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In this thesis, the vibrational modes and radiation of the body of a 15-string
instrument called the kantele are modelled using the finite element method.
Two traditional body structures, the top-plate kantele and the box kantele, are
compared to a modified kantele with an air gap separating the top and the back
plate. The modified structure allows the kantele top plate to vibrate freely. In
addition, together the top and back plate create an enclosed air mass that has its
own vibrational modes. The modified kantele has previously been shown to be
louder than the traditional top plate kantele.

In this thesis, it is shown that the modified kantele includes vibrational modes
of both the freely vibrating top plate and the enclosed air. Thus, it has a higher
mode density than the traditional kanteles. Because of the coupling of the enclosed
air modes to the body, the modified kantele radiates more omni-directionally than
the traditional kanteles. Consequently, the modified kantele has a higher radiation
efficiency than the traditional kanteles when the size of the air gap is small (1-3
mm).
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Tässä työssä mallinnetaan 15-kielisen kanteleen kopan värähtelyä ja säteilyä
elementtimenelmän avulla. Kahta perinteistä kopan rakennetta, laatikkokan-
teletta ja lautakanteletta, verrataan muunnelluun rakenteeseen, jossa kopan
ja kannen välillä on ilmarako. Tämä rakenne, jota kutsutaan myös nimellä
vapaareuna-erillispohjarakenne, mahdollistaa kannen vapaan värähtelyn. Lisäksi
pohjan ja kannen sulkemalla ilmatilalla on omat värähtelymuotonsa. Tämä
muunnellun kanteleen on osoitettu olevan äänekkäämpi kuin perinteiset kanteleet.

Tässä työssä osoitetaan, että muunnellussa kanteleessa yhdistyvät sekä kan-
nen että ilmatilan värähtelymuodot. Siksi muunnellulla kanteleella on su-
urempi värähtelymuototiheys kuin perinteisillä kanteleilla. Muunneltu kantele
on myös ympärisäteileivämpi, sillä ilmatilan värähtelymuodot kytkeytyvät kopan
värähtelyhin. Tästä seuraa, että muunnellun kanteleen säteilytehokkuus on su-
urempi, kun ilmarako on pieni (1-3 mm).
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Cs material stiffness matrix
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ci speed of sound in direction i in a material
d string diameter
df displacement of the fluid
dj displacement at the nodal point j
ds displacement of the structure
Ei elastic modulus
F input force
Fb force caused by the body of the structure
Fd driving point force
Ff force caused by surface traction in the structure
Fq force caused by the added mass on the fluid
Fs force caused by the pressure of the fluid
f1, f2 frequencies of coupled structure-acoustic modes
fa first air eigenfrequency
fb first structural eigenfrequency
fH Helmholtz resonance
fm,n plate eigenfrequency
fs fundamental frequency of the string
G shear modulus
Hsf spatial coupling matrix
h plate thickness
Kf stiffness of the fluid
Ks stiffness of the structure
L string length
Lx, Ly plate dimensions
l length of the neck of the Helmholtz resonator
Mf mass of the fluid
Ms mass of the structure
m,n number of nodal lines in a specific dimension
Nij shape function
Pi mechanical input power
Pr radiated sound power
p pressure
pf pressure of the fluid
ps pressure of the structure
Q quality factor
r radium of a sphere
S surface
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smax maximum size of element

T string tension

t time
uf continuous displacement of the fluid
u displacement (continuous)
V volume of the Helmholtz resonator
v output velocity
vn velocity amplitude at a single frequency
vd driving point velocity
x, y, z cartesian coordinates
Y mobility
Z impedance
α isotropic loss factor
η power conversion efficiency
µij Poisson ratio
ρ density
ρ0 density of air
ρs structural density
σ averaged radiation efficiency
σn radiation efficiency at a single frequency
σs structural stress
ω eigenfrequency
x vector x
x̃ complex variable x

Operators

d′ = ∂xd = ∂d
∂x

partial derivate of d with respect to x

ḋ = ∂d
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partial derivate of d with respect to time t∑
ν sum over ν

HT transpose of matrix H

∇̃ modified gradient
∇ gradient
〈x〉 time average of x
x spatial average of x

Abbreviations

BEM boundary element method
CAD computer-aided design
DOF degree of freedom
FDM finite difference method
FEM finite element method
PML perfectly matched layer
TMDF tension modulation driving force



1 Introduction

String instruments are based on a resonating body amplifying the string vibrations
[1]. The body of the string instrument plays an important role in the sound radiation
of the instrument as well as in its playability and quality [1, 2, 3, 4]. Understanding
this role is important not only in gaining more understanding of the string instru-
ment acoustics, but also for other purposes, such as sound synthesis [5], auralisation,
and testing structural changes in instruments prior to building them [6].

Structural changes of the instrument body are of particular interest to luthiers, as
they try to meet the requirements imposed by enlarging audience and concert halls
[7]. This has led to the development of louder musical instruments, such as evolving
a clavichord into a piano [1] and founding a new family of violins [8]. Similarly,
in Finland a traditional string instrument called the kantele, that was originally
used as a rune-accompaniment in small farm houses, is now played together with an
orchestra in a large concert hall or with a band in a club. Consequently, the kantele
has undergone many acoustic and structural changes from the 19th century onwards
[9, 10].

The acoustics of the kantele string is well-researched while the body has had less
attention. The acoustics of kantele was first analysed and synthesised by Karjalainen
et al. [11] in 1993. The strong beating phenomenon was explained by the knotting
of the strings. Later, in 2002, Erkut et al. [12] further studied and developed the
synthesis of the kantele especially in relation to the physical mechanisms behind
the characteristics of the kantele sound. The flexibility of the tuning pins turned
out to cause some nonlinear behaviour in the kantele string. The nonlinearities
were simulated by Pakarinen et al. [13] and Välimäki et al. [14]. As for the body,
Peekna and Rossing [15] studied the vibration modes of six kanteles using electronic
TV-holography. In addition, the modelling of vibrational modes of the top plate of
a 40-string kantele has been reported [10]. The most recent work by Pölkki et al.
[16] and Penttinen et al. [17, 18] has lead to new construction rules for a modified
kantele with increased loudness. Namely, the traditional kantele bodies are a closed
box kantele and a top-plate kantele. The new modified body consists of a freely
vibrating top plate separated from a back plate by an air gap.

String instrument bodies are complicated in geometry, material and boundary
conditions. This leads to complicated partial differential equations governing the
string instrument acoustics [1]. Solving these equations analytically is often impos-
sible. To tackle this issue, several numerical methods have been developed to study
string instrument acoustics with the attempt of modelling the acoustic behaviour as
accurately as possible [5, 14, 19, 20, 21, 22, 23, 24, 25, 26, 27].

One of these physics-based numerical modelling methods is called the finite ele-
ment method (FEM) developed in the 1960s [26, 28, 29]. It is based on approximat-
ing the continuous system with discrete elements, each following a set of equations.
The method is widely used in acoustics [30, 31] and it has previously been applied to
string instruments, such as violin [32, 33, 34, 35], guitar [36, 37, 38, 39, 40, 41, 42],
and the piano soundboard [43, 44, 45, 46, 47]. FEM provides, for example, an in-
teresting tool for studying structural and material changes of musical instruments
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without building them.
This thesis extends the use of FEM to kanteles in attempt to understand the

acoustics of the modified kantele body. It is an extension to the prior work by Pölkki
et al [16] and Penttinen et al. [17, 18] on the development of a louder kantele. In
their work, the modified kantele had also other improvements contributing to the
increased loudness, such as extended top plate surface and higher string tension,
whereas in this thesis the only variable is the size of the air gap. The aim is to
understand how the vibrational and radiation characteristics of the modified kantele
compare to the traditional top-plate kantele and box kantele. In addition, other
structural changes in the modified kantele are briefly explored as a side-product of
developing the FE-model. The FE-model is also compared to measurements. The
main outcome of the thesis is the modified kantele combines free vibration of the
top plate and the vibration of the enclosed air. This increases the number of modes
and radiation efficiency of the modified cantle compared to the traditional kanteles.

This thesis is structured as follows. First, the acoustics and the construction of
the kantele are briefly visited in Chapter 2. In Chapter 3, FEM is introduced. The
focus is on the finite element formulation of a vibrational problem in the structure-
acoustic domain. This is followed by review of the previous work done on applying
FEM for string instrument acoustics. Chapter 4 presents the FE-model of the mod-
ified kantele and introduces the measurements that were made to verify the model.
Chapter 5 presents the results of the modelling. Chapter 6 draws the results together
and outlines some future work.



2 Construction and acoustics of the kantele

There are several instruments that are collectively referred to as kantele in Finland,
kannel in Estonia, kokles in Latvia, kankles in Lithuania, and gushli in Russia.
In these geographical areas the instrument is most commonly played [9]. Some of
the kantele designs associated with different cultures and geographical areas are
illustrated in Fig. 1. The design and the cultural history of the instrument varies
from country to country. In Finland, the kantele has had a special function in the
accompaniment of rune singing. Based on the transcripts of the runes, the estimates
of the age of the kantele vary between 1000 and 3000 years [9, 10]. Similarly, there
are many theories about the origin of the kantele. It is either originated from Asia,
or Russia, or was separately invented by the ancient Finno-Ugric population [10].

Figure 1: Some variations of the kantele in terms of geographical areas. Adapted
from [9].

The common parts for all the kanteles include a wooden sound box (the body),
metal strings, and tuning pins made of metal or wood. Initially, the kantele was
carved from a single piece of wood. This method enabled only 5-9 string in the
body. After the introduction of wooden plates into the craft of kantele making in
the 18th century, the amount of strings could be increased up to 40 [9]. In the
1920s, Paul Salminen developed a concert kantele which included a special lever
system allowing rapid tuning of strings in order to enable chromatic playing [10].
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Figure 2 illustrates the different kantele parts for a traditional Finnish five-string
kantele. In addition to the body and strings, there is a horizontal steel bar called
varras on the wooden extension, ponsi. The purpose of the ponsi is to allow the
player’s arm to rest on it. The sound hole is typically a round hole, but not all
kanteles have a sound hole. Finally, the strings are terminated on the individual
tuning pegs or pins. In some kanteles, the varras is also replaced by individual
tuning pins or pegs. One end of the string is wrapped around an individual tuning
pin. The other end is knotted either to another tuning pin or around the varras,
which connects all the strings together.

Figure 2: The different parts of the five-string kantele. The tuning pegs are wooden,
but in case they are made of metal, they are called tuning pins. Adopted from [48].

The kantele strings are tuned diatonically with A = 442 Hz. In diatonic tuning
the scale is divided into seven whole tones and semitones [49]. The tuning of the
modified 15-string kantele used in this thesis is from D2-D5 (73 - 588 Hz). The
strings are usually plucked with fingers, but also nails, hammers, and plectra can
be used. In addition to plucking, there is another playing technique which involves
strumming the strings while damping some of them with fingers. Typically, the
small kantele is held on lap with the shortest string facing the player, while the
larger kanteles are played on a table.

The kantele, and the plucked string instruments in general, form a coupled vi-
brational system, starting from the string vibrations that excite the body via the
string terminations. Finally, the vibrating body radiates sound in the air. Next, the
acoustics of each part of the coupled system is discussed.

2.1 Strings

2.1.1 Ideal string vibration

When a string vibrates, it forms a standing wave pattern due to the reflections at
the string terminations [1, 49]. Figure 3 shows the first three standing waves of the
string in one dimension. N denotes the nodes of vibration, that is, the points that
remain in place. These standing waves are the eigenmodes of the vibrating string.
They are the modes at which the string vibrates naturally, i.e., when no driving
force is applied on the string. The frequencies at which the eigenmodes occur are
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called eigenfrequencies with the lowest eigenfrequency denoting the fundamental
frequency. A steel string of length L, diameter d, density ρ, and tension T has the
fundamental frequency fs given by [1]

fs =
1

L

√
T

πρd2
. (1)

In other words, the thicker, denser, or longer the string is, the lower its fundamental
frequency. The more tightly it is set between the string terminations, the higher the
fundamental frequency.

The higher eigenfrequencies are called string partials. In an ideal string, which is
both harmonic and linear, the eigenfrequencies are in harmonic relationships to one
another, meaning that the frequencies of string partials are integer multiples of the
fundamental frequency. When a string is excited, the excitation of the partials is
dependent on the excitation position. If the string is assumed to behave in a linear
manner, the string plucked at 1

n
of its end will have the integer multiples of the nth

partial missing from its vibration [49]. What is more, under forced vibration, the
excited modes are called resonances.

Figure 3: The first three standing waves or eigenmodes of a string. N denotes the
nodes of vibration. Adopted from [49].

In reality the string vibrates in many dimensions. The standing waves pattern in
Fig. 3 represents the transversal string vibration. In addition, the string vibrates in
longitudinal and torsional dimensions that have their own eigenmodes. If the string
is assumed to be linear, the three different type of waves are decoupled [50]. However,
in the real string, the vibrational modes are combinations of these eigenmodes.
Each of these waves have an importance in some musical instruments. For example,
torsional waves are important in bowed string instruments [1]. Then again, the
longitudinal waves are not that strong but they can have an audible effect, for
example in the piano strings [51]. In the five-string kantele, the longitudinal waves
can couple to the body because of the non-rigid tuning pins in the longitudinal
direction [11, 12]. In general, the transversal waves are the most important when it
comes to plucked string instruments.

What is more, the transversal waves in the string are polarised, meaning that
the string vibrates in two different transversal planes; horisontal and vertical [1].



6

The way the strings are terminated to the body typically induces different effective
lengths for the string in each polarisation direction. This gives rise to two slightly
differing fundamental frequencies in the string, leading to a periodic change in the
amplitude of the string vibration, i.e., beating.

In the five-string kantele, the two different effective lengths arise from the knot-
ting of the strings to the varras [11], as illustrated in Fig. 4. The vertical polarisation
is directed up and down the page while the horisontal polarisation occurs in and
out of the page. For the vertical polarisation, the knot is the termination point for
the string. For the horisontal polarisation, the contact point of the string with the
varras is the termination point. ∆l denotes the difference in length.

The same knotting is used in the modified kantele, but instead of the varras,
both ends are terminated on tuning pins. Figure 5 shows the decay of the first three
harmonics of the highest string in the modified kantele, when plucked in the middle.
The beating of the harmonics can be observed in the envelope trajectories.

Figure 4: The two different effective lengths of the kantele string induced by the
string knotting. The horizontal vibrations are directed up and down the page whereas
the vertical vibrations in and out of the page. The length difference is assigned with
∆l. Adapted from [11].

2.1.2 Real string vibration

The actual string vibration is nonlinear and inharmonic [50]. For example, in the
five string kantele, the second harmonic of the string has been found present, even
though the string was plucked in the middle [12]. It is also detected for the modified
kantele, as it can be seen in Fig. 5.

The nonlinearity in the real string arises from many factors. Firstly, there is
the pluck. When a string is plucked, its length changes. The change in the string
length introduces a change in its tension. Finally, the change in string tension
changes the fundamental frequency of the string. This tension modulation is the
major contributor to the nonlinear behaviour of the string [52]. Especially in the
kantele, there is an audible frequency decent after the pluck, because the string
tension decreases. This frequency decent can be used to extract more information
about the nonlinear behaviour of kantele strings [12].

The second cause for nonlinearity is the non-rigid string terminations. In many
other string instruments, the string termination, such as the bridge, does not effec-
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Figure 5: The envelope trajectories of the first three harmonics of the highest string
(f0 = 589 Hz) of the 15-string modified kantele, when plucked in the middle of the
string. The solid line represents the first harmonic, or the fundamental frequency,
the dashed line is the second harmonic, and the dash-dotted line represents the third
harmonic.

tively transmit the longitudinal vibrations of the strings. However, in the kantele,
the tuning pins are not rigid in the longitudinal direction. Together with the tension
modulation, the non-rigid tuning pins create a longitudinal force component in the
vibrations, called the tension modulation driving force (TMDF) [12, 13]. In the case
of the 5-string kantele, TMDF is responsible for another characteristic feature of the
kantele sound, the high initial amplitude of the second harmonic [12]. Interestingly
enough, the high initial amplitude of the second harmonic cannot be observed in
the modified kantele on the basis of Fig. 5.

The inharmonicity in real string stems from dispersion, i.e., different frequency
components in the string travel at different velocities. The two main sources for dis-
persion are the finite string stiffness and the damping mechanisms [1]. Finite stiffness
in strings raises the upper partials, and thus they are no longer in harmonic relation-
ships with the fundamental frequency. This phenomenon is particularly important
in the tuning of piano strings. The main damping mechanisms of string vibration are
air viscosity, viscosity of the string material, and the energy loss through the tuning
pins/bridge to the body [1]. For thin metal strings, such as the kantele strings, the
most dominant damping mechanism is the air viscosity.

2.2 Body

2.2.1 Structure

There are two prevailing structures of the kantele body, namely the top-plate kantele
and the box kantele. The top-plate kantele has no back plate, i.e., the body is open,
as shown in Fig. 6. The box kantele has a completely closed body, such as the
kantele presented in Fig. 2. Both structures may or may not have sound holes.

In addition to these two traditional structures, there exists a kantele with sep-
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Figure 6: A few examples of top plate kanteles.

arate top and back plates, as illustrated in Fig. 7. It is called a modified kantele.
A separate back plate has been added to the top plate so that there is an air gap
between the two plates. A typical size of the air gap is 5-6 mm. The two plates are
connected together with three plastic screws as indicated in Fig. 7. In addition, a
sound hole is formed by the curved ribs of the top and the back plates. Some bars
are also attached to the top and the back plates in order to make them stiffer. These
bars can be seen in Fig. 8 which illustrates the inside of the modified kantele.

In the modified kantele, the top plate acts as a free-edge vibrator. In particular,
the tuning pin edge of the kantele is able to vibrate freely, because the side has been
removed. The modified structure was designed bearing in mind that the kantele is
typically played on the lap. When held on lap, the sides of the kantele are damped.
In the modified kantele, because of the air gap, the top plate vibrates freely even
if the back plate is damped on the lap [17]. In addition, the back plate enclosed
air that contributes to the plate vibrations. The modified kantele has been proven
to be louder than the top plate kantele [17]. It should be noted that this special
structure resembles the resonator added to the banjo [53] and the floating top plate
of the hammered dulcimer [54].

!"#$%!&$

'()*+$,(-.$

/)*"*%$&"*'$ '0#.1'$ &(*'"$

!"#$%!&$
Figure 7: The modified kantele with the air gaps indicated.
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Figure 8: The modified kantele with the bars, ribs, and plates indicated.

2.2.2 Materials

The most common materials for the kantele body are pine (Pinus sylvestris) and
spruce (Picea abies) [9]. Some more exotic species are used in decoration and in
strengthening the top plate under the tuning pins. As an example, the wood species
used in the modified kantele are listed in Tab. 1. In general, different wood materials
have different properties such as as internal damping, density, and stiffness, which
make them suitable for different parts and types of string instruments [55, 56]. One
way for an instrument builder to affect the sound of the instrument is by the selection
of material for the body.

Species Parts of the kantele
Spruce (Picea abies) top plate, top plate ribs, top plate braces
African walnut (Lovoa trichilioides) ponsi, top plate decorative coating
Grey alder (Alnus incana) back plate ribs, back plate braces
Honduras mahogany (Swietenia macrophylla) top plate coating
Birch plywood back plate, brace under the tuning pins
Norway maple (Acer platanoides) braces by the three screws

Table 1: Wood species used for the modified kantele.

Wood is considered to be an orthotropic material due to its cellular structure
[56, 57]. In other words, its material properties differ in three mutually perpendic-
ular axes: radial (R), tangential (T), and longitudinal (L). The R-axis is defined
perpendicular to growth rings, the L-axis parallel to the fibre, and the T–axis per-
pendicular to fibre but tangent to growth rings. These axes are illustrated in Fig. 9.
The figure also shows how the wooden plates of a musical instrument, such as the
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violin, are typically cut (called quarter-cut). In this case, the T-axis is in the direc-
tion of the thickness of the plate, and the R-and L-axes form the transversal plane
of the plate. The plates of the modified kantele are also cut like this.

Figure 9: The perpendicular axis of wood labelled with L for longitudinal, R for
radial, and T for tangential. The wooden plates for a violin, as well as for the kantele,
are cut so that the tangential axis is in the direction of the thickness of the plate, and
the radial and longitudinal axis form the plane of the plate. Adapted from [49]

All in all, twelve constants are needed to describe the vibrational characteris-
tics of wood: three elastic moduli (Young’s moduli), three shear moduli, and six
Poisson’s ratios [58]. Nine of these are independent, since the elastic moduli E and
Poisson’s ratios µ are related according to

µij
Ei

=
µji
Ej
, i 6= j, i, j = L,R, T. (2)

The constants defining the acoustical properties of wood are primarily density,
elastic moduli, and loss factor [56]. Density ρ and Young’s moduli E define the
speed of sound in wood c

ci =

√
Ei
ρ
, i = L,R, T. (3)

In wood, the Young’s modulus varies with direction and thus also the speed of
sound is different. For example, the tangential speed is around one-fourth of that of
the longitudinal. Typical longitudinal speed of sound for wood material is between
3000-7000 ms−1.

The loss factor measures the dissipation of vibrational energy due to internal
friction in the material. Internal friction depends of the moisture content and tem-
perature [58]. The value for the loss factor for wood is between α = 0.002 − 0.1
[56, 58].
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2.2.3 Plate vibration

Similarly to the string vibration, the vibration of an instrument body consists of
several different types of standing waves, or eigenmodes. In a finite thin plate, such
as the kantele top plate, there exist transversal, longitudinal, quasi-longitudinal,
flexural (or bending), torsional, and surface waves [59]. The deformation patterns
of some of these wave types are shown in Fig. 10. Of these, the flexural waves,
shown in Fig. 10c, couple well with air and are important in sound radiation. This
is because the flexural waves involve relatively large displacements normal to the
direction of propagation and can thus effectively displace the air [59, 60]. However,
when the wavelength of the flexural waves becomes comparable to the thickness of
the plate, the vibrations of the plate become more complicated. In addition, at the
boundaries and at the point of excitation of the finite plate, all the mentioned types
of waves can couple with each other [59, 60]. In other words, one wave type can
excite any of the other at these points.

(a) Quasi-longitudinal wave (transverse dis-
placements exaggerated)

(b) Transverse wave

(c) Flexural wave

Figure 10: Deformation patterns for some of the wave types in a plate. Adopted
from [60]

It is worth noting that the speed of the flexural waves in a plate is dispersive,
i.e, the speed depends on the frequency. For a homogenous plate, the speed of the
flexural waves v(f) is [1]

v(f) =
√

1.8fhcL, (4)

where h is the plate thickness and cL the speed of sound in the longitudinal direction.
The dispersion is more complicated for orthotropic plates in the presence of fluid
loading, such as the case of musical instrument plates [61].

In the kantele, the eigenmodes and their frequencies depend on the geometry of
the top and the back plate, and how they are attached to another. Usually, the
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plates are fixed to another by the ribs. In the case of the modified kantele, the top
plate is resting on the back plate and can be considered simply supported on the
location of the three screws. Since the instrument plates are typically rather thin,
around 5 mm for the kantele for example, the eigenmodes can be studied in two
dimensions. For a simply supported, orthotropic rectangular plate with dimensions
of Lx and Ly and thickness h, the eigenfrequencies of the flexural waves are given
by [1]

fm,n = 0.453h

[
cx

(
m+ 1

Lx

)2

+ cy

(
n+ 1

Ly

)2
]
, (5)

where m and n are the amount of nodal lines the vertical and horizontal directions,
respectively, and cx,y is speed of sound in the material in the respective direction.
The eigenmodes of the plates are labelled according to the nodal lines in each di-
mension. When the plate is fixed, the shape (0, 0) is the first eigenmode with the
lowest frequency and no nodal lines present [1]. The shape (1,0) has one nodal line
in the longest dimension, and this is also the first eigenmode for a freely vibrating
plate. It is worth noting, that instrument plates have typically more complicated
form than a rectangle and have changes in the plate thickness. Also, the boundary
conditions are not necessary simple. This is where the need for physical modelling
stems from.

It is possible to make some general remarks based on Eq. 5. First of all, unlike
the ideal string eigenfrequencies, the plate eigenfrequencies are not harmonic. This
is in fact the case with the body modes of most of the wooden string instruments
[1]. Secondly, if lower eigenfrequencies are desired, the plate can be thinned, or the
plate area enlarged.

The normal modes of the plates depend on the excitation. Namely, the closer
the plate is excited to location of an antinode, the more easily the corresponding
eigenmode is excited [1]. In other words, if the excitation point is very near to a
node, then the corresponding eigenmode will not be excited.

Musical instrument bodies are typically assumed to be linear [25], which means
that the eigenmodes and the eigenfrequencies are not depended on the amplitude of
the vibration. Another implication of the linearity is that when the body is excited,
say sinusoidally for example, the observed vibrational modes are no longer neces-
sarily eigenmodes, but combinations of them [62]. An example of the coupling of
two eigenmodes (2,0) and (0,2) for rectangular quarter-cut spruce plates is shown
in Fig. 11 for different degrees of coupling.The left-hand side describes the situation
when (0,2) is more dominant and the right-hand column when (2,0) is more domi-
nant. The difference between the top row and the bottom row is opposite signs in
amplitude. Full coupling of the two modes occurs on the third row of Fig. 11 .

Combinations of modes that occur with forced excitation are called operation
deflection surfaces (or more commonly resonances). They are typically combinations
of modes that are close to or within the frequency range of the excitation [60].
These vibrational modes typically are well-separated in frequency at low frequencies.
However, at high frequencies their density increases and it become more difficult to
distinguish the individual modes from one another.
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Figure 11: Coupling of two eigenmodes (2,0) and (0,2) for rectangular quarter-
cut spruce plates with different degrees of coupling. The left-hand side describes the
situation when (0,2) is more dominant and the right-hand column when (2,0) is more
dominant. The difference between the top row and the bottom row is opposite signs in
amplitude. Full coupling of the two modes occurs on the third row. Adapted from [1].

2.3 Coupling between the strings and the body

When a string is set to vibrate, the vibrations are transmitted to the instrument
body, in the case of the kantele via the tuning pins. The coupling between the
strings and the body is commonly described through mechanical impedance. It is
the measure of how much a structure resists motion with a given force. It is defined
as the ratio between the input force F and the output velocity v in the frequency
domain. The reciprocal of the mechanical impedance is the admittance or mobility
Y . Mathematically, the impedance Z, as a complex variable, can be expressed in
frequency domain as follows [1]

Z̃(ω) =
1

Ỹ (ω)
=
F̃ (ω)

ṽ(ω)
(6)

Typically, the impedance of the string is at least an order of ten lower than that of
the string termination [1]. This impedance mismatch enables strong reflections of the
string vibrations at the termination points which, in turn, create the standing waves
on the string. The decay rate of the string vibrations depends on this impedance
mismatch, as well. As a matter of fact, the decay of the string vibrations has
typically two stages because of the different impedances of the string termination
in the vertical and horizontal directions [63]. At first, the decay is rapid, but after
some tens of milliseconds, the decay rate decreases.

In general, the energy of the vibrating string is absorbed slowly by the body.
At the vibrational modes of the body, however, the vibrational energy is better
transmitted to the body. At these frequencies, the impedance of the body is reduced.
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In this case, it can also happen that the string reflections are too weak to sustain
the standing waves. An example of this kind of a strong coupling between the body
and strings is the wolf-tone in bowed instruments [1, 64]. The bowed string releases
its energy to the body quickly and and the string vibration dies out. At the same
time, the body vibrations run out of their energy source and a new energy cycle is
ready to begin. The outcome is that the string and the body vibrations alternative
in amplitude, which hardly results in a steady tone. Indeed, the coupling between
the string and the body is always a question of balance between a sustained tone
or a loud tone. For example, thinner plates in the instrument body tend to radiate
more sound power, but the string vibrations decay quickly [23].

Since the body amplifies the string vibrations, the closer the vibrational modes
of the body are to those of the string, the better these body resonances are excited.
The vibrational modes of several different kantele bodies have been investigated by
using electronic TV holography by Peekna et al. [15]. They have suggested that the
more vibrational modes there are with the tuning range of the kantele, the better
the kantele is in terms of sound quality and level.

The body also acts as a transmitter of energy between the strings. When one
string is the played, the other strings can also contribute to the musical sound via
the body. This phenomenon is called sympathetic vibration. For the kantele, it can
be considered an important phenomenon, as the other strings are not damped when
one of them is plucked. In the case of the kantele, it has been found out that the
sympathetic vibrations are most pronounced between strings with simple harmonic
relations [12]. The analytical treatment of sympathetic string vibration has been
focusing on instruments with a bridge [1, 65].

2.4 Coupling between the body and the enclosed air

Apart from the mechanical vibrations, the kantele body encloses some air that vi-
brates and has its own eigenmodes. Unlike solids, the air can only support one
type of waves, the longitudinal waves. The enclosed air also exerts a load on the
body, thus affecting the eigenfrequencies of the body [35]. In turn, the shapes of the
eigenmodes of the body remain almost unchanged. In the case of sound hole, the
fundamental eigenmode of the air is called the Helmholtz resonance. This means
that the mass of the air at the sound hole acts as piston and the air inside the body
as a spring. The frequency of the Helmholtz resonance is given by [1]

fH =
c0

2π

√
A

V l
, (7)

where c0 is the speed of sound, A is the area of the sound hole, V is the volume of
the resonator, and l is the length of the sound hole. The other eigenmodes of the
air inside a box resemble standing waves in a rectangular box [49, 62].

When the lowest structural and air modes couple, the coupled modes follow the
rule [66]

f 2
b + f 2

a = f 2
1 + f 2

2 (8)
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where fb is the lowest structural eigenfrequency of the top plate, fa the lowest
eigenfrequency of the enclosed air, and f1, f2 are the lowest frequencies of the coupled
system.

2.5 Coupling between the body and the surrounding air

The vibrations of the strings and the body couple with the surrounding air accord-
ing to how effectively they can displace air. The coupling depends on the level and
frequency of the vibration, the shape of the body, the spatial distribution of the sur-
face motion, and of course the properties of the air. Sound consists of longitudinal
compression waves in the air. Thus, the larger displacements the mechanical vibra-
tions can cause, the better the vibrations will radiate in air. To be more precise,
the particle velocity normal to the surface of the plate is the same as the particle
velocity of the air [60].

The string vibrations on their own couple poorly with air because the string acts
as a dipole source with a small radius [1]. Thus, the compressions and refractions
of air it creates effectively cancel each other. On the contrary, the vibrations of
the body, in particular the flexural waves of the plates as described earlier, involve
greater displacements of air. At low frequencies, the sound is mostly radiated by
the top plate, the back plate and the sound hole [49]. At high frequencies, the top
plate is the main source of radiation.

2.5.1 Radiated sound power

The total radiated sound power of a source is defined as the integral of the sound
intensity vector over the closed surface around the source [67]. Under anechoic
conditions so that the radiated sound is approximated with a plane wave,the total
radiated sound power is defined as the integral of the pressure squared over the
surface S

Pr =
1

ρ0c0

∫
S

p2(S) dS, (9)

where ρ0 is the density of air, and c is the speed of sound in air.
At discrete measurement points n, distributed uniformly over the surface of a

sphere, Eq. 9 becomes

Pr =
4πr2

ρ0c0

1

n

∑
p2
n, (10)

which means that the total radiated sound pressure is the mean square average
of the pressure multiplied by the area of the sphere divided by the characteristic
impedance Z = ρ0c0 of the air.

There are many ways to choose the measurement points of the surface of the
sphere. The only requirement is that the points are uniformly distributed in order
to use the simplified expression (Eq. 10). Examples of this kind of spatial sampling
methods are interpolation, weighted quadrature (e.g., platonic solids), least-squares
transforms and triangulated meshing [68]. In practice, the radiated sound power is
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often measured on a hemisphere. For this case, there is an ISO standard for selecting
the measurement points, 10 altogether [67].

2.5.2 Radiation efficiency

Radiation efficiency is defined by a reference to a baffled piston vibrating uniformly
at frequencies for which the piston circumference clearly exceeds the acoustic wave-
length [60]. Radiation efficiency can be more than one, but in most practical cases
it is below or close to unity. It is defined as

σn(f) =
Pr

ρ0c0Sv〈v2
n〉
, (11)

where Sv is the area of the vibrating surface, and 〈v2
n〉 is the average mean square

velocity at a certain frequency, meaning that it is the squared vibration velocity
averaged in both time and space. The radiation efficiency here is defined for an
individual mode n.

Radiation efficiency of the individual modes weighted with the corresponding
velocity amplitudes gives the average radiation efficiency over a frequency range [59]

σ =

∑
n σn(f)〈v2

n〉∑
n 〈v2

n〉
. (12)

2.5.3 Cancellation of radiation

Because the speed of flexural waves is dispersive, it can either be smaller, equal,
or greater than the speed of sound in air. Sound radiation and radiation efficiency
depend on the relationship between the structural and the acoustic wavelength.

The frequency at which these two wavelengths are equal is called the critical fre-
quency. For example, for wood there exists a critical frequency for each orthotropic
direction. For the guitar, they are estimated to be around fcL = 1 kHz along the
fibre and around fcT = 2 kHz across fibre [41]. For violins, the values are fcL = 0.5
kHz and fcT = 1.8 kHz [1]. Naturally, this depends on the thickness of the plates
(see Eq. 4).

Above and below its critical frequency, the plate behaves very differently in
terms of radiation. Above the critical frequency, or when the flexural wavelength
is greater than the acoustic wavelength, the radiation efficiency is always unity or
above [59, 60]. The plate is said to act as a surface radiator.

Below the critical frequency, there is no radiation for infinite plates [59, 60]. For
finite plates, the radiation efficiency is significantly lower than unity. This is because
of hydrodynamic short circuit. Two adjacent regions vibrating in opposite phases
can cause radiation cancellation, such as the case of the string, or an unbaffled bass
loudspeaker. This cancellation occurs when the regions are much less than half a
wavelength apart [60].

This cancellation at subcritical frequencies in finite plates means that they be-
come either edge or corner radiators. If the flexural wavelength in one dimension is
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smaller than the acoustic wavelength, the plate radiates only at its edges depending
on which dimension the wavelength is smaller. If the flexural wavelength is smaller
in both dimensions, then the plate radiates at its corners. These edge and corner
modes are shown in Fig. 12.

Figure 12: Three cases of edge and corner radiators with antiphasic regions indicated.
The crossed area is radiating to the air. Adopted from [60].

The critical frequency plays a role in musical instruments. It has been proposed
for example that violins that are considered to have a good sound quality have low
critical frequencies [69]. Namely, thicker violin plates have lower critical frequen-
cies. Furthermore, the radiation efficiency of modes at subcritical frequencies (edge
and corner modes) have been studied on the guitar using FEM by Torres et al.
[41]. The guitar edge modes radiate more efficiently than corner modes as well as
modes with odd symmetries of antiphasic regions radiate better than those with
even symmetries.

2.5.4 Power conversion efficiency

Another measure related to sound radiation is the power conversion efficiency η
which is defined as the ratio between the total radiated sound power Pr and the
mechanical input power Pi [59, 70], that is

η(f) =
Pr(f)

Pi(f)
. (13)

The mechanical input power is defined as the complex scalar product of the force
and the velocity amplitude at the driving point, Fd and vd, respectively, [70]

Pi(f) = <{Fdvd(f)∗} . (14)

Consequently, power conversion efficiency depends on the excitation: on its loca-
tion and force. Typical radiation efficiency of a musical instrument has the order
of magnitude of 0.01 (or 1%) when excited artificially [41, 70]. Estimation of radia-
tion efficiency while playing is difficult because of the difficulty to measure player’s
mechanical input.
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2.5.5 Directivity

Sound radiation of a musical instrument depends on direction, because the instru-
ment body enables a complex directivity pattern [25]. Directivity is the measure of
how much of the total energy is radiated in a certain direction. Directivity depends
also on frequency and on the excitation [1]. In a normal room the directivity pattern
is obscured by the reflections of the sound. An example of a measured directivity of
the modified kantele using coarse dodecahedron spatial sampling [71] is presented
in Fig. 13.

Figure 13: Directivity of the modified kantele at selected third-octave bands when all
strings are excited. Under each polar plot, the positioning of the instrument and the
player at the centre of the plot is depicted.



3 Finite element method in string instrument mod-

elling

Acoustic problems are governed by partial differential equations with complicated
boundary conditions [28, 31, 59, 60, 72, 73]. It often impossible to solve the equa-
tions analytically. Therefore, numerical methods have been developed to solve these
problems approximately. These numerical methods include among others finite dif-
ference, boundary element, and finite element methods [19, 28, 29, 31, 74, 75]. The
differences of these methods lay in the formulation of the partial differential equa-
tions describing the problem. In general, the partial differential equation domains
are divided into elements following certain functions specific to the method. The
finite difference method (FDM) is based on the differential formulation of the prob-
lem. In this method, the solution domain is divided into a grid. FDM works well
for less complicated structures, such as bars and plates, especially in one or two
dimensions.

The boundary element method (BEM) is, in turn, based on the integral equation
formulation of the problem. As the name suggests, only the boundaries of the
domains are treated and they are divided into surface elements. BEM is suitable for
modelling the sound radiation of the instrument or the behaviour of the air enclosed
by the instrument [75]. If the instrument has structural modes in the same frequency
region as the acoustic modes, then finite element approach is required [31].

Finally, the finite element method (FEM) is based on the weak formulation of
the problem. Weak formulation means that the continuity of the partial differential
equations is weakened so that the equations hold only for a certain set of functions.
In FEM, the entire domain is divided into solid elements [28]. There are two dif-
ferent approaches to FEM: variational and weighted residuals [31]. The variational
approach is based on the minimum energy principle while the residual method is
based on minimising the error between the approximate and the analytic solution.
There are actually several specific weighted residual methods, such as the Least
Square method and the Galerkin method [28, 29, 31, 76]. Further reading on the
residual methods can be found for example in [76].

All these methods are used in string instrument modelling since it is often benefi-
cial to study the interaction between each constitutive part of the musical instrument
separately, instead of trying to complete a model of the whole instrument [27]. A
typical way of modelling a string instrument starts with modelling the vibrational
modes of the instrument body with FEM [23, 26, 33, 34, 35, 36, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47] or FDM [19, 77, 78]. Then, the body vibrations are coupled
with a string model using, e.g., FDM. Finally, the radiation of the whole instru-
ment is calculated using BEM. The validity of the simulation is often checked with
measurements.

FEM is most suited for modelling both the vibrational modes of the instrument
and its sound radiation because the entire domain is approximated with solid ele-
ments [31]. Indeed, string instruments are essentially wooden boxes vibrating in air,
i.e., coupled structure-acoustic systems. Hence, the finite element formulation pre-
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sented in this chapter focuses on the coupling of these two domain. The variational
formulation of FEM is used. After the theoretical basis, previous work on string
instrument modelling with FEM is reviewed.

3.1 The basis of finite element method

The basic idea of FEM is that a continuous, complicated system can be divided into
smaller subsystems whose behaviour can simplified and approximated [28, 29, 72, 74].
This process is known as discretisation. These subsystems, more commonly known
as elements, are connected to one another via nodal points at the boundary of each
element. It is then the displacements of the nodal points that are the unknown
parameters of the system, instead of the infinitely many unknown displacements of
a continuous system. In other words, the end result is discrete unknowns approxi-
mating an unknown continuous field. This implies that the amount of nodal points
equals the degrees of freedom (DOFs) of the discretised system.

The connection between the continuous field u(x, y, z) and the nodal points dj
is established through shape functions Nij(x, y, z), so that

u(x, y, z) =
∑
j

Nij(x, y, z)dj. (15)

The shape functions approximate the behaviour of the elements between the nodal
points. The shape functions are required to be piecewise differentiable and continu-
ous at the boundaries connecting two elements [31]. Most often, the shape functions
are polynomials fulfilling these requirements.

A simple example of the selection of the shape functions is illustrated in Fig. 14
adapted from Ottosen et al.[29]. The temperature is first represented as a one-
dimensional continuous field quantity (Fig. 14a). Next, the temperature function is
discretised, i.e., divided into elements (line segments) and nodal points (Fig. 14b).
First, the elements are approximated with a first-order shape functions (Fig.14c)
and then with the second-order shape functions (Fig. 14d).

The process of discretising the geometry of the system with elements is called
meshing. The selection of element type and shape used for the meshing depends
on the dimensions of the system. The element types include solids, shells, and
beams, among others. Solid elements are three dimensional, i.e., with three variables
approximating the field at each nodal point. In shell elements one of the dimension
has been collapsed because it is relatively small to the other two. Further, in beam
elements, two of the dimensions are collapsed. For shell and beam element models,
there are two and one variables describing the field, respectively. As for the shapes,
in two dimensions, triangles and quadrilaterals are typical. In three dimensions,
the elements are typically tetrahedral or cubic. In the same model, it is possible to
use more than one element type, but then the compatibility between the different
elements must be forced when meshing.

In addition to the shape functions, the system behaviour is governed by the
boundary conditions of the system. Otherwise, the partial differential equations
would not have unique solutions. The boundary conditions can be divided into two
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(a) A temperature distribution (b) Nodal points and temperature
values at these points

(c) Four first-order elements and the resulting approximation

(d) Two second-order elements and the resulting approximation

Figure 14: Discretising a one-dimensional temperature distribution with first- and
second-order elements. Adapted from [29]

categories: natural and essential. The difference between the two is that natural
boundary conditions do not eliminate any degrees of freedom. Natural boundary
conditions arise in the process of solving the partial differential equation, such as
the boundary conditions between structural and acoustic domains. On the con-
trary, the essential boundary conditions are imposed beforehand. The three most
typical essential boundary conditions are free, simply supported (pinned), and fixed
(clamped). In one dimension these boundary conditions can be mathematically
expressed for the displacement u(x) as follows



22

free:
∂u

∂x
= ∂xu(x) = 0, ∂xxxu(x) = 0, (16)

simply supported: u(x) = 0, ∂xxu(x) = 0, (17)

fixed: u(x) = 0, ∂xu(x) = 0.. (18)

When modelling the sound radiation of an instrument in the free field, the cal-
culations are often limited over a finite volume. However, the boundary conditions
at the outer surface of the volume require special attention. If they are modelled as
fixed, for example, there will be artificial reflections inside the free field although they
do not exist in reality. To overcome this problem, there are two solutions. Either
the boundaries are modelled as so called radiating boundaries, or using a technique
called Perfectly Matched Layer (PML). According to the radiating boundary con-
dition (also called the Sommerfeld radiation condition), the sources on the surface
scatter energy only to infinity, and not inside the field in question [79]. The problem
is that this boundary condition works only for certain cases, for example for spher-
ical waves. The numerically more accurate boundary condition, PML, relies on the
idea that the computational domain is surrounded by an additional layer of medium
that matches the computational domain and that absorbs all the incoming radiation
in all angles with no reflections. The PMLs were first introduced by Berenger for
electromagnetic waves. The mathematical derivation can be found in his original
paper [80].

3.2 Formulation in the structure-acoustic domain

Both the structural and acoustic domains are governed by a set of partial differential
equations [72, 73]. When deriving these equations and solving them with FEM, some
assumptions are made. First of all, it is assumed that these partial differentials
are linear. In the following, the domains are also considered infinite. The partial
differential equations need to be formulated in a so-called weak form in order to be
solved with FEM. In a weak formulation, the partial differential equation is assumed
to hold for certain test functions only. In FEM, these test functions are the shape
functions. Typically, the weak form equations are written in a matrix form. It is
possible to represent the equations with the mechanical parameters (mass, stiffness,
damping) or the modal parameters (eigenfrequencies and eigenmodes) of the system.

To begin with, in the structural domain the equation of motion for a continuous
structure can be expressed with the following partial differential equation [29, 72, 73]

∇̃σs + bs = ρsüs, (19)

where σs is the stress of structure, bs represents the body forces, ρs is the density
of the material, and üs is the second derivate of the displacement of the structure
with respect to time. ∇̃ denotes a modified gradient
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∇̃ =

∂x 0 0 ∂y ∂z 0
0 ∂y 0 ∂x 0 ∂z
0 0 ∂z 0 ∂x ∂y

 . (20)

From this partial equation (derived, e.g., in [72, 73], the structural vibrations
can written in the weak form as follows

M sd̈s +Ksds = F f + F b, (21)

where ds is the finite element approximation the displacement and d̈s its second
derivate with respect to time. If damping would be introduced into the equation,
it would be related to ḋs. F f and F b represent the forces by the surface traction
normal to the structural domain and the body of the structure, respectively. M s

represents the finite element approximation of the mass of the structure over the
volume V with shape functions N

M s =

∫
s

NTρsNdV. (22)

Ks is the finite element approximation of the stiffness of the structure

Ks =

∫
s

∇̃NTCs∇̃NdV, (23)

where Cs is the stiffness matrix. The material parameters that define the stress σs
of the structure are included in the stiffness matrix. For an orthotropic material,
such as wood, the stiffness matrix Cs in Eq. 23 takes the following form

Cs =


Ex(1− µyzµzy)/β Ex(µyzµzx + µyx)/β Ex(µyxµzy + µzx)/β 0 0 0
Ey(µxzµzy + µxy)/β Ey(1− µxzµzx)/β Ey(µxyµzx + µzy)/β 0 0 0
Ez(µxyµyz + µxz)/β Ez(µxzµyx + µyz)/β Ez(1− µxyµyx)/β 0 0 0

0 0 0 Gxy 0 0
0 0 0 0 Gxz 0
0 0 0 0 0 Gyz

 ,
(24)

where β = 1− µyzµzy − µxyµyx − µxzµzx − µxyµyzµzx − µyxµzyµxz, µ is the Poisson
ratio, E the elastic moduli, and G the shear moduli.

Eq. 21 can thought of as the equation of forced harmonic vibration without
damping, with mass and spring forces represented on the left-hand side, and the
fluid loading and the excitation force on the right-hand side. The continuous fields
over the volume have just been replaced by the shape functions over the volume.

In the acoustic domain, the partial differential equation to be considered is the
equation of motion for a compressible fluid (i.e., the Helmholtz equation) [72, 73]

ρ0üf + ∇pf = 0, (25)
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where ρ0 is the density of the fluid, üf is the second partial derivate of displacement
of the fluid with respect to time, and pf the pressure of the fluid. ∇ denotes the
gradient

∇ =

∂x∂y
∂z

 . (26)

From this partial differential equation, the weak formulation in the acoustic
domain becomes [72, 73]

M f p̈f + c2
0Kfpf = F q + F s, (27)

where F q and F s represent the forces by the added fluid mass and the pressure
normal to the fluid domain, respectively. c0 is the speed of sound in the air. M f

and Kf represent again the fluid mass and its stiffness

M f =

∫
f

NTNdV, (28)

and

Kf =

∫
f

∇̃NT∇̃NdV. (29)

It can be noted that the weak formulation for the structural domain (Eq. 21)
and acoustic domain (Eq. 27) are in a similar form. In the coupled domain, they
can be combined by defining their common boundary conditions [30, 31, 72, 73]. At
the boundary of the structural and acoustic domain, the particle velocity normal to
the boundary need to be continuous. With the normal vector n defined pointing
away from the structural boundary, this particle velocity boundary condition can
written

u̇s · n = u̇f · n. (30)

In addition, the fluid pressure causes stress on the structure in the direction of the
normal. This pressure continuity boundary condition can written

σs · n = −pf · n. (31)

These two boundary conditions result into a matrix of equations [72, 73] describing
the structure-acoustic domain[

M s 0
ρ0c2

0H
T
sf M f

] [
d̈s
p̈f

]
+

[
Ks −Hsf

0 c2
0Kf

] [
ds
pf

]
=

[
F b

F q

]
, (32)

where Hsf is the spatial coupling matrix between the acoustic and the structural
domain defined as the integral over the surface S

Hsf =

∫
Ωs

NTnNdS. (33)
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This coupling matrix stems from the boundary conditions between the structural
and acoustic surface S. This interaction takes place perpendicularly to the boundary,
the direction of the normal n.

Changing the representation of Eq. 32 to the modal parameters, it can be
formulated into [28, 72]

Ks 0 0
0 M f 0
0 0 0

− ω2

 M s 0 −Hsf

0 0 M f

ρ0c
2
0H

T
sf MT

f c2
0Kf


dspf
qf

 = 0, (34)

where an additional variable qf is introduced, so that qf = ω2pf . ω is the eigenvalue
of the equation. This type of matrix equations are inverted and solved for with
FEM. Often, the resulting equations are more complex than Eqs. 32 and 34, as the
geometries shapes are complicated.

3.3 Accuracy and efficiency issues

The calculation capacity and the desired accuracy set certain conditions on the
meshing of the system. The accuracy of the FEM model depends on how well
the shape functions approximate the behaviour of the continuous field inside the
element [28, 29, 74]. In addition, the accuracy is dependent on the amount of
nodal points, i.e., the amount of elements, used to approximate the continuous field
and the geometry. The more complicated the geometry, the more and the smaller
elements required for high accuracy. The order of the elements matters, as well.
For example, if bending is modelled, at least second-order elements should be used
[74]. In acoustics, a rule of thumb is to choose at least six elements per the smallest
wavelength to be analysed. This stems from the fact a sine wave is considered to
be acceptably represented by six line elements [30]. If there are too few elements,
extra stiffness is introduced into the system. In turn, this increases the calculated
eigenfrequencies of the system. Furthermore, the ratio between the largest and
smallest dimension of each element should be close to unity. The more deformed
in this sense the elements are, the stiffer they are, and do not necessarily represent
the system stiffness realistically [74]. Many commercial softwares have automatic
meshing functions that try to maximise the accuracy.

What comes to efficiency and computational load, the amount and the order of
elements play an important role. Naturally, using symmetries is an efficient way to
reduce the computational load of the model [29].
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3.4 Previous work on finite element modelling of string in-
struments

Finite element models in acoustics are often simplified; sometimes because of unim-
portance of details to sound production and sometimes because of difficulties in
estimating the physics. The crude approximations of the geometry and the mate-
rials were especially necessary in the early stages of FE modelling from the 1960s
until the early 2000s because of limited computational capacity. In the case of string
instrument modelling this meant several simplifications. For example, the strings
were not considered at all, the air surrounding the instrument was omitted [42],
and the material is assumed homogeneous. Most models considered instrument top
plates only [27] and these were modelled using shell elements with mathematical
thickness rather than normal solid elements. The frequency range was in most cases
limited below 1 kHz in order to keep the number of elements and thus the degrees
of freedom within a reasonable solving time [36, 42]. The amount of elements varied
between a few hundred to a few thousand. For example, in the work of Bretos et
al. [33] from the year 1999, the number of elements used was 9500. The enclosed
air was modelled separately with specific instrument-shaped cavities [32].

Guitar soundboards have been analysed with FEM since the 1970s and violin
plates since the 1980s [36]. These models have focused on the low frequency region,
partially due to the importance of the lowest vibrational modes, yet mostly due to
the mentioned lack of computational capacity. To illustrate these simplifications,
Richarson and Roberts [42], in a paper published in 1983, modelled the top plate
of the guitar in the absence of air, with fixed boundary conditions, and orthotropic
material. They showed that the eigenmodes of the guitar are more sensitive to
changes in plate thickness than strut thickness.

More recently, FEM has been used to study structure-acoustic coupling in mu-
sical instruments. Both enclosed and surrounding air add to the mass of the instru-
ment and thus affect the accuracy of the FE analysis. In particular, Runnelmam
et al. [35] showed that fluid loading in coupled structural-acoustic interaction has a
significant impact on the eigenfrequencies of the structure and the enclosed air. The
modal shapes, on the other hand, are much less affected. The model by Runnelmam
et al. [35] consisted of a violin and the enclosed air. The enclosed air was modelled
as one-dimensional noninteracting air column. Even though this approach neglects
the three-dimensional behaviour of the air, the results agreed with the measurement
fairly well below 600 Hz. Furthermore, Elejabarrieta et al. [37] modelled the cou-
pled modes of vibration of the guitar box and the enclosed air in the low frequency
region. They also obtained participation factors for top plate, back plate and air
eigenmodes for each of the coupled modes. They showed that the inclusion of the air
in the model significantly lowered the eigenfrequencies of the coupled guitar plates.

To understand the behavior of the enclosed fluid even better, Ezcurra et al. [39]
studied the effect of the enclosed fluid on the structural modes of the guitar using
three different gases. They analysed the eigenmodes of the enclosed air and the
guitar body. They showed that the type of gas effects the coupling between the top
and the back plate. Namely, they discovered that whenever the top and the back
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plate couple, the Helmholtz resonance participates in the coupling. The shape and
frequency of the Helmholtz resonance changes according to the density of the fluid.
The denser the gas, the more similar were the vibration amplitudes of the top and
the back plates.

The surrounding air and the radiation characteristics of string instruments have
been studied with FEM less than the enclosed air. As stated previously, the sur-
rounding air is much more efficiently modelled using BEM than FEM. Torres et al.
[41] studied the radiation efficiency of higher order normal modes of the guitar top
plate using FEM. They modelled the vibrational and radiation characteristics of
edge and corner modes with damped harmonic analysis. They showed among other
things that the guitar edge modes radiate more efficiently than the corner modes.

FEM is increasingly employed in analysing different structural changes to the in-
strument prior or simultaneously to building the instrument. The aim is be able to
accurately predict the behaviour of the instrument and to guide the building process
into a desired direction. For example, Derveaux et al. [23] showed that the thinner
the guitar plates, the more sound power they radiate. The structure-acoustic cou-
pling was more efficient below 400 Hz for the thinner plates. Furthermore, Bretos
et al. [33] showed how the carving process and the tuning of the violin plates affects
the eigenmodes. They focused on the accurate description of the building blocks
joining the two plates together, such as ribs and the corner blocks. In a similar
manner, Elejabarrieta et al. [36] modelled the vibrational behaviour of the guitar
soundboard at five different stages of construction and compared the results with
measurements. They showed that the effect of structural changes on eigenmodes
and eigenfrequencies is different depending on the type of boundary conditions used
in the model. For example, the thickness of the soundboard affects the eigenmodes
under simply supported conditions but not under free conditions. The instrument
builder can often measure only the latter option while making the guitar. The most
accurate results of the model when compared to measurements were obtained if the
boundaries of the top plate (when attached to the ribs) were considered simply sup-
ported. Furthermore, Elejabarrieta et al. showed that the inclusion of transverse
bars (braces) had a significant effect on the obtained eigenmodes and eigenfrequen-
cies, whereas the shapes of these bars was shown not to be important. Similarly,
in the modelling of piano soundboards, the inclusion of sufficient bracing has been
shown to be crucial in order to reach a fair agreement with the model and the mea-
surements [43, 47]. In addition, Torres et al. [40] compared the effect of two different
bridges on the eigenmodes of the guitar top plate using FEM.

Interestingly, with a coarse estimation of the instrument geometry and boundary
conditions, it is still possible to produce the main acoustical properties of the instru-
ment. This was shown, for example, by Derveaux et al. [23] modelling the 3D sound
pressure field of the guitar in the time domain with the help of spectral and ficti-
tious domain methods. These are methods for solving partial differential equations
similarly to FEM. They used a rigid back plate and simple bracing. They showed
that the thinning of the guitar plates induced more changes in the presence of air
than in the absence of it. This confirms the importance of including the air in the
model. For further improvement between simulation and measurements, Derveaux
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et al. suggested, among others, revising the damping of the fluid near boundaries
with the instrument.

In addition to the necessity of modelling the air, the accuracy of FE-models
can be improved by other means. In the case of wood, modelling it as orthotropic
material has also been shown to be more accurate than isotropic material models
[43]. Often, the material values need to be fine-tuned [36, 41]. Furthermore, the
actual instruments often have the strings already attached to the body when being
measured. The additional tension to the instrument soundboard caused by the
strings and its effect on vibrational modes has also been studied via FEM in the
case of the piano soundboard by Mamou-Mani et al.[45]. They confirmed that
when strings are introduced to a flat soundboard, the eigenfrequencies of the board
increase. However, when the initial crown on piano soundboard is also introduced to
the model, the eigenfrequencies are initially lowered. This shows that it is important
to consider which geometrical and physical features should be included in the model.

The FE-simulations have almost always been compared to measurements in order
to verify the models. Ezcurra et al. [39] compared the measured and the modelled
normal modes in terms of their shapes and frequency, reporting a maximum devia-
tion of 14% at greatest. In a similar manner, Elejabarrieta et al. [36] stated that the
maximum deviation between the first six measured and modelled modes is less than
1 Hz, after fine-tuning the boundary conditions. Torres et al. [40] reported 82% cor-
respondency between the modelled and the measured normal velocity mesh. They
were able to improve the similarity between the measured and modelled mobility by
both making the damping frequency-dependent, and tuning the elastic properties of
wood in the model. The frequency-dependent damping for the model was estimated
by measuring the loss factor separately for each of the normal modes observed in
the measurements.

All in all, FEM is a powerful tool for analysing structure-acoustic coupling. Sim-
plifications are a part of the acoustic FE-models, and this often leads to some devi-
ation between the modelled and the measured result. Based on previous research,
it is essential in string instrument modelling to consider the material orthotropic,
to include the most important bars and struts in the model, to treat the air as a
three dimensional medium, to have the right boundary conditions, and of course, to
include a sufficient number of elements in the model.



4 Model and measurements of a modified kantele

Modelling any geometry with FEM includes the following steps:

1. importing/drawing the geometry (with possible reductions),
2. defining material properties,
3. defining boundary conditions, and
4. meshing.

These four steps are enough to perform an eigenfrequency analysis to the geom-
etry. For forced oscillation analysis, such as sinusoidal force analysis, one also needs
to consider

5. the damping coefficient,
6. the type and location of the force, and
7. the frequency steps (sampling rate) at which the analysis is performed.

These steps for the modified kantele are described in the following. A FEM
software capable of dealing with coupled domains [81] was used, since there were
both structural mechanics and pressure acoustics domains. In order to solve coupled
domains, the solver must be fully coupled, too [81]. A more detailed presentation of
the model can be found in Appendix A. Furthermore, the FE-models are typically
compared with measurements for verification. The measurement set-up used in this
thesis is described in the last section of this chapter as the last step to complete the
model.

4.1 Model geometry

First, the kantele geometry was drawn based on the physical copy, by using a
computer-aided design (CAD) software [82]. The modified kantele is not symmetric
in geometry, meaning that no dimension reductions due to symmetry can be made.
Instead, many small geometric details were disregarded because their size was not
considered to be acoustically relevant. Typically, having several small surfaces in
the model leads to meshing problems in the FEM software [81]. For example, the
longitudinal bars were not included in the model. Instead, the transverse bars on
the plates were modelled. The bars on the back plate connect the top and the back
plate together whereas the bar on the top plate stiffens the top plate. The effect
of the top plate bar was studied by modelling the top plate also without it. The
plastic screws and tuning pins were not modelled. A uniform thickness of 5 mm was
assumed for the kantele plates, apart from the ponsi and bars inside the kantele. The
real kantele back plate is slightly curved, but the modelled one was assumed to be
flat. The top plate and the back plate of the model are presented in Fig. 15. Figure
16 presents the modelled kantele from the side, indicating the point of excitation,
the air gap, and the sound hole. The size of air gap between the top and the back
plate was varied.

The frame of the whole model including the air and the PML is presented in
Fig. 17. These are both spherical domains surrounding the kantele, with the radius
of r = 0.7 m and r = 0.8 m for the air and the PML domains, respectively.
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(a) Top plate (b) Back plate

Figure 15: Modelled kantele.

Figure 16: The modelled kantele from the side with excitation point, sound hole, and
the air gap included.

Figure 17: The frame of the model with structural, air, and PML domains.
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4.2 Material properties

Based on previous work on instrument modelling, the material was considered or-
thotropic. Consequently, ten parameters for the material need to be plugged into the
model: density, elastic moduli, shear moduli, and Poisson ratio in three orthogonal
directions. The kantele was considered to be build from one material, spruce. In
addition, the effect of changing the material to birch and pine was also investigated.
The values for these wood materials were obtained from Kretschmann et al. [58]. In
addition, the surrounding air domain had be defined in terms of density and speed of
sound. The PML domain was assigned with the same properties as the air domain.
The material and also other parameter values used in the FE-model are presented
in Tab. 2.

Parameter Symbol Spruce Birch Pine Unit

Elastic moduli
Ex 122 153 111 [108 Pa]
Ey 15.6 11.9 8.67
Ez 7.20 7.60 4.22

Shear moduli
Gxy 15.1 11.0 5.78 [108 Pa]
Gyz 1.22 2.60 0.56
Gxz 14.6 10.4 5.33

Poisson ratio
νxy 0.42 0.43 0.33 [1]
νyz 0.53 0.70 0.41
νxz 0.46 0.45 0.34

Density ρs 440 570 540 [kgm−3]
Isotropic loss factor α 0.01 [1]
Driving force Fd 1.5 [N]

Air density ρ0 1.2 [kgm−3]
Speed of sound in air c0 343 [ms−1]

Maximum element size smax 0.1 [m]
Frequency resolution ∆f 5 [Hz]

Table 2: Parameter values inserted in the FE-model.

4.3 Boundary conditions

The boundary conditions between the air and the structural domain were defined
in the mathematical formulation of FEM for structure-acoustic problems (see Eqs.
30 and 31). Firstly, the particle velocity normal to the air-structure boundary is
required to be continuous. Secondly, fluid loading or stress on the plates equals the
air pressure normal to the air-structure boundary. The boundary condition for the
surrounding air was the spherical PML domain.
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4.4 Meshing and frequency range

Second-order tetrahedral elements with a maximum size of smax = 0.100 m were
used in the model. With the enclosed and surrounding air included, this resulted
in about 80 000 to 200 000 elements in the model depending on the size of the air
gap. The degrees of freedom (DOFs) to be solved varied between 150 000 and 680
000 depending on the frequency. With this amount of DOFs, for a normal desktop
computer with 8 GB of RAM and two processors it took on average 20 hours to
calculate the frequency response for 15 point frequencies. This was the maximum
number of DOFs that could be solved with that computer without running out of
memory in the matrix factorisation. As there should be at least six elements per
wavelength, the frequencies up to 570 Hz could be treated accurately with the model
(with the speed of sound in air c0 = 343 ms−1). The eigenfrequency analysis was
run at the frequency range of 0-570 Hz. For the sinusoidal excitation, the frequency
range was limited to 70-570 Hz, with the resolution of ∆f = 5 Hz.

4.5 Force and damping considerations

The sinusoidal driving force Fd can be expressed as

Fd = Aeiωt, (35)

where A is the amplitude of the force, ω is the angular frequency applied, and
t is time. The frequency response was calculated to a sinusoidal force with the
amplitude of A = 1.5 exerted perpendicularly to the top plate. This corresponds to
the approximate amplitude of plucking the kantele string with copper wire (diameter
0.05 mm) in practical experiments by the author. The copper wire plucking method
enables a standard plucking procedure and is widely used [7, 62].

Following previous research [40, 56], damping is considered isotropic with the
loss factor of α = 0.01. The damping affects the eigenfrequencies so that [1]

fdamped =
(

1 + i
α

2

)
fundamped. (36)

Related to damping, another number describing forced vibration at a single mode
or resonance is called the Q-value (or quality factor) [1], defined as

Q =
πf

α
. (37)

Q-value indicates how sharp the peak of the resonance is, and how wide its excitation
band in frequency is. The higher the Q-value, the sharper the resonance.
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4.6 Measurements

In order to verify the model, measurements with the kantele were carried out in an
anechoic chamber where the anechoic conditions apply above 60 Hz. The modified
kantele with a 5-mm air gap was excited with an impulse hammer (PCB Piezotronics
Impulse Force Hammer 086C01). The response was recorded using an external sound
card (MOTU Traveller Lite mk3) at a sample rate of 44.1 kHz with a microphone
(Rode NT1-A) at 1 m above the middle of the kantele top plate. The excitation
point was the same as in the model, i.e., in the middle of the top plate, 5 mm away
from the free edge (see Fig. 16). The strings were damped, and the kantele was
held on the ponsi, so that it was hanging in the air. The set-up is shown in Fig. 18.
Afterwards, the microphone response was compensated with the input force from
the hammer according to Eq. 6. The impulse hammer was not calibrated.

Figure 18: Measurement set-up



5 Results

The results of this thesis can be divided into four parts. Firstly, as a side-product
of improving the correspondence between the measured and the modelled kantele,
several structural changes on the kantele have been modelled. They illustrate how
FEM can be used in string instrument design. Secondly, the modified kantele is
compared to the traditional kanteles in terms of vibrational modes and radiation.
Thirdly, the effect of the air gap size on the modified kantele is studied. Finally,
the radiation efficiency of the different kanteles is compared. Before introducing the
results, the FE-simulation is compared with the measurements and the differences
between these two are accounted for.

5.1 Experimental and modelled frequency responses

It is an iterative process to arrive at the best possible agreement between the mea-
surement and the simulation. Oftentimes, there is a limit to the similarity that
depends on the computational capacity and the awareness of the complexity of the
underlying physical phenomena. In the case of musical instruments this could be
related, for example, to the complexity of the damping of both wood and air or to
the boundary conditions.

The measured and modelled frequency responses at 0.7 metres above the kantele
are shown in Fig. 19. The measured frequency response has been scaled down so
that visual comparison is reasonable. The material in the FE-model of the kantele
is spruce and the air gap is 5 mm.
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Figure 19: The frequency responses at 0.7 m above the kantele for the modelled
kantele (solid black line) and the measured kantele (dashed red line). The material is
spruce and the air gap between the top and the back plate is 5 mm.

By visual inspection, it can be seen that the overall shape of the two responses is
similar. Some frequencies of the normal modes as well as the overall sound pressure
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level differ. Furthermore, in some cases the modelled normal modes are much sharper
than the measured ones. In other words, the modelled Q-values are higher than
the measured Q-values. This shows that the Q-values, and thus the loss factor, are
frequency-dependent in reality. The overall difference in the measured and modelled
sound pressure levels is caused by many factors, such as microphone sensitivity,
voltage settings, and difference in the excitation magnitude. The model is excited
sinusoidally with amplitude A = 1.5 N while the measurements were done with an
impulse hammer with a higher excitation magnitude.

The relative similarity between the two frequency responses was calculated to
be 76% using the definition by Deecke et al. [83]. This is comparable to reported
correspondences in previous research. For example, Torres et al. [40] reported a sim-
ilarity of 82%. In most cases, the compared variables have been the measured and
the modelled eigenmodes and eigenfrequencies rather than frequency responses. Fol-
lowing that example, the greatest difference between the modelled and the measured
modes is 40 Hz. This occurs between the first modelled and the first measured mode.
This yields a maximum deviation of 24% between the measured and the modelled
frequencies. In previous work, Ezcurra et al. [39], for example, reported a maximum
mode frequency difference of 14%.

When comparing the similarity values of the current model to previous research,
an important distinction must be made. In previous research, the focus of modelling
has been either on the top plate only or the top and the back plate connected with
ribs only. The modified kantele in this thesis has a more complicated connection
between the plates. Namely, the plates are connected with three thin plastic screws
at three points on the top plate. The way such connections should be modelled is
not straightforward. For this reason, the FE-model of the top plate is also compared
with the measured modified kantele. This comparison is shown in Fig. 20.
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Figure 20: The frequency responses at 0.7 m above the kantele for the modelled top-
plate kantele (solid blue line), and the measured modified kantele (dashed red line).
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As can be seen, the first two normal modes of the simulated top plate are close to
the first two measured normal modes. The mode shapes of the simulated top plate
are the same as those of the simulated modified kantele, but their frequencies are
higher for the top plate. What is more, the back plate is not involved in these mode
shapes. In conclusion, in the FE-model, the top plate couples more strongly to the
back plate than in reality. However, the simulated top plate corresponds better to
the measured kantele in regard to the first two normal modes.

Consequently, the model of the modified kantele could be improved by revising
the connection between the top and back plate. In reality, the two are connected
with three plastic screws. In the model, the connection is established through three
wooden blocks. The screws are small elements and modelling them accurately would
increase the amount of elements in the model significantly. The present model was
already at the limits of the available computation capacity. Therefore, a whole new
approach for the model should be taken, e.g., by using shells elements, in order to
improve the correspondence between the FE-model and the built kantele.

Other factors also contribute to the differences between the measured and the
modelled frequency responses. The measured kantele includes the strings and the
tuning pins, which add stiffness to the top plate. The transverse load of the strings
has been found to increase the eigenfrequencies when the magnitude of the load is
comparable to the thickness of the plate [46]. Additional stiffness and mode damping
is also caused by thin longitudinal bars on the real kantele top plate. Furthermore,
the back plate was modelled flat, even though in reality, it is slightly curved. In
addition, the material parameters for wood in the model were estimated from liter-
ature [58]. In reality, the material properties of wood vary significantly depending
on, e.g., the moisture content and growing location. In addition, the damping coef-
ficients vary considerably for wood used in sound boards [56]. In previous research,
fine-tuning of the parameters has been an issue [36, 41].

5.2 Structural and material changes

FEM provides an interesting tool for studying structural and material changes of
musical instruments without building them. In addition, it is essential to study
what kind of assumptions and simplifications about the structure can be made in
the model without compromising the correspondence to the measured values. For
these purposes, the following three cases of a structural change are presented for the
modified kantele:

1. including and excluding the transversal bar on the top plate,

2. kantele made of different wooden materials, and

3. top plate and back plate made of different materials.

In the first case, the frequency responses of the kantele with and without the bar
under the tuning pins on the top plate are shown in Fig. 21. The solid black line
represents the kantele with the bar and the dashed red line represents the kantele
without the bar. It can be seen that in an instrument like the kantele, a transverse
bar has an effect on the frequency response.
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Figure 21: The frequency responses at 0.7 m above the kantele with the bar (solid
black line), and without the bar (dashed red line).

Mainly, it makes the free edge of the kantele top plate stiffer. To give an example,
the five mode peaks that appear below 200 Hz in the barless kantele collapse to two
in the kantele with the bar. More precisely, when the shapes of normal modes are
studied, it can be noticed that the modes (2,0) at 105 Hz and (2,0)-(0,2) at 150 Hz
shift in frequency, to 125 Hz and 185 Hz, respectively, while the mode shapes remain
unaffected. The other three normal modes at 130 Hz, 160 Hz, and 175 Hz, whose
mode shapes relate to the free edge vibrating, disappear when the bar is introduced.
This confirms the importance of including the transverse bars of the top plate in
modelling stated in previous research [36].

In the second case, the kantele is made of different materials. The frequency
responses are shown in Fig. 22 for spruce (solid black line), pine (dashed red line)
and birch (dash-dotted blue line) according to the values in Tab. 2. By visual
inspection, the overall shape of the frequency responses for different materials is
similar except that it shifts in frequency. For example, the first normal mode shifts
from 125 Hz to 120 Hz and to 80 Hz for spruce, birch and pine, respectively. In a
similar manner, the third normal mode shifts 230 Hz - 220 Hz - 165 Hz. The mode
shapes remain unaffected. Of these materials, birch has the highest density, which
explains the lowered mode frequencies compared to spruce. Pine is density-wise
between spruce and birch but it is much softer than the two. This is why in the case
of pine the modes are even lower in frequency than those in the case of spruce and
birch.

The third case is when the top and the back plate are made of different materials.
In the example, the top plate is made of spruce and the back plate of birch. The
frequency responses at 0.7 m above the kantele are represented by the solid black
line for the uniform kantele, and the dashed red line for the kantele with two mate-
rials. Birch is a much denser material than spruce and thus the modes react to the
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Figure 22: The frequency responses at 0.7 m above the kantele made of spruce (solid
black line), pine (dashed red line), and birch (dash-dotted line).
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Figure 23: The frequency responses at 0.7 m above the kantele made of one material,
spruce, (solid black line), and two materials: top plate made of spruce and back plate
made of birch (dashed red line).

increased mass by shifting lower in frequency. This is why the densities have been
reduced to ρspruce = 400 kgm−3 and ρbirch = 520 kgm−3. It can be seen, the overall
shape of the frequency responses is similar. The changes in mode frequencies are
subtle. For example, the frequency difference of the first two normal modes becomes
smaller.
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5.3 Comparison of traditional and modified kanteles

In addition to the modified kantele, there are the two traditional kantele structures:
the box kantele and the top-plate kantele. These three structures can be compared by
regarding the modified kantele with no air gap as the box kantele (with a sound hole
on the side), and the top plate of the modified kantele as the top-plate kantele. The
frequency responses at 0.7 m above the kantele for these three different structures
are presented in Fig. 24. The box kantele is presented by the dash-dotted red
line, the modified kantele by the solid black line and the top-plate kantele by the
dashed blue line. Based on the figure, the structures differ at least in overall sound
pressure level,mode density, and mode frequencies. The box kantele has a lower
sound pressure level than the top-plate and the modified kantele, except at 295
Hz and at 555 Hz. The modal density between 70-570 Hz is 7, 9 and 11 for the
box, top-plate, and modified kantele, respectively. The modelled frequency range
covers almost entirely the tuning range of strings, 73-588 Hz. It is desirable to have
many modes in this range for better sound quality and level [15]. This is one of the
factors that explain the increased loudness of the modified kantele compared to the
traditional top-plate kantele observed by Penttinen et al. [18].
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Figure 24: The sound pressure level at 0.7 m above the kantele for three different
kantele structures: box kantele (dash-dotted red line), modified kantele (solid black
line) and top-plate kantele (dashed blue line).

The mode density for the modified kantele is higher than for the two traditional
kanteles because the modified kantele includes modes of both the top-plate kantele
and the box kantele. In other words, the modified kantele has a freely vibrating top
plate and the air enclosed by the two plates which can couple to the plate vibrations.
An example of this case is illustrated in Fig. 25. Figure 25a) shows the first two
normal mode shapes of the top-plate kantele (at 150 Hz and 195 Hz), Fig. 25b) the
first significant normal mode of the box kantele (at 295 Hz), and Fig. 25c) the first
three normal modes of the modified kantele (at 125 Hz, 185 Hz, and 230 Hz). The
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color legend indicates the total displacement in millimeters. The values above and
below the legend are the maximum and minimum values for the displacement. It
can be seen that shapes of the first two top plate modes correspond to the shapes of
the first two normal modes of the modified kantele. The frequencies of these modes
have changed, from 150 Hz to 125 Hz, and from 195 Hz to 185 Hz. In addition, the
vibration amplitudes (total displacement) are smaller for the modified kantele than
for the top-plate kantele. In particular, the ponsi vibrates less. The back plate has
a solid ponsi, which is fixed to the top plate, and thus adds mass to that part of the
kantele.

Similarly, the shape of first significant normal mode of the box kantele corre-
sponds to the shape of the third normal mode of the modified kantele. The mode
frequency has changed from 295 Hz to 230 Hz. The only difference between these
two shapes is that in the modified kantele, the free edge also has a vibration max-
imum. In addition, the Helmholtz resonance and the back plate participate in the
vibration. For this mode, the vibration amplitude is higher for the modified kantele
than for the box kantele.

Figure 26 shows the corresponding sound pressure levels for the mode shapes in
Fig. 25; the first two normal modes of the top-plate kantele are shown in Fig. 26a),
the first significant normal mode of the box kantele in Fig. 26b), and the first three
normal modes of the modified kantele in Fig. 26c). The color legend indicates the
sound pressure level in decibels. The values above and below the legend are the
maximum and minimum values for the sound pressure level, respectively. It can
be seen that the radiation of the modified kantele at these three modes is more
omnidirectional than for the traditional kanteles. The top-plate kantele has a higher
maximum sound pressure level, but it also has some directions on the sides where
sound radiation is small. This is a demonstration of the acoustic short-circuit.
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Figure 25: An example of how the modified kantele includes normal modes of both
the top-plate kantele and the box kantele in terms of total displacement. In a) the
first two normal modes of the top-plate kantele, in b) the first normal mode of the box
kantele, and c) the first three normal modes of the modified kantele. The mode shapes
that are on the same row correspond to one another.
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Figure 26: An example of how the modified kantele includes normal modes of both
the top-plate kantele and the box kantele in terms of sound pressure levels. In a) the
first two normal modes of the top-plate kantele, in b) the first normal mode of the box
kantele, and c) the first three normal modes of the modified kantele. The mode shapes
that are on the same row correspond to one another. The kantele soundhole is facing
the reader.
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5.4 Effects of different air gap sizes

The size of the air gap in the modified kantele can be changed. It is of interest to
study how the size effects the vibrational and radiation properties of the kantele.
Indeed, already a small air gap between the top and back plate changes the frequency
response. Figure 27 shows the modelled frequency responses for the kantele with
different air gaps: 1 mm, 3 mm, and 7 mm.
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Figure 27: The frequency responses at 0.7 metres above the kantele with different air
gaps: 1 mm (dashed blue line), 3 mm (solid red line), and 7 mm (dash-dotted black
line).

Based on Fig. 27, two different frequency ranges for the changes can be distin-
guished. First of all, below 300 Hz the mode density does not change, but the mode
frequencies increase when the size of the air gap increases. The mode shapes do
not change, but their vibration amplitudes do. Secondly, above 300 Hz, the mode
density decreases when the size of the air gaps increases. In addition, the modes
shapes do not appear in the same order in frequency. This means that some normal
modes appear higher in frequency and some lower in frequency. For example, for
the 5-mm air gap, the combination of the top plate mode shape (1,2) and the back
plate mode shape (2,0) occurs at 470 Hz. For the 3-mm air gap, this mode shape is
at 450 Hz, even though it also has a normal mode at 470 Hz. Because the frequency
responses change with the size of the air gap, this size variation could be considered
a timbral controller, at least, for the instrument builder, and possibly for the player.

As the size of the air gap increases, the free edge of the top plate is able to
vibrate more freely. What is more, the vibration maxima move closer to the edges
and the back plate is less coupled with the top plate. An example of a mode that
undergoes such a change is the sixth normal mode of the modified kantele, occurring
at 285 Hz. It experiences a drop of 15 dB in sound pressure level when the size of
the air gaps increases for 1 mm to 7 mm. In addition, its frequency shifts to 290 Hz.
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This mode shape is shown in Fig. 28 for different sizes of air gaps: 3 mm, 5 mm,
and 7 mm. The case with the 1-mm air gap is almost identical to the 3-mm air gap.
In the left column the kantele is seen from above and in the right column from the
bottom. The corresponding sound pressure level and pressure fields are shown in
Fig. 29. With the increasing air gap size, several phenomena occur. Firstly, it can
be observed that the coupling of the top and the back plate decreases. The back
plate vibrates with the shape (2,0) and its vibration amplitude decreases with the
increase of the air gap. Furthermore, the widths of the vibration maxima decrease.
At the free edge, the vibration maximum moves towards the corner that is the least
fixed. In addition, the radiation patterns become more directive since the width of
vibration maxima decrease. Finally, different air modes couple with the body: for
3-mm and 5-mm air gaps, the air vibrates with the mode shape (2,0), and for the
7-mm air gap with (1,0).

5.5 Radiation efficiency

The modified kantele has a higher mode density than the traditional kanteles. It also
seems that the vibration maxima and sound pressure level decrease when the size of
the air gap increases, at least for some modes. But this does not describe the overall
picture. For the entire frequency range, the average radiation efficiency describes
how effective the different structures actually are in transmitting input energy to
radiation. The averaged radiation efficiencies for the kantele with different air gaps
are shown in Tab. 3. It also includes the radiation efficiencies of the traditional
kantele bodies. Comparing the box kantele to the modified kantele with 1-mm air
gap, it can be seen that the radiation efficiency increases by 50% when the air gap is
added between the plates. The radiation efficiency is at its maximum with the 3-mm
air gap. Beyond that, the radiation efficiency becomes comparable to that of the box
kantele. Thus, there is an optimum size of the air gap in terms of radiation efficiency.
The top-plate kantele has the lowest radiation efficiency of all the structures studied.
It also exhibits more directional radiation patterns.

Air gap box 1 mm 3 mm 5 mm 7 mm top-plate
σ 0.0159 0.0242 0.0281 0.0128 0.0083 0.0008

Table 3: Radiation efficiency of the kantele with different air gaps, and the traditional
box and top-plate kanteles.
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Figure 28: Vibration amplitudes of the sixth normal mode of the modified kantele
with an air gap of 3 mm, 5 mm, and 7 mm. In the left-hand column the kantele is
seen from the top and in the right-hand column from the bottom.
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Figure 29: The sound pressure level and pressure of the sixth normal modes on the
modified kantele with an air gap of 3 mm, 5 mm, and 7 mm. The sound pressure level
is on the left-hand column and the pressure on the right-hand column.
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5.6 Eigenfrequencies and Helmholtz resonance

More insight to the coupling between the air and the kantele body is gained through
the eigenfrequency analysis. Figure 30 shows the eigenfrequencies below 570 Hz of
the kantele body and the enclosed air, both separately and when coupled. The bar
on the top plate under the tuning pins is not included in the model due to meshing
problems. The air gap between the top plate and the back plate is a) 0 mm, b) 5
mm, and c) 10 mm. Several observation based on the eigenfrequencies can be made.
First of all, the coupled eigenfrequencies are lower than those of the enclosed air and
the body separately, in all three cases. It has been verified previously that enclosed
air acts as added mass to the body and thus the coupled eigenfrequencies are lower
[35, 39]. Secondly, there are more eigenmodes (both coupled and individual parts)
in the presence of the air gap than in the absence of it.

The eigenfrequencies of the enclosed air, represented by the red dots in Fig. 30,
are also affected by the air gap. When the air gap is introduced, the first air
eigenfrequency decreases and the second increases. This would suggest that the
first air eigenfrequency is inversely related to the air volume, meaning that it is the
Helmholtz resonance. Thus, the Helmholtz resonance would then be at 227 Hz for
the modified kantele with 5 mm air gap. The second eigenfrequency could relate to
the mass of the air.
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Figure 30: The eigenfrequencies below 570 Hz when the size of the air gap is a) 0
mm, b) 5 mm, and c) 10 mm. The geometry does not include the bar on the top plate.



6 Conclusions and future work

In this thesis, the body of a string instrument called the kantele has been modelled
with the finite element method. Both the eigenfrequency analysis and forced vibra-
tion analysis with sinusoidal excitation were used to simulate the kantele with the
frequency range of 70-570 Hz. Three models of the body were included; two tradi-
tional structures, the top-plate kantele and the box kantele, were compared with a
modified kantele which has an air gap separating the top and the back plate. In the
modified kantele, the top plate acts as a free-edge vibrator. In particular, the tuning
pin edge of the kantele is able to vibrate freely, because the side has been removed.
In addition, together the top and the back plate create an enclosed air mass that
has its own vibrational modes.

Combining both the freely vibrating top plate and the enclosed air leads to
an increased density of normal modes and eigenmodes in the modified kantele in
comparison to the traditional kanteles. The radiation efficiency of the modified
kantele is also improved compared to the traditional kanteles, provided that the air
gap is small. Of the sizes modelled, an air gap of 3 mm had the highest radiation
efficiency.

The enclosed air also allows air modes, in particular the Helmholtz resonance, to
couple with the plate modes. Thus, the radiation patterns of the modified kantele
are more omni-directional than those of the traditional kanteles. This phenomenon
also contributes to the increased radiation efficiency of the modified kantele. The
Helmholtz resonance of the modified kantele occurs at around 230 Hz. The specific
value depends on the size of the air gap which affects the air volume.

The analyzed frequency range covers almost entirely the tuning range of the
strings, i.e., 73-588 Hz. The higher mode density in this range is beneficial for the
sound quality and level of the instrument, as the string vibrations couple better
with the body. This is one of the reasons for the improved loudness of the modified
kantele compared to the traditional kanteles.

There are three main directions for future work. Firstly, the FE-model could be
made to correspond closer to the built kantele. Several parts of the kantele were not
modelled due to computational complexity. The FE-model focused on the body only.
Yet, the instrument also includes tuning pins and strings that play an important
role in the vibrational behaviour of the whole instrument. One concrete suggestion
would be to model the acoustic behaviour of the body under string excitation in
order to obtain a better picture of the instrument when played. This could be
done, for example, by adding tuning pins to the model that are excited by a force
measured at a real tuning pin during string excitation. Then, the pre-stress caused
by the strings on the body would have to modelled mathematically. Including the
strings themselves in the model might be an option if the amount of elements in the
body model can first be decreased. This requires a new starting point for the model,
and possibly combining different modelling methods, such as the boundary element
method, with the finite element method. In order to improve the correspondence
between the model and the measurement, perhaps an alternative approach could be
to make a simpler physical copy of the kantele to be measured.
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Secondly, the freely vibrating top plate structure could be applied to other in-
struments, such as mandolin, piano, and guitar. In particular, it could be useful
for instruments in need of increased loudness and timbral variation, especially at
lower frequencies. In addition, a mechanism that allows the air gap size to be varied
by the kantele player might offer an interesting tool for additional expression and
timbre modification.

Finally, the current FE-model serves as a basis for sound synthesis. The fre-
quency responses obtained with the model could be convolved with a string model.
In addition, the obtained radiation patterns could be used for room simulations with
the kantele as a sound source.
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A Appendix

An example of a COMSOL model of the modified kantele.

An example of a COMSOL model of the
modified kantele.
Contents

1. Model 1 (mod1)
1.1. Definitions
1.2. Geometry 1
1.3. Materials
1.4. Acoustic-Solid Interaction (acsl)
1.5. Mesh 1

1. Model 1 (mod1)
1.1. Definitions

1.1.1. Variables

Variables 1

Selection
Geometric entity level Entire model

Name Expression Description
rho_air 1.2[kg/m^3]
c_air 343[m/s]
P_r (4*pi*r_s^2/N)*intop1(abs(p^2)/(rho_air*c_air))
N intop1(1)
r_s 0.7[m]
v_d sqrt(acsl.uAmp_tX^2+acsl.uAmp_tY^2+acsl.uAmp_tZ^2)
v_avg intop2(v_d^2)/N2
N2 intop2(1)
P_i real(F_d*conj(v_d))
F_d 1.5[N]
P_eff P_r/P_i
rad_eff P_r/(rho_air*c_air*v_avg*S)
S intop3(1)

1.1.2. Model couplings

Integration 1
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Coupling type Integration
Operator name intop1

Source selection
Geometric entity level Boundary
Selection Boundaries 5-8, 49-50, 52-53

Settings
Name Value

Method summation

Source selection

Integration 2

Coupling type Integration
Operator name intop2

Source selection
Geometric entity level Boundary
Selection Boundaries 9-10, 12, 14-15, 17-22, 24-25, 28, 32, 34-37, 59, 83-84

Settings
Name Value

Method summation
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Source selection

Integration 3

Coupling type Integration
Operator name intop3

Source selection
Geometric entity level Boundary
Selection Boundaries 9-10, 12, 14-15, 17-22, 24-25, 28, 32, 34-37, 59, 83-84

1.2. Geometry 1

Geometry statistics
Property Value

Space dimension 3
Number of domains 4
Number of boundaries 86
Number of edges 212
Number of vertices 133

1.2.1. Import 1 (imp1)

Settings
Name Value

Geometry
import cad

Filename /Users/htahvana/Documents/FINAL COMSOL MODELS/distances
/kantele_bar_7.sat
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Surfaces off

1.2.2. Work Plane 1 (wp1)

Settings
Name Value

Plane type faceparallel

1.2.3. Sphere 1 (sph1)

Settings
Name Value

Position {0.5, -4.8, 0}
x 0.5
y -4.8
Axis {0, 0, 1}
Axis {0, 0, 1}
Radius 0.7

1.2.4. Sphere 2 (sph2)

Settings
Name Value

Position {0.5, -4.8, 0}
x 0.5
y -4.8
Axis {0, 0, 1}
Axis {0, 0, 1}
Radius 0.8

1.3. Materials

1.3.1. Spruce 440

Selection
Geometric entity level Domain
Selection Domains 1-4

Material parameters
Name Value Unit

Density 440 kg/m^3
Young's modulus {122e8, 15.6e8, 7.2e8} Pa
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Poisson's ratio {0.42, 0.53, 0.46} 1
Shear modulus {15.1e8, 1.22e8, 14.6e8} Pa
Loss factor for orthotropic Young's modulus {0.01, 0.01, 0.01} 1
Loss factor for orthotropic shear modulus {0.01, 0.01, 0.01} 1

1.4. Acoustic-Solid Interaction (acsl)

Acoustic-Solid Interaction

Selection
Geometric entity level Domain
Selection Domains 1-4

1.4.1. Pressure Acoustics Model 1

Settings

Settings
Description Value

Density User defined
Density 1.2
Speed of sound User defined
Speed of sound 343

1.4.2. Sound Hard Boundary (Wall) 1
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Sound Hard Boundary (Wall) 1

Selection
Geometric entity level Boundary
Selection Boundaries 1-4, 47-48, 51, 54

1.4.3. Acoustic-Structure Boundary 1

Acoustic-Structure Boundary 1

Selection
Geometric entity level Boundary
Selection Boundaries 9-15, 17-46, 55-63, 65, 70-71, 73-77, 80, 82-86

1.4.4. Linear Elastic Material Model 1
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Linear Elastic Material Model 1

Selection
Geometric entity level Domain
Selection Domains 3-4

Damping 1

Damping 1

Selection
Geometric entity level Domain
Selection Domains 3-4

1.4.5. Perfectly Matched Layers 1
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Perfectly Matched Layers 1

Selection
Geometric entity level Domain
Selection Domain 1

Settings

Settings
Description Value

Type Spherical
Center coordinate {0.5, -4.8, 0}

Pressure Acoustics Model 1

Pressure Acoustics Model 1
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Selection
Geometric entity level Domain
Selection Domain 1

Settings

Settings
Description Value

Density User defined
Density 1.2
Speed of sound User defined
Speed of sound 343

1.4.6. Boundary Load 1

Boundary Load 1

Selection
Geometric entity level Boundary
Selection Boundary 85

Settings

Settings
Description Value
Load type Total force
Total force {0, 0, -1.5}

1.5. Mesh 1
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Mesh statistics
Property Value

Minimum element quality 0.05148
Average element quality 0.7544
Tetrahedral elements 111089
Triangular elements 13630
Edge elements 1815
Vertex elements 133

1.5.1. Size (size)

Settings
Name Value

Maximum element size 0.1
Minimum element size 0.0288
Resolution of curvature 0.6
Resolution of narrow regions 0.5
Maximum element growth rate 1.5
Custom element size Custom


