in the long delay
scenarios probability of delivering needed FEC packet in the delay budget time is
small, and despite presence of losses in the previous cases recoveries did not appear
before. No serious conclusions should be drawn from these recoveries, as they are
really negligible, and do not contribute a lot to the overall results. Time plots of a
single experiment run are presented in the figure 52.

Average PSNR results on the lossy channel and the lossless one differ by more
than 3dB which again indicates that I-frames must reach the receiver too late to be
sent to the decoder. All results are presented in the table 24.



107

Table 24: Overall metrics for 240ms delay in variable link capacity with single RTP
flow scenario

Metric FBRA
avg dev

Sending rate [kb/s] 68.60 2.83
Goodput [kb/s] 64.35 3.37

Delivery ratio [%] 93.79 0.02
FEC rate [kb/s] 11.00 0.44

No. of lost packets 0.20 0.75
No. of discarded packets 464.40 388.69

Recovered packets 0.40 0.49
PSNR [dB] 21.81 0.57

Lossless PSNR [dB] 25.64 0.24

Scenario discussion summary:
The purpose of this scenario is to evaluate how well the FBRA algorithm per-

forms on the variable link capacity channel and compare the real-world results with
the ones obtained in the ns-2. Unfortunately it is impossible to obtain even similar
outcome in the real-world, as in the ns-2. The main factor responsible for this blow is
the unpredictable packet propagation time, when the Dummynet is used to simulate
particular network conditions. These issues leads to unreasonably high RTT values
preventing the FBRA algorithm from utilising more link capacity. Furthermore the
increased packet propagation time sometimes leads to packet discards, although the
bandwidth limits are not exceeded. As a result, far worse delivery ratio and sending
rate values are observed, as well as, PSNR values differ significantly from PSNR
results obtained on the lossless channel.

On the other hand, in the "real" Internet the network situation is completely
unpredictable. It is impossible to say that RTT values recorded during real network
measurements are not impacted by similar effects either. As we can observe that the
sender reacts correctly to the RTCP cues, we can state that in overall the FBRA
algorithm works correctly in the real-world.



108

200 400 600 800 1000
time [s] +1.3237882e9

0

50

100

150

200

250

300

se
nd

ing
 ra

te 
[kb

it/s
]

RTP rate
FEC rate

(a) Sending rate

200 400 600 800 1000
time [s] +1.3237882e9

0

50

100

150

200

250

300

rec
eiv

e r
ate

 [k
bit

/s]

Goodput
Discard rate

(b) Goodput

200 400 600 800 1000
time [s] +1.3237882e9

0.0

0.2

0.4

0.6

0.8

1.0

RT
T [

s]

Actual RTT
Optimal RTT

(c) RTT

Figure 50: Time charts for 50ms delay variable link capacity scenario



109

200 400 600 800
time [s] +1.3237994e9

0

50

100

150

200

250

300

se
nd

ing
 ra

te 
[kb

it/s
]

RTP rate
FEC rate

(a) Sending rate

200 400 600 800
time [s] +1.3237994e9

0

50

100

150

200

250

300

rec
eiv

e r
ate

 [k
bit

/s]

Goodput
Discard rate

(b) Goodput

200 400 600 800
time [s] +1.3237994e9

0.0

0.2

0.4

0.6

0.8

1.0

RT
T [

s]

Actual RTT
Optimal RTT

(c) RTT

Figure 51: Time charts for 100ms delay variable link capacity scenario



110

200 400 600 800 1000
time [s] +1.3238102e9

0

50

100

150

200

250

300

se
nd

ing
 ra

te 
[kb

it/s
]

RTP rate
FEC rate

(a) Sending rate

200 400 600 800 1000
time [s] +1.3238102e9

0

50

100

150

200

250

300

rec
eiv

e r
ate

 [k
bit

/s]

Goodput
Discard rate

(b) Goodput

200 400 600 800 1000
time [s] +1.3238102e9

0.0

0.2

0.4

0.6

0.8

1.0

RT
T [

s]

Actual RTT
Optimal RTT

(c) RTT

Figure 52: Time charts for 240ms delay variable link capacity scenario



111

7.4.3 Constant link capacity with two RTP flows

Emulation results for 50ms bottleneck delay:
In the 50ms delay scenario, it can be stated that both flows are fair to each

other. Both flows take about 1300kbit/s in total, with flow 1 using a bit more than
700kbit/s and flow 2 taking about 620kbit/s. FEC overhead takes about 14% of
the sending rate of each flow. Delivery ratio exceeds 99.40%, there no losses, and
consequently no recoveries. Discards appear, but they are very rare. PSNR recorded
by both flows is similar and equals about 40dB. Overall metrics for this scenario are
presented in the table 25.

Similarly to all previous real-world scenarios, results of this experiment are also
impacted by the RTT issue in the Dummynet. This problem is visualised in the
figures 53c and 53d. It is noticeable in these graphs that actual RTT is much higher
than its optimal value, and there is no reason for this behaviour. Figures 53a and
53b presents time charts of a single experiment run.

Table 25: Overall metrics for 50ms delay in two RTP flows competition scenario

Metric FBRA
avg dev

R
T
P

fl
ow

1

Sending rate [kb/s] 709.86 206.80
Goodput [kb/s] 703.91 205.21

Delivery ratio [%] 99.16 0.95
FEC rate [kb/s] 95.90 22.26

No. of lost packets 0 0
No. of discarded packets 31.70 44.85

Recovered packets 0 0
PSNR [dB] 40.59 3.01

Lossless PSNR [dB] 41.92 2.97

R
T
P

fl
ow

2

Sending rate [kb/s] 622.17 206.75
Goodput [kb/s] 618.98 205.77

Delivery ratio [%] 99.49 0.49
FEC rate [kb/s] 89.76 20.78

No. of lost packets 0 0
No. of discarded packets 11.40 9.29

Recovered packets 0 0
PSNR [dB] 40.26 2.09

Lossless PSNR [dB] 41.58 2.11

Emulation results for 100ms bottleneck delay:
In the 100ms delay scenario, overall throughput of both flows is higher than

in the previous case. Flows are fair to each other, as the first flow takes about
750kbit/s on average, and the second one occupies about 670kbit/s. No packet
losses are reported, and discards are low for both flows. Average delivery ratio is
slightly below 99%. FEC overhead decreases in this scenario by 1% to 13%. PSNR



112

results are similar for both flows and is about 38dB. All these results are presented
in the table 26.

RTT issues are visible in the time charts presented in the figures 54.

Table 26: Overall metrics for 100ms delay in two RTP flows competition scenario

Metric FBRA
avg dev

R
T
P

fl
ow

1
Sending rate [kb/s] 748.55 85.03
Goodput [kb/s] 732.63 82.75

Delivery ratio [%] 97.88 0.55
FEC rate [kb/s] 95.92 8.59

No. of lost packets 0 0
No. of discarded packets 77.0 22.70

Recovered packets 0 0
PSNR [dB] 38.13 1.35

Lossless PSNR [dB] 42.11 1.29

R
T
P

fl
ow

2

Sending rate [kb/s] 687.71 79.56
Goodput [kb/s] 672.06 75.40

Delivery ratio [%] 97.77 0.90
FEC rate [kb/s] 88.90 6.44

No. of lost packets 0 0
No. of discarded packets 75.80 29.32

Recovered packets 0 0
PSNR [dB] 37.57 1.82

Lossless PSNR [dB] 41.88 1.86

Emulation results for 240ms bottleneck delay:
In the 240ms delay scenario, throughput of both flows is significantly lower than

in previous cases. This decrease is caused by higher number of discarded packets
caused by smaller delay budget in this scenario. Despite the fact that total sending
rate of both flows never exceeds the link capacity limit, packet discards appear, and
they again results from RTT issue in the Dummynet. Like in previous cases flows
are fair to each other with just 30kbit/s difference of sending rates between both
flows. Average PSNR value is also lower in this scenario and equals 30.78dB for the
first flow, and 29.53dB for the second one. All overall metrics for this scenario are
presented in the table 27. Figure 55 illustrates time charts of the one experiment
run.



113

Table 27: Overall metrics for 240ms delay in two RTP flows competition scenario

Metric FBRA
avg dev

R
T
P

fl
ow

1

Avg. sending rate [kb/s] 395.52 88.90
Goodput [kb/s] 381.63 87.73

Delivery ratio [%] 96.37 1.07
FEC rate [kb/s] 58.79 8.86

No. of lost packets 0.1 0.3
No. of discarded packets 129.0 34.07

Recovered packets 0.1 0.3
PSNR [dB] 30.78 2.52

Lossless PSNR [dB] 32.11 2.46

R
T
P

fl
ow

2

Sending rate [kb/s] 365.26 93.15
Goodput [kb/s] 350.51 89.51

Delivery ratio [%] 95.94 0.57
FEC rate [kb/s] 56.06 9.71

No. of lost packets 0 0
No. of discarded packets 128.5 21.88

Recovered packets 0 0
PSNR [dB] 29.53 1.21

Lossless PSNR [dB] 32.01 1.17



114

50 100 150 200 250 300 350 400
time [s] +1.3240574e9

0

500

1000

1500

2000

2500

se
nd

ing
 ra

te 
[kb

it/s
]

Flow 1 rate
Flow 2 rate
Link capacity

(a) Sending rate

50 100 150 200 250 300 350 400
time [s] +1.3240574e9

0

500

1000

1500

2000

2500

rec
eiv

e r
ate

 [k
bit

/s]

Flow 1 goodput
Flow 2 goodput
Link capacity

(b) Goodput

50 100 150 200 250 300 350 400
time [s] +1.3240574e9

0.0

0.2

0.4

0.6

0.8

1.0

R
T
T
 [

s]

Actual RTT
Optimal RTT

(c) Flow 1 RTT

50 100 150 200 250 300 350 400
time [s] +1.3240574e9

0.0

0.2

0.4

0.6

0.8

1.0

R
T
T
 [

s]

Actual RTT
Optimal RTT

(d) Flow 2 RTT

Figure 53: Time charts for 50ms delay RTP competition scenario



115

(a) Sending rate

50 100 150 200 250 300 350 400
time [s] +1.3240622e9

0

500

1000

1500

2000

2500

rec
eiv

e r
ate

 [k
bit

/s]

Flow 1 goodput
Flow 2 goodput
Link capacity

(b) Goodput

50 100 150 200 250 300 350 400
time [s] +1.3240622e9

0.0

0.2

0.4

0.6

0.8

1.0

R
T
T
 [

s]

Actual RTT
Optimal RTT

(c) Flow 1 RTT

50 100 150 200 250 300 350 400
time [s] +1.3240622e9

0.0

0.2

0.4

0.6

0.8

1.0

R
T
T
 [

s]

Actual RTT
Optimal RTT

(d) Flow 2 RTT

Figure 54: Time charts for 100ms delay RTP competition scenario



116

50 100 150 200 250 300 350 400
time [s] +1.3240712e9

0

500

1000

1500

2000

2500

se
nd

ing
 ra

te 
[kb

it/s
]

Flow 1 rate
Flow 2 rate
Link capacity

(a) Sending rate

50 100 150 200 250 300 350 400
time [s] +1.3240712e9

0

500

1000

1500

2000

2500

rec
eiv

e r
ate

 [k
bit

/s]

Flow 1 goodput
Flow 2 goodput
Link capacity

(b) Goodput

50 100 150 200 250 300 350 400
time [s] +1.3240712e9

0.0

0.2

0.4

0.6

0.8

1.0

R
T
T
 [

s]

Actual RTT
Optimal RTT

(c) Flow 1 RTT

50 100 150 200 250 300 350 400
time [s] +1.3240712e9

0.0

0.2

0.4

0.6

0.8

1.0

R
T
T
 [

s]

Actual RTT
Optimal RTT

(d) Flow 2 RTT

Figure 55: Time charts for 240ms delay RTP competition scenario



117

8 Conclusions and future work
In this thesis, possibility of using FEC for rate adaptation together with error

recovery was studied. During the work on the thesis the FEC Based Rate Adaptation
algorithm (FBRA) was developed. Initially the Non-FEC Based Rate Adaptation
algorithm (N-FBRA) was not planned to be developed, however, as the performance
of the FBRA was very impressive, the N-FBRA was created from the FBRA by
removal of the FEC part. Algorithm evaluation was divided into 2 parts. In the
first one, performance of these algorithms was evaluated in the ns-2 simulator. In
the second one, the FBRA algorithm was tested in the Dummynet network emulator
by usage of the AMuSys platform, which was specially design during the work on
this thesis. The N-FBRA algorithm was not evaluated in the AMuSys, as the main
focus of the work was put on the FEC issues.

Simulations conducted in the ns-2 simulator show that FEC can be successfully
used for both rate adaptation and error recovery simultaneously. In the variable link
capacity scenario the FBRA algorithm performs superior to the N-FBRA one. How-
ever, in the scenario where single RTP flow competes against many TCP flows the
N-FBRA algorithm achieves higher average throughput by a huge margin. Although
the delivery ratio in the FBRA algorithm is slightly better, the following question
arises. Is it beneficial to use the FBRA algorithm if the N-FBRA can perform so
excellently? The FEC component in the FBRA algorithm adds possibility of error
recovery in case of overshooting, and by introduction of two additional states (s+,
s++) guarantees more stability between changes of the sending rate. However, as
the scenario with constant link capacity and multiple flows competing for the band-
width is much more realistic than the variable link capacity case, it seems reasonable
to conclude that the N-FBRA algorithm is more useful in the Internet environment
than the FBRA one.

The Dummynet experiments do not add much to the ns-2 results because of
previously mentioned RTT issue in the Dummynet. This problem prevents the
FBRA algorithm from performing at its best and reproduction of the scenarios
which were simulated in the ns-2. Therefore no exact conclusions can be drawn
from this part. However, what can be definitely stated is the fact that the FBRA
algorithm correctly reacts to appearing congestion cues.

The question of using FEC for rate adaptation remains unanswered. It was
shown that the RTP flow driven by the FBRA algorithm can do very well, but is
not able to fight for the network bandwidth as effective as the N-FBRA counterpart.
However, it is important to point out that the FBRA algorithm is more reliable
due to the FEC addition, and therefore we predict that its value increases as the
network link becomes lossier, or less stable. One possible direction of future work
is evaluation of the FBRA algorithm in lossier network conditions like mobile or
heterogeneous environments. In addition, it would be interesting to check the FBRA
algorithm behaviour in case of Active Queue Management (AQM) presence in the
network, or if Explicit Congestion Notification (ECN) for RTP is used. Finally,
for the Internet environment, it seems sensible to continue work on FEC usage by
creating a combination of these two algorithms. The newly created algorithm should



118

be able to sense the network conditions and based on them use either the FBRA
algorithm, or the N-FBRA one. In case of change of condition, it should be able to
perform a smooth switch from the one algorithm to the other.



119

References
[1] Sandvine. [Online]. Available: http://www.sandvine.com/

[2] J. Nielsen. Nielsen’s Law of Internet Bandwidth. [Online]. Available:
www.useit.com/alertbox/980405.html

[3] V. Singh, “Rate-control for H.264 Conversational Video Communication in Het-
erogeneous Networks.” Aalto University, Master thesis, 2010.

[4] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport
Protocol for Real-Time Application (RFC 3550),” July 2003.

[5] J. Ott and V. Singh, “Networked Multimedia Protocols and Services course.”

[6] A. Li, “RTP Payload Format for Generic Forward Error Correction(RFC 5109),”
December 2007.

[7] T. Friedman, “RTP Control Protocol Extended Reports (RTCP XR) (RFC
3611),” November 2003.

[8] L. Gharai and C. Perkins, “RTP with TCP Friendly Rate Control (draft-gharai-
avtcore-rtp-tfrc-00),” March 2011.

[9] comScore. [Online]. Available: http://www.comscore.com/

[10] You Tube. [Online]. Available: http://www.youtube.com/

[11] Cisco. [Online]. Available: http://www.cisco.com/

[12] Skype. [Online]. Available: http://www.skype.com/

[13] Gizmo. [Online]. Available: http://www.google.com/gizmo5/

[14] BitTorrent. [Online]. Available: http://www.bittorrent.com/

[15] J. Nagle, “Congestion Control in IP/TCP Internetworks (RFC896),” January
1984.

[16] V. Jacobson, “Congestion avoidance and control,” SIGCOMM, 1988.

[17] P. S. F. L. A. R. S. M. M. Mathis, J. Mahdavi, “TCP Selective Acknowledgment
Options (RFC 2018),” October 1996.

[18] V. Jacobson, LBL, R. Braden, ISI, D. Borman, and Cray Research, “TCP
Extensions for High Performance (RFC 1323),” May 1992.

[19] S. McCanne and S. Floyd, “ns-2: Network Simulator.” [Online]. Available:
http://www.isi.edu/nsnam/ns/

http://www.sandvine.com/
www.useit.com/alertbox/980405.html
http://www.comscore.com/
http://www.youtube.com/
http://www.cisco.com/
http://www.skype.com/
http://www.google.com/gizmo5/
http://www.bittorrent.com/
http://www.isi.edu/nsnam/ns/


120

[20] ITU-T, “ITU-T Recommendation H.264 (2003): Advanced video coding for
generic audio-visual services ISO/IEC 14496-10:2003: Information Technology
- Coding of audio-visual objects Part 10: Advanced Video Coding,” ITU-T,
Tech. Rep., 2003.

[21] S. Wenger, “H.264/AVC over IP,” IEEE Transactions on Circuits and Systems,
vol. 13, no. 7, July 2003.

[22] S. Wenger, M. Hannuksela, T. Stockhammer, M.Westerlund, and D.Singer,
“RTP Payload Format for H.264 Video (RFC 3984),” February 2005.

[23] B. Briscoe, “A Fairer, Faster Internet Protocol,” IEEE Spectrum Magazine, vol.
Dec 2008, pp. 38–43, dec 2008.

[24] Eli Brosh, Salman A. Baset, Dan Rubenstein, and Henning Schulzrinne, “The
Delay-Friendliness of TCP,” in SIGMETRICS’08, Annapolis, Maryland, USA,
June 2008.

[25] V. Balan, L. Eggert, S. Niccolini, and M. Brunner, “An Experimental Evalu-
ation of Voice Quality over the Datagram Congestion Control Protocol,” IN-
FOCOM 2007. 26th IEEE International Conference on Computer Communi-
cations. IEEE., pp. 2009–2017, May 2007.

[26] J. Ott, S. Wenger, N. Sato, C. Burmeister, and J. Rey, “Extended RTP
Profile for Real-time Transport Control Protocol (RTCP) - Based Feedback
(RTP/AVPF) (RFC 4585),” July 2006.

[27] C. Borman, L. Cline, G. Deischer, and T. Gardos, “RTP Payload Format for
the 1998 Version of ITU-T Rec. H.263 Video (H.263+) (RFC 2429),” October
1998.

[28] J. Rey and D. Leon, “RTP Retransmission Payload Format (RFC 4588),” July
2006.

[29] ITU-T, “ITU-T Recommendation H.263 Video Coding for Low Bit Rate Com-
munication,” wwwituintrec, November 2000.

[30] J. Rosenberg and H. Schulzrinne, “An RTP Payload Format for Generic For-
ward Error Correction (RFC 2733),” December 1999.

[31] J. Devadoss, V. Singh, C. Liu, Y. Wang, J. Ott, and I. Curcio, Evaluation
of Error Resilience Mechanisms for 3G Conversational Video. Tenth IEEE
International Symposium on Multimedia, December 2008.

[32] V. Singh, J. Ott, and I. Curcio, “Rate Adaptation for Conversational 3G Video,”
Communications Society, pp. 1–7, 2009.

[33] S. Floyd and M. Handley, “TCP Friendly Rate Control (TFRC): Protocol Spec-
ification (RFC 5348),” September 2008.



121

[34] S. Wenger and U. Chandra, “Codec Control Messages in the RTP Audio-Visual
Profile with Feedback (AVPF) (RFC 5104),” February 2008.

[35] J. Ott and I. Curcio, “Real-time Transport Control Protocol Extension Report
for Run Length Encoding of Discarded Packets (draft-ott-avt-rtcp-xt-discard-
metrics-02),” November 2010.

[36] G. Hunt, “RTCP XR Report Block for Discard metric Reporting (draft-ietf-
avt-rtcp-xr-discard-02),” May 2009.

[37] B. Ngamwongwattana and R. Thompson, “Measuring One-Way Delay of VoIP
Packets Without Clock Synchronization,” in 2009 IEEE Intrumentation and
Measurement Technology Conference. IEEE, 2009, pp. 532–535.

[38] B. Ngamwongwattana and R. Thompson, “Sync & Sense: VoIP Measurement
Methodology for Assessing One-Way Delay Without Clock Synchronization,”
IEEE Transactions On Instrumentation And Measurement, vol. 59, no. 5, pp.
1318–1326, 2010.

[39] E. Ong, X. Yang, W. Lin, Z. Lu, S. Yao, X. Lin, S. Rahardja, and B. Seng,
“Perceptual quality and objective quality measurements of compressed videos,”
Journal of Visual Communication and Image Representation, vol. 17, no. 4, pp.
717–737, 2006.

[40] ITU-T, “ITU-T J.247 Objective perceptual multimedia video quality
measurement in the presence of a full reference,” wwwituintrec, 1999-2008.
[Online]. Available: http://www.itu.int/rec/T-REC-J.247/en/

[41] Z. Li, “A saliency map in primary visual cortex,” Trends in Cognitive Science,
vol. 6, no. 1, pp. 9–16, January 2002.

[42] S. Floyd, “TCP Friendly Rate Control (TFRC): The Small-Packet (SP) Variant
(RFC 4828),” August 2007.

[43] S. Floyd and E. Kohler, “Internet Research Needs Better Models,” ACM SIG-
COMM Computer Communication Review, vol. 33, no. 1, January 2003.

[44] M. Montagud and F. Boronat, “A new network simulator 2 (NS-2) module
based on RTP/RTCP protocols to achieve multimedia group synchronization,”
in Proceedings of the 3rd International ICST Conference on Simulation Tools
and Techniques, ser. SIMUTools ’10, ICST, Brussels, Belgium, 2010.

[45] S. Floyd, “Difficulties in Simulating the Internet,” IEEE/ACM Transactions on
Networking, vol. 9, no. 4, August 2001.

[46] “GStreamer Open Source Multimedia Framework.” [Online]. Available:
http://gstreamer.freedesktop.org/

[47] JRTPLIB. [Online]. Available: http://research.edm.uhasselt.be/~jori/

http://www.itu.int/rec/T-REC-J.247/en/
http://gstreamer.freedesktop.org/
http://research.edm.uhasselt.be/~jori/


122

[48] “Dummynet Network Emulator.” [Online]. Available: http://info.iet.unipi.it/
~luigi/dummynet/

[49] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,” ACM
SIGCOMM Computer Communication Review, vol. 34, no. 4, October 2004.

http://info.iet.unipi.it/~luigi/dummynet/
http://info.iet.unipi.it/~luigi/dummynet/

	Abstract
	Contents
	Abbreviations
	Introduction
	Challenges
	Problem Statement
	Contribution of the Thesis
	Scope and Goals
	Structure

	Multimedia communication and the Internet
	Video coding
	Network traffic types
	Internet multimedia environment characteristics
	Internet environment
	Mobile environment

	Summary

	Multimedia transport protocols
	Real-time Transport Protocol (RTP)
	Real-time Transport Control Protocol (RTCP)
	Summary

	Error resilience mechanisms for conversational  video communications
	NACK
	Slice Size Adaptation (SSA)
	Reference Picture Selection (RPS)
	Forward Error Correction with Uneven Error Protection
	Summary

	Rate adaptation of multimedia flows
	Congestion in the Internet
	Introduction to rate adaptation
	Congestion indicators in multimedia flows
	Packet losses and discards
	One-way delay (OWD) and Round-trip time (RTT)
	Sending rate (BRS), Receive rate (BRR), Goodput (GP)
	Jitter
	Other indicators
	Summary of congestion indicators

	Rate adaptation metrics
	Peak Signal-to-Noise Ratio (PSNR)
	Average Bandwidth Utilisation (ABU)
	Average/Instant Sending Rate/Goodput and other metrics

	Example of rate adaptation algorithm: TFRC for RTP
	Summary

	Rate adaptation algorithms
	FEC Based Rate Adaptation algorithm (FBRA)
	Non-FEC based rate adaptation algorithm (N-FBRA)

	Evaluation
	Simulation Environment
	Extensions to ns-2 simulator
	Simulation settings
	Simulation scenarios

	Simulation results
	Variable link capacity scenario with one RTP flow: Comparative study
	Single RTP flow competing for constant link capacity against many TCP flows: Comparative study
	Two RTP flows competing for constant link capacity against many TCP flows: Comparative study

	Real-world implementation
	Evaluation of real-world implementation
	Constant link capacity with single RTP flow scenario
	Variable link capacity with single RTP flow
	Constant link capacity with two RTP flows


	Conclusions and future work
	References

