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ABSTRACT

A method for the analysis of induction motors is presented. The analysis is based
on the combined solution of the magnetic field equations and the circuit equations
of the windings. The equations are discretized by the finite element method. The
magnetic field is assumed to be two-dimensional. The three-dimensional
features i.e. the skew of the rotor slots and the end-region fields are taken into
account within the two-dimensional formulation. The general time-dependence
of the field and the motion of the rotor are modelled correctly in a step-by-step
solution. The amount of computation is reduced significantly if the time-
delpendence is assumed to be sinusoidal and phasor quantities are used in the
solution.

The method is applied to the calculation of a cage rotor motor and of a solid rotor
motor. The sinusoidal approximation gives good results in the computation of
steady-state locked-rotor quantities, but it does not model the motion of the rotor
properly. The step-by-step method is used for computing machine quantities in
steady and transient states. For instance the operation of the solid rotor motor
supplied by a static frequency converter is simulated. The results obtained by the
method agree well with the measured ones.
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LIST OF SYMBOLS

Boldface symbols are used for vectors and matrices. Symbols of complex
quantities are underlined. '

vector potéiltial

z-component of A

column vector of the nodal values of vector potential
ith element of a

number of parallel paths
magnetic flux density

electric flux density

r matrix defined in Eq. (75)

s matrix defined in Eq. (63)
electric field strength

unit vector parallel to the z-axis
magnetic field strength
periodicity factor

current
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column vector of the rotor bar currents

]

column vector of the currents of the stator winding
positive phase-sequence current

current density

z-component of J

moment of inertia

connection matrix associated with the stator winding
end-winding inductance

length of a conductor/length of the core region
average length of the winding overhang

shape function in the finite element method
number of turns in series in a coil

number of nodes in a finite element mesh

number of symmetry sectors in a machine
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connection matrix associated with the rotor cage

0
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input power of a motor

JU

output (shaft) power of a motor

u

os resistive losses in a winding
number of pole pairs
number of slots

number of slots per pole and phase
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resistance -

resistance of a stator phase winding
resistance of a rotor bar

coordinates of a circular cylindrical coordinate system
integration surface

cross sectional area of coil side n
slip

period of time of an AC cycle
electromagnetic torque

shaft torque

time

scalar potential difference

column vector of the potential differences of the rotor bars
column vector of the potential differences of the stator winding

positive phase-sequence voltage

volume

velocity

column vector of the line voltages

weight function in Galerkin's method

energy of the electromagnetic field

cartesian coordinates

impedance matrix of the ends of the rotor bars
impedance matrix of the end rings of a cage winding

function defined in Eq. (73)

function defined in Eq. (60)

integration path

angle of a symmetry sector

electric scalar potential

parameter related to the end-winding inductance
permeability

permeability of vacuum

reluctivity

_effective reluctivity

conductivity

flux linkage

integration surface
mechanical angular frequency
electrical angular frequency



1 INTRODUCTION
L1 The need for field analysis

The design of an electrical machine is based on the knowledge of the magnetic
field in the machine. The exact field distribution may be solved from Maxwell's
equations. The complicated geometries of electrical machines and the
nonlinearity due to the saturation of the iron core, however, make the solution of
the field equations very laborious. Furthermore, the field equations are coupled to
the voltage equations of the windings and the motion equation of the rotor. The
equations should be solved together as a system of equations.

In the conventional design of an induction motor the field is known only
approximately. The dimensioning of the iron core and the evaluation of the
machine characteristics are based on a rough idea of the field distribution in the
core. These methods usually give satisfactory results for steady-state operation
near the synchronous speed of the machine, but for locked-rotor or transient
operation the results are unreliable.

Conventional calculation routines have usually been designed for the analysis of
cage or wound-rotor induction motors supplied by sinusoidal voltages. They are
not directly applicable to the analysis of motors supplied by static frequency
converters or motors of special construction, e.g. solid rotor induction motors.

More reliable calculation methods are needed especially in the design of large
machines, as it is very expensive to construct full-size prototypes to test the
validity of the design. It is also important to know the transient performance of
high-power induction motors accurately, e.g. in starting, in order to be able to
determine the requirements imposed on the power supply.

During the last decades a lot of research work has been done associated with the
numerical field analysis. The development of solution methods and the growth of
computer capacities have made it possible to solve more and more involved
magnetic field problems. In particular, the finite element method has proven to
be efficient when dealing with complicated geometries. The solution of the three-
dimensional time-dependent magnetic field of an induction motor is, however,
still too large a task. The problem must be simplified by assuming the magnetic
field to be two-dimensional, independent of the coordinate parallel to the shaft of
the machine.



In this work numerical field analysis is applied to the calculation of induction
motors. The evaluation of machine characteristics is based on the finite element
solution of the magnetic field. The field is assumed to be two-dimensional. The
three-dimensionality of the machine, i.e. the end-region fields and the effect of
skewed rotor bars, is taken into account within the two-dimensional model. The
aim is to develop methods and to construct computation routines that can be
applied to the analysis of induction motors in steady and transient states.

L2 Equations of the electromagnetic field

In this section the differential equations of the scalar and vector potentials are
derived from Maxwell's equations. The aim is to give the basic field theoretical
material for the next two sections that contain the discretization of the field
equations by the finite element method and a short review of the numerical field
analysis of induction motors.

The induction motor is treated as a quasi-static magnetic system. The field
quantities satisfy the equations
oB

Vx E =——aT (1)

Vx H=4J 2

and the material equations

H=vB 3)

Jd=cE 4

where E is the electric field strength
B is the magnetic flux density
t 1is time
H is the magnetic field strength
J is the current density
v is the reluctivity of the material
o 1is the conductivity of the material.

The polarization and displacement currents are assumed to be small compared
with the conductive currents in the conductors ‘
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where D is the electric flux density. At the frequencies encountered in electrical
machines this is a good approximation. The reluctivity v of the laminated iron
core of an electrical machine is field-dependent. This leads to nonlinear field

equations. An isotropic core material is assumed in the two-dimensional model.

Using the magnetic vector potential A

B= VxA (6)

and the electric scalar potential ¢ we obtain from Egs. (1) - (3)

JA
E=-=-V¢ O]
Vx (vVxA)=d 8)

The current density is given by

J=—o-a-a%—oV¢ 9

It satisfies the continuity equation

V -J=0 0)

The equations for the vector and scalar potentials are obtained by substituting Eq.
(9) in Egs. (8) and (10) |

\% x(viA)+o%té+ cVé=0 11
dA
\% -(o—aT)+ V-(o6V$)=0 12)

The uniqueness of the solution requires that a value must be given to the
divergence of the vector potential. The "Coulomb's gauge" condition
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V-A=0 - W
is commonly used.

In a general three-dimensional case there are four unknown quantities
(components of the vector potential and the scalar potential) in Eqgs. (11) - (13). The
unknown quantities depend on the three spatial coordinates and time. Because of
the complicated geometry of an induction motor and the nonlinearity of iron the
solution of Eqs. (11) - (13) is usually beyond the capacities of present-day
computers. The problem must be simplified.

The solution of the field equations becomes much easier if it is possible to use a
two-dimensional model in which the geometry and the material quantities are
independent of e.g. the z-coordinate, and the vector potential and the current
density are given by

A=A®xyt)e,

14
J=Jdxy,t) e, _

where x and y are the cartesian spatial coordinates
e, is the unit vector parallel to the z-axis.

The expressions in Eq. (14) give satisfactory approximations for the field and
current density inside the core region of an unskewed electrical machine. When
this model is used in the calculation of a skewed induction motor, the effects of
end-region fields and skewed rotor conductors must be taken into account

separately (Chapter 2). The end of this section is devoted to the two-dimensional
equations.

When Eqgs. (14) are substituted in Eq. (9) it is seen that the scalar potential must
be a linear function of the z-coordinate in a two-dimensional conductor

0= 2+ 15)
If there are several conductors in a two-dimensional field region and the
conductors are separated from each other by dielectric materials, the linear
dependence on the z-coordinate is valid in every conductor separately. There may
be potential differences between the conductors. The continuity of the scalar
potential implies that the potential is also x- and y-dependent in the dielectric
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regions. As a potential difference causes no currents in a dielectric medium, the
exact solution of the scalar potential is not needed in these regions.

When the two-dimensional model is used to calculate a straight conductor of
length 1, the scalar potential difference between the ends of the conductor is given

by

U=J—V¢-dl=—¢11 16)

A relation between the potential difference and the total current of the conductor
is obtained by integrating the current density over the cross section S of the
conductor

I= des j( o 2 5ve}as

jo—dS+U1jcds | an

If symbol R is used for the DC resistance of the conductor

R= — a8)
j odS
S
the voltage equation of the conductor becomes
U=RI+R c%—“':—ds " ' 19)

S

Three basic cases may be encountered in the solution of the magnetic field
induced by a single two-dimensional conductor. If the current density of the
conductor is known a priori, the vector potential can be solved directly from Eq.
(8). This case is strictly valid only if there is no time-dependence. If the potential
difference between the ends of the conductor is known, the equation for the vector
potential is
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V x (v VXA)+G%

TUe, (20)
If the total current of the conductor is taken as the source of the field, the vector
potential satisfies the integrodifferential equation

V x(vVxA)+ %—O—R-J‘ —dSez=-—lliIez (21)

An alternative method for the last case is to solve the voltage equation (19) and the
field equation (20) together as a system of two equations.

In a more general case there are several conductors in the solution region. The
conductors are connected in series and in parallel and they are fed from voltage
and current sources. In this case the voltage equations of the conductors must
always be solved together with the field equation of the whole system. A detailed
treatment of the solution of the voltage and field equations of an induction motor
is given in Section 2.3.

The time-coordinate must usually be discretized in the solution of time-dependent
field equations. If the system under consideration consists of stationary,
magnetically linear materials only, a sinusoidally varying source (potential
difference or current) induces a sinusoidally varying magnetic field. In this
special case the time-dependence can be eliminated from the equations by using
complex field quantities. The physical quantities are obtained as the real parts of
the complex variables. In the two-dimensional case the vector potential and the
current density are

A=Re{ A(x,y) e} ¢,
. 22)
J=Re{ J(x,y) '} e,

where o is the angular frequency of the time variation. In the assumption of
sinusoidal time variation Eq. (20), for example, becomes

V x (v VxA)+jcmA=%llez (23)

The assumption of sinusoidal time variation is valid only in steady state. If there
are nonlinear materials present, a sinusoidally time varying source does not
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- induce a sinusoidally varying magnetic field. However, in order to simplify the
solution procedure, the sinusoidal approximation is often used also in nonlinear
cases.

If the true time-dependence of the field quantities in a nonlinear system is
needed, the field equations must be solved by a step-by-step method evaluating the
variation of the field in short time intervals At. In the Crank-Nicholson method
the vector potential at a time step k+1 is approximated

JdA JdA
Ak+1 = 2{ Ik+1 l } At+Ak (24)

When Eq. (20) is written at time steps k+1 and k and the equations obtained are
added together, the equation J

JA JA
V X (Vg VX Apyg) + VX (v VX k)+0{ lk+1+ | }

% {Ukn + Uil e, @5)

is obtained. When the sum of derivatives in Eq. (24) is substituted in Eq. (25) and
the terms corresponding to the time step k are transferred to the right hand side
of the equation, Eq. (25) becomes

20
V Xy VX Ay + At Ayn

Q

20
TUk+1ez {Vx (v Vx Ak)—EAk—%Ukez} (26)

All terms on the right hand side of Eq. (26), the vector potential at the previous
time step k and the source potential differences, are known quantities. Thus Eq.
(26) is a spatial coordinate dependent, partial differential equation for the vector
potential at time t = t, ;. Starting from the initial values and evaluating
successively the vector potentials of the next time steps the true time variation of
the field is worked out. This procedure, however, requires much computation
time because e.g. in the solution of an induction motor every period of line
frequency must be divided into hundreds of time intervals in order to get accurate
results (Chapter 3).

The boundary and initial values of the vector potential must be known in the
solution of the field equations. The solution region should be chosen accordingly.
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In the field analysis of an induction motor it is usually assumed that the outer
surface of the machine is an equipotential surface of the vector potential. This
assumption means that no flux penetrates through the outer surface of the
machine.

13 Finite element solution of the field equations

The finite element method (FEM) is commonly used in the solution of magnetic
fields. Nothing new about FEM is presented in this section. The equations used in
the Newton-Raphson iteration method are derived because the same matrix
elements are needed in Section 2.3 for the solution of the coupled field and circuit
equations. The details of FEM can be found e.g. in Zienkiewicz (1983).

There are two commonly used formulations for the solution of a field problem by
FEM. An energy related functional may be formed from the field quantities. The
solution of the field equations is given as a stationary point of the functional.
Chari et al. (1982) derived a functional associated with Eqgs. (11) and (12) in a
general three-dimensional case. The other alternative is to use a method of
weighted residuals e.g. Galerkin's method. In this work Galerkin's method is
used in the discretization of the two-dimensional field equation (26).

In order to shorten the notation Eq. (26) is written in the form

V x (viA)+-123—(:A=gez 27

where the vector g e, denotes the right hand side of Eq. (26) and the indices of time
steps are neglected. In a method of weighted residuals Eq. (27) is multiplied by a
weight function vector We, and integrated over the volume V of the solution
region '

j{[Vx (viA)]-Wez+-i—%A-Wez—gW} dv=0 (28)
\

In the two-dimensional model A is parallel to the z-axis. Eq. (28) can be
transformed to the form '

J'{- V-(vVA_)W+—Azft’-AW—gW} dv=0 29)
A\'A
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Using the identity
V: (VWA W=V:- (WvyVA)-v VW - VA 30)

and Gauss's theorem the higher derivatives are eliminated from Eq. (29)

I{vVA-VW+§—%AW—gW}dV § W—dS @D
A\

The surface integral on the right hand side of the equation is taken over the
boundary S of the solution region. Because there is no z-dependence and the
surface integral in Eq. (31) vanishes on the end surfaces of the integration
cylinder V, the volume integral can be changed to a surface integral over the
cross section of the machine by integrating over the z-coordinate

vaA VW+-29AW gW}dQ § W—dr 32
Q

where Q denotes the two-dimensional solution region and I' the boundary of Q.

In the finite element method the approximation of the vector potential is

N,
Z  Nj(x,y) @3)
j=1

where a is a nodal value associated with the node j of the finite element mesh
N; isa shape function associated with the node j
N, is the number of nodes in the finite element mesh.

In the sinusoidal approximation the nodal values a; are complex variables. The
shape function N; is a real valued function having a value different from zero
only in those elements that are connected to the mesh point j. The summation
index j in Eq. (33) runs over all the node points of the mesh including also the
points of fixed nodal values on the boundary. In the follow{ng derivation the
nodes for which the nodal values are unknown are called free nodes.

When Galerkin's method and the finite element method are combined, the vector
potential is approximated by Eq. (33) and the shape functions connected to the free
nodes are used one by one as the weight function. Thus the number of equations
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is equal to the number of unknown nodal values in the approximation. The
equation for a node i is

n

N (N,
20
v ZajVNj]-v Ni+EbZajl\I,-}Ni—gNi do
Lt

N, 3\
aN;
= VNi Zajg dF (34)
i1 y
r

In the analysis of an electrical machine the nodal values are fixed to a constant
value e.g. zero on the outer surface of the machine. The line integral over this
boundary (I') in Eq. (34) vanishes as the index i runs over the free nodes inside the
solution region and the shape functions associated with these nodes are zero on
the boundary. The equation can be written

Nn

%
E(VVNi-VNj+A—t NiNj)aj—gNi dQ=0 (35)
J:
Q

If the number of free nodes is N, there are N nonlinear equations for the solution
of N nodal values a;. The Newton-Raphson iteration method is used for the
solution. If we write Eq. (35) in short

fi(ay, ..., an) =0 i=1,.., N (36)

and denote by f the column vector of the residual functions f;,, the Newton-
Raphson iteration method is given by the equations

P@") Aa" = - f(a")
@7

a™ = a” + Aa"

where P is the Jacobian of the system of equations
n is an index denoting an iteration step
a" is the column vector of nodal values at the iteration step n
Aa® is the correction added to a™ at the iteration step n.



17

The elements of the Jacobian are the derivatives of the residual functions

(a7, ...,aN)
le(a“) - aﬁ_l.n_N (38)
dap,

When the Newton-Raphson method is applied to Eq. (35), the elements of the
residual vector f and the Jacobian P are

N

n

20 ]
Z(V(am) VN VN+= NiNj)ajlkﬂ _TNiUkﬂ} dQ

i=1

fag) = {

Q

N
9% .
+ {Z(v(ak) VNi'VNJ-—A—t Nil\Ij)aﬂk—-(l-,-NiUk}dQ 39)
i=1

Q

N
S ((Ov(g4)
le(ak+1)= I {Z[ A VN1 : VNJ aj|k+1)
Q

+v(ak+1)VN1 * VNm+ %%Nle} dQ (40)

where the index k denotes a time step and the indices j, 1 and m denote nodes.

If the assumption of sinusoidal time variation is made, the elements of the
complex residual vector £ obtained from the discretization of Eq. (23) are

m=1

Nﬂ
f@ = z (vVNi-VNm+ijNiNm)gm—%NiH}dQ (41)

Q

If the source of the field is a current, the component i of the complex residual
vector corresponding to the integrodifferential equation (21) is
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N,

g(ﬂ):J' D, (VWN; VN, +jcoNiNp)an
0 m=1

Nn
jomR oR
_J_l NiJ‘GL“E‘IQmNm}dQ—TNil}dQ (42)
Q =

14 A short review of the field analysis of induction motors

The first efforts to solve magnetic field problems by the finite element method
were made in the late 1960's. In the analysis of electrical machines the finite
element method was first applied to synchronous machines (Chari & Silvester
1971a) and DC-machines (Chari & Silvester 1971b) because the operation of these
machine types can be approximately modelled by stationary fields. Even
nowadays most of the research work concerning the magnetic field analysis of
electrical machines deals with the modelling of synchronous machines. They
have been analyzed by using step-by-step methods to solve the time-dependence
(Tandon et al. 1983) and by three-dimensional finite element formulations (Chari
et al. 1982).

The field of an induction motor has to be solved with a method that takes the
time-dependence into account. Probably the difficulties connected with the
solution of time-dependent nonlinear fields have postponed the numerical
analysis of induction motors. The first publications dealing with this problem
appeared at the beginning of the 1980's. For the present only two-dimensional
formulations have been used.

Ito et al. (1981) computed the nonlinear field of an induction motor using an
eddy—burrent formulation and assuming sinusoidal time variation. The end
rings of the rotor cage were assumed to form ideal short circuits so that the ends
of rotor bars were all in the same potential. The vector potential in the rotor bars
satisfies Eq. (23) with the potential difference U equal to zero. The rotor was
assumed to be pseudostationary (Section 2.2.3). The method was used to study
various properties of induction motors and some suggestions were made to
improve the design of the motors. V

Andresen & Miiller (1983) made the same assumptions as above, but they used
the finite difference method to solve the field equations. The field solution was
used for obtaining the locked-rotor current and torque of an induction motor. The
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effects of different slot shapes on the locked-rotor characteristics were studied.

Williamson & Ralph (1982 and 1983) have connected conventional calculation
methods and numerical field analysis in their work. The basis of their model is
Eq. (8) and the assumption of sinusoidal time variation. Current densities in the
conductors are assumed to be constants so that skin effect is not taken into
account when solving the field equations. The rotor currents are solved from the
air gap flux (vector potential) induced by the stator currents with the aid of rotor
bar impedances. The method is quite versatile. The effects of harmonic
components and skewed rotor slots are taken into account. The skin effect may be
included in the values of rotor bar impedances. A drawback of the method is the
time consumption in the iterations needed in the solution of the winding
currents. The method was used to compute the properties of a shaded pole motor.

Bouillault & Razek (1983) and Brunelli et al. (1983) used time-stepping methods to
calculate the time variation of magnetic fields in induction motors. Both papers
deal with solid rotor induction motors. It is assumed that the ends of the rotor are
equipotential surfaces of the scalar potential so that the rotor field can be solved
from Eq. (26) with the potential differences equal to zero.

The voltage equations of the windings of an induction motor are coupled to the
field equation. In earlier publications the currents of the stator winding have
been taken as the sources of the field (e.g. Andresen & Miiller 1983) or the
solution is obtained in a double iteration process in which the voltage equations of
the stator winding are solved in an outer iteration and the solution of the field
equation forms an inner iteration. A more efficient method is obtained if the
discretized field and voltage equations are solved in the same iteration loop.
Brandl et al. (1975) computed steady-state operating characteristics of a
synchronous machine by solving the coupled field and voltage equations together
in the same matrix equation. Nakata & Takahashi (1982) used the method to
analyze an induction motor in steady-state and Brunelli et al. (1983) used a
related method in the step-by-step solution of a solid rotor induction motor.

If the impedances associated with the end rings and bar ends of the rotor cage
are included in the model, voltage equations have to be formed for the cage
winding. Konrad (1982) and Weiss & Csendes (1982) have presented eddy current
formulations that can be applied to the solution of magnetically coupled
multiconductor systems, when the currents of the conductors are known. This is
not far from the solution of the field and voltage equations of a rotor cage.
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Strangas & Theis (1985) have computed the field of an induction motor using a
method in which the field equation and the voltage equations of the stator and
rotor windings are solved together. They present a quite general two-dimensional
step-by-step formulation for the evaluation of the operating characteristics of a
shaded pole motor. The nodal values of the vector potential and the currents and
potential differences of the windings are solved in the same matrix equation. In
an other paper Strangas (1985) applies the formulation to the analysis of a cage
induction motor. No computed results of the operating characteristics are
presented, but the method seems to be quite generally applicable to the analysis of
induction motors. For instance the possibility to rotate the rotor is included in the
method.

Shen et al. (1985) and Shen & Meunier (1986) present a formulation for
sinusoidally varying field quantities that is very similar to that given by Strangas
for general time-dependence. The voltage equations of the stator and rotor
windings are written in matrix form. After the elimination of the currents from
the voltage equations and from the discretized field equation a global matrix
equation is obtained that connects the nodal values of the vector potential and the
potential differences. The equations are derived for sinusoidally varying
quantities, but the same principles are valid for general time-dependence. The
advantage of the matrix notation in the treatment of the voltage equations is
obvious.

L5 Previous and present works associated with this study

A part of the computation routines used in this work has been constructed in
earlier research projects of the Laboratory of Electromechanics. Numerical field
analysis was first applied to the design of an acyclic motor having super-
conducting field windings (Luomi 1984). The static axisymmetric field of the
machine was solved by the finite element method or by a combined finite element
- boundary element method. The computation routines used for the analysis of
the acyclic motor were later transformed and applied to the analysis of induction
motors at the no-load condition (Wallenius 1983). The sinusoidal approximation
was used for the computation of no-load currents. A finite element mesh
generator was made for the generation of two-dimensional, first-order finite
element meshes of induction motors. |

In the present study the computation programs have been further developed in
order to be able to analyze a cage induction motor in a general operation state.
For this purpose the sinusoidal eddy-current formulation was first implemented
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in the routines. The voltage equation of the rotor and stator windings were added
to the matrix equations of the finite element method, and routines for the
evaluation of machine properties from the field solution were constructed. The
methods used in the sinusoidal approximation were transformed to a step-by-step
formulation in order to be able to solve the general time dependence. The
possibility to rotate the rotor in a step-by-step solution was implemented in order
to be able to simulate rotor motion and to check the validity of the approximate
methods used for modelling the motion.

Associated with this work the use of the sinusoidal approximation and effective
reluctivity in the analysis of induction motors was studied by comparing the
results of the sinusoidal approximation with the results of a step-by-step method _
(Luomi et al. 1986, Niemenmaa 1986). At present a new research project has been
started, the aim of which is to develop methods for the calculation of iron losses
in electrical machines. The field solution routines constructed will be applied to
the loss analysis of induction motors.
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2 FIELD ANALYSIS OF CAGE INDUCTION MOTORS
2.1 Geometry of the problem
Periodic symmetry

Figure 1 shows the cross sectional geometry of an induction machine in a plane
perpendicular to the shaft. The equipotential lines of the vector potential induced
by a current in the three-phase stator winding are also shown. The number of
pole pairs is two and the number of slots per pole and phase is three. The figure
consists of four sectors that have identical geometries. Because of the symmetry it
has been enough to compute the field in one of the sectors. The three other sectors
have been copied by the plotting routine. The phase belts can be distinguished.
from the shadings of the coil sides.

et rc > AN

Figure 1. The cross section of an induction machine. The vector potential
induced by a three-phase stator current is shown as equipotential lines.
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It is assumed that no flux penetrates the outer surface of the machine. This
means that the vector potential has a constant value on the boundary. The central
node of the shaft is fixed to the same value in order to prevent a circulating net
flux around the axis.

Periodic boundary conditions are used on the sides of a solution sector. The
values of vector potential at corresponding nodes on the periodic boundaries are
related by a periodicity factor h

A=hA=e PTp @3)

where v is the angle of the solution sector
p is the number of pole pairs of the machine.

A complex periodicity factor is associated with the sinusoidal approximation. In
the step-by-step solution only the real values are valid. The implementation of the
periodic boundary condition follows the lines given by Silvester et al. (1973) for
real valued periodicity factors. When a complex periodicity factor is used, the real
and imaginary parts of the vector potential nodal values are connected non-
symmetrically to each other in the Jacobian of the Newton-Raphson method. The
vector potential was fixed to a constant value on the outer surface of the machine.
As the periodicity condition has to be satisfied also on the outer surface, the
constant value is usually equal to zero.

The symmetry of the system is determined by the numbers of stator and rotor
slots and by the number of poles. An induction motor is usually so designed that
the symmetry sector contains two poles. This choice is made in order to minimize
the effects of harmonic components on the operation of the machine. If the
symmetry sector contains two pole pitches, and the number of slots per pole and
phase is large, a lot of computer capacity is required in the solution of the
discretized field equation.

In order to reduce the size of the problem the number of rotor slots must
sometimes be changed so that a smaller solution region is obtained (Williamson
& Ralph 1983). If the symmetry sector of the true machine is two pole pitches
wide, there are three possibilities to get a higher symmetry. The reduced
symmetry sector may contain one pole pitch, one phase belt or one slot pitch. The
last two cases can only be used in the approximation of sinusoidal time variation.
The change of slot numbers causes errors in the computed results, but the
savings in computation time and memory requirements are significant. The
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effects of the change of symmetry are discussed further in Chapter 8.

The finite element mesh

A mesh generator was constructed that forms the meshes of common induction
motor geometries from data containing the necessary dimensions, slot numbers
and slot geometry codes. The routine deduces the smallest symmetry sector and
forms an element mesh in the sector. Finite element meshes consisting of
isoparametric first-, second- or third-order triangular elements can be produced.
Figure 2 shows a typical finite element mesh used in the analysis. The mesh
consists of 904 isoparametric second-order elements and contains 1851 nodes.

Figure 2. A typical finite element mesh used in the analysis of an induction
motor. The mesh contains 904 isoparametric second-order elements and 1851
nodes.
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Practice has shown that there should be a detailed finite element mesh in the air
gap region in order to get accurate results. One possibility is to use a special air
gap element (Abdel-Razek et al. 1982). The shape functions of an air gap element
are analytical series expressions that satisfy the Laplace equation in the air gap.
If the vector potential were known accurately on the boundaries, the air gap
element would give an exact solution. However, the amount of computation is
increased considerably if an air gap element is used instead of a normal finite
element mesh. This is because the coefficient matrix associated with the air gap
element is a full matrix whose elements are computed from slowly convergent
series expansions. A typical air gap element in the field analysis of induction
motors contains about 300 nodes. A large full sub-matrix in the Jacobian of the
Newton-Raphson method also increases the time needed in the solution of the
matrix equation. | -

The effect of rotor motion on the finite element mesh

When the true time variations of machine quantities of a running induction
motor are studied, the field has to be solved with a time-stepping method, in
which the rotor is rotated at each time step by an angle corresponding to the
angular velocity of the rotor. The field equations for the stator and the rotor are
written in their own coordinate systems and the solutions are matched with each
other in the air gap.

One possibility is to use the air gap element to connect the stator and the rotor
fields. The rotation is obtained by calculating a new coefficient matrix for the air
gap element at each time step. A lot of computation is needed if an air gap
element is used to rotate the rotor.

Another possibility to rotate the rotor is to change the finite element mesh in the
air gap at every time step. This is done by dividing the mesh into two separate
parts. The first mesh contains the stator and the air gap and the second mesh
contains the rotor. The nodes on the inner surface of the air gap are connected to
the corresponding nodes on the rotor surface by periodic boundary conditions.
The motion is accomplished by changing the form of the elements in the air gap
and by changing the correspondence of nodes on the periodic boundaries. The
criterion in the formation of the air gap meshes is to keep the sides of the
elements as short as possible. Related methods have been shortly described by
Davat et al. (1985) and by Strangas & Theis (1985).

4
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2.2 Simplifying assumptions

Several simplifying assumptions have to be made in the analysis. Actually, there
are so many approximations that it is difficult to check the effect of a given
approximation by comparing computed and measured results. The assumption
of a two-dimensional field probably causes the largest errors, but there are also
simplifications related to the time-dependence and to the modelling of iron
properties that cause inaccuracy in the results. The main simplifications are
discussed below.

2.2.1 Two-dimensional model

A complete three-dimensional formulation should be used in the calculation of
the magnetic field of an induction machine. Three-dimensional finite element
formulations have been developed for the analysis of time-dependent magnetic
fields (e.g. Chari et al. 1982), but their practical applications are still restricted to
relatively simple geometries. A two-dimensional model is used in this work. The
three-dimensional effects, such as the skew of rotor slots and end-region fields,
must be taken into account within the two-dimensional model.

End windings

Currents in the end windings of a machine induce components to the flux
linkages of the stator and rotor windings that are not included in the fluxes
computed from the two-dimensionally modelled region. These additional flux
linkages must be taken into account in the voltage equations.

Probably the easiest way to add the effect of end-region fields into the voltage
equations is to model the end windings as resistances and constant inductances,
whose values are determined by simplifying analytical methods or by
measurements (Barnes 1951, Richter 1954, Vogt 1983). The end-winding
inductance of a stator winding in a three-phase induction motor is often written
in the form

c
a

=200 (5 o1, )

where 1, is the permeability of free space
p is the number of pole pairs
q is the number of slots per pole and phase



N, is the number of turns in series in a coil
a is the number of parallel paths

A, is a semi-empirical parameter

l,, is the average length of the overhang.

The value of the parameter A, depends on the geometry of the end-winding
region. Usually A, is so defined that it also includes the effect of the rotor end
winding reduced to the stator. The values of A, have been tabulated for different
stator and rotor configurations e.g. by Richter (1954).

Eq. (44) gives only a rough estimate for the value of the end-winding inductance.
In more accurate methods the magnetic scalar potential is solved in a somewhat
simplified end-region geometry (Reece & Pramanik 1965) or the end-region field
is integrated numerically using current elements and image sources for
modelling the iron surfaces (Lawrenson 1970). Recently, methods based on the
numerical solution of field equations in the end-region geometry have become
popular. There are formulations based on the magnetic scalar potential (Davey &
King 1981), magnetic scalar and electric vector potentials (Sikora et al. 1986) and
magnetic vector potential (Ito et al. 1980).

The results of Chapter 3 have been computed using the end-winding inductances
obtained from Eq. (44). The end-winding inductance has only a small effect on
no-load characteristics, but in the locked-rotor condition 5 - 15 % of the stator
voltage is due to the end-winding inductance. Thus an inaccuracy in its value
may have a significant effect on the accuracy of computed locked-rotor currents
and torques.

The resistances of the ends of the rotor bars and of the end-ring segments are
calculated from the dimensions of the conductors by simplified analytical
models. The skin effect is neglected. The resistance of the stator end winding is
taken into account in the total resistance of the stator winding.

Skewed rotor slots

The rotor slots of an induction motor are usually skewed, i.e. the rotor slots are
not parallel to the shaft and the stator slots. In the conventional calculation of an
induction machine the effect of skewing is treated with a skew factor that affects
the magnetic coupling between the stator and rotor windings.

The use of a skew factor in a two-dimensional finite element formulation
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complicates the solution procedure. This is because the flux linkage of a given
winding has to be divided into two parts that are treated differently in the voltage
equations. The first part is the flux linkage induced by windings that are
unskewed in relation to the winding under consideration. The second part is the
flux linkage due to skewed windings. The solution of these separate flux linkages
leads to multiple field solutions and time-consuming iterations in the solution of
the voltage equations. A method for modelling skew in a two-dimensional
formulation using skew factors is given by Williamson & Ralph (1983).

A somewhat different method is attained if a skewed machine is thought to be
made up of several slices that have been cut from an ideal two-dimensional
machine by planes perpendicular to the shaft. The rotors of adjacent slices have
been rotated by an angle corresponding to the skew. The winding currents are
assumed to be continuous from slice to slice. The magnetic field of each slice is
solved separately using a two-dimensional formulation. The voltages of the
windings are added together from the potential differences induced in the slices
and in the end windings. The method is discussed further in connection with the
solution of voltage equations in Section 2.3.4.

The average core saturation level of a loaded skewed induction motor varies
along the shaft direction (Binns et al. 1971). Thus a skewed machine saturates
somewhat differently from an unskewed machine. The slice model takes into
account the variation of the saturation level in the axial direction. The effect
cannot be treated properly with a simple skew factor.

Currents in the iron core

The core of an electrical AC machine is made up of thin electrical steel sheets.
An insulation layer on the sheets isolates them from each other. The losses due
to eddy-currents in the sheets are minimized by making the sheets as thin as
practical.

The punching of the core sheets breaks the insulation layer at the edges of the
sheets. This may lead to galvanic contacts between adjacent sheets and further to
eddy-currents that flow from sheet to sheet. It is difficult to take these
eddy-currents into account in the analysis because of their statistical nature.
Punching also affects the magnetic properties of the sheet edges.

The rotor bars of an induction machine are usually in galvanic contact with the
surrounding electrical steel sheets. A potential difference between two rotor bars
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induces a current that flows through the sheets from one bar to the other.
Currents along the iron sheets are not consistent with the two-dimensional
approximation. It is possible to treat these currents in a roughly simplified
manner within the slice method used to model the skew. There are, however,
difficulties in the determination of the contact resistances between rotor bars and
sheets. Thus all currents in the electrical steel sheets are neglected. The
laminated iron core is treated as a non-conducting, magnetically nonlinear
medium.

2.2.2 The nonlinearity of iron

The nonlinear magnetization of iron complicates the solution of magnetic fields
in electrical machines. In numerical solution routines saturation leads to
time-consuming iterations. Iron also has significant hysteresis in its B,H-
characteristics. The reluctivity is not a single-valued function of e.g. flux density,
but depends on the history of the system.

In principle it is possible to take both hysteresis and saturation into account in a
step-by-step solution. The difficulty lies in the lack of a phenomenological model
for the magnetization that is easy to implement and fast to use in a computer
routine and still gives the material properties accurately. Both the magnitude
and the direction of a flux density vector in a machine core vary. The points of
flux density vectors trace very complicated curves, especially in teeth at the air
gap region. A good hysteresis model should be able to treat an arbitrary magnetic
field exitation. Such a model contains very much information that has to be
gathered experimentally before the parameters of the model can be determined.

In the time-stepping method a single-valued monotonic reluctivity curve for the
core material is used. The curves are prepared from the peak value
magnetization curves given by the producers of electrical steel sheets. The
treatment of nonlinearity in the approximation of sinusoidal time variation is
discussed below.

Hysteresis and eddy-currents in core sheets are not included in the model. This
means that iron losses are totally neglected in the analysis. In the conventional
analysis of electrical machines the iron losses are calculated by models based on
loss measurements in fields varying unidirectionally at the rated frequency of the
machine. Such models could also be implemented in the numerical field solution
routines. It is believed, however, that a more general loss model is needed e.g. in
the calculation of the air gap region where the time variation of the field
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quantities is very complicated.

Iron losses have an influence on the no-load characteristics of an induction
motor. In the locked-rotor condition the effect of iron losses is small compared
with other loss components in the machine.

The approximation of sinusoidal time variation

As already discussed in Chapter 1 the time variation of fields in an electrical
machine is practically never sinusoidal. The nonlinearity of iron and the rotation
of the rotor require the use of a step-by-step method in the solution of the
magnetic field. This is very time-consuming. If the time-dependence of the field
is assumed to be sinusoidal, the computation time can be reduced radically.
Therefore the assumption of sinusoidal time variation is commonly used in the
literature.

The vector potential of a sinusoidally varying two-dimensional magnetic field
observed in the stator coordinate system and written as a Fourier-series in
cylindrical coordinates is

A= ), {Bae 1™ 0} ¢ 5)

n=-oo

where r and ¢ are circular cylindrical coordinates
A, is a complex r-dependent Fourier-coefficient
o is the angular frequency.

It is seen from Eq. (45) that all space harmonics that vary at the line frequency
are included in the approximation, but there are no time harmonic components.
Thus e.g. the time harmonics due to saturation that vary at higher frequencies
are not included in the sinusoidal approximation.

The assumption of sinusoidal time variation is made in order to eliminate the
time-dependence from the field equations. This means that the reluctivity used in
the approximation must be independent of time. Because the approximation of
sinusoidal time variation is reasonable only when calculating effective values in
a steady state, it is an obvious choice to define the reluctivity as a function of the
effective value of the flux density
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where Ap and A; are the real and imaginary parts of the vector potential.
Actually the reluctivity curves used in the computer routines are cubic spline
approximations and functions of a variable equal to twice the square of B This
is because of computational efficiency (Silvester et al. 1973).

There is an unlimited number of possibilities to define an effective reluctivity.
The definition that gives the best results for the effective values of current , torque
and other machine characteristics is the best definition in that special case.
Results computed using various effective reluctivities have been compared with -
the results of a time-stepping method (Luomi et al. 1986). The comparison was
done for several induction motors. Among others the following definitions were
studied

T
1 _Ho _
vE _TJ ﬁsin(gﬁ) “ “
0 T
1
T 9 3
1 H(t)
VBg = T ﬁ _ (Z_Et) dt 48)
S1 T
0
VHo = H (49)

dt (50)

where T is the period of time of the AC cycle. The same subscripts have been used
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for the reluctivities as in the reference. : .

In the first two equations it is assumed that the flux density varies sinusoidally
and unidirectionally. The field strength is taken from the peak value
magnetization curve of the material. In Eq. (47) the effective reluctivity is
obtained as the time average of the ratio of the field strength and the flux density.
The RMS value of the instantaneous reluctivity is calculated in Eq. (48).

In the last two equations it is assumed that the field strength varies sinusoidally
and the flux density is taken from the peak value magnetization curve of the
material. In Eq. (49) the reluctivity is defined as the ratio of the fundamentals of
the field strength and the flux density. The RMS value of the instantaneous
reluctivity is calculated in Eq. (50). In the comparison with the results of the
step-by-step method (Luomi et al. 1986) the best agreement was obtained by the
effective reluctivity defined by Eq. (47). This effective reluctivity has been used
when computing machine characteristics by the sinusoidal approximation
(Chapter 3).

The trace of the point of a flux density vector is an ellipse in the sinusoidal
approximation and a more general curve in true time variation. The producers of
electrical steel sheets give magnetization curves measured in an experiment in
which the magnetic field varies unidirectionally. The peak value curves used in
the calculation of the effective reluctivities do not contain information about the
behavior of iron in a rotary magnetic field.

22.3 The motion of the rotor

In a general step-by-step solution of the magnetic field of a running induction
machine the field equations for rotor and stator fields are written in their own
coordinate systems. The solutions of the two field equations are matched with
each other in the air gap. The rotor is rotated at each time step by an angle
corresponding to the mechanical angular frequency. This means that a new
finite element mesh in the air gap and a new Jacobian matrix has to be
constructed at each time step. The problem of taking the motion into account in a
finite element formulation is discussed e.g. by Davat et al. (1985).

In some special cases it is possible to find a coordinate system in which the
material properties reluctivity v(x,y,t) and conductivity o(x,y) are not directly
affected by the motion of the bodies. If there is such a coordinate system, it is
worth solving the field equations in this system. Transformation equations for
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the field quantities are needed. If a coordinate system O' moves with a velocity v °
measured from an other coordinate system O, the transformation equations for
the quasi-static magnetic system are (Melcher 1981, Van Bladel 1984)

B'=B
E'=E+vxB (61)
H'=H
J'=J

where the quantities observed from the coordinate system O' are marked by
apostrophes. Eqgs. (51) are valid at velocities much smaller than the velocity of
light. -

The vector potential in the moving media observed from the stationary coordinate
system O satisfies the equation

Vx (v Vx A)+G{%%-—VXVXA}+O‘V¢=O (52)
In a linear case the assumption of sinusoidal time variation can be used together
with the coordinate transformation. In this case the complex vector potential
satisfies the equation

Vx(vVVXA+0(joA-vxVx A)+oVy=0 ®3)

Nonlinear materials can be modelled approximately by using an effective
reluctivity. In Chapter 3 this method is used in the analysis of an induction
motor having a homogeneous solid iron rotor. The slotting of rotor and stator
cores limits the use of coordinate transformations in the analysis of cage
induction motors.

The time-dependence of the field quantities is far from sinusoidal in the teeth and
coil region, when the stator and rotor teeth are moving passed each other.
However, the assumption of sinusoidal time-dependence is often made. The
easiest method to take the rotor motion into account in the sinusoidal
approximation is to treat the rotor as quasi- or pseudostationary. The rotor field
observed in the stator coordinate system is calculated from the equation

V X (Ver VX A) +jOs0 A= %Uez ©d
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where s is the slip. In the pseudostationary approximation the rotor is fixed and
the motion is modelled by multiplying the conductivities of rotor conductors by the
factor s.

The shortages of the pseudostationary approximation become clear when the
method is used to analyze a conducting cylinder rotating in a transverse
magnetic field (Appendix A). The approximation only gives a correct result at the
slip value 1. If the magnetic field only contains the first space harmonic
component, the method gives correct values at all slip values.

The effect of higher space harmonics is treated more accurately in the method
used by Williamson & Ralph (1983). As already discussed in Section 1.4 the
harmonic currents in the rotor are solved from the flux (vector potential)
distribution in the air gap using a circuit theoretical model for the rotor cage.
The torques due to each harmonic component can be calculated separately and
the total torque is obtained as a sum of the torque components.

2.3 Solution of the coupled field and circuit equations

The stator winding of an induction motor is usually connected to a line voltage. A
potential difference equal to the line voltage is induced in the winding. Thus, the
line voltage is the actual source of the magnetic field. The source terms are
imposed into the finite element formulation through the voltage equations of the
stator winding. The magnetic coupling between the rotor and stator windings
causes the rotor currents. If the effect of the rotor end windings is included in the
model, voltage equations must also be constructed for the rotor winding.

The potential differences, currents and vector potential are coupled to each other
in the voltage equations and in the field equations. Because of the nonlinearity of
the core materials the system of equations must be solved iteratively. Practice has
shown that the equations should be solved simultaneously in the same iteration
loop, if a fast convergence and a short solution time are wanted.

2.3.1 Voltage equations of the stator winding

The scalar potential difference induced in a phase of the stator winding should be
calculated from the equation

U=I—V¢-dl=j{%J+%%}'dl (55)
r r
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where I' is an integration path along the phase winding. There are two
difficulties connected with the use of Eq. (565). Firstly, the vector potential and
current density distributions are unknown in the end windings. Secondly, if Eq.
(565) is used, every conductor in a slot must be separately solved from Eq. (20). This
means that every conductor must have a detailed finite element mesh. Such a
mesh constructed for the cross section of an induction machine soon becomes too
large to be solved.

The number of elements needed in a stator slot is reduced if a circuit theoretical
approach is taken. It is assumed that the stator winding consists of infinitely
thin conductors with no skin effect. The potential difference of a phase winding is
obtained from the equation

=%P+RI | (56)

where ¥ is the flux linkage of the phase winding
R is the total resistance of the phase winding.

In a coil side of the stator winding the vector potential satisfies Eq. (8) with a
constant current density

3 Nep 1 57
- Sn € (

where N is the number of turns in series in the coil side n

S, is the cross sectional area of the coil side n.
In order to reduce eddy-current losses the conductors of a stator winding are
usually made so thin that Eqs. (56) and (57) are good approximations. However, if
the effects of eddy-currents are studied e.g. in an inverter driven motor, every
conductor of a slot should be modelled using Eq. (20).

The flux linkage in Eq. (56) is the sum of two components. The flux linkage
associated with the two-dimensionally modelled core region is obtained as a
surface integral of the vector potential over the coil sides of the phase winding.
The flux linkage component of the end windings is modelled by a constant
end-winding inductance. The expression for the potential difference of the phase
winding becomes



<IN 94 < 1Na £ 2A dI
cn n
U=N, z __I_ds_nzzl_é[_ds +RI+L, Y

-

©8)

where N, is the number of symmetry sectors that the machine contains
N, is the number of positively oriented coil sides of the phase winding in
the solution sector
N, is the number of negatively oriented coil sides of the phase winding in
the solution sector
L, is the end-winding inductance of the phase winding.

It is assumed in Eq. (568) that the number of parallel paths is one and that the
solution region contains an integer number of poles.

In the time-stepping formulation the time derivatives of the vector potential and
the current are approximated by first-order difference ratios

Ak+1 - Ak N %
At ot
©9)
il!§+1 - ii N g
At dt

A more compact form is obtained for the voltage equation if a function B® is

introduced
' NCD . . oge

-§n— if point (x,y) belongs to a positively

oriented coil side of the winding n

s < NCD . . .
Bxy) =] - _Sn— if point (x,y) belongs to a negatively (60)
oriented coil side of the winding n
0  otherwise. N

After the substitution of the approximations (59) and the functions %, the voltage
equation for the n*? phase winding becomes
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where u®_ is the potential difference induced in the n*! phase winding
i is the current of the n'h phase winding

R, is the resistance of the phase winding

Q is the cross section of the machine

k denotes a time step.

The difference ratios approximate the time derivatives at time t = (t, + t, 72, In
accordance the average values of the current and the potential difference at the
time steps k and k+1 are used to approximate the true current and potential
difference.

If column vectors u® and i%, whose components are the potential differences and
currents of the stator phase windings, are defined, a voltage equation in matrix
form is obtained for the stator winding

RyAt+21
Da, - —— i
k+1 2N, 1 k+l
RyAt -2 1L, At
+{—Dsak——2—Nl— isk-l-ﬁ——l(uiﬂ-i-ui) =0 (62)
s s

The terms in the parentheses only contain known quantities. It is assumed in Eq.
(62) that all the phase windings have equal resistances and end-winding
inductances. The components of the matrix D® are

Dj=- [pi N do 63)
Q

If sinusoidal time variation is assumed, the time derivatives in Eq. (58) are
substituted by
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The potential difference induced in the n*! phase winding is given by
NI!
C=jolN, Jﬁ; D g Nt d2+ R, +jo Ly i, &)
j=1
The voltage equation of the stator winding written in matrix form is i
+jo
Ds a Rs Ilb 8 1 8 - 0 (66)

— C——————— + m—
jolN, !7jeIn, ¥
where D* is the same matrix as in the step-by-step formulation.

Equations (62) and (66) give the-relations between the vector potential and the
currents and potential differences of the stator windings. The source of the
electromagnetic field in the machine is, however, the line voltage of a polyphase
system. The delta and star connections are the two commonly used ways to
connect the stator windings. In the delta connection the potential differences
induced in the stator windings are equal to the line voltages. In this case Egs. (62)
and (66) are directly applicable. A similar situation exists in the star connection,
when the star point is connected. The potential differences of the stator windings
are equal to the phase voltages.

In the star connection, when the star point is not connected, the situation is a
little more complicated. There is an additional constraint to the stator currents

iif =0 ©7)

i=1

where m is the number of phases. So there are only m-1 independent stator
currents. If a column vector i* ' that contains the m-1 independent stator currents
is defined, the relation between the two current vectors is
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where the dimensions of KT are m x m-1.

If v® denotes the line voltage vector and u® the column vector of the potential
differences of the stator winding, a relation between the vectors can be written in
matrix form -

(100...0-1] (000 ...01]
010...0-1 100...01
001...0-1 110...01
Ku'= . . ..., . |==(........|[v=QV ©69)
000 .. .1-1] 111...01,

where the dimensions of Q are m-1 xm .

When Eq. (62) is multiplied by the matrix K and Eq. (68) is substituted in the
equation obtained, the voltage equation for the star connected stator winding is

RyAt+2L, ..

KD’ a,,, — —nT KK i,
R At —214 ¢ At
S 8 T «s s\l _
+{—-KD - —3xN 71— KK 1k+2Nle(vi+l+vk)}—0 (70)

The current of the m'® stator winding is obtained from Eq. (68) if the m-1
independent currents are known. In the discussion of the solution of the coupled
field and voltage equations both Eqgs. (62) and (70) are expressed by the equation

KD’ g, + G i+ {-KD a + H* | + C* (Vi + V)1 =0 (71)

It should be kept in mind, however, that the definitions of the matrices and the
column vector i% are different for different connections of the stator winding. ‘
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2.3.2 Voltage equations of the rotor cage

In order to shorten the expressions, the voltage equations of the rotor are derived
for sinusoidally varying quantities. The derivation follows the lines given by Shen
& Meunier (1986), but a more general rotor cage is considered. The same solution
method is applicable in the case of general time variation, but the equations are
considerably longer. The results are given for both cases.

The scalar potential is a continuous single-valued function. Thus the line
integral in Eq. (565) along a closed path must be zero. This gives the condition
needed in the construction of the voltage equations for the rotor cage. The
potential differences of the rotor bars are calculated from Eq. (19). Using the
complex variables the scalar potential difference u’, induced in the n't rotor bar
is given by

N,
w=R i+ jsoR, |phoy D, aN; do @2
j=1

Q
where the function B is defined

1 if point (x,y) belongs to rotor bar n
Br(x.y) = (73)

0 otherwise.

The slip s is included in Eq. (72) because of the assumption of a pseudostationary
rotor.

When the column vectors u’ and i’ are formed from the potential differences and
the currents of the rotor bars, the matrix equation

J
olR,

D'a+ i - Lt u=0 (74)

swl

is obtained. The elements of DT are

Dﬁ:—%jﬁi’ondsz T5)
Q
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Figure 3 shows the circuit and notations used in the derivation of the voltage
equations for the rotor cage. In a symmetric cage the currents and potential
differences in the corresponding segments of the two end rings are equal in
magnitude but opposite in direction. Impedance matrices associated with the bar
ends and end-ring segments are defined

Lye=22p1
(76)
Z.=27Z.1

where 1 denotes the diagonal unit matrix. If the rotor cage is nonsymmetric,
more complicated impedance matrices must be defined, but the derivation of the
voltage equations remains essentially the same. The total potential difference
vector of the rotor bars including also the bar ends outside the two-dimensionally
modelled core region is

T 1

u =u+Zp i @7

Perilodic Periodic
boundary boundary

Figure 3. A circuit theoretical model of the rotor cage.
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+ From Kirchhoff 's second law applied to the circuit of Figure 3 a relation between
the potential difference vectors is obtained

- -

1 00 h
110... 0
0 11... 0 ’

2u=. . .... .|d =M (78)

where 1 is the column vector of the end-ring potential differences. The periodicity
factor h is included in the connection matrix M because the currents and
potential differences satisfy the same periodicity conditions as the vector potential
in Eq. (43). Kirchhoff 's first law gives the equation

-1 1 0 ... 0]
Oo-11...0
0O 0-1...0
i'=| . . . ... . |i=-M"i (79)
. |
lh 0 0 ... -1]

where ji is the column vector of the end-ring currents. The potential differences in
the end-ring segments between adjacent rotor bars are given by

2u=2Z.1i 80)

Combining Egs. (76) - (80) we obtain the relation between the rotor bar currents
and the potential differences of the bars induced in the core region

A+M' Ze M Zp)i'=-M' Z% My G
The determinant of the connection matrix M is

det M=1-h 82)
This means that the product of matrices on the right hand side of Eq. (81) is

singular if the periodicity factor is equal to one, i.e. if the symmetry sector
contains an integer number of pole pairs. The singularity of the connection
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matrix is the outcome of the physical faet that the addition of an extra potential to
all the potential differences has no effect on the bar currents. In the singular
case Eq. (81) does not define the potential difference vector u’ uniquely as a
function of the bar currents. If the periodicity factor differs from one, the
periodicity condition gives an additional constraint to the system making the
solution of the vector u’ as a function of the currents possible.

Independently of the periodicity factor the potential differences u’ define the
currents of the rotor cage uniquely

f=—Q+M Z2MZWw M Z2I My 83)

When the current vector i’ is substituted in Eq. (74), the voltage equation of the
rotor cage is obtained

r -1 -1
D'a- g {1 R e M 22 Mz T Z M0} w- N

When the equation is used at zero slip, a small positive value is given to the
variable s in order to avoid overflows in the computer routines.

The derivation of the voltage equations for the rotor cage in the time-stepping

formulation follows the lines given above. Only the results are given here. The
equations corresponding to Eqgs. (72), (83) and (84) are

1 1. . .
5 (Wnlket + Unjid =5 Ry Gnliees +inj0

+R. Zaﬂkﬂ aJ{k J do (85)

ji=1
Q

=}
iy =- {(R +2 -Lff) 1 +(Rbe +2 E) MTM} { %— M™™ (ul,, +ul)

[l ons 2]



~-1

SR (O MO
D {1+ o (Bec+2 37 | 1+(Roe + 277 | MM |

_ --1
L,
-Drak+ﬁ—{1+% (Rsc+2 )1+(RM+2&)MTM MTM}u;

21R,
At L, Le N
T
__2_1{1"[(&‘”2 At)“(R"“z_A?)M M]
LSC Llﬂ) T il oT
.l:(Rsc_z E)1+(Rbe_2A_t MM }lk =0 @7)

For further use Eq. (87) is written in a shorter form

D' Qg + C’ urk+1 +{- D’ ag+ c urk +G irk} =0 (88)

2.3.3 Solution of the field and voltage equations

In Section 1.3 the field equation with a potential difference as the source term
was discretized using the finite element method. If all the conductors of an

induction machine are taken into account, the two-dimensional field equation
becomes

V x (vVx A)+0-—— —{120 Zﬁﬁgg}ez:O (89)
j=1

where the B functions defined in Eqgs. (60) and (73) are used to define the current
regions. Q, denotes the number of rotor bars in the solution sector and m is the
number of phases. Not only the vector potential but also the rotor potential
differences and stator currents are unknown. Following the lines of Section 1.3 a
residual vector ff is obtained after the finite element discretization. The ith
element of the residual vector is



. o
ff(ak+1:“fc+1,li+1)= J. (V(ak+1) VN; VN, + At NiNj)ajlkﬂ dQ
Q

& m
—I{Ni% ZG B} Wijias + N 2 B; $ien [ dQ
Q

j=1 j=1

[N
L
[

Q
_.J- %Z ujf + N ZBJ L ¢ dQ (_90).
Q i=1

If the connection of the stator winding is taken into account using a connection
matrix K, the discretized field equation becomes

T «s
ff (@11, WA k1) = S@149) Ay +[D° ] Uy +[D° ] K i%y

+{S'@@ap ay+ DT u', +[DT K i%}=0 @)

In the delta connection K is a diagonal unit matrix. In the star connection with
the disconnected star point K is given by Eq. (68) and the stator current vector i,
contains only the m-1 independent components.

Combining Eq. (91) with the voltage equations (88) and (71) a system of coupled
equations is obtained

ff (a k+1’u Kol k+1) S(@) agyg + [D” ] u’ k1t [D°] "K' k+

+{S'@p ar+ M u + DT K 153 =0
fr(a k+l ,uﬁ( +1) =D'a xat Cc llrk+1 + {—Dr ay+ Cc’ urk +G" irk} =0 92)

i) =KD ay + G iy
+{-KDa, +H i’ +C° (vi,; +V}=0

It is possible to eliminate the rotor potential differences u’,,; and the stator
currents i% ; from the system of equations by solving them in matrix form from
the last two equations and substituting in the first equation of Eq. (92). This leads
to a small reduction in the number of unknown variables. However, after the
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elimination all the nodal values associated with a stator phase winding or with a
rotor bar are connected to each other by a full sub-matrix in the coefficient matrix
of the system of equations. It was found in tests made for sinusoidally varying
quantities that the solution of the reduced system of equations requires more
computation time and memory than the solution of the nonreduced system of
equations. Therefore, the nodal values of the vector potential, the rotor potential
differences and the stator currents are solved together in the same matrix
equation.

Because of the nonlinearity of the core material the matrix S in the discretized
field equation depends on the nodal values of the vector potential. The Newton-
Raphson iteration method is used for the solution. Corresponding to Eq. (37) the
correction vector at the iteration step n is solved from the equation

Pay,;) (Dr)T D’ )T K* Aay,y ff(anku WA k)
D C 0 | |Auka|=-| f@k,uin ©93)
KD 0 G* Al £5(@ %1, %0)

The elements of the sub-matrix P are given in Eq. (40).

The choice of the algorithm used for the solution of the correction vector depends
on the symmetry of the Jacobian. It is seen from Eq. (93) that the off-diagonal
sub-matrices form a symmetric system. The defining equation (40) shows that
P(a) is symmetric. The sub-matrix C* has the same structure as the complex
coefficient matrix

3 T -1 1 \T -1
C-= scolR,{1+R"(l+M‘ ZoeMZyo M Z .M}

== s T 0+ Rel i ~ (T + Zpe M Z 2 MZ3) ™ ) o4

in Eq. (84). Thus the symmetry of C* may be analyzed by studying the symmetry of
the more general matrix CT. It is easy to show, by transposing the matrix on the
last row of Eq. (94), that CT is symmetric if the impedance matrices are
symmetric. This is true e.g. for a symmetric rotor cage. From the derivations of
Eqgs. (62) and (70) it can be deduced that G® is symmetric for delta and star
connected polyphase windings.

Although the Jacobian is symmetric, it is not positive or negative definite. It can
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be seen by studying the voltage equations (62), (70) and (71) of the stator winding
that the matrix G*® is negative definite. On the other hand, e.g. for non-
conducting linear materials, the quadratic matrix form !/, aT P a is an estimate
of the energy of the magnetic field. As the energy is a positive quantity, the
matrix P is not negative definite. As the Jacobian contains the sub-matrix P that
is not negative definite and the sub-matrix G*® that is negative definite, the
Jacobian is not positive or negative definite. Computer routines designed for
positive definite coefficient matrices cannot be used in the solution of Eq. (93).

For a sinusoidally varying magnetic field the equation corresponding to Eq. (89) is
. Q, m

V X (veVX A +js00 A - 17D OB uf+ D B f e,=0 (95)
j=1 =1

where the variable s is equal to the slip in rotor elements, but equal to one in
stator elements. In this case the discretized field equation is

ffaniH=Saa+DTuw+DTKi=0 (96)

where the elements of the matrix S(a) are

Sa@ = [ {ve@ VN, - VN +j s00 N, N} o o)
Q

When Eq. (96) is combined with the voltage equations (84) and (66), and the
connection of the stator winding is taken into account in Eq. (66), a system of
equations is obtained that can be written in matrix form

ff| |s@ ®" ©®'K| [a 071 o
fl=| D C o |[‘|u|+| O |=]0 98)
£l lKD* 0o @G i*] Lha)l LO

The real matrices in Eq. (98) are the same matrices as in Eq. (93) for the
time-stepping method. The matrix CF is given in Eq. (94). The matrix G*®is

_Rtjoly g

s—
G- jolN,

©9)

for a symmetric stator winding, and the source vector is
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l:!‘(X)=jm1N$

QY (100)

where K is the connection matrix of the stator winding
Q is the diagonal unit matrix in the delta connection and the matrix
defined in Eq. (69) in the star connection
¥® 1is the column vector of the line voltages.

If the system under consideration is magnetically linear, the matrix S is
independent of the vector potential and the equations are linear. The column
vector of the unknown quantities can be solved directly from Eq. (98). It can be
shown as above that the coefficient matrix in Eq. (98) is symmetric for machines
with symmetric rotor cages.

In a nonlinear case the solution has to be found iteratively. The use of the
Newton-Raphson iteration method is a little more complicated than in the
step-by-step formulation because the real valued reluctivity is not differentiable
with respect to the complex nodal values. The difficulty is avoided if the real and
imaginary parts of Eq. (98) are separated and the larger system of equations of
real variables is solved with the Newton-Raphson method. The correction vector
at the iteration step n is solved from the equation

Plabal) Rajad) O o0 K o | [aad] [£]
~T(ah,a]) P%a@ka}) 0 -@ o -0)TK'| | Aad -
] o & ¢ o o | |auk|_| %] o
0 D ¢ ¢y 0 o | |au?| |-£
KD’ 0 0o 0 & ¢ ||lar| g
0 KD 0 0 -G} -Gy | |af®| |-

where the subscript R denotes the real part of a matrix or a vector and the
subscript I denotes the imaginary part. The rows containing the imaginary parts
of the residual vectors have been multiplied by -1. This gives a symmetric
Jacobian matrix in magnetically linear cases. The elements of the matrices P!,
P2 R and T are



N,
Pﬁn(aR,aI) = 3 J 1 J.‘{ Z[vef(aR,aI) \% Nl -V NJ] aRj} dQ
Q

aR m j =1
- - Nn
) 2
Plfn(aR,aI) = aaI < J‘ﬁ Vef(aR,aI) A% Nl -V Nj] an} dQ
m :
L Q \J = 1

(102)

Nn
)
le(aR’aI)= —_— J.{Z[vef(aR,aI) \Y Nl -V N_] aRj— S(DO'N] NJ an]} dQ
Lo =1

Tlm(aR,aI) = a J [

N
3 Z[Ve((aR,aI) \% Nl -V I\IJ aIJ+ 210 0) Nl Nj aRj]} dQ
AR m
Q

n
j=1

If the effective reluctivity is a function of the vector potential, the matrix R is not
the transposed matrix of -T. This means that the Jacobian is nonsymmetric in
magnetically nonlinear cases. The nonsymmetry increases the computation time
and the size of the computer memory required in the solution of the equations.

The integrals in the expressions of the Jacobian matrix and the residual vector
are calculated element by element. Isoparametric triangular elements are used
and the integrals are computed using numerical quadrature formulas (Laursen
& Gellert 1978) in the local normalized coordinate system associated with the
isoparametric mapping. The reluctivity curve of the core material is
approximated by cubic splines, the square of the flux density as the independent
variable (Silvester et al. 1973).

The Jacobian of the Newton-Raphson method is a sparse matrix. A library of
computer routines (Chu et al. 1984) is used for the solution of the matrix
equations. The solution is based on the Gaussian elimination and various
ordering methods are available for symmetric and nonsymmetric matrices.
Tests have shown that the shortest solution times are usually obtained by a
method that uses a variant of the minimum degree algorithm. About 40 - 50 % of
the total computation time is spent in the solution of the matrix equation, when
second-order isoparametric elements are used. The computation of the elements
of the Jacobian matrix and the residual vector takes almost as much time as the
solution.

The relatively long time constants associated with the windings of induction
motors complicate the use of the step-by-step method in the simulation of
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steady-state operation. If the zero field is taken as the initial state, tens of periods
of the line frequency have to be simulated before a steady state is reached. The
results of the sinusoidal approximation can be used to find an initial state that is
nearer to the steady state. A saturated field computed using an effective
reluctivity is not, however, a physically correct state of the machine. If the
step-by-step method is started from such a field, oscillations will occur in the
solution. The problem is avoided by computing a DC field whose sources are the
instantaneous values of the currents in the sinusoidal approximation. The same
peak value reluctivity curve is used for the solution of the initial state as in the
step-by-step method. When the simulation is started from the DC field and the
instantaneous currents, a steady state good enough is usually reached in a
couple of simulated periods. |

2.34 Modelling a skewed rotor

As mentioned in Section 2.2 the effect of skewed rotor slots can be taken into
account if the machine is thought to be made up of several slices that have been
cut from an ideal two-dimensional machine by planes perpendicular to the shaft.
The rotors of the adjacent slices have been rotated by an angle corresponding to
the skew. The winding currents are assumed to be continuous from slice to slice.
The magnetic field of each slice is solved separately using a two-dimensional
formulation.

In principle the field and voltage equations of a skewed machine could be solved
with the Newton-Raphson iteration method as it was done for an unskewed
machine above. However, as each slice has its own discretized field equation, and
there should be several slices to model the skew properly, the matrix equation
becomes too large to be solved efficiently. This is particularly true for sinusoidally
varying fields as their matrix equations contain twice as many unknown
variables as the equations in the step-by-step method.

Williamson & Begg (1985) have used an iteration method that is easy to apply to
the solution of a sliced machine. The method is based on the idea of an
impedance matrix Z that gives the relation between the potential differences u
and the currents i of the windings

u==2i (103)

The problem is to find the current vector and the impedance matrix that give the
potential differences corresponding to the line voltage vector y5. If the system is



51

nonlinear, the impedance matrix is current-dependent. The current vector is
searched iteratively by constructing the impedance matrix Z,, corresponding to a
trial current vector i

w,=Z.i, (104)

A new corrected current vector is obtained by replacing the potential difference
vector by the line voltage vector and solving for the current

ig=2Zly (105)

When the method is applied to a skewed machine, the impedance matrix is.
constructed from the impedance matrices of the slices and the end windings. The
column vectors of the stator and rotor potential differences induced in the slice m
are written

W, =Zai+Zo 1
(106)
=L i+ 2T

The coupling matrices in Eq. (106) are current-dependent because of the
nonlinearity of the core material. Thus the matrices correspond to a certain
operation state of the machine. In order to separate the couplings between the
windings the system must be linearized in this state. This is done by fixing the
reluctivities in the elements to the values that prevail in the total field induced by
all the currents together.

The elements of the j*h column of the coupling matrices are evaluated by feeding a
current to the jth_ winding (a stator winding or a rotor bar) and solving the
magnetic field of the linearized slice. Because a current is used as the source, the
field in the rotor bars is solved from Eq. (21). The potential differences induced in
the conductors are calculated from Egs. (65) and (72). The resistances and the
end-winding inductances of the stator winding are, however, neglected at this
stage. The matrix element between e.g. two rotor bars is given by

e Umli 1 jsoR,
Zmlij = —il:—-z Es. Rrsu .!. j Bl 233 N 107

=)

where N_ is the number of slices and Sij is the Kronecker delta. The total potential
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differences induced in the core region are obtained by adding the potential
differences of the slices together

N, N,
W= ) L ) =2+ 2T
m=1 m=1
108)

NS
ur=2z’:;i+2_m;— i'+Z7V
m=1

The voltage equation of the stator winding is obtained by adding the terms
containing the resistance and the end-winding inductance to the first equation.
To get the voltage equation of the rotor cage the equations derived for the circuit of
Figure 3 are used. Combining Eqgs. (77) and (78) the equation

Mu +MZ,.i-2u=0 (109)

is obtained. In order to use the impedance method the end-ring potential
difference vector u must be expressed as a function of the bar current vector i’. If
the connection matrix M has an inverse matrix, the potential difference vector is
eliminated using Egs. (80) and (79)

28=Zei =~ Z. M) { (110)
and substituting back to Eq. (109)

Mu'+H{ M Zye +Zee M) 7H =0 (11
However, as discussed above, the connection matrix is singular if the periodicity
factor is equal to one. In this case we need an additional constraint that is

obtained by studying the potential differences of the end rings. If the periodicity
factor is equal to one, the sum of the end-ring potential differences is zero

Q Q Q -
=D Zacki=Zec ) =0 12
i=1 i=1 i=1

The assumption that all the end-ring segments have equal impedances made in
Eq. (112) gives the condition that the sum of the end-ring currents is zero. This
means that the multiplication of the end-ring current vector by a matrix K,,
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whose elements are all equal e.g. to one, gives the zero column vector. This zero
vector is added to Eq. (79)

F=-Mi=-®,+M)i 113)

As a result, a nonsingular coefficient matrix is obtained and the end-ring
current can be solved

i=—(K+MO*{ (114)

The equation corresponding to Eq. (111) is obtained by substituting Eq. (114) in
Egs. (80) and (109)

My H{MZ, +Z,.(K,+M)'1i'=0 (115)

The expression in the parentheses is taken to mean the end-winding impedance
of the rotor cage

Z,=MZ, +Z. &, + M) (116)
If the elements of the matrix K, are defined

1 if h=1
Kpj = | (117)

0 otherwise
Eq. (116) can be taken as a general expression for the end-winding impedance of a
cage winding. The potential difference vector is eliminated from the voltage

equation of the rotor cage by substituting the second equation in Eqgs. (108) and Eq.
(116)in Eq. (115)

MZ i +Z" i) +Z,i =0 (118)

Taking the resistance and the end-winding inductance of the stator winding into
account through the impedance matrix Z5, the voltage equation of the machine

[‘j (119)
i

becomes

H _ [z%zsb z }
01 | MZ® MZ™Z,
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The impedance method is applied to Eq. (119). The n'! iteration step is

S ST 1
{1] _| &M% Z [f} (120)
il | MZ® MZ™Z,| LO

The method described contains, as inner iteration loops, the solutions of the
magnetic fields of the slices. The outer iteration loop consists of the solution of the
voltage equations. As already mentioned such an iteration method is often slow to
converge. Depending on the saturation level of the machine 5 - 10 outer iteration
steps are usually needed to reach a result accurate enough. The inner iteration
loops containing the Newton-Raphson solutions of the field are essentially
similar to the solution of an unskewed machine. Thus the solution of a skewed
machine takes considerably more computation time than the solution of an
unskewed machine using a direct Newton-Raphson iteration. In order to reduce
the amount of computation it is worth solving the field of an unskewed machine
of the same cross sectional geometry and using it as the initial state in the
iteration of the skewed machine.

In a linear case the impedance method gi'ves the converged current vector at the
first iteration step. If the method is used to solve an unskewed machine the
results obtained are, of course, the same as the results obtained by the direct
solution. An advantage of the method is that the impedance matrix obtained can
be used in the evaluation of the parameters of the equivalent circuit of the
machine (Section 2.4).

The equations were derived for sinusoidally varying fields. A similar method is
possible in the connection of a step-by-step method, but the time consumption very
soon becomes a limiting factor. In a step-by-step method the discretized field
equations of the slices and the voltage equations of the windings should be solved
in a same matrix equation, if only the memory capacity of the computer allows
this. So far the method has not been implemented in the step-by-step routines.

2.4 Machine characteristics derivable from the field solution

The magnetic field, the currents and the potential differences of the windings are
obtained in the solution of the coupled field and voltage equations of the machine
as discussed in Section 2.3. Most of the other machine characteristics can be
derived from these quantities. This section deals with the determination of the
torque, resistive losses and the coefficients of the equivalent circuit.



Torque
Methods based on Maxwell's stress tensor are commonly used in the calculation

of forces and torques in the finite element analysis of electrical devices (Reichert
et al. 1976). The electromagnetic torque is obtained as a surface integral

T, =§rx o -dS

S
=§ rx{i(B-n)B-ian}ds 121)
! Ko 240

where ¢ is Maxwell's stress tensor .
n is the unit normal vector of the integration surface S.

When Eq. (121) is applied to the calculation of the torque of an induction motor, a
closed integration surface that surrounds the rotor in free space must be chosen.
In the two-dimensional model the surface integral is reduced to a line integral
along the air gap. If a circle of radius r is taken as the integration path, the
torque is obtained from the equation

2r
1
T;Ej B, B, do 122)
: |

where B, and B, are the r- and ¢-components of the flux density.

If the solution were exact, the value of the torque calculated from Eq. (122) would
be independent of the radius r when r varies between the inner and outer radii of
the air gap. However, in an approximate solution the integration path has an
effect on the result. In practice, the variation of the torque as a function of the
radius r may be as high as 50 % from the average value, when a typical finite
element mesh like the one in Figure 2 is used. For linear elements Reichert et al.
(1976) have suggested a zig-zag integration path through the midpoints of the
elements and element sides. T

Coulomb (1983) has presented a method based on the principle of virtual work,
where the three-dimensional surface integral in Eq. (121) is replaced by a volume
integral over a hollow shell in free space surrounding the moving body. In the
two-dimensional model of an electrical machine a similar method can be derived
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easily. As the true torque is independent of the radius, we obtain by integrating
the expressions in Eq. (122) in the radial direction over the air gap

Te(@s—1,) = J T, dr

r T
[ rB, B, rdo tdr

r B, B, dS (123)

1
Mo

§I~—

Sag

where r_ and r_ are the outer and inner radii of the air gap respectively and Sag is
the cross sectional area of the air gap. From the equation above the torque is
obtained as an integral over the air gap

1
Te=m J.rBrB(pdS (124)

Eq. (124) has proven to give more reliable results than the expression in Eq. (122)
(Chapter 3). The method is also very easy to implement in a finite element
formulation because the same quadrature formulas can be used to compute the
torque as are used in the computation of the residual vector and the Jacobian
matrix.

If the air gap element is used, an analytical series expansion is obtained for the
vector potential. The series derived for the torque from the series expansion of the
vector potential is independent of the radius. The accuracy of the torque is related
to the accuracy of the vector potential series in the air gap. The drawback of the
method is the long computation time needed in the calculation of the coefficients
of the series expansions.

In a general case the field and voltage equations are coupled through the electro-
magnetic torque to the equation of motion of the rotor

I =T,-T, | (125)



where J, is the moment of inertia of the rotor
Q  is the mechanical angular frequency of the rotor
T, is the shaft torque.

The effect of friction losses is neglected. When Eq. (125) is used in the step-by-step
method, the time derivative is replaced by a first-order difference ratio. At each
time step the angular frequency and the rotation angle o are corrected by

T —_
e s,k
Qnxi =Qmx + —5 At

m

(126)
Oee1 = O + Ly i At

The rotor is rotated by changing the finite element mesh in the air gap or with an
air gap element to correspond to the value of the rotation angle.

Power balance and losses

At constant rotation speed a power balance exists in the model motor

em
dt

dW
=QmTe+Pf'es+P:es+_Tem 27

Py, = Pout + Phes + Pres +

where P;,  is the input power of the stator winding

is the output power on the shaft

Ps . is the resistive losses of the stator winding
Pr . is the resistive losses of the rotor cage

W__ is the electromagnetic energy of the fields.

As discussed in Section 2.2 the core material is treated as a non-conducting
material without losses. The friction losses are also neglected in Eq. (127). The

instantaneous input power of the motor is calculated from the potential
differences and the currents of the stator windings

m
Pp= ) o if (128)

In principle the resistive losses are calculated as a volume integral over the
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conductor
res J-
\%

However, as the circuit theoretical model is used for the stator windings the
resistive losses of the stator are calculated from the resistances and the currents
of the windings

Ql""

(129)

Phoe= D Ry (57 130)
i=1 . -

The resistive losses of the rotor cage are

f J- —dV

Q, .

=§; H( )_%%té}dv GE
V.

where V, is the volume of the i*? rotor bar inside the two-dimensional core region.
The expressions in Eq. (131) also include the power fed to the ends of the rotor
cage.

Eqgs. (127) - (131) are expressions for instantaneous power. In a steady state
average values are used. Expressions for the average powers are easily derived
from the equations above. In the time-stepping method the average values are
calculated by taking the time average of the power over a time interval long
enough. If the assumption of sinusoidal time variation is made, average values
are calculated as usual for the product of two phasors.

Eq (127) gives a possibility to test the methods used in the calculation of the
torque In a steady state the time average of the change of the electromagnetic
energy is zero if an integration time long enough is used. Thus an estimate for
the average value of the electromagnetic torque is obtained from the average
values of the powers. In Chapter 3 this method is used to check the reliability of
the torque values obtained from Eq. (124).



Parameters of the equivalent circuit

The results of a conventional machine calculation method are often given as
parameters of an equivalent circuit. It is also possible to obtain the parameters
from the finite element analysis of an induction motor although some extra
computation is needed. Figure 4 shows an equivalent circuit that is commonly
used for induction motors.

] R'(s)

Figure 4. An equivalent circuit of an induction motor.

The iron loss resistance often connected parallel to the magnetization reactance
X, is not included in the circuit, as iron losses are neglected in the analysis. The
components of an equivalent circuit are usually constants or at least independent
of time. The motion of the rotor is taken into account in the rotor resistance Rf
that is a function of the slip s. Thus equivalent circuits are related to the
assumptions of sinusoidal time variation and a pseudostationary rotor.

The impedance method described in the previous section gives the coupling
matrix between the line voltage and the stator and rotor currents. In a way Eq.
(119) can be taken as the voltage equation of a complicated equivalent circuit. A
method related to the theory of symmetric components is used to reduce the
coupling matrix of the impedance method to the parameters of the simple
equivalent circuit in Figure 4. If the stator winding has m phases and the rotor
bars are taken to form a polyphase system with Q. phases, the positive
phase-sequence stator voltage, stator current and rotor current are defined
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The subscript + is used for positive phase-sequence quantities. Q, is the number
of rotor bars in the solution sector discretized by the finite element method. The
equations are written for a solution sector containing an integer number of poleJ
pairs. By substituting the stator potential differences in Eq. (119) to the first

expression in Eq. (132) the positive phase-sequence voltage is obtained as a
function of the currents
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The first sum in Eq. (133) is taken to be the voltage induced by the positive
phase-sequence stator current and the second sum the voltage induced by the
positive phase-sequence rotor current. From this basis the equation is written in
the simple form
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where the impedances z%% and z are obtained by dividing the sum containing the
stator currents by i°, and the sum containing the rotor currents by i,

. 2n(i-1)

135)

The zero vector in Eq. (119) may be taken as the potential difference vector of the
rotor winding with Q,  phases. The positive phase-sequence rotor voltage is
formed in a similar manner as the positive phase-sequence stator voltage above
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or in a shorter form
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The coefficients are given by
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Eqs. (134) and (137) define the relation between the positive phase-sequence stator
voltage and the positive phase-sequence stator and rotor currents. As the
equations have been derived from the voltage equations of two magnetically
coupled polyphase windings having different phase numbers, the coupling
coefficients z5" and w' are not equal as they should be in equations of an
equivalent circuit. The equality is forced by rescaling Eq. (137)

sr
,z_rs (2" +w"il)=z2"i1+2"i, =0 (139)
w
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Eqgs. (134) and (139) define a simple equivalent circuit of the induction motor.
However, if leakage reactances are used, the rotor quantities have to be reduced
to the stator. The reduced rotor current in the stator winding should induce a
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fundamental component of the air gap flux that is equal to the fundamental
component of the flux induced by the original rotor current. Using this criterion
a reduction factor x is obtained

%
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where @51 and ®'! are the fundamental components of the air gap fluxes
induced separately by the stator and rotor currents. The flux components are
obtained as line integrals from the air gap. If a skewed motor is analyzed, the
fluxes are the average values computed from the slices. The reduced parameters
marked by an apostrophe are

ir._lir

=t S-+

SS 8S

Z =1Z

8T ¢+ ST

z =Kz 142)
—Z-I'S|=SZTS

er'=ﬁ2£rr

The stator current is not changed by the reduction. The components of the
equivalent circuit in Figure 4 are obtained from the reduced impedances
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As was emphasized in Section 2.3 the impedance matrix is associated with a
given operation state of the machine. The circuit parameters obtained from the
impedance matrix are, of course, associated with the same state. The method
can be used to analyze e.g. the effects of saturation on the parameters of the
equivalent circuit. Some results are given in the next chapter.



3 RESULTS
3.1 Test motors

The theory of the previous chapter is applied to the calculation of the operation
characteristics of two induction motors. The first motor, whose reduced cross
sectional geometry was already shown in Figure 1, is a three-phase cage
induction motor. The second motor has a conventional three-phase stator, but a
solid iron rotor. This motor type was chosen as a test motor because there are
several methods applicable to the analysis of a non-slotted solid rotor. For
instance methods based on coordinate transformations can be used. The cross
section of the solid rotor machine is shown in Figure 5. The main parameters of
the test motors are given in Table 1.

Figure 5. The cross section of the solid rotor machine. The equipotential lines of
the vector potential correspond to the operation at the rated voltage at slip 0.01.
Flux between two curves is 2.79 mWb/m.
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Table 1. Parameters of the motors used in the testing of the 'validity of computed
machine characteristics.

Machine type Cage rotor Solid rotor
machine machine
Number of pole pairs 2 2
Number of phases 3 3
Number of stator slots 36 36
Number of rotor slots HA 0
Stator diameter [mm] 235 202
Rotor diameter [mm] 145 124
Air gap [mm)] 045 0.38
Core length [mm] 195 145
Connection delta star
Rated voltage [V] 380 380
Rated frequency [Hz] 50 50
Rated current [A] 30 -
Rated power [kW] 15 -

The solid rotor was made of a shaft steel used in electrical machines. End rings
made of copper were soldered onto the end surfaces of the rotor in order to obtain
a more two-dimensional current distribution in the rotor. In the analysis the
ends of the rotor are taken as equipotential surfaces of the scalar potential.

Two rotors were constructed for the 15 kW motor. The first one is the original
rotor with 34 skewed slots. The skew is 1.2 stator slot pitches. The second rotor
has the same cross sectional geometry, but the slots are unskewed. Thus there
are actually three test motors, the two variants of the 15 kW motor and the solid
rotor machine. The motors were tested in the Laboratory of Electromechanics.
The measured and computed results are compared in the next sections. The
measurement methods are discussed in these connections.

3.2 Locked-rotor characteristics

The locked-rotor condition is the easiest operation state to be analyzed by
numerical field solution methods because there is no need to-take the motion into
account. However, the approximations used for modelling end windings and
skewed rotor bars may cause errors because these three-dimensional features
have especially large effects in the locked-rotor condition. An additional source of
error is the reduction of the number of rotor bars that is made in order to obtain a
smaller solution region. The effects of the reduced solution region are discussed



at the end of this section.

Figure 6 shows the magnetic field of the unskewed 15 kW motor in the
locked-rotor condition at the rated voltage. The assumption of sinusoidal time
variation has been used in the solution. It can be seen how the rotor cage restricts
the penetration of the flux varying at 50 Hz frequency. The flux seems to
accumulate into the teeth between the phase belts. The phenomenon can be
explained by studying an ideal case in which the permeability of iron is assumed
to be infinite and the rotor cage is assumed to form an ideal short circuit so that
no flux can penetrate into the rotor. In this case the magnetomotive force of a slot
current is spent in the leakage flux over the slot. If the currents in adjacent slots
are equal, the leakage fluxes over the slots are also equal. There is no radial flux
in the tooth between the slots. A radial flux can flow in a tooth only if the total
currents in the slots at the sides of the tooth are different.
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Figure 6. The magnetic field of the unskewed 15 kW motor in the locked-rotor
condition at the rated voltage.
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‘As the iron parts at the air gap region are strongly saturated, the choice of the
effective reluctivity should be critical in the assumption of sinusoidal time
variation. However, the results obtained by using different effective reluctivities
seem to differ less from each other in the locked-rotor condition than in the
no-load condition (Luomi et al. 1986). The starting currents and torques
computed for the unskewed 15 kW motor using four different effective
reluctivities are plotted in Figure 7. The results obtained by the step-by-step
method are also shown.

The best agreement with the step-by-step method is obtained by the effective
reluctivity defined by Eq. (47). Almost as good is the reluctivity defined by Eq. (49).
As similar results were also obtained for other machines, the effective reluctivity
defined by Eq. (47) was used when computing the results of this and the next
sections with the sinusoidal approximation. Locked-rotor characteristics
computed for various induction motors using the step-by-step method and the
sinusoidal approximation are given in Table 2. The skew has not been taken into
account.
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U] U vl
a) b)

Figure 7. The starting current (a) and torque (b) computed for the 15 kW motor
using different effective reluctivities. The definitions of the reluctivities are given
by Eqgs. (47) - (50). The results obtained by the step-by-step method are marked by
crosses.
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- Table 2. Comparison between locked-rotor characteristics obtained by the
step-by-step method and by the assumption of sinusoidal time variation. The
values correspond to the rated voltages of the machines. The effective reluctivity
used in the approximation of sinusoigal time variation is defined by Eq. (47).

. Step-by-step Sinusoidal
Machine method approximation

P=75kW Current [A] 111.7 111.7
p=1 Torque [Nm] 80.22 79.15
q=6 Power factor 0.594 0.592
P=15kW Current [A] 234.7 234.3
p=2 Torque [Nm] 269.4 266.6
q=3 Power factor 0.581 0.575
P=110kW Current [A] 1040 1028

p=4 Torque [Nm] 2159 2132

q=3 Power factor 0.361 0.356
P =250 kW Current [A] 2259 2251

p=3 Torque [Nm] 2923 2881

q=4 Power factor 0.238 0.236
P =350 kW Current [A] 2448 242.9
p=5 Torque [Nm] 5749 5553

q=3 Power factor 0.202 0.201
P =600 kW Current [A] 6165 606.7
p=4 Torque [Nm] 9683 9315

q=3 Power factor 0.131 0.127
P =800 kW Current [A] 593.1 586.9
p=2 Torque [Nm] 4321. 4220.
q=5 Power factor 0.149 0.146
Solid rotor machine Current [A] 63.10 65.23
p=2 Torque [Nm] 1462 1429
q=3 Power factor 0.755 0.718

The computed locked-rotor currents and torques of the three test motors are
compared with the measured values in Figures 8 - 10. The computed values are
within 15 % of the measured ones. The largest difference occurs in the case of the
solid rotor machine. In a solid rotor the current distribution is clearly
three-dimensional, especially at the ends of the rotor. A part of the difference
between the measured and computed results is explained by the fact that the
three-dimensional current and field are modelled by two-dimensional quantities.
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Figure 8. The locked-rotor current (a) and torque (b) of the unskewed 15 kW
motor as functions of the supply voltage.

The locked-rotor characteristics were measured by raising the voltage linearly
from zero to a value somewhat above the rated voltage, The voltage sweep lasted
about 5 seconds. The RMS-value of the line current was measured with an
RMS-amplifier, and the shaft torque was obtained from a torque transducer. The
measured signals were recorded by a pen recorder.

The temperatures of the windings rise significantly in a locked-rotor test. If a
new locked-rotor measurement was made immediately after a previous one, the
current and torque values obtained at the rated voltage were 2 - 4 % lower than
the values obtained at the previous measurement. Resistance values used in the
computation correspond to a temperature of 80 °C.

The field of the skewed 15 kW motor was solved by the impedance method
dividing the motor into three slices. It is seen by comparing the results in
Figures 8 and 9 that the method gives satisfactory results. The division of the
model motor into a larger number of slices is impractical as the results obtained
differ only a little from the results obtained by the three slices.
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- Figure 9. The locked-rotor current (a) and torque (b) of the skewed 15 kW motor
as functions of the supply voltage. The values computed for the unskewed motor
alz;e also given (marked by non-colored squares) in order to show the effect of the
skew.
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Figure 10. The locked-rotor current (a) and torque (b) of the solid rotor machine
as functions of the supply voltage.
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The relative values of the equivalent circuit parameters obtained for the skewed
15 kW motor are plotted in Figure 11 as functions of the supply voltage. The
parameters have been computed from the results of the impedance method and
they are associated with the locked-rotor condition.
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Figure 11. The parameters of the equivalent circuit computed for the skewed 15
kW motor in locked-rotor condition. 1) Stator resistance (0.830 Q). 2) Rotor
resistance (0.913 Q). 3) Stator leakage reactance (1.53 Q). 4) Rotor leakage
reactance (2.84 Q). 5) Magnetization reactance (61.4 Q). The curves have been
scaled with respect to the non-saturated values of the parameters given above in
parentheses.

The computed results shown in Figures 6 - 11 were obtained by using
isoparametric, triangular, second-order elements. The finite element mesh used
for the 15 kW machines was shown in Figure 2. When third-order elements are
used, the results are essentially equal to those obtained by second-order elements.
If the same number of first-order elements is used in the discretization, the
current and torque values obtained are 5 - 20 % higher than the values obtained
by second-order elements. A closer agreement is obtained if the number of
first-order elements is increased, especially at the air gap region. As the results
obtained by second-order elements seem to match the measured results quite
well, most of the computed results given in this and the next sections have been
computed using second-order elements.

As mentioned in Section 2.1 an induction machine usually has such a symmetry
that the solution sector contains two poles. If the number of slots per pole and



71

phase is large, the finite element mesh may contain so many nodes that the time
needed for the solution becomes a problem. In such a case the geometry of the
actual machine has to be reduced. This is done by reducing the number of rotor
slots in order to obtain a solution sector that contains only one pole or one phase
belt. The width of the rotor conductors is also changed in order to conserve the
ratio between the conductor and core cross sectional areas. The results given
above for the 15 kW motors have been computed for a reduced machine geometry,
whose solution sector contains the cross sectional area corresponding to one pole
pitch.

The change of the geometry affects the computed machine characteristics. This
effect can be seen in the locked-rotor quantities computed for three variants of the
unskewed 15 kW motor (Table 3). The motor variants have the same stator, but
the rotors have different slot numbers. The symmetry sectors corresponding to
the slot numbers 34, 32 and 36 contain one pole pair, one pole and one phase belt
respectively. The effects of the change of geometry may be masked behind the
averaging made in the calculation of the effective values, but they become very
clear when the instantaneous values of step-by-step solutions are compared.
Figure 12 shows the time variation of the locked-rotor torque computed for the
three motor variants. First-order elements have been used in the computation.

Table 3. The effective values of the locked-rotor characteristics of the 15 kW
motor having unskewed rotors of different slot numbers. First-order elements
have been used in the computation.

Symmetry sector One pole pair One pole One phase belt
Number of rotor slots A 32 36
Step-by-step method

Current [A] 273.2 2719 288.1
Torque [Nm] 303.6 307.9 81.17
Power factor 0.615 0.611 0.641

Sinusoidal approx. --

Current [A] 273.9 272.6 289.0
Torque [Nm] 304.3 301.6 92.32
Power factor 0.610 0.606 0.639
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Figure 12. The locked-rotor torques of the 15 kW motor having unskewed rotors of
different slot numbers. The curves have been computed using the step-by-step
method. a) The original rotor geometry with 34 slots. In this case the symmetry
sector contains two poles. b) A rotor with 32 slots. The symmetry sector contains
one pole. c) A rotor with 36 slots. The rotor has the same number of slots as the
stator and the symmetry sector contains one phase belt.

Only one particular case is treated in Table 3 and Figure 12. The results
computed for other machine types, however, follow the same lines. The effective
values of the operating characteristics are not greatly affected if the solution
geometry is reduced from one pole pair to one pole as long as the stator and the
rotor have different slot numbers. A further reduction to one phase belt may
cause large errors in the effective values. The time-dependence of the quantities
is changed radically in the reduction of the solution region from one pole pair to

one pole.



3.3 Rotating machine
3.3.1 Rotor motion

The different ways of taking the motion of the rotor into account are compared in
this section. The comparison is made by studying the results computed for the
solid rotor machine. In order to eliminate the effect of nonlinearity the
reluctivities of the materials have been fixed to their nonsaturated values. The
two-dimensional field of the linearized machine satisfies Eq. (53). The results
obtained by the coordinate transformation method are compared with the results
obtained by the pseudostationary approximation and by the step-by-step method.

Figure 13 shows the current, torque and power factor computed for the linearized
machine. The curves marked by non-colored circles are computed using the
coordinate transformation method (Eq. (53)). The results obtained by using the
approximation of a pseudostationary rotor are marked by black circles. The
currents obtained by the two methods are so close to each other that it is not
possible to distinguish them on the scale of the figure. The same applies to the
power factor. On the other hand there is a large difference between the torques
computed by the two methods. The same effect will also be seen in Section 3.3.3
when the computation of torque versus speed curves of true saturable machines
is discussed. The errors due to the pseudostationary approximation are
significant in the torque but smaller in the current.

If the step-by-step method with short enough time steps is used, the results are
essentially the same as the results obtained by the coordinate transformation
method. Table 4 gives the main characteristics of the linearized solid rotor
machine computed using different step sizes. The column on the right hand side
is obtained by using the coordinate transformation method.

It is seen by comparing the results (especially the torque values) obtained with
different slip values that the step size must be shorter for a fast moving rotor. The
effect is easily explained. If a too long step size is used, the magnetic field in the
elements at the rotor surface changes quite discontinuously as the stator slots
pass by. This induces unreal eddy-currents at the rotor surface of the model
machine. The effect of the speed on the step size is also seen in Table 5, where the
power balance of the linearized machine is given at different slips.
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Figure 13. Comparison of the results obtained for the linearized solid rotor
machine. The results of the coordinate transformation method are marked by
non-colored circles connected by lines. The results obtained by the
pseudostationary approximation are marked by black circles. The values
obtained by the two methods for the current and the power factor are so close to
each other that the difference is not distinguishable on the scale of the figure.
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Table 4. The effect of step size on the results computed for the linearized solid
rotor machine. The right hand column is obtained by using the coordinate
transformation method.

Sinusoidal
Step-by-step method time variation

Step size [ms] 0.2 01 0.05 0.025 -
Slip=0.1

Current [A] 12.000 | 11993 | 11.992 | 11.992 11.995
Torque [Nm] 2.966 4818 5169 5.208 5228
Power factor 0.308 0.308 0.308 0.308 0.308
Slip = 0.7

Current [A] 18357 | 18354 | 18.353 18.336
Torque [Nm] 20470 | 20515 | 20.520 - 20.593
Power factor 0.522 0.522 0.522 0.523
Slip=1.0

Current [A] 20.350 | 20.346 | 20.345 20.344
Torque [Nm] 26956 | 26945 | 26.941 - 26.941
Power factor 0.583 0.583 0.583 0.583

The results given in Tables 4 and 5 show that relatively long time steps can be
used in the computation of the stator current, the input power or the power
factor. Short time steps must be used when the correct values of the torque and
the rotor losses of a running machine are of interest.

As mentioned in Section 2.4 the power balance can be used to check the validity of
the torque computation method. The input and resistive powers given in Table 5
have been computed from the currents and potential differences induced in the
stator windings and in the solid rotor at each time step. The shaft power is the
product of the mechanical angular frequency and the electromagnetic torque
computed from the air gap using Eq. (124). The figures given are the steady-state
average values iniiegréted over one period of line frequency. The errors in the
power balance become very small when the step size is decreased. This shows
that the torque computation method is compatible with the method used in the
field solution.
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Table 5. The effect of step size on the power balance of the linearized solid rotor
machine. The error in the power balance is obtained by subtracting the other
power components from the input power. The error percentages have been
calculated with respect to the input power.

Step size [ms] 0.2 01 0.05 0.025
Slip=10.1
Input power [W] 1408.139 | 1407.394 | 1407187 | 1407129
Shaft power [W] 419.308 681.129 730.750 736.264
Stator losses [W] 87.420 87.319 87.302 87.294
Rotor losses [W] 506418 | 557618 | 574985 | 579.999
Error [W] 394.993 81.329 14150 3.573
Error [%] 281 5.8 1.0 0.25
Slip = 0.7
Input power [W] | 3652.778 | 3653128 | 3653179 -
Shaft power (W] | 964626 | 966.747 | 966.982
Stator losses [W] | 204.556 | 204.466 | 204.453
Rotor losses [W] 2480.594 | 2481.580 | 2481.804
Error [W] 3.002 0.335 0.060
Error [%] 0.082 0.009 0.002
Slip=1.0
Input power [W] | 4519227 | 4519.391 | 4519.371 -
Shaft power [W] 0 0 0
Stator losses [W] 251.383 | 251.269 251.241
Rotor losses [W] 4267.875 | 4268195 | 4268211
Error [W] 0.031 0.073 0.081
Error (%] 0.001 0.002 0.002

3.32 No-load operation

In no-load operation the three-dimensionality of the machine has only a small
effect on the characteristics. On the other hand iron losses and eddy-current
losses due to higher harmonic components should be taken into account. A
step-by-step solution is needed if the effects of higher harmonics are studied
properly. As discussed in the previous section a short step length should be used
when computing a fast moving rotor. This means long computation times.
Fortunately the pseudostationary approximation gives quite good results in the
calculation of the no-load current, the most important no-load characteristic.
Iron losses are neglected in the models used.
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The no-load stator currents of the 15 kW and solid rotor motors are plotted as
functions of the supply voltages in Figure 14. In the experiment the induction
motor was driven by a synchronous motor. In this way the effect of friction losses
is eliminated from the measured results. The computed results have been
obtained by using the assumption of a pseudostationary rotor. At zero slip this
means that the conductivity of the rotor bars is taken to be zero.

In the synchronous operation the field in the rotor is almost a DC field and varies
nearly unidirectionally when the supply voltage is varied. The hysteresis of the
rotor material is seen as the hysteresis between the no-load current and the
stator voltage. The hysteresis loops, parts of which are shown in the figures,
were obtained by starting from the maximum voltage, decreasing the voltage
gradually to zero, changing the rotor angle 180 electrical degrees by reversing the
magnetizing current of the synchronous machine and gradually raising the
voltage of the induction motor back to the maximum value.

The solid rotor machine has a wider hysteresis loop in its magnetization current
than the 15 kW motor. This is because of the rotor material. The solid rotor was
made of a shaft steel that has much larger magnetic hysteresis than the
electrical steel sheet used as the core material of the 15 kW motor.
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Figure 14. The no-load currents of the unskewed 15 kW motor (a) and the solid
rotor machine (b) as functions of the supply voltage. The curves marked by circles
are the two branches of the hysteresis loop due to the magnetic hysteresis of the
rotor. The computed no-load currents are marked by squares.
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At low saturation levels the computed results agree well with the measured ones.
At supply voltages above the rated value the error increases. The approximation
of sinusoidal time variation cannot model accurately the distorted current
waveforms associated with high saturation levels.

Figure 15 gives the current waveforms of the unskewed 15 kW motor in no-load
operation. The curves on the left hand side are computed by the step-by-step
method and the curves on the right hand side are measured. The harmonic

components due to the saturation and the slotting of the rotor can be clearly seen
in the current waveforms.

The curves plotted in Figure 16 are the traces of flux density vectors in the core of
the unskewed 15 kW motor at synchronous speed. The curves have been obtained
by the step-by-step method. In the sinusoidal approximation the trace of a flux
density vector is an ellipse. It can be seen that the assumption of sinusoidal time
variation is a very rough approximation. It is also obvious that the iron loss
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Figure 15. The waveforms of the line and winding currents of the unskewed 15
kW motor at no-load. The curves have been computed (a) and measured (b) for the
delta connected machine running at synchronous speed and supplied by the

rated voltage. The nonreduced rotor geometry of the 15 kW motor has been used
in the simulation.
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calculation methods based on the assumption of a magnetic field varying
unidirectionally at a single frequency are not suitable for accurate loss analysis
of induction motors.
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Figure 16. The traces of flux density vectors in the core of the unskewed 15 kW
motor running at synchronous speed. The flux density vectors in the stator are
given in the stator coordinate system and the one in the rotor is given in the rotor
coordinate system. The points for which the curves have been computed are
shown in figure e).
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3.3.3 Loaded running motor

The main problem in the computation of a running induction motor is how to
model the motion of the rotor accurately. The correct way is the step-by-step
method in which the stator and rotor fields are solved in their own coordinate
systems and matched with each other in the air gap. The method is, however, too
slow to be used in the routine computation of e.g. torque versus speed curves of
induction machines. The pseudostationary approximation on the other hand is
too rough a simplification to give accurate torque values.

The current and torque of the 15 kW motor as functions of the speed at the rated
voltage are shown in Figure 17. The currents obtained by both the step-by-step
method and the pseudostationary approximation agree well with the measured
values. The step-by-step method gives satisfactory torque values, too, but there are
large errors in the torques obtained by the assumption of a pseudostationary
rotor.
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Figure 17. The current and torque computed and measured for the 15 kW motor
as functions of the rotation speed.
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Figure 18 shows the current and torque of the solid rotor machine as functions of
the speed. In this case there are quite large differences between the measured
and computed currents. The error can be partly explained by the fact that the
three-dimensional effects at the ends of the solid rotor have been neglected. In the
sinusoidal approximation the rotation of the motor has been modelled by the
coordinate transformations. It is a correct method in the analysis of a linearized
machine.

In a current versus speed or torque versus speed measurement the induction
motor was driven by a DC motor supplied by a four quadrant thyristor converter.
The induction motor was supplied by the rated line voltage. The rotation speed of
the motors was controlled by the speed feedback circuit of the converter. In the
measurement the rotation speed was swept linearly from a value somewhat
above the synchronous speed down to a negative value. The time of the sweep was
about 12 s. The line current was measured by an RMS-amplifier, and the shaft
torque was obtained from a torque transducer. The measured signals were
recorded by a pen recorder.
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Figure 18. The current and torque computed and measured for the solid rotor
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Figure 19 is presented in order to demonstrate the flexibility of the step-by-step
method. The computed and measured current and voltage waveforms of the solid
rotor machine supplied by an inverter are shown. The curves have been
computed for the solid rotor machine because in this case the symmetry sector of
the actual machine contains only one pole pitch permitting a relatively small
finite element mesh. The method is applicable to the computation of cage and

wound-rotor machines, but they usually have symmetries that force the use of
larger element meshes.
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Figure 19. The current and voltage waveforms computed (a) and measured (b)
for the star connected solid rotor machine in inverter supply. The frequency of
the supply voltage is 60 Hz and the machine is running at slip 0.1. In the
simulation the supply voltage has been modelled by square pulses shown in the

first figure of column a). The middle figures give the voltage of a phase winding.
The star point is not connected.



3.3.4 Transient phenomena

From the point of view of the step-by-step method it is quite the same whether the
machine under simulation is in a transient state or in a steady state. Transients

usually occur even in the simulation of a steady state as the available initial state
is seldom the correct steady state.

Figure 20 shows the time variation of machine quantities during a starting of the
unskewed 15 kW motor. At time t = 0 a sinusoidal voltage corresponding to the
rated value of the machine has been connected to the delta connected stator
winding. The shaft torque has been zero in the simulation. The motor reaches its
rated speed in about 2.5 periods of the 50 Hz line frequency.
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Figure 20. Starting of the unskewed 15 kW motor without a load torque. The
motor is delta connected and supplied by the rated voltage. The line currents of
the three-phase system are shown in the topmost figure and the electromagnetic
torque acting on the rotor in the middle figure. The fluctuations in the torque are
due to the unskewed stator and rotor slots moving passed each other. The
nonreduced rotor geometry of the 15 kW motor has been used in the simulation.
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3.4 Discussion about the results

The main factor that limits the use of numerical field solution methods in the
routine calculation of electrical machines is the large amount of computation
needed in the solution. Most of the simplifications discussed in Section 2.2 were
made in order to decrease the computation time. As the use of a more precise
method usually leads to longer solution times, a compromise between the
accuracy and the solution time has to be made when choosing the method.

Solution times

Typical CPU times needed in the computation of the locked-rotor characteristics
of the unskewed 15 kW motor are given in Table 6 for the different methods and
for first-, second- or third-order triangular elements. The field analysis routines
have been run on an IBM 3090-180 computer.

The solution times given for the sinusoidal approximation correspond to
Newton-Raphson solutions with ten iteration steps. Usually a solution accurate
enough is obtained in 4 - 7 iteration steps. The values given for the step-by-step
method are the times needed in the simulation of one period of the AC cycle
divided into 200 time steps. If a steady-state operation is simulated by the
step-by-step method, the computation of two AC cycles is usually enough to reach

Table 6. The CPU times needed in the computation of the operating
characteristics of the 15 kW motor in the locked-rotor condition. The values given
for the step-by-step method are the times spent in the simulation of one AC cycle.

Element meshes Sinusoidal Step-by-step

approximation method

904 first-order elements 12.07 s 2364 s
474 node points (10 iteration steps) | (200 time steps)

904 second-order elements 1282s 2526 s
1851 node points (10 iteration steps) | (200 time steps)

904 third-order elements 650.6 s 15800 s
3228 node points (10 iteration steps)| (200 time steps)
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a steady state good enough. In this case the initial state has been obtained from
the results of the sinusoidal approximation, as explained at the end of Section
2.3.3. The transients of an induction machine usually last much longer than two
AC cycles. When transient phenomena are studied the simulation times are
longer than the times given in Table 6.

The solution of the machine characteristics by the sinusoidal approximation is
more than 20 times faster than the solution by the step-by-step method. Therefore
the sinusoidal approximation is preferred in all cases where the results obtained
by the method are reliable enough. The main shortage of the sinusoidal
approximation is the lack of proper modelling for the motion of the rotor.

There are some possibilities for shortening the computation times. A large part
of the Jacobian matrix remains unchanged during the Newton-Raphson
iteration. Only the terms in the expressions of the matrix elements associated
with the reluctivity and the matrix elements associated with the air gap nodes
change from one iteration step to another. It would be economic to compute the
constant part of the Jacobian only once and store it. At present the whole
Jacobian is recalculated at each iteration step. Nyamusa et al. (1986) have
described an accelerated Newton-Raphson method in which the elements of the
Jacobian are recalculated only a couple of times during the iteration process.
Most iteration steps are performed using an old Jacobian. Computer resources
are saved both in the computation of the matrix elements and in the solution of
the matrix equation as the triangular factor matrices used in the Gaussian
elimination are computed only for a new Jacobian.

A short computation time is obtained by using a first-order finite element mesh
containing the smallest number of elements needed to describe the geometry. The
results obtained by the first-order discretization, however, differ significantly
from the measured results and the results obtained by a second-order finite
element approximation. A better accuracy is obtained if the number of first-order
elements is increased, especially at the air gap region, but this also increases the
solution time.

Accuracy

The absolute accuracy of the computation methods remains a little vague because
of the small number of motors analyzed. The results computed for the 15 kW
motors agree well with the measured results. There are larger differences
between the measured and computed results for the solid rotor machine. At least
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a part of the error can be explained by the neglection of the end effects of the solid
rotor.

The statistical variation of the operating characteristics from one machine to
another inside a machine series has to be taken into account when comparing
computed results with the results measured from a single test motor. The
variation is caused by irregularities in the dimensions of the construction parts,
the variation of material properties of the electrical steel sheets, etc. Because of
the variation results measured from a single motor cannot be taken as absolutely
reliable reference values when the accuracy of a calculation method is
considered.

According to the results obtained in the type and routine tests of induction motors
at the Stromberg plants, a typical coefficient of variation (ratio between the
standard deviation and the mean) of the no-load current is about 1 %. The
corresponding value for the nonsaturated locked-rotor current is about 0.7 %.
Deviations from the mean values occur that are larger than 5 %. The values
given are based on quite a small number of tests (5-15 tested machines per a
machine type, 8 machine types), but they show that mean values obtained from
tests made for several machines of the same type would give a more reliable basis
for the comparison.

Another factor that complicates the comparison between the measured and
computed results is the temperature of the windings. The high currents in a
torque versus speed measurement or in a locked-rotor test cause large resistive
losses that rapidly raise the temperatures of the conductors. The temperature
has a significant effect on the conductivities of the winding materials and thus on
the performance of the machine. As it is impossible to measure the exact
temperature distribution in the conductors during a test, the duration of the test
should be as short as possible in order to limit the temperature rise. On the other
hand, the machine should be in a steady state when measuring steady-state
quantities. A compromise between the rise in temperature and the requirement
of a steady state has to be made.

The time of the voltage sweep in a locked-rotor test was about 5 seconds and the
time of the speed sweep in a torque versus speed measurement was about 12
seconds. If another test was made immediately after a previous one, the current
and torque values obtained in the test were 2-4 % lower in the locked-rotor case
and 5-15 % lower in the torque versus speed measurement. These figures give an
idea of the amount of uncertainty in the results due to the unknown temperature.



In the computation a constant temperature of 80 °C was assumed.

For the test motors the differences between the measured machine quantities and
the corresponding values obtained by the step-by-step method are less than 15 %.
The same figure also applies to the sinusoidal approximation, except in the case
of the torque of a rotating machine. Taking the various approximations made in
the analysis into account, the computed results agree reasonably well with the
measured ones. A larger number of motors should be carefully analyzed in order
to get a more reliable judgement of the accuracy of the analysis methods.

Solution of different operation states

The sinusoidal approximation gives surprisingly good results in the compui:ation
of locked-rotor quantities when compared with the step-by-step method. Thus it is
no use to spend computer resources on a step-by-step solution if only the effective
values of locked-rotor quantities are of interest. The main error sources in the
computation of locked-rotor operation are associated with the three-dimension-
ality of the machine.

The effective value of the no-load current is obtained accurately enough by the
sinusoidal approximation. If the losses due to higher harmonic components or
the waveforms of the quantities are studied, the step-by-step method has to be
used. The neglection of iron losses is the main failing of the methods when
computing no-load quantities. At present the solution routines are not applicable
to the computation of the no-load losses of a machine. There is a research project
going on in the Laboratory of Electromechanics, the aim of which is to develop a
phenomenological model for the hysteresis of iron that could be implemented in
the step-by-step solution routines. When such a model is obtained, the calculation
of hysteresis losses will be included in the analysis method.

The failure in the calculations of the torque of a running motor is the main
weakness of the sinusoidal approximation and the pseudostationary rotor model.
The step-by-step method gives the torque of the 15 kW motor satisfactorily. The
method is, however, too slow to be used in a detailed analysis of torque versus
speed characteristics of induction motors. In the sinusoidal approximation the
method used by Williamson & Ralph (1983) should give the torque more
accurately. Some preliminary tests made using this method showed, however,
that the computer time needed in the separate iterations of the field and voltage
equations approaches the time of a step-by-step solution. The advantage of the
method is, however, that skewed rotor slots are modelled without extra
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computation.

The step-by-step method has to be used in the analysis of motors supplied by
non-sinusoidal voltages or for the simulation of transient states. In the analysis
of the inverter driven solid rotor machine the waveforms of the quantities
obtained by the step-by-step method closely match the measured waveforms
(Figure 19). The accuracy of the method in the simulation of transient
phenomena has not been tested, but in principle there is no difference whether a
steady state or a transient state is analyzed by the method.



4 SUMMARY"

The analysis of induction motors is based on the numerical solution of the
magnetic vector potential in the core region of the machine. The magnetic field is
assumed to be two-dimensional. The two-dimensional field equation is
discretized by the finite element method. The voltage equations of the stator and
rotor windings are solved together with the discretized field equation.

The three-dimensional features of the machine are taken into account within the
two-dimensional model. The end windings are modelled as constant impedances
in the voltage equations of the windings. The skew is taken into account by
dividing the machine into unskewed slices, the rotors of which have been rotated
an angle corresponding to the skew. The currents of the conductors are assumed
to be continuous from slice to slice. The magnetic field of each slice is solved
separately by the two-dimensional model. The potential differences induced in
the windings are summed from the slices and from the end windings.

The time-dependence of the field and the motion of the rotor are modelled
correctly if the field is solved by the step-by-step method. It is, however, very
time-consuming to use the step-by-step method in routine calculations. The
computation time is reduced significantly if the time-dependence of the field
quantities is assumed to be sinusoidal in spite of the nonlinearity of core
materials and the rotation of the rotor. The pseudostationary approximation is
used for modelling the effects of rotation. In the special case of a homogeneous
solid rotor the motion is taken into account by using coordinate transformations.

Comparison between the results obtained by the step-by-step method and the
simplified models shows that the sinusoidal approximation gives good results in
the computation of locked-rotor characteristics of induction motors. The shortage
of the pseudostationary approximation becomes clear when the method is used to
compute torque versus speed curves. Large errors occur in the torque values. The
current is obtained more accurately.

The computed and measured results agree within 15 %. Several simplifications
are made in the analysis that can explain the differences. For instance the effect
of end-region fields is approximated by a simple end-winding inductance. The
currents in the laminated iron core of the machine are neglected and the
magnetic properties of iron are approximated by a single-valued reluctivity
curve. Taking the various approximations into account, the computed results
agree reasonably well with the measured ones.
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APPENDIX A. ROTATING CONDUCTING CYLINDER IN A TRANSVERSE
MAGNETIC FIELD

Let us consider a circular cylinder having thin conducting walls and rotating
around its axis at the mechanical angular frequency Q_ in a transverse
magnetic field. The time variation of the magnetic field observed in a stationary
coordinate system is sinusoidal at the angular frequency ®. The magnetic field
induced by the currents in the cylinder and by exterior sources can be derived
from a complex vector potential A

oo

A= 2 {ame ™) o = A¢on e, (A1)

n=-—ece

where r and ¢ are the cylindrical coordinates

t is time

A (r) is a complex r-dependent Fourier-coefficient

e, is the unit vector parallel to the axis of the cylinder.
The coefficient p in Eq. (Al) corresponds to the number of pole pairs in the
analysis of electrical machines. Periodic symmetry in the azimuthal direction is
associated with this parameter. If there is no periodic symmetry, p is equal to 1.

If the ends of the cylinder are assumed to be perfectly short circuited, the electric
field strength E' in the cylinder is

- S
E__at VQ——

dA'
—_— A2

3% (A2)
where ¢' is the scalar potential. The quantities in Eq. (A2) are observed and the
differentiations are made in the rotating coordinate system fixed to the cylinder.
The term on the right hand side of Eq. (A2) can be expressed with the aid of the
quantities observed in the stationary coordinate system

JA' oA .
E—— 3t +(V V)A (A3)

where v is the velocity of the cylinder wall. The electric field induces a current
density according to Ohm's law
JA

sl=0E'=~0'—a-t— (A4)
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where ¢ is the conductivity of the cylinder. The velocity of the cylinder wall
written in circular cylindrical coordinates is

V=ere¢=(1—s)§req, (A5)

The velocity has been expressed as a function of the slip s, the angular frequency
o and the number of pole pairs p as is the habit in the analysis of electrical
machines. When Eqgs. (A3), (A5) and (A1) are substituted in Eq. (A4), the equation
of the current density becomes

dA ® dA
1o~ 30955} o
:(S{—jS(DA+j0)(1—S) Z(n-l)AH(r)e—j(mxp—cot) e, A6)

In the pseudostationary approximation the equation for the current density is
Jos =—JOS0OA (A

Comparison between the equations (A6) and (A7) shows that the pseudo-
stationary approximation gives the right current density only when the slip is
equal to one (stationary cylinder). If the magnetic field consists of the first
harmonic component only, Eq. (A7) gives the right current density at all values of
the slip.

The torque acting on the cylinder is obtained from the equation

2n
T=I{rx(JxB)]dV=r Arlj J%%dq)ez (A8)
\"A 0

where Ar is the wall thickness of the cylinder and 1 is the length of the cylinder.
After the substitutions the average value of torque is obtained from the equation

Ty=TocopArlr Z {ﬂ—(l—s)n]n_.b_an_;}ez (A9)

n=-—oo

where An* is the complex conjugate of A . The torque of the pseudostationary
approximation is



Tpsav =rRoOpArlrs Z (n._A_n-A—:l)eZ (AlO)

NnN=—o0

The pseudostationary approximation gives the right value of torque only when
the slip is equal to one.

The derivations given above are also valid for solid conducting cylinders of
magnetically linear materials. The torque equations (A9) and (A10) must be
integrated over the volume of the cylinder.





