
Ma 84

ACTA
POLYTECHNICA
SCANDINAVICA
MATHEMATICS, COMPUTING AND MANAGEMENT IN ENGINEERING SERIES No. 84

Subspace Classifiers in Recognition of Handwritten Digits

JORMA LAAKSONEN

Helsinki University of Technology
Department of Computer Science and Engineering
Laboratory of Computer and Information Science
P.O. Box 2200
FIN-02015 HUT
Finland

Thesis for the degree of Doctor of Technology to be presented with due per-
mission for public examination and criticism in Auditorium F1 of Helsinki
University of Technology on the 7th of May 1997, at 12 o’clock noon.

ESPOO 1997

2

Laaksonen, J., Subspace Classifiers in Recognition of Handwritten Digits.
Acta Polytechnica Scandinavica, Mathematics, Computing and Management in Engineer-
ing Series No. 84, Espoo 1997, 152 pp. Published by the Finnish Academy of Technology.
ISBN 952-5148-20-3. ISSN 1238-9803. UDC 681.327.12:519.2

Keywords

pattern recognition, adaptive systems, neural networks, statistical classification, subspace
methods, prototype-based classification, feature extraction, optical character recognition,
handwritten digits, classifier comparison, benchmarking study

Abstract

This thesis consists of two parts. The first part reviews the general structure of a pat-
tern recognition system and, in particular, various statistical and neural classification
algorithms. The presentation then focuses on subspace classification methods that form
a family of semiparametric methods. Several improvements on the traditional subspace
classification rule are presented. Most importantly, two new classification techniques,
here named the Local Subspace Classifier (LSC) and the Convex Local Subspace Clas-
sifier (LSC+), are introduced. These new methods connect the subspace principle to
the family of nonparametric prototype-based classifiers and, thus, seek to combine the
benefits of both approaches.

The second part addresses the recognition of handwritten digits, which is the case study of
this thesis. Special attention is given to feature extraction methods in optical character
recognition systems. As a novel contribution, a new method, here named the error-
corrective feature extraction, is presented. The prototype recognition system developed
for the experiments is described and various options in the implementation are discussed.

For the background of the experiments, thirteen well-known statistical and neural clas-
sification algorithms were tested. The results obtained with two traditional subspace
methods and ten novel techniques presented in this thesis are compared with them. The
results show that the Convex Local Subspace Classifier performs better than any other
classification algorithm in the comparison.

The conclusions of this thesis state that the suggested enhancements make the subspace
methods very useful for tasks like the recognition of handwritten digits. This result is
expected to be applicable in other similar cases of recognizing two-dimensional isolated
visual objects.

c© All rights reserved. No part of the publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the author.

To my parents

4

5

Acknowledgments

Most of all, I wish to acknowledge the guidance of my supervisor, Professor Erkki Oja,
in the preparation of this work. He was the first to hear about, and comment on, the
innovations that constitute the substance of this thesis. I have been able to rely with
confidence on his extensive expertise in the field.

Secondly, I would like to express my gratitude to Academy Professor Teuvo Kohonen, who
earlier was my supervisor and who introduced me to the key concepts of the problems
involved in this thesis. He has addressed many of the questions discussed in this work,
and, in general, his contributions to scientific research in the fields of pattern recognition
and neural networks have been immense.

In addition to Professor Erkki Oja, Docent Lasse Holmström, Dr. Petri Koistinen, and
Professor Jouko Lampinen have coauthored publications used as the foundation of some
parts of this thesis. This collaboration has not only been successful but, also, most
pleasant.

Of my colleagues at the Laboratory of Computer and Information Science and at the
Neural Networks Research Centre of Helsinki University of Technology, I wish to first
thank Lic. Tech. Kimmo Valkealahti. His careful proofreading of my manuscript uncovered
many weaknesses which I was then able to correct. Also, I’m very grateful to my long-
time colleague and first instructor, Docent Jari Kangas, for many enlightening discussions
during the eight years we worked together. For providing an inspiring atmosphere for
scientific research, I thank all my co-workers at the laboratory and at the research centre.

This manuscript was reviewed by Associate Professor Pauli Kuosmanen, Tampere Univer-
sity of Technology, and Docent Visa Koivunen, University of Oulu. I hereby express my
thanks to them. The text was also read and revised by Dr. Atro Voutilainen, Dr. Pauliina
Raento, and Ms Kathleen Tipton. Their outstanding contributions to the readability of
the thesis are herewith acknowledged.

Finally, I wish to thank my dear wife Tuula Nissinen, who has shared in the delights and
griefs of this research and writing process with me.

Otaniemi, April 18, 1997

6

7

Contents

Abstract 2

Acknowledgments 5

Contents 7

List of Symbols 11

List of Acronyms 13

1 Introduction 15

1.1 Summary of Novelties and Contributions 16

2 Parts of a Pattern Recognition System 19

2.1 Data Collection . 20

2.2 Registration . 21

2.3 Preprocessing . 21

2.4 Segmentation . 22

2.5 Normalization . 22

2.6 Feature Extraction . 23

2.7 Classification and Clustering . 24

2.8 Postprocessing . 24

2.9 Feedback Between Stages . 25

2.10 Trainable Parts in a System . 26

8 CONTENTS

3 Classification Methods in Pattern Recognition 27

3.1 Mathematical Preliminaries . 29

3.2 Density Estimation Methods . 30

3.2.1 Discriminant Analysis Methods . 31

3.2.2 Kernel Discriminant Analysis, Probabilistic Neural Net 32

3.2.3 Reduced Kernel Density Analysis, Radial Basis Functions 33

3.3 Regression Methods . 33

3.3.1 Multi-Layer Perceptron . 35

3.3.2 Local Linear Regression . 35

3.3.3 Tree classifier, MARS and FDA . 36

3.4 Prototype Classifiers . 37

3.4.1 k-Nearest Neighbor Classifiers . 37

3.4.2 Learning Vector Quantization . 38

3.4.3 Learning k-NN Classifier . 39

3.5 Special Properties of Neural Methods . 40

3.6 Cross-Validation in Classifier Design . 42

3.7 Rejection . 42

3.8 Committees . 43

3.9 On Comparing Classifiers . 44

3.10 Classifiers: Theory and Practice . 45

4 Subspace Classification Methods 47

4.1 Classical Subspace Methods . 48

4.1.1 Subspace Basics . 48

4.1.2 Classification Rule . 50

4.1.3 CLAFIC . 50

4.1.4 Multiple Similarity Method . 51

4.1.5 Method of Orthogonal Subspaces 51

4.1.6 Generalized Fukunaga-Koontz Method 52

CONTENTS 9

4.2 Basic Learning Subspace Methods . 53

4.2.1 Category Feature Subspace Method 53

4.2.2 Learning Subspace Method . 54

4.2.3 Averaged Learning Subspace Method 55

4.2.4 Neural Network Interpretation of Subspace Learning 56

4.3 Modifications on Subspace Classifiers . 57

4.3.1 Using Class-Specific Means . 57

4.3.2 Selection of Subspace Dimensions 59

4.3.3 Weighted Projection Measures . 60

4.3.4 Multiple Subspaces per Class . 61

4.3.5 Treatment of Neighborhood of Origin 62

4.3.6 Density Function Interpretation of Subspace Methods 62

4.3.7 Computational Aspects . 67

4.4 Prospects of Subspace Classifiers . 68

5 Local Subspace Classifier 71

5.1 Basic Local Subspace Classifier . 71

5.2 LSC+ Classifier . 75

5.3 Combining LSC with Prototype Classifiers 76

5.4 Iterative Solution for LSC . 78

5.5 Neural Network Interpretation of LSC . 79

6 Survey of Off-line Recognition of Handwriting 83

6.1 History . 83

6.2 Application Areas . 84

6.3 Fields of Character Recognition . 85

6.4 Feature Extraction in Handwriting Recognition 87

6.4.1 Reconstruction from Features . 90

6.4.2 Template Matching . 90

10 CONTENTS

6.4.3 Volume Features . 91

6.4.4 Outline Features . 99

6.4.5 Skeleton Features . 102

6.4.6 Discrete Features . 104

6.4.7 Zoning: Combination of Low-Level Features 105

6.4.8 Error-Corrective Feature Extraction in OCR 106

6.5 OCR: From Parts to a Whole . 108

7 Prototype Recognition System 111

7.1 Image Acquisition . 111

7.2 Registration of Images . 113

7.3 Digit Segmentation . 113

7.4 Normalization of Digits . 114

7.5 Feature Extraction . 115

7.6 Data Sets . 115

8 Comparison of Classification Methods 117

8.1 CLAFIC-µ and ALSM-µ . 118

8.2 Selection of Subspace Dimensions . 118

8.3 Weighted Subspace Projection Measures 120

8.4 Probability Density Function Interpretation 121

8.5 Local Subspace Classifier . 122

8.6 Error-Corrective Feature Extraction . 123

8.7 Learning k-NN Classifier . 125

8.8 Summary of Classification Results . 127

9 Conclusions 131

Bibliography 133

11

List of Symbols

g(·) classification function . 29

d dimensionality of feature data . 29

x input feature vector . 29

c number of classes . 29

j class index of vector x in 1, . . . , c 29

n number of vectors in the training set 29

nj number of vectors belonging to the class j in the training set . . . 29

Pj, P̂j a priori probability of class j, its sample estimate 29

fj(x) probability density function of class j 29

f(x) probability density function of the pooled data 29

qj(x) a posteriori probability of class j given vector x 29

ε(x) probability of vector x to be misclassified 30

ε overall misclassification rate . 30

µj, µ̂j mean of vectors x in class j, its sample estimate 31

µ̂ sample estimate of the mean of training data 51

µ̂f , Σ̂f sample mean and autocovariance of raw image data 93

Σj, Σ̂j autocovariance matrix of vectors x in class j, its sample estimate . 31

Σ, Σ̂ autocovariance matrix of vectors x, its sample estimate 31

λ, γ regularization parameters in RDA 31

λ weight decay parameter in MLP+WD 35

λij ith eigenvalue of R̂j . 50

hj, γ smoothing parameters in KDA . 32

γ(t) correction coefficient in error-corrective feature extraction 107

I identity matrix . 31

K(x) kernel probability density function 32

mi prototype vector in a SOM . 33

12 LIST OF SYMBOLS

mij,Mj used prototypes of class j in LSC, matrix of used prototypes 74

` number of vectors in a SOM . 33

` number of hidden units in MLP . 35

` number of prototypes in an LVQ codebook 38

` number of vectors in L-k-NN . 39

` subspace dimension . 48

wi kernel weight in RKDA . 33

w “window” width in LVQ . 38

w, h width and height of normalized input image 90

yi desired output for pattern xi in regression methods 34

r(x) response to pattern x in regression methods 34

α learning rate parameter in delta rule 38

α, β scatter matrix update coefficients in ALSM 55

α, β multipliers of matrices in error-corrective feature extraction 107

ρ overall rejection rate . 43

θ rejection parameter . 43

ρ, θ polar coordinates . 94

L subspace . 48

ui,U subspace basis vector, matrix of subspace basis vectors 48

ζi, z subspace coefficient, vector of subspace coefficients 48

P projection matrix . 49

Rj, R̂j autocorrelation matrix of vectors x in class j, its sample estimate . 50

0 zero vector or matrix . 51

Gj generating matrix . 52

D, Dj subspace dimension and subspace dimension of class j in LSC . . . 72

Ŝj(t) scatter matrix in ALSM . 55

S(t) scatter matrix in error-corrective feature extraction 107

cij, cj prototype coefficient of class j in LSC, vector of coefficients 74

f(x, y), f normalized input image function and vector 90

tj(x, y), tj image template function and vector 90

ki(x, y),ki image mask function and vector 92

K image mask matrix . 92

Âf , B̂f covariances of interclass direction and misclassification direction in
error-corrective feature extraction 106

13

List of Acronyms

AIC Akaike Information Criteria . 59

ALSM Averaged Learning Subspace Method 55

CAFESSM Category Feature Subspace Method 53

CART Classification and Regression Trees 34

CCA Curvilinear Component Analysis 77

CLAFIC Class-Featuring Information Compression 50

CLT Central Limit Theorem . 64

DCT Discrete Cosine Transform . 94

DFT Discrete Fourier Transform . 94

EM Expectation-Maximization . 30

FDA Flexible Discriminant Analysis . 37

GAM Generalized Additive Models . 34

GFK Generalized Fukunaga-Koontz Method 52

GRNN General Regression Neural Network 34

HMM Hidden Markov Model . 86

ICA Independent Component Analysis 61

KDA Kernel Discriminant Analysis . 32

KLT Discrete Karhunen-Loève Transform 92

k-NN k-Nearest Neighbor . 37

LDA Linear Discriminant Analysis . 31

L-k-NN Learning k-NN Classifier . 39

LLR Local Linear Regression . 35

14 LIST OF ACRONYMS

LPT Log-Polar Transform . 94

LSC Local Subspace Classifier . 71

LSC+ Convex Local Subspace Classifier 75

LSM Learning Subspace Method . 54

LSSOM Local Subspace SOM . 76

LVQ Learning Vector Quantization . 38

MARS Multivariate Adaptive Regression Splines 36

MAT Medial Axis Transform . 102

MDL Minimum Description Length . 59

MLP Multi-Layer Perceptron . 35

MLP+WD Multi-Layer Perceptron with weight decay regularization 35

MOSS Method of Orthogonal Subspaces 51

MSM Multiple Similarity Method . 51

OCR Optical Character Recognition . 85

PCA Principal Component Analysis . 50

PNN Probabilistic Neural Network . 32

PP Projection Pursuit . 34

QDA Quadratic Discriminant Analysis 31

RBF Radial Basis Function . 33

RDA Regularized Discriminant Analysis 31

RKDA Reduced Kernel Discriminant Analysis 33

SDF Similar Discriminant Function . 98

SIMCA Soft Independent Modelling of Class Analogy 58

SIMD Single Instruction Multiple Data 67

SOM Self-Organizing Map . 76

SVD Singular Value Decomposition . 74

WVQ Weighted Vector Quantization . 77

15

Chapter 1

Introduction

Pattern recognition – or, more generally, artificial perception – is a research field with an
increasing number of application areas and enduring scientific attention. In the process
of pattern recognition, a technical device assigns the visual or other input patterns it
receives to predefined classes. The science and art of pattern recognition is in developing
the automatic systems capable of performing this challenging task.

An operational pattern recognition system consists of a series of processing modules, of
which the feature extraction and classification stages are the most crucial for its overall
performance. The feature extraction methods are generally specific to each particular
pattern recognition problem, whereas the same classification algorithms can be utilized
in various applications. Numerous classification algorithms have been proposed during
the past four decades of development in automated recognition. Moreover, different tax-
onomies have been presented to explain the similarities and differences of the classification
methods.

As the efficiency of data processors used in implementing pattern classification algorithms
has increased, new, computationally more demanding methods have been studied. In ad-
dition, it is now practicable to store larger models or more prototypes in the memory of
the recognition system. Therefore, some old classification algorithms, previously consid-
ered too complex, may have turned out to be realizable due to technological development.
During the last few years, neural network methods have been applied successfully in many
fields of pattern recognition. In some cases, major improvements in classification accuracy
have been achieved. The neural classification algorithms are not, however, ready-made
solutions for all the problems of artificial perception. In all applications, the preprocessing
and feature extraction stages must also be carefully designed.

The purpose of this thesis is to show that the subspace classification methods are very
suitable for the recognition of handwritten digits. The text offers some new modifica-
tions to the traditional subspace classification rule. In addition, some new classification
techniques are introduced. The usefulness of these modifications and new techniques is
demonstrated with experiments.

16 CHAPTER 1. INTRODUCTION

The organization of this thesis is as follows. An overview of the parts forming a gen-
eral pattern recognition system is presented in Chapter 2. The importance of feature
extraction and classifying stages is emphasized. Attention is focused on the classification
methods. Various types of neural and traditional statistical classifiers are reviewed in
Chapter 3. A novel taxonomy of classification methods is suggested. The subspace meth-
ods of classification are examined intensively in Chapter 4. Many improvements upon the
original subspace classification algorithm are offered. Most importantly, a new method,
here named the Local Subspace Classifier (LSC), and its variant, named the Convex Local
Subspace Classifier (LSC+), are introduced in Chapter 5.

The recognition of handwritten digits serves as the case study of this thesis. Chapter 6
describes this research field as a subfield of optical character recognition. An extensive
review of applicable feature extraction methods is presented in Section 6.4. The imple-
mentation of the prototype of the handwritten digit recognition system is described in
Chapter 7. A large-scale comparison of classification methods has been carried out, and
its results are examined in Chapter 8. The newly introduced Convex Local Subspace
Classifier shows superior classification performance in these experiments. Chapter 9 con-
cludes the central questions and observations of the previous chapters. It argues that the
proposed modifications on the subspace classification principle are beneficial and that, in
general, the subspace methods should be applied more extensively to various classification
problems.

1.1 Summary of Novelties and Contributions

Due to the monographic form of this thesis, novel ideas are scattered throughout the text.
Therefore, this section emphasizes the novelties and lists the forums where the ideas have
been or will be presented. My own contributions in the coauthored publications used as
the basis of this study are explained. The publications are numbered [1]-[8] at the end of
this section.

The taxonomy used in describing the classification methods in Chapter 3 was presented
in Publications [1] and [2]. These publications also contained the results of a large com-
parison of statistical and neural classification methods. I contributed to the formulation
of the taxonomy and to the design of the experiments. As well, I developed the proto-
type recognition system for obtaining the data and performed the experiments with the
subspace and prototype classifiers. Publication [2] appeared as the leading article in a
special issue of IEEE Transactions on Neural Networks concentrating on pattern recog-
nition applications of neural networks. Of the two case studies, only the results of the
handwritten digit recognition are repeated in this text.

The novel idea of the Learning k-Nearest Neighbors classification method described in
Section 3.4.3 and Publication [3] was introduced by me. The method is a simple but
powerful modification of the classical technique and offers improved classification accuracy
in situations where the number of prototypes that can be stored is limited. Although this

1.1. SUMMARY OF NOVELTIES AND CONTRIBUTIONS 17

method does not seem to belong under the title of this thesis, it is closely related to the
Local Subspace Classifier scheme introduced in this thesis, and is therefore included.

The novel improvements to subspace classifiers described in Section 4.3.2 and Section 4.3.3
were developed by me and were presented in Publication [4]. These modifications change
the subspace classification rule slightly and produce better classification accuracy and
increased robustness to small variations in the subspace dimensions. The original exper-
iments were extended for this thesis, and cross-validation was now used in selecting the
appropriate parameter values.

The text used in the general overview of a pattern recognition system in Chapter 2 was
solely written by me. It will appear as a part of Publication [5] as an invited contribution
to a volume in Control and Dynamic Systems: Advances in Theory and Applications,
edited by Prof. Cornelius T. Leondes and published by the Academic Press. The text
serves as a tutorial and contains no specific scientific novelties.

The concept of the error-corrective feature extraction described in Sections 2.9 and 6.4.8
was introduced by me. It will be published as Publication [6]. The proposed scheme
makes the feature extraction stage adaptive and autonomously error-corrective. The
classification accuracy is therefore increased.

The novel probability density function interpretation of the subspace classification rule in
Section 4.3.6 was given by me. It will be published as Publication [7]. The interpretation
explains the operation of a subspace classifier in a new way. Also, it provides a statistically
justified rejection mechanism.

The Local Subspace Classifier, its convex version, and extension to the Local Subspace
Self-Organizing Map in Chapter 5 were solely presented by me. These innovations will be
published as Publication [8]. The proposed classification methods are in this thesis shown
to perform better than any other classifier in recognition of handwritten digits.

List of Publications

[1] L. Holmström, P. Koistinen, J. Laaksonen, and E. Oja (1996). Neural Network
and Statistical Perspectives of Classification. In Proceedings of 13th International
Conference on Pattern Recognition, Vienna, Austria, pp. 286–290.

[2] L. Holmström, P. Koistinen, J. Laaksonen, and E. Oja (1997). Neural and Statis-
tical Classifiers – Taxonomy and Two Case Studies. IEEE Transactions on Neural
Networks 8 (1), 5–17.

[3] J. Laaksonen and E. Oja (1996). Classification with Learning k-Nearest Neigh-
bors. In Proceedings of the International Conference on Neural Networks, Volume 3,
Washington D.C., pp. 1480–1483.

[4] J. Laaksonen and E. Oja (1996). Subspace Dimension Selection and Averaged
Learning Subspace Method in Handwritten Digit Classification. In Proceedings of

18 CHAPTER 1. INTRODUCTION

the International Conference on Artificial Neural Networks, Bochum, Germany, pp.
227–232.

[5] J. Lampinen, J. Laaksonen and E. Oja (1997). Neural Network Systems, Techniques
and Applications in Pattern Recognition. To appear in Control and Dynamic Sys-
tems: Advances in Theory and Applications, edited by Cornelius T. Leondes, Aca-
demic Press, New York.

[6] J. Laaksonen and E. Oja (1997). Error-Corrective Feature Extraction in Handwrit-
ten Digit Recognition. To appear in Proceedings of the International Conference on
Engineering Applications of Neural Networks, Stockholm, Sweden.

[7] J. Laaksonen and E. Oja (1997). Density Function Interpretation of Subspace Clas-
sification Methods. To appear in Proceedings of the Scandinavian Conference on
Image Analysis, Lappeenranta, Finland.

[8] J. Laaksonen (1997). Local Subspace Classifier and Local Subspace SOM. To appear
in Proceedings of the Workshop on Self-Organizing Maps, Otaniemi, Finland.

19

Chapter 2

Parts of a Pattern Recognition
System

This thesis focuses on issues of pattern recognition. This key term can be defined in many
ways, including

Pattern recognition is an information-reduction process: the assignment of
visual or logical patterns to classes based on the features of these patterns and
their relationships. (Britannica Online 1996)

The basic setting, observed from the point of view of classification, is as follows. There is
one unknown object presented as a set of signals or measurements at the input of a black
box called a pattern recognition system. At the output of the system, there is a set of
predefined classes. The task of the system is to assign the object to one of the classes. In
a more general setting, there is more than one object to be recognized. In this case, the
classification of the nearby objects may or may not be interdependent. The list of classes
may also contain a special reject class for the objects the system is unable to classify.

Depending on the measurements and the classes, we are led to divergent fields of pattern
recognition. These include speech or speaker recognition, detection of clinical malforma-
tions in medical images or time-signals, document analysis and recognition, etc. All these
disciplines call for expertise both in the subject matter and in the general theory and
practice of pattern recognition. There exists extensive literature on both the overall and
specific questions of pattern recognition systems and applications. The classical textbook
sources include Andrews (1972), Duda and Hart (1973), Tou and Gonzalez (1974), Young
and Calvert (1974), Gonzalez and Thomason (1978), Sklansky and Wassel (1981), De-
vijver and Kittler (1982), Fu (1982), Fukunaga (1990), and Bow (1992), some of which
are actually revised versions of earlier editions. Recent developments, such as the use
of neural methods, are examined, for instance, in books by Pao (1989), Therrien (1989),
Schalkoff (1992), Pavel (1993), Bishop (1995), and Ripley (1996). During the past 30
years, many valuable article collections have been edited. These include Kittler et al.
(1982), Kanal (1981), Kanal (1985), Dasarathy (1991), and Chen et al. (1993).

20 CHAPTER 2. PARTS OF A PATTERN RECOGNITION SYSTEM

Technical systems are often considered as being comprised of consecutive modules, each
performing its precisely defined task in the process. The whole system can then be
modeled in bottom-up fashion as a block diagram. In the simplest case, the flow of the
data stream is one-directional from left to right as shown in Figure 2.1, presenting a
general pattern recognition system. The diagram shown is naturally only one intuition of
how to depict a view, and alternative structures are given, for example, by Fu (1982), Fu
and Rosenfeld (1984), Bow (1992), and by Schalkoff (1992).

DataCollection Registration

PostprocessingClassificationFeatureExtractionNormalization

Preprocessing Segmentation

Figure 2.1: A block diagram of a generic pattern recognition system.

The following sections shortly describe each of the stages from data collection to post-
processing. Some issues are clarified with examples principally from optical character
recognition, which will be represented as the primary case study of this thesis in Chap-
ters 6-8, and from speech recognition. Thus, some of the described stages may not have
obvious counterparts in other types of pattern recognition systems.

2.1 Data Collection

The first stage in any pattern recognition system is data collection. Before a pattern
vector is formed out of a set of measurements, these measurements need to be performed
using some sensors and be converted to a numerical form. In the cases of image analysis
or character recognition, such equipment include video cameras and scanners; in the case
of speech recognition, microphones, etc. The input data is sampled in time and/or space
domain and digitized to be represented by a preset number of bits per measurement. The
data collection devices should record the objects with adequate fidelity and reasonable
price, as any additional noise may impair the operation of the system. The data collection
phase should also be designed in such a manner that the system is robust enough to adapt
to the variations in operation of individual signal measurement devices. If the measured
phenomenon itself is time-varying, the data collection should tolerate that.

The data collection stage may include auxiliary storage for the collected data. The use
of temporary storage is necessary if recognition cannot be performed simultaneously with
data acquisition. Larger mass storage for training data is needed while a pattern recog-
nition system is constructed. On some occasions, the size of data storage needed may

2.2. REGISTRATION 21

turn out to be a prohibitive factor in the development or use of a pattern recognition
system. This discrepancy can be somewhat eased by compressing the stored data, but,
in the worst case, the fidelity of data representation has to be sacrificed for the sake of
storage shortage. The difficulty is often solved either by reducing the spatial or temporal
resolution of the data sampling or by representing the measurements with a lower preci-
sion using fewer bits per sample. Similar problems and solutions arise if the channel used
in transferring the data forms a bottleneck for the requirements of on-line processing.

2.2 Registration

In the registration of data, rudimentary model fitting is performed. The internal coordi-
nates of the recognition system are mapped to the actual data acquired. At least some
a priori knowledge about the world surrounding the system is used in designing the reg-
istration stage. This external information mainly answers questions such as: “How has
the data been produced?” and “Where or when does sensible input begin and end?” The
registration process thus defines the operative framework for the system. In this way, the
system knows what to expect as valid input.

In the registration block of a speech recognition system, the epochs during which input
is comprised solely of noise and/or silence are detected and discarded from further pro-
cessing. Then, the beginnings and endings of the utterances are located and marked. In
optical character recognition, the system must locate the area of interest in the input
image. In the case of fill-in forms, the area may be registered with some special printed
marks, but in document analysis the system has to locate it automatically, based upon
the overall layout of the page image.

2.3 Preprocessing

Real-world input data always contains some amount of noise, and certain preprocessing
is needed to reduce its effect. The term “noise” is to be understood in the wide sense:
anything that hinders a pattern recognition system from fulfilling its task may be regarded
as noise, no matter how inherent it is in the data. Some desirable properties of the data
may also be enhanced with preprocessing before the data is passed on further in the
recognition system.

Preprocessing is normally accomplished by some simple filtering of the data. In the case
of speech recognition, this may mean linear high-pass filtering aimed at removing the base
frequency and enhancing the higher frequencies. In image recognition, the image may be
median filtered to remove spurious impulsive noise which might hamper the segmentation
process. Decorrelation of the color components is a usually advantageous preprocessing
step for color images. Such a process transforms an image from the RGB (red-green-blue)
coordinates, for instance, linearly to the YIQ (luminosity-inphase-quadrature) system.

22 CHAPTER 2. PARTS OF A PATTERN RECOGNITION SYSTEM

2.4 Segmentation

The registered and preprocessed input data has to be subdivided into parts to create
meaningful entities for classification. This stage of processing is called segmentation. It
may either be a clearly separate process or tightly coupled with the previous or following
processes. In either case, after the pattern recognition system has completed the pro-
cessing of a block of data, the resulting segmentation of the data into its subparts can
be revealed. Depending on the application, the segmentation block may either add the
information regarding the segment boundaries to the data flow, or, alternatively, copy all
the segments in separate buffers and forward them to the following stage one by one.

In speech recognition, a meaningful entity is most likely a single phoneme or a syllable
that contains a small but varying number of phonemes. In optical character recognition,
the basic units for classification are single characters or some of the few composite glyphs,
such as ‘fi’ and ‘fl’.

Some pattern recognition applications would be described better if segmentation were
placed after the classification stage in Figure 2.1. In such systems, the input data is
partitioned with fixed-sized windows at fixed spatial or temporal intervals. The actual
segmentation can take place only after the subparts have been labeled in the classification
stage. The cooperation between the stages of a pattern recognition system is discussed
further in Section 2.9.

2.5 Normalization

A profound common characteristic of the environments where automated pattern recog-
nition systems are used is the inherent variance of the objects to be recognized. Without
this variance, the pattern recognition problem would not exist at all. Instead, we would be
concerned with deterministic algorithms, such as for sorting, searching, computer language
compiling, Fourier transform, etc. Therefore, the central question in pattern recognition
is how these variances can be accounted for. One possibility is to use feature extraction
or classification algorithms which are invariant to variations in the outcomes of objects.
For example, image features invariant to rotation are easy to define. But inevitably, some
types of natural variance will always evade the invariant feature extraction. Therefore, a
separate normalization step is called for in almost all pattern recognition systems.

We may think that the objects we perceive pre-exist in a Platonic world of ideas before
they materialize as patterns we are bound to measure and deal with. In this process, the
patterns are somehow disturbed. In a technical setting, normalization is then a process
which tries to revert the measured object back to its ideal form. Unfortunately, the actual
form and amount of the disturbances are not known. Therefore, there is no direct way to
restore the undisturbed object. We may, however, suppose that the ideal objects follow
some a priori rules we have established and, then, make the actual patterns obey the
same rules wishing that the amount of distortion will somewhat diminish.

2.6. FEATURE EXTRACTION 23

As a side effect, normalization always causes loss of degrees of freedom when discrete
presentation of the objects is employed. This is reflected as dimension reduction in the
intrinsic dimensionality of the data. If the normalization could be performed ideally, only
the dimensionality increase caused by the disturbances and other noise would be canceled
out. This is unfortunately not true, but, as will be explained in the following section, the
dimensionality of the data has to be reduced nevertheless. Therefore, the reduction of
the intrinsic dimensionality of the data during the normalization process is not a serious
problem if the normalization is successful.

For example, depending on individual habit, handwriting may not stand straight upwards
but is somewhat slanted to the left or to the right. Ideal, or at least normalized, characters
can be achieved by estimating the slant and reverting it. In speech recognition, the
loudness of speech can be normalized to a constant level by calculating the energy of an
utterance and then scaling the waveform accordingly.

2.6 Feature Extraction

The meaning of the feature extraction phase is most conveniently defined by referring to
its purpose:

Feature extraction problem . . . is that of extracting from the raw data the
information which is most relevant for classification purposes, in the sense of
minimizing the within-class pattern variability while enhancing the between-
class pattern variability. (Devijver and Kittler 1982)

During the feature extraction process, the dimensionality of data is reduced. This is
almost always necessary, due to the technical limits in memory and computation time. A
good feature extraction scheme should maintain and enhance those features of the input
data which make distinct pattern classes separate from each other. At the same time, the
system should be immune to variations produced both by the users of the system and by
the technical devices used in the data acquisition stage.

Besides savings in memory and time consumption, there exists another important rea-
son for proper dimensionality reduction in the feature extraction phase. It is due to the
phenomenon known as the curse of dimensionality (Bellman 1961). The curse of di-
mensionality states that increasing the dimensionality of the feature space first enhances
classification accuracy, but rapidly leads to sparseness of the training data and to poor
representation of the vector densities, and thereby decreases classification performance.
This happens even though the amount of information present in the data is enriched
while its dimensionality is increased. The system designer is therefore forced to seek a
balance between the dimensionality of the data with the number of training vectors per
unit cube in the feature vector space. A classical rule-of-thumb says that the number
of training vectors per class should be at least 5–10 times the dimensionality (Jain and
Chandrasekaran 1982).

24 CHAPTER 2. PARTS OF A PATTERN RECOGNITION SYSTEM

An issue connected to feature extraction is the choice of metric. The most natural and
commonly-used metric in pattern recognition algorithms is the Euclidean metric. Other
metrics have occasionally also been used for more or less intuitively-driven motivations.
The variances of individual features may in some applications differ by orders of magni-
tude, which is likely to impair the classifier. With the Euclidean metric, the situation can
be eased by applying a suitable linear transform to the components of the feature vector.

The diverse possibilities for feature extraction in recognition of handwritten characters
are discussed in-depth in Section 6.4. In speech recognition, the features are usually based
on the assumption that the speech waveform is momentarily stable. In that case, spectral,
cepstral, or linear prediction coefficients can be used as descriptors.

2.7 Classification and Clustering

Together with feature extraction, the most crucial step in the process of pattern recogni-
tion is classification. All the preceding stages should be designed and tuned for improving
its success. The operation of the classification phase can be simplified as being a transform
of quantitative input data to qualitative output information. The output of the classifier
may either be a discrete selection of one of the predefined classes, or a real-valued vector
expressing the likelihood values for the assumption that the pattern originated from the
corresponding class.

The primary division of the various classification algorithms used is that of syntactic
and statistical methods. The statistical methods and neural networks are related in the
sense that both can, in general, use the same features. Due to the centrality of the
topic to this thesis, classification is not covered in this introductory chapter but analyzed
comprehensively in Chapter 3.

A topic closely related to classification but outside the scope of this thesis is clustering.
In clustering, either the existence of predefined pattern classes is not assumed, the ac-
tual number of classes is unknown, or the class memberships of the vectors are generally
unknown. Therefore, the purpose of the clustering process is to group the feature vec-
tors to clusters in which the resemblance of the patterns is stronger than between the
clusters (Hartigan 1975). The processing blocks surrounding the classification stage in
Figure 2.1 are, in general, also applicable to clustering problems.

2.8 Postprocessing

In most pattern recognition systems, some data processing is also performed after the
classification stage. These postprocessing subroutines, like the normalization processes,
bring some a priori information about the surrounding world into the system. This
additional expertise can be utilized in improving the overall classification accuracy. A
complete postprocessing block may itself be a hybrid of successive and/or cooperative

2.9. FEEDBACK BETWEEN STAGES 25

modules. In the context of this representation, however, it is sufficient to regard the
postprocessor as an atomic operator.

The postprocessing phase is generally feasible if the individual objects or segments to-
gether form meaningful entities, such as bank account numbers, words, or sentences. The
soundness or existence of these higher level objects can be examined and, if an error is
found, further steps can be taken to correct the misclassification. The postprocessing
phase thus resolves interdependencies between individual classifications. This is either
practicable by the operation of the postprocessing stage alone or in conjunction with the
segmentation and classification blocks, as the following section explains.

2.9 Feedback Between Stages

Figure 2.1 depicted a block diagram of an idealized pattern recognition application. Such
systems, where the data flows exclusively from the left to the right, can hardly ever
be optimal in recognition accuracy. By making the successive blocks interact, the overall
performance of the system can be considerably enhanced. The system, of course, becomes
much more complex, but, generally, it is the only way to increase classification accuracy.

DataCollection Registration

PostprocessingClassificationFeatureExtractionNormalization

b)

Preprocessing Segmentation

c)
a)

Figure 2.2: A block diagram of a pattern recognition system with some potential
feedback routes.

Figure 2.2 displays three potential routes for the backward links with dashed arrows and
labels a), b), and c). The motivations for these three configurations are

a) Information is fed back from postprocessing to classification. When the postpro-
cessor detects an impossible or highly improbable combination of outputs from the
classifier, it notifies the classifier. Either the postprocessor itself is able to correct
the fault, or it asks the classifier to try again. In either case, the classifier ought
to be able to revise its behavior and not repeat similar errors. The classifier may
also mediate this feedback information back to the segmentation block, as will be
explained below.

26 CHAPTER 2. PARTS OF A PATTERN RECOGNITION SYSTEM

b) The classifier revises the segmentation phase. In this case, the classifier or the
postprocessor has detected one or more successive patterns that are hard to classify.
This might be an indication of erroneous segmentation, which should be located
and corrected. This scheme can also be viewed as a segmentation algorithm that
probes the succeeding stages with tentative segments. It is then the responsibility
of the classifier to select the most probable combination.

In this scheme, it is also possible that segmentation is performed after classification.
The data flows unmodified in its first pass through the segmentation block. After
classification, the data is fed back to the segmenter for the actual segmentation and
then unmodified through the system to the postprocessing stage.

c) The correctness of the classifications is used to revise the feature extractor. This
kind of operation is usually practicable only during the training phase, and generally
necessitates the re-design of the classifier. This kind of scheme, exemplified in
Section 6.4.8, may be called error-corrective feature extraction.

2.10 Trainable Parts in a System

All the stages of a pattern recognition system contain parameters or variables which need
to be given appropriate values. Some of these parameters are so delicate that they have to
be selected by an expert in the application field and kept constant thereafter. Others may
be tunable by trial and error or cross-validation process in cooperation with an expert
observing the overall performance of the system top-down. Profoundly more interesting,
however, are parameters which the system is able to learn autonomously from training
with available data. Neural networks provide a whole new family of diverse formalisms
for adaptive systems. Error-corrective neural training can be used in various parts of a
pattern recognition system to improve the overall performance.

In most cases, the adaptive nature of the neural networks is only utilized during the
training phase and the values of the free parameters are fixed at its end. A long-term
goal, however, is to develop neural systems which retain their ability to adapt to a slowly
evolving operation environment. In such automata, the learning of the system would
continue automatically and by itself endlessly. However, the stability of such systems is
in doubt.

In many systems claimed to be neural, a traditional classifier has only been replaced by
a neural solution. This is, of course, reasonable if it improves the performance of the
system. Nevertheless, a more principled shift to a completely neural solution might be
feasible and motivated. At least the normalization and feature extraction stages, together
with classification, could be replaced with neural counterparts in many systems. Only
then would the full potential of neural systems be utilized.

27

Chapter 3

Classification Methods in Pattern
Recognition

Numerous taxonomies for classification methods in pattern recognition have been pre-
sented, but none has gained an uncontested status. The most fundamental dichotomy,
however, is quite undisputed and divides statistical and syntactic classifiers. The atten-
tion of this thesis is limited to the former, whereas the latter – also known as linguistic or
structural approaches – are treated in many textbooks, including the works of Gonzalez
and Thomason (1978), Fu (1982), and Pavel (1993).

The statistical, or decision theoretic, methods can be divided further in many ways de-
pending on the properties one wants to emphasize. The contradiction of parametric
versus nonparametric methods is an often-used dichotomy. In parametric methods, a spe-
cific functional form is assumed for the feature vector densities, whereas nonparametric
methods refer directly to the available exemplary data. Somewhere between these ex-
tremes, there are semiparametric methods which try to achieve the best of both worlds
by using adaptable parameters the number of which is restricted and depends on the in-
herent complexity of the data (Bishop 1995). The distinction between the nonparametric
and semiparametric methods is quite vague. In general, the computational and memory
requirements of the latter increase more slowly when the amount of training material is
increased.

One commonly-stated division (e.g., Schalkoff 1992) separates neural and classical sta-
tistical methods. It is useful only if one wants to regard these two approaches as totally
disjointed competing alternatives. At the opposite extreme, neural methods are seen only
as iterative ways to arrive at the classical results of the traditional statistical methods
(e.g., Ripley 1996). Better still, both methods can be described by using common terms,
as has been done by Holmström et al. (1996a) and summarized in this text.

Neural methods may additionally be characterized by their learning process: supervised
learning algorithms require all the exemplary data to be classified before the training
phase begins, whereas unsupervised algorithms may use unlabeled data as well. Due to

28 CHAPTER 3. CLASSIFICATION METHODS IN PATTERN RECOGNITION

the general nature of classification, primarily only supervised methods are applicable.
For clustering, data mining, and feature extraction, the unsupervised methods can be
beneficial as well, or even the only choice.

Above, the pattern recognition problem has been approached from the viewpoint of math-
ematical theory. Instead, the perspective of the user of a hypothetical pattern recognition
system produces a totally different series of dichotomies. Figure 3.1 depicts one such
taxonomy, originally presented by Jain and Mao (1994).

Form of Density Form of Density
Function Unknown Function Unknown

Training Samples
Number of

Training Samples
Labeled

Training Samples
Unlabelled

FiniteInfinite

Bayes

Function Known
Form of Density
Function Known

Form of Density

No. of Pattern
Classes Unknown

No. of Pattern
Classes Known

Cluster AnalysisMixture
Resolving

k-NN
Rules

Density
Estimation

Plug-in
Rules

“Optimal”
Rules

Decision Rule

Figure 3.1: Dichotomies in the design of a statistical pattern recognition system,
adapted from Jain and Mao (1994).

The following sections describe shortly some classification algorithms according to the
taxonomy presented in Table 3.1. The methods are, in the first place, divided to den-
sity estimators, regression methods, and others. Each of these groups is examined in
a dedicated section. The parametric, semiparametric, or nonparametric nature of each
method is discussed in the text. Section 3.5 addresses the neural characteristics of the
various classification methods. In Table 3.1, the algorithms considered neural are printed
in italics.

density estimators regression methods others

parametric QDA LDA RDA

semiparametric RKDA MLP RBF CLAFIC ALSM

nonparametric KDA PNN LLR MARS k-NN LVQ L-k-NN

Table 3.1: Taxonomy of classification algorithms presented in the following sec-
tions and used in experiments. Algorithms considered neural are
printed in italics.

3.1. MATHEMATICAL PRELIMINARIES 29

After the introduction of the central mathematical notations in the next section, the clas-
sification methods included in the first column of Table 3.1 will be described in Section 3.2.
Some regression methods will then be presented in Section 3.3. The category of “others”
in Table 3.1 is composed of nonparametric prototype classifiers and semiparametric sub-
space classifiers. The former are described in Section 3.4, and the latter are considered
in-depth in Chapter 4.

3.1 Mathematical Preliminaries

A central mathematical notation in the theory of classifiers is the classification function
g : Rd 7→ {1, . . . , c}. Thus, for each real-valued d-dimensional input feature vector x to
be classified, the value of g(x) is an integer in the range of 1, . . . , c, c being the number
of classes. The classes are indexed with j when appropriate. The training set used in
designing a classifier consists of n column vectors xi, i = 1, . . . , n, of which nj vectors
xij, i = 1, . . . , nj belong to class j. The ordered pair (xi, ji) is, stochastically speaking,
one realization of (X, J), an ordered pair of a vector random variable X and a discrete-
valued random variable J . By assuming the realizations (xi, ji) in both the training and
testing samples to be independent and identically distributed, many considerations are
notably simplified. Taking into account context-dependent information, however, might
be beneficial in many applications.

The a priori probability of class j is denoted by Pj, its probability density function by
fj(x), and that of the pooled data, with all the classes combined, by f(x) =

∑c
j=1 fj(x).

Naturally, the priors have to meet the condition
∑c

j=1 Pj = 1. When using this notation,
the Bayes classifier that minimizes the non-weighted misclassification error (see Devijver
and Kittler 1982) is defined as the one returning the index j of the largest Pjfj(x),

gBAYES(x) = argmax
j=1,...,c

Pjfj(x) . (3.1)

An equivalent formulation is to consider the a posteriori probability qj(x) = P (J = j |
X = x) of class j, given x, and use the rule

gBAYES(x) = argmax
j=1,...,c

qj(x) . (3.2)

The rules (3.1) and (3.2) are equivalent since

qj(x) = P (J = j | X = x) =
Pjfj(x)

f(x)
. (3.3)

In practice, however, the classifiers (3.1) and (3.2) have to be estimated from the training
data (x1, j1), . . ., (xn, jn) of pattern vectors with known classes. Then, two distinct ap-
proaches emerge. The use of rule (3.1) requires explicit estimation of the class-conditional
probability density functions fj. For (3.2), some regression technique can be used to

30 CHAPTER 3. CLASSIFICATION METHODS IN PATTERN RECOGNITION

estimate the posterior probabilities qj directly without separately considering the class-
conditional densities.

The probability of a vector x to be misclassified is notated ε(x). Using the Bayes rule, it
is εBAYES(x) = 1−maxj=1,...,c qj(x). Thus, the overall misclassification rate ε of the Bayes
classifier is

εBAYES = 1−
∫

x∈Rd

j = gBAYES(x)

fj(x) dx . (3.4)

3.2 Density Estimation Methods

In the density estimation approach, estimates for both the prior probabilities Pj and the
class-conditional densities fj(x) are needed in (3.1). The estimation of the former is quite
straightforward. The more difficult and vague task is to estimate the class-conditional
densities. A classical parametric approach is to model them as multivariate Gaussians.
Depending on whether equal or unequal class covariances are assumed, the logarithm of
Pjfj(x) is then either a linear or quadratic function of x, giving rise to Linear Discriminant
Analysis (LDA) and Quadratic Discriminant Analysis (QDA) (see McLachlan 1992). A
recent development is Regularized Discriminant Analysis (RDA) (Friedman 1989), which
interpolates between LDA and QDA.

The success of these methods depends heavily on the validity of the normality assumption.
If the class-conditional densities truly are normal, a near-Bayesian classification error level
can be achieved. On the other hand, if the densities are neither unimodal nor continuous,
disastrous performance may follow. The critical areas for classification accuracy are,
however, those where the distributions of the classes overlap. If the normality assumption
holds there, the classification accuracy may be good even though the overall performance
of the density estimation was poor.

In nonparametric density estimation, no fixed parametrically-defined form for the esti-
mated density is assumed. Kernel or Parzen estimates, as well as k-nearest neighbor
methods with large values of k, are examples of popular nonparametric density estima-
tion methods. They give rise to Kernel Discriminant Analysis (KDA) (Hand 1982) and
k-Nearest Neighbor (k-NN) classification rules (see Dasarathy 1991, and Section 3.4.1).

In another approach, the densities are estimated as finite mixtures of some standard
probability densities by using the Expectation-Maximization (EM) algorithm or some
other method (Dempster et al. 1977; Redner and Walker 1984; Tr̊avén 1991; Priebe
and Marchette 1991; Priebe and Marchette 1993; Hastie and Tibshirani 1996). Such
an approach can be viewed as an economized KDA or as an instance of the Radial Ba-
sis Function (RBF) approach (Broomhead and Lowe 1988; Moody and Darken 1989).
The Self-organizing Reduced Kernel Density Estimator introduced by Holmström and
Hämäläinen (1993) estimates densities in the spirit of radial basis functions. The corre-

3.2. DENSITY ESTIMATION METHODS 31

sponding classification method is here referred to as Reduced Kernel Discriminant Analysis
(RKDA).

3.2.1 Discriminant Analysis Methods

Quadratic Discriminant Analysis (QDA) (see McLachlan 1992) is based on the assumption
that pattern vectors from class j are normally distributed with mean vector µj and
covariance matrix Σj. The density estimation approach leads to the rule

gQDA(x) = argmax
j=1,...,c

[
log P̂j −

1

2
log det Σ̂j −

1

2
(x− µ̂j)

T Σ̂
−1

j (x− µ̂j)

]
. (3.5)

Here µ̂j and Σ̂j denote the class-wise sample mean and the sample covariance estimates.

Likewise, P̂j is the sample estimate for the a priori of class j. The operator “det” stands
for the determinant of a matrix.

If it is assumed that the classes are normally distributed with different mean vectors but
with a common covariance matrix Σ, then the previous formula is simplified to the Linear
Discriminant Analysis (LDA) (see McLachlan 1992) rule

gLDA(x) = argmax
j=1,...,c

[
log P̂j + µ̂T

j Σ̂
−1

(x− 1

2
µ̂j)

]
, (3.6)

where a natural estimate for Σ is the pooled covariance matrix estimate Σ̂ =
∑c

j=1 P̂jΣ̂j.

Regularized Discriminant Analysis (RDA) by Friedman (1989) is a compromise between

LDA and QDA. The decision rule is otherwise the same as (3.5), but instead of Σ̂j,

regularized covariance estimates Σ̂j(λ, γ) with two regularizing parameters are used.
Parameter λ controls the shrinkage of the class-conditional covariance estimates toward
the pooled estimate and γ regulates the shrinkage toward a multiple of the identity matrix
I. Let us denote by Kj the matrix

∑nj

i=1(xij − µ̂j)(xij − µ̂j)
T , and let K =

∑c
j=1 Kj.

Then

Σ̂j(λ, γ) = (1− γ)Σ̂j(λ) +
γ

d
tr
(
Σ̂j(λ)

)
I , where (3.7)

Σ̂j(λ) =
(1− λ)Kj + λK

(1− λ)nj + λn
(3.8)

and the operator “tr” stands for the trace of a matrix. The constant d is again the
dimensionality of the data. QDA is obtained when λ = 0, γ = 0, and LDA when λ =
1, γ = 0, provided that the estimates Σ̂j = Kj/nj and P̂j = nj/n are used.

32 CHAPTER 3. CLASSIFICATION METHODS IN PATTERN RECOGNITION

3.2.2 Kernel Discriminant Analysis, Probabilistic Neural Net

In Kernel Discriminant Analysis (KDA) (Hand 1982; Silverman and Jones 1989), kernel
estimates f̂j(x) of the class-conditional densities are formed. Then, the classification
rule (3.1) is applied. The estimate of the class-conditional density of class j is

f̂j(x) =
1

nj

nj∑
i=1

Khj
(x− xij) , j = 1, . . . , c , (3.9)

where, given a fixed probability density function K(x), called the kernel, hj > 0 is the
smoothing parameter of class j, and Kh denotes the scaled kernel Kh(x) = h−dK(x/h).
This scaling ensures that Kh and, hence, each f̂j is a probability density. A popular
choice is the symmetric Gaussian kernel K(x) = (2π)−d/2 exp(−‖x‖2/2). The choice of
suitable values for the smoothing parameters is crucial, and several approaches have been
proposed, among others, by Silverman (1986), Scott (1992), McLachlan (1992), and by
Wand and Jones (1995).

The selection of the smoothing parameters can be based on a cross-validated error count.
Two methods, here denoted by KDA1 and KDA2, are considered here. In the first method,
all the smoothing parameters hj are fixed to be equal to a parameter h. The optimal value
for h is then selected by cross-validation (see Section 3.6) as the value which minimizes
the cross-validated error count. In the second method, the smoothing parameters are let
to vary separately starting from a common value selected in KDA1. Both methods lead
to optimization problems in which the objective function is piecewise constant. In KDA1,
the search space is one-dimensional, and the optimization problem can be solved simply
by evaluating the objective function on a suitable grid of values of h.

In KDA2, the lack of smoothness of the objective function is a problem. Instead of
minimizing the error count directly, it is advantageous to minimize a smoothed version
of it. In a smoothing method described by Tutz (1986), the class-conditional posterior-
probability estimates q̂j(x) that correspond to the current smoothing parameters are used
to define the functions uj,

uj(x) = exp(γq̂j(x))/
c∑

k=1

exp(γq̂k(x)), γ > 0 . (3.10)

The smoothed error count is given by n −
∑n

i=1 uji
(xi) which converges toward the true

error count as γ → ∞. Since the smoothed error count is a differentiable function of
the smoothing parameters, a gradient-based minimization method can be used for the
optimization.

The Probabilistic Neural Network (PNN) of Specht (1990) is the neural network counter-
part of KDA. All training vectors are stored and used as a set of Gaussian densities. In
practice, only a subset of the kernels is actually evaluated when the probability values are
calculated.

3.3. REGRESSION METHODS 33

3.2.3 Reduced Kernel Density Analysis, Radial Basis Functions

The standard kernel density estimate suffers from the curse of dimensionality: as the
dimension d of data increases, the size of a sample x1, . . . ,xn required for an accurate
estimate of an unknown density f grows quickly. On the other hand, even if there are
enough data for accurate density estimation, the application may limit the complexity of
the classifier applicable in practice. A kernel estimate with a large number of terms may
be computationally too expensive to use. One solution is to reduce the estimate, i.e., to
use fewer kernels but to place them at optimal locations. It is also possible to introduce
kernel-dependent weights and smoothing parameters. Various reduction approaches have
been described by Fukunaga and Mantock (1984), Fukunaga and Hayes (1989), Grabec
(1990), Smyth and Mellstrom (1992), and Wu and Fallside (1991). Some of these methods
are essentially the same as the Radial Basis Function (RBF) approach of classification
(Broomhead and Lowe 1988; Moody and Darken 1989; Bishop 1995).

The Self-organizing Reduced Kernel Density Estimate (Holmström and Hämäläinen 1993)
has the form

f̂(x) =
∑̀
i=1

wiKhi
(x−mi) , (3.11)

where m1, . . . ,m` are the reference vectors of a Self-Organizing Map (Kohonen 1995),
w1, . . . , w` are nonnegative weights with

∑`
i=1 wi = 1, and hi is a smoothing parameter

associated with the ith kernel. In order to achieve substantial reduction, ` � n should be
selected. The kernel locations mi are obtained by training the Self-Organizing Map by
using the whole available sample x1, . . . ,xn from f . The weights wi are computed itera-
tively and reflect the amount of training data in the Voronoi regions of the corresponding
reference vectors. The smoothing parameters are optimized via stochastic gradient de-
scent that attempts to minimize a Monte Carlo estimate of the integrated squared error∫

(f̂ − f)2. Simulations have shown that when the underlying density f is multimodal,
the use of the feature map algorithm gives better density estimates than k-means cluster-
ing, an approach proposed by MacQueen (1967). Reduced Kernel Discriminant Analysis
(RKDA) (Holmström and Hämäläinen 1993) uses estimates (3.11) for the class-conditional
densities in the classifier (3.1). A drawback of RKDA in pattern classification applications
is that the smoothing parameters of the class-conditional density estimates used in the
approximate Bayes classifier are optimized from the point of view of integrated squared
error. Instead, the optimization ought to be based on the discrimination performance,
which is the true focus of interest.

3.3 Regression Methods

In the second approach to classification, the class-posterior probabilities qj(x) = P (J =
j | X = x) are directly estimated by using some regression technique. Parametric meth-
ods include linear and logistic regression. Examples of the nonparametric methods are

34 CHAPTER 3. CLASSIFICATION METHODS IN PATTERN RECOGNITION

Projection Pursuit (PP) (Friedman and Stuetzle 1981; Flick et al. 1990), Generalized
Additive Models (GAM) (Hastie and Tibshirani 1990), Multivariate Adaptive Regression
Splines (MARS) (Friedman 1991), Local Linear Regression (LLR) (Cleveland and Devlin
1988), and the Nadaraya-Watson kernel regression estimator (Nadaraya 1964; Watson
1964) (see Wand and Jones 1995; Koistinen and Holmström 1992), which is also called
the General Regression Neural Network (GRNN) (Specht 1991). Other neural network ap-
proaches regarded as semiparametric include (see Haykin 1994; Bishop 1995) Multi-Layer
Perceptrons (MLP) and Radial Basis Function (RBF) expansions.

“One-of-c” coding can be used to define the desired output yi for the pattern xi from
class ji to be the unit vector [0, . . . , 0, 1, 0, . . . , 0]T ∈ Rc, with 1 in the jith place. In the
least-squares approach, one then tries to solve the minimization

1

n

n∑
i=1

c∑
j=1

(y
(j)
i − r(j)(xi))

2 = min
r∈R

! (3.12)

over a family R of Rc-valued response functions r, where we denote the jth component
of a vector z by z(j). The corresponding mathematical expectation is minimized by the
vector of class-posterior probabilities, q = [q1, . . . , qc]

T . Of course, this ideal solution may
or may not belong to the family R, and, besides, sampling variation will nevertheless
prevent the exact estimation of q even when it does belong to R (White 1989; Richard
and Lippman 1991).

The least-squares fitting criterion (3.12) can be understood as emerging from the use
of the maximum likelihood principle for estimating a regression model where errors are
distributed normally. The applicability of the least-squares method is, however, not lim-
ited to the normality assumption. If no parametric model is assumed, the properties of
the estimate may be difficult to establish. The logistic approach (see McLachlan 1992)
uses binomially distributed error, which is the statistically correct model if independent
and identically distributed vectors are assumed. One natural multivariate logistic regres-
sion approach is to model the posterior probabilities as the softmax (Bridle 1990) of the
components of r,

P (J = j | X = x) = qj(x) =
exp(r(j)(x))∑c

k=1 exp(r(k)(x))
. (3.13)

Note that this also satisfies the natural condition
∑c

k=1 qk = 1. A suitable fitting criterion
is to maximize the conditional log-likelihood of y1, . . . ,yn given that X1 = x1, . . . ,Xn =
xn. In the case of two classes, this approach is equivalent to the use of the cross-entropy
fitting criterion (Bishop 1995).

A very natural approach would be a regression technique that uses the error rate as
the fitting criterion to be minimized (Highleyman 1962). Classification and Regression
Trees (CART) are an example of a nonparametric technique that estimates the posterior
probabilities directly but uses neither the least-squares nor the logistic regression approach
(Breiman et al. 1984).

3.3. REGRESSION METHODS 35

3.3.1 Multi-Layer Perceptron

In the standard Multi-Layer Perceptron (MLP), there are d inputs, ` hidden units and
c output units. All the feed-forward connections between adjacent layers are included,
and the logistic activation function is used in the hidden and output layers (see Haykin
1994; Bishop 1995). Such a network has (d + 1)` + (` + 1)c adaptable weights, which are
determined by minimizing the sum-of-squares errors criterion (3.12).

To scale the response vectors better within the range of the logistic function, a modified
desired output for input xi can be used. For example, a vector ỹi, with the components
ỹ

(j)
i = 0.1+0.8y

(j)
i , can replace the original yi. Then the scaled outputs 1.25(r(j)(x)−0.1)

of the optimized network can be regarded as estimating the posterior probabilities P (J =
j | X = x). A good heuristic is to start the local optimizations from a variety of random
initial points and to keep the weights yielding the minimum value for the sum-of-squares
error to prevent the network from converging to a shallow local minimum. It is advisable
to scale the random initial weights so that the inputs into the logistic activation functions
are of the order unity (Bishop 1995).

In weight decay regularization (see Bishop 1995), a penalty for weights that have a large
absolute value is introduced in order to encourage smooth network mappings. The training
of MLPs with weight decay (MLP+WD) tries to minimizes the criterion

1

n

[
n∑

i=1

c∑
j=1

(ỹ
(j)
i − r(j)(xi,w))2 + λ

∑
w∈W

w2

]
. (3.14)

Here, w comprises all the weights and biases of the network, W is the set of weights
between adjacent layers excluding the biases, and λ is the weight decay parameter. The
network inputs and the outputs of the hidden units should be roughly comparable before
the weight decay penalty in the form given above makes sense. To achieve this, it may
be necessary to rescale the inputs.

3.3.2 Local Linear Regression

Local Linear Regression (LLR) (Cleveland and Devlin 1988; Wand and Jones 1995) is a
nonparametric regression method which has its roots in classical methods proposed for
the smoothing of time series data, (see Cleveland and Loader 1995). Such estimators have
received more attention recently, (see Hastie and Loader 1993). The particular version
described below is also called LOESS. Local Linear Regression models the regression
function in the neighborhood of each point x by means of a linear function z 7→ a+B(z−
x). Given training data (x1,y1), . . . , (xn,yn), the fit at point x is calculated as follows.
First, a weighted linear least-squares problem involving an unknown matrix, B, and an
unknown vector, a, is solved,

n∑
i=1

‖yi − a−B(xi − x)‖2w(‖xi − x‖/h(x)) = min
a,B

! (3.15)

36 CHAPTER 3. CLASSIFICATION METHODS IN PATTERN RECOGNITION

Then, the coefficient vector a gives the fit at x. A reasonable choice for the function w
is the tricube weight function (Cleveland and Devlin 1988), w(u) = max((1 − |u|3)3, 0).
The local bandwidth h(x) is controlled by a neighborhood size parameter 0 < α ≤ 1. A
variable k is selected to be equal to αn rounded to the nearest integer and h(x) is made
equal to the distance to the kth closest neighbor of x among the vectors x1, . . . ,xn. If
the components of x are measured in different scales, it is advisable to select the metric
for the nearest neighbor calculation carefully. At a given x, the weighted linear least-
squares problem can be reduced to inverting a (d + 1) × (d + 1) matrix, where d is the
dimensionality of x, (see Wand and Jones 1995).

3.3.3 Tree classifier, MARS and FDA

The introduction of tree-based models in statistics dates back to Morgan and Sonquist
(1963), although their current popularity is largely due to the seminal book by Breiman
et al. (1984). For Euclidean pattern vectors x = [x1, . . . , xd]

T , a classification tree is
a binary tree in which, at each node, the decision to branch either to the left or right
is based on a test of the form xi ≥ λ. The cut-off values λ are chosen to optimize a
suitable fitting criterion. The tree growing algorithm recursively splits the pattern space
Rd into hyperrectangles while trying to form maximally pure nodes, that is, subdivision
rectangles that ideally contain training vectors from one class only. Stopping criteria are
used to keep the trees reasonable in size, although a commonly-employed strategy is to
first grow a large tree that overfits the data and then use a separate pruning stage to
improve its generalization performance. A terminal node is labeled according to the class
with the largest number of training vectors in the associated hyperrectangle. The tree
classifier therefore uses the Bayes rule with the class-posterior probabilities estimated by
locally constant functions. The particular tree classifier described here is available as
a part of the S-Plus statistical software package (see Becker et al. 1988; Chambers and
Hastie 1992; Venables and Ripley 1994). This implementation uses a likelihood function
to select the optimal splits (Clark and Pregibon 1992). Pruning is performed by the
minimal cost-complexity method. The cost of a subtree T is taken to be

Rα(T) = ε(T) + α · size(T) , (3.16)

where ε(T) is an estimate of the classification error of T , the size of T is measured by the
number of its terminal nodes, and α > 0 is a cost parameter. An overfitted tree is pruned
by giving increasingly large values to α and by selecting nested subtrees that minimize
Rα.

Multivariate Adaptive Regression Splines (MARS) (Friedman 1991) is a regression method
that shares features with tree-based modeling. MARS estimates an unknown function r
using an expansion

r̂(x) = a0 +
M∑

k=1

akBk(x) , (3.17)

3.4. PROTOTYPE CLASSIFIERS 37

where the functions Bk are multivariate splines. The algorithm is a two-stage procedure.
It begins with a forward stepwise phase which adds basis functions to the model in a delib-
erate attempt to overfit the data. The second stage of the algorithm is the standard linear
regression backward elimination. The maximum order of variable interactions (products
of variables) allowed in the functions Bk, as well as the maximum value of M allowed in
the forward stage, are parameters that need to be tuned experimentally. Backward model
selection uses the generalized cross-validation criterion introduced by Craven and Wahba
(1979).

The original MARS algorithm only fits scalar-valued functions and, therefore, is not well-
suited to discriminatory tasks with more than two classes. A recent proposal called
Flexible Discriminant Analysis (FDA) (Hastie et al. 1994), with its publicly available
S-Plus implementation in the StatLib program library, contains vector-valued MARS as
one of its ingredients. FDA is not, however, limited to just MARS since it allows other
regression techniques as its building blocks as well. In FDA, c separate MARS models
r(j) with equal basis function sets but different coefficients ak can first be trained to
map training vectors xi to the corresponding unit vectors yi. Then, a linear map A is
constructed to map the regression function output space Rc onto a lower dimensional
feature space R` in a manner that optimally facilitates prototype classification based on
the transformed class means A(r(µ̂j)) and a weighted Euclidean distance function.

3.4 Prototype Classifiers

One distinct branch of classifiers under the title “others” in Table 3.1 on page 28 are
the prototype classifiers LVQ, k-NN, and L-k-NN . They share the principle of keeping
copies of training vectors in memory. The classification decision g(x) is then based on
the distances between the stored prototypes and the input vector x. Either the training
vectors are retained as such, or some sort of training phase is used to extract properties of
a multitude of training vectors to each of the prototypes. In either case, these classifiers
are typical representatives of the nonparametric classification methods.

3.4.1 k-Nearest Neighbor Classifiers

In a k-Nearest Neighbor (k-NN) classifier, each class is represented by a set of prototype
vectors (see Dasarathy 1991). The k closest neighbors of an input pattern vector x are
found among all the prototypes, and the majority rule determines the class label. A
potential tie of two or more classes can be broken, for example, by decreasing k by one
and re-voting.

In classical pattern recognition, the nonparametric k-NN classification method has been
very popular since the first publication by Fix and Hodges (1951) and an important
limiting accuracy proof by Cover and Hart (1967). The k-NN rule should still be regarded
as a sort of a reference classifier, against which other statistical and neural classifiers

38 CHAPTER 3. CLASSIFICATION METHODS IN PATTERN RECOGNITION

should be compared (Toussaint et al. 1982). Its advantage is that no time is needed in
training the classifier. On the other hand, a huge amount of memory and time are needed
during the classification phase. An important improvement in memory consumption,
while still keeping the classification accuracy moderate, may be achieved by using some
editing method. Perhaps the oldest editing rule, the Condensing algorithm, was presented
by Hart (1968). The classifier is initialized with no prototypes in it. Then, the training
vectors are tentatively classified, and if the classifier is unable to correctly classify an input
vector, that vector is added as a new prototype. In an editing rule by Wilson (1972), each
vector in the training set is classified using all the training vectors other than itself. After
all vectors have been tentatively classified, those yielding an error are deleted from the
prototype set. Devijver and Kittler (1982) have suggested a more advanced Multiedit
algorithm in which the training set is partitioned to smaller vector sets which are then
used in classifying one another. The misclassified vectors are deleted after each iteration
of the algorithm, and the remaining prototypes are re-pooled. This iteration continues
until no editing has taken place for a preset number of epochs. In all the described editing
methods, a vector set originally used as a k-NN classifier is converted to a smaller edited
prototype set which is employed as a 1-NN classifier.

3.4.2 Learning Vector Quantization

The Learning Vector Quantization (LVQ) algorithm (Kohonen 1995) produces a set of
prototype or codebook pattern vectors mi that are applicable in a 1-NN classifier. The
training consists of moving a fixed number ` of codebook vectors iteratively toward, or
away from, the training vectors xi. The variations of the LVQ algorithm differ in the
rules determining which of the codebook vectors are updated, and how. In the learning
process, all the modifications to the codebook vectors are made according to the delta
rule. This means that each additive correction to a codebook vector value is a fraction of
the difference between the input vector value and the current codebook vector value, i.e.,

mi(t + 1) = mi(t) + α(t)[x(t)−mi(t)] . (3.18)

The α parameter controls the learning rate and is usually made to decrease monotonically
with time. Positive values of α cause the movement of mi toward x and negative values
away from it. In LVQ2 and LVQ3, an additional parameter w is used to control the
relative width of a “window” around the midplane of the two nearest codebook vectors.
The vector updates take place only if the input vector x falls into this window.

The LVQ learning process can be interpreted either as an iterative movement of the
decision boundaries between neighboring classes, or as a way to generate a set of codebook
vectors whose density reflects the shape of the function s defined as

s(x) = Pjfj(x)−max
k 6=j

Pkfk(x) , (3.19)

where j = gBAYES(x). Note that the zero set of s consists of the Bayes optimal decision
boundaries.

3.4. PROTOTYPE CLASSIFIERS 39

3.4.3 Learning k-NN Classifier

Besides editing, iterative learning algorithms can also be applied to k-NN classifiers.
The adaptation rules of the Learning k-NN Classifier (L-k-NN) presented by Laaksonen
and Oja (1996a) resemble those of LVQ, but, unlike LVQ, it is still able to utilize the
improved classification accuracy provided by majority voting. As in LVQ, the Learning
k-NN rules use a fixed number ` of prototype vectors with predetermined class labels j for
classification. Another common characteristic is that the prototypes are moved iteratively
according to the delta rule (3.18) during the training period. After the adaptation, the
classification function for a new unknown input vector is based on the majority label
among its k closest code vectors exactly as in the standard k-NN.

Three slightly different training algorithms have been proposed for the L-k-NN Classifier
(Laaksonen and Oja 1996a). The objective of all these rules is to make the correct
classification of the input vectors more probable by moving some of the prototype vectors
mij in the neighborhood of an input vector x toward and some away from it. Figure 3.2
illustrates these three rules in a simple two-dimensional two-class (white and gray) case.
In the figure, the value of the parameter k is 3. The area that contains the training vector
and its k nearest prototype vectors is shaded. The training vector is depicted with a
small white circle. According to the 3-NN rule, the vector has originally been classified
erroneously as gray.

(a) L-k-NN rule #1 (b) L-k-NN rule #2 (c) L-k-NN rule #3

Figure 3.2: The L-k-NN training rules #1, #2, and #3. The small circle depicts
the training vector, the larger ones the prototype vectors. The arrows
indicate the directions in which the vectors are moved.

L-k-NN rule #1. All the k nearest prototypes are moved. If the class of the prototype
is the same as the class of the training vector, the prototype is moved toward the
training vector; otherwise, away from it. For k = 1, this is equivalent to the LVQ1
algorithm.

L-k-NN rule #2. Only the kth and the (k + 1)th nearest prototypes are moved if the
interchange of their order would change the classification of the training vector

40 CHAPTER 3. CLASSIFICATION METHODS IN PATTERN RECOGNITION

from incorrect to correct. If the class of the prototype is the same as the class of
the training vector, the prototype is moved toward the training vector; otherwise,
away from it.

L-k-NN rule #3. All the k + 1 nearest prototypes are moved. If the class of the proto-
type is the same as the class of the training vector, the prototype is moved toward
the training vector; otherwise, away from it.

Compared to the standard k-NN classifier, L-k-NN needs less memory to store the proto-
type vectors, because each trained prototype represents a multitude of training vectors.
Therefore, both L-k-NN and LVQ are somewhat more of a semiparametric model than
the classical k-NN classifier.

3.5 Special Properties of Neural Methods

The previous discussion characterized some popular classification techniques in terms of
their underlying mathematical principles. In this general context, many neural networks
can be seen as representatives of certain larger families of statistical techniques. This
abstract point of view, however, fails to identify some of those key features of neural
networks that characterize them as a distinct methodology.

From the very beginning of neural network research by McCulloch and Pitts (1943) and
Rosenblatt (1958 and 1961), the goal was to demonstrate problem-solving without explicit
programming. The neurons and networks were supposed to learn from examples and store
this knowledge in a distributed way among the connection weights.

The original methodology was exactly the opposite to the goal-driven, or top-down, de-
sign of statistical classifiers in terms of explicit error functions. In neural networks, the
approach has been bottom-up; to start from a very simple linear neuron that computes a
weighted sum of its inputs, to add a saturating smooth nonlinearity, and to construct lay-
ers of similar parallel units. It turned out that “intelligent” behavior like speech synthesis
(Sejnowski and Rosenberg 1987) emerged through simple learning rules. The computa-
tional aspect has always been central in neural networks. At least in principle, everything
that a neural network does should be accomplished by a large number of simple local
computations which use the available input and output signals, as in real neurons. Unlike
heavy numerical algorithms, no such operations as matrix inversions are required by, or
permitted for, neural methods. Perhaps the best example of a clean-cut neural network
classifier is the LeNet system for handwritten digit recognition (LeCun et al. 1989; Bottou
et al. 1994). Computational models like this support well the implementation in regular
VLSI circuits.

In the current neural networks research, these original views are clearly becoming vague
as some of the most fundamental neural networks, such as the one-hidden-layer MLP or
RBF networks, have been shown to have very close connections to statistical techniques.

3.5. SPECIAL PROPERTIES OF NEURAL METHODS 41

The goal remains, however, to build much more complex artificial neural systems for
demanding tasks like speech recognition (Kohonen 1988) or computer vision (Lampinen
and Oja 1995). In such applications, it is difficult, or even impossible, to state the exact
optimization criteria for all the consequent processing stages.

QDA

LDA RDA CLAFIC

k-NN

KDA LLR

MARSCARTALSM

L-k-NN
LVQ

RBF

MLP

RKDA

nonneural

training

inflexible flexible

architecturearchitecture

training

neural

Figure 3.3: Neural characteristics of some classifiers according to Holmström
et al. (1997).

Figure 3.3 assesses the neural characteristics of some of the discussed classification meth-
ods. The horizontal axis describes the flexibility of a classifier architecture in terms of
the versatility of the discriminant function family encompassed by a particular method.
A high flexibility in the architecture is a property often associated with neural networks.
In some cases (MLP, RBF, CART, MARS), the flexibility can also include algorithmic
model selection during learning.

In the vertical dimension, the various classifiers are categorized on the basis of how they
are designed from a training sample. Training is considered nonneural if the training
vectors are used as such in classification (e.g., k-NN, KDA), or if some statistics are
first estimated in batch mode and the discriminant functions are computed from them
(e.g., QDA, CLAFIC). Neural learning is characterized by simple local computations in a
number of real, or virtual, processing elements. Neural learning algorithms are typically
of the error correction type; for some such algorithms, not even an explicit cost function
exists. Typically, the training set is used several times (epochs) in an on-line mode.
Note, however, that for some neural networks (MLP, RBF), the current implementations,
in fact, often employ sophisticated optimization techniques which would justify moving
them downwards in the map to the lower half plane.

42 CHAPTER 3. CLASSIFICATION METHODS IN PATTERN RECOGNITION

In this schematic representation, the classical LDA and QDA methods are seen as the
least neural with the RDA and CLAFIC that possess at least some degree of flexibility
in their architecture. The architecture of KDA, k-NN, and LLR is extremely flexible.
In comparison to CLAFIC, the ALSM method allows for both incremental learning and
flexibility in the form of subspace dimensions that can change during learning. In this
view, such methods as MLP, RBF, RKDA, LVQ, and L-k-NN are good examples of neural
classifiers. ALSM, CART, and MARS also exhibit neural characteristics to some degree.

3.6 Cross-Validation in Classifier Design

In order to get reliable estimates of classifier performance, the available data should first
be divided into two separate parts: the training sample and the testing sample. The
whole process of classifier design should then be based solely on the training sample. In
addition to parameter estimation, the design of some classifiers involves the choice of
various tuning parameters and model, or architecture, selection. To utilize the training
sample efficiently, cross-validation (Stone 1974), or “rotation” (Devijver and Kittler 1982),
can be used. In v-fold cross-validation, the training sample is first divided into v disjoint
subsets. One subset at a time is then put aside, a classifier is designed on the basis of the
union of the remaining v− 1 subsets and tested for the held-out subset. Cross-validation
approximates the design of a classifier which uses all the training data and which is then
tested with an independent set of data. The cross-validation process enables defining a
reasonable objective function to be optimized in classifier design. For instance, for a fixed
classifier, the dimension of the pattern vector can be selected so that it minimizes the cross-
validated error count. After the optimization, an unbiased estimate of the performance
of the optimized classifier can be obtained by means of a separate testing sample. Notice
that the performance estimates may become biased if the testing sample is in any way
used during the training of the classifier.

3.7 Rejection

Other criteria than minimum classification error in the sense of the Bayesian misclassi-
fication rate (3.4) can be important in practice. These criteria include the use of class-
dependent misclassification costs and Neyman-Pearson style classification (Young and
Calvert 1974; Holmström et al. 1995). The use of a reject class can help to reduce the
misclassification rate ε in tasks where exceptional handling, for instance, by a human
expert, of particularly ambiguous cases is feasible. The decision to reject a pattern x and
to handle it separately can be based on its probability to be misclassified, which for the
Bayes rule is ε(x) = 1−maxj=1,...,c qj(x). The highest misclassification probability occurs
when the posterior probabilities qj(x) are equal and then ε(x) = 1 − 1/c. Consequently,
a rejection threshold 0 ≤ θ ≤ 1− 1/c can be selected, and x rejected if

ε(x) > θ . (3.20)

3.8. COMMITTEES 43

The notation g(x) used for the classification function can be extended to include the
rejection case by denoting with g(x) = 0 all the rejected vectors x. When the overall
rejection rate of a classifier is denoted by ρ, the rejection-error balance can be depicted as
a curve in the ρε-plane, parameterized with the θ value. For example, in the recognition
of handwritten digits, the rejection-error curve is found to be generally linear in the
ρ log ε-plane (Geist et al. 1992), as can be observed in Figure 8.6 on page 130.

3.8 Committees

In practice, one is usually able to classify a pattern by using more than one classifier.
It is then quite possible that the combination of the opinions of several parallel systems
results in improved classification performance. Such hybrid classifiers, classifier ensembles,
or committees, have been studied intensively in recent years (Perrone 1994). A sample
committee is displayed in Figure 3.4.

3.42%

3.56%

3.61%

2.85%

Feature set #1 Classifier #1

Feature set #2

Feature set #3

Classifier #2

Classifier #3

Committee

Figure 3.4: A committee classifier. In this semifictional example, the resulting
error rate of the committee of three classifiers, each of which has a
dedicated feature extraction block, is clearly lower than any of the
error rates of its members.

In addition to improved classification performance, there are other reasons for using a
committee classifier. The feature vector may be constructed of components that originate
from very diverse domains. Some may be statistical quantities, such as moments, and
others discrete structural descriptors, such as numbers of endpoints, loops, and so on. As
a consequence, it may not be reasonable at all to concatenate all the features into a single
feature vector and to use a single classifier. In some other situations, the computational
burden can be reduced either during training or in the recognition phase if the classification
is performed in several stages.

Various methods exist for forming a committee of classifiers, even if their output infor-
mation is of different types. In the simplest case, a classifier only outputs its decision
concerning the class of an input pattern, but, sometimes, some measure of the certainty

44 CHAPTER 3. CLASSIFICATION METHODS IN PATTERN RECOGNITION

of the decision is also provided. The classifier may propose a set of classes in the order of
decreasing certainty, or a measure of decision certainty may be given for all the classes.
Various ways to combine classifiers with such types of output information are analyzed
by Xu et al. (1992), Ho et al. (1992 and 1994), and by Huang et al. (1995).

The simplest decision rule is to use a majority rule among the classifiers in the committee,
possibly ignoring the opinion of some of the classifiers (Xu et al. 1991). Two or more
classifiers that use different sets of features may be combined to implement rejection of
ambiguous patterns (Nadal et al. 1990; Kimura and Shridhar 1991; Suen et al. 1992; Lam
and Suen 1994). A genetic algorithm can be applied in searching for optimal weights
to combine the classifier outputs (Lam and Suen 1995). Theoretically more advanced
methods may be derived from the EM-algorithm (Xu and Jordan 1993; Ho et al. 1994;
Jordan and Jacobs 1994; Xu et al. 1995) or from the Dempster-Shafer theory of evidence
(Franke and Mandler 1992; Xu et al. 1992).

The outputs of several regression-type classifiers may be combined linearly (Jacobs 1995)
or nonlinearly (Tresp and Taniguchi 1995) to reduce the variance of the posterior-
probability estimates. A more general case is the reduction of variance in continuous
function estimation. Here, a set of MLPs can be combined in a committee classifier which
has reduced output variance and thus smaller expected classification error (Hansen and
Salamon 1990; Wolpert 1992; Perrone and Cooper 1993; Krogh and Vedelsby 1995). A
separate confidence function may also be incorporated in each of the MLPs (Śmieja 1994).

Given a fixed feature extraction method, either a common training set can be used to
design a number of different types of classifiers (Idan and Auger 1992) or, alternatively,
different training sets can be used to design several versions of one classifier type (Drucker
et al. 1993; Drucker et al. 1994; Hinton et al. 1995; Schwenk and Milgram 1995; Sollich
and Krogh 1995).

3.9 On Comparing Classifiers

Some classification accuracies attained by using the classification algorithms described in
the previous sections will be presented in Chapter 8. Such comparisons need, however, to
be considered with utmost caution.

During the last few years, a large number of papers have described and analyzed vari-
ous neural and other classification algorithms. The results of such experiments cannot
generally be compared, due to the use of different raw data material, preprocessing, and
testing policies. Prechelt (1996) analyzed articles published in two major neural networks
journals in 1993 and 1994. In these articles, neural algorithms were employed in experi-
mental evaluations. The bare conclusion was that the quality of the quantitative results,
if presented at all, was poor. For example, the famous NETtalk experiments by Sejnowski
and Rosenberg (1987) were replicated by Schmidt et al. (1994) and compared to the per-
formance of a k-NN classifier. Their conclusion was that the original results were hard to
reproduce and the regenerated MLP results were outperformed by the k-NN classifier.

3.10. CLASSIFIERS: THEORY AND PRACTICE 45

Some larger evaluations, or benchmarking studies, have also been published. Each bench-
mark has tried to assess a set of classification algorithms in a fair and impartial setting.
Some of the latest in this category include the studies by Blue et al. (1994), Cheng and
Titterington (1994), Michie et al. (1994), Blayo et al. (1995), and by Holmström et al.
(1997). Duin (1996) addressed the fundamental philosophical question involved in the
classifier comparisons by asking whether the experiments are merely testing the skills of
those experts who use the algorithms or whether they provide information on the appli-
cability of the classifiers for the needs of the non-experts. Devroye (1988) calculated the
distribution-free bounds for the difference between the achieved and the achievable error
levels for a set of classification algorithms, both in the cases of finite and infinite training
sets.

3.10 Classifiers: Theory and Practice

This chapter has presented a collection of different statistical and neural classification
algorithms. The methods have been assessed with respect to their theoretical character-
istics, including the way they model the underlying probability density functions of the
data, and the parametric/nonparametric nature of their internal representations. Know-
ing all these facts, however, does not as such help in selecting the best available classifier
for a particular pattern recognition application.

First of all, there cannot be such a thing as the best all-around classifier. Each real-
world application calls for different characteristics of classifiers. For example, in some
applications, it may be impossible to collect a comprehensive training sample of data.
Yet, the system should be robust and able to reliably extrapolate from the available data.
On the other hand, in some situations, different kinds of errors have different degrees of
severity. Therefore, the classifier should somehow reflect the asymmetrical nature of the
classification problem. It should thus be evident that no single classifier can be a sovereign
solution in all situations.

One important aspect, which has not been discussed in detail in this chapter, is the com-
putational complexity of the classification methods. From the point of view of the system
designer, the time available for each classification decision, the cost of the system, and
the obtainable overall error rate form a vicious circle to be solved. In general, the cost
and the time can be regarded as given. Therefore, the system designer, in practice, has a
fixed number of processor cycles to be divided between the stages of the pattern recogni-
tion application. Besides the limited number of computational operations available, the
amount of system memory may, in some classifiers, turn out to be a limiting factor as
well. Even though the memory devices are nowadays cheap, any limit in the size and cost
of the system will eventually be reached.

The scalability of a classifier is an important design factor. The parametric methods are
not scalable at all. Their accuracy may get better when the size of the training sample is
increased but this improvement is likely to saturate very soon. After the estimation of the

46 CHAPTER 3. CLASSIFICATION METHODS IN PATTERN RECOGNITION

model parameters is accurate enough, the limitations of the parametric model itself will
become evident. The nonparametric methods, on the contrary, scale well. Their inherent
problem is, therefore, whether the classification accuracy is adequate before some system
resource has been exhausted. Another weakness of the nonparametric classifiers is that
they, in general, are not able to extrapolate very reliably. The semiparametric methods try
to combine the valuable properties of both the parametric and nonparametric approaches.
Nothing, however, really guarantees that only the desirable characteristics are included
and all undesirable properties excluded.

The designer of a pattern recognition application should thus be aware of a wide spectrum
of different classification techniques. If she has in her toolbox a bunch of classifiers, she
can actually evaluate the achievable recognition accuracies by using methods of different
kinds. This evaluation process should be combined with the selection of the features to be
used in the system. The feature extraction and classification stages form a tightly coupled
pair whose cooperation is crucial to the overall performance of the system. Therefore,
when a pattern recognition system is being designed, expertise in both the classification
methods and the characteristics of the particular application area is required.

47

Chapter 4

Subspace Classification Methods

The motivation for subspace classifiers originates from compression and optimal recon-
struction of multidimensional data with linear principal components. The use of linear
subspaces as class models is based on the assumption that the vector distribution in each
class lies approximately on a lower-dimensional subspace of the feature space. An input
vector from an unknown class is then classified according to the shortest distance to the
subspaces, each of which represents one class. Even though this linearity assumption
is seldom valid, acceptable classification accuracies can be achieved if the input vector
dimensionality is large enough.

In Table 3.1 on page 28, the subspace classifiers CLAFIC and ALSM were placed under
the title “others”. This was done because, so far, there has not been a density function
estimation or regression interpretation of the subspace methods. Such an interpretation
is now given in Section 4.3.6. The subspace methods are generally regarded as semipara-
metric classifiers. This means that they are based on parametric models with effective
techniques for controlling the number of free parameters. The traditional subspace clas-
sifiers are mostly straightforward statistical methods, but the newer learning variants can
be formulated and interpreted in the neural computation framework.

The history of the subspace methods in data analysis was begun in the 1930s by Hotelling
(1933). The value of the subspace methods in data compression and optimal reproduction
was observed in the 1950s by Kramer and Mathews (1956). Ten years later, Watanabe
et al. (1967) published the first application in pattern classification. Learning subspace
methods emerged from the mid-1970s, after the pioneering work of Kohonen et al. (1978).
From the beginning, these methods aimed for classification instead of optimal compression
or reproduction. The guiding idea in the learning methods is to modify the bases of
the subspaces in order to diminish the number of misclassifications. The nature of the
modifications varies in different learning algorithms.

This chapter is organized as follows. Section 4.1 examines the classical subspace methods.
Basic learning variants of the subspace classifier are described in Section 4.2. Section 4.3
focuses on some general considerations and improvements of the subspace classifiers. The
prospects of the subspace methods are addressed in Section 4.4.

48 CHAPTER 4. SUBSPACE CLASSIFICATION METHODS

4.1 Classical Subspace Methods

First, this section introduces the basic mathematical notations and operations needed
when dealing with subspaces in classification tasks. Second, classical subspace classifica-
tion algorithms are presented. Some of the details are postponed until later sections of
this chapter. The style of the notations and illustrations is adopted from Oja (1983).

4.1.1 Subspace Basics

In this presentation, all the operations take place in a d-dimensional real-valued vector
space Rd. The most common way to define an `-dimensional subspace L uses a set
of linearly independent basis vectors, {u1, . . . ,u`}, which can be combined into a d × `
matrix U which, thus, has rank `. This notation leads easily to the definition of the
subspace as the set of linear combinations of the basis vectors

L = LU = { x | x =
∑̀
i=1

ζiui, ζi ∈ R } = { x | x = Uz, z ∈ R`} . (4.1)

In the last form, the coefficient scalars {ζ1, . . . , ζ`} were combined into a multiplier vector
z. In the notation, the basis vectors are not uniquely defined even though the subspace is.
Thus, the set of vectors {u1, . . . ,u`} may be orthonormalized without loss of generality by
using, for example, the well-known Gram-Schmidt orthonormalization process (see Golub
and van Loan 1989), if the vectors are not already orthonormal. Figure 4.1 illustrates
these concepts with a two-dimensional subspace in a three-dimensional space.

u2

u1

LU

R3

O

Figure 4.1: A two-dimensional subspace L in a three-dimensional space. L is
defined by its basis vectors u1 and u2.

4.1. CLASSICAL SUBSPACE METHODS 49

A central operation of the subspace methods is the projection of a vector x on a sub-
space L. In the linear case, this operation can be expressed using a projection matrix P
which has two distinctive characteristics. First, it associates each vector x of Rd with a
projection vector Px = x̂ ∈ L ⊂ Rd. Second, every vector of the subspace L is projected
onto itself, i.e., Px̂ = x̂. This is equivalent to P2 = P, which means that P is idempo-
tent. The vector x can be presented as the sum of two vectors, x̂ = Px which belongs to
the subspace L, and x̃ = x − x̂ = (I − P)x which is the residual. Figure 4.2 schemati-
cally displays these relations. The projection matrix turns out to be another useful way

x̃
x

x̂

L

R3

O

Figure 4.2: The orthogonal projection of a three-dimensional vector x on a two-
dimensional subspace L. x̂ is the projection and x̃ the residual.

of defining a subspace. Unlike the set of basis vectors, U, the projection matrix P is
uniquely defined. The projection matrix definition of the subspace relies on the fact that
the subspace is not affected by the projection onto itself, i.e.,

L = { x | Px = x } . (4.2)

The combination of (4.1) and (4.2) shows that PUz = Uz, which leads to the relation
between the P and U matrices in the general case. That is, the columns ui of U are those
eigenvectors of P the corresponding eigenvalues of which are equal to one.

If the projection P is required to be such that the norm of the residual component, ‖x̃‖,
is minimized, orthogonal projection, for which the projection vector x̂ and the residual
vector x̃ are mutually perpendicular, results. Due to many desirable properties provided
by the orthogonal projection, it is the most widely used in subspace algorithms. Most
importantly, the multipliers of the basis vectors in (4.1) are obtained as inner products
ζi = xTui. Moreover, the change of the multiplication order leads to the determination
of the projection matrix P of the subspace LU from

x̂ =
∑̀
i=1

ζiui =
∑̀
i=1

(xTui)ui =
∑̀
i=1

(uiu
T
i)x = UUTx = Px . (4.3)

50 CHAPTER 4. SUBSPACE CLASSIFICATION METHODS

Thus, in the case of an orthonormal basis U, the orthogonal projection matrix turns
out to be P = UUT and PT = P. This shows that the projection matrix is not only
idempotent but also symmetric. An important quantity in the subspace methods is the
length of the projection vector x̂. In some situations, only the norm ‖x̂‖ is needed and
the calculation of the actual projection vector x̂ can be omitted. The squared norm ‖x̂‖2

may be calculated from many different formulations, but most likely from

‖x̂‖2 = ‖UTx‖2 =
∑̀
i=1

(xTui)
2 =

∑̀
i=1

ζ2
i . (4.4)

4.1.2 Classification Rule

In this section, the classification function g(x) introduced in Chapter 3 is specialized for
subspace methods. In the classifier formulation, the subspaces and associated matrices
are subscripted with the class index j. The length of the projection x̂j on the subspace
Lj is used as a similarity measure between the input vector x and the class j. The input
vector is then classified according to the maximal similarity value

gSS(x) = argmax
j=1,...,c

‖x̂j‖2 = argmax
j=1,...,c

‖UT
j x‖2 . (4.5)

The subscript ‘SS’ acts as an abstract placeholder for the still unspecified way of how to
select for each class j the dimension `j and the actual basis vectors u1j, . . . ,u`jj which form
the subspace basis U. (4.5) shows the fundamental linearity of the subspace classification
methods: the length of the input vector x does not contribute to the classification decision.
In other words, the subspace classifier is invariant to the input vector length in the sense
discussed in Section 2.5.

Two potential weaknesses of the subspace classification rule are evident in (4.5). First, the
information on the a priori probabilities of the classes cannot be utilized even if it were
available. Second, the classification of vectors residing near the origin of the coordinate
system may be arbitrary in the presence of additive noise. These questions are addressed
in Sections 4.3.6 and 4.3.5, respectively.

4.1.3 CLAFIC

The employment of the Principal Component Analysis (PCA), or the Karhunen-Loève
Transform (KLT), in classification tasks leads to the Class-Featuring Information Com-
pression (CLAFIC) algorithm introduced by Watanabe et al. (1967). CLAFIC sim-
ply forms the base matrices for the classifier subspaces from the eigenvectors of the
class-conditional correlation matrices. For each class j, the correlation matrix Rj =

E[xxT | x ∈ j] is estimated with R̂j = n−1
j

∑nj

i=1 xijx
T
ij. The first `j eigenvectors of R̂j,

u1j, . . . ,u`jj, in the order of decreasing eigenvalue λij, are then used as columns of the
basis matrix Uj,

Uj =
(
uij | (R̂j − λijI)uij = 0, λij ≥ λ(i+1)j, i = 1, . . . , `j

)
, (4.6)

4.1. CLASSICAL SUBSPACE METHODS 51

where 0 is the zero vector. The sample mean µ̂ of the pooled training set is normally
subtracted from the pattern vectors before they are classified or used in initializing the
CLAFIC classifier. Because the class-conditional correlations Rj of the input vectors x
differ from the corresponding class-wise covariances Σj, the first eigendirection in each
class merely reflects the direction of the class mean from the pooled mean translated to
the origin. The calculation of the eigenvalues and eigenvectors of a symmetric positive
definite matrix, such as R̂j, is described, for instance, by Golub and van Loan (1989).
The selection of the subspace dimensions `1 . . . , `c is left open in the basic formulation of
CLAFIC. This important question is addressed in Section 4.3.2. Until then, it can be
simply assumed that the dimensions are somehow fixed to appropriate values.

4.1.4 Multiple Similarity Method

One way to generalize the classification function (4.5) is to introduce individual weights
for all the basis vectors. Iijima et al. (1973) have selected to weight each basis vector with
the corresponding eigenvalue in their Multiple Similarity Method (MSM)

gMSM(x) = argmax
j=1,...,c

`j∑
i=1

λij

λ1j

(xTuij)
2 . (4.7)

This emphasizes the effect of the most prominent directions, for which λij/λ1j / 1. The
selection of the subspace dimension `j is, therefore, less essential because the influence of
the less prominent eigenvectors, which have multipliers λij/λ1j ' 0, diminishes gradually.
The influence of the phantom eigendirections which have small eigenvalues and are created
by additive noise is thus canceled out. Section 4.3.3 puts forward a new improved version
of this scheme.

4.1.5 Method of Orthogonal Subspaces

The subspaces that represent two different pattern classes may have a large common sub-
subspace. This is problematic because the discrimination between these classes weakens
if the subspace dimensions `j are small. On the other hand, if the subspace dimensions
are increased, the classification decisions become dominated by the less robust principal
directions. This problem may be avoided if the subspaces are made mutually orthogonal.
This leads to a variant of the CLAFIC known as the Method of Orthogonal Subspaces
(MOSS) by Kulikowski and Watanabe (1970) and Watanabe and Pakvasa (1973).

Pairwise orthogonalization of two subspaces is possible whenever their dimensions satisfy
the obvious condition `i + `j ≤ d. In that case, two subspaces are said to be mutually
orthogonal if any vector of one of the subspaces has zero projection on the other, and
vice versa. This is equal to the condition that the basis vectors are orthogonal not only
within, but also between, the subspaces. Thus, the projection matrices Pi and Pj of two

52 CHAPTER 4. SUBSPACE CLASSIFICATION METHODS

orthogonal subspaces fulfill the condition

PiPj = PjPi = 0 , (4.8)

where 0 is the zero matrix. The orthogonalization process of MOSS is accomplished by
removing the intersections of the subspaces as described, for instance, by (Therrien 1975).
In short, the projection operators Pj are replaced with mutually orthogonal operators P′

j,
which are formed by using the generating matrix Gj,

Gj = ajPj +
c∑

i=1,i6=j

ai(I−Pi) . (4.9)

The otherwise arbitrary positive multipliers aj must satisfy the condition
∑c

j=1 aj =
1. The eigenvalues and eigenvectors are now calculated from Gj, and the orthogonal
projection operators P′

j are formed from the `′j eigenvectors vij which have eigenvalues
equal to one,

P′
j =

`′j∑
i=1

vijv
T
ij . (4.10)

Naturally, ∀j : `′j ≤ `j. In some cases, the procedure, however, leads to an unacceptable
situation where, for some j, `′j = 0, and the corresponding subspace vanishes (Karhunen
and Oja 1980).

4.1.6 Generalized Fukunaga-Koontz Method

Fukunaga and Koontz (1970) reasoned that it was necessary to select such basis vectors
that the projections on rival subspaces were minimized. Their original formulation of the
problem and the criticism against it, presented by Foley and Sammon (1975), considered
only the two-class case. Instead, the Generalized Fukunaga-Koontz Method (GFK) of
Kittler (1978) handles an arbitrary number or classes. In the two-class case, the correlation
matrices of both classes are first estimated. The Karhunen-Loève Transform is then
applied to their sum Q = R1 + R2 and the eigenvalues λi and eigenvectors ui are used
in defining a transformation matrix S, which is used to transform the original vector x to
x′,

S =

(
u1√
λ1

. . .
ud√
λd

)
. (4.11)

For the correlation matrix R′
j of the transformed vector x′ = STx, it holds that R′

j =
STRjS, and further R′

1 + R′
2 = I. Thus, R′

1 and R′
2 have the same eigenvectors, and the

corresponding eigenvalues are positive and sum up to unity. This leads to the following
interpretation of the nature of the eigenvectors: When ordered according to the descending
eigenvalues, the first few eigenvectors of R′

1 are optimal for describing the distribution
of the transformed vectors x′ which belong to the first class. On the other hand, the

4.2. BASIC LEARNING SUBSPACE METHODS 53

eigenvectors with the smallest eigenvalues describe the second class. The method was
primarily developed for feature extraction and clustering, but it also lends itself directly
to classification.

The multi-class version of the algorithm minimizes simultaneously the length of the resid-
ual component x̃ and the sum of the projection lengths on the other subspaces. The mini-
mization may be carried out individually for each class j and its basis vectors u1j, . . . ,u`jj

eGFKj =
d∑

i=`j+1

uT
ij

[
Rj +

c∑
k=1
k 6=j

(I−Rk)

]
= min

u1j ,...,u`jj

! . (4.12)

Thus, an optimal basis for the class j may be formed from the eigenvectors that correspond
to the largest eigenvalues of the generating matrix

Gj = Rj +
c∑

i=1
i6=j

(I−Ri) . (4.13)

The Generalized Fukunaga-Koonz Method may be considered to first model the pooled
distribution of all the classes and then to subtract the effect of rival classes from that of
the correct one. Acting on the covariance matrices, it is also a kind of a predecessor of
the Averaged Learning Subspace Method (ALSM), to be described in Section 4.2.3.

4.2 Basic Learning Subspace Methods

The subspace classifiers introduced so far have all been parametric models in the sense
that the subspaces are selected in a manner which best fits to the assumed linear model
for the classes. The three algorithms investigated in this section, on the contrary, are
capable of learning in decision-directed fashion. Their ability to enhance the classification
accuracy during a training period makes them better-suited for pattern recognition tasks
than the previous methods, whose origins lie more in optimal reconstruction of input
vectors.

4.2.1 Category Feature Subspace Method

One of the oldest decision-directed subspace classification algorithms is the Category
Feature Subspace Method (CAFESSM), described by Noguchi (1976 and 1978). In
CAFESSM, some vectors are selected from each class distribution to represent the whole
class as a generally nonorthonormal subspace basis. Only linear independence of the basis
is now assumed, and, therefore, the projection matrix Pj needs to be restated employing
the matrix pseudo-inverse,

Pj = UjU
†
j = Uj(U

T
j Uj)

−1UT
j . (4.14)

54 CHAPTER 4. SUBSPACE CLASSIFICATION METHODS

The CAFESSM algorithm actually does not describe how to add and remove vectors
to, and from, the basis in order to increase the explaining power of the base. Various
iterative algorithms that use some sort of heuristic reasoning may be applied. The virtue
of the CAFESSM algorithm is in the possibility of iterative refinement of the vector set
that determines the subspaces. The selection of the basis does not need to reflect the
actual distribution of the class. Instead, the accuracy of classification is the ultimate
optimization goal.

4.2.2 Learning Subspace Method

The Learning Subspace Method (LSM) was introduced by Kohonen et al. (1978 and 1979).
The basic idea of LSM is to initially set up the classifier with CLAFIC and then rotate
the subspaces during the training phase in order to diminish the number of misclassi-
fied vectors. The decision-directed rotations make the projections longer on the correct
subspaces and shorter on the others. This process leads to an optimized selection of the
classification subspaces in terms of classification error.

For any input vector x, there are always two subspaces of interest. The first is its own
subspace, i.e., the one that x belongs to. The second is the rival subspace, i.e., the best
runner-up subspace. Subscripts o and r are used to denote these two subspaces, Lo and
Lr. According to the classification rule of (4.5), x is misclassified when the rival projection
length ‖x̂‖r exceeds the length ‖x̂‖o of the projection on the own subspace. This can be
corrected either by forcing ‖x̂‖o to be larger, or by making ‖x̂‖r smaller, or both. The
rotation operator used in changing the projection length is applied to the basis vectors of
the subspace and is solely determined by the input vector x. A general form for such a
rotation transforming the subspace basis U to a new basis U′ is

U′ = (I + µxxT)U . (4.15)

Positive values of µ turn the basis vectors toward x, making the projection vector longer,
whereas small negative µ shorten the projection length. In the special case where µ =
−(xTx)−1, the new basis is orthogonal to x, and the projection vanishes. Kohonen et al.
(1978) derived a closed form solution for µ in the case where the desired projection length
‖x̂′‖ is given. Omitting the details, the result is

µ =
1

‖x‖2

(
‖x̂′‖
‖x̂‖

√
‖x‖2 − ‖x̂‖2

‖x‖2 − ‖x̂′‖2
− 1

)
. (4.16)

Various learning functions have been proposed for LSM. Most of them can be formulated
as monotonically increasing and piecewise defined functions in a ξξ′-plane, where ξ =
‖x̂‖o − ‖x̂‖r and ξ′ = ‖x̂′‖o − ‖x̂′‖r (Riittinen 1986). Note that the rotated bases U′

o

and U′
r are no longer orthonormal and need to be re-orthonormalized through the Gram-

Schmidt process.

4.2. BASIC LEARNING SUBSPACE METHODS 55

4.2.3 Averaged Learning Subspace Method

The Averaged Learning Subspace Method (ALSM) was introduced by Kuusela and Oja
(1982) and described comprehensively by Oja (1983). It is an iterative learning version of
CLAFIC – or a batch version of LSM, depending on how one wants look at it. In ALSM,
the class-conditional scatter matrices, i.e., unnormalized correlation matrices, are modified
after errors. The subspaces are then recomputed after every training epoch. The algorithm
was originally derived from LSM by replacing the rotations with their expected values,
and noting that the rotations change the basis vectors toward the dominant eigenvectors
of the expected rotation matrices. Such an iteration can then be speeded up by performing
the corrective learning operations on the class-conditional scatter matrices instead of on
the subspaces, and recalculating the eigenvectors of the scatter matrices after each epoch.
Thus, the entire ALSM algorithm is

1. The initial scatter matrices Ŝj for the epoch t = 0 are computed for all the classes
j according to

Ŝj(0) =

nj∑
i=1

xijx
T
ij = njR̂j . (4.17)

2. The matrices Uj(t) of basis vectors for the subspaces Lj(t) are produced from the

eigenvectors of the Ŝj(t) matrices similarly to CLAFIC in (4.6).

3. All the training vectors are tentatively classified, and corrections are applied to the
scatter matrices by the rule

Ŝj(t + 1) = Ŝj(t) + α
∑

xij∈Aj(t)

xijx
T
ij − β

∑
xik∈Bj(t)

xikx
T
ik , (4.18)

where Aj(t) is the set of vectors xij of class j which during the training epoch t
are classified using (4.5) erroneously to some other class. The set Bj(t) consists
of vectors xik which during that epoch are classified erroneously as j. The small
positive multipliers α and β control the size of the scatter matrix correction.

4. The iteration is continued from Step 2 with t incremented by one, unless a predefined
number of training epochs has been reached, or the classification accuracy starts to
decrease.

The corrections of the subspaces are carried out in batch fashion, which makes the fi-
nal result independent of the presentation order of the vectors. This property provides
increased statistical stability compared to the LSM algorithm. The speed and stability
of the ALSM learning depends on the selection of the parameters α and β. In general,
they can be kept equal and allowed to decay with the iteration step. The selection of the
dimensions `j can either be done once and for all before starting the training, or they can
be reselected after each training epoch. The training of the classifier can be continued
with the LSM algorithm after the ALSM phase. If the recognition accuracy decreases, the
original ALSM subspaces can be used in the application. The ALSM method has been
used, for example, in classification of visual textures and colors by Parkkinen (1989).

56 CHAPTER 4. SUBSPACE CLASSIFICATION METHODS

4.2.4 Neural Network Interpretation of Subspace Learning

x1, y1j

x2, y2j

u1j u2j u`jj

η2j η`jjη1j

u11j

u21j

ud1j

u12j

u22j

ud2j

u1`jj

u2`jj

ud`jjxd, ydj

Figure 4.3: The Subspace Network according to Oja (1989).

Figure 4.3 displays the Subspace Network, a neural interpretation of learning subspace
methods by Oja (1989). In the Subspace Network model for a subspace classifier, each
class j is represented as a cluster of `j basic neurons uij that have d input connections
with individual synaptic weights ukij. The activation ζij, the differentials of the neuron
outputs ηij, the cluster feedback ykj, and the differentials of the weights are expressed
with a set of equations

ζij =
d∑

k=1

ukijxk = uT
ijx , (4.19)

dηij

dt
= ζij − σ−1(ηij) , (4.20)

ykj =

`j∑
i=1

ukijζij , and (4.21)

dukij

dt
= (xk − ykj) α ζij . (4.22)

In (4.20), σ−1(·) is the inverse of the sigmoid function, and α in (4.22) is a positive
coefficient that controls the strength of the feedback and, thus, the speed of the learning.
The time-constant of the neuron-wise feedback in the output differential (4.20) is small
and ηij rapidly settles to its steady state ηij = σ(ζij). On the contrary, the changes in the
synaptic weights ukij take place very slowly.

Comparison of (4.19) and (4.21) to the previous matrix notation in (4.3) shows that
the feedbacks y1j, . . . , ydj form the projection vector x̂j, provided that the vector set
{u1j, . . . ,u`jj} that forms the matrix Uj is orthonormal. Actually, the orthonormality

4.3. MODIFICATIONS ON SUBSPACE CLASSIFIERS 57

condition is fulfilled. If the vectors xij of class j are assumed to be stationary, then the
average of the differential equation (4.22) can be expressed in matrix form by using the
class-conditional autocorrelations Rj:

dUj

dt
= α(RjUj −Uj(U

T
j RjUj)) . (4.23)

The analysis of such differential systems has shown, according to Oja and Karhunen
(1985), Oja (1989), Yan et al. (1994), and Wyatt and Elfadel (1995), that the columns of
Uj approach orthonormality as t grows. Furthermore, in the limiting case, they span the
same subspace of Rd spanned by the `j dominant eigenvectors of Rj. Thus, the formation
of the CLAFIC type classifier subspaces can be motivated neurally. The ALSM learning
can be accommodated in (4.23) by setting the coefficient α to a negative value in the case
of misclassification. This, of course, needs external supervision in training, which is not
an inherent property of the Subspace Network.

4.3 Modifications on Subspace Classifiers

This section addresses some general questions considering the actual use and implemen-
tation of the subspace methods. These include the use of class-specific means in clas-
sification, the selection of the dimensions for the subspaces, the use of more than one
subspace to model each class, and the unfortunate special case where one of the classes
occupies a region around the origin. Then, a novel interpretation of the subspace methods
in terms of gamma-distributed probability density functions is put forward. Finally, the
computational requirements and possibilities of implementing the subspace classifiers are
analyzed.

4.3.1 Using Class-Specific Means

Page 51 stated that the sample mean µ̂ of the entire training sample is normally first
subtracted from the training vectors xi before the class-conditional correlations R̂j are
formed. Similar subtraction is then performed on all the vectors of the testing set be-
fore classification. Thus, the origin of the coordinate system is in every situation first
transformed to µ̂ of the training sample. This practice implies quite a strong assumption
about the linearity of the class. A more flexible architecture can be obtained by modeling
each class individually as a linear manifold, centered at the estimated mean µj of the
class. For this modification, some notations need to be restated. The classification rule
(4.5) can no longer be based on maximizing the projection length. Instead, the minimum
of the residual length ‖x̃j‖ is searched for. Actually, these two procedures are equal when
class-conditional means are not used.

58 CHAPTER 4. SUBSPACE CLASSIFICATION METHODS

In the general form, and further in the special case of orthogonal projection matrix Pj =
UjU

T
j , the modified classification function is

gSS−µ(x) = argmin
j=1,...,c

‖x̃j‖2 = argmin
j=1,...,c

‖(I−Pj) (x− µj)‖2 (4.24)

= argmin
j=1,...,c

(
‖(x− µj)

2‖ − ‖UT
j (x− µj)‖2

)
. (4.25)

The suffix −µ in the classifier name specifies that the individual class-means are sub-
tracted. In the case of CLAFIC, the basis vectors uij are now the eigenvectors of the
class-conditional covariance matrix Σj. The mean subtraction principle is generally com-
binable with any subspace classification method. To some extent, it resembles the Soft
Independent Modelling of Class Analogy (SIMCA) method by Wold (1976).

The intersections of the class regions produced by (4.24) are no longer cone-shaped, as
are the ones produced by the original classification function (4.5). Instead, the classes
intersect in unanticipated regions of the feature space. In the vicinity of the intersections,
the classification decision becomes more or less arbitrary. In general, however, provided
that the pattern dimensionality d is large enough in relation to the sum of the subspace
dimensions `j, the intersections will most likely occur in regions where the input density
is sparse.

0

1

6

7
0

1

6

7

0

1

6

7
0

1

6

7

0

1

6

7

0
1

6

7

0

1

6

7

0 1

6

7
0

1

6

70

1

6

7

0
1

6

7

0 1

6

7
0

1

6

7

0

1

6

7

0

1

6

70

1

6

7

0
1

6

7

0

1

6

7

0

1

6

7

0

1

6

7

0
1

6

7
0

1

6

70

1

6

7

0

1

6

7

0

1

6

7

(a) CLAFIC

0

1

6

7
0

1

6

7

0

1

6

7
0

1

6

7

0

1

6

7

0
1

6

7

0

1

6

7

0 1

6

7
0

1

6

70

1

6

7

0
1

6

7

0 1

6

7
0

1

6

7

0

1

6

7

0

1

6

70

1

6

7

0
1

6

7

0

1

6

7

0

1

6

7

0

1

6

7

0
1

6

7
0

1

6

70

1

6

7

0

1

6

7

0

1

6

7

(b) CLAFIC-µ

Figure 4.4: Handwritten digit classes projected on a plane. In case (a), the sub-
space basis vectors are translated to the center of the corresponding
class for visualization only. In (b), the subspaces are actually formed
around the centers.

Figure 4.4 illustrates how three classes of handwritten digits are located in the first two
dimensions of the Karhunen-Loève Transformed data. In case (a), the class-conditional
means are not subtracted. Therefore, the first eigendirection of each class quite clearly
points toward the origin of the coordinate system. In (b), the class means plotted with
dashed arrows are subtracted, and the eigendirections now model the two-dimensional
class shapes more precisely.

4.3. MODIFICATIONS ON SUBSPACE CLASSIFIERS 59

4.3.2 Selection of Subspace Dimensions

The important question of how the subspace dimensions `j can be selected was deferred in
Section 4.1.3. Various general criteria exist for model order selection, including Minimum
Description Length (MDL) by (Rissanen 1978) and Akaike Information Criteria (AIC)
by (Akaike 1974).

In this section, two approaches are investigated. Both methods need one parameter value
to be fixed, for example, by using training set cross-validation. Firstly, the simplest
possibility is to set all the `js to be equal to a value `. Then, the optimal value for this
integer scalar is searched for. Typically, a U-shaped error rate curve ε(`), such as those
seen in Figure 8.1 on page 121, follows. The selection of ` is then straightforward.

Secondly, the selection can be based on the non-increasing series {λ1j, . . . , λdj} of the

eigenvalues of the autocorrelation matrix R̂j in (4.6). There are two alternatives. The
first is to select `j so that the corresponding eigenvalue of the first eigenvector left out
from each of the bases, λ`j+1,j, is less than a preset proportion κ1 ∈ (0, 1) of the sum of
all the eigenvalues,

λ`jj∑d
i=1 λij

> κ1 ≥
λ`j+1,j∑d

i=1 λij

. (4.26)

The second option is to set the residual sum of the left-out eigenvalues, i.e., the expected
squared residual length E‖x̃‖2, to be less than a preset proportion κ2 common to all the
classes, ∑d

i=`j
λij∑d

i=1 λij

> κ2 ≥
∑d

i=`j+1 λij∑d
i=1 λij

. (4.27)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

(a) Linear

-8

-7

-6

-5

-4

-3

-2

-1

0

0 10 20 30 40 50 60

(b) Logarithmic

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

(c) Cumulative

Figure 4.5: The eigenvalues of the correlation matrix of handwritten digits ‘7’.
The ordinates from left to right are λi,7/λ1,7, log(λi,7/λ1,7), and∑i

k=1 λk,7/
∑d

k=1 λk,7, while index i is shown on the abscissa.

Figure 4.5 displays some curves obtained from the actual eigenvalues of a correlation
matrix of a class of handwritten digits. The selection of κ1 in (4.26) corresponds to setting
a horizontal threshold level in Figure 4.5(a), or its logarithm counterpart in Figure 4.5(b).

60 CHAPTER 4. SUBSPACE CLASSIFICATION METHODS

The decay of the eigenvalues can be seen to be so smooth that, by visual inspection, it is
not obvious how to set a decisive value `j = i, above which the eigenvalues would suddenly
be approximately equal to zero and the corresponding eigenvectors could be discarded.
Similarly, the selection of κ2 in (4.27) corresponds to setting a threshold on level 1−κ2 in
Figure 4.5(c). This seems to be a problematic task as well. Using either of these schemes
leads again to a U-shaped error rate curve ε(κ), this time with a real-valued abscissa.
The smaller the selected value κ is, the larger are the subspace dimensions `j for all the
classes. The κ2-type selection was presented together with CLAFIC by Watanabe et al.
(1967), whereas the κ1-scheme was introduced by Kohonen et al. (1980).

Any criterion used to select the subspace dimensions simultaneously to all the classes can
be considered to produce only an initial guess. The subspace dimensions can then be
modified further by observing how classification errors are distributed among the classes.
Using the notations introduced on page 55, an iteration rule suggested by Laaksonen and
Oja (1996b) can be formulated as follows:

j = argmax
i=1,...,c

|#Ai(t)−#Bi(t)| , (4.28)

`j(t + 1) = `j(t) +
#Aj(t)−#Bj(t)

|#Aj(t)−#Bj(t)|
. (4.29)

The operator “#” stands for the cardinality of a set. Again, the sets Aj(t) and Bj(t) are
the sets of vectors misclassified from, and to, the class j during the epoch t, as described
above with ALSM. Thus, in each iteration step t, one of the `js is either increased or
decreased by one, and all the other subspace dimensions are preserved. An account needs
to be established for all the used combinations of the `js. If the system is about to select
a combination which has already been used, the second-best selection for j in (4.28) is
employed. The iteration is stopped after a fixed number of trials, and the combination
which gave the lowest overall error rate is re-established. The usefulness of the iteration
may be insignificant if either the number of classes, c, or the input vector dimensionality,
d, is small.

4.3.3 Weighted Projection Measures

Section 4.1.4, which introduced the MSM classifier, already presented one form of non-
linearity added to the subspace classification rule (4.5): fixed coefficients λij/λ1j were
included in the summation of the inner products. In a more general setting, weights wij

can be selected by using other criteria. In this section, the contents of the previous section
are first reinterpreted by using the general weighting scheme. Two ways of selecting the
wijs are suggested.

Adding individual weights to all the terms in the classification rule (4.5) leads to

gw-SS(x) = argmax
j=1,...,c

d∑
i=1

wij(u
T
ijx)2 . (4.30)

4.3. MODIFICATIONS ON SUBSPACE CLASSIFIERS 61

In (4.30), the last summation index, which in (4.5) was `j, is replaced with d. This
notational change allows the reformulation of the selection of the `js. The basic CLAFIC
algorithm can be reproduced from (4.30), if the weights wij are defined

wij =

{
1 , iff i ≤ `j ,

0 , iff i > `j .
(4.31)

The problem of selecting the `js still remains in the following two schemes of setting the
weights. The optimization rules used in selecting the weights are based on iteration, and
these iterations should occur alternately with the `j-optimization in order to produce the
best results.

The first scheme (Kohonen 1996) originates from an observation that if some of the
subspaces produce systematically projections that are too long or too short, they benefit
or suffer in the classification decision. This leads to considering adding a unique multiplier
to each class. Thus, setting w1j = · · · = w`jj = wj reduces the problem to c constants wj

to be settled, for example, by using standard optimization techniques.

In the second scheme, the wijs are computed from the correlation matrix eigenvalues
wij = λij in a manner inspired by MSM. A somewhat more general formulation than the
original MSM is to select a parameter γ and to set an exponential form

wij =

{(
λij

λ1j

)γ

, iff i ≤ `j ,

0 , iff i > `j .
(4.32)

Setting γ = 0 reduces (4.30) to the conventional CLAFIC and γ = 1 makes it equal to
MSM, whereas selections γ < 0 lead to some degree of variance normalization or data-
whitening within each subspace. The value for γ can, thus, be experimentally selected
from the range of (−1, 1). The kind of nonlinearity injected into the subspace classification
in this section can be considered, because the inner products uT

ijx are only multiplied,
and no functional form of nonlinearity is applied to them. More general forms of strong
nonlinearity are an important topic of ongoing research, such as in the field of Independent
Component Analysis (ICA), (Jutten and Hérault 1991; Comon 1994; Oja 1995; Cardoso
and Laheld 1996; Karhunen et al. 1997).

4.3.4 Multiple Subspaces per Class

More than one subspace can be used in representing each class. This may be necessary if
the distribution of a class cannot be modeled accurately enough with one subspace. For
the easy use of this variation, we should know, in advance, how the vectors of each class
are divided among the subspaces. This information is normally unavailable, and some
heuristic needs to be employed. The overall classification accuracy may be enhanced in
this way. The need for additional subspaces, however, runs against the core assumption
regarding the linear nature of the pattern classes.

62 CHAPTER 4. SUBSPACE CLASSIFICATION METHODS

In CLAFIC and ALSM, a modification of the iterative k-means, i.e., the LBG algorithm
(Gersho and Gray 1992), can be used to split the training set of each class among its
subspaces (Oja and Parkkinen 1984). In LSM, the subspaces can be initialized using
different combinations of the class-correlation eigenvectors. Thus, the training sets are
not decisively divided. Instead, each vector may traverse from one subspace of its own
class to another. In the case of a speaker-independent speech recognition system, the
initial division of the training vectors obtained from pronounced phonemes can be based
on dividing the speakers into arbitrary groups (Riittinen et al. 1980).

4.3.5 Treatment of Neighborhood of Origin

As a direct consequence of the inherent linearity assumption of the subspace methods, a
problem arises when one of the classes resides around, or near, the origin. The linearity
assumption states that the lengths of the vectors do not correlate with their classification.
Therefore, the classification regions of all the classes extend to the vicinity of the origin. In
that region, however, any additive noise in input vectors affects tremendously the direction
cosines of the vectors. Consequently, the classification of such vectors becomes unreliable.
At the origin itself, the distribution of the noise fully determines the classifications.

Depending on the nature of the data, there may be no acceptable subspace solution
to the classification problem. Thus, either the subspace classifier has to be abandoned
completely, or, a two-stage classification system has to be formed. In the latter case, some
other classifier, such as QDA of Section 3.2.1, can be used first to test the hypothesis
of whether the input vector belongs to the class around origin. If that test fails at a
predefined risk level, a subspace classifier is used. If the problematic class resides only
partly near the origin, it should also have an associated subspace which participates in the
second classification stage. The training vector set of the class needs to be split into two
subsets. One contains the vectors from the region of the origin and is used in estimating
the covariance R̂ in (3.5). The other is used in the initialization of the associated subspace.
Some iterative relaxation may be needed in performing this split adequately.

4.3.6 Density Function Interpretation of Subspace Methods

Chapter 3 stated, in general terms, that there is no way to interpret subspace classifiers as
density estimation methods. Nevertheless, such an interpretation is sought in this section.
The final result is a new classification function which replaces the traditional subspace
classification rule (4.5) with one similar to the classification function (3.1) used with
density estimation methods of classification. The density function interpretation solves
two well-known shortcomings of the standard subspace methods as a by-product. First, it
solves the problem of unequal priors, which occurs with standard subspace methods when
the a priori probabilities of classes are unequal. Second, the new formalism provides a
statistically justified rejection mechanism.

4.3. MODIFICATIONS ON SUBSPACE CLASSIFIERS 63

Section 3.2 showed that most of the density-function-based classification methods assume
the class distributions to be Gaussian. As such, this assumption is not transferable to
subspace formalism. Hence, no probability density function interpretation of the subspace
classification rule has been presented so far. The approach in this section, however,
explains the subspace formalism in terms of the gamma probability density function.
First, it is demonstrated that the coefficients ζi in (4.1) tend to be zero-mean normally
distributed. Second, it is shown that they may be regarded as mutually independent.
Third, it is argued that the sum of their squares can be approximated with gamma
distribution, the underlying form of the chi-square distribution. Fourth, a reformulated
classification rule is presented.

The derivation of the new classification rule is illustrated with real-world data from the
prototype system for handwritten digit recognition, which is described in detail in Chap-
ter 7. The derivation is, however, independent from that particular case study, which is
used only to visualize the soundness of some steps on the path.

Distribution of Coefficients In (4.1), the ζi coefficients were introduced as general
multipliers in the subspace formalism. Later, in CLAFIC, their role became that of prin-
cipal components in the Karhunen-Loève expansion of the class distribution. This section
considers the actual distributions of the ζi coefficients. The objective of the analysis is to
show that the distributions can be regarded as Gaussian.

p(
ζ i

)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

-15 -10 -5 0 5 10 15

ζ1 3

3

3

3

3

3 3

3

3 3

3 3

3
3

3

3

3

3
3

3

3

ζ2 +

+

+

+
+

+ + +

+
+

+ +

+

+

+ +

+
+

+

+

+
+

+

ζ3 2

2 2

2
2

2

2

2

2

2

2

2
2

2

2

2 2

2

2

2
2

2
2

ζ4 ×

× × ×
×

×

×

×

×
×

×
×

×

×
×

×
×

×
×
× ×

ζi

Figure 4.6: Measured distributions of single-variable marginal probability densi-
ties of ζ1, . . . , ζ4 of a sample of handwritten digits ‘7’.

For illustration, Figure 4.6 displays histograms of the marginal probability densities of
the coefficients ζi, obtained from handwritten digits in class ‘7’ on their own subspace
L7. The class-conditional mean has been subtracted from the vectors in the fashion

64 CHAPTER 4. SUBSPACE CLASSIFICATION METHODS

of (4.24) before the coefficients were calculated. It can be seen that the distribution of ζ1

is somewhat flat, and the distributions of ζ2 and ζ3 are positively and negatively slanted,
respectively. Otherwise, the larger the i, the more the distribution of ζi resembles zero-
mean normal distribution with decreasing variance. This observation leads to the first
simplification in the derivation of the new subspace classification rule based on probability
density functions: it is assumed that the distribution of the ζi coefficients, with i large
enough, is zero-mean Gaussian. It can be assumed that many large-dimensional natural
data samples exhibit this characteristic to some extent.

Whether the ζi coefficients in a particular application really are normally distributed
or not, can be tested statistically. Applicable tests include such as the parametric χ2-
test (Feller 1971) and nonparametric tests of the Kolmogov-Smirnov type, such as the
Lilliefors test (Conover 1980). In this demonstration case of the handwritten digits ‘7’,
both tests show, in general terms, that the first half-dozen coefficients are non-Gaussian,
the succeeding coefficients, up to index i ≈ 40, are normally distributed, and the remaining
ones are, again, non-Gaussian.

In this particular case, the Gaussianity of the distributions can be explained by the process
of how the data was produced. In the prototype recognition system described in Chapter 7,
the 64-dimensional feature vectors x were formed using the Karhunen-Loève Transform.
Each component of x is therefore an inner product between a 1 024-dimensional normalized
input image f and one estimated principal mask k of the training sample. Thus, because
the coefficients ζi are further inner products of the ui basis vectors and the feature vector
x, they are actually sums of 65 536 products of to some extent independent but not
identically distributed values. The Central Limit Theorem (CLT) (see Mendel 1995) may
be interpreted to state that these kinds of series are asymptotically normally distributed.
Section 6.4.3 addresses feature extraction with the Karhunen-Loève Transform.

Independence of Coefficients Here, the potential mutual independence of the ζi co-
efficients is examined. Again, the projections of the handwritten digits ‘7’ serve as an
illustration. Some two-dimensional marginal distributions of the ζi values are displayed
in Figure 4.7. Each subfigure shows the dependence of two coefficients ζi and ζj for
some small indices i and j. The distributions in Figure 4.6 were in fact one-dimensional
marginal distributions of the distributions of Figure 4.7. It is observable that when, say,
i >= 4 and j > i, the distributions in the ζiζj-plane are unimodal and symmetric around
the origin, thus resembling the bivariate Gaussian distribution.

In this exemplary case, the coefficient pairs can truly be shown to be uncorrelated by
calculating the correlation coefficient for each pair. The resulting t-statistics justifies that
the ζi variables are uncorrelated. From the uncorrelatedness and the Gaussianity of the
coefficients, it follows that they are independent as wished. From the Gaussianity it also
follows that the coefficients are not only pairwise independent but mutually independent
in all combinations. For the derivation of the new classification rule, it may thus be
assumed that other natural multi-dimensional data sets also exhibit similar independence
of subspace projection coefficients.

4.3. MODIFICATIONS ON SUBSPACE CLASSIFIERS 65

·ζ2 ·ζ3 ·ζ4 ·ζ5 ·ζ6

ζ1·

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

7 1:2

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

7 1:3

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

7 1:4

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

7 1:5

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

7 1:6

ζ2·

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

7 2:3

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

7 2:4

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

7 2:5

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

7 2:6

ζ3·

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

7 3:4

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

7 3:5

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

7 3:6

ζ4·

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

7 4:5

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

7 4:6

ζ5·

-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

7 5:6

Figure 4.7: Projections of some ‘7’s on subspace L7. Each subfigure displays the
marginal distribution in the plane of the coefficients ζi and ζj, shown
on the left and on the top, respectively. The ranges of the variables
are [−20, 20] in all images.

Distribution of Squared Residual Length The length of the residual vector x̃ is
analyzed next. The squared residual length can be expressed as a sum of a truncated
series, similarly to (4.5):

‖x̃‖2 =
d∑

i=`+1

(xTui)
2 =

d∑
i=`+1

ζ2
i . (4.33)

If the ζi coefficients really were independent and Gaussian and, additionally, had equal
variance, i.e., σ2

ζi
= σ2, then σ−2‖x̃‖2 would be distributed as χ2

d−`. Also, if Mahalanobis
distance (see Bishop 1995) were used instead of Euclidean, the squared residual length
would be χ2 distributed. In reality, of course, the σ2

ζi
s decrease continuously as i increases

and cannot be replaced with a common σ2. Nevertheless, it can be assumed here that
the distribution of ‖x̃‖2 follows approximately the gamma probability density function
fγ(x; α, ν), which is the underlying form of the χ2 distribution. The gamma density is

66 CHAPTER 4. SUBSPACE CLASSIFICATION METHODS

expressed as

fγ(x; α, ν) =
αν

Γ(ν)
xν−1e−αx , x, α, ν > 0 , (4.34)

Γ(ν) =

∫ ∞

0

tν−1e−tdt , ν ≥ 0 . (4.35)

The fitting of the gamma distribution to the observed values may be executed either by
maximum likelihood estimation or – like here with the continuing example of handwritten
digits ‘7’ – using the method of moments (see Sorenson 1980). Figure 4.8 shows the
distribution histogram of ‖x̃‖2 with parameter values ` = 24 and d = 64 in (4.33). The
gamma probability density function with parameters estimated from the data is plotted
aside.

Thus, a model which is able to estimate the value of the probability density function of a
pattern class at the location of the input vector x has been formulated. At the same time,
it has been demonstrated that at least the real-world data used for illustration follows
that model with some degree of fidelity. These observations can, again, be extrapolated to
say that also other natural data may be modeled similarly and their probability function
be approximated with the gamma probability density function.

p(
‖x̃
‖2

)

0

0.005

0.010

0.015

0.020

0.025

0.030

0 20 40 60 80 100 120 140 160 180 200

observed
gamma

‖x̃‖2

Figure 4.8: Empirical ‖x̃‖2 distribution of handwritten ‘7’s plotted as a his-
togram. The corresponding estimated gamma distribution model
is drawn as a continuous function.

Reformulated Classification Rule The estimated probability density functions for
each pattern class j,

f̂j(x) = fγ(‖x̃j‖2; α̂j, ν̂j) (4.36)

4.3. MODIFICATIONS ON SUBSPACE CLASSIFIERS 67

may now be inserted, together with the estimated a priori class probabilities P̂ , to the
Bayes classifier (3.1) to obtain

gSS-PDF(x) = argmax
j=1,...,c

P̂jfγ(‖x̃j‖2; α̂j, ν̂j) . (4.37)

Consequently, the a posteriori probabilities qj can be calculated using the relation (3.3).
The ‖x̃j‖ values and the gamma distribution model can either be calculated from the pro-
jection of (4.3), or from (4.24), in which the class-conditional means are first subtracted.
In either case, the classification is no longer based on maximizing the projection length
nor on minimizing the residual length, but on maximizing the a posteriori probability of
the observed squared residual length. The intrinsic invariance of the subspace classifier
concerning the norm of the pattern vector x has now disappeared. This may be regarded
as either a pro or con, depending on the nature of the input data.

The involvement of the estimated a priori probability P̂j of the class j in 4.37 allows for
the presented classifier to be used in cases in which the classes are not equally represented
in the mixture. Additionally, a rejection mechanism similar to (3.20) can be employed.

According to the Bayesian theory, the misclassifications take place in areas where the
class distributions overlap. Generally, if automated pattern classification is feasible at all,
the distributions are also sparse in those regions. Therefore, the accuracy of the density
function estimation is crucial, in particular, in the areas far from the class means, i.e.,
in the rightmost tail of the distribution in Figure 4.8. Thus, the performance of the
proposed classification rule mainly depends on its success in modeling the tails of the
squared residual-length distributions. The proposed algorithm still tries to model the
distributions of the ‖x̃‖ values globally. Another approach might be that of fitting the
functional model only with the extreme tail distributions.

4.3.7 Computational Aspects

The computational complexity of an algorithm has to be considered when it is used in
a real-world application. The various subspace methods have different phases and the
computational complexity varies accordingly. Table 4.1 lists the principal procedures of
the adaptive LSM and ALSM subspace classification methods. The combined numbers
of multiplication and addition operations needed are shown. The parameter n stands
for the number of training vectors, c for the number of subspaces, d for feature vector
dimensionality, ` for the average of all the `js, and ε for the average classification error
rate during the training.

Most of the operations are needed in computing inner products like uT
ijx. These calcula-

tions can be effectively performed in parallel if a Single Instruction Multiple Data (SIMD)
computer system is available. With SIMD, the computation time can be reduced easily
by the factor 1/N , where N is the number of processors in the system.

68 CHAPTER 4. SUBSPACE CLASSIFICATION METHODS

operation LSM ALSM
correlation 2nd2 2nd2

eigenvectorization 30cd2 + 4cd3 30cd2 + 4cd3 *
classification 2ncd` * 2ncd` *
+weighted projection +ncd` * +ncd` *
rotation 4nd2` *
re-orthonormalization 20nd` *
scatter matrix update 4nd2ε *

Table 4.1: Computational needs of subspace methods in numbers of simple math-
ematical operations. The stages marked with an asterisk (*) are per-
formed in every training epoch, the others only once. The estimate
for the complexity of the eigenvectorization phase is from Press et al.
(1988).

4.4 Prospects of Subspace Classifiers

This chapter has examined the subspace classification methods starting from their math-
ematical preliminaries and traversing through the classical algorithms and their learning
versions to some novel modifications. The subspace classification methods have not been
popular in pattern recognition tasks in the last few years. One explanation for this may
be that, in this period, many new neural classification algorithms have been introduced
and they have captured the attention of the researchers of adaptive classification systems.
This thesis serves on its behalf the purpose of re-enhancing the status of the subspace
methods. The novel improvements presented aim to bring the subspaces back to the
assortment of the generally acknowledged classification techniques.

The subspace classifiers are not suitable for all classification tasks. The mathematical
assumptions behind the subspace formalism demands that the pattern classes are dis-
tributed as low-dimensional subspaces in a higher-dimensional feature space. In some
applications, the dimensionality of the input is inherently small. In such situations, it is
most probable that some other classifiers will produce better classification accuracy than
the subspace methods. Even if the input data is linear by nature, not all feature extrac-
tion methods preserve this characteristic. Therefore, only a subset of available feature
extraction techniques may be combinable with the subspace classification methods.

In addition to the nature of the input data, its quantity also has crucial influence on the
applicability of the subspace methods. The estimation of the eigenvectors may become
unreliable if the number of vectors in the design sample is small compared to the dimen-
sionality of the data. The semiparametric nature of the subspace classification methods
allows for moderate scaling of the model when the number of training vectors is increased.
The maximum size is, however, hard-limited by the fact that the subspace dimensionality
has to be less than the feature vector dimensionality. Therefore, the performance im-
provement of the subspace methods when the amount of training data is increased, is

4.4. PROSPECTS OF SUBSPACE CLASSIFIERS 69

saturated after the eigenvector estimation stage is accurate enough.

The computational needs of the subspace methods, within the framework of modern com-
puters, can be regarded as moderate. The training of the models requires a large memory
capacity in the computer if the feature vector dimensionality is large. Also, the eigen-
vectorization process is computationally demanding and ready-made library functions for
that purpose may not be available for all computer platforms. During the operation of the
classifier, however, only a small fraction of that memory is needed and the computational
complexity is also small. This makes the subspace classifiers well-suited to embedded
classification applications in which the classifiers are shipped as a built-in component of
a larger data processing system.

70

71

Chapter 5

Local Subspace Classifier

This chapter introduces a new classification technique. The proposed method is named
the Local Subspace Classifier (LSC), which indicates the kinship of the algorithm to the
subspace classification methods. On the other hand, the Local Subspace Classifier is an
heir of the pure prototype classification methods like the k-NN rule. Therefore, it is
argued that, in a way, LSC fills the gap between the subspace and prototype methods of
classification. From the domain of the prototype-based classifiers, LSC offers the benefits
related to the local nature of classification, while it simultaneously utilizes the capability
of the subspace classifiers to produce generalizations from the training sample.

The LSC technique is first explained and visualized in the context of recognition of hand-
written digits in Section 5.1. In Section 5.2, a modified formulation of LSC, named the
Convex Local Subspace Classifier (LSC+), is presented. In Section 5.3, combining the
LSC principle with other prototype-based classification methods is studied. The most
interesting of these combinations is the approach here named the Local Subspace Self-
Organizing Map (LSSOM). Section 5.4 presents an iterative replacement for the matrix
inversion needed in the original formulation of LSC. The neural interpretations of the
LSC methods are discussed in Section 5.5. The performance of the two classifiers is
demonstrated in Section 8.5 of Chapter 8 with experiments that use handwritten digit
data.

5.1 Basic Local Subspace Classifier

The major strength and weakness of the prototype-based classifiers, such as the k-NN rule,
is the local nature of the classification decision. The classification of any input vector is
based entirely on the distances to at most k prototypes in each pattern class. In theory,
increasing k increases the presentation accuracy of the classifier, but with sparse design
sets encountered in practice, the classification accuracy decreases instead. The problem
is that the prototypes can be so sparsely distributed in the delicate areas of the class
borders that the classification becomes unreliable, because the locality of the prototypes

72 CHAPTER 5. LOCAL SUBSPACE CLASSIFIER

is lost. Thus, the empty space between the prototypes should somehow be filled.

The strength of semiparametric subspace methods lies in their ability to generalize from
the training sample. On the other hand, they rely very strongly on the assumption that
the classes are globally linear in form. Thus, the subspace methods are not equipped to
describe the mostly nonlinear form of the class boundaries, which normally are poorly
represented in the training material.

In general terms, when the Local Subspace Classifier processes an input vector, it first
searches for the prototypes closest to that vector in all classes. A local subspace – or,
more precisely, a linear manifold – is then spanned by these prototype vectors in each
class. The classification is then based on the shortest distance from the input vector to
these subspaces. Figure 5.1 illustrates the process in a two-class case.

class B

class A

x

Figure 5.1: The principle of the Local Subspace Classifier in a two-class case.
The input vector marked “x” is classified according to the distances
shown by arrows to the local subspaces spanned by a few prototypes
in the classes “A” and “B”.

Following the notation used earlier with the traditional subspace methods, a D-
dimensional linear manifold L of the d-dimensional space is defined by a matrix U ∈ Rd×D

with rank D, and an offset vector µ ∈ Rd, provided that D ≤ d,

LU,µ = {x | x = Uz + µ ; z ∈ RD} . (5.1)

Note that the offset µ in (5.1) is not uniquely defined but can be replaced by any µ′ ∈
LU,µ. Among the choices for µ′, however, is a unique selection which minimizes the norm
‖µ′‖ and is orthogonal to the basis U. The matrix U itself may, in general, be assumed
orthonormal.

A D-dimensional linear manifold can also be determined by D + 1 prototypes, provided
that the set of prototypes is not degenerate. Figure 5.2 illustrates a two-dimensional
linear manifold defined by the three handwritten ‘4’s in the corners of the triangle. Each
of the three corners represents a pure instant of human-printed glyph, whereas the images
in between are linear combinations thereof. The original images are 32×32 binary images

5.1. BASIC LOCAL SUBSPACE CLASSIFIER 73

after size normalization and slant removal. Due to the sparsity of the prototypes in the
1 024-dimensional space, the interpolation produces intermediate images containing holes,
such as in the middle of the bottom line. Despite this shortcoming, it may be assumed
that any such interpolated image is as good a representative of the class as the original
prototypes. Therefore, if the input vector resembles any of such artificial images, it can
be considered to have originated from that class.

Figure 5.2: A piece of the two-dimensional linear manifold spanned by three
examples of handwritten digits ‘4’ in the corners. The gray areas
in the interpolated virtual digit images reflect the gradual pixel-wise
change from one image to another.

In the following, a procedural formulation of the LSC algorithm is given. The prototypes
forming the classifier are denoted by mij where j = 1, . . . , c is the index of the class and
i = 1, . . . , nj indexes the prototypes in that class. The manifold dimension in class j is
denoted Dj. The distance between two d-dimensional vectors x and y is defined as the
Euclidean norm of their difference, i.e., d(x,y) = ‖x − y‖. When classifying an input
vector x, the following is done for each class j = 1, . . . , c:

1. Find the Dj + 1 prototype vectors closest to x and denote them m0j, . . . ,mDjj.

2. Form a d×Dj-dimensional basis of the vectors {m1j −m0j, . . . ,mDjj −m0j}.

3. Orthonormalize the basis by using the Gram-Schmidt process and denote the re-
sulting orthonormal matrix Uj = (u1j . . . uDjj).

4. Find the projection of x−m0j on the manifold LUj ,m0j
:

x̂′j = UjU
T
j (x−m0j) . (5.2)

5. Calculate the residual of x relative to the manifold LUj ,m0j
:

x̃j = x− x̂j = x− (m0j + x̂′j) = (I−UjU
T
j)(x−m0j) . (5.3)

74 CHAPTER 5. LOCAL SUBSPACE CLASSIFIER

Input vector x is then classified according to the minimal ‖x̃j‖ to the class j, i.e.,

gLSC(x) = argmin
j=1,...,c

‖x̃j‖ . (5.4)

The classification rule is the same as the subspace classification rule (4.24) that utilizes
class-specific means with the exceptions that the “mean” vector is now the prototype
closest to the input vector, and that the basis matrix of the subspace is now formed from
only a small fraction of the training vectors in the class. In any case, the residual length
from the input vector x to the linear manifold is equal to or smaller than to the nearest
prototype, i.e., ‖x̃j‖ ≤ d(x,m0j). These entities are sketched in Figure 5.3.

m1j

m0j

x

m2jx−m0j x̃j

x̂j

LUj ,m0jx̂′
j

Figure 5.3: The d-dimensional entities involved in the classification by the Local
Subspace Classifier in the case D = 2.

By introducing the multipliers {c0j, . . . , cDjj} that form the coefficient vector cj =
(c0j . . . cDjj)

T , and by using the matrix Mj = (m0j . . . mDjj), the projection vector x̂j

can be expressed as

x̂j = m0j + x̂′j =

Dj∑
i=0

cijmij = Mjcj ,

Dj∑
i=0

cij = 1 . (5.5)

If the explicit values for the coefficients cij are needed, they can be solved with matrix
pseudo-inversion, which results either from the least-squares normal form or the Singular
Value Decomposition (SVD) of Mj, i.e., Sj = AT

j MjBj (see Golub and van Loan 1989),

cj = M†
jx̂j = (MT

j Mj)
−1MT

j x̂j = BjS
†
jA

T
j x̂j . (5.6)

It can be seen that the LSC method degenerates to the 1-NN rule for D = 0. In that case,
the projection matrix UUT equals the zero matrix and x̃j = x−m0j. The two leftmost
images in Figure 5.4 illustrate the difference of the 1-NN classifier and the LSC method
when D = 1. In the figure, the input vector displayed as “x” is classified differently in
the two cases, even though the prototype vectors in the classifier remain the same.

5.2. LSC+ CLASSIFIER 75

m0A

m1A

m1B

m0B

x

(a) 1-NN

m1A

m0A m1B

x

LA

LB

m0B

(b) LSC

m0A

m1A

m1B

x

LA

LB

m0B

(c) LSC+

Figure 5.4: Comparison of the 1-NN rule and the basic and convex versions of
the Local Subspace Classifier. Using the 1-NN and LSC+ classifiers,
x is classified as “B” but as “A” with the LSC method.

5.2 LSC+ Classifier

The center image in Figure 5.4 shows that the input vector x may occasionally be pro-
jected outside the convex region determined by the prototypes m0j, . . . ,mDjj. Whether
this is beneficial or disadvantageous depends on the particular data sets involved. If ex-
trapolation from the original prototypes is not desired, the orthogonal projection can be
replaced with a convex projection. Here, the modified method is called the Convex Local
Subspace Classifier (LSC+). The appended plus-sign arises from the observation that
the coefficients {c0j, . . . , cDjj} in (5.5) are constrained to be positive in the case where
the projection vector x̂j is not allowed to exceed the convex region determined by the
prototypes.

In LSC+, the projection vector x̂j is thus not the one that produces the shortest residual
x̃j. Primarily, it lies within the convex region bound by the nearest prototypes, and
only secondarily minimizes the residual length. Obviously, if the orthogonal and convex
projections differ, the convex projection lies on the boundary of the convex area and the
residual length ‖x̃‖ is longer in the convex than in the orthogonal case. The images (b)
and (c) in Figure 5.4 show how a vector x is classified differently between LSC and LSC+.

The algebraic solution for the convex projection x̂j belongs to the class of constrained
nonlinear optimization problems. The convex projection fulfills the Kuhn-Tucker condi-
tions (see Taha 1982) and, therefore, has a unique global minimum solution which can be
obtained by iterative application of nonlinear programming. In the experiments presented
in this thesis, however, another intuitively plausible algorithm has been selected. In the
employed method, the convexity condition is achieved iteratively by removing from the
basis Mj the vector mij the coefficient of which, cij, is the smallest. This is effectively the
same as forcing the corresponding coefficient to be equal to zero. Thus, the dimensionality
Dj of the linear manifold is, in the process, decreased by one. After each removal, the
coefficients for the remaining vectors are solved again. The iteration is continued until
none of the coefficients is negative and a convex solution has thus been obtained.

76 CHAPTER 5. LOCAL SUBSPACE CLASSIFIER

5.3 Combining LSC with Prototype Classifiers

The Local Subspace Classifier has so far been portrayed as a method for making more
effective use of the information inherent in the prototype vectors of a k-NN classifier.
The technique may also be gracefully combined with other types of prototype classifiers,
such as the Learning k-Nearest Neighbor classifier (L-k-NN) of Section 3.4.3 and the
Learning Vector Quantization (LVQ) of Section 3.4.2, and with the topology-preserving
vector quantization produced by the Self-Organizing Map (SOM) (Kohonen 1995).

In the basic LVQ1, LVQ2, and LVQ3 formulations (Kohonen 1995), the classification
is always based on one nearest codebook vector in each class. The usefulness of the
Local Subspace Classifier can be tested after the training of the codebook has ended,
and if no advantage is gained, the original 1-NN classification can be retained. For the
other adaptive prototype classifiers mentioned, the LSC principle may be applied either
only after the training of the classifier has ended, or, more plausibly, already during the
adaptation phase. In the latter case, the training algorithms need to be modified to some
extent. The formulation of the Learning k-Nearest Neighbor classifier (see Section 3.4.3)
is such that more than one vector from each class is moved simultaneously. As such, the
principle of adaptation in L-k-NN is compatible with the LSC technique and the three
learning rules of L-k-NN can easily be extended to conform with it.

A central operation in the adaptive prototype-based vector classification algorithms is
the delta rule, described on page 38. When the delta rule is applied to the Local Sub-
space Classifier, it is natural not to modify only one prototype vector but to extend
the modification to all Dj prototype vectors involved in the classification. Due to the
equiproportional nature of the linear vector movements in the delta rule, the hyperplanes
determined by the prototypes are moved in a fashion that preserves the directions of the
hyperplanes. Therefore, the prototype hyperplane after the delta movements is parallel
to the original hyperplane. Figure 5.5 illustrates the movements of the prototype vectors
in a simple two-dimensional D = 1 case. The center image shows both the original and
modified vector locations. Due to the similar triangles, the lines joining the prototypes
really are parallel. Furthermore, the directions of the residual vectors x̃A and x̃B are not
altered during the application of the delta rule but rather the lengths of the residuals
are increased or decreased by the factor α. As a result of the prototype movements, the
classification of the input vector x changes. This is indicated in Figure 5.5 by the shift of
the dotted classification border line over the x vector.

The most interesting extension of the LSC technique is based on the topology-preserving
Self-Organizing Map. In the course of the training of a SOM, a set of vectors located in
the neighborhood of the best-matching unit are moved toward the training vector. Again,
this movement, provided that all these vectors are moved with an equal α(t) coefficient
in the delta rule (3.18), is compatible with the LSC delta rule principle. The locating
of the best-matching unit, on the contrary, is not. In the basic SOM, each map unit is
individually matched against the input vector, and the neighborhood is formed around
the winning neuron thereafter. In the Local Subspace SOM (LSSOM), linear manifolds
are formed by using the vectors in the neighborhoods of all map units. The best-matching

5.3. COMBINING LSC WITH PROTOTYPE CLASSIFIERS 77

m0A

m1A

m1B

x

LA

LB

m0B

(a) Before

x

LA

LB

m0B

m1B

m1A

m0A

(b) Movement

LB

x

LA

m0A

m1A

m1B

m0B

(c) After

Figure 5.5: Delta rule in the LSC training. The locations of the prototype vectors
are shown before, during and after the application of the delta rule.
The movement of the dotted line indicates that the classification of
x is changed from ‘A’ to ‘B’ in the process.

local subspace is sought as the one with the shortest distance to the input vector similarly
to the classification rule (5.4). Therefore, each unit of the LSSOM participates in a
multitude of local subspaces.

Due to the unsupervised nature of LSSOM training, the prototype vectors mi are moved
only toward the input vectors. The radius of the neighborhood in LSSOM is decreased
during the training just as in the normal SOM. The size D of the neighborhood is naturally
smaller at the borders and corners of the map than in its inner parts. If desired, and
labeled data are available for supervised training, it is possible to have a separate LSSOM
map for all the classes involved. In that case, the units representing the class of the input
vectors are moved toward the input vector, and the units of the nearest competing class
are moved further from it by the delta rule. The principle of the LSC+ may also be
optionally applied with the LSSOM principle.

As the result of the Local Subspace SOM, an elastic net is formed from the nodes of
the SOM. The difference compared to the basic SOM is that, in the LSSOM, the space
between the nodes is included in the locally linear manifolds. Where in the SOM there
are discrete points defined by the node vectors in the feature space, in the LSSOM there
are linear manifolds spanned by the same vectors. Therefore, there are no “holes” or
“jumps” in the mapping from the multidimensional input space to the two-dimensional
grid space. Figure 5.6 depicts how various neighboring units in a Self-Organizing Map
form local subspaces.

The principle of the LSSOM is related to other approaches to nonlinear modeling of high-
dimensional data by using lower-dimensional functional forms. As such, the LSSOM re-
sembles the Principal Curves by Hastie and Stuetzle (1989), the Weighted Vector Quanti-
zation (WVQ) modification of SOM by De Haan and Eg̃eciog̃lu (1991), the Principal Man-
ifolds by Ritter et al. (1992), the Adaptive Principal Surfaces by LeBlanc and Tibshirani
(1994), the Continuous Mapping interpretation of SOM by Mulier and Cherkassky (1995),
and the Curvilinear Component Analysis (CCA) by Demartines and Hérault (1997).

78 CHAPTER 5. LOCAL SUBSPACE CLASSIFIER

Figure 5.6: Local linear manifolds formed from the prototype units of a Self-
Organizing Map. Here, each manifold is formed of three to five pro-
totype vectors.

5.4 Iterative Solution for LSC

An iterative algorithm may be applied in order to avoid the explicit use of the Gram-
Schmidt orthonormalization process or the matrix pseudoinversion in the solution for x̂j

and the multipliers cij. In each iteration step, the projection vector x̂j(t) is moved toward
one of the mij vectors. The amount of the movement is selected to give the residual
minimum along that direction. The iteration can be formulated:

1. Initialize x̂j(0) = m0j , cj(0) = (1 0 . . . 0)T , t = 1 .

2. Set i = t mod (Dj + 1) .

3. Calculate bj(t) =
(x− x̂j(t− 1))T (mij − x̂j(t− 1))

(mij − x̂j(t− 1))T (mij − x̂j(t− 1))
. (5.7)

4. Update
x̂j(t) = (1− bj(t))x̂j(t− 1) + bj(t)mij , (5.8)

cij(t) = (1− bj(t))cij(t− 1) + bj(t) , (5.9)

∀k 6= i : ckj(t) = (1− bj(t))ckj(t− 1) . (5.10)

5. End iteration if t > Dj and
‖x̂j(t)−x̂j(t−Dj−1)‖
‖x̂j(t)+x̂j(t−Dj−1)‖ ≤ ε, where ε is a small positive limit.

6. Increment t by one and go to Step 2.

5.5. NEURAL NETWORK INTERPRETATION OF LSC 79

The process is illustrated in Figure 5.7, which shows that the new location of x̂ is always
such that x− x̂j(t) is perpendicular to mij − x̂j(t− 1). Therefore, the length of x− x̂j(t)
forms a non-increasing series until x̂j(t) converges to the position in which x − x̂j(t) is
orthogonal to all mij − x̂j(t), i = 0, . . . , Dj. The speed of the convergence depends on
the order in which the vectors mij are presented. At each step of the iteration, (5.9)
and (5.10) guarantee that the sum of the multipliers cij remains equal to one.

x̂j(t− 1)

x

x̂j(t) mij

Figure 5.7: One step of the iterative solution for x̂j = limt→∞ x̂j(t). The ap-
proximate solution x̂j is changed from x̂j(t − 1) to x̂j(t) by moving
a fraction determined by bj(t) in (5.7) toward mij.

In the case of the Convex LSC (LSC+), the requirement for positive multipliers cij can
be incorporated in the above algorithm by replacing Step 3 with

3. Calculate

b′j(t) =
(x− x̂j(t− 1))T (mij − x̂j(t− 1))

(mij − x̂j(t− 1))T (mij − x̂j(t− 1))
, (5.11)

bj(t) = max
k=0,...,Dj

k 6=i

{ckj(t− 1)− 1

ckj(t− 1)
,

cij(t− 1)

cij(t− 1)− 1
, min{b′j(t) , 1}} , (5.12)

which guarantees that all the multipliers cij remain within 0 ≤ cij ≤ 1 at every step of the
iteration. If a denominator in (5.12) equals zero, the corresponding term is interpreted
to have the value of minus infinity. Thus, it is neglected in the selection of the maximum
value.

5.5 Neural Network Interpretation of LSC

Another iterative solution for the projection vector x̂j can be derived. The principle of
this iteration stems from a system of continuous-time differential equations leading to the
solution of a set of error functions. These error functions originate from the observation
that the residual vector x− x̂j should be orthogonal to all the vectors mij− x̂j, due to the
orthogonality of the projection operator. An iterative algorithm of the gradient-descent

80 CHAPTER 5. LOCAL SUBSPACE CLASSIFIER

type can be derived by starting from the notion that the inner product of two orthogonal
vectors equals zero. Thus, the error functions e0j, . . . , eDjj are defined as

eij = (x− x̂j)
T (mij − x̂j) . (5.13)

The gradient of eij can then be written

∇x̂j
eij = 2(x̂j −

mij + x

2
) , (5.14)

which may be interpreted as a vector starting from the midpoint of mij and x and going
through x̂j. Viewing from the point x̂j, a zero value of eij can then be found by following
the gradient line because the zero set of eij is the surface of a hyperball centered at

mij+x

2
.

The surface passes through both x and mij, as illustrated in Figure 5.8. In the interior
of the ball, eij is negative, and in its exterior, positive.

x̂j(t)

x̂j(t− 1)

mij

mij+x

2

x

eij < 0eij > 0
∇x̂jeij(t)

Figure 5.8: Neural iterative solution for x̂j = limt→∞ x̂j(t). The dashed arrow
displays the direction of the gradient ∇x̂j

eij. If x̂j(t− 1) lies within
the hyperball, the error value eij is negative, and in the exterior,
positive. In both cases, x̂j is moved toward the surface of the ball.

A gradient-descent algorithm for a discrete-time iterative solution of the equation eij = 0
can be formulated by multiplying the gradient ∇x̂j

eij with the value of the error function
eij. The update of x̂j(t) is then made in the opposite direction. Depending on the sign
of eij, the direction of the change of x̂ is either toward or away from the center of the
hyperball. In either case, the movement is directed toward the surface. These two cases
are illustrated in Figure 5.8 in which the vectors x − x̂j and mij − x̂j are drawn with
dashed and solid lines corresponding to the location of x̂ before and after its movement,
respectively. Note that all the error equations eij = 0, i = 0, . . . , Dj, can be solved
simultaneously. This gives rise to the iterative updating rule for x̂(t):

1. Initialize x̂j(0) with any random value in Rd. Set t = 1.

2. For each i in 0, . . . , Dj, calculate

eij(t) = (x− x̂j(t− 1))T (mij − x̂j(t− 1)) , (5.15)

∆x̂ij(t) = −α(t)eij(t)
(
x̂j(t− 1)− mij + x

2

)
+ β(t)(mij − x̂j(t− 1)). (5.16)

5.5. NEURAL NETWORK INTERPRETATION OF LSC 81

3. Update x̂j(t) = x̂j(t− 1) +
∑Dj

i=0 ∆x̂ij(t) .

4. End iteration, if
‖x̂j(t)−x̂j(t−1)‖
‖x̂j(t)+x̂j(t−1)‖ ≤ ε, where ε is a small positive limit.

5. Increase t by one and go to Step 2.

The small positive multipliers α(t) and β(t) control the rate and stability of the conver-
gence of the iteration. They should decrease monotonically in time. The β(t) term forces
the projection x̂j to move toward the mean value of the prototype set {m0j, . . . ,mDjj}
and, thus, to the subspace Lj. In the beginning, its value should be near 1/(Dj + 1), and
it may decrease rapidly. If m0j were used as x̂j(0) instead of a random initial value, the β
term would be unnecessary because the iteration would already start within the subspace
Lj.

This process can be given a neural interpretation as follows. Each neural unit of the
system stores one prototype vector mij in its synaptic weights. The unit receives as
input both the vector x and the current value of its projection x̂j(t). It first calculates
its error function eij and, then, produces its contribution to the change of x̂j(t). These
modifications are integrated by a neural unit on the second layer, which, in turn, changes
the value of x̂j(t) stored dynamically as the state of one neural unit. All the factors of the
update term ∆x̂j(t) can be calculated in parallel with simple mathematical operations
on the stored and input vectorial quantities. Therefore, the production of the projection
vector x̂j can be considered neural and depicted as in Figure 5.9.

∆x̂j

m2j

m1j

m0j

x̂j x̂j

x
e0j∇x̂j

e0j

e1j∇x̂j
e1j

e2j∇x̂je2j

Figure 5.9: The neural interpretation of the projection operation in the Local
Subspace Classifier.

82

83

Chapter 6

Survey of Off-line Recognition of
Handwriting

This chapter presents an overview of methods used in the recognition of handwriting.
Section 6.1 reviews the history of the research interest. Some potential application areas
are listed in Section 6.2. Section 6.3 presents various subtopics of the character recognition
discipline and its neighboring research interests. A detailed survey of feature extraction
methods is presented in Section 6.4. Finally, Section 6.5 addresses some of the questions
related to the implementation of real-world character recognition systems. In general
questions of digital image processing, the interested reader is referenced to the books by
Rosenfeld and Kak (1982), Jain (1989), Schalkoff (1989), Pratt (1991) and Gonzalez and
Woods (1992).

6.1 History

Automatic recognition of printed and handwritten text was regarded as an important and
challenging goal even before the advent of modern electronic computers. Similar to the
recognition of speech, it is a task in which it is easy to compare the performance of a
machine to that of a human. The first technical breakthrough on the path leading to
modern systems was made by Carey in 1870, when he invented what he called the retina
scanner. In 1890, Nipkow developed the first sequential scanning device, the cornerstone
of both television and reading machines. After the collection of visual data was made
feasible, the first attempts to interpret the contents of visual information were made by
Tyurin in 1900, deAlbe in 1912, and Thomas in 1926. The first patents in the field were
issued in Germany to Goldberg in 1927 and to Tauschek in 1929, and in the United States
to Handel in 1933. For a review of the historical development, see Mantas (1986) and
Mori et al. (1992).

The eve of the era of practical handwriting recognition systems dates back to the 1950s.
In 1946, John Mauchly and J.P. Eckert developed the first operational electronic digital

84 CHAPTER 6. SURVEY OF OFF-LINE RECOGNITION OF HANDWRITING

computer, ENIAC. Soon after this, the new machinery was applied to automated pat-
tern recognition, including recognition of printed characters studied, among others, by
Glauberman (1956), ERA (1957) and Chow (1957).

During the 1960s and 70s, the recognition systems for printed text were developed to an
operational level, for example, by Balm (1970), but reliable system performance required
that special fonts were used in printing. The first systems capable of recognizing cursive
script were also introduced, for instance by Lindgren (1965). Mostly syntactic pattern
recognition methods were used in classification during these decades.

In the 1980s and 90s, neural networks have been applied to character recognition problems.
They are used primarily as classifiers, but some bottom-up neural solutions have also
emerged, such as that by LeCun et al. (1989). Most of the current systems use statistical
features and either neural networks or statistical classification algorithms.

During the past few years, many excellent overviews of the development and the state-of-
the-art recognition systems and methods have been presented, for instance, by Rabinow
(1969), Harmon (1972), Freedman (1974), Suen et al. (1980), Mantas (1986), Govindan
and Shivaprasad (1990), Tappert et al. (1990), Suen et al. (1992), Mori et al. (1992),
and by Suen et al. (1993). The problems of character recognition have been addressed
in numerous scientific conferences. The most important series of conferences have been
organized by the International Association for Pattern Recognition (IAPR), the Institute
of Electrical and Electronics Engineers (IEEE), and the International Society for Optical
Engineers (SPIE). It has been a great benefit to the development of handwritten character
recognition methods that many benchmarking studies on classification methods have used
handwritten character data. Some of the most recent comparisons include Wilkinson et al.
(1991), Geist et al. (1992), Blue et al. (1994), Michie et al. (1994), and Blayo et al. (1995).

6.2 Application Areas

One of the most tempting applications for automated processing of machine-printed and
handwritten text is a system which can locate, recognize, and interpret any written text
in any paper document, such as hand-drawn maps and casual memos. Such a machine
could facilitate the transfer of old handwritten manuscripts and registers to computer
databases. In offices, a lot of secretarial work could be handed over to such a machine.
These kinds of systems are, however, still far beyond the current level of development.

Technical problems can be drastically reduced if the task is restricted to processing such
forms where the users of the system have filled in a certain type of data. In such a case,
the system knows beforehand for what and where to search. Such forms include tax forms
and letters in postal sorting centers. Operational systems have been described, among
others, by Gilloux (1993), Srihari (1993), and Burges et al. (1993).

The most recent platform for recognition of human-written characters are palmtop com-
puters, personal assistants, and electronic notebooks. From a technical point of view,

6.3. FIELDS OF CHARACTER RECOGNITION 85

such systems are just another form of table digitizers used for years in the coding of
technical drawings. Nevertheless, they have brought on-line character recognition into
the spotlight. The striking benefit of such systems over the traditional scanning of paper
documents is interactivity; the system receives an immediate response and acceptance
from the user and even learns to avoid errors.

Potential users for systems that recognize handwriting are found mainly among the gov-
ernmental authorities, such as postal and tax departments, or among large private com-
panies, such as banks, which have a considerable amount of written communication with
their customers. On the other hand, if such systems were small and economic enough,
they might provide the visually handicapped with valuable aid.

6.3 Fields of Character Recognition

The application area in this case study is off-line recognition of isolated handwritten dig-
its, which is a highly specialized area of pattern recognition research. Various realms in
character recognition overlap. In order to fully comprehend any particular case, some
overall view of the entire field has to be reached. This section provides such an under-
standing in accordance with the dichotomies presented in Figure 6.1. The frequently
used term Optical Character Recognition (OCR) is slightly off from the taxonomy. The
word optical was earlier used to distinguish an optical recognizer from systems which
recognized characters that were printed using special magnetic ink. Nowadays, on-line
handwritten character recognition should thus not be considered optical in this classical
sense. Consequently, the term OCR is somewhat unfortunate and misleading.

Isolated Characters Continuous Text

Single-Font Multi-Font Cursive ScriptBlock Characters

Constrained Text Unconstrained Text

Machine-Printed Handwritten

Origin of the Characters

Off-line On-line

Figure 6.1: Fields of character recognition. In each branch, the more demanding
alternative is placed on the right.

Character recognition, in general, means recognition of any form of printed or written

86 CHAPTER 6. SURVEY OF OFF-LINE RECOGNITION OF HANDWRITING

textual or symbolic information including, for example, mathematical formulas. From
this perspective, the way the data is produced and processed is meaningless. Therefore,
the characters may or may not be visual. The latter is the case, for instance, in pen-driven
palmtop computers. The division between a machine-printed and handwritten origin of
characters is quite obvious, though not categorical; a system that recognizes handwriting
should also be able to handle machine-printing. The distinction is further blurred by
fonts that imitate handwriting. Due to larger variations in character images, recognition
of handwritten text is generally regarded as a more demanding task than recognition of
printed text for which there have long been operative commercial products (Andersson
1969 and 1971).

In the case of handwriting recognition, there is a crucial dichotomy between on-line and
off-line applications. Compared to off-line systems, on-line systems have additional infor-
mation concerning the order and timing of the movements the user makes with the virtual
pen. By utilizing the on-line information, the classification accuracy can be enhanced,
but the algorithms needed in processing the data are much more involved. The research
of on-line algorithms has increased lately, and a common data format has been proposed
for making comparative benchmark studies practicable (Guyon et al. 1994).

Another independent division of handwritten text concerns isolated characters and con-
tinuous text. The former occur mostly as simple one-digit or one-character responses to
queries in fill-in forms and in some on-line recognition applications where the writing area
is limited. The latter incorporates the need to segment the input image before the clas-
sification phase. Systems that recognize machine-printed text always assume continuous
input. Characters in continuous text form some larger entities, such as words or numbers.
A special case of continuous text recognition is cursive script recognition. The segmen-
tation is in that case much more difficult and methods like the Hidden Markov Models
(HMM) are often used (Dunn and Wang 1992). An easier case is block letters. They
may touch each other but their form is not so much affected by neighboring characters
as in script writing. Thus, the internal variance of each block letter class is smaller. A
corresponding pair can also be found for machine-printing: the earliest systems were able
to recognize only fonts developed especially for OCR purposes. Slightly more evolved
systems accepted any single font. Modern systems for machine-printed OCR are able to
recognize many fonts or even to adapt to any number of new font styles. Figure 6.2 shows
real-world examples of all these three types.

(a) Isolated characters (b) Continuous text (c) Cursive script

Figure 6.2: Various types of handwriting extracted from one fill-in form.

The last dichotomy in Figure 6.1 is common to both machine-printed and handwritten
systems and divides the recognition of constrained and unconstrained text. The former

6.4. FEATURE EXTRACTION IN HANDWRITING RECOGNITION 87

includes situations where the user of the recognition system is advised to write or type the
input to the system by filling in predefined boxes of a form. Thus, the system has plenty of
a priori information of what to look for and where. Recognition of isolated characters may
be seen as an extreme of this scheme. In the most unconstrained case, the user has a blank
page which she can fill in with any information in any style and even in any direction.
This approach directly leads to document analysis. It is an important research branch of
its own. In document analysis, various types of information included in paper documents
are located without any prior information. Besides, in some cases, rudimentary document
analysis is an inevitable registration step before handwritten text can be segmented and
recognized. In practice, a text entry can be considered unconstrained if there is more
than one line of input and if the number of words in each line is not known in advance.
Examples of both constrained and unconstrained texts are shown in Figure 6.3.

(a) Constrained text (b) Unconstrained text

Figure 6.3: Examples of constrained and unconstrained handwritten text.

One constraint on the recognition system is the set of recognized symbols. The simplest
case only contains ten digits and possibly some additional symbols, such as punctuation
marks and plus and minus signs. Then, either uppercase alone or both uppercase and
lowercase letters can be admitted as input. The most versatile systems should accept
Greek and Cyrillic alphabets, or even Asian character sets.

6.4 Feature Extraction in Handwriting Recognition

This section describes two taxonomies of feature extraction methods for handwriting.
Section 6.4.1 discusses the general issue of reconstructibility from features. In the six
succeeding sections, some feature extraction methods are described in detail. Finally,
Section 6.4.8 introduces a new scheme, here called the error-corrective feature extraction.

In addition to the taxonomy presented in the previous section, the field of character recog-
nition can also be described on the basis of data collection methods, feature extraction
principles, classification methods, or the data presentation form used. The latter was se-
lected by Trier et al. (1996), who presented an excellent overview of the feature extraction
methods for character recognition. This taxonomy is reproduced in Table 6.1. The four
image representation forms, gray-scale, solid binary, binary contour, and vector skeleton,

88 CHAPTER 6. SURVEY OF OFF-LINE RECOGNITION OF HANDWRITING

representation form

feature extraction
G

ra
y-

sc
al

e
su

bi
m

ag
e

B
in

ar
y

so
lid

sy
m

bo
l

B
in

ar
y

ou
te

r
co

nt
ou

r

V
ec

to
r

sk
el

et
on page

Template matching X X X 90
Deformable templates X X 91, 102

Unitary transforms X X 92, 94
Log-polar transform * X X 94
Geometric moments X X 95
Zernike moments X X 96
Wavelets * X X 98
Algebraic features * X X 98
Projection histograms X 99
Fitted Masks * X X 99

Contour profiles X 100
Chain codes X 100
Spline curve X 101
Fourier descriptors X X 101, 102
Graph description X 103

Discrete features X 104

Zoning X X X X 105

Table 6.1: Feature extraction methods tabulated by the representation form
following the taxonomy by Trier et al. (1996) but rearranged and
grouped, and methods marked with an asterisk have been added. The
rightmost column shows the page where the method is described.

6.4. FEATURE EXTRACTION IN HANDWRITING RECOGNITION 89

are shown as columns. Reasonable feature extraction methods are indicated for each.
Here, the methods are grouped and sorted differently than in the original presentation.
The methods not examined by Trier et al. (1996) are marked with an asterisk. As can be
seen, the selection of the representation form and features are not totally interdependent
nor independent. After the former has been fixed, the latter still has some options. This
weak interdependency is carried on to the selection of classification methods.

Another taxonomy motivated by feature extraction and classification principles is pre-
sented in Table 6.2. All the entries of Table 6.1, except for template matching, deformable
templates, and zoning, are placed in the taxonomy. Transforms, moments, wavelets, al-
gebraic features, and histograms are grouped under the title volume features. Now, the
primary divisions of feature extraction methods fall between heuristic and systematic
methods, on the one hand, and, according to the classical division between structural and
statistical pattern recognition on the other.

structural statistical

heuristic • Discrete features • Fitted masks

systematic

• Chain codes
• Spline curve
• Graph description

• Volume features
• Contour profiles
• Fourier descriptors

Table 6.2: A taxonomy of feature types for character recognition. The dichotomy
“structural” versus “statistical” reflects the corresponding principles
of classification. The words “heuristic” and “systematic” refer to the
way the features are selected.

The heuristic methods are most often characterized by strict confinement to some prop-
erties found useful in the classification of some particular data. Another motivation for
their use can be found from psychological observations concerning human perception,
among others, by Blesser et al. (1976). In contrast, systematic methods try to model the
input data more rigorously and independently from a specific application. The structural
methods work with a small set of discrete variables, such as the number of endpoints in
the character or the locations and the types of the junctions in the image. Such indicators
can be handled with tree-structured classifiers or with sets of rules that associate a digit
class to various combinations of the indicators. The statistical methods are most suitable
for handling continuous-valued vectors which can be naturally obtained with some math-
ematical transformations of the input image. Such feature vectors can be classified either
with classical statistical methods or with neural networks. Some researchers, including
Weideman et al. (1995) and Heutte et al. (1996), have tried to combine the benefits of
both structural and statistical approaches. Because this thesis concentrates mainly on sta-
tistical and neural methods, the systematic statistical feature extraction methods receive
most of the attention.

90 CHAPTER 6. SURVEY OF OFF-LINE RECOGNITION OF HANDWRITING

6.4.1 Reconstruction from Features

In pattern recognition, the ability to reconstruct the original input pattern from the
features extracted from it is not necessary. In the particular case of character recognition,
however, reconstruction gives essential feedback to the designer of the classifier system
about the loss of precision of data in the feature extraction phase. The reconstruction
is easiest if unitary transforms of the image are used to obtain volume features, as the
following section demonstrates. In the reconstruction figures, it should be observed how
many feature terms are required to obtain a certain quality in the reconstruction. A large
number of terms required indicates that the resulting classifier may suffer from the curse
of dimensionality. Or, that the selected feature extraction scheme does not fit together
with the data. The objective of feature extraction is, however, not good reconstruction
or effective dimension reduction, but sufficient classification accuracy.

6.4.2 Template Matching

The template classification methods are the oldest and the most straightforward methods
of character recognition. Actually, they are not feature extraction methods in the strict
sense. Still, the template matching approach is worth exploring in this context because
many feature extraction methods are based on it.

An input image is modeled as a discrete spatial function f(x, y) where x and y are the
coordinates in a normalized w × h image. The mean-square distance of an image f and
a template tj of equal size is a commonly-used dissimilarity measure,

d2(f, tj) =
w∑

x=1

h∑
y=1

(f(x, y)− tj(x, y))2 (6.1)

= (f − tj)
T (f − tj) (6.2)

= fT f + tT
j tj − 2tT

j f . (6.3)

In the second and third forms, the vectors f and tj are formed by concatenating the
pixels of the image and the mask, respectively. The input image is then classified directly
according to the minimum distance to a template. If the method is used in an application
in which the speed of operation is important, then the distance calculation would be done
with the third, inner product, form. Only the correlation term tT

j f needs to be calculated
for every input image and template, while the tT

j tj term can be calculated once for each
template and stored. The value of the term fT f is not needed at all in matching.

More application-oriented similarity measures than that of (6.3) ought to be used with
binary-valued images. In order to formulate the notation, values nbb, nbw, nwb, and nww

are first defined. They represent the number of pixels that are black in both the image
and the template, black only in the image, etc. Various similarity measures of a merely
logical rather than algebraic nature can be derived from these quantities. The similarity
value one indicates a perfect match between the image and the template, whereas a zero

6.4. FEATURE EXTRACTION IN HANDWRITING RECOGNITION 91

or negative similarity value results from a complete mismatch. Tubbs (1989) and Gader
et al. (1991) found the Jaccard and Yule similarities the most suitable for recognizing
handwritten digits

dJaccard =
nbb

nbb + nbw + nwb

, (6.4)

dYule =
nbbnww − nbwnwb

nbbnww + nbwnwb

. (6.5)

Template matching is an optimal classification method in the sense that if an infinite
number of templates and infinite time were available, classification accuracy equal to
human performance would be obtainable. This is generally not possible if dimension-
reducing feature extraction is used. In practical applications, however, the method suffers
severely from the curse of dimensionality. Therefore, feature extraction methods are used.

Deformable Templates Deformable templates are an evolutionary form of the gen-
uine template matching approach. Character images as such form a high-dimensional
feature space. On the other hand, small variations in any particular image span a low-
dimensional manifold around the image. These deformations can be modeled with the
Taylor expansion or other similar methods. The distance measure (6.3) also needs to
be generalized to express the minimal distance between the input image and a manifold
“centered” at a template. Because the modeled deformations are expressed with contin-
uous values, gray-scale images are especially suited to be recognized using deformation
approximation. Like template matching, deformation does not produce actual features in
the strict sense of feature extraction. Rather, the method can be interpreted as defining
a new non-Euclidean distance measure between the input image and the template.

For example, Simard et al. (1993) introduced a transformation distance metric for the
classification of handwritten characters and analyzed it further in (Simard et al. 1994)
and (Hastie et al. 1995). They defined the distance between two character images as the
minimum distance between the tangent planes originating from the normalized images.
The tangent plane is generated from a combination of simulated translation, rotation, scal-
ing, and two hyperbolic transformations, and, thus, parameterized with a six-dimensional
vector w. The deformed image f̂(w) is expressed as an expansion around the original
image f ,

f̂(w) = f +
∂f(w)

∂w
w . (6.6)

Then, the distance between two images fx and fy is

d(fx, fy) = min
wx,wy

‖f̂x(wx)− f̂y(wy)‖ . (6.7)

6.4.3 Volume Features

In a way, volume features are descendants of straightforward template matching. Here,
the templates are presented as a set of weighted masks, or kernels, superimposed on

92 CHAPTER 6. SURVEY OF OFF-LINE RECOGNITION OF HANDWRITING

the image. The use of masks (i) tries to compensate for small spatial variations, and
(ii) produces dimension reduction beneficial in the sense of the curse of dimensionality. A
general discrete spatial mask is defined by a function ki(x, y), or by kpq(x, y) in the case
of a two-dimensional transform domain. Each component x1, . . . , xd of a d-dimensional
feature vector x is calculated as the inner product of the mask ki and the image f ,

xi =
w∑

x=1

h∑
y=1

ki(x, y)f(x, y) = kT
i f . (6.8)

The mask vectors ki are formed by concatenating the pixels in a manner similar to the
formation of the image vector f in (6.3). When the mask vectors are combined into the
matrix K = (k1, . . . ,kd) ∈ Rwh×d we are led to the notation

x = KT f . (6.9)

The squared Euclidean distance between two feature vectors x and y may then be ex-
pressed by using the mask matrix and the original images fx and fy:

‖x− y‖2 = (KT fx −KT fy)T (KT fx −KT fy) (6.10)

= (fx − fy)TKKT (fx − fy) (6.11)

How faithfully the original metrics of the input space are transformed to the feature space
depends on the eigendirections of the KKT matrix. An important subclass of volume
features is formed by those which can be produced using unitary transforms. A unitary
transform is a reversible linear transform whose kernel K forms a complete, orthonormal
base. In the unitary case, the mask matrix obeys KTK = I, and the matrix KKT in (6.11)
can be interpreted as an orthonormal projection operator, as in Section 4.1. The image
f̂ = KKT f is thus the reconstruction of the original image f . A “virtual template” t(x, y)
can also be formed from any feature vector x and the mask matrix K,

t(x, y) =
d∑

i=1

ki(x, y)xi = Kx . (6.12)

The dimensionality d is typically some orders of magnitude smaller than the dimension-
ality of the image space, i.e., w × h. Therefore, neither the original templates nor the
input images can be presented accurately with the masks. As a result, decreased quality
of reconstruction is obtained.

Discrete Karhunen-Loève Transform Various unitary transforms have been sug-
gested and used in feature extraction in the hope that all essential information of the
shapes of the objects is concentrated in a few transform coefficients. If that were the
case, the identity of the object could be revealed by using these coefficients as statistical
features. The most commonly-used unitary transform in OCR applications is the Discrete
Karhunen-Loève Transform (KLT), which was originally a method for optimal coding of

6.4. FEATURE EXTRACTION IN HANDWRITING RECOGNITION 93

data (Watanabe 1965). The kernel masks are formed by calculating first the covariance
matrix of the training data and solving the eigenvalues and eigenvectors of that matrix.
The first eigenvectors in the order of decreasing eigenvalue are then used as the masks.
Due to the optimality property, maximal amount of variance is preserved in the trans-
formation. The process thus resembles the formation of the subspace basis matrix for
CLAFIC in (4.6), i.e.,

µ̂f =
1

n

n∑
i=1

fi (6.13)

Σ̂f =
1

n

n∑
i=1

(fi − µ̂f)(fi − µ̂f)
T (6.14)

K =
(
ki | (Σ̂f − λiI)ki = 0, λi ≥ λi+1, i = 1, . . . , d

)
(6.15)

Figure 6.4 displays how increasing the feature vector dimensionality improves the recon-
struction accuracy. At the same time, the overall amplitude of the reconstruction deviates
more and more from the zero level shown as the background gray.

0 1 2 4 8 16 32

Figure 6.4: Reconstruction of 32×32-sized handwritten digits from their Discrete
Karhunen-Loève Transform. The feature space dimensionality d is
shown below the images. The mean of the data was subtracted from
the images before the transformation and added back afterwards.

The use of KLT in handwritten character recognition was suggested by Andrews (1971) in
a comparison in which he conjectured (!) it to be superior to other unitary transforms in-
cluding Fourier, Walsh-Hadamard, and Haar Transforms. The computational complexity,

94 CHAPTER 6. SURVEY OF OFF-LINE RECOGNITION OF HANDWRITING

which inhibited the actual use of KLT in those days, is a less important issue nowadays.
Consequently, it is at least a feature extraction method worth starting the experiments
with. KLT is a data-dependent transform, which may be interpreted either as a strength
or a weakness, depending on the stationarity of the input data during the period be-
ginning with the collection of the training material and ending in the actual use of the
application. The major drawback of KLT is that the training vectors from all the classes
are summed up before the eigenvectors are solved. Therefore, the special properties of
the distributions of the classes may overlap in the feature extraction process.

Discrete Cosine Transform A distinctive family of unitary transforms is the Discrete
Fourier Transform (DFT) and its relatives. The Discrete Cosine Transform (DCT) (see
Gonzalez and Woods 1992) is the most commonly used of them in image coding and
analysis. One of its uses is the JPEG standard of still picture compression (Wallace
1991). An advantage of DCT over DFT is that its calculations are not complex but
real-valued. Each of the DCT coefficients is calculated:

xpq =
cpcq

N

w∑
x=1

h∑
y=1

cos
(2x− 1)pπ

2w
cos

(2y − 1)qπ

2h
f(x, y) , where (6.16)

ci =

{
1 , for i = 0 ,√

2 , for i = 1, 2,
(6.17)

The feature vector x is formed from the coefficients in the order: x00, x10, x01, x20, x11,
If the input data is assumed to be produced by a first-order Markov process, then the
eigenvectors of the process covariance matrix approach the DCT kernel vectors as the
correlation coefficient approaches one (Ahmed et al. 1974; Unser 1984). Therefore, it can
be argued that DCT approximates KLT for highly correlated sequences and shares its
valuable properties.

Log-Polar Transform One possibility for non-unitary image feature extraction is the
Log-Polar Transform (LPT), which is invariant to scale and rotation. Actually, LPT is not
a feature extraction method at all, but, instead, a biologically motivated way of resampling
an image (Schwartz 1977). In LPT, the Cartesian (x, y) coordinates are transformed to
polar coordinates with a logarithmic radius,

f(x, y) = f(log ρ, θ) , log ρ =
log(x2 + y2)

2
, θ = tan−1 y

x
. (6.18)

When using LPT, the origin of the coordinate system is translated to the center of the
mass of the image before the change of coordinates. Similar translation is performed also
after the coordinate change. The invariance to scale is due to the log operator which
transforms a scaling factor to a translation in the log ρ direction. Likewise, rotation in
the input image is reflected as a translation in the θ direction of the resulting image.
Thus, both variations are canceled out by the two translations of the coordinate system.

6.4. FEATURE EXTRACTION IN HANDWRITING RECOGNITION 95

Due to the effects of sampling, LPT creates concentric masks with increasing separation
between the rings. Another quite similar approach is to use sampling centered along
a logarithmic spiral which extends from the center of the image (Weiman and Chaikin
1979). The use of LPT is, however, somewhat inconvenient because the new coordinates
are heterogeneous and, therefore, two separate sampling parameters need to be selected.
The Log-Polar Transform has been used mostly as a preprocessing step prior to the actual
feature extraction, for instance, by Wechsler and Zimmerman (1988). Kageyu et al. (1991)
used LPT with the Fourier transform in the recognition of handwritten digits. Figure 6.5
shows the Log-Polar transformed image of a handwritten ‘4’ in s× s discretization of the
log-polar plane, where s = 5, 10, 15, 20, 25. Below, corresponding reconstructed 32 × 32
images are shown.

Figure 6.5: Log-Polar transformed digit ‘4’ and reconstructed images using 25,
100, 225, 400, and 625 coefficients.

Moments Moments and invariant features based on them have been used widely in
visual pattern recognition ever since they were introduced by Hu (1961). The basic
moment of the order (p, q) – p and q being non-negative integers – is defined as:

mpq =
w∑

x=1

h∑
y=1

xpyq f(x, y) . (6.19)

More suitable than the plain moments for pattern recognition purposes are the corre-
sponding central moments µpq for p + q > 1

µpq =
w∑

x=1

h∑
y=1

(x− m10

m00

)p (y − m01

m00

)q f(x, y) . (6.20)

Hu (1962) also presented the normalized central moments, or absolute similitude moment
invariants, as:

ηpq =
µpq

µγ
00

, γ =
p + q

2
+ 1 . (6.21)

96 CHAPTER 6. SURVEY OF OFF-LINE RECOGNITION OF HANDWRITING

A set of moment invariants known as Hu’s absolute orthogonal moment invariants may
be calculated by using the normalized central moments (Haralick and Shapiro 1992):

φ1 = η20 + η02 (6.22)

φ2 = (η20 − η02)
2 + 4η2

11 (6.23)

φ3 = (η30 − 3η12)
2 + (3η21 − η03)

2 (6.24)

φ4 = (η30 + η12)
2 + (η21 + η03)

2 (6.25)

φ5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 − η03)

2] (6.26)

+(3η21 − η03)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2]

φ6 = (η20 − η02)[(η30 + η12)
2 − (η21 − η03)

2] + 4η11(η30 + η12)(η21 + η03) (6.27)

φ7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21 − η03)

2] (6.28)

−(η30 − 3η12)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2]

A selection of these φis or other similar constructs can be used to form the feature vector x.
Alt (1962) defined another form of normalized central moments m∗

pq, which are invariant
under translation, scale, and any general affine transform:

m∗
pq =

∑w
x=1

∑h
y=1 x∗py∗q f(x, y)

m00

, (6.29)

x∗ = (x− m10

m00

)/
√

µ20/m00 , (6.30)

y∗ = (y − m01

m00

)/
√

µ02/m00 . (6.31)

The normalized central moments can still be presented as a set of image masks in which
the scaling and positioning of the higher-order masks depend on the lower-order moments.

Teague (1980) presented a thorough review of moment invariants and related themes.
Maitra (1979) and Hsia (1981) have contributed significantly to the renewed interest in
the theory of moment invariants. Reddi (1981) derived radial and angular moments as an
alternative representation for Hu’s invariants. Belkasim et al. (1991) presented a survey
and comparison of various moment invariants. New theoretical formulations include those
by Reiss (1991) and Li (1992). Recently, Flusser and Suk (1993) proposed a set of affine
moment invariants, which are invariant under affine transformation, and demonstrated
their use in recognition of handwritten characters (Flusser and Suk 1994).

The invariance properties of moments have proven to be useful, for example, in the recog-
nition of aircraft images. In character recognition, the rotation, mirroring, and reflection
invariance may be a disadvantage, however. Therefore, only some of the proposed moment
invariants are applicable as such to character recognition.

Zernike Moments Previously, moments were defined in the Cartesian coordinate sys-
tem. In a somewhat corresponding manner, Teague (1980) defined the Zernike moments
in polar coordinates. The Zernike moments form a set of complex harmonics in a manner
similar to the Fourier transform in the Cartesian system. They were originally defined

6.4. FEATURE EXTRACTION IN HANDWRITING RECOGNITION 97

for continuous-valued variables, for which they form an orthonormal set of kernels. For
discrete variables this is not true, so the transform is not unitary. A Zernike moment Apq

is defined for all p >= 0, |q| ≤ p, and even p−|q|, by using the polar kernels Vpq(ρ, θ) and
the radial polynomial Rpq(ρ),

Apq =
p + 1

π

∑
x

∑
y

f(x, y)V ∗
pq(ρ, θ) , (6.32)

Vpq(ρ, θ) = Rpq(ρ)eiqθ , (6.33)

Rpq(ρ) =

p−|q|
2∑

s=0

(−1)s (p− s)!

s!
(

p+|q|
2
− s
)
!
(

p−|q|
2
− s
)
!
ρp−2s . (6.34)

The polar coordinates (ρ, θ) are defined in a unit circle embracing the centered and prop-
erly scaled image to be transformed in the usual way:

ρ =
√

x2 + y2 ≤ 1 , θ = tan−1 y

x
. (6.35)

Figure 6.6: Shapes of the first 25 Zernike kernels with fixed horizontal orienta-
tion. V0,0 at top, V8,0 in bottom left and V8,8 in right corners.

Shapes of the Zernike masks up to p = q = 8 are plotted in Figure 6.6. Figure 6.7 displays
reconstruction from the Zernike coefficients. The complex Zernike moments may be used
as such or combined further to produce invariant features. Teague (1980) suggested the
formation of invariant features as products of individual Zernike moments. His approach
produces features invariant to reflection and rotation. Khotanzad and Hong (1990a and
1990b) used the magnitudes of the complex Zernike moments as features in recognition of
handwritten characters. Some additional formulations of Zernike invariants were studied
by Belkasim et al. (1991). Their survey and benchmarking study on moment invariants
used handwritten digit data. Just as with regular moments, some forms of invariance
in Zernike moments may be a disadvantage in character recognition since, for instance,
digits ‘6’ and ‘9’ are distinguishable only by direction.

98 CHAPTER 6. SURVEY OF OFF-LINE RECOGNITION OF HANDWRITING

6 7 8 9 10 11 12

Figure 6.7: Reconstruction of digits from their Zernike coefficients. The maxi-
mum of order p of the coefficients used is shown below.

Wavelets Lately, wavelets have been used intensively in image analysis and coding (see
Vetterli and Kavačević 1995; Strang and Nguyen 1996), and there exist both unitary and
non-unitary versions of wavelet kernels. Compared to the Discrete Cosine Transform,
wavelets are more localized and, thus, able to describe the image with fewer coefficients.
Of various sets of wavelets, the kernel of the complex two-dimensional Gabor filters is
written (Daugman 1988):

ku0,v0,α,β(x, y) = e−π(x−x0)2α2+(y−y0)2β2

e−2πiu0(x−x0)+v0(y−y0) . (6.36)

(x0, y0) is the center point of the function in the image, i.e., normally, the center of
the image (w+1

2
, h+1

2
). The scaling parameters α and β are inversely proportional to

the variances of the Gaussian frequency band in x and y-directions. The modulation
parameters (u0, v0) define the mean frequency of the template in the Fourier-domain.

Algebraic Features Algebraic features are constructed from an image considered as a
matrix. Various algebraic transforms or matrix decompositions can be used for feature
extraction from an image. The Karhunen-Loève Transform, presented on page 92, is one
such example.

Hong (1991), who introduced the term of algebraic features, stated that they represent
intrinsic attributions of an image. He used the Singular Value Decomposition (SVD) of
a matrix as the classification feature for face images. Cheng et al. (1993) and Liu et al.
(1993) applied the Similar Discriminant Function (SDF) to the same problem. Finally,

6.4. FEATURE EXTRACTION IN HANDWRITING RECOGNITION 99

Liu et al. (1994) applied the algebraic feature extraction technique to the recognition of
handwritten characters.

Projection Histograms Projection histograms are mainly used for segmenting lines,
words, and characters in document images. Glauberman (1956), however, used them as
features in his early hardware character reader. Projection histograms can be interpreted
as horizontal and vertical bar masks. They transform a two-dimensional image into two
one-dimensional histograms. Tang et al. (1996) used ring projection, in which the images
were projected onto concentric rings of equal width. The resulting histograms were then
decomposed with one-dimensional wavelets.

Due to their sensitivity, for instance, to small rotations in the images, projection his-
tograms cannot be used as the only features in classification. If used in combination with
other features, histograms may offer useful additional information.

Fitted Masks All the volume feature extraction methods described up to this point
have had a statistical or other form of mathematical background. Therefore, in Table 6.2,
they were characterized as systematic features. As a counter-example, there are classifi-
cation systems that use heuristic fitted masks designed by recognition system developers.
Thus, they are very application-specific and typically non-unitary. Simply put, each mask
indicates whether there exists a certain meaningful line or curve in the input image. The
way the masks are used may be more logical than arithmetical by nature. As an example
of heuristic masks, Burr (1988) presented his “shadow codes”, later used by Weideman
et al. (1995).

6.4.4 Outline Features

Outline features are based on modeling the outline of the character to be recognized.
Therefore, it is necessary to trace the closed outer contour curve. For binary images this
edge detection task is easy, but gray-scale images need first to be changed into binary
images using using either global or local thresholding. Alternatively, an algorithm capable
of tracking the contour of a gray-level image has to be used, such as the one presented by
Herman and Liu (1978). In another approach, described by Lam et al. (1992), the outline
contour is first located roughly by comparing the gray-values of neighboring pixels. The
resulting outline is then thinned to the width of one pixel and used in character recog-
nition. In Figure 6.8, the image (b) displays the 8-connected outline of the handwritten
digit ‘4’ in image (a).

The motivation for the use of the outline features in classification is grounded in the ob-
servation that characters can be distinguished by their outer contours. The outer contours
of such letters as the uppercase ‘B’ and ‘D’ may, however, be very similar. Therefore, it
is possible that the features derived from the outline are very sensitive to noise or other-
wise unsuitable for classification. The shortcomings of the outline features may, at least

100 CHAPTER 6. SURVEY OF OFF-LINE RECOGNITION OF HANDWRITING

partially, be overcome by using the inner contours or other additional features. Another
serious drawback of the outline features follows if each character is assumed to be a single-
connected region or classifiable by using only the largest of the regions. This assumption
is valid, for example, in the case of the letters ‘i’ and ‘j’. Most diacritical characters, such
as ‘ä’ and ‘ö’, however, cannot be distinguished from their non-diacritical counterparts by
relying on the single-connected component hypothesis.

(a) Solid (b) Outline (c) Profiles

Figure 6.8: A handwritten digit ‘4’ in (a), its outline in (b), and left and right
contour profiles in (c).

Contour Profiles Contour profiles are the simplest features extractable from character
outlines. In the case of binary images, the outline does not need to be explicitly traced
before extracting the profiles. The left contour profile measures the distance from the left
edge of the image to the left contour of the character on each row. The right contour
profile is formed correspondingly. This results in two integer-valued vectors which have
a dimensionality equal to the height of the image. The profiles can be used as feature
vectors in statistical classification or processed further to form heuristic features. Both
approaches were tested by Shridhar and Badreldin (1985 and 1986) and Kimura and
Shridhar (1991). Figure 6.8 (c) shows the contour profiles of a handwritten digit ‘4’ of
Figure 6.8 (a).

An advantage of contour profiles is their immunity to small gaps in character images.
On the other hand, they are extremely sensitive to rotation and slant. Therefore, proper
preprocessing has to be used. Even then, the profiles may be useless as classification
features. Figure 6.8 illustrates how difficult it might be to distinguish handwritten digits
‘4’ and ‘9’ by their contour profiles.

Chain Code Histograms Chain codes are formed by vectorizing the closed outline
of a character. The outline chain is then transformed to a string in which each element
indicates the direction of the contour at that particular point. The number of quan-
tization levels used in representing the directions may vary. Most often the four basic
directions that result from an eight-connected neighborhood model will suffice. A di-
rection histogram can be generated from the entire image or any part of it. Thus, this

6.4. FEATURE EXTRACTION IN HANDWRITING RECOGNITION 101

method can be combined well with the zoning approach, discussed in Section 6.4.7. Chain
code histograms were successfully used in character recognition by Kimura and Shridhar
(1991).

Splines The general concept of splines comprises any linear, polynomial, or rational ap-
proximations of the outer contour of a character. In general, the resulting representations
are suitable for syntactical pattern classification. For example, Ali and Pavlidis (1977)
presented a recognition system in which the boundary of a digit is described by using
four types of entities extracted from a linear approximation of the boundary: curves,
protrusions, lines, and breaks. The resulting entity strings are then classified by using
two successive grammar parsers.

When a spline description is formed, the chain code has to be first broken into subparts
to be modeled with individual spline curves. The breaking points are located along the
closed curve in places with high curvature (Sekita et al. 1988). In general, a pth-order
spline is continuous up to the (p−1)th derivative in its breaking points. Taxt et al. (1990)
used an algorithm in which the distance from the center of the image to the B-spline-
approximated outer boundary is measured with regular intervals along the spline curve.
A statistical feature vector is then formed from these measurements and from the mean
curvatures calculated in the segments between the measurement points. Thus, the splines
are used only to smoothen the extracted outline.

Fourier Descriptors Fourier descriptors are used for characterizing the outer boundary
of a character. The Fourier coefficients capable of representing the form of a handwritten
digit can be used as statistical features and classified in a manner similar to that of
statistical volume features. The first coefficients describe the most coarse shape of the
character. The amount of detail is increased as more coefficients are included. In this
sense, the Fourier descriptors resemble the coefficients that result from the Cosine and
Karhunen-Loève Transforms.

Granlund (1972) represented a closed and, thus, periodic complex-valued contour function
u(t) using complex Fourier coefficients an:

an =
1

2π

∫ 2π

0

u(t)e−intdt , (6.37)

where t is an angular parameter with a fixed starting direction. The coefficients an for
n 6= 0 are invariant with respect to position. The scaling of the image corresponds
to a constant multiplier in the coefficients. Rotation invariance may also be produced,
but it is seldom needed in digit recognition where the orientation of images is fixed by
normalization. Shridhar and Badreldin (1984), who used 15 real-valued descriptors xi =
|ai|/|a1| in digit classification, needed less than three averaged models per digit class in
1-NN classification to obtain adequate classification accuracy.

102 CHAPTER 6. SURVEY OF OFF-LINE RECOGNITION OF HANDWRITING

6.4.5 Skeleton Features

A skeleton of an image can be used as a starting point for feature extraction. The
skeletonization process, also known as thinning or the Medial Axis Transform (MAT), is by
itself problematic regarding both the computational aspects and the potential uniqueness
of the result. These issues have been addressed, among others, by Lam et al. (1992) and
Jang and Chin (1992). Figure 6.9 shows a handwritten digit ‘7’ and its skeleton in the
images (a) and (b), respectively. In the context of handwritten character recognition,
the goal of the thinning process is quite obvious: the trace of a pen spreading ink while
moving on a paper should be recovered from the final image. The average line width can be
estimated prior to thinning and that information used in skeletonization. Alternatively,
the average line width can be estimated after thinning if the information is needed in
further processing. Vectorization is a step that commonly follows skeletonization. In
vectorization, the pen trace is represented with a small number of linear line segments
known as strokes. Many feature extraction methods use strokes as input data.

In recognition of handwritten digits, Taxt and Bjerde (1994) used a feature extraction
scheme based on the Elliptic Fourier Descriptors, originally presented by Kuhl and Gi-
ardina (1982). In that case, the resulting features were statistical. A general view is,
however, that features extracted from the image skeleton lead to syntactical classifica-
tion.

(a) Solid (b) Skeleton (c) Graph

Figure 6.9: A handwritten digit ‘7’ in (a), its 4-connected skeleton in (b), and a
hypothetical graph description in (c).

Vector Templates Small variations in the shape and relative location of the parts
of a handwritten symbol cause extensive changes in the extracted skeleton of the image.
Therefore, direct template matching of skeletonized characters is seldom feasible. Instead,
the skeleton templates are transformed to deformable vector models which describe the
input images and the stored samples of the classes. The handwritten characters are
modeled as “rubber bands” which are deformed to match the actual images as accurately
as possible. The needed amount of deformation is used as a dissimilarity measure between
each model and the image. In many cases, vector template matching may be seen as a
special case of the general setting of dynamic programming (see Hu 1982).

6.4. FEATURE EXTRACTION IN HANDWRITING RECOGNITION 103

Williams (1994) and Revow et al. (1996) described a handwritten digit recognition method
in which trainable deformable B-splines were interpreted as Gaussian “ink generators”
along the length of the spline. The measured distribution of ink, i.e., the input image,
was fitted to the stored models of pen movement and spreading of ink. The fitting was
performed by using a modification of the Expectation-Maximization (EM) algorithm.
Parker (1994) presented a digit recognition scheme in which the line width of the input
image was estimated and used in the thickening of the skeleton templates. The final com-
parison was made bit-wise between the thickened templates and the actual input image.
Thus, the algorithm was quite near the classical template-matching scheme described in
Section 6.4.2, but was considerably more elaborate due to the skeletonization stage.

Wakahara (1993 and 1994) described an iterative technique that used local affine trans-
formation for distortion-tolerant matching. In the method, skeletonized images were
deformed by linear transforms applied to each skeleton pixel in the input image and in
the models. Each transform was also applied to the neighboring pixels, which made the
deformation of the image more continuous. As well, local structural information was
stored into all pixels of the skeletons and used as a similarity measure between corre-
sponding points in the input and model images. The optimal local deformations were
finally resolved as a set of simultaneous linear equations.

In the method developed by Hastie and Tibshirani (1994), only the model templates were
represented in the skeleton form. The sum of the smallest squared distances from all
the black pixels in the input image to the skeleton was used as a dissimilarity measure.
Using this measure, the best global affine transformation for the skeleton was selected.
Additional dissimilarity values were introduced for the parts of the prototype not covered
by the input image, for differing aspect ratio, for excessive rotation and shear, and for the
cases where the mapping between the input image and the model was not continuous. A
statistical feature vector was finally formed from these values. Del Bimbo et al. (1994)
presented a method for matching a one-dimensional deformable template to a printed
digit image of poor binarization and segmentation quality. They combined with linear
discriminant functions four different similarity measures between the input image and each
model template. In the experiments, the input images were not actually skeletonized prior
to matching, because they were originally machine-printed and thin.

Graph Description A graph description of an image defines the subparts of the image
and their spatial relationships. In character recognition, the image is most often repre-
sented as a skeleton. Its legitimate subparts are typically strokes, line ends, arcs, holes,
etc. The recognized spatial relations may be coded as a simple grammar (e.g., Baptista
and Kulkarni 1988), or as a binary decision tree (e.g., Brown et al. 1988). Another pos-
sibility is to store a set of representative graph templates in the memory of the system.
Figure 6.9 (c) shows for illustration a handwritten digit ‘7’ as a graph representation which
consists of three straight lines, one arc, one junction, one corner, and four endpoints.

Recognition schemes based on graph description have been used widely in recognition of
Chinese characters. For example, Lu et al. (1991) formed a graph of the branches of the

104 CHAPTER 6. SURVEY OF OFF-LINE RECOGNITION OF HANDWRITING

character and performed graph matching. Lee and Chen (1992) first extracted line seg-
ments and then used their centers, slopes and corresponding mutual relations as features
in matching with dynamic programming between the input character and the reference
models. A somewhat similar approach was proposed by Rocha and Pavlidis (1994) for
Western alphabets. Cheng et al. (1993) utilized relaxation (see Hummel and Zucker 1983)
when calculating the similarity of two images. The characters were represented as sets of
strokes, each of which also contained information about the neighboring strokes. A simi-
lar approach was applied to Latin characters by Lam and Suen (1988). In general, more
elaborate preprocessing is needed in the processing of Asian character sets than of Euro-
pean alphabets. Various techniques for the former were reviewed and their effectiveness
evaluated by Lee and Park (1994).

Even though most of the graph-description systems fall into the category of structural
methods, statistical classification is still also feasible. Kahan et al. (1987) parameterized
the linear strokes of the printed Roman alphabet by their location, orientation and length,
and, then, clustered the resulting points in the parameter space. After pruning, the
total number of clusters needed for presenting all the line segments that appeared in the
training set was about 100. When holes, arcs, and other parts were also parameterized
and clustered in a similar manner, the total number of clusters was 300, which then was
the dimensionality of the statistical binary feature vector.

6.4.6 Discrete Features

Discrete features are a set of non-systematic heuristic features aimed rather to distinguish
between the character classes than to describe the shapes of the characters. The selection
of the features for a particular classification task is highly knowledge-driven, and, there-
fore, learning algorithms are scarcely practicable. Discrete features are mostly used with
decision trees or in syntactic pattern recognition. Or vice versa – syntactic recognition of
characters is almost always based on some form of discrete features.

The extraction of discrete structural features begins either from the original or skeletonized
input image which can easily be converted to a collection of branches, ending points and
junctions. The enumeration of all heuristic structural features used in recognition of
handwritten digits is a formidable task. The following examples should give a sufficient
comprehension of the vast variety of possibilities. First, the features may be isolated non-
systematic measurements of the image. These include such as maximum width, aspect
ratio, total stroke length, and the proportion of black pixels in the upper part of the image.
Second, the features may be Boolean values that indicate the presence or absence of a
certain characteristic, such as a dot or diacritics on the top of the image body. Third, some
small integer values can be extracted, such as the numbers of intersections with straight
lines at specific places, holes, connected components, strokes, junctions, and ending and
crossing points. Also, the coordinates and other additional descriptions of these entities
and extreme points may be included. The number of descriptive features may vary from
an input image to another, which makes statistical treatment of the heuristic features
difficult.

6.4. FEATURE EXTRACTION IN HANDWRITING RECOGNITION 105

Purely heuristic features in recognition of handwritten digits were used by Pavlidis and
Ali (1975). In their system, 14 integer-valued and 8 Boolean-valued features were used
to create a classification tree with the total of 45 final nodes and 10 edges in the longest
path. Mai and Suen (1990) developed a scheme in which the set of heuristic Boolean
features was iteratively increased under human supervision. New features were added
to the feature vector in order to resolve the misclassifications that occurred during the
tentative classification of the training set.

It is possible to use heuristic features only in one stage of a multi-stage classification sys-
tem. For example, Huang and Chuang (1986) first extracted some integer-valued heuristic
features and then fitted the vector templates of those models which matched exactly the
input image in the first stage. Shridhar and Badreldin (1984) developed a system in which
the digits ‘0’, ‘1’, ‘3’, and ‘8’ were classified statistically, using Fourier descriptors. Of
the remaining digit classes, ‘2’s and ‘5’s, on the one hand, and ‘4’s, ‘6’s, ‘7’s, and ‘9’s,
on the other, were distinguished by heuristic features which were based on transitions
from white to black pixels on horizontal and vertical scan lines in the four quadrants of
the digit image. In another publication, the same authors described a syntactic recogni-
tion system (Shridhar and Badreldin 1985). Forty-eight feature predicates were derived
from the contour profile presentation of the input digits. Twenty-seven digit models, each
corresponding to its own production rule, were then used to represent the ten classes of
digits.

6.4.7 Zoning: Combination of Low-Level Features

Zoning has already been mentioned in connection with other feature extraction meth-
ods. Actually, it is not a feature extraction method but an auxiliary procedure used in
combination with actual feature extractors. In zoning, the area of the input image is
split typically into four or nine subimages by using a rectangular grid. One, or some, of
the above-described feature extraction methods is then applied to each of these regions
separately. The final feature vector is formed by concatenating the features from the
subimages. Both the benefits and shortcomings of the zoning method are quite obvious.
Generally, it is advantageous that the characteristics of the individual parts of the image
are not mixed, but processed separately. On the other hand, the fixed artificial borders
that divide the image to its subparts increase variation, because small changes in the
locations and relative sizes of the parts of a symbol easily lead to drastic changes in the
contents of the subimages. This further leads to incontinuous changes in the resulting
feature vector.

Veelaert (1994) presented an interesting algorithm related to zoning. His technique com-
bines multiple low-level feature detectors into larger ones. Each of these lower-level fea-
tures are described separately with a mask. On some occasions, it is also possible to
decompose a set of large masks to another set of small masks which are able to detect
exactly the same set of features as the original set. These ideas could be applied to feature
extraction in recognition of handwritten symbols.

106 CHAPTER 6. SURVEY OF OFF-LINE RECOGNITION OF HANDWRITING

6.4.8 Error-Corrective Feature Extraction in OCR

The traditional view of feature extraction in pattern recognition applications has been
that the system designer, using her expertise, selects the features to be used. Thus, from
the viewpoint of classification, the features have been fixed before any actual classification
experiments have been performed. Also, any information loss during the feature extraction
phase has been definitive and irreversible. Therefore, it has been the task of the classifier
design to overcome these problems. As neural classification algorithms have replaced
traditional statistical and knowledge-based classifiers in many applications, the question
has been raised as to whether the feature extraction phase might also be made adaptive
and autonomously error-corrective. This chapter describes one such scheme called the
error-corrective feature extraction. The goal is to reformulate the classical Karhunen-
Loève Transform (KLT) in a manner which enables feedback from the classifier in a
manner depicted with the arrow labeled “c)” in Figure 2.2 on page 25.

The error-corrective feature extraction scheme is presented in two formulations which
complement each other. In the first, the features are not adaptive, but the feature selection
is controlled by the resulting overall classification accuracy. In the second formulation, the
feature extraction stage is revised with each individual misclassified vector in a manner
familiar from the learning subspace classifiers. Thus, the feature extraction phase may be
regarded as genuinely neural because it is adaptive and able to learn from examples.

Both forms of the error-corrective feature extraction originate from KLT. In the first
formulation, the covariance matrix used in KLT is replaced with a sum matrix that
enhances the directions between the classes and across the class borders. We begin with
defining three matrices formed from the original normalized w × h-dimensional input
vectors f and their estimated mean µ̂f prior to any feature extraction:

Σ̂f =

n∑
i=1

(fi − µ̂f)(fi − µ̂f)
T

n
, (6.38)

Âf =

c∑
j=1

c∑
i=1,i6=j

nj∑
k=1

ni∑
l=1

(fkj − fli)(fkj − fli)
T

c∑
j=1

c∑
i=1,i6=j

njni

, (6.39)

B̂f =

c∑
j=1

c∑
i=1,i6=j

nj∑
k=1

ni∑
l=1

sp(fkj, fli) (fkj − fli)(fkj − fli)
T

c∑
j=1

c∑
i=1,i6=j

nj∑
k=1

ni∑
l=1

sp(fkj, fli)

, (6.40)

sp(fkj, fli) =

1 , iff li = argmin
tu, tu6=kj

|fkj − ftu| ,

0 , otherwise.
(6.41)

6.4. FEATURE EXTRACTION IN HANDWRITING RECOGNITION 107

In the notation, the normalized images which belong to the training sample and originate
from the class j are denoted {f1j, . . . , fnjj}. Thus, the Σ̂f matrix is the covariance matrix

used in KLT. The matrix Âf models the average directions from one class to another.
Every pair of vectors which belong to separate classes contributes to the sum. If the
number of training vectors is large, only a fraction of the total number of terms is sufficient
to estimate the Âf matrix. B̂f goes even further; only the vector pairs which really are
located in the areas of class borders are used. The pattern vector misclassification function
sp(fkj, fli) attains a non-zero value only when the vector fkj is erroneously classified by
using the leave-one-out 1-NN classification in the normalized input pattern space. In the
limiting case of an infinite training sample, B̂f is formed from vectors perpendicular to
the Bayesian class border in Rw×h.

A compound covariance-type matrix S is expressed as a linear combination of the three
matrices above:

S = αÂf + βB̂f + (1− α− β)Σ̂f . (6.42)

In this feature extraction scheme, the kernel matrix K = K(α, β) ∈ Rwh×d is formed from
the eigenvectors of the matrix S similarly to KLT in (6.15). Again, as mentioned in the
general case of volume features and (6.11), the matrix KKT determines how faithfully
the original metrics of the input space Rw×h is transformed to the feature space Rd.
This is the rationale behind the use of the Âf and B̂f matrices. It guarantees that the
feature masks ki describe more the differences between the classes than the overall shape
of the input vector distribution. Optimal values for the multipliers α and β need to be
found experimentally, for example by using error cross-validation and by observing the
resulting classification performance. If the value of β is too large, poorly-representative
eigenvectors k may emerge. This results from the observation that the estimation of B̂f

may not be robust if the number of misclassified vectors is small, compared to the input
vector dimensionality.

In the second formulation of the error-corrective feature extraction approach, the feedback
from the classifier block in Figure 2.2 to the feature extraction block is not limited to the
overall classification accuracy. Instead, each individual misclassified vector is used to
revise the feature extraction process. The misclassifications are observed in the feature
vector space x = Kf , but the corrections are made using the original normalized input
images f . Therefore, the process is able to improve the feature extraction stage. The
matrix S is now made adaptive and its initial value can be obtained by using any of the
matrices Σ̂f , Âf , and B̂f , or their linear combination that results from the optimization
process. The iteration formula is

S(0) = n (αÂf + βB̂f + (1− α− β)Σ̂f) , (6.43)

S(t + 1) = S(t) + γ(t)
c∑

j=1

c∑
i=1,i6=j

nj∑
k=1

ni∑
l=1

sf (fkj, fli) (fkj − fli)(fkj − fli)
T , (6.44)

sf (fkj, fli) =

1 ,
iff g(K(t)T fkj) 6= j, i.e., K(t)T fkj is misclassified
and il = argmin

tu, tu 6=kj
|K(t)T fkj −K(t)T ftu| ,

0 , otherwise.

(6.45)

108 CHAPTER 6. SURVEY OF OFF-LINE RECOGNITION OF HANDWRITING

Again, the kernel matrix K(t+1) is formed from the principal eigenvectors of the S(t+1)
matrix after the training period t. During each training epoch, all the n feature vectors,
formed from the normalized input images f that use the transform K(t), are tentatively
classified. The difference between the pattern vector misclassification function sp(·, ·),
in (6.41), and the feature vector misclassification function sf (·, ·), in (6.45), is that sp(·, ·)
indicates the incorrectness of 1-NN classification in the high-dimensional Rw×h pattern
space, whereas sf (·, ·) reports the misclassifications in the lower-dimensional feature vector
space. Thus, the latter error-corrective feature extraction version is not simply an iterative
version of the former. Instead, it models more accurately the actual operation of the
combination of a feature extractor and a classifier. The coefficient γ(t) in (6.44) needs
to be given constant or decreasing positive values similarly to other uses of delta-rule
correction (3.18). Any classification function g(x) can be used in implementing (6.45),
but a k-NN classifier is an apparent choice.

The optimal feature vector dimensionality d may vary when the S(t) matrix is evolving.
Therefore, various values of d should be tested during each training epoch. Obviously, the
training of the feature extraction block has to be stopped eventually. The overall classifi-
cation accuracy can be monitored by using error cross-validation. The adaptation process
can then be terminated when the classification accuracy stops improving. The feature ex-
traction matrix K(t) of the lowest error rate can then be used. The relationship between
the principles and formalisms of the latter error-corrective feature extraction method and
the ALSM classification method, presented in Section 4.2.3, should be noticed. In both
approaches, the outer products of all erroneously classified vectors are added to a scatter
matrix the eigenvectors of which are recomputed after each training epoch. Therefore,
it may be stated that the proposed feature extraction scheme is a successor of KLT in a
manner similar to that of ALSM being a successor of CLAFIC.

6.5 OCR: From Parts to a Whole

This chapter has presented an overview of various aspects of character recognition, in par-
ticular, off-line recognition of handwritten digits. The focus of the presentation has mostly
been on potential feature extraction methods. The options related to the normalization
and other preprocessing stages have almost been ignored. As discussed in Sections 2.3
and 2.5, an efficient implementation of the stages preceding the feature extraction block
is as essential as the choice of proper features. Median filtering (see Pratt 1991) and
morphological smoothing (see Serra 1982) are, among others, feasible preprocessing tech-
niques for optical character recognition systems. The knowledge of preprocessing and
feature extraction methods is an important topic in the design of any pattern recognition
application. In addition, this knowledge is, in general, specific to that particular applica-
tion. On the contrary, the classification methods are more universal and one classification
technique can, in general, be applied to a large variety of different applications.

The importance of the connection between the feature extraction and classification stages
was addressed in the last few pages where the error-corrective feature extraction technique

6.5. OCR: FROM PARTS TO A WHOLE 109

was introduced. The error-correction technique demonstrated that a pattern recognition
system can be more than the mere sum of its parts. If individual processing stages
of a system are allowed or forced to interact, the overall performance can be expected
to increase. The more the data processing can be made error-corrective and adaptive,
the more flexible the system will be. Naturally, all this means increased computational
complexity during the system design as the cost of advantages in recognition accuracy.

The aspects of the various classification techniques presented in Chapter 3 need to be con-
sidered when the combination of feature extraction and classification methods is selected.
Due to the statistical nature of the classifiers of Chapter 3, they are easily combinable
with the statistical feature extraction methods presented in this chapter. The structural
features of this chapter call for the use of syntactic classification methods which have
been omitted from this presentation. In any case, some design factors, such as the type
of input and the available computer capacity, dictate the choices in the design of all the
parts of a pattern recognition system. In this respect, feature extraction methods, such
as the Karhunen-Loève Transform, which allow the selection of the feature vector dimen-
sionality depending on the amount of data and computer capacity available, are the most
scalable to any specific application. The computational resources need, therefore, to be
carefully divided between the stages of a recognition system in order to obtain the best
achievable overall performance.

Optical character recognition applications are almost always embedded systems in which
the aspect of real-time computing is essential. Therefore, the balance between the accu-
racy of recognition and the time and computational resources available for each classifica-
tion task has to be tuned carefully. Fortunately, many statistical feature extraction and
classification methods are quite simple and can be implemented with special hardware.
The realization of an all-purpose OCR system on a single adaptive VLSI chip can there-
fore be regarded as a long-term research and development goal in the field of character
recognition research.

110

111

Chapter 7

Prototype Recognition System

This chapter describes the prototype recognition system implemented for the case study
of classification of handwritten digits. The stages of the system are explained in the order
of the processing. Some general issues and options related to the implementation are
addressed. Section 7.6 describes the data produced with the prototype system. These
data samples were originally produced for the benchmarking study reported by Holmström
et al. (1996b and 1997). Here, they are used in the experiments described in the next
chapter.

7.1 Image Acquisition

The first stage in optical character recognition is the data acquisition. There are primarily
two ways of acquiring images: scanners and video cameras. Depending on the needs and
facilities, both of them can produce either binary or gray-scale images with a varying
number of bits per pixel. The acquisition of color images is also practicable, but seldom
used, due to the large increase in the amount of data and only moderate gain in recognition
accuracy. The scanning resolution may vary but it is typically between 200 and 400 dots
per inch in both spatial directions. The resolution needed is inversely proportional to the
expected size of the characters. The recognition system should be made independent of
the original image size and resolution by image normalization.

In the prototype system, the images were scanned by using automatic feed for A4-sized
paper documents. The resolution was 300 dots per inch in both directions. Binary images
were produced by setting an appropriate threshold. The images were stored in binary form
only. The fill-in form used with the prototype system was designed to imitate a tax form
where each character has a predefined location where it is to be written. Lightly-colored
boxes that guided the entry disappeared successfully as a result of the thresholding. All
the participants of the data collection filled out identical forms, where the desired symbol
was printed above each intended location of handwritten entry. One such image is shown
on page 112.

112 CHAPTER 7. PROTOTYPE RECOGNITION SYSTEM

Figure 7.1: An example of the input data used in the experiments. The actual
width of the input image is 206 and the height 293 millimeters.

7.2. REGISTRATION OF IMAGES 113

7.2 Registration of Images

Even if the entry of data has been strictly constrained to specific fill-in areas, the system
has to match the actual coordinates in the scanned image with those of the stored model
of the form. In the prototype system, this registration process is based on locating four
easily distinguished registration marks in the image. These marks appear in the corners
of the printed area in Figure 7.1.

After the location of the registration marks, the translation and scaling factors are esti-
mated in the least-squares fashion. If any of the marks contributes to the total error more
than a preset amount, it is rejected, and the model is re-fitted without it. If there were
more than four registration marks, more than one corrupted mark could be ignored, and
the mapping between the model and the actual image would still be possible.

In extensively rotated images, the amount of rotation needs to be estimated. The image
can then be rotated accordingly to correct the distortion. Luckily, in the case of the
data used in the experiments, this step was unnecessary. If machine-printed text or other
disturbing material remain in the image, they should be masked out in the preprocessing
stage. Fortunately, the fill-in form of Figure 7.1 was designed so that this step was not
needed either.

7.3 Digit Segmentation

An image of a group of handwritten digits has to be segmented into separate areas of one
single digit before any of them can be classified. Figure 7.1 shows that the handwritten
symbols are quite far from each other in the material used with the prototype system.
Hence, they can be segmented easily, but still reliably. In general, the segmentation
task is simple if (i) each symbol consists of only one connected component, and if (ii) the
symbols do not touch their neighbors or other objects in the image. If the latter condition
is strictly and the former almost always fulfilled, horizontal and vertical projections can be
used to segment the image. This segmentation can then be fine-tuned with, for example,
the following algorithm, used in the prototype system.

The segmentation is launched by extracting a rectangular subimage large enough to con-
tain a digit. The coordinates of this block are calculated from the corresponding coordi-
nates in the stored image model, by using the affine transform solved in the registration
step. Starting from the center of this block, a rectangular area is expanded until all
four sides touch the outer contour of the digit and there are no black pixels outside the
rectangle closer than five pixels from its sides. The purpose of this stopping condition
is to ensure that small vertical and horizontal gaps in the image will not break the digit
incorrectly.

If the characters were heavily slanted, the amount of slant should be estimated first and
the corresponding non-perpendicular projection operation should be used. Because the

114 CHAPTER 7. PROTOTYPE RECOGNITION SYSTEM

digits in the material were clearly separated, the removal of slant was not needed during
segmentation.

7.4 Normalization of Digits

Before feature extraction, the segmented handwritten digit images have to be normalized.
The normalization stage is aimed to cancel the effects of some particular sorts of variation
in the way the individual digit images have been drawn. Schürmann et al. (1992) list the
following variations in handwriting and ways to compensate for them:

• Rotation: If the baseline of the written text differs from the horizontal scanning
axis by a certain angle, a rotation by this angle normalizes the characters.

• Slant: For each character, the parameter of the slant or the shear must be deter-
mined. The objective of the de-shearing process is to reduce the intraclass variability.
A practicable solution is to determine the regression line of the image and use it as
a de-shearing parameter.

• Stroke width: It is feasible to calculate the black pixel area and the circumference
of a character, and estimate the total stroke length and width from these. A proper
normalization of the image can then be performed by morphological erosion or
dilation procedures on the image (see Serra 1982).

• Scale: The class membership of a digit does not normally depend on its size. Even
the aspect ratio may vary. Therefore, it is reasonable to standardize both. In
general, any binary image can be transformed into a standard-size gray-value image
by averaging the corresponding areas of the binary image. In character recognition,
the perception of ‘C’ and ‘c’ is size-dependent. Therefore, it is important to store
the original image sizes for later use by postprocessing algorithms.

In the prototype system, the second and fourth of these normalization options have been
implemented. First, the images are normalized to the size of 32× 32 pixels. Most of the
digits are higher than they are wide, so they are shrunk or stretched vertically to the cor-
rect height. The image pixels are expanded or compressed horizontally so that the original
aspect ratio is maintained. Thereafter, the digits are centered in the horizontal direction.
In rare cases, when the width of a digit is larger than its height, similar normalization is
performed by interchanging the roles of the horizontal and vertical directions. During the
process, black pixels are assigned the value one and white pixels the value minus one.

In the second and last normalization stage, the slant of the image is removed. This is
accomplished by first calculating the magnitude of the centered horizontal difference of
the image. In other words, from the original image f(x, y), x, y ∈ {1, . . . , 32}, a new
spatial function is formed:

fx(x
′, y′) = |f(x′ + 17, y′ + 16)− f(x′ + 16, y′ + 16)| , (7.1)

7.5. FEATURE EXTRACTION 115

where x′ = −15, . . . , 15 and y′ = −15, . . . , 16. Then, a linear regression model x′ = ay′

is estimated by using the minimum squared error method from the x′ and y′-coordinates
of the pixels of fx(x

′, y′) with non-zero values. A positive value of the estimated param-
eter â indicates a forward slant and a negative value backward slant of the digit. The
final normalized image fN(x, y) is then formed by sliding the rows of the original image
horizontally by the amount of pixel positions indicated by the â parameter

fN(x, y) = f(x +
â(y − 16.5)

16
, y) , for x, y ∈ {1, . . . , 32} . (7.2)

Finally, the pattern vector f is constructed by concatenating the pixel values of fN(x, y)
row-wise.

7.5 Feature Extraction

When the prototype recognition system was planned, the first decisions concerned the
choice of algorithms to be used in the classification phase. The selection favored statistical
and neural classification methods. This choice then dictated that the feature extraction
method should belong to the group of systematic statistical methods of Table 6.2. In
preliminary experiments, poor classification accuracy was obtained with moments and
contour profiles, whereas good accuracy was achieved with the Zernike moments and the
Karhunen-Loève Transform. The KLT was used exclusively in the experiments.

The KLT features have also been used by other research groups, including many partic-
ipants of the First Census Conference (Wilkinson et al. 1991) and the developers of the
public domain recognition system of the National Institute of Standards and Technology
(NIST) (Garris et al. 1994). The results of the classifier comparison made by Blue et al.
(1994) were also obtained with KLT features. Based on the above experiences and on
local preliminary tests, it was decided that the length of the feature vectors used would
be 64 components maximum.

7.6 Data Sets

A set of 17 880 binary images of handwritten digits were extracted from 894 fill-in forms
similar to the one shown in Figure 7.1. Every form contained exactly two instances of
each digit class. Some partially or poorly filled, or erroneously scanned or binarized forms
were completely rejected, even though some of their digits might still have been useful.

The material was divided into training and testing samples of equal size. No one con-
tributed to both of the sets. Therefore, the two samples could be regarded as independent.
All the a priori probabilities of the digit classes were equal to 0.1 in both sets. The number
of images in both was 8 940.

116 CHAPTER 7. PROTOTYPE RECOGNITION SYSTEM

The mean of the training set was calculated and subtracted from both sets. The covariance
matrix of the training sample was estimated and its first 64 eigenvectors with the largest
eigenvalues were calculated. The kernel matrix K of (6.15) was formed from the vectors
and the final 64-dimensional KLT feature vectors were calculated as in (6.9).

117

Chapter 8

Comparison of Classification
Methods

The results of the experiments performed with various classifiers are presented in this
chapter. In all experiments, the same training and testing data sets have been used. The
production of the data sets with the prototype of a handwritten digit recognition system
was described in the previous chapter. It should be remembered that the results presented
and the conclusions drawn only apply to the particular data sample and feature extraction
method used.

First, Section 8.1 studies the use of class-conditional means with subspace classification
methods. Section 8.2 reviews the selection of subspace dimensions. Section 8.3 investi-
gates the proposed principle of weighting the projection measures in subspace methods.
Section 8.4 verifies experimentally the validity of the introduced gamma probability den-
sity function interpretation of subspace classification. Section 8.5 demonstrates the em-
ployment of the Local Subspace Classifier introduced in this thesis. Section 8.6 examines
the principle of error-corrective feature extraction. Section 8.7 studies the performance
of the introduced Learning k-NN Classifier. Finally, Section 8.8 combines the classifica-
tion accuracies achieved with different classifiers in the preceding sections with a large
comparison of neural and statistical classification algorithms. In addition, results of two
simple experiments, the first with a committee classifier, and the second with rejection
option are presented.

If not otherwise stated, tenfold error cross-validation (see Section 3.6) has been used in
finding the optimal values for all the parameters used by each algorithm. Likewise, the
reported error percentages have been calculated by using the independent test set. In
general, the methods studied are independent of the order in which the training sample
is presented. Also, the methods do not depend on any random initial values. For these
reasons, the classification accuracy of such methods can be given as a single scalar value.
In the case of the Learning k-NN Classifier, however, both the order of presentation and
the initialization matter. Therefore, the final classification accuracy is evaluated ten times
and the mean and standard deviation of these outcomes are presented.

118 CHAPTER 8. COMPARISON OF CLASSIFICATION METHODS

8.1 CLAFIC-µ and ALSM-µ

In Section 4.1.2, the basic subspace classification rule was described. Later, in Sec-
tion 4.3.1, a replacement rule which takes into account class-specific means of the feature
vector distributions was introduced. The experiments of this section demonstrate the
effect of the suggested modified classification rule on the overall accuracy of the subspace
classifier.

Two CLAFIC classifiers were created, one to be used with the original classification
rule (4.5), and the other with the class-conditional variation (4.24). 64-dimensional feature
vectors were first found to be the best for both. Using the cross-validation procedure,
optimal values for the feature vector dimensionality d and the subspace dimension `
common to all the classes were found. For the former, the full-length 64-dimensional
feature vectors produced the smallest cross-validated error count with both variations.
The resulting percentages of classification error were evaluated by using the independent
test sample. The results are shown in Table 8.1. The CLAFIC-µ variant, i.e., the class-
conditional means, is clearly better. Also, the resulting subspace dimension common to
all classes is smaller in that case. This means smaller computational complexity.

CLAFIC ALSM parameters
SS 4.3 3.2 d = 64, ` = 29, ALSM: α = β = 3.0, 7 epochs
SS-µ 3.9 2.7 d = 64, ` = 25, ALSM: α = β = 3.7, 8 epochs

Table 8.1: Percentages of test set classification error with the standard (SS) and
the class-conditional-mean (SS-µ) versions of the CLAFIC and ALSM
classifiers.

After recording the CLAFIC and CLAFIC-µ performances, ALSM training was applied
to both variations of the classifier. The subspace dimensions were kept fixed during the
training. The number of ALSM training epochs and a common value for α and β in (4.18)
were selected by cross-validation. Table 8.1 shows the resulting parameter values and the
evaluated classification error percentages. The numbers confirm the previous judgment
concerning the superiority of the method of class-conditional means. Comparison of the
results of the table horizontally shows that ALSM training proves to be advantageous in
both cases.

8.2 Selection of Subspace Dimensions

Section 4.3.2 presented three principles for selecting initial values for the subspace di-
mensions `j in a subspace classifier, and an iterative algorithm for the refinement of the
dimensions. Preliminary experiments with these techniques were published in (Laaksonen
and Oja 1996b). However, those results were obtained without cross-validation. This sec-

8.2. SELECTION OF SUBSPACE DIMENSIONS 119

tion presents more extensive experiments which evaluate the initialization and the refining
algorithms.

The results of the experiments of this section are presented in Table 8.2. All the tests
were performed with 64-dimensional feature vectors which were found to be best in the
experiments of the previous section. The tests were made twice, once for the traditional
subspace classification rule (4.5), shown on the left side of the table, and once for the
individual class means variation (4.24), shown on the right side of the table. In the first
set of results, all the subspaces were given an equal dimension ` which was selected through
cross-validation. Thus, the first results shown on the top line of the table are the same
as those presented in the previous section. Next, the iterative refinement rule (4.28) was
applied to the subspace dimensions used in CLAFIC. The process was repeated for 200
epochs. The combination of dimensions yielding the smallest cross-validated error count
was then reestablished. The resulting error percentages for the test set were evaluated
both before and after employing the ALSM training. These numbers are shown below the
title “Iterated” and below the original ALSM result in Table 8.2.

CLAFIC & ALSM CLAFIC-µ & ALSM-µ

Selection Initial Iterated ALSM Initial Iterated ALSM Selection

` = 29
4.3 — 3.2 3.9 — 2.7

` = 25
4.3 3.9 3.4 3.9 3.6 2.9

κ1 = 0.0088
4.2 — 3.5 3.6 — 3.0

κ1 = 0.012
4.2 4.1 3.5 3.6 3.6 3.2

κ2 = 0.102
5.0 — 3.2 4.0 — 2.8

κ2 = 0.175
5.0 4.1 3.0 4.0 3.6 3.3

Table 8.2: Percentages of test set classification error with the three ways of se-
lecting the initial subspace dimensions, with and without intermediate
iterative refinement of the dimensions.

In addition to making the initial subspace dimensions equal for all classes, two other
approaches were described in Section 4.3.2. These were: (4.26), selecting a value κ1,
which relates the decay of the eigenvalues to their sum, and (4.27), selecting a value κ2,
which compares the amount of residual variance to the total variance. These parameters
were, again, cross-validated. The resulting parameter values are shown in the leftmost
and rightmost columns of the table. Similarly, the iteration (4.28) was applied to these
initial combinations, and the ALSM training was employed to both the initial and the
iterated classifiers. The results are shown in Table 8.2.

The κ-parameters were cross-validated by using the following procedure. The summed
subspace dimension, i.e.,

∑c
j=1 `j, was varied from 10 to 640 with an increment of 10.

In the first case, the value for κ1, which was common to all the classes and produced
the desired sum of subspace dimensions by (4.26), was determined and used. In the
second case, a similar procedure was performed with κ2 and the rule (4.27). Thus, the
κ-values were actually functions of the summed subspace dimension, which made the

120 CHAPTER 8. COMPARISON OF CLASSIFICATION METHODS

process somewhat easier due to the integer nature of the optimization argument. The
ALSM parameter α (and, thus, the equal β) was selected by using a two-stage procedure.
First, the range of [0, 10] was tested with an increment of 0.5. Second, the subrange,
such as [2, 4], which gave the best cross-validated final accuracy of classification was re-
evaluated with an increment of 0.1. The maximum number of ALSM epochs was 15 in
both stages.

Three general conclusions can be drawn from the results of Table 8.2. First, the con-
clusions of the previous section claiming (i) the superiority of the classification rule with
the subtraction of the individual class means, and (ii) the advantageousness of the ALSM
training, are reinforced by the results. Second, the classification accuracies after the iter-
ation do not seem to differ substantially among the three initialization methods. Third,
the iterative selection of subspace dimensions is beneficial for the CLAFIC classification,
but the advantage gained is lost when the ALSM training is applied. It can be concluded
that the ALSM training is such a powerful method that the selection of the subspace
dimensions need not be separately concerned.

8.3 Weighted Subspace Projection Measures

Weighting of the subspace projecting measures was presented in Section 4.3.3 as a way
to enhance the classification performance of the subspace classification rule (4.5). The
use of weighting was given a general formalism in (4.30) and a specific solution (4.32), in
which one real-valued parameter γ needs to be chosen.

Experiments similar to those in Section 8.1 were performed with the exception that the
dimensionality of the feature vectors was fixed to d = 64 and that the new weight-decay
parameter γ was cross-validated together with the selection of the common subspace
dimension `. The value for γ was selected from the range of [-0.1,0.1] with an increment
of 0.01. In the course of the ALSM training, the eigenvalues in (4.32) naturally changed
from one epoch to another, but the values for ` and γ were kept constant. The results
are displayed in Table 8.3.

w-CLAFIC & w-ALSM w-CLAFIC-µ & w-ALSM-µ

Selection Initial ALSM Initial ALSM Selection
` = 29, γ = 0 4.3 3.2 3.9 2.7 ` = 25, γ = 0
` = 30, γ = 0.03 3.7 3.0 3.4 2.5 ` = 27, γ = 0.05

Table 8.3: Percentages of test set classification error using standard (γ=0) and
weighted subspace projection measures.

The numbers in Table 8.3 suggest that modest positive values for the weight parameter γ
produce a better classification accuracy than the referential value γ = 0 on the topmost
line. Again, the ALSM training seems to be advantageous, but, at the same time, it

8.4. PROBABILITY DENSITY FUNCTION INTERPRETATION 121

diminishes the relative benefit of the weighting procedure to some extent. The results
indicate that the use of class-specific means in the classification rule (4.24) can successfully
be combined with the use of weighted distance measures.

cl
as

si
fi
ca

ti
on

er
ro

r
%

ε

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

10 15 20 25 30 35 40 45 50 55 60

γ = 0.00
γ = 0.05

`

Figure 8.1: Test set classification errors ε(`) for unweighted CLAFIC-µ and for
projection lengths weighted with wij = (λij/λ1j)

0.05. Subspace di-
mension ` common to all classes has been used.

In addition to the enhanced accuracy of classification, the weighting also provides in-
creased robustness in the selection of the subspace dimension parameter `. This feature
is illustrated in Figure 8.1. The upper curve shows the error percentages obtained with
standard subspace projection operations in the case of CLAFIC-µ, and the lower curve
with weighted projections and the weight parameter value γ = 0.05. In the latter case,
the U-shape of the error curve ε(`) is both deeper and wider. Thus, it produces a bet-
ter classification accuracy with diminished dependency on the selected parameter value
`. Due to the cross-validation process, in the latter case, the real minimum of the error
curve, ` = 28, ε = 3.3, is missed in Table 8.3 where ` = 27 yields 0.1 percentage points
less accuracy.

8.4 Probability Density Function Interpretation

This section compares the traditional subspace classification rule (4.5) with the new rule
based on the probability density function interpretation (4.37). In Table 8.4, the line la-
beled “SS” shows the results for the former, whereas the results for the latter are marked
as “SS-PDF”. The tests were, again, performed by using the full-length 64-dimensional
feature vectors. First, the classification errors were calculated by using the standard sub-
space classification rule. Then, the gamma probability density function interpretation was

122 CHAPTER 8. COMPARISON OF CLASSIFICATION METHODS

applied, and the corresponding classification accuracies were evaluated. All the subspaces
were given equal dimensionality `. It was varied in order to find the best cross-validated
selection individually for all the four classifiers. In Table 8.4, the values for ` are shown
after the error percentages.

CLAFIC CLAFIC-µ
SS 4.3, ` = 29 3.9, ` = 25
SS-PDF 4.4, ` = 29 3.9, ` = 27

Table 8.4: Percentages of test set classification error with the traditional (SS) and
with the classifier based on the gamma probability density function
interpretation of the projection residual lengths (SS-PDF).

The performed classification experiments show that the classification accuracies of the
conventional and the proposed subspace method do not differ significantly from one an-
other. Therefore, the advantages of the proposed variation are, in this case, thus more of
a theoretical than practical nature. The theoretical profits of the method are, (i) the new
method facilitates a plausible rejection rule for input vectors that are difficult to classify,
and, (ii) the new method is able to compensate for an asymmetric a priori distribution
of the input vectors between the classes.

8.5 Local Subspace Classifier

Chapter 5 introduced a new classification technique named the Local Subspace Classifier
(LSC) and its modification named LSC+. This section presents the experiments per-
formed by employing these two novel methods. As usual, cross-validation was used in
obtaining all the necessary parameters for the classifier. In the case of LSC and LSC+,
these are d, the dimensionality of the input feature vectors, and D, the common dimension-
ality of the linear manifolds. The cross-validation process started with the configuration
d = 64, D = 0. The value of D was incremented by one until the classification error had
clearly started to increase. After that, the value of d was decremented by one and the pro-
cess continued with D = 0. The two classification results obtained with the independent
testing sample are shown in Table 8.5.

ε-% parameters
LSC 2.5 d = 64, D = 12
LSC+ 2.1 d = 64, D = 23

Table 8.5: Percentages of test set classification error with the LSC and LSC+
classifiers.

8.6. ERROR-CORRECTIVE FEATURE EXTRACTION 123

The optimal value of the manifold dimension D is clearly larger in the LSC+ than in the
LSC which does not require the convexity of the subspace projection. At the same time,
the classification accuracy is significantly better in the former. A potential explanation
for these two observations is that the convexity requirement allows more prototypes to be
tentatively used in the classification decision. Due to the convexity condition, only that
subset of the involved prototypes, which is the most compatible with the input vector, is
then actually used. Figure 8.2 shows how the classification error rates measured with the
independent testing set developed when the manifold dimension D was increased. Again,
the real minima of the error curves are missed slightly in the cross-validation process, as
can be seen by comparing Table 8.5 and Figure 8.2.

cl
as

si
fi
ca

ti
on

er
ro

r
%

ε

2.0

2.2

2.4

2.6

2.8

3.0

5 10 15 20 25

LSC
LSC+

D

Figure 8.2: Test set classification error rates of the LSC and LSC+ classifiers as
a function of the common manifold dimension D.

8.6 Error-Corrective Feature Extraction

The experiments in this section demonstrate the use of the error-corrective feature ex-
traction method. Cross-validation was not used in performing the experiments, because
the results would not be directly comparable to the other classification results, which will
be summarized in Section 8.8. The error percentages given in this section can thus be
compared only to each other.

Section 6.4.8 presented two ways to incorporate error-corrective actions in the feature
extraction stage of a pattern recognition system. In the first technique, three correlation-
type matrices, Σ̂f , Âf , and B̂f , were formed using (6.38)–(6.41) from the training sample
prior to feature extraction. At the first stage of the experiments, integer values were given

124 CHAPTER 8. COMPARISON OF CLASSIFICATION METHODS

to α and β in (6.42). Feature extraction was performed accordingly. The classification
error rate was evaluated using the 3-NN classification rule. The optimal dimension for
the feature vector was selected “heretically” by observing the error rate obtained with the
independent test sample. The error percentages and feature vector dimensionalities d are
shown in Table 8.6.

α β ε-% parameters
0 0 3.77 d = 28
1 0 3.75 d = 28
0 1 3.66 d = 39
0.1667 0.9167 3.45 d = 33

Table 8.6: Classification error percentages with different values of α and β
in (6.42) and a 3-NN classifier.

At the second stage, the values of α and β were discretized to a grid with spacing of 1/12th
of unity. The search concentrated on the most promising area around (α = 0, β = 1) in
which error rates were computed. Some of them are displayed in Figure 8.3. The best
attained error rate, with parameter values α = 0.1667 and β = 0.9167, is also shown on
the bottom line of Table 8.6.

In the second experiment, the matrix S(t) was modified iteratively by using (6.44)

and (6.45), starting from the situation S(0) = Σ̂f in (6.43). The correction-rate parame-
ter γ in (6.44) was given values in the range of [0.5, 5] with an increment of 0.5, and the
development of the classification accuracy was observed. After each iteration, the optimal
feature vector dimensionality d(t + 1) was selected from the range of [d(t) − 5, d(t) + 5].
The evolution of the classification accuracy with γ = 3 is shown in Figure 8.4. The best
attained results are tabulated in Table 8.7, together with the best results of Table 8.6.

ε-% parameters
KLT features 3.77 d = 28
1st method 3.45 d = 33, α = 0.1667, β = 0.9167
2nd method 3.33 d = 29, γ = 3

Table 8.7: Final classification error percentages obtained with the two forms of
error-corrective feature extraction. The classifier used in the experi-
ments was a 3-NN classifier.

The classification performances in Table 8.7 show that both proposed error-corrective fea-
ture extraction methods lowered substantially the overall error rate in comparison to the
original accuracy obtained with the Karhunen-Loève transformed features. But, as shown
in Figure 8.4, the error-correction process of the second approach is somewhat unstable,
oscillating with an amplitude of approximately 0.15 percentage points. In order to enforce

8.7. LEARNING K-NN CLASSIFIER 125

3.77

3.75

3.66

3.61

3.57

3.77 3.64

3.483.61

3.76

3.563.79

3.64

3.553.59

3.67

3.52 3.51 3.643.61

3.69

3.47

4.003.60

3.70

3.45

3.643.61

3.51

3.49

3.53

3.46

3.51

3.50

3.60

3.49

3.52

3.50

3.55 3.47

3.52

B̂fΣ̂f

α = β = 0

α
in

cr
ea

se
s

α = 0, β = 1

α = 1, β = 0

Âf

β increases

Figure 8.3: Classification accuracies with different combinations of the α and β
multipliers in (6.42).

the convergence, the value of γ in (6.44) might be made monotonically decreasing with
time.

8.7 Learning k-NN Classifier

Section 3.4.3 introduced the principle of the Learning k-NN Classifier (L-k-NN). In the
experiments reported by Laaksonen and Oja (1996a), the learning rule #1 was found
to be the best of the three proposed variants. Therefore, it was solely used in these
experiments. In the experiments reported by Holmström et al. (1997), the k-NN classifier
with values k = 1 and k = 3 was used, and the optimal feature vector dimensionality d
was selected with cross-validation. Now, k was also selected with cross-validation, and the
configuration k = 3 and d = 38 showed the best performance. These two parameters were
used also with the L-k-NN and the absolute value of the adaptation strength parameter
α(t) was fixed to be constantly equal to 0.1. Thus, `, the number of prototypes used in the
classifier, and the optimal number of training epochs remained to be solved. These two

126 CHAPTER 8. COMPARISON OF CLASSIFICATION METHODS

cl
as

si
fi
ca

ti
on

er
ro

r
%

ε

3.30

3.35

3.40

3.45

3.50

3.55

3.60

3.65

3.70

3.75

3.80

0 10 20 30 40 50 60 70 80 90 100

γ = 3

iteration of error-correction

Figure 8.4: The evolution of the classification error rates in the error-corrective
feature extraction using γ = 3 in (6.45). The best classification error
rate, ε = 3.33%, is attained for the first time at iteration index 33.

were selected together by using the training set cross-validation procedure. The size of the
codebook ` was varied from 100 to 8 925 with an increment of 25. The maximum number
of training epochs was equal to ten. In the initialization of the prototype sets, the vectors
were randomly picked from the central vectors of each class, i.e., three closest training
vectors to each initial codebook vector belonged to the same class as the prototype itself.

ε-% σε-% parameters
k-NN 3.8 k = 3, d = 28
L-k-NN Rule #1 3.6 0.1 ` = 5 750, #epochs=7

Table 8.8: Percentages of test set classification error for the k-NN and L-k-NN
classifiers.

The resulting parameter values and the obtained classification error rate with the inde-
pendent testing set are shown in Table 8.8. The mean value ε and the standard deviation
of the recognition error percentage σε were estimated from ten different and independent
initializations of the prototype set. The accuracy of the standard k-NN rule, with k = 3
and d = 38, is presented for comparison. The result shows that the learning version of
the k-NN classification rule enhanced the classification accuracy only by 0.2 percentage
points. The number of prototypes ` = 5 750 is, however, smaller than the training set size
8 940. This means less computation during the recognition phase.

8.8. SUMMARY OF CLASSIFICATION RESULTS 127

8.8 Summary of Classification Results

This section summarizes all the cross-validated and mutually comparable classification
results presented either by Holmström et al. (1997) or in the preceding sections of this
chapter. The summary is given in Table 8.9. The tabulation of the classification error
percentages contains 13 results obtained with classifiers of Chapter 3. Those figures are
given merely for the purpose of comparison. There are also two results of the tradi-
tional subspace classification methods. More importantly, there are 10 results produced
by employing the novel methods introduced in this thesis. These methods include the
Learning k-NN classifier (L-k-NN), in Table 8.8; the version of the subspace rule that
utilizes class-conditional subtraction of means (CLAFIC-µ) and its employment with
the Averaged Learning Subspace Method (ALSM-µ), in Table 8.1; the weighted projec-
tion measure approach (w-CLAFIC-µ), (w-ALSM-µ), and (w-ALSM) in Table 8.3; the
gamma probability density function interpretation of the subspace rule (CLAFIC-PDF)
and (CLAFIC-µ-PDF), in Table 8.4; and, finally, the Local Subspace Classifier and its
convex modification (LSC) and (LSC+), in Table 8.5. The experiments concerning the
initial and iterated selection of the subspace dimensions presented in Table 8.2 did not
show significant improvement over the initial accuracies. Therefore, none of those results
are repeated here.

The RKDA, MLP, L-k-NN, and LVQ classifiers need initialization which makes their
test-set performance depend either on a set of randomly generated real numbers or on
the particular subset of training data used for initialization. In order to take this into
account, each of these methods has been evaluated by computing the average performance
and its standard deviation in ten independent trials.

To make the comparison of the percentages easy, all the classifiers with classification error
smaller than 4.5% in Table 8.9 are also shown ordered on a line in Figure 8.5. Some general
conclusions can be drawn from these accuracies. First, the discriminant analysis methods,
QDA, RDA, KDA, performed relatively well. This can be interpreted as an indirect
indication that the distribution of the data closely resembles the Gaussian distribution
in the Bayesian class-border areas. Second, MLP performed quite badly without weight-
decay regularization. The results obtained by the tree classifier and MARS were also
disappointing. Third, the learning, or adaptive, algorithms, such as ALSM and L-k-NN,
performed better than their non-adaptive counterparts, such as CLAFIC and k-NN.

Of the novel classification methods presented in this thesis, some conclusive remarks can
be made. First, the performance of the Learning k-Nearest Neighbors algorithm was only
marginally better than the performance of the standard k-NN rule. Thus, it was placed
among the bulk of the tested methods. Second, those modified CLAFIC classifiers which
are based on the gamma probability density function interpretation of the subspace rule,
i.e., CLAFIC-PDF and CLAFIC-µ-PDF, did not exceed their traditional counterparts in
accuracy. Consequently, the value of the density function interpretation is more in the new
theoretical view it offers to the principle of subspace classification. Third, the approach
in which the projection measures are weighted in the subspace classification function
improved the classification performance substantially. For example, w-ALSM reduced

128 CHAPTER 8. COMPARISON OF CLASSIFICATION METHODS

classifier ε-% σε-% parameters
LDA 9.8 d = 64
QDA 3.7 d = 47
RDA 3.4 d = 61, γ = 0.25, λ = 0

KDA1 3.7 d = 32, h = 3.0
KDA2 3.5 d = 36, h1, . . . , h10

RKDA 5.2 0.1 d = 32, ` = 35
MLP 5.4 0.3 d = 36, ` = 40

MLP+WD 3.5 0.1 [d = 36, ` = 40], λ = 0.05
LLR 2.8 d = 36, α = 0.1

Tree classifier 16.8 d = 16, 849 terminal nodes
FDA/MARS 6.3 d = 32, 195 second-order terms

k-NN 3.8 k = 3, d = 38
L-k-NN 3.6 0.1 [k = 3, d = 38, α = 0.1], ` = 5 750, #epochs = 7

LVQ 4.0 0.1 [d = 38, α(0) = 0.2, w = 0.5, 10 epochs LVQ1],
` = 8 000, 1 epoch LVQ2

CLAFIC 4.3 d = 64, ` = 29
ALSM 3.2 [d = 64, ` = 29], α = β = 3.0, #epochs = 7

CLAFIC-µ 3.9 d = 64, ` = 25
ALSM-µ 2.7 [d = 64, ` = 25], α = β = 3.7, #epochs = 8

w-CLAFIC-µ 3.4 ` = 27, γ = 0.05
w-ALSM-µ 2.5 [` = 27, γ = 0.05], α = β = 3.1 #epochs = 6

w-ALSM 3.0 [` = 30, γ = 0.03], α = β = 2.8 #epochs = 8
CLAFIC-PDF 4.4 ` = 29

CLAFIC-µ-PDF 3.9 ` = 27
LSC 2.5 d = 64, D = 12

LSC+ 2.1 d = 64, D = 23
Committee 2.5 [LLR,ALSM,L-k-NN]

Table 8.9: Summary of testing set classification error percentages for various clas-
sification algorithms. For some methods, the estimated standard de-
viation in ten independent trials is also shown. The parameters given
within square brackets were determined without cross-validation, for
example, taken from the classifier on the previous line.

8.8. SUMMARY OF CLASSIFICATION RESULTS 129

the error level of ALSM by 0.2 percentage points to 3.0 percent. Fourth, the proposed
variation of the subspace classification rule that uses class-specific means performed very
well. The result of ALSM-µ was the fourth best obtained in the comparison. Fifth,
the weighting of the projection measures and the use of class-conditional means can be
successfully used together: the performance of the w-ALSM-µ classifier was the second
best. Sixth, and most importantly, the Local Subspace Classifier (LSC) did very well in
handwritten digit classification. Its LSC+ variant was clearly superior to all the other
classifiers in the comparison.

4.52
L
V

Q

k
-N

N

Q
D

A
,K

D
A

1

42.5 3 3.5

R
D

A
,w

-C
L
A

F
IC

-µ

L
L
R

w
-A

L
S
M

L
S
C

,w
-A

L
S
M

-µ
,C

om
m

it
te

e

C
L
A

F
IC

-P
D

F

C
L
A

F
IC

C
L
A

F
IC

-µ
,C

L
A

F
IC

-µ
-P

D
F

A
L
S
M

A
L
S
M

-µ

ε-%

K
D

A
,M

L
P
+

W
D

L
S
C

+

L
-k

-N
N

Figure 8.5: The classification error percentages of Table 8.9 on a line. The results
of the LDA, RKDA, MLP, tree, and FDA/MARS classifiers were
omitted because of poor performance.

As the final two experiments, a committee classifier and the rejection of digits that were
difficult to classify were implemented. The committee classifier, the results of which are
shown in the last line of Table 8.9, was formed utilizing the majority-voting principle
from the LLR, ALSM, and L-k-NN classifiers. In the article by Holmström et al. (1997),
this set of classifiers was employed in the committee because LLR and ALSM were the
two best classifiers in the original comparison and L-k-NN was the best of the tested
prototype-based classifiers. It was presumed that such a selection, in which the classi-
fication principles of the committee members were all different, would produce the best
joint performance. Each member of the committee utilized the parameter values opti-
mized earlier. Therefore, the feature vector dimensionality d was different for all three
and varied from 36 to 64. As expected, this committee quite clearly outperformed all its
individual members and was as good as the LSC and w-ALSM-µ classifiers alone.

The rejection option was tested by using the LLR classifier. By varying the rejection
threshold θ of (3.20), the reject-error curve shown in Figure 8.6 was obtained. The three
diamonds in the figure display the reject-error trade-off points of the above described
committee classifier. The first point was obtained when rejection was not allowed. The
other two resulted from two voting strategies which rejected the input digit (i) in the case

130 CHAPTER 8. COMPARISON OF CLASSIFICATION METHODS

of any disagreement, and (ii) only in the case of total disagreement between the committee
members. As anticipated in Section 3.7, the error-rejection curve is nearly linear in the
ρ log ε-plane.

cl
as

si
fi
ca

ti
on

er
ro

r
%

lo
g

ε

2

1

0.5

0.25

0 5 10 15 20 25

0.7

0.5

0.4

0.3

0.2

ε(ρ) +

++++++++
+
+

+
+

+
+

+ +
+

+ +

+
+

+

+
+

3

3

3

% ρ

Figure 8.6: The error-reject curve for the LLR classifier. The rejection percent-
age is shown on the horizontal axis. The logarithmic vertical axis
displays the error percentage for the non-rejected digits. The thresh-
old parameter θ is given at selected points. The three diamonds
indicate the results obtained with the committee classifier.

131

Chapter 9

Conclusions

The objective of this thesis has been twofold. First, statistical and neural classification
methods were studied at large. Various aspects and characteristics of the methods were
addressed in order to create a solid view of the different approaches of statistical classi-
fication. Also, a novel taxonomy of classification methods and a characterization of the
properties that make a classification algorithm neural were presented. The taxonomy
helps the designer of a pattern recognition system select a set of different classification
techniques to be evaluated when selecting a classifier for a real-world pattern recognition
application. Even though the quality of the classification stage is a key factor in the per-
formance of the entire pattern recognition system, all the other blocks of the system need
to be designed with similar care. Therefore, an overview of all the stages in a pattern
recognition system was presented. In particular, the roles of the adaptive and mutually
communicating parts were emphasized.

Among the wide variety of classification algorithms, the subspace methods were chosen
for more extensive examination. Some new modifications of the subspace methods were
suggested. Among them, the use of class-specific means in the classification rule is quite
an obvious practice. The proposed weighting of projection measurements may be regarded
as a generalization of an existing method. The iteration rule for the refinement of the
subspace dimensions is a computationally demanding heuristic algorithm which works
in an error-driven manner. All these modifications improved the overall classification
accuracy of the subspace method. The novel gamma-function-based probability density
function interpretation of the subspace rule is a new theoretical view to the principles
of subspace classification. Most importantly, however, a new classification technique, the
Local Subspace Classifier, was introduced together with its extension, the Convex Local
Subspace Classifier.

The other main topic of this study was off-line optical recognition of handwritten digits.
It was presented as the case study of the experiments. This particular branch of pattern
recognition study was reviewed in an extensive introduction chapter. Special attention
was directed at feature extraction methods applicable to character recognition. As a
novel contribution to the feature extraction problem, an error-corrective feature extraction

132 CHAPTER 9. CONCLUSIONS

algorithm was proposed. The method converts feature extraction to an adaptive and
cooperating process which is able to learn to avoid classification errors. A prototype of a
handwritten digit recognition system was developed and used for experiments.

A series of experiments was performed for the evaluation of the performance of the pro-
posed algorithms. First, a careful comparison of 13 different statistical and neural clas-
sification methods was performed for the sake of comparison. Then, the new methods
introduced in this study increased the number of comparable figures of merit to a total
of 25. The results of these experiments showed that, of the proposed improvements on
the subspace classification rule, the weighting of projection measures and the applica-
tion of class-conditional means in the classification function improved significantly the
accuracy attainable with the Averaged Learning Subspace Method, ALSM. These modi-
fications diminished error to the level of the best other methods included in the extensive
comparison.

The most striking improvement of classification accuracy was, however, attained with the
novel Local Subspace Classifier, and, especially, with its Convex Local Subspace Classifier
variant. These two methods were clearly superior in performance to all other classifiers in
the comparison. This might be explained by the nature of the new methods which seek to
combine the benefits of both the semiparametric subspace methods and the nonparametric
prototype-based methods.

The performances of the remaining novel classifiers introduced in this thesis were modest
in the experiments. From a theoretical point of view, however, the novel probability
density function interpretation of the subspace classification rule, and the proposed scheme
for the error-corrective feature extraction, are valuable. As such, they have brought new
insight into the understanding of statistical classification principles.

The experiments described were carried out by employing training set cross-validation
in the parameter selection. The reported classification accuracies were obtained with
an independent testing sample. This procedure ensured an impartial treatment of the
diverse algorithms. The applicability of the results and conclusions is limited only to
the considered case study of recognition of handwritten digits and to the selected feature
extraction. It can be anticipated, however, that similar results can be attained in other
classification tasks where two-dimensional isolated visual objects are involved.

The argument forwarded in the introduction stated that subspace classification meth-
ods, when enhanced with the suggested modifications, are very useful in optical character
recognition tasks. The experimental evidence presented in this study supports that state-
ment.

133

Bibliography

Ahmed, N., T. Natarajan, and K. R. Rao (1974). Discrete cosine transform. IEEE
Transactions on Computers 23 (1), 90–93.

Akaike, H. (1974). Stochastic theory of minimal realization. IEEE Transactions on
Automatic Control 19, 667–674.

Ali, F. and T. Pavlidis (1977). Syntactic recognition of handwritten numerals. IEEE
Transactions on Systems, Man, and Cybernetics 7 (7), 537–541.

Alt, F. L. (1962). Digital pattern recognition by moments. Journal of the Association
for Computing Machinery 9 (2), 240–258.

Andersson, P. L. (1969). Optical character recognition–a survey. Datamation 15 (7),
43–48.

Andersson, P. L. (1971). OCR enters the practical stage. Datamation 17 (23), 22–27.

Andrews, H. C. (1971). Multidimensional rotations in feature selection. IEEE Transac-
tions on Computers 20 (9), 1045–1051.

Andrews, H. C. (1972). Introduction to mathematical techniques in pattern recognition.
John Wiley & Sons Inc.

Balm, G. J. (1970). An introduction to optical character reader considerations. Pattern
Recognition 2 (3), 151–166.

Baptista, G. and K. M. Kulkarni (1988). A high accuracy algorithm for recognition of
handwritten numerals. Pattern Recognition 21 (4), 287–291.

Becker, R. A., J. M. Chambers, and A. R. Wilks (1988). The NEW S Language. New
York: Chapman & Hall.

Belkasim, S. O., M. Shridhar, and M. Ahmadi (1991). Pattern recognition with moment
invariants: a comparative study and new results. Pattern Recognition 24 (12), 1117–1138.
Corrigendum in Pattern RecognitionVol. 26, No. 2, p. 377.

Bellman, R. (1961). Adaptive control processes: a guided tour. Princeton, NJ: Princeton
University Press.

134 BIBLIOGRAPHY

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University Press.

Blayo, F., Y. Cheneval, A. Guérin-Dugué, R. Chentouf, C. Aviles-Cruz, J. Ma-
drenas, M. Moreno, and J. L. Voz (1995). Deliverable R3-B4-P Task B4: Bench-
marks. Technical report, ESPRIT Basic Research Project Number 6891. Available
as <http://ftp.dice.ucl.ac.be/pub/neural-nets/ELENA/databases/Benchmarks.ps.Z>.

Blesser, B. A., T. T. Kuklinski, and R. J. Shillman (1976). Empirical tests for feature se-
lection based on psychological theory of character recognition. Pattern Recognition 8 (2),
77–85.

Blue, J. L., G. T. Candela, P. J. Grother, R. Chellappa, and C. L. Wilson (1994).
Evaluation of pattern classifiers for fingerprint and OCR applications. Pattern Recogni-
tion 27 (4), 485–501.

Bottou, L., C. Cortes, J. S. Denker, H. Drucker, I. Guyon, L. D. Jackel, Y. LeCun, U. A.
Müller, E. Säckinger, P. Y. Simard, and V. Vapnik (1994). Comparison of classifier meth-
ods: A case study in handwritten digit recognition. In Proceedings of 12th International
Conference on Pattern Recognition, Volume II, Jerusalem, pp. 77–82. IAPR.

Bow, S.-T. (1992). Pattern Recognition and Image Preprocessing. Marcel Dekker, Inc.

Breiman, L., J. Friedman, R. Olshen, and C. Stone (1984). Classification and Regression
Trees. Chapman & Hall.

Bridle, J. S. (1990). Training stochastic model recognition algorithms as networks can
lead to maximum mutual information estimation of parameters. In D. S. Touretzky
(Ed.), Advances in Neural Information Processing Systems 2, San Mateo, CA, pp. 211–
217. Morgan Kaufmann Publishers.

Britannica Online (1996). Encyclopædia Britannica on the Internet.
<http://www.eb.com/>.

Broomhead, D. S. and D. Lowe (1988). Multivariate functional interpolation and adap-
tive networks. Complex Systems 2, 321–355.

Brown, R. M., T. H. Fay, and C. L. Walker (1988). Handprinted symbol recognition
system. Pattern Recognition 21 (2), 91–118.

Burges, C. J. C., J. I. Ben, J. S. Denker, Y. LeCun, and C. R. Nohl (1993). Off line
recognition of handwritten postal words using neural networks. International Journal of
Pattern Recognition and Artificial Intelligence 7 (4), 689–704.

Burr, D. J. (1988). Experiments on neural net recognition of spoken and written text.
IEEE Transactions on Acoustics, Speech, and Signal Processing 36 (7), 1162–1168.

Cardoso, J.-F. and B. H. Laheld (1996). Equivariant adaptive source separation. IEEE
Transactions on Signal Processing 44 (12), 3017–3030.

BIBLIOGRAPHY 135

Chambers, J. M. and T. J. Hastie (Eds.) (1992). Statistical Models in S. New York:
Chapman & Hall.

Chen, C. H., L. F. Pau, and P. S. P. Wang (1993). Handbook of Pattern Recognition and
Computer Vision. World Scientific Publishing.

Cheng, B. and D. Titterington (1994). Neural networks: A review from a statistical
perspective. Statistical Science 9 (1), 2–54. With comments.

Cheng, F.-H., W.-H. Hsu, and M.-C. Kuo (1993). Recognition of handprinted Chinese
characters via stroke relaxation. Pattern Recognition 26 (4), 579–593.

Cheng, Y.-Q., K. Liu, and J.-Y. Yang (1993). A novel feature extraction method for im-
age recognition based on similar discriminant function (SDF). Pattern Recognition 26 (1),
115–125.

Chow, C. K. (1957). An optimum character recognition system using decision functions.
IRE Transactions on Electronic Computers 6, 247–254.

Clark, L. A. and D. Pregibon (1992). Tree-based models. In J. M. Chambers and T. J.
Hastie (Eds.), Statistical Models in S, Chapter 9. New York: Chapman & Hall.

Cleveland, W. and C. Loader (1995). Smoothing by local regression: Princi-
ples and methods. Technical report, AT&T Bell Laboratories. Available as
<http://netlib.att.com/netlib/att/stat/doc/95.3.ps>.

Cleveland, W. S. and S. J. Devlin (1988). Locally weighted regression: an approach to
regression analysis by local fitting. Journal of the American Statistical Association 83,
596–610.

Comon, P. (1994). Independent component analysis – a new concept? Signal Process-
ing 36 (3), 287–314.

Conover, W. J. (1980). Practical Nonparametric Statistics 2ed. John Wiley & Sons Inc.

Cover, T. M. and P. E. Hart (1967). Nearest neighbor pattern classification. IEEE
Transactions on Information Theory 13 (1), 21–27.

Craven, P. and G. Wahba (1979). Smoothing noisy data with spline functions. Numerical
Mathematics 31, 317–403.

Dasarathy, B. V. (1991). Nearest Neighbor Pattern Classification Techniques. IEEE
Computer Society Press.

Daugman, J. G. (1988). Complete discrete 2-D gabor transforms by neural networks for
image analysis and compression. IEEE Transactions on Acoustics, Speech, and Signal
Processing 36 (7), 1169–1179.

De Haan, G. R. and Ö. Eg̃eciog̃lu (1991). Links between self-organizing feature maps
and weighted vector quantization. In Proceedings of 1991 International Joint Conference
on Neural Networks, Volume 1, Singapore, pp. 887–892. IEEE, INNS.

136 BIBLIOGRAPHY

Del Bimbo, A., S. Santini, and J. Sanz (1994). Ocr from poor quality images by defor-
mation of elastic templates. In Proceedings of 12th International Conference on Pattern
Recognition, Volume II, Jerusalem, pp. 433–435. IAPR.

Demartines, P. and J. Hérault (1997). Curvilinear component analysis: A self-organizing
neural network for nonlinear mapping of data sets. IEEE Transactions on Neural Net-
works 8 (1), 148–154.

Dempster, A. P., N. M. Laird, and D. B. Rudin (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series
B 39 (1), 1–38.

Devijver, P. A. and J. Kittler (1982). Pattern Recognition: a Statistical Approach.
London: Prentice Hall International.

Devroye, L. (1988). Automatic pattern recognition: A study of the probability of error.
IEEE Transactions on Pattern Analysis and Machine Intelligence 10 (4), 530–543.

Drucker, H., C. Cortes, L. D. Jackel, Y. LeCun, and V. Vapnik (1994). Boosting and
other ensemble methods. Neural Computation 6 (6), 1289–1301.

Drucker, H., R. Schapire, and P. Simard (1993). Boosting performance in neural net-
works. International Journal of Pattern Recognition and Artificial Intelligence 7 (4),
705–719.

Duda, R. O. and P. E. Hart (1973). Pattern Recognition and Scene Analysis. New York:
John Wiley & Sons Inc.

Duin, R. P. W. (1996). A note on comparing classifiers. Pattern Recognition Letters 17,
529–536.

Dunn, C. E. and P. S. P. Wang (1992). Character segmentation techniques for hand-
written text – a survey. In Proceedings of the 11th International Conference on Pattern
Recognition, Volume 2, Hague, pp. 577–580. IAPR.

ERA (1957). An electronic reading automaton. Electronic engineering 29 (4), 189–190.

Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Volume
II. John Wiley & Sons Inc.

Fix, E. and J. L. Hodges (1951). Discriminatory analysis—nonparametric discrimination:
Consistency properties. Technical Report Number 4, Project Number 21-49-004, USAF
School of Aviation Medicine, Randolph Field, Texas.

Flick, T. E., L. K. Jones, R. G. Priest, and C. Herman (1990). Pattern classification
using projection pursuit. Pattern Recognition 23 (12), 1367–1376.

Flusser, J. and T. Suk (1993). Pattern recognition by affine moment invariants. Pattern
Recognition 26 (1), 167–174.

BIBLIOGRAPHY 137

Flusser, J. and T. Suk (1994). Affine moment invariants: a new tool for character
recognition. Pattern Recognition Letters 15, 433–436.

Foley, D. and J. Sammon (1975). An optimal set of discriminant vectors. IEEE Trans-
actions on Computers C-24 (3), 281–289.

Franke, J. and E. Mandler (1992). A comparison of two approaches for combining the
votes of cooperating classifiers. In Proceedings of the 11th International Conference on
Pattern Recognition, Volume II, Hague, pp. 611–614. IAPR.

Freedman, M. D. (1974). Optical character recognition. IEEE Spectrum 11 (3), 44–52.

Friedman, J. H. (1989). Regularized discriminant analysis. Journal of the American
Statistical Association 84 (405), 165–175.

Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statis-
tics 19, 1–141. with discussion.

Friedman, J. H. and W. Stuetzle (1981). Projection pursuit regression. Journal of the
American Statistical Association 76 (376), 817–823.

Fu, K. S. (1982). Syntactic pattern recognition and applications. Prentice-Hall.

Fu, K. S. and A. Rosenfeld (1984). Pattern recognition and computer vision. Com-
puter 17 (10), 274–282.

Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition (2nd ed.). Academic
Press.

Fukunaga, K. and R. R. Hayes (1989). The reduced Parzen classifier. IEEE Transactions
on Pattern Analysis and Machine Intelligence PAMI-11 (4), 423–425.

Fukunaga, K. and W. L. Koontz (1970). Application of the Karhunen-Loève expansion
to feature selection and ordering. IEEE Transactions on Computers C-19 (4), 311–318.

Fukunaga, K. and J. M. Mantock (1984). Nonparametric data reduction. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence PAMI-6 (1), 115–118.

Gader, P., B. Forester, M. Ganzberger, A. Gillies, B. Mitchell, M. Whalen, and T. Yocum
(1991). Recognition of handwritten digits using template and model matching. Pattern
Recognition 24 (5), 421–431.

Garris, M. D., J. L. Blue, G. T. Candela, D. L. Dimmick, J. Geist, P. J. Grother,
S. A. Janet, and C. L. Wilson (1994). NIST form-based handprint recognition system.
Technical Report NISTIR 5469, National Institute of Standards and Technology.

Geist, J., R. A. Wilkinson, S. Janet, P. J. Grother, B. Hammond, N. W. Larsen, R. M.
Klear, M. J. Matsko, C. J. C. Burges, R. Creecy, J. J. Hull, T. P. Vogl, and C. L. Wilson
(1992). The second census optical character recognition systems conference. Technical
Report NISTIR 5452, National Institute of Standards and Technology.

138 BIBLIOGRAPHY

Gersho, A. and R. M. Gray (1992). Vector quantization and signal compression. Kluwer
Academic Publishers.

Gilloux, M. (1993). Research into the new generation of character and mailing address
recognition systems at the French post office research center. Pattern Recognition Let-
ters 14 (4), 267–276.

Glauberman, M. H. (1956). Character recognition for business machines. Electron-
ics 29 (2), 132–136.

Golub, G. H. and C. F. van Loan (1989). Matrix computations (2nd ed.). Johns Hopkins
University Press.

Gonzalez, R. and M. Thomason (1978). Syntactic Pattern Recognition. Addison-Wesley.

Gonzalez, R. C. and R. E. Woods (1992). Digital image processing. Addison-Wesley.

Govindan, V. K. and A. P. Shivaprasad (1990). Character recognition–a review. Pattern
Recognition 23 (7), 671–683.

Grabec, I. (1990). Self-organization of neurons described by the maximum-entropy prin-
ciple. Biological Cybernetics 63, 403–409.

Granlund, G. H. (1972). Fourier preprocessing for hand print character recognition.
IEEE Transactions on Computers 21 (2), 195–201.

Guyon, I., L. Schomaker, R. Plamondon, M. Liberman, and S. Janet (1994). UNIPEN
project of on-line data exchange and recognition benchmarks. In Proceedings of 12th In-
ternational Conference on Pattern Recognition, Volume II, Jerusalem, pp. 29–33. IAPR.

Hand, D. J. (1982). Kernel Discriminant Analysis. Cichester: Research Studies Press.

Hansen, L. K. and P. Salamon (1990). Neural network ensembles. IEEE Transactions
on Pattern Analysis and Machine Intelligence 12 (10), 993–1001.

Haralick, R. M. and L. G. Shapiro (1992). Computer and Robot Vision. Addison-Wesley.

Harmon, L. D. (1972). Automatic recognition of print and script. Proceedings of the
IEEE 60 (10), 1165–1176.

Hart, P. E. (1968). The condensed nearest neighbor rule. IEEE Transactions on Infor-
mation Theory 14 (3), 515–516.

Hartigan, J. (1975). Clustering Algorithms. New York: John Wiley & Sons Inc.

Hastie, T., P. Y. Simard, and E. Säckinger (1995). Learning prototype models for tangent
distance. In G. Tesauro, D. S. Touretzky, and T. K. Leen (Eds.), Advances in Neural
Information Processing Systems 7, Cambridge, MA, pp. 999–1006. MIT Press.

Hastie, T. and W. Stuetzle (1989). Principal curves. Journal of the American Statistical
Association 84 (406), 502–516.

BIBLIOGRAPHY 139

Hastie, T. and R. Tibshirani (1996). Discriminant analysis by Gaussian mixtures. Jour-
nal of the Royal Statistical Society, Series B 58 (1), 155–176.

Hastie, T., R. Tibshirani, and A. Buja (1994). Flexible discriminant analysis by optimal
scoring. Journal of the American Statistical Association 89, 1255–1270.

Hastie, T. J. and C. Loader (1993). Local regression: Automatic kernel carpentry.
Statistical Science 8, 120–143.

Hastie, T. J. and R. Tibshirani (1994). Handwritten digit recognition via de-
formable prototypes. Technical report, AT&T Bell Laboratories. Available as
<http://netlib.att.com/netlib/att/stat/doc/93.22.ps.Z>.

Hastie, T. J. and R. J. Tibshirani (1990). Generalized Additive Models. Chapman &
Hall.

Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. New York: Macmil-
lan College Publishing Company, Inc.

Herman, G. T. and H. K. Liu (1978). Dynamic boundary surface detection. Computer
Graphics and Image Processing 7 (1), 130–138.

Heutte, L., J. V. Moreau, T. Paquet, Y. Lecourtier, and C. Olivier (1996). Combining
structural and statistical features for the recognition of handwritten characters. In Pro-
ceedings of 13th International Conference on Pattern Recognition, Volume II, Vienna,
pp. 210–214. IAPR.

Highleyman, W. H. (1962). Linear decision functions with application to pattern recog-
nition. Proc. IRE 50, 1501–1514.

Hinton, G. E., M. Revow, and P. Dayan (1995). Recognizing handwritten digits using
mixtures of linear models. In G. Tesauro, D. S. Touretzky, and T. K. Leen (Eds.),
Advances in Neural Information Processing Systems 7, Cambridge, MA, pp. 1015–1022.
MIT Press.

Ho, T. K., J. J. Hull, and S. N. Srihari (1992). A regression approach to combination of
decisions by multiple character recognition algorithms. In D. P. D’Amato, W.-E. Blanz,
B. E. Dom, and S. N. Srihari (Eds.), Proceedings of SPIE Conference on Machine Vision
Applications in Character Recognition and Industrial Inspection, Number 1661 in SPIE,
pp. 137–145.

Ho, T. K., J. J. Hull, and S. N. Srihari (1994). Decision combination in multiple classifier
systems. IEEE Transactions on Pattern Analysis and Machine Intelligence 16 (1), 66–75.

Holmström, L. and A. Hämäläinen (1993). The self-organizing reduced kernel density es-
timator. In Proceedings of the 1993 IEEE International Conference on Neural Networks,
San Francisco, California, March 28 - April 1, Volume 1, pp. 417–421.

140 BIBLIOGRAPHY

Holmström, L., P. Koistinen, J. Laaksonen, and E. Oja (1996a). Comparison of neural
and statistical classifiers – theory and practice. Technical Report A13, Rolf Nevanlinna
Institute, Helsinki.

Holmström, L., P. Koistinen, J. Laaksonen, and E. Oja (1996b). Neural network and
statistical perspectives of classification. In Proceedings of 13th International Conference
on Pattern Recognition, Volume IV, Vienna, pp. 286–290. IAPR.

Holmström, L., P. Koistinen, J. Laaksonen, and E. Oja (1997). Neural and statistical
classifiers – taxonomy and two case studies. IEEE Transactions on Neural Networks 8 (1),
5–17.

Holmström, L., S. Sain, and H. Miettinen (1995). A new multivariate technique for top
quark search. Computer Physics Communications 88, 195–210.

Hong, Z.-Q. (1991). Algebraic feature extraction of image for recognition. Pattern
Recognition 24 (3), 211–219.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal compo-
nents. Journal of Educational Psychology 24, 498–520.

Hsia, T. C. (1981). A note on invariant moments in image processing. IEEE Transactions
on Systems, Man, and Cybernetics 11 (12), 831–834.

Hu, M.-K. (1961). Pattern recognition by moment invariants. Proceedings of the IRE 49,
1428.

Hu, M.-K. (1962). Visual pattern recognition by moment invariants. IRE Transactions
on Information Theory 8 (2), 179–187.

Hu, T. C. (1982). Combinatorial algorithms. Reading, MA: Addison-Wesley.

Huang, J. S. and K. Chuang (1986). Heuristic approach to handwritten numeral recog-
nition. Pattern Recognition 19 (1), 15–19.

Huang, Y. S., K. Liu, and C. Y. Suen (1995). The combination of multiple classifiers by
a neural network approach. International Journal of Pattern Recognition and Artificial
Intelligence 9 (3), 579–597.

Hummel, R. A. and S. W. Zucker (1983). On the foundations of relaxation labeling
processes. IEEE Transactions on Pattern Analysis and Machine Intelligence 5 (3), 267–
287.

Idan, Y. and J.-M. Auger (1992). Pattern recognition by cooperating neural networks.
In S.-S. Chen (Ed.), Proceedings of SPIE Conference on Neural and Stochastic Methods
in Image and Signal Processing, Number 1766 in SPIE, pp. 437–443.

Iijima, T., H. Genchi, and K. Mori (1973). A theory of character recognition by pattern
matching method. In Proceedings of the 1st International Joint Conference on Pattern
Recognition, Washington, DC, pp. 50–56.

BIBLIOGRAPHY 141

Jacobs, R. A. (1995). Methods for combining experts’ probability assessments. Neural
Computation 7 (5), 867–888.

Jain, A. K. (1989). Fundamentals of Digital Image Processing. Prentice-Hall.

Jain, A. K. and B. Chandrasekaran (1982). Dimensionality and sample size consider-
ations in pattern recognition practice. In P. R. Krishnaiah and L. N. Kanal (Eds.),
Handbook of statistics, Volume 2, pp. 835–855. North-Holland.

Jain, A. K. and J. Mao (1994). Neural networks and pattern recognition. In J. M.
Zurada, R. J. Marks II, and C. J. Robinson (Eds.), Computational Intelligence Imitating
Life, Chapter IV-1, pp. 194–212. IEEE Press.

Jang, B. K. and R. T. Chin (1992). One-pass parallel thinning: Analysis, properties,
and quantitive evaluation. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 14 (11), 1129–1140.

Jordan, M. I. and R. A. Jacobs (1994). Hierarchical mixtures of experts and the EM
algorithm. Neural Computation 6 (2), 181–214.

Jutten, C. and J. Hérault (1991). Blind separation of sources, part I: an adaptive
algorithm based on neuromimetic architecture. Signal Processing 24 (1), 1–10.

Kageyu, S., N. Ohnishi, and N. Sugie (1991). Augmented multi-layer perceptron for
rotation-and-scale invariant hand-written numeral recognition. In Proceedings of 1991
International Joint Conference on Neural Networks, Volume 1, Singapore, pp. 54–59.
IEEE, INNS.

Kahan, S., T. Pavlidis, and H. S. Baird (1987). On the recognition of printed characters of
any font and size. IEEE Transactions on Pattern Analysis and Machine Intelligence 9 (2),
274–288.

Kanal, L. N. (Ed.) (1981). Progress in pattern recognition 1. North-Holland.

Kanal, L. N. (Ed.) (1985). Progress in pattern recognition 2. North-Holland.

Karhunen, J. and E. Oja (1980). Some comments on the subspace methods of classifi-
cation. In Proceedings of the Fifth International Conference on Pattern Recognition, pp.
1191–1194.

Karhunen, J., E. Oja, L. Wang, R. Vigário, and J. Joutsensalo (1997). A class of neural
networks for independent component analysis. IEEE Transactions on Neural Networks 8.
To appear.

Khotanzad, A. and Y. H. Hong (1990a). Invariant image recognition by Zernike moments.
IEEE Transactions on Pattern Analysis and Machine Intelligence 12 (5), 489–497.

Khotanzad, A. and Y. H. Hong (1990b). Rotation invariant image recognition using
features selected via a systematic method. Pattern Recognition 23 (10), 1089–1101.

142 BIBLIOGRAPHY

Kimura, F. and M. Shridhar (1991). Handwritten numerical recognition based on mul-
tiple algorithms. Pattern Recognition 24 (10), 969–983.

Kittler, J. (1978). The subspace approach to pattern recognition. In R. Trappl, G. J.
Klir, and L. Ricciardi (Eds.), Progress in cybernetics and systems research, vol. III, pp.
92–97. Hemisphere Publishing.

Kittler, J., K. S. Fu, and L. F. Pau (Eds.) (1982). Pattern Recognition Theory and
Applications; Proceedings of the NATO Advanced Study Institute. D. Reidel Publishing
Company.

Kohonen, T. (1988). The ’neural’ phonetic typewriter. Computer 21 (3), 11–22.

Kohonen, T. (1995). Self-Organizing Maps. Springer Series in Information Sciences 30.
Springer-Verlag.

Kohonen, T. (1996). Private communication.

Kohonen, T., G. Németh, K.-J. Bry, M. Jalanko, and H. Riittinen (1978). Classification
of phonemes by learning subspaces. Technical Report TKK-F-A348, Helsinki University
of Technology, Espoo, Finland.

Kohonen, T., G. Németh, K.-J. Bry, M. Jalanko, and H. Riittinen (1979). Spectral
classification of phonemes by learning subspaces. In Proceedings of the International
Conference on Acoustics, Speech and Signal Processing, Washington, DC, pp. 97–100.
IEEE.

Kohonen, T., H. Riittinen, M. Jalanko, E. Reuhkala, and S. Haltsonen (1980). A
thousand-word recognition system based on the Learning Subspace Method and Redun-
dant Hash Addressing. In Proceedings of the 5th International Conference on Pattern
Recognition, Volume 1, Miami Beach, FL, pp. 158–165. IAPR.

Koistinen, P. and L. Holmström (1992). Kernel regression and backpropagation training
with noise. In J. E. Moody, S. J. Hanson, and R. P. Lippman (Eds.), Advances in Neural
Information Processing Systems 4, San Mateo, CA, pp. 1033–1039. Morgan Kaufmann
Publishers.

Kramer, H. and M. Mathews (1956). A linear coding for transmitting a set of correlated
signals. IRE Transactions on Information Theory IT-2, 41–46.

Krogh, A. and J. Vedelsby (1995). Neural network ensembles, cross validation, and active
learning. In G. Tesauro, D. S. Touretzky, and T. K. Leen (Eds.), Advances in Neural
Information Processing Systems 7, Cambridge, MA, pp. 231–238. MIT Press.

Kuhl, F. P. and C. R. Giardina (1982). Elliptic fourier features of a closed contour.
Computer Graphics and Image Processing 18 (3), 236–258.

Kulikowski, C. A. and S. Watanabe (1970). Multiclass subspace methods in pattern
recognition. In Proceedings of the National Electronics Conference, Chicago, IL.

BIBLIOGRAPHY 143

Kuusela, M. and E. Oja (1982). The Averaged Learning Subspace Method for spec-
tral pattern recognition. In Proceedings of the 6th International Conference on Pattern
Recognition, München, pp. 134–137. IEEE.

Laaksonen, J. and E. Oja (1996a). Classification with learning k-nearest neighbors. In
Proceedings of the International Conference on Neural Networks, Volume 3, Washington
D.C., pp. 1480–1483.

Laaksonen, J. and E. Oja (1996b). Subspace dimension selection and averaged learning
subspace method in handwritten digit classification. In Proceedings of the International
Conference on Artificial Neural Networks, Bochum, Germany, pp. 227–232.

Lam, L., S.-W. Lee, and C. Y. Suen (1992). Thinning methodologies – a comprehensive
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 14 (9), 869–
885.

Lam, L. and C. Y. Suen (1988). Structural classification and relaxation matching of
totally unconstrained handwritten zip-code numbers. Pattern Recognition 21 (1), 19–31.

Lam, L. and C. Y. Suen (1994). A theoretical analysis of the application of majority
voting to pattern recognition. In Proceedings of 12th International Conference on Pattern
Recognition, Volume II, Jerusalem, pp. 418–420. IAPR.

Lam, L. and C. Y. Suen (1995). Optimal combinations of pattern classifiers. Pattern
Recognition Letters 16, 945–954.

Lam, S. W., A. C. Girardin, and S. N. Srihari (1992). Gray scale character recognition
using boundary features. In D. P. D’Amato, W.-E. Blanz, B. E. Dom, and S. N. Srihari
(Eds.), Proceedings of SPIE Conference on Machine Vision Applications in Character
Recognition and Industrial Inspection, Number 1661 in SPIE, pp. 98–105.

Lampinen, J. and E. Oja (1995). Distortion tolerant pattern recognition based on self-
organizing feature extraction. IEEE Transactions on Neural Networks 6 (3), 539–547.

LeBlanc, M. and R. Tibshirani (1994). Adaptive principal surfaces. Journal of the
American Statistical Association 89 (425), 53–64.

LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel (1989). Backpropagation applied to handwritten zip code recognition. Neural
Computation 1, 541–551.

Lee, H.-J. and B. Chen (1992). Recognition of handwritten Chinese characters via short
line segments. Pattern Recognition 25 (5), 543–552.

Lee, S.-W. and J.-S. Park (1994). Nonlinear shape normalization methods for the recog-
nition of large-set handwritten characters. Pattern Recognition 27 (7), 895–902.

Li, Y. (1992). Reforming the theory of invariant moments for pattern recognition. Pattern
Recognition 25 (7), 723–730.

144 BIBLIOGRAPHY

Lindgren, N. (1965). Machine recognition of human language: Part III–cursive script
recognition. IEEE Spectrum 2 (5), 104–116.

Liu, K., Y.-Q. Cheng, and J.-Y. Yang (1993). Algebraic feature extraction for image
recognition based on optimal discriminant criterion. Pattern Recognition 26 (6), 903–911.

Liu, K., Y.-S. Huang, C. Y. Suen, J.-Y. Yang, L.-J. Liu, and Y.-J. Liu (1994). Discrim-
inance performance of the algebraic features of handwritten character images. In Pro-
ceedings of 12th International Conference on Pattern Recognition, Volume II, Jerusalem,
pp. 426–428. IAPR.

Lu, S. W., Y. Ren, and C. Y. Suen (1991). Hierarchical attributed graph representation
and recognition of handwritten Chinese characters. Pattern Recognition 24 (7), 617–632.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate ob-
servations. In L. M. LeCam and J. Neyman (Eds.), Proc. Fifth Berkeley Symp. Math.
Stat. and Prob., pp. 281–297. Berkeley, CA: U.C. Berkeley Press.

Mai, T. A. and C. Y. Suen (1990). A generalized knowledge-based system for the recog-
nition of unconstrained handwritten numerals. IEEE Transactions on Systems, Man,
and Cybernetics 20 (4), 835–848.

Maitra, S. (1979). Moment invariants. Proceedings of the IEEE 67 (4), 697–699.

Mantas, J. (1986). An overview of character recognition methodologies. Pattern Recog-
nition 19 (6), 425–430.

McCulloch, W. S. and W. Pitts (1943). A logical calculus of the idea immanent in
nervous activity. Bulletin of Mathematical Biophysics 5, 115–133.

McLachlan, G. J. (1992). Discriminant Analysis and Statistical Pattern Recognition.
John Wiley & Sons Inc.

Mendel, J. M. (1995). Lessons in Estimation Theory for Signal Processing, Communi-
cations, and Control. Prentice-Hall.

Michie, D., D. J. Spiegelhalter, and C. C. Taylor (Eds.) (1994). Machine learning, neural
and statistical classification. Ellis Horwood Limited.

Moody, J. and C. J. Darken (1989). Fast learning in networks of locally-tuned processing
units. Neural Computation 1, 281–294.

Morgan, J. N. and J. A. Sonquist (1963). Problems in the analysis of survey data and a
proposal. Journal of the American Statistical Association 58, 415–434.

Mori, S., C. Y. Suen, and K. Yamamoto (1992). Historical review of OCR research and
development. Proceedings of the IEEE 80 (7), 1029–1058.

Mulier, F. and V. Cherkassky (1995). Self-organization as an iterative kernel smoothing
process. Neural Computation 7 (6), 1165–1177.

BIBLIOGRAPHY 145

Nadal, C., R. Legault, and C. Y. Suen (1990). Complementary algorithms for the recog-
nition of totally unconstrained handwritten numerals. In Proceedings of the 10th Inter-
national Conference on Pattern Recognition, Atlantic City, NJ, pp. 443–449. IAPR.

Nadaraya, E. (1964). On estimating regression. Theory of Probability and its Applica-
tions 9, 141–142.

Noguchi, Y. (1976). A construction method of category feature subspaces using orthog-
onal projection operators. Bulletin of Electrotechnical laboratory 40 (8), 641–659.

Noguchi, Y. (1978). Subspace method and projection operators. In Proceedings of the
Fourth International Joint Conference on Pattern Recognition, pp. 571–587.

Oja, E. (1983). Subspace Methods of Pattern Recognition. Letchworth, England: Re-
search Studies Press Ltd.

Oja, E. (1989). Neural networks, principal components, and subspaces. International
Journal of Neural Systems 1 (1), 61–68.

Oja, E. (1995). The nonlinear PCA learning rule and signal separation – mathemati-
cal analysis. Technical Report A26, Helsinki University of Technology, Laboratory of
Computer and Information Science.

Oja, E. and J. Karhunen (1985). On stochastic approximation of eigenvectors and eigen-
values of the expectation of a random matrix. Journal of Mathematical Analysis and
Applications 106, 69–84.

Oja, E. and J. Parkkinen (1984). On subspace clustering. In Proceedings of the 7th
International Conference on Pattern Recognition, Volume 2, Montreal, pp. 692–695.
IAPR.

Pao, Y.-H. (1989). Adaptive Pattern Recognition and Neural Networks. Addison-Wesley
Publishing Company.

Parker, J. R. (1994). Vector templates and handprinted digit recognition. In Proceedings
of 12th International Conference on Pattern Recognition, Volume II, Jerusalem, pp. 457–
459. IAPR.

Parkkinen, J. (1989). Subspace methods in two machine vision problems. Ph. D. thesis,
University of Kuopio.

Pavel, M. (1993). Fundamentals of pattern recognition (2nd ed.). Marcel Dekker, Inc.

Pavlidis, T. and F. Ali (1975). Computer recognition of handwritten numerals by polyg-
onal approximations. IEEE Transactions on Systems, Man, and Cybernetics 5 (6), 610–
614.

Perrone, M. P. (1994). Pulling it all together: Methods for combining neural networks.
In J. D.Cowan, G. Tesauro, and J. Alspector (Eds.), Advances in Neural Information
Processing Systems 6, San Francisco, CA, pp. 1188–1189. Morgan Kaufmann Publishers.

146 BIBLIOGRAPHY

Perrone, M. P. and L. N. Cooper (1993). When networks disagree: Ensemble methods
for hybrid neural networks. In R. J. Mammone (Ed.), Artificial Neural Networks for
Speech and Vision, pp. 126–142. Chapman & Hall.

Pratt, W. K. (1991). Digital image processing. New York: John Wiley & Sons Inc.

Prechelt, L. (1996). A quantitavie study of experimental evaluations of neural network
learning algorithms: Current research practice. Neural Networks 9 (3), 457–462.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1988). Numerical
Recipes in C. Cambridge University Press.

Priebe, C. E. and D. J. Marchette (1991). Adaptive mixtures: Recursive nonparametric
pattern recognition. Pattern Recognition 24 (12), 1197–1209.

Priebe, C. E. and D. J. Marchette (1993). Adaptive mixture density estimation. Pattern
Recognition 26 (5), 771–785.

Rabinow, J. C. (1969). Whither OCR. Datamation 15 (7), 38–42.

Reddi, S. S. (1981). Radial and angular moment invariants for image identification.
IEEE Transactions on Pattern Analysis and Machine Intelligence 3 (2), 240–242.

Redner, R. A. and H. F. Walker (1984). Mixture densities, maximum likelihood and the
EM algorithm. SIAM Review 26 (2).

Reiss, T. H. (1991). The revised fundamental theorem of moment invariants. IEEE
Transactions on Pattern Analysis and Machine Intelligence 13 (8), 830–834.

Revow, M., C. K. I. Williams, and G. E. Hinton (1996). Using generative models for
handwritten digit recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence 18 (6), 592–606.

Richard, M. D. and R. P. Lippman (1991). Neural network classifiers estimate bayesian
a posteriori probabilities. Neural Computation 3 (4), 461–483.

Riittinen, H. (1986). Recognition of phonemes in a speech recognition system using
learning projective methods. Ph. D. thesis, Helsinki University of Technology.

Riittinen, H., S. Haltsonen, E. Reuhkala, and M. Jalanko (1980). Experiments on an
isolated-word recognition system for multiple speakers. Technical Report TKK-F-A433,
Helsinki University of Technology, Espoo, Finland.

Ripley, B. D. (1996). Pattern Recognition and Neural Networks. Cambridge University
Press.

Rissanen, J. (1978). Modelling by shortest data description. Automatica 14, 465–471.

Ritter, H., T. Martinetz, and K. Schulten (1992). Neural Computation and Self-
Organizing Maps: An Introduction. Reading, Massachusetts: Addison-Wesley Publishing
Company.

BIBLIOGRAPHY 147

Rocha, J. and T. Pavlidis (1994). A shape analysis model with applications to a char-
acter recognition system. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 16 (4), 393–404.

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage
and organization in brain. Psychological Review 65, 386–408.

Rosenblatt, F. (1961). Principles of Neurodynamics: Perceptrons and the Theory of
Brain Mechanisms. Washington, DC.: Spartan Books.

Rosenfeld, A. and A. C. Kak (1982). Digital Picture Processing (2nd ed.), Volume 1-2.
Academic Press.

Schalkoff, R. J. (1989). Digital Image Processing and Computer Vision. John Wiley &
Sons Inc.

Schalkoff, R. J. (1992). Pattern Recognition: Statistical, Structural and Neural Ap-
proaches. John Wiley & Sons Inc.

Schmidt, W. F., D. F. Levelt, and R. P. W. Duin (1994). An experimental comparison of
neural classifiers with ’traditional’ classifiers. In E. S. Gelsema and L. S. Kanal (Eds.),
Pattern Recognition in Practice IV, Volume 16 of Machine Intelligence and Pattern
Recognition. Elsevier Science Publishers.

Schürmann, J., N. Bartneck, T. Bayer, J. Franke, E. Mandler, and M. Oberländer (1992).
Document analysis – from pixels to contents. Proceedings of the IEEE 80 (7), 1101–1119.

Schwartz, E. L. (1977). Spatial mapping in the primate sensory projection: Analytic
structure and relevance to perception. Biological Cybernetics 25 (4), 181–194.

Schwenk, H. and M. Milgram (1995). Transformation invariant autoassociation with
application to handwritten character recognition. In G. Tesauro, D. S. Touretzky, and
T. K. Leen (Eds.), Advances in Neural Information Processing Systems 7, Cambridge,
MA, pp. 991–998. MIT Press.

Scott, D. W. (1992). Multivariate Density Estimation: Theory, Practice, and Visualiza-
tion. John Wiley & Sons Inc.

Sejnowski, T. J. and C. R. Rosenberg (1987). Parallel networks that learn to pronounce
English text. Complex Systems 1 (1), 145–168.

Sekita, I., K. Toraichi, R. Mori, K. Yamamoto, and H. Yamada (1988). Feature extraction
of handwritten Japanese characters by spline functions for relaxation matching. Pattern
Recognition 21 (1), 9–17.

Serra, J. (1982). Image analysis and mathematical morphology. Academic Press.

Shridhar, M. and A. Badreldin (1984). High accuracy character recognition algorithm
using Fourier and topological descriptors. Pattern Recognition 17 (5), 515–524.

148 BIBLIOGRAPHY

Shridhar, M. and A. Badreldin (1985). A high-accuracy syntactic recognition algorithm
for handwritten numerals. IEEE Transactions on Systems, Man, and Cybernetics 15 (1),
152–158.

Shridhar, M. and A. Badreldin (1986). Recognition of isolated and simply connected
handwritten numerals. Pattern Recognition 19 (1), 1–12.

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman
& Hall.

Silverman, B. W. and M. C. Jones (1989). E. Fix and J.L. Hodges (1951): An im-
portant contribution to nonparametric discriminant analysis and density estimation—
commentary on Fix and Hodges (1951). International Statistical Review 57 (3), 233–247.

Simard, P. Y., Y. LeCun, and J. S. Denker (1993). Efficient pattern recognition using
a new transformation distance. In Neural Information Processing Systems 5, pp. 50–58.
Morgan Kaufmann Publishers.

Simard, P. Y., Y. LeCun, and J. S. Denker (1994). Memory-based character recognition
using a transformation invariant metric. In Proceedings of 12th International Conference
on Pattern Recognition, Volume II, Jerusalem, pp. 262–267. IAPR.

Sklansky, J. and G. N. Wassel (1981). Pattern Classifiers and Trainable Machine.
Springer-Verlag.

Śmieja, F. (1994). The Pandemonium system of reflective agents. Technical Report
1994/2, German National Research Center for Computer Science (GMD). Available at
<http://borneo.gmd.de/AS/janus/publi/publi.html>.

Smyth, P. and J. Mellstrom (1992). Fault diagnosis of antenna pointing systems using
hybrid neural network and signal processing models. In J. Moody, S. Hanson, and
R. Lippmann (Eds.), Advances in Neural Information Processing Systems 4, pp. 667–
674. Morgan Kaufmann Publishers.

Sollich, P. and A. Krogh (1995). Learning with ensembles: How over-fitting can be
useful. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo (Eds.), Advances in
Neural Information Processing Systems 8, Cambridge, MA. MIT Press.

Sorenson, H. W. (1980). Parameter estimation - principles and problems. New York:
Marcel Dekker.

Specht, D. F. (1990). Probabilistic Neural Networks. Neural Networks 3, 109–118.

Specht, D. F. (1991). A general regression neural network. IEEE Transactions on Neural
Networks 2 (6), 568–576.

Srihari, S. N. (1993). Recognition of handwritten and machine-printed text for postal
address interpretation. Pattern Recognition Letters 14 (4), 291–302.

BIBLIOGRAPHY 149

Stone, C. J. (1974). Cross-validatory choice and assessment of statistical predictions.
Journal of the Royal Statistical Society, Series B 36, 111–147.

Strang, G. and T. Nguyen (1996). Wavelets and Filter Banks. Wellesley, MA: Wellesley-
Cambridge Press.

Suen, C. Y., M. Berthold, and S. Mori (1980). Automatic recognition of handprinted
characters–the state of the art. Proceedings of the IEEE 68 (4), 469–487.

Suen, C. Y., R. Legault, C. Nadal, M. Cheriet, and L. Lam (1993). Building a new
generation of handwriting recognition systems. Pattern Recognition Letters 14 (4), 303–
315.

Suen, C. Y., C. Nadal, R. Legault, T. A. Mai, and L. Lam (1992). Computer recognition
of unconstrained handwritten numerals. Proceedings of the IEEE 80 (7), 1162–1180.

Taha, H. A. (1982). Operations Research (3rd ed.). New York: Macmillan Publishing.

Tang, Y. Y., B. F. Li, H. Ma, J. Liu, C. H. Leung, and C. Y. Suen (1996). A novel
approach to optical character recognition based on ring-projection-wavelet-fractal signa-
tures. In Proceedings of 13th International Conference on Pattern Recognition, Volume II,
Vienna, pp. 325–329. IAPR.

Tappert, C. C., C. Y. Suen, and T. Wakahara (1990). The state of the art in on-
line handwriting recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence 12 (8), 787–808.

Taxt, T. and K. W. Bjerde (1994). Classification of handwritten vector symbols using
elliptic Fourier descriptors. In Proceedings of 12th International Conference on Pattern
Recognition, Volume II, Jerusalem, pp. 123–128. IAPR.

Taxt, T., J. B. Ólafsdóttir, and M. Dæhlen (1990). Recognition of handwritten symbols.
Pattern Recognition 23 (11), 1156–1166.

Teague, M. R. (1980). Image analysis via the general theory of moments. Journal of the
Optical Society of America 70 (8), 920–930.

Therrien, C. W. (1975). Eigenvalue properties of projection operators and their applica-
tion to the subspace method of feature extraction. IEEE Transactions on Computers C-
24 (9), 944–948.

Therrien, C. W. (1989). Decision, Estimation, and Classification. John Wiley and Sons.

Tou, J. T. and R. C. Gonzalez (1974). Pattern Recognition Principles. Massachusetts:
Addison-Wesley Publishing Company.

Toussaint, G. T., E. Backer, P. Devijver, K. Fukunaga, and J. Kittler (1982). Summary
of panel discussion on decision theoretic methods. In J. Kittler, K. S. Fu, and L. F.
Pau (Eds.), Pattern Recognition Theory and Applications; Proceedings of the NATO
Advanced Study Institute, pp. 569–572. D. Reidel Publishing Company.

150 BIBLIOGRAPHY

Tr̊avén, H. G. C. (1991). A neural network approach to statistical pattern classification
by “semiparametric” estimation of probability density functions. IEEE Transactions on
Neural Networks 2 (3), 366–377.

Tresp, V. and M. Taniguchi (1995). Combining estimators using non-constant weighting
functions. In G. Tesauro, D. S. Touretzky, and T. K. Leen (Eds.), Advances in Neural
Information Processing Systems 7, Cambridge, MA, pp. 419–426. MIT Press.

Trier, Ø. D., A. K. Jain, and T. Taxt (1996). Feature extraction methods for character
recognition–a survey. Pattern Recognition 29 (4), 641–662.

Tubbs, J. D. (1989). A note on binary template matching. Pattern Recognition 22 (4),
359–365.

Tutz, G. E. (1986). An alternative choice of smoothing for kernel-based density estimates
in discrete discriminant analysis. Biometrika 73, 405–411.

Unser, M. (1984). On the approximation of the discrete Karhunen-Loeve transform for
stationary processes. Signal Processing 7 (3), 231–249.

Veelaert, P. (1994). Arrays of low-level inequality based feature detecting cells. In Pro-
ceedings of 12th International Conference on Pattern Recognition, Volume II, Jerusalem,
pp. 500–502. IAPR.

Venables, W. N. and B. D. Ripley (1994). Modern Applied Statistics with S-Plus. New
York: Springer-Verlag.

Vetterli, M. and J. Kavačević (1995). Wavelets and Subband Coding. Prentice-Hall.

Wakahara, T. (1993). Towards robust handwritten character recognition. Pattern Recog-
nition Letters 14 (4), 345–354.

Wakahara, T. (1994). Shape matching using LAT and its application to handwrit-
ten numeral recognition. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 16 (6), 618–629.

Wallace, G. K. (1991). The JPEG still picture compression standard. Communications
of the ACM 34 (4), 31–44.

Wand, M. P. and M. C. Jones (1995). Kernel Smoothing. Chapman & Hall.

Watanabe, S. (1965). Karhunen-Loeve expansion and factor analysis. In Transactions of
the 4th Prague Conference on Information Theory, Statistical Decision Functions, and
Random Processes, Prague, pp. 635–660.

Watanabe, S., P. F. Lambert, C. A. Kulikowski, J. L. Buxton, and R. Walker (1967).
Evaluation and selection of variables in pattern recognition. In J. Tou (Ed.), Computer
and Information Sciences II. New York: Academic Press.

BIBLIOGRAPHY 151

Watanabe, S. and N. Pakvasa (1973). Subspace method in pattern recognition. In Pro-
ceedings of the 1st International Joint Conference on Pattern Recognition, Washington,
D.C.

Watson, G. (1964). Smooth regression analysis. Sankhyā Series A 26, 359–372.

Wechsler, H. and G. L. Zimmerman (1988). 2-D invariant object recognition using
distributed associative memory. IEEE Transactions on Pattern Analysis and Machine
Intelligence 10 (6), 811–821.

Weideman, W. E., M. T. Manry, H.-C. Yau, and W. Gong (1995). Comparisons of a
neural network and a nearest-neighbor classifier via the numeric handprint recognition
problem. IEEE Transactions on Neural Networks 6 (6), 1524–1530.

Weiman, C. F. R. and G. Chaikin (1979). Logarithmic spiral grids for image processing
and display. Computer Graphics and Image Processing 11 (3), 197–226.

White, H. (1989). Learning in artificial neural networks: A statistical perspective. Neural
Computation 1, 425–464.

Wilkinson, R. A., J. Geist, S. Janet, P. J. Grother, C. J. C. Burges, R. Creecy, B. Ham-
mond, J. J. Hull, N. W. Larsen, T. P. Vogl, and C. L. Wilson (1991). The first census
optical character recognition systems conference. Technical Report NISTIR 4912, Na-
tional Institute of Standards and Technology.

Williams, C. K. I. (1994). Combining deformable models and neural networks for hand-
printed digit recognition. Ph. D. thesis, University of Toronto.

Wilson, D. L. (1972). Asymptotic properties of nearest neighbor rules using edited data.
IEEE Transactions on Systems, Man, and Cybernetics 2, 408–420.

Wold, S. (1976). Pattern recognition by means of disjoint principal component models.
Pattern Recognition 8, 127–139.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks 5, 241–259.

Wu, L. and F. Fallside (1991). On the design of connectionist vector quantizers. Com-
puter Speech and Language 5, 207–229.

Wyatt, Jr, J. L. and I. M. Elfadel (1995). Time-domain solutions of Oja’s equations.
Neural Computation 7, 915–922.

Xu, L. and M. I. Jordan (1993). EM learning on a generalized finite mixture model for
combining multiple classifiers. In Proceedings of the World Congress on Neural Networks,
Volume IV, pp. 227–230.

Xu, L., M. I. Jordan, and G. E. Hinton (1995). An alternative model for mixtures of
experts. In G. Tesauro, D. S. Touretzky, and T. K. Leen (Eds.), Advances in Neural
Information Processing Systems 7, Cambridge, MA, pp. 633–640. MIT Press.

152 BIBLIOGRAPHY

Xu, L., A. Krzyzak, and C. Y. Suen (1991). Associative switch for combining multiple
classifiers. In Proceedings of 1991 International Joint Conference on Neural Networks,
Volume 1, Seattle, WA, pp. 43–48. IEEE, INNS.

Xu, L., A. Krzyz̀ak, and C. Y. Suen (1992). Methods of combining multiple classifiers
and their applications to handwriting recognition. IEEE Transactions on Systems, Man,
and Cybernetics 22 (3), 418–435.

Yan, W.-Y., U. Helmke, and J. B. Moore (1994). Global analysis of Oja’s flow for neural
networks. IEEE Transactions on Neural Networks 5 (5), 674–683.

Young, T. Y. and T. W. Calvert (1974). Classification, Estimation and Pattern Recog-
nition. New York: Elsevier Science Publishers.

This book was originally typeset with LATEX2ε and later PDFed by using pdfLATEX.

	Subspace Classifiers in Recognition of Handwritten Digits
	Abstract
	Dedication
	Acknowledgments
	Contents
	List of Symbols
	List of Acronyms
	Introduction
	Summary of Novelties and Contributions

	Parts of a Pattern Recognition System
	Data Collection
	Registration
	Preprocessing
	Segmentation
	Normalization
	Feature Extraction
	Classification and Clustering
	Postprocessing
	Feedback Between Stages
	Trainable Parts in a System

	Classification Methods in Pattern Recognition
	Mathematical Preliminaries
	Density Estimation Methods
	Discriminant Analysis Methods
	Kernel Discriminant Analysis, Probabilistic Neural Net
	Reduced Kernel Density Analysis, Radial Basis Functions

	Regression Methods
	Multi-Layer Perceptron
	Local Linear Regression
	Tree classifier, MARS and FDA

	Prototype Classifiers
	k-Nearest Neighbor Classifiers
	Learning Vector Quantization
	Learning k-NN Classifier

	Special Properties of Neural Methods
	Cross-Validation in Classifier Design
	Rejection
	Committees
	On Comparing Classifiers
	Classifiers: Theory and Practice

	Subspace Classification Methods
	Classical Subspace Methods
	Subspace Basics
	Classification Rule
	CLAFIC
	Multiple Similarity Method
	Method of Orthogonal Subspaces
	Generalized Fukunaga-Koontz Method

	Basic Learning Subspace Methods
	Category Feature Subspace Method
	Learning Subspace Method
	Averaged Learning Subspace Method
	Neural Network Interpretation of Subspace Learning

	Modifications on Subspace Classifiers
	Using Class-Specific Means
	Selection of Subspace Dimensions
	Weighted Projection Measures
	Multiple Subspaces per Class
	Treatment of Neighborhood of Origin
	Density Function Interpretation of Subspace Methods
	Computational Aspects

	Prospects of Subspace Classifiers

	Local Subspace Classifier
	Basic Local Subspace Classifier
	LSC+ Classifier
	Combining LSC with Prototype Classifiers
	Iterative Solution for LSC
	Neural Network Interpretation of LSC

	Survey of Off-line Recognition of Handwriting
	History
	Application Areas
	Fields of Character Recognition
	Feature Extraction in Handwriting Recognition
	Reconstruction from Features
	Template Matching
	Volume Features
	Outline Features
	Skeleton Features
	Discrete Features
	Zoning: Combination of Low-Level Features
	Error-Corrective Feature Extraction in OCR

	OCR: From Parts to a Whole

	Prototype Recognition System
	Image Acquisition
	Registration of Images
	Digit Segmentation
	Normalization of Digits
	Feature Extraction
	Data Sets

	Comparison of Classification Methods
	CLAFIC-bold0mu mumu [and ALSM-bold0mu mumu [
	Selection of Subspace Dimensions
	Weighted Subspace Projection Measures
	Probability Density Function Interpretation
	Local Subspace Classifier
	Error-Corrective Feature Extraction
	Learning k-NN Classifier
	Summary of Classification Results

	Conclusions
	Bibliography

