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Abstract

Nonideal properties of the electromagnetic actuators in radial active magnetic bearings are

studied. The two dimensional nonlinear stationary �nite element method is used to determine

the linearised parameters of a radial active magnetic bearing. The method is veri�ed on two

test machines. The accuracy is 10-15 % in the magnetic saturation region. The e�ect of

magnetic saturation on the bearing dynamics is studied based on the root locus diagrams

of the closed loop system. These diagrams show the possibility of extending the operation

range into the magnetic saturation region. The magnetic cross coupling between the x-

and y-coordinates is studied in detail. The formulation in which the cross coupling can

be regarded as phase errors is presented. The magnetic cross coupling can produce phase

errors up to ten degrees. The e�ect of the power ampli�er saturation is studied based on the

nonlinear simulations and describing function approach. A high frequency large amplitude

disturbance can be an origin for a limit cycle oscillation in the neighborhood of the crossover

frequency.

The eddy currents in the laminations, magnetic hysteresis and unmodelled eddy current

paths produce phase errors to the linearised parameters. These errors are studied by mea-

surements and models based on the reluctance network. The dynamic force measurement is

done by measuring the accelerations at the both ends of the rotors and solving the equation

of the motion of the rotor. The eddy current model is derived from the one-dimensional

magnetic �eld solution inside an electric steel sheet. The model is a linear model, which

is linearised at one operation point of the radial bearing. This model neglects the excess

losses and the unmodelled eddy current paths. The linearised parameters from the hysteresis

model are calculated by the describing function. These phenomena can produce phase errors

up to ten degrees.
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BH�; BH+ limiting hysteresis curves
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b

bearing force

F !max maximum bearing force at the angular disturbance frequency of

!

f ave average relative response on the rotational control

f h vector of branch magnetomotive forces of the reluctance network

model

f r relative response on the rotational control

GB transfer function matrix of the bearing

GC transfer function matrix of the controller

GJ Jacobian matrix coupling the local and global coordinates in

�nite element method
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eddy current vector

kp geometric pole factor
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1 Introduction

1.1 Introduction to high-speed technology

In this thesis, the term high-speed technology is used in the following meaning. In high-

speed technology, the working or load machine, such as a compressor or a pump, an electric

motor and a cooling fan has a common rotor. Thus, the load machine is directly driven

by the electric motor without any gears. The electric motor is supplied and the rotation

speed is controlled by a frequency converter. A typical speed range is from 20 000 to

200 000 RPM and the corresponding power range is from 300 kW to 20 kW. Currently,

the main applications are water treatment compressors and vacuum pumps for the pulp

and paper industry. Some details of the high-speed technology can be found from papers

[Lindgren et al. 1995, Antila et al. 1996, Lantto et al. 1997].

The need for the high rotation speed comes from the fact that the load machine, for

example, a turbo compressor, needs high rotational speed to perform with high e�ciency.

The demand of the speed and power range is determined by the performance map of a

compressor. The performance map of the compressor has to match the demand of the

application. These principles are covered in [Larjola 1988].

The high rotational speed imposes some technical di�culties which need to be overcome.

The combination of the speed and power sets the torque range the electric motor has to

produce. This means that the size of the rotor is such that the peripheral speed of the

rotor may exceed 250 m/s. In this range, conventional induction motors made of laminated

steel sheets cannot be used, due to excessive mechanical stresses. Thus, the rotor has to be

made of solid iron and to guarantee satisfactory electric e�ciency the rotor is coated by a

thin layer of conducting material [Patent U.S. 5473211]. On the other hand, as the rotation

speed of the machine increases the power-size ratio of the machine increases. This increases

the power density as well as the loss power density in the machine. So, the cooling of the

machine needs special attention and this is thoroughly covered in [Saari 1995], [Saari 1998].

Finally, the conventional roller bearings cannot be used at high speeds due to a limited

or even negligible life time. A contactless suspension of the rotor is necessary at high speeds.

Active magnetic bearings have proven to be a suitable solution in high-speed compressors.

Thus, the bene�ts of high-speed technology can be listed: the high e�ciency of the total ap-

plication, �rst, due to the high e�ciency of the turbo compressor, electric motor and, second,

the possibility to control the operation point of the compressor by rotational speed. Small

size and weight, minimum maintenance due to few wearing components, negligible vibration

due to contactless suspension, oil free operation and small size enables direct integration

into processes. Fig. 1(a) presents the main components of the high-speed compressor. The

high-speed unit consists of the electric motor, turbo compressor and the cooling fan in a
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common shaft. Radial and axial magnetic bearings maintain the contactless support of the

high-speed rotor.

(a) Several high-speed turbo compressors in
parallel operation

(b) The electric units, the frequency con-
verter and AMB-controller

Figure 1: High-speed turbo compressor consists of a high-speed unit and an electric cabinet.

Schematic diagram of a high-speed unit.
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1.2 Introduction to Active Magnetic Bearings (AMB)

1.2.1 General

The idea of contactless support of objects has been intriguing the human mind for centuries.

The idea of using magnetic �eld comes �rst to mind. However, one faces some laws of

nature, which heavily bound the usage of magnetic forces for contactless support of objects.

The best known is the theorem of Earnshaw [Earnshaw 1842], which says that an object in

a passive magnetic �eld can achieve a stable position only if the material of the object is

diamagnetic or superconducting. This feature restricts engineering applications of passive

�elds quite a bit, as most of the machines designed by engineers are made of ferromagnetic

material. However, permanent magnets can be used to support a few degrees of freedom of

a ferromagnetic rigid body, if at least one degree of freedom is supported by other means. In

any case, the sti�ness and damping properties of permanent magnet bearings are insu�cient

for many practical applications. The major applications where permanent magnet bearings

are used are turbo-molecular pumps and household electric energy counters [Fremerey 1988].

Recently, bearings based on the superconductors have gained reasonable interest amongst

researchers, but practical applications are still to be found [Moon 1994].

On the contrary, active magnetic bearings (AMB) have become a widely accepted and

used solution for contactless support rotors [Brunet 1988], [Dussaux 1990]. This �eld has

di�erent types of technical solutions and extensive reviews of di�erent types of electromag-

netic levitation systems are made by [Bleurer 1992], [Jayawant 1981]. In addition, it is worth

noting the book by Schweitzer et. al. 1994 [Schweitzer et al. 1994], which not only reviews

magnetic levitation types but also gives a thorough introduction to AMB. Also, the report

made by Zhuravlyov [Zhuravlyov 1992] can be seen as a practical handbook for people want-

ing to get familiar with AMB and a tutorial paper can be found made by Lantto and Antila

[Lantto and Antila 1995].

In AMB, the �ve degrees of freedom of a rotor are controlled by electromagnets. Fig. 2

shows the principle of active magnetic bearing in one coordinate axis. The electromagnets

at opposite sides pull the rotor and the total force acting on the rotor is the sum of the forces

of the electromagnets. The interaction between the ferromagnetic rotor and electromagnets

is unstable. Thus, the position of the rotor has to be measured and the currents in the

coils have to be controlled to maintain the suspension. In the suspension system, the �ve

degrees of freedom are controlled by four radial bearings (two at each end of the rotor) and

one axial bearing. In principle, the suspension could be realized without position sensors by

estimating the position of the rotor from coil currents and voltages. This type of sensorless

bearing is not covered in this thesis.

In this thesis, the current controlled radial AMB system with position measurements is

studied. By the current controlled AMB it is meant that the position controller output is
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Controller

Upper magnet

Gap sensor

Laminated steel

Solid steel

Lower magnet

i down

i up

Figure 2: Principle of an active magnetic bearing.

a current reference. This reference is the input to the current control circuit in which the

output is a control voltage applied to the coil.

In radial bearings, the rotor consists of a solid core and outer part made of laminated

steel. The purpose of the lamination is to reduce the e�ects of eddy currents when the rotor

is rotating and when the bearing forces are controlled. The stator is made of laminated steel

as well. The winding of an electromagnet is made of regular copper wire. The axial bearings

are separate magnets manufactured from solid iron.

1.2.2 Linear magnetic circuit theory and the linearised dynamic model of AMB

As mentioned in the previous section, a control feedback loop is necessary for a stable AMB

suspension. Thus, in the end, the design problem is reduced to a control system synthesis.

When designing the controller an accurate and reliable magnet actuator model is of primary

importance. While most of the control system design tools are based on linear models, the

bearing actuator model should be a linear block in the control loop. The �rst approach to

creating a bearing model is the linear magnetic circuit theory, where it is assumed that the

permeability of the iron is in�nite, the �ux density in the airgap is in radial direction and

leakage �ux is zero. The force of the bearing depends on the �ux density in the air gap.

The �ux density is controlled by the currents in the coils. The force-current dependence of

magnets at one coordinate axis is highly nonlinear and is approximated
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F b =
�0(Niu)

2

(� � kpx)2
Apkp � �0(Nid)

2

(� + kpx)2
Apkp (1)

where �0 is the permeability of vacuum, 2Niu and 2Nid are the magnetomotive forces of

the opposite magnets, � is the air gap, x is the position of the shaft, Ap is the area of

one pole and kp is a geometric pole factor and for a eight pole bearing kp is 0.924. This

nonlinear dependence is often linearised to simplify the control system. The linearisation

is realized by supplying bias-current ibias into both coils at the opposite sides of the rotor.

This bias-�ux can also be supplied by permanent magnets [Sortore et al. 1990]. The control

of the force in that particular direction is done by adding a control current ic into the other

coil and subtracting it from the other one. Therefore, the total force, for example, in x-

direction depends linearly on the control current ic. In addition, the nonlinear spatial force

dependence can be linearised by assuming x � �.

F b =
4�0ibiasN

2
Apkp

�2
ic +

4�0i
2
biasN

2
Apk

2
p

�3
x (2)

F b = hfic + cx (3)

The coe�cients of ic and x are the current sti�ness hf and negative position sti�ness c,

respectively. The dynamic model is formed by taking the linearised voltage equations of

the bearing magnets. Also, when considering a point mass one has to take the equation of

motion into the model. Thus, the dynamic model of a point mass levitating between two

electromagnets is

m�x� cx = hfic (4)

uc = Ldyn
_ic + hv _x +Ric (5)

d

dt

2
6664
x

_x

ic

3
7775 =

2
6664

0 1 0

c=m 0 hf=m

0 �hv=Ldyn �R=Ldyn

3
7775
2
6664
x

_x

ic

3
7775 +

2
6664

0

0

1=Ldyn

3
7775 uc (6)

where c is the negative position sti�ness, hf is the current sti�ness, hv is the velocity induced

voltage coe�cient, m is the mass of the rotor reduced to the AMB position, Ldyn is the coil

inductance (also based on linear magnetic circuit theory), R is the coil resistance, x is the

displacement, ic is the control current, uc is the control voltage. This form of the linearised

dynamic model of AMB is widely used when designing the control system of AMB. In this

thesis, the parameters of Eqs. 2 � � � 6 are referred as the ideal linearised parameters of AMB.

1.2.3 Position sensor, controller and power ampli�er

In Fig. 3, a more detailed presentation of a current controlled AMB in one coordinate axis

is presented. In this section, the key components of the AMB system are presented.
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i bias c-i
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i bias
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Figure 3: A detailed principle of a current controlled active magnetic bearing in one coordi-

nate axis.

In active magnetic bearings, the position of the rotor in radial and axial directions can

be measured by inductive, capacitive, eddy-current or optical sensors. The response of the

sensor must be linear and the bandwidth should be over 1 kHz without any signi�cant

phase drop. In high-speed machines, the temperature varies in a large range so the position

measurement has to be thermally stable. The noise of the measurement signal has to be

low because the signal is ampli�ed in the power ampli�er and a noisy measurement signal

results in audible noise in the bearing. The inverter-fed electrical motor causes large elec-

trical disturbances, so the position measurement has to be electromagnetically compatible.

Thermal enlargement of the rotor in axial direction is considerable in a high-speed machine.

Therefore, it should be kept in mind that it is the location of the position sensor that is

kept in the ordinary position and the clearances in the working machine and axial bearing

might change. The test machines used in this thesis are equipped with inductive di�erential

position sensors, that is, the position is measured from the di�erence of the sensors at the

opposite side of the rotor. In addition, it is assumed in this thesis that the position sensors
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are ideal, that is, with constant sensitivity and no phase lag.

The control system of an AMB is a widely studied subject. Recently, the classical

analogous PID-type controllers [Habermann and Brunet 1984], [Humpris et al. 1986] have

been replaced by digital controllers. These modern controllers are synthesised using meth-

ods of modern control strategies, such as H
1
, sliding mode and �-synthesis, that have

been implemented with DSP into AMB [Nonami and Yamaguchi 1992], [Bleurer et al. 1994],

[Fujita et al. 1992], [Cui and Nonami 1992]. The newest trends in AMB control can be found

from a special issue edited by Knospe [Knospe and Collins 1996]. In its simpliest form, the

controller is realised by decentralised proportional integral derivative PID controllers. In one

dimension, the current reference is iref = G(xref � x), where G is the transfer function of the

position controller. This topology gives at least satisfactory performance and robustness in

many applications. In this thesis, the design of the control system or the control topology is

not considered. The position controllers used in this thesis are analog PID-controllers with

appropriate low-pass �lters. In some of the controllers, there are cross connections between

drive-end and non-drive-end bearings and some of the controllers are totally decentralised.

The performance and robustness of these controllers have been veri�ed in several high speed

machines. The design of the controllers is thoroughly described in the thesis by Lantto

[Lantto 1998].

In the current controlled AMB, the control current reference iref from the controller,

the bias-current value ibias and the current in the coil i are inputs to the power ampli�er.

The control voltage reference is the current di�erence multiplied by the current feedback

coe�cient kcf , uc = kcf(iref + ibias � i). The control voltage reference is supplied into a

pulse width modulation (PWM) -module, which gives the switching commands to the 1/2-

H-bridge. This is the usual con�guration used with analog and digital controllers. The

switching frequency is usually from 30 kHz to 125 kHz. The voltage of the power ampli�er

can be from 50 V to 300 V and the current up to tens of amperes. In the power ampli�er

used in this thesis, the switching frequency is 60 kHz, the voltage is 100 V and current up

to 10 A.

1.2.4 Static and dynamic bearing forces

Fig. 4 presents schematically the force an AMB can produce. In this section, the phenomena

setting the limits on the AMB force are brie�y studied.

The static bearing force is in the end limited by the �ux density one can create into

the airgap, thus magnetic saturation will bound the static load capacity. Thus, the size and

geometry of the bearing dictates the maximum static bearing force. However, there are other

technical boundary conditions to be met. The temperatures of the coils cannot rise above

the limit of the insulation. The power ampli�er also has a maximum current it can supply.
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Figure 4: A schematic �gure of the static and dynamic force of an AMB.

All this is based on the assumption that the control system can keep the suspension stable.

All these conditions set the absolute maximum static force that an AMB can produce.

A magnetic bearing is basically a voltage source driving an inductor. Based on the linear

magnetic circuit theory, a formula of the dynamic bearing force is easily solved. The velocity

voltage term and position term are neglected as they are negligible at higher frequencies

umaximax = F !max!� (7)

where umax is the maximum control voltage available, imax is the maximum current, F !max

is the maximum force at the disturbance angular frequency ! and � is the airgap. Here, the

maximum current is assumed to be exactly twice the bias current imax = 2 � ibias and the

leakage �ux and the geometric fact that the poles are usually not parallel to the coordinate

direction are neglected. Usually the voltage of the power ampli�er is �xed and the designer

can make decisions to choose appropriate values for the airgap, number of turns and bias

current to achieve the desired dynamic bearing force. These important basic results have

been discussed by Bornstein [Bornstein 1991].

1.2.5 Rotordynamic model and unbalance compensation

In rotating machines, rotordynamic analysis is of crucial importance when studying and

designing the behaviour of the machine. The rigid body models could easily be formed from

the geometry of the machine. However, the elastic modes of rotor play an important role
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in applications where rotational speed is �close� to the eigenfrequency of the elastic modes,

especially with AMB's, where elastic modes have to be considered even when the rotational

speed is �far� from the critical speed. Typically in high-speed technology, the rotational speed

is about 20-30 percent under the �rst bending critical speed. In this thesis, a rotordynamic

model based on the �nite element model for the elastic rotating shaft is used [Lantto 1997].

In this method, the rotor shape is approximated by �nite dimensional vectors and the rotor

energies are expressed as a function of these vectors. The equations of motion are formed by

inserting these energy expressions into Lagrangian equations. Then the �nite dimensional

equations of motion are reduced by modal coordinate transformation. In this reduction

method, the �nite dimensional equation of motion is solved with time harmonic assumption

and the eigenfrequencies and -modes are calculated from the generalised eigenvalue problem.

Finally, the equations of motions are

M rot�qX +D rot _qX +K rotqX + 
Grot _qY + 
D rotqY = FX (8)

M rot�qY +D rot _qY +K rotqY � 
Grot _qX � 
D rotqX = FY (9)

FX = BbF bX + FqX
+ 
2(cos(�)UX � sin(�)U Y ) (10)

FY = BbF bY + Fq Y
+ 
2(sin(�)U Y + cos(�)UX)� FG (11)


 = _� (12)

psX = C sqX (13)

psY = C sqY (14)

where M rot;D rot;K rot;Grot are the modal mass, damping, sti�ness and gyroscopic ma-

trices, respectively. qX ; qY are the vectors of modal weights, FqX
;Fq Y

are external modal

forces, UX ;U Y are the modal unbalance vectors and FG is the modal gravitational force.

The matrix Bb couples the bearing forces F bX ;F bY into modal coordinates and the matrix

C s couples the modal weights into the rotor positions at the sensor locations psX ;psY . � is

the rotational angle rotor and 
 is the angular frequency of the rotor. For a more detailed

description of the rotor model see [Lantto 1997].

In Eqs. 10, 11, it is shown that the unbalance force is proportional to the square of

the angular frequency. At high rotation speeds, relatively small unbalance causes a large

rotational force. In Fig. 4, it was shown that the dynamic force of AMB is limited by

the power ampli�er voltage. In order to be able to cancel the unbalance force at high

speeds, the power ampli�er would have to be severely oversized. In practice, this problem

is handled by an unbalance compensator. It can be realised in a number of ways, but

the idea is to remove the rotational synchronous component from the control currents and
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voltages. This is an important aspect of magnetic bearings at high speeds and has been a

subject of recent studies[Larsonneur and Herzog 1994], [Knospe et al. 1997]. The unbalance

compensator associated with this study, is presented by Lantto [Lantto 1998].

1.3 Review of AMB concerning this work

There are few publications on the prediction of the force and other electromagnetic properties

of AMB. Imlach et al. [Imlach et al. 1991] used linear magnetic circuit theory to estimate

the force and sti�ness of radial AMB. The measurements were done with AMB installed in

a canned motor pump. The agreement was found to be good at low eccentricities.

Knight et al. [Knight et al. 1992], [Knight et al. 1993] used linear �nite element tech-

niques to study one magnetic bearing actuator (C-magnet). The force calculations were done

based on the virtual work method. The �ux solutions were calculated in four positions of

the rotor. The perturbations of the position were done in positive and negative x and y di-

rections. The electromagnetic energy was then calculated at these positions and forces were

calculated by di�erences. The measurements were done with an experimental setup, where

a single c-magnet pulled the journal mounted into positioning disks. The material was as-

sumed to be linear. They studied both the principal (diagonal) and normal (cross coupling)

forces as functions of magnetomotive force and rotor position. The measurements were done

at magnetomotive forces which corresponds to high level of saturation. The authors conclude

that in order to be able to reliably estimate the cross coupling forces a nonlinear analysis is

necessary. However, the measurements showed the ratio of cross coupling force and diagonal

force of around 10 percent. This coupling was found to be almost linear with respect to the

eccentricity in normal direction.

Hsiao and Lee [Hsiao and Lee 1994] used the nonlinear �nite element technique to de-

termine the force of radial magnetic bearing. They studied two types of radial bearings and

the e�ects of geometric parameters. No measurements were done. The force of an AMB was

calculated by using Maxwell's stress tensor method. Lee et. al. [Lee et al. 1994] studied a

permanent magnet bias system with a magnetic circuit model. The static characteristics of

a prototype were tested and compared with the estimated ones in the linear region. They

noticed a discrepancy of 45.8 % in position sti�ness and 66 % in current sti�ness between

the calculated and measured values at nominal point. They claimed the discrepancy was due

to an underestimation of the leakage factor. After the corrections the agreement between

estimated and measured forces was good at small displacements and coil currents.

Schmidt et. al. [Schmidt et al. 1996] compared linear �nite element (FEM) and linear

reluctance network methods when calculating the force and diagonal and cross coupling

current sti�nesses. The agreement was found to be good in force and diagonal current

sti�ness calculations. The cross coupling sti�nesses showed noticeable di�erences between



20

the two methods. It is worth emphasising that the nonlinear nature of the iron was neglected

in this study and therefore the cross coupling sti�nesses were found to be negligible.

Meeker and Maslen [Meeker and Maslen 1996] used linear network theory as well, but

they studied the airgap region more precisely. They modelled the airgap region with magnetic

vector potential and the iron was treated as a boundary condition of in�nite permeability.

Based on this solution the airgap reluctance was deduced.

Antila et. al. [Antila et al. 1998] determined the forces and linearised parameters by

nonlinear 2D-FEM at di�erent operation points. The calculations were veri�ed with mea-

surements done with two test bearings. The agreement was found to be satisfactory also far

in the saturation region.

Common to all the above methods is that they are based on the stationary �eld solution.

Thus, they neglect the e�ects of eddy currents and hysteresis, and the linearised parameters

are all real valued. However, both these phenomena cause a small phase lag, for example, to

the current sti�ness. As these e�ects are usually neglected in the dynamic models, the true

behaviour of an AMB system deviates from the designed one. Therefore, the control system

designer has to be prepared for small phase errors when using static parameters. Previously,

Zmood et. al. [Zmood et al. 1987] presented a simple expansion term into the current

sti�ness. This simple model e�ectively describes the qualitative nature of the eddy current

e�ect in one coordinate dimension. Meeker and Maslen [Meeker and Maslen 1996] extended

this formulation into arbitrary order. In addition, they derived the one-dimensional eddy

current formulation into a form suitable for large networks. They also made impedance

measurements over a large frequency range and compared the calculated impedance with

the measured one. The calculations were done based on the complex reluctivity formulation.

The agreement was found to be good and the major eddy current e�ects were found at

frequencies above 1000 Hz.

1.4 Aim and contributions of this work

This work is a part of the high-speed technology project. In this project, the aim is to

develop new types of compressors and pumps to be manufactured by series production.

These machines are equipped with AMB. The demand of the series production poses new

criteria for AMB as well, mainly, because in series production it is no longer possible to tune

every machine individually.

Fig. 5 presents the blocks of an AMB system. In this thesis, the focus is in the modelling

and properties of the electromagnetic actuator. The �rst aim in this study is to �nd and

verify reliable methods to analyse the electromagnetic properties of the bearing actuators

(the magnets) and based on the methods to create practical design guides for radial active

magnetic bearings. The second aim is to �nd the uncertainties of the linearised parameters.
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rotorcontroller
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subject of this thesis
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Figure 5: Sub blocks of a control system of an active magnetic bearing.

This is done based on the methods and measurements. These structured uncertainty blocks

are then used when designing robust controllers for radial AMB [Lantto 1998].

This work is divided into two categories. First, the variation of the static parameters is

studied. The main new contributions of this chapter are:

� Verifying the method (FEM) to determine the linearised parameters of radial AMB in

the magnetic saturation region

� Determination of the variation of the linearised parameters due to the magnetic satu-

ration and the e�ect of the variations to the bearing dynamics

� Determination of the magnetic cross coupling in radial AMB and the e�ect of the

magnetic cross coupling to the bearing dynamics based on the response to a rotational

control

� Quantifying the e�ect of the power ampli�er saturation, especially the e�ect to the low

frequency response when the saturation is caused by high frequency disturbances

Secondly, the variation of the linearised parameters caused by the hysteresis, eddy cur-

rents in the laminations and parasitic eddy current paths in the bearing magnets are studied.

The main contributions of this chapter are:

� Implementing the one-dimensional eddy current model into the nonlinear reluctance

network model and implementing the scalar hysteresis model into the reluctance net-

work

� Verifying the models by dynamic inductance and dynamic force measurements

� Quantifying the magnitude and phase errors of the current sti�ness caused by hystere-

sis, eddy currents in the lamination and parasitic eddy currents
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2 Static parameters of radial AMB based on the station-

ary �nite element method

2.1 Solution of the magnetic �eld

The magnetic �eld of the radial magnetic bearing is analysed by �nite element method

(FEM). The magnetic �eld is assumed to be two dimensional and stationary.

In the two-dimensional magnetostatic approximation the magnetic vector potential A in

z or axial direction satisfy the equation

�r � (�rA) = J (15)

where � is the reluctivity of the material and J is the current density in z-direction, which is

known from the currents in the coils. In order to be able to solve Eq. 15 the boundary condi-

tions have to be known. In magnetic bearings, it is assumed that no �ux penetrates outside

the stator of the magnetic bearing, therefore homogeneous Dirichlet boundary condition is

applied on the outer boundary.

In this work, Galerkin's method is used in the discretisation of the two-dimensional �eld

Eq. 15. In Galerkin's method, the shape functions connected to the free nodes are used one

by one as the weight function. The Newton-Raphson iteration is used for solving the non-

linear system of equations. The nonlinear magnetisation of laminated and solid iron core is

modelled with single-valued monotonic reluctivity curves. The second-order isoparametric

elements are used in this work. The vector potential and �ux density is calculated from the

nodal values

A(x; y) =
NnX
j=1

Nj(x; y)aj (16)

B = r� A (17)

where aj is a nodal value associated with the node j of the �nite element mesh, Nj is a shape

function associated with the node j and Nn is the number of nodes in the �nite element mesh.

The shape function Nj is a real-valued function having a value di�erent from zero only in

those elements that are connected to the mesh point j. The summation index j runs over

all the node points of the mesh including also the points with �xed nodal values on the

boundary.

In Galerkin's method, the two-dimensional di�erential equation is multiplied by a weight

function W and integrated over the volume V of the solution region.

Z
V
[�Wr � (�rA)� JW ]dV = 0 (18)
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Using the identity

r � (�rA)W = r � (W�rA)� �rW � rA (19)

and Gauss's theorem the higher derivatives are eliminated from 18

Z
V
[�rA � rW � JW ]dV =

I
S
�W

@A

@n
dS (20)

Because there is no z-dependence and the surface integral vanishes at the end surfaces of

the integration cylinder V and the volume integral can be changed to a surface integral over

the cross section of the bearing by integrating over the z-coordinate

Z


[rA � rW � JW ]d
 =

I
�
�W

@A

@n
d� (21)

where 
 denotes the two-dimensional solution region and � the boundary of 
. The right-

hand side vanishes on the Dirichlet boundary.

In Galerkin's method , the vector potential is approximated by Eq. 17 and the shape

functions connected to the free nodes are used one by one as the weight function. Thus, the

number of equations is equal to the number of unknown nodal values in the approximation.

The system equations for this is

Z



8<
:�

2
4NnX
j=1

ajrNj

3
5 � rNi � JNi

9=
; d
 = 0 i = 1 � � �Nf (22)

The nonlinear system of equations is solved by the Newton-Raphson iteration

P(ak)�ak = �r (ak) (23)

ak+1 = ak +�ak (24)

where r is the vector of the residual functions ri, P is the Jacobian of the system equations,

k is the number of an iteration step, ak is the vector of nodal values at the iteration step k

and �ak is the correction added to ak at the iteration step k. The elements of the Jacobian

are the derivatives of the residual functions

Pim =
@ri(a

k
1; � � � ; akN)
@akm

(25)

=
Z



8<
:

NnX
j=1

 
@�

@am
rNl � rNjaj

!
+ �rNl � rNm

9=
; d
 (26)

The reluctivity � can be expressed as a function of the square of the �ux density
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Plm =
Z



8<
:

NnX
j=1

 
@�

@B 2

@(B 2)

@am
rNl � rNjaj

!
+ �(a)rNl � rNm

9=
; d
 (27)

The square of the �ux density and its derivative are written

B2 =
NnX
i=1

NnX
j=1

rNi � rNjaiaj (28)

@(B 2)

@am
= 2

NnX
i=1

rNm � rNiai (29)

Thus, the Jacobian is now written

Plm =
Z



8<
:2

NnX
j=1

NnX
i=1

 
@�

@B 2 [rNl � rNj][rNm � rNi]aiaj

!
+ �rNl � rNm

9=
; d
 (30)

where indexes i; j; l;m denote the nodes. The nonlinear magnetisation of laminated and

solid iron core is modelled with a single-valued monotonic reluctivity cubic spline curve. A

�nite element mesh and a �eld plot are shown in Figs. 6 and 7.
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Figure 6: Finite element mesh plot of the radial magnetic bearing.

Figure 7: Field plot of the radial magnetic bearing based on the �nite element solution.
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2.2 Calculation of force and inductance

2.2.1 Maxwell's stress tensor

Methods based on Maxwell's stress tensor are commonly used in the calculation of forces

and torques in the �nite element analysis of electric devices [Reichert et al. 1976]. The

electromagnetic force is obtained as a surface integral

F =
I
S
� � dS (31)

F =
I
S

"
1

�0
(B � n)B � 1

2�0
B 2n

#
dS (32)

where � is Maxwell's stress tensor and n is the unit normal vector of the integration surface

S. When Eq. 32 is applied to the calculation of the magnetic bearing forces, a closed

integration surface that surrounds the rotor in free space must be chosen. In the two-

dimensional model, the surface integral is reduced to a line integral along the air gap. If a

circle of radius ri is taken as the integration path, the force is obtained from the equation

F =
Z 2�

0

"
1

�0
BrB�e� � 1

2�0
(B2

r � B
2
�)er

#
rd� (33)

where Br; B� are the r- and �-components of the �ux density. If the solution would be exact

the force would be independent of the integration radius ri when ri varies within the air gap.

However, the calculated force depends greatly on the choice of the integration radius and to

achieve satisfactory accuracy the force is calculated over the whole area of the air gap. Due

to the fact that the true force is independent of the radius integrating Eq. 33 results in

F (rs � rr) =
Z rs

rr

Z 2�

0

"
1

�0
BrB�e� � 1

2�0
(B2

r � B
2
�)er

#
rd�dr (34)

F (rs � rr) =
Z
Sag

"
1

�0
BrB�e� � 1

2�0
(B2

r �B
2
�)er

#
dS (35)

F =
1

rs � rr

Z
Sag

"
1

�0
BrB�e� � 1

2�0
(B2

r �B
2
�)er

#
dS (36)

where rs and rr are the outer and inner radii of the air gap respectively and Sag is the cross

sectional area of the air gap [Arkkio 1987]. This method is easy to implement into the FEM

code. The drawback of the above method is the assumption of rotational symmetry. In case

the rotor is eccentric, the previous method is not valid. At small eccentricities however, an

approximate solution can be calculated

�r(�) = rs(�)� rr(�) (37)
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F =
Z
Sag

"
1

�0
BrB�e� � 1

2�0
(B2

r �B
2
�)er

#
1

�r(�)
dS (38)

2.2.2 Virtual work

Another way to calculate the forces from a �nite element �eld solution is based on the

principle of virtual work [Coulomb 1983]. In this method, the force is calculated as a partial

derivative of the coenergy functional with respect to virtual movement

Wc =
Z
V

 Z H
0

BdH

!
dV (39)

F =
@Wc

@p
= [

@Wc

@x

@Wc

@y
]T (40)

where Wc is the coenergy functional and F is the force vector. The force in the direction of

x is calculated as follows

Fx =
X
e

Z

e

"
�[Bx By]GJ

�1@GJ

@x
[Hx Hy]T +

Z H
0

BdH jGJj�1@GJ

@x

#
d
 (41)

where the summation is done over virtually distorted �nite elements. When applying this

method to active magnetic bearings, the summation is over the air gap elements. GJ is the

Jacobian matrix which couples the local coordinates and the global ones. In this work, the

force was calculated by Eqs. 38 and 41.

2.2.3 Dynamic inductance, current and position sti�ness

The self and mutual inductances of the coils depend on the operation point of the bearing.

In the dynamic model of Eq. 6, the dynamic inductance of the coil is needed. The dynamic

inductance is de�ned

Ldyn =
@	

@i
(42)

where 	 is the vector of the �ux linkages and i is the vector of the coil currents. The �ux

of the coils is calculated from the solution of the vector potential according to Eq. 44.

�k =
I
Lw

A � dLw = l(A1k � A2k) (43)

	k =
NwX
j=1

�j = l

NwX
j=1

(Aj1k � Aj2k) (44)

where Lw is the winding path, l is the axial length of the bearing, �k is the �ux of the kth

coil, A1k and A2k are the vector potentials on the positive and negative sides of a winding
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Table 1: Main dimensions of the test machines

Main dimensions of the AMB's of the test machines

Test machine 1 Test machine 2

Weight of rotor [N] 300 200

Stator diameter [mm] 164 135

Core length [mm] 45 45

Rotor diameter [mm] 93 54

Shaft diameter [mm] 64.3 40

Geometric air gap [mm] 0.4 0.5

Magnetic air gap [mm] 0.44 0.57

Number of turns per pole 100 100

Width of teeth [mm] 18 10

Slot to slot diameter [mm] 127 113

Thickness of stator lamination [mm] 0.5 0.5

Thickness of rotor lamination [mm] 0.35 0.35

Sheet material Bochum V270 Bochum V270

Conductivity of the material [S] 1:55 � 106 1:55 � 106

turn of coil k, respectively. Nw is the number of turns in the winding. The inductance

matrix is calculated based on the numerical derivatives of Eq. 42. In the same manner, the

current sti�ness and position sti�ness matrices are calculated by numerical derivatives from

Eqs. 45, 46.

h f =
@F

@i
(45)

c =
@F

@p
(46)

2.3 Experiments

2.3.1 Test setup of force measurement

The measurements were done with two motors equipped with active magnetic bearings. The

�rst one is a high-speed test machine and the other one is a high-speed electric motor for

compressor applications. The main parameters of the radial bearings are shown in Table 1.

In the force measurements, a pulley system was attached to one end of the shaft. A

strain gauge was included in the pulley system to measure the applied load. The accuracy

of the force measurement was 0.5 % � 2 N. The applied force at the bearing position was
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then calculated and the e�ect of the mass of the rotor was subtracted in order to solve the

magnetic bearing force. The load was applied in the direction of one coordinate axis, both

the x and y directions were measured. The bearing currents were measured with separate

shunt resistors and voltage meters.

The �rst task in the measurement process was to �nd the central position for the rotor.

This could be found by mounting the test machine vertically and moving the rotor until the

current references in the radial directions were zero. In practice, such a situation is hard

to �nd due to the hysteresis in the magnetic circuits. At every radial coordinate axis, the

rotor was moved into a position were the current reference varied in the neighbourhood of

zero when an applied force in a positive direction was removed and then an applied force in

a negative direction was removed. This position was considered to be the central position.

After that the wanted position and eccentricity was tuned from the electronics and measured

also by micrometers. All the measurements were done following the same procedure. First,

the maximum load was applied to the bearing and then the load was gradually decreased

towards zero. In this way, the e�ect of hysteresis on the slope of force-control current curve

was controlled. Thus, hysteresis produces a small o�set to the force-control current curve.

However, this o�set is small compared to the range of interests of this work and the o�set is

not shown in the results.

2.3.2 Test setup of dynamic inductance measurement

The dynamic inductance measurements were done with the second test machine i.e. the high-

speed compressor. In the measurements, the position of the rotor was �xed with mechanical

wrenches, and the bearing controller was turned o�. However, the position of the rotor was

measured from the electronics. The dynamic inductance measurements were done with a

single radial magnetic bearing coil. The measurement con�guration is shown in Fig 8. A

DC-current and a small AC-component of 50 Hz is supplied into the coil. The current is

measured by a shunt resistor RS and the voltage over the coil is measured. From the AC-

component of the measured voltage the e�ect of coil resistance is reduced according to Eq.

47.

Thus, the inductive component of the measured voltage is calculated and the dynamic

inductance can be solved according to Eq. 47.

Ldyn =
uAC � iACR

j!iAC
(47)

where iAC, is the phasor of the AC-current, uAC is the phasor of the AC-voltage, RC is

the resistance of the coil, ! is the angular frequency of the AC-components and Ldyn is the

dynamic inductance. The measurements were done with DC-currents varying from 0 to 3.3

A. The airgap was �xed to 0.188 mm.
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Figure 8: Measurement system of dynamic inductance of radial magnetic bearing coil.

2.3.3 Veri�cation of the �nite element calculations

In order to verify the �nite element method, the force vs. control current characteristics were

measured with two di�erent bias currents. Fig. 9 presents the force measurement of test

machine 1 with bias currents of 1.4 A and 2.0 A. In the same �gure, the force calculations

made by FEM and linear method of Eq. 1 are compared.

Fig. 10 presents the comparison of the measured and calculated forces of test machine 2.

In Table 1, the magnetic and geometric air gaps are not equal. The value of the magnetic air

gap is estimated so that the measured and calculated forces are almost equal in the linear

region. In test machine 1, the di�erence is estimated as 0.04 mm. In test machine 2, the
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Figure 9: Force vs. control current characteristics of test machine 1.



31

−1 0 1 2 3 4
−100

0

100

200

300

400

500

Measured

FEM

Linear

Bearing force [N]

Control current [A]

(a) Bias current is 2.0 A.

−1 0 1 2 3 4
−100

0

100

200

300

400

500

Measured

FEM

Linear

Bearing force [N]

Control current [A]

(b) Bias current is 3.0 A.

Figure 10: Force vs. control current characteristics of test machine 2.

nonmagnetic layer is estimated to be 0.07 mm. There are some reasons why the geometric

and magnetic air gap are not equal. First, when manufacturing the bearing steel sheets by

punching the magnetic properties of the sheet may change in a narrow layer. Typically,

the nonmagnetic layer due to punching is 0.05-0.1 mm. Secondly, the inner radius of the

stator is di�cult to measure accurately. The two-dimensional model neglects also the e�ects

of the end-�elds. In FEM calculations, the length of the bearing was assumed to be the

core length plus two times the radial air gap length. In this work, the main interest is

the nonlinear region of the magnetic circuit. Thus, the adjustment of the magnetic air gap

can be reasoned. In practice, due to manufacturing tolerances and thermal enlargements,

even larger variations of the air gap have to be considered when designing AMBs for series

production. Fig. 11 presents the force vs. control current characteristics of test machine 1

with eccentricities of 110 �m and -110 �m. This corresponds to relative eccentricity of 25

% .

Positive eccentricity means that the rotor has been moved in the direction of the bearing

force. In the linear region, the di�erence between the FEM model and the linear method is

less than �ve percent. The di�erence can be explained by the �nite reluctivity of the iron,

which is modelled in FEM, but in the linear model reluctivity is assumed to be in�nite. As

expected, the linear model fails when the magnetic circuit is saturated. These measurements

verify that the accuracy of the FEM model in the highly saturated �ux densities is about

7 to 8 %. Both methods of the force calculation from a FEM �eld solution (Eq. 38 and

40) give results within 0.1 %, at relative eccentricity of 25 % and identical results, at zero

eccentricity. The accuracy of the FEM model is suitable for the purpose of AMB design.
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Figure 11: Force vs. control current characteristics of test machine 1 at eccentricities of 110

�m (upper curves) and -110 �m (lower curves) and bias current of 2.0 A.

The same measurements are used for verifying the current and position sti�ness calcu-

lations. The current sti�ness hf is the derivative of the force-control current curve. As the

measurements were done by �rst applying the maximum load and then decreasing the load,

the measurements follow the upper range of the hysteresis loop. A single valued monotonic

reluctivity curve is used for FEM calculations. This curve is derived from the initial re-

luctivity curve and does not strictly correspond to the upper curve of the hysteresis loop.

However, the hysteresis is small compared to the whole range of reluctivity curve and the

comparison between calculated and measured sti�nesses is reasonable.

Fig. 12(a) presents the measured and calculated current sti�nesses of the �rst test ma-

chine, at the bias current of 2.0 A. The deviation between the measured and FEM values is

less than ten percent at low values of control current. This deviation is largely caused by the

uncertainty of the magnetic airgap. In the saturation region, the deviation is 10-15 percent

as expected from the analysis of the force measurements. The linear model of Eq. 1 shows

that when the control current is larger than the bias current (the current in the other coil

is zero), the current sti�ness is no longer constant but increases approximately linearly with

the control current and bearing force.

The position sti�ness c is measured from the di�erence of two force-control current curves.

In the �rst one, the rotor is moved 50 �m to the positive direction and 50 �m to the negative

direction in the second one. The force di�erence at every control current is divided by

the position di�erence of the two measurements to calculate the position sti�ness at zero
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Figure 12: Measured and calculated parameters vs. the control current of test machine 1.

Bias current is 2.0 A.

eccentricity. However, the position sti�ness depends nonlinearly on the displacement of the

shaft, as can be seen from Eq. 3. Thus, the method of measurement is not exactly accurate.

For this reason, in Fig. 12(b) the measured results with FEM calculations done exactly as

in the measurements are compared. In addition, the FEM calculations of the exact position

sti�ness are compared. As can be seen, the di�erence between the exact calculated value

and the calculated value as measured is almost negligible. The deviation between measured

and calculated values are around ten percent.

The dynamic inductance Ldyn was measured from the second test machine. In Fig. 13,

the comparison between calculated and measured values is shown.

The deviation is at its largest where the magnetic circuit begins to saturate due to

the DC current. This is due to the hysteresis of the magnetic circuit. As a result, the

measured dynamic inductance depends on the amplitude of the AC component. During the

measurement, the amplitude was chosen as follows. In the linear region of the magnetic

circuit, the amplitude was chosen large enough so the measurement cycle would not follow

a small minor hysteresis loop. In practice, this means amplitudes of the same size as the

DC current. This con�guration would correspond to the calculation where a single valued

monotonic reluctivity curve is used. In the heavily saturated region, the smallest measurable

amplitude is used because the e�ect of hysteresis is negligible. In the region between the

two extremes, the amplitude was chosen to be in between the minimum and maximum

amplitudes. This caused the measurement cycle to follow an arbitrary minor loop and as the

calculations are done with a single valued reluctivity curve, the deviation between measured



34

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

Measured

FEM

Linear

Dynamic inductance [mH]

Current [A]

Figure 13: Measured and calculated dynamic inductances Ldyn of test machine 2, the air gap

is 0.188 mm.

and calculated values is relatively large. However, in this work most interesting is the whole

range of the linearised parameters. As can be seen, the agreement between measured and

calculated dynamic inductances at the ends of the region is good. Thus, the stationary

nonlinear FEM is a suitable method for determining the dynamic inductance of radial active

magnetic bearing. The linear model estimates the dynamic inductance to be constant and

this value deviates from the measured and FEM values of zero DC-current. This happens

because the linear model neglects the magnetomotive force needed to magnetise the iron

circuit.

One can conclude that the linear magnetic circuit model does not satisfactorily predict

the performance of radial active magnetic bearings. The nonlinear FEM model of the radial

AMB is accurate enough in the nonlinear region.
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2.4 Linearised parameters in radial AMB

2.4.1 Calculated linearised parameters

In this section, the current sti�ness hf , the position sti�ness c and dynamic inductance

Ldyn of test machine 2, calculated by FEM, are presented at several operation points. The

sti�nesses are calculated by applying a �nite di�erence either in the currents of the coils or

in the position of the rotor and calculating the di�erence in the force. The calculation is

compared with the linear model of Eq. 1.

Fig. 14(a) shows the current sti�ness at three bias currents and zero eccentricity as a

function of the bearing force. As can be seen, the current sti�ness at zero force depends

almost linearly on the bias current, as in Eq. 3. At zero force, the di�erence between linear

and FEM model is due to the �nite reluctivity of iron in the magnetic circuit and on the

other hand the �ux fringing in the neighbourhood of the airgap. The e�ective airgap area

is somewhat larger than the geometric airgap and the e�ect of �nite reluctivity and the �ux

fringing almost cancel each other at zero force. Due to the saturation, the current sti�ness

drops and is almost independent of the bias current at large bearing loads. As expected, the

linear model totally neglects the saturation.

Fig. 14(b) presents the position sti�ness c at the same operation points as in Fig. 13. At

zero force, the position sti�ness depends quadratically on the bias current as expected from

Eq. 3. However, the position sti�ness saturates and decreases with an increasing bearing

force. At larger bias currents, the position sti�ness remains somewhat larger also at high

bearing forces. This is because the perpendicular magnets have an e�ect on the position
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Figure 14: Calculated parameters of test machine 2 as a function of the bearing force at three

bias currents and zero eccentricity.
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Figure 15: Calculated parameters of test machine 2, at the bias current of 2.0 A and eccen-

tricities of 275 �m and -275 �m.

sti�ness. Thus, the larger the bias current in the perpendicular magnets is, the larger the

position sti�ness at high bearing loads.

In Fig. 15(a) and Fig. 15(b), the current sti�ness hf and the position sti�ness c are

shown as a function of the bearing force, at two eccentricities and with the bias current

of 2.0 A. When the control current is less than the bias current, the current sti�ness is

not constant anymore as it is at zero eccentricity when neglecting the saturation. With a

positive eccentricity, the current sti�ness increases as the �ux density increases in the magnet

of the smaller air gap, and �ux density decreases in the magnet of the larger air gap. With

the negative eccentricity the situation is opposite. The increment of the position sti�ness,

when the bearing is loaded, is larger with the positive eccentricity than with the negative

eccentricity. The eccentricity of 275 �m corresponds to relative eccentricity of 50 %.

Fig. 16(a), 16(b) presents the dynamic inductance Ldyn of the �rst test machine. The

dynamic inductance is calculated for the positive magnet at the bias current of 1.0 A, 2.0 A

and 3.0 A. The inductance is almost independent of the bias current, but drops, due to the

saturation as the bearing force and current of the magnet increase. In Fig. 16(a), 16(b) no

end winding e�ects are taken into account.

So, both the current sti�ness and position sti�ness decrease as the bearing force increases.

The ratio of the current and position sti�ness is also an important factor when considering

the control system. Fig. 16(a), 16(b) presents this ratio at the bias currents of 1.0A, 2.0 A,

3.0 A and zero eccentricity, calculated with FEM. As can be seen, this ratio decreases as the

bearing load increases. Thus, at certain load, the designed control system does not operate

satisfactorily anymore and the stability can be lost.

By calculating the linearised parameters at di�erent operation points, the designer can
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Figure 16: Dynamic inductance and the sti�ness ratio of test machine 2 at the bias currents

of 1.0 A, 2.0 A , 3.0 A and zero eccentricity as a function of the bearing force.

simulate the performance of the designed control system with the dynamic model of Eq.

6 and get an estimation of the performance of the AMB. Anyhow, the wide variation of

the linearised parameters at the operation range of the bearing should be noticed. For test

machine 2, the current sti�ness has values from 250 to 60 N/A, position sti�ness from 0.3E6

to 1.6E6 N/m and the dynamic inductance from 25 to 8 mH at a bias current of 2.0 A.
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2.4.2 E�ect of the parameter variations on the bearing dynamics

As was seen in the previous section, the parameters of the magnet actuators change, due to

eccentricity and saturation of the magnetic circuit. Other reasons for parameter variations

could be, for example, the temperature di�erences in the stator and rotor and centrifugal

stresses in rotor laminations at high rotational speeds. These phenomena change the airgap

of the bearing and therefore the parameters change. Thus, the robustness of the controller

against these variations is of primary importance, both for stability and for performance.

In this section, the e�ect of the variation of actuator parameters due to eccentricity and

nonlinearity of magnetic circuit on the bearing dynamics are studied. The emphasis is to

analyze the e�ects, not to synthesize appropriate controllers. This study is divided into three

categories. First, one dimensional case is studied. Second, rigid body modes of nonrotational

rotor and last the bending modes of the rotor are studied. In this section, test machine 2 is

studied.

One dimensional e�ects

In this case, the AMB system of a pointmass is studied. The simple case clearly demonstrates

the e�ect of the magnetic saturation on the bearing dynamics and gives the reader an intuitive

understanding of the e�ect. The controller is PID-controller with a second order low pass

�lter, whose parameters are shown in App. A.1. The pointmass corresponds to the reduced

mass of the test machine two in D-end bearing.

In the transfer functions of the point mass system the following actuator model is used

�F b = hT
f �i c + cx (48)

�u c = sLdyn�i c +R�i c + sh fx (49)

h f = [hfu hfd]
T (50)

Ldyn =

2
4 Ldynu 0

0 Ldynd

3
5 (51)

where hfu and hfd are the current sti�nesses of the upper and lower magnets, Ldynu and Ldynd

are the dynamic inductances of the upper and lower magnets. c is the position sti�ness, R

is the diagonal resistance matrix. �uc and �i c are the control voltage vector and control

current vector. m is the reduced mass of the rotor corresponding to D-end bearing.

Fig. 17(a) presents the Nyquist diagrams of the one dimensional system with the nominal

bias current of 2.0 A. Only the positive frequnecies of the diagram are drawn. The fact that

AMB is open loop unstable is clearly seen as the imaginary part of the diagram is negative

at low frequencies. For the closed loop stability one encirclement anticlockwise around point
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Figure 17: Diagrams of the one dimensional model corresponding to the D-end of test ma-

chine 2.

-1 is necessary. The diagrams are plotted at the bearing loads of 0, 150, 300, 450 and 600 N.

The circles in the diagram are at the frequencies of 10 and 100 Hz. It is seen that the system

remains stable until the bearing load is around 600 N. As the bearing load is increased,

the gain of the loop decreases as the magnetic circuit saturates and the bearing parameters

change. The primary cause is the decrement of the ratio of the current and position sti�ness.

The linearised model estimates instability, when the inverse of the ratio of the current and

position sti�ness is as large as the proportional gain of the controller.

Fig. 17(b) shows the root locus diagrams of the closed loop as a function of the bearing

force, with bias currents of 1.0, 2.0 and 3.0 A. The poles are adequately damped until the

sti�ness ratio is in the neighborhood of the corresponding inverse of the proportional gain.

As soon as the load is so large that the current �ows only in the other coil, the system

behavior is almost independent of the bias current. The main di�erence is that at high

bias currents the position sti�ness remains higher at high loads. This happens because the

magnets of the y-direction have a small e�ect on the position sti�ness of the x-direction.

Thus, the stability limit of the static force is lower at higher bias currents.

Rigid body mode e�ects

In this section, the rigid body modes of one coordinate plane are studied. It means that

the nonrotational rotor is considered and the gyroscopic coupling is neglected. First, two

special cases of bearing load combinations are studied. The bearing load is applied to either
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the center of mass (CM) or to the D-end bearing. If the load is at the CM, the bearing

loads are similar at both ends of the rotor and the bearing parameters are the same. If the

load is at the D-end, only the parameters of the D-end bearing change. The controller is

PID-controller with 2nd order low pass �lters and a small cross coupling between the drive

end and the nondrive end channels. The parameters of the controller and the rotor model

are presented in Apps. A.2, B.1.

The state space model of the system can be easily formed from the rotor model of Eqs.

8 � � � 14 and from the following actuator model.

�F b = hT
f �i c + cp (52)

�uc = sLdyn�i c +R�i c + sh fp (53)

hT
f =

2
4 hfuD hfdD 0 0

0 0 hfuN hfdN

3
5 ; c =

2
4 cD 0

0 cN

3
5 (54)

Ldyn =

2
6666664

LdynuD 0 0 0

0 LdyndD 0 0

0 0 LdynuN 0

0 0 0 LdyndN

3
7777775
;p = [xD xN]

T (55)

where the linearised parameters are the same as in Eqs. 50 � � � 51 with the exceptions that

the parameters may have di�erent values at D- or N-end of the machine. �F b is the vector

of control forces in both ends of the rotor.

Fig. 18(a) presents the root locus diagram of the closed loop system as a function of the

bearing force, at the nominal bias current of 2.0 A, when the bearing load is applied to the

CM. In this case, the rigid modes remain the same and the poles of the cylindrical mode move

towards origo. This is equivalent to the one dimensional case. The conical mode remains

well damped until the gain of the control loop is so low that the eigenfrequency of the mode

is in the neighborhood of the integrator bandwidth. The load at which this linear system

becomes unstable is 455 N at both ends. It is worth noticing that the cross coupling in the

controller between N- and D-ends decrease the gain of the control loop, thus without cross

coupling the system would tolerate even higher static forces. However, overall performance,

considering resonances and damping, is superior with the cross coupling included.

In Fig. 18(b) the load is applied only to the D-end. The poles remain properly damped

through a larger range than in the previous case. As the bearing system becomes asym-

metrical, due to this loading, the rigid body modes are conical modes with asymmetrical

amplitudes in the N- and D-end. At this loading, a larger static force range is achieved than

in the previous case. This happens due to the fact that the conical mode is stabilized by

the nominal N-end bearing. The stability limit is 555 N at D-end. These stability limits are

purely calculational and based on this linearized model.
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Figure 18: Root locus diagrams of test machine 2 with respect to a bearing load. The bias

current is the nominal 2.0 A.

Fig. 19(a) presents the root locus diagram as a function of the eccentricity at the bias

current of 2.0 A. The control currents are chosen so that the bearing force is zero at every

eccentricity. The relative eccentricity is from zero to 60 percent. In practice, larger eccen-

tricities are unlikely due to the fact that the retainer bearings limit the mechanical airgap.

As can be seen, eccentricity has a small increasing e�ect on the resonance frequency of the

bearing system. This is due to an increment in the ratio of current and position sti�ness and

in the current sti�ness. A more pronounced e�ect of the eccentricity is the reduced damping

of the system. This is almost solely due to the variation of the dynamic inductance. The

majority of the current sti�ness, in an eccentric case, is from the magnet where the airgap

is smaller. Then the dynamic inductance of that magnet is larger as well. This causes ad-

ditional phase lag in the current control circuit which can be seen in the closed loop poles.

However, at large eccentricities, the system is still quite well damped. This e�ect can be

diminished by increasing the gain of the current control loop.

Fig. 19(b) shows the root locus diagram as a function of the bearing load, at the relative

eccentricity of 50 percent. The bearing force range is from -550 N to 650 N. The eccentricity

is in the direction of positive load. In the negative loads, the behavior of the system is

dominated by the magnet with large airgap. Thus, both the sti�nesses have relatively small

values and the imaginary parts of the poles are quite small. Also, the inductance is relatively

low. At zero bearing force, the poles are not equally damped as in the nominal position as

was seen in Fig. 19(a). At positive loads, the performance is dominated by the magnet

with a small airgap. Thus, the sti�nesses are large resulting in a large resonance frequency

and the inductance is large causing the damping to be at its minimum. Above 260 N the
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magnetic circuit begins to saturate, thus lowering the resonance frequency. The dynamic

inductance drops from 40 mH at 260 N to 15 mH at 400 N resulting in an increment in the

damping of the poles. The stability limits are -400 N and 510 N.

These special cases do not justify to draw conclusions about stability and performance

at arbitrary bearing load and eccentricity combinations. However, these cases indicate the

possibility to extend the operation range of the AMB system into the saturation region with

the simple linear controller topology.

Bending mode e�ect

Fig. 20 shows sti�ness range of the D-end bearing when the bearing loads at the both

ends vary from zero to 400 N. As the bearing force increases, the magnitude of the sti�ness

decreases because the magnetic circuit saturates. Moreover, the phase of the sti�ness varies

several tens of degrees, depending on the frequency, as the force is increased. At the higher

frequencies, this is due to the decrement of the dynamic inductance as the bearing force

is increased. The range from 600 Hz to 1400 Hz is especially critical as the �rst bending

mode of high-speed machines usually lies in that range. For example, at 1190 Hz, the phase

varies from -200 degrees close to -180 degree as the force increases from zero to 400 N. In

this controller, a low pass �lter is used to drop the phase of the sti�ness curve below -180

degrees at a frequency which is lower than the �rst bending critical speed. This stabilizes the

�rst bending mode. As the force is increased, the phase of the actuator rises and the phase

margin can be lost and the bending mode is destabilized. In this case, the �rst bending mode

(1192 Hz) is almost destabilized. On the other hand, in the model the internal damping of
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Figure 19: Root locus diagrams of test machine 2. The bias current is the nominal 2.0 A.
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the rotor is neglected, which in practise increases the stability margin. Also, the magnitude

of the sti�ness is higher at larger bearing forces at high frequencies. This is also due to the

strong nonlinear property of dynamic inductance.

The linearized parameters for the dynamic model of AMBs at di�erent operation points

can be accurately determined by FEM. Thus, the designer of the control system has a set of

parameters at every operation point and he can estimate the performance of the controller

at di�erent bearing loads, eccentricities and air gaps and check the local stability in the

neighborhood of the operation point.

For the design point of view, one can conclude that the choice of the bias current is

quite free and almost independent of the static load capacity. It is not necessary to use

a large bias current to achieve large sti�ness either, as this can be accomplished by the

controller. On the other hand, if a large bias current is chosen, the current sti�ness varies

at a large range when the magnetic circuit saturates. This is not preferred when designing

the control system. In order to minimize the current sti�ness variation, one should choose

the bias current in such a way that at zero bearing force the current sti�ness is not larger

than the maximum current sti�ness. This maximum is approximately at the point where

the �ux density at the tooth (and airgap) corresponds to the �ux density value where the

material begins to saturate. In addition, in applications where the low-pass �lters are used

to stabilize the rotor-bending modes, a large bias current increases the phase of the control

loop already at small DC-loads, thus endangering the stability of the bending mode. On the
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other hand, if one chooses a small bias current value, the position sti�ness at zero bearing

force is small, compared with the maximum value of the position sti�ness. Thus, the classical

way of choosing the bias current to produce an airgap �ux density which is half of the �ux

density where the material begins to saturate is valid and an appropriate way. However, it

should be noticed that bearing system is not very sensitive to the bias current value as long

as the bias �ux density is at a reasonable range 0.3 T< Bbias <0.6 T. Also, when the bearing

should operate at the saturation region, the system is almost indi�erent to the bias current

value, assuming the bias current is within a reasonable range.

Another important design factor which a�ects the linearized parameters is the airgap.

In series production of AMB machines, one should choose the radial length of the airgap in

such a way that the relative variations of the airgap are reasonable. The main sources of the

variations are, for example, thermal enlargements, manufacturing tolerances and centrifugal

stresses caused by high rotational speeds. As can be seen from Eq. 2 the current sti�ness

is inversely proportional to the square of the airgap and the position sti�ness to the cubic

of the airgap. The dynamic inductance is proportional to the inverse of the airgap. The

variations of the airgap should be less than ten percent. Then the variation of the current

sti�ness is less than twenty percent and the variation of the position sti�ness less than thirty

percent at the nominal point. It should be noticed that in the saturation region the iron

part of the magnetic circuit plays a larger role than in the linear region. Thus, the e�ect of

airgap variations is at its largest in the linear region.

In this analysis, the optimal topology of the controller, when extending the operation

range into the saturation region, is left as an open question. However, as the main e�ects

are the gain variations, a relatively simple gain scheduling controller would result in a wide

operation range of the AMB system. The gain of the controller would depend on the control

current as well as the current feedback coe�cient.

Another possibility to reduce the e�ects of the nonlinearities would be a �ux controller.

This can be realised using a simple �ux measurement coil [Brunet 1988], [Hara et al. 1996].
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2.5 Cross coupling in radial AMB

2.5.1 Introduction to cross coupling phenomena

By cross coupling it is meant that a control action in x-direction also causes a force in the

y-direction. In order to realize the importance of the cross coupling in the magnetic bearing

and high-speed rotor system, the equation of motion of a rigid high-speed rotor is studied.

M rot�qX + 
Grot _qY +K sti�qX = 0 (56)

M rot�qY � 
Grot _qX +K sti�qY = 0 (57)

where M rot is the mass matrix, Grot describes the gyroscopic coupling. The solution of

this equation is stable if the sti�ness matrix K sti� is positive de�nite and symmetric. Thus,

when there are diagonal positive bearing sti�nesses the system is stable with any positive

damping. However, when there is cross coupling between the bearing forces (or any other

cross coupling) the stability can be lost and one has to study the eigenvalues of the system

to guarantee stability. This problem is well known for people involved in rotordynamics

of turbomachinery, where the origin can be, for example, �uid pressure forces around a

turbine wheel, centrifugal impeller or a �uid seal [Vance 1988]. In high-speed technology, the

compressors manufactured so far have been of low pressure ratio and the radial compressor

forces are relatively low [Antila et al. 1996]. Thus, cross coupling due to the compressor

forces are negligible.

When designing an AMB control system, it is usually assumed that the radial channels

in x and y-direction interfere with each other only through the gyroscopic coupling at high

speeds. This is an almost valid assumption as far as the bearing magnets operate in the

neighborhood of the nominal point, that is with relatively low control currents and low

eccentricities. Thus, the control design process is usually performed assuming the system to

have negligible cross coupling in xy-plane and afterwards checking the cross coupling e�ects,

such as gyroscopic coupling. In the applications where the cross couplings are small, a

control topology without cross coupling the x- and y-planes produces, if not totally optimal,

at least satisfactory results. However, when extending the operation range into the saturation

region, the cross coupling between the x and y channels may become signi�cant. This would

be undesirable from the control point of view, because control in x-direction would also cause

an unmodelled force in y-direction.

In this study, the origin of the cross coupling is visualised by �eld plots. The e�ect of the

operation point on the cross coupling parameters is studied, that is the cross coupling of the

current to force transfer function and the cross coupling of the position sti�ness. Based on

these studies, the importance of cross coupling phenomena is deduced. Finally, some facts
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to aid the design process of the magnetic bearings are concluded. The linearised parameter

matrices in one end of the machine are

Ldyn =

2
6664
Ldyn11 � � � Ldyn14

...
. . .

...

Ldyn41 � � � Ldyn44

3
7775 ;R =

2
6664
R1 � � � 0
...

. . .
...

0 � � � R4

3
7775 (58)

hT
f =

2
4 hfx1 � � � hfx4

hfy1 � � � hfy4

3
5 ; c =

2
4 cxx cxy

cyx cyy

3
5 (59)

where R is the diagonal resistance matrix, Ldyn is the 4x4 dynamic inductance matrix, h f

is the 2x4 current sti�ness matrix, c is the 2x2 position sti�ness matrix,

So far, only the classical NNSSNNSS pole con�guration, usually used in conventional

eight pole bearings, is considered. In this section, the NNSS and NSNS pole orders are

compared. It should be noticed that the saturation e�ects on the parameters and dynamics

presented in the previous section are qualitatively similar for both con�gurations. The

main di�erence is that the saturation happens at di�erent bearing loads depending on the

geometry of the bearing and the pole con�guration. Fig. 21 presents the bearing force of

test machine 2 with bias-current of 2.0 A in both x- and y-directions. Both NNSS and NSNS

pole con�gurations are shown. Two cases for both con�gurations are shown. In the �rst one,

the solid shaft of the bearing is modeled with solid iron corresponding to a nonrotational

rotor. The second one corresponds to a rotational rotor. In this case, the shaft is modeled

as air because when the rotor rotates eddy currents push the �ux out of the solid shaft. The

�gures are made in such a way that the control currents in x- and y-direction are equal at

the corners of the force curves. The curves correspond to maximum currents of 3.5 A, 5.0

A, 6.5 A and 8.0 A.

Fig. 21 clearly demonstrates the superiority of the NSNS -pole con�guration over NNSS

-con�guration. At small bearing loads, the force curves remain square and the pole con-

�gurations have identical properties. In NNSS con�guration for nonrotational rotor, there

is some cross coupling already at maximum currents of 5.0-6.5 A. The situation becomes

more serious for rotational rotor. On the other hand, in the NSNS -con�guration the cross

coupling remains small also for rotational rotor. The reason can be demonstrated by the

�eld plots of the bearing.

Fig. 22 presents the equipotential lines of vector potential (a1) of both con�gurations

for rotational rotor. The currents of the operation point are 4.0 A and 6.0 A in the positive

x and y coils, respectively. Also, the corresponding control �elds of the operation point

are presented. These control �ux density plots (�B c) are made by adding a small control

current to the x coil current of the operation point and calculating the vector potential

(a2). The control �ux density can be calculated from the di�erence of these solutions
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(a) NNSS -pole con�guration, shaft modeled
as iron.
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(b) NSNS -pole con�guration, shaft modeled
as iron.
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(c) NNSS -pole con�guration, shaft modeled
as air.
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(d) NSNS -pole con�guration, shaft modeled
as air.

Figure 21: Curves of the tip of the force vector. The curves are drawn in such a way that

the control current is constant (minimum or maximum) in one direction and in the other

direction the control current varies from the minimum to the maximum value. The curves

are drawn for test machine 2 and correspond to absolute maximum control currents of 1.5

A, 3.0 A, 4.5 A and 6.0 A. Eccentricity is zero and the bias-current is 2.0 A.

(�B c = r� (a2 � a1)). Fig. 22 shows that the stator yoke and the rotor lamination are

already quite saturated with the above currents in NNSS con�guration. Thus, the control

�ux cannot easily �ow through these parts anymore. A part of the control �ux �ows through

the teeth of the negative y-magnet and another part through the other tooth of the positive

y-magnet. However, this control �ux density is opposite to the �ux density of the operation

point and the net e�ect is not only increasing force in x-direction, but also the decreasing

force in y-direction. In the NSNS -con�guration, the �ux �ows quite evenly through poles

and the magnetic circuit is not severely saturated. The control �ux does not �ow through

the positive y-magnet and the cross coupling is negligible.
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(a) Field plot of the operation point, NNSS
-pole con�guration, shaft modeled as air.

(b) Control �eld plot, NNSS -pole con�gu-
ration, shaft modeled as air.

(c) Field plot of the operation point, NSNS
-pole con�guration, shaft modeled as air.

(d) Control �eld plot, NSNS -pole con�gu-
ration, shaft modeled as air.

Figure 22: Cross section of test machine 2. The equipotential lines of the vector potential of

the operation point and the control �eld. The currents of the operation point are 4.0 A and

6.0 A in positive x- and y-coils, respectively.
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The bene�ts of the NSNS-con�guration is obvious, when the number of poles in the

stator and rotor yokes are studied. The number of poles is double the number of the NNSS-

con�guration. Therefore, the yokes can be made thinner in NSNS-con�guration, still retain-

ing the electromagnetic properties. This is an important aspect for the sake of the high-speed

technology. One of the major measures determining the bending critical speeds of the rotor,

is the diameter of the solid shaft inside the rotor lamination of the radial bearing. Because

the NSNS-con�guration allows the rotor lamination to be made thinner, the designer has a

greater latitude to adjust the bending critical speeds.
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2.5.2 Cross coupling parameters

Fig. 23 presents the ratio of cross coupling position sti�ness and diagonal position sti�ness

as a function of control currents in x- and y -direction. For NNSS -con�guration, the ratio

is positive. Thus, a small displacement in positive x-direction not only increases the force in

x-direction, but also decreases the force in y-direction. The absolute value of the maximum

is 25 percent at the current of 6.5 A in the positive y-coil. NSNS -con�guration shows only

maximum amplitude of about 3 percent for position sti�ness ratio.

It turns out that the cross coupling in the position sti�ness has neglible e�ect on the

bearing dynamics. This can be reasoned when studying the equation of motion of a pointmass

in Laplace domain.

(s2M � c)pT = hT
f �i c + F (60)

p = [x y]T (61)

where M is the diagonal mass matrix of the pointmass, c is the position sti�ness matrix,

hT
f is the current sti�ness matrix and F is the force vector due to any other forces. For

a properly designed AMB system, the contribution from the current sti�ness is dominant,

especially at high frequencies. From Eq. 60 it is seen that the position sti�ness components

are negligible compared to the diagonal mass matrix components already at relatively low

frequencies. For test machine 2 at 100 Hz, the mass matrix contribution is 4-8 times larger

than the position sti�nesses. From now on, the cross coupling in control current to force

transfer function is studied.
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(a) NNSS -pole con�guration.

0 1 2 3 4 5 6 0

2

4

6

−0.05

0

0.05

i
cy

 [A]

c
xy /c

xx

c
yx /c

yy

i  [A]

(b) NSNS -pole con�guration.

Figure 23: Ratios of the cross coupling position sti�ness and the diagonal position sti�ness.

The relative cross coupling parameters.
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The bearing control forces can be written based on the linearised model

�F b = hT
f (kcfI + sLdyn +R)�1(kcf�i ref � shT

f p) (62)

�i ref = [�iref1 � � � �iref4]
T (63)

To simplify the model, the velocity induced term shT
f p can be neglected for two reasons. First

of all, its magnitude is small compared with the current reference term kcf�i ref . Secondly,

it has the phase lead e�ect similar to the derivative term of the controller and so the e�ect is

stabilising. Thus, without sacri�cing the generality, the term can be neglected and bearing

control force can be written

�F b = hT
f (kcfI + sLdyn +R)�1kcf�i ref (64)

Typically, the current control loop (kcf) is sized clearly faster than the position control loop.

Keeping that in mind, it can be concluded that the major cross coupling e�ects are due to

the cross coupling in the current sti�ness matrix hT
f .

Fig. 24 shows the current sti�ness parameters of test machine 2, with both pole con-

�gurations. The curves show the ratio of the cross coupling current sti�ness, hfxy or hfyx,

and diagonal current sti�ness, hfxx or hfyy. For NNSS -con�guration, the absolute maximum

of the current sti�ness ratio is at around a point where the control current in x-direction

reaches the value of bias current. So, in the negative coil the current becomes zero. Thus, a

small increment in the current of the positive x-coil decreases the force in y-direction. This

situation is demonstrated in Fig. 22. The magnitude of the cross coupling increases as the

currents and the saturation increase and, for example, at the current of 6.5 A in the positive

y-coil it is 40 percent. It is obvious from Fig. 21 that cross coupling is symmetric with

respect to origo. Thus, at negative bearing force in x-direction, the cross coupling is positive

and so on. The same applies also for the NSNS- con�guration but the magnitude is only

about 3 percent at the current of 6.5 A in the positive y-coil.

Fig. 25 presents the same cross coupling parameters at the same operation points as

were presented in Fig. 24 with the exception, that the rotor is displaced to positive x-

and y-direction from the zero eccentricity to 25 percent relative eccentricity, in respect to

mechanical airgap. This is considered to be the largest eccentricity the bearings have to face

in practice. This eccentricity combined with positive bearing forces are considered to be the

worst case scenario with respect to cross coupling phenomena, because at these operation

points the airgaps of dominating magnets are small, thus increasing the parameters, and the

saturation phenomena are stronger than at zero eccentricity.

For NNSS -con�guration, the phenomena are qualitatively the same as in Fig. 24, with the

exception that the symmetry with respect to origo does not exist. The absolute magnitudes
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Figure 24: Relative cross coupling current sti�nesses.
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Figure 25: Relative cross coupling current sti�nesses. The relative eccentricity is 25 % in

positive x- and y- direction.

are about 25 percent higher than at zero eccentricity. For NSNS -con�guration the situation

is a bit di�erent. The ratio of current sti�nesses remains relatively low throughout the load

range. The maximum positive values of around 10 percent are reached at bearing currents

of 0 A in x- direction and 8 A in y-direction. At zero eccentricity, the coupling was negligible

at these loads. The reason for the positive coupling is that the control �ux of the positive

x-magnet �ows through the pole of the positive y-magnet because of the small airgap. In

NSNS-con�guration, these �uxes are in the same direction and the coupling is positive. At

high loads, the negative cross coupling is due to the fact that a part of the control �ux goes

through the poles of the negative y-magnet.
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2.5.3 E�ect of cross coupling on the bearing dynamics

The assumptions presented in the previous section, lead to an uncertainty model of AMB-

system shown in Fig. 26. In this model, the controller is assumed to be the designed

controller GC without any uncertainties. In addition, the position sensors are assumed ideal

and are not drawn. The mechanical rotor model is in practice very precise and has no

uncertainty. The bearing model GB is based on the Eq. 58 at nominal parameter values

with some small modi�cations. The nominal parameter values are values at zero bearing

force and eccentricity. The model is modi�ed so that the nominal position sti�nesses are

included in the rotor model GR. The bearing model has uncertainties due to the parameter

variations shown in the previous sections. These are described by uncertain gain matrix

KB =

2
4 k11 k12

k21 k22

3
5 : The cross couplings are refererred as uncertainties and are included in

KB.

BG GR

-
KB

rotorbearingcontroller

CG

Figure 26: Uncertainty model of the AMB-system.

The e�ect of cross coupling is clearly demonstrated by studying a pointmass system of two

dimensions. In this case all the matrices of the uncertainty model in Fig. 26 except the matrix

KB are diagonal. Thus, the cross coupling can be studied purely based on the uncertainty

matrix. To quantify the e�ects, the response on the rotational control is calculated. The

complex notation is used, in which the real part corresponds to the x-direction and imaginary

part corresponds to the y-direction. Let U be an arbitrary rotational control U = U0e
j� on

the system. Then the relative force response f r in complex notation is calculated as follows

f r = [1 j] KB[
1

2
(U + U

H)
1

2j
(U � U

H)]T (65)

The average force response f ave over the control of one rotation can be used to determine

the cross coupling e�ects

f ave =
1

2�

Z 2�

0
f re

�j�
d� (66)
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Figure 27: Phase of the average force response F ave of test machine 2. The control current

in y-direction is 6.0 A.

=
1

2�

Z 2�

0
[1 j] KB[

1

2
(U + U

H)
1

2j
(U � U

H)]Te�j�d�

=
1

2
U0[k11 + k22 + j(k21 � k12)]

Eq. 66 shows that the cross coupling can be regarded as an additional phase error. The

error is interpreted either as phase lag or phase lead, depending on whether the rotational

mode is forward or backward mode. This interpretation also depends on the sign of the cross

coupling terms.

Fig. 27 presents the phase of the average force response of test machine 2. Both pole-

con�gurations are shown. The cross coupling in NSNS-con�guration is negligible. In NNSS-

con�guration the phase error of eight degree is possible. The main factor is the saturation

of the magnetic circuit as, on the other hand, a reasonable relative eccentricity of 25 % has

a relatively small e�ect.

The phase error in NNSS-con�guration is unlikely to induce instability, provided the

phase margins are reasonable. However, the dynamic properties can be severely impaired.

The obvious conclusion is that when the operation range is extended into magnetic saturation

region, the NSNS-pole con�guration should be used.
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2.6 E�ect of power ampli�er saturation

So far, the e�ects of the static unidealities of the bearing magnets on the bearing parameters

and dynamics have been studied. In this section, the changes of the bearing dynamics, when

the power ampli�er properties are limited, are investigated.

The AMB ampli�er is basically a voltage source driving an inductance. The voltage and

current of the power ampli�er are limited. Thus, at lower frequencies power ampli�er current

limits the bearing force and at higher frequencies the bearing force is limited by the power

ampli�er voltage. In section 1.2.4, it was shown how the dynamic bearing force depends on

the maximum voltage and current of the power ampli�er. This was based on the assumption

of the linearity of the system and is valid for small amplitudes. In a small signal case, the

power ampli�er is qualitatively a �rst order low pass �lter.

At high frequencies and at large signal (current reference) amplitudes, the voltage needed

to drive the wanted current to the coils exceeds the power ampli�er voltage. The power

ampli�er saturates and the coil current and bearing force are distorted from the linear

power ampli�er estimations. This feature has been previously studied by [Maslen et al. 1989,

Satoh et al. 1990, Ahrens and Kucera 1995]. In these studies, the dynamic inductance was

considered to be constant and the deviation of the coil current from the control signal was

studied. The nonlinearity is studied by simulations based on the model shown in Fig. 28.

The nonlinear current-force relationship and the nonlinear �ux-current relationship are also

taken into account. An especially interesting case is what happens to the low frequency

response, when a high frequency component saturates the ampli�er.
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Figure 28: Nonlinear simulation model for analysing the power ampli�er saturation.
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In the simulations, a sinusoidal control current reference iref of varying frequency and

amplitude is supplied to the model. The describing function of the current reference to

the bearing force relationship is calculated and used to study the nonlinear e�ects. The

describing function gh(iamp; !) is the �rst harmonic response of the system and is calculated

as follows.

iref(t) = Real(iampe
j!t) (67)

F b(t) = Real(
1X
n=1

F nbe
jn!t) (68)

gh(iamp; !) =
F 1b

iamphf0
(69)

In this section, the describing function is the relative value with respect to the nominal

linearised current sti�ness hf0, which is 138 N/A.

2.6.1 Large amplitude response

In this section, the high frequency component ihf of the Fig. 28 is zero and only the low

frequency component is fed to the model. In Fig. 29, the large amplitude response of test

machine 2 is presented. The response is calculated at frequencies of 50, 100, 200, 300, 400,

500, 600, 700 Hz and up to 10 A amplitudes. The response is calculated at current feedback

coe�cient kcf of 75 and 375 V/A. In the same �gure, the small signal response is plotted by

the half circle. The normalised curves are the large amplitude response relative to the small

signal response and they describe the deviation from the small signal behaviour.

At small frequencies, at 50 and 100 Hz, the amplitude decreases as the current to force

relationship decreases, due to the saturation in the magnetic circuit. The phase actually

increases somewhat, because the dynamic inductance decreases at large currents. At higher

frequencies, the voltage limit becomes the limiting factor and consequently phase drop oc-

curs. The larger current feedback coe�cient kcf does not improve the situation. In fact,

the phase deviation from small signal response is even larger and begins at considerably

lower amplitudes. This e�ect is a relative phenomenon and the absolute responses at high

frequencies are relatively independent of the current feedback coe�cient.
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(b) kcf=375 V/A.
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(c) Normalised response kcf=75 V/A.
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Figure 29: Large amplitude response gh(iamp; !) of test machine 2. The solid half circle is

the small signal response of a �rst order low pass �lter. The sector lines are drawn with

ten degree steps. The curves are calculated at frequencies 50, 100, 200, 300, 400, 500, 600,

700 Hz. The normalised response is the large amplitude response divided by the small signal

response.
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2.6.2 E�ect of high frequency large amplitude disturbance

The power ampli�er may saturate due to high frequency disturbance. This can happen, for

example, in high-speed machines if the unbalance compensator fails to remove the rotational

synchronous component from the control voltage. Another possibility is an unknown sharp

mechanical stator resonance at unwanted frequency range [Lantto et al. 1996]. In this case,

the power ampli�er saturation is not caused by external disturbance, but is due to the

properties of the AMB system. In any case, the saturation e�ects are identical. In this

section, it is assumed that the high frequency disturbance is at the frequency of 700 Hz.

This is close to the maximum rotational speed of test machine 2. The high frequency input

to the ampli�er is ihf(t) = irelReal(i1e
j2pi700t), where irel is a kind of saturation level and i1

is the amplitude which causes the maximum control voltage uc = umax = 100V . i1 = 1:614A

for kcf = 75V=A and i1 = 0:9477A for kcf = 375V=A.

Fig. 30 presents the actuator response while high frequency disturbance is present. The

saturation levels irel are 0, 1.25, 1.5, 2 and 3. The response is calculated with current feedback

coe�cients of 75 V/A and 375 V/A. The current reference amplitude iref at low frequencies

is 0.2 A, so the response can be regarded as a small signal response. Fig. 30 shows that

considerable phase lag at low frequencies is caused by high frequency saturation. The larger

current feedback coe�cient has a marginally better response, but has no practical signi�-

cance. From this �gure, it can be concluded that high frequency saturation can destabilise

the AMB system, as experienced by [Larsonneur 1990].

Fig. 31 presents the large amplitude response at low frequencies, when high frequency

large amplitude disturbance is present. The responses are calculated at low frequencies of

100 and 200 Hz. The saturation levels irel are 0, 1, 1.25, 1.5, 2 and 3 and kcf = 75V=A.

When the saturation level is above 1.5, the low frequency component reduces the e�ect of

saturation and the phase increases. It is obvious that this type of behaviour makes limit

cycle oscillations possible.
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(d) kcf=375 V/A.

Figure 30: Small amplitude response at low frequency, when high frequency large amplitude

disturbance is present. The saturation levels irel due to the high frequency component are 0,

1.25, 1.5, 2 and 3. The larger the saturation, the lower the curve goes.
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Figure 31: Large amplitude response at low frequency, when high frequency large amplitude

disturbance is present. The saturation levels irel due to the high frequency component are 0,

1, 1.25, 1.5, 2 and 3. kcf = 75V=A. The sets are calculated at one saturation level. The

phase lag increases as the saturation level increases.
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3 Dynamic parameters of radial AMB based on the re-

luctance network model

3.1 Introduction

In chapter 2, the analysis based on the static magnetic �eld theory neglected the e�ect of

eddy currents and hysteresis. The modelling and measuring of these e�ects are extensively

studied by the research scientists of electric machines. An excellent review of recent methods

and results is presented in the report by Saitz [Saitz 1997]. The problem can be tackled in

two ways. The �rst approach is to neglect the eddy currents and hysteresis when calculating

the magnetic �eld distribution, which is usually done by FEM. Afterwards the losses are

calculated by semiempirical loss formulas. In the second approach, the e�ects are taken into

account already when solving the magnetic �eld distribution. Both these methods involve

large numeric calculation tasks as is the case with FEM and time stepping simulation.

In that �eld, the main interest is the losses caused by hysteresis and eddy currents.

These unideal properties of magnetic circuits cause e�ects which are usually neglected when

designing the AMB system and controller. Furthermore, in the machine there are a lot

of possible unmodeled eddy current paths. One is on the rotor surface where the sheets

may have small short circuit paths due to the machining of the rotor. Another one is the

interlaminate currents due to inhomogeneities in the isolation and the high pressure when

the sheets are stacked. These phenomena are of course stochastic by nature and di�cult to

model. The main interest in this study is not the losses but the unmodeled dynamics these

properties cause to the AMB system.

In this chapter, these phenomena based on models and measurements are studied. The

aim of this chapter is to quantify the phase errors produced by the eddy currents, hysteresis

and possible unmodeled eddy current paths in radial AMB.

The magnetic circuit of radial AMB is relatively simple and the reluctance network

method is chosen to describe the spatial magnetic �eld distribution. This is a tradeo�

between the simplicity and accuracy of the model. But this can be done keeping in mind

the results of the previous chapter, where the FEM was found suitable to determine the

static parameters of radial AMB, which can be considered to be the limit values for dynamic

parameters at zero frequency.

The eddy currents may have a signi�cant e�ect on the bearing dynamics, especially,

if the bearing system is supposed to have a large bandwidth [Hara et al. 1996]. The exact

analysis of eddy currents in the laminations with FEM would require a three dimensional �eld

solution. This is computationally a large task and to study the e�ect of the design parameters

would be even larger. In this section, the e�ect of eddy currents is analysed based on the one-

dimensional eddy current model [Stoll 1974, Meeker and Maslen 1996]. This formulation is
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implemented into the reluctance network model of radial magnetic bearing. As a result, a

linear model including the e�ect of eddy currents is produced. The linear model can be

directly used when designing the control system of magnetic bearing. As in the previous

chapter, the nonlinearity of the magnetic circuit can be taken into account by linearising the

system to the static operation point of the bearing.

The hysteresis is the dominating e�ect at low frequencies. To model this e�ect a model

based on the reluctance network is created. The model combines the nonlinear �ux and

magnetomotive equations and electric circuit equations. The equation of motion and the

controller models can be included as well. The time dependence is modelled with backward

Euler method. As a hysteresis model, we use a simple scalar model developed by Tellinen

[Tellinen 1998]. Based on the time domain simulation, the linearised dynamic parameters

are determined by describing function approach.

3.2 Reluctance network model of the radial AMB

3.2.1 Introduction

In the reluctance network model, Maxwell's �eld equations are reduced to a set of magnetic

circuit equations. The magnetic �eld distribution can be determined by solving a nonlinear

and relatively small set of algebraic equations. The magnetic circuit is divided into reluc-

tances the values of which depend on the geometry and the magnetisation of the material.

It is worth noticing the assumptions used in the reluctance network model.

� The direction of the �ux density is assumed to be known beforehand.

� The �ux density is assumed to be constant on every �ux carrying cross section.

� The leakage �ux is assumed to �ow only in the modelled leakage paths.

� The �ux fringing in the vicinity of the airgap is taken into account by increasing the

e�ective area of the airgap.

� The saturation of the magnetic circuit does not change the distribution of the magnetic

�eld.

When these assumptions are taken into account, the Maxwell's equations and the mate-

rial equation connecting magnetic �eld and �ux density can be reduced to a set of nonlinear

algebraic equations. In this section, the stationary reluctance network formulation is pre-

sented, which is needed in the eddy current and hysteresis models.
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Figure 32: Geometry and reluctance network of an 8-pole radial active magnetic bearing.

3.2.2 Solution of the �uxes

A typical geometry of an eight-pole radial magnetic bearing and its reluctance network

model with loop-�uxes are shown in Fig. 32. In this example, the stray �ux between teeth

is modelled with one stray �ux reluctance and the reluctance of the tooth is divided into

two parts. In the reluctance network model, the solution of the loop-�uxes shown in Fig.

32 is found. The branch magnetic �uxes in the reluctances can be calculated from the loop-

�uxes as follows

�h = T
T� (70)

where T is a loop-set matrix, �h is a vector containing the branch �uxes and � is a vector

containing the loop-�uxes. The loop-set matrix T is formed as follows:

� Tij = 1, if branch j belongs to the route of loop- �ux i and the branch-�ux has the

same direction as the loop-�ux.

� Tij = �1, if branch j belongs to the route of loop- �ux i and the branch-�ux has the

opposite direction from the loop-�ux.

� Tij = 0, otherwise.

The same loop-set matrix also connects the loop-magnetomotive forces and the branch-

magnetomotive forces

Tf h =M f (71)

where M f is a vector whose components are the loop-magnetomotive forces and vector

f h contains the magnetomotive forces in the branch-reluctances. The loop-magnetomotive
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force vector is calculated from coil currents and the number of coil turns per pole. The

loop-magnetomotive vector entries are

M f = Ni (72)

i = [i1 � � � ik]T (73)

where i is a vector of the coil currents and N is a coupling matrix, coupling the coil currents

into magnetomotive forces of the loops. Thus, the entries of M f describe the total current

�owing through the loop i. On the other hand, the magnetomotive forces and �uxes are

connected to each other by diagonal reluctance matrix Rm

f h = Rm�h

Rm =

2
6664
Rm1 0

. . .

0 RmN

3
7775

Rmi = Rmi(�hi)

(74)

where Rmi is the reluctance of branch i. Due to the saturation of the core material, the

reluctance of branch i depends on the �ux density and the geometry of the branch. The

nonlinear magnetisation curve is modelled by a single-valued monotonic reluctivity curve for

the core material used. The reluctivity curve is formed from the peak magnetisation curve

given by the manufacturers of electric steel sheets. The values of the rectangular reluctances

can be calculated from the following formula.

Rmi =
li�i(Bi)

Ahi

(75)

where li is the length of the reluctance in the direction of the �ux density, Ahi is the cross

sectional area of the reluctance, �i(Bi) is the reluctivity and Bi is the �ux density of the

rectangular branch i. All other reluctances but the stray �ux reluctance are assumed to be

rectangular. The stray �ux reluctance of a symmetrical conventional radial magnetic bearing

is found to be,

Rmi =
2��hs�0

zi [(yn+1 � yn)� r s ln(
yn+1
yn

)]
(76)

where � is the angle between two teeth, hs is the height of the slot, �0 is the reluctivity of

vacuum, zi is the axial length of the branch-reluctance i, rs is the radius of the tooth tip,

yn+1 and yn are the upper and lower distances of stray reluctance n from the tooth tip.

The whole nonlinear system of equations can be expressed by the loop-�uxes and the

loop-magnetomotive forces. This non-linear system is solved by Newton-Raphson iteration
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TRm(�h) T
T� = M f (77)

=) (78)

rk = TRm(�h
k) TT�k �M f (79)

where rk is the residual vector after k iteration steps. In the iteration process, the next

values of the loop-�uxes are calculated from the previous values of residuals, loop-�uxes and

Jacobian matrix

�k+1 = �k �P�1r k (80)

Pk = T
@(Rm(�h)�h)

@�h

T
T (81)

@(Rm(�h)�h)

@�h

=

2
6664

@fh1
@�h1

0
. . .

0 @fhN
@�hN

3
7775

where fhi, �hi are the ith component of the vectors f h and �h respectively. The iteration

has converged when the following condition is reached




rk



2

kM fk2
< � (82)

where � is a positive real number.

3.2.3 Calculation of forces and linearised parameters

From the magnetic �eld solution, the static electromagnetic characteristics of a radial bearing

can be derived. This section deals with the determination of forces, current sti�ness, position

sti�ness, self and mutual inductances.

Force

The force of the radial bearing is calculated based on the principle of virtual work.

F b = �[@Wm

@x

@Wm

@y
]T = �@Wm

@p
(83)

F b = [F x F y]
T (84)

p = [x y]T (85)
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where Wm is the magnetic energy of the system. The magnetic energy can be derived

from the magnetic �eld solution and the derivative of the energy with respect to a virtual

displacement p can be derived from the same solution

Wm =
Z
V

Z B

0
HdBdV (86)

Wm =
Z �h

0
f h

T
d�h (87)

Wm =
Z �
0

�T
TRm T

T
d� (88)

F b = �@Wm

@p
(89)

F b = �1

2
�h

T@Rm

@p
�h (90)

F b = �1

2
�T

T
@Rm

@p
T
T� (91)

It should be noticed that the partial di�erentiation with respect to the virtual displacement

a�ects only the airgap reluctances. This means that the nonlinear energy integral of Eq. 87

reduces to a linear integral. Thus, implementation of this method is straightforward. The

force can be calculated from the loop-�ux solution after the matrix @Rm

@p is formed.

Current and position sti�ness

In a similar fashion, the current sti�ness matrix, which consist of the current sti�nesses for

every individual coil can be calculated from the magnetic �eld solution

h f = �@
2
Wm

@i@p
(92)

h f = ��h
T@Rm

@p

@�h

@i
(93)

h f = ��h
T@Rm

@p
T
TP�1

@M f

@i
(94)

h f = ��T
T
@Rm

@p
T
TP�1N (95)

h f =

2
4 hfx1 � � � hfxk

hfy1 � � � hfyk

3
5

where P�1 is the inverse matrix of the Jacobian in Eq. 81 at the �nal iteration step. The

derivative vector of the magnetomotive force with respect to coil current is as in Eq. 72.

Thus, the current sti�ness is calculated in one operation point for each individual coil and
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the current sti�ness in one coordinate direction is the sum of the current sti�nesses of the

opposite coils.

Also, the position sti�ness is calculated from the reluctance network �eld solution

c = �@
2
Wm

@p@p
(96)

c = ��h
T@Rm

@p

@�h
T

@p
(97)

c = ��T
T
@Rm

@p
T
T@�

@p
(98)

c =

2
4 cxx cxy

cyx cyy

3
5

The partial derivative of the diagonal reluctance matrix and the loop- �uxes are calcu-

lated separately with respect to the Cartesian coordinates. The partial derivative of the

loop-�uxes is calculated numerically with respect to a real displacement, while keeping the

magnetomotive force constant.

Self and mutual inductances

The self and mutual inductances of the coils depend on the operation point of the bearings.

In the dynamic model of a radial bearing, the dynamic inductance is needed. The dynamic

inductance is de�ned

Ldyn =
@	

@i
(99)

	 = [	1 � � � 	k]
T (100)

where 	 is the vector of coil �uxes. The dynamic inductance matrix containing the

self and mutual inductances can also be calculated directly from the branch-�uxes and the

Jacobian. By the de�nition of the dynamic inductance, it can written

Ldyn = N TP�1N (101)

Ldyn =

2
6664
L11 � � � L1k

...
. . .

...

Lk1 � � � Lkk

3
7775
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3.3 Eddy current model of the radial AMB

3.3.1 One-dimensional model

As in the reluctance network model, all �ux is assumed to �ow perpendicular to the surface

of the lamination as in Fig. 33. Because the width of the lamination is much larger than the

thickness d, the end e�ects are neglected. Thus, the eddy currents are assumed to �ow only

in the direction perpendicular to the surface. It is assumed that the material is homogenous,

that is, the reluctivity is constant in the lamination. In a nonlinear analysis, the value of

the reluctivity depends on the operation point of the bearing. Thus, the eddy current model

can be seen as a small signal model in the neighbourhood of the operation point. At large

amplitudes, the saturation along the width of the lamination has a signi�cant e�ect on the

eddy current distribution and losses [Bottauscio 1996]. It is worth noticing that this model

describes only so called classical eddy current losses. This loss is due to the macroscopic

conductivity of the iron sheet. Another eddy current loss component of equal importance is

the excess loss [Saitz 1997]. This component is neglected in this analysis. In practice, these

loss components are of the same magnitude, so this method is likely to underestimate the

dynamic e�ects of eddy currents in AMB.

j e
x

y

z

l

B

l

d

dS

e

d

Se

Le

z=z

Figure 33: Eddy currents in one lamination and the integration area.

Under these assumptions, the solution of the �ux density in the lamination can be found.

In the Laplace domain, the average �ux density can be expressed
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Bave = Bs

tanh(
p
s��

d
2
)p

s��
d
2

(102)

where Bs is the �ux density at the surface of the lamination, � is the conductivity, � is the

permeability, d is the thickness of the lamination and Bave is the average �ux density across

the lamination thickness. Thus, as the frequency is increased, the �ux is pushed towards

the edges of the lamination. In order to be able to include the eddy current formulation in

the reluctance network model, a relation between the (ith) branch- magnetomotive force fhi

and the average �ux density Bave must be formed. This relation is formed from the integral

form of Maxwell's fourth equation.

I
L
H � dL =

Z
S
J � dS (103)

The surface integration is done over an area Se which splits the lamination of interest

into two parts at certain z = ze. The integration area is chosen in such a way that all the

other laminations are totally covered by the area. Thus, the contribution from the other

laminations is zero. The only contribution to the right hand side of Eq. 103 comes from the

area of the particular lamination enclosed by the integration surface. The magnetomotive

force fhi of a reluctance network branch i depends on the eddy current density

fh =
I
Le

H � dLe +
Z
Se

J e � dS (104)

where all the quantities correspond to branch i. For the simplicity of the notation the

subscript i is dropped and for a moment only a single branch-reluctance is considered. The

line integral Le is taken over the boundary of Se. As it is assumed that the �ux density B

and the eddy current density J e do not vary along the length of the lamination, Eq. 104

can be written

fh = lH(ze) + l

Z d

2

ze

Je(z)dz (105)

fh = lH(ze) + l

Z d

2

ze

@H

@z
dz (106)

fh = l(
Bs

�
�
Z d

2

ze

@H

@z
dz) + l

Z d

2

ze

@H

@z
dz (107)

fh =
l

�
Bs (108)

where Bs is the �ux density at the surface of the lamination of particular reluctance network

branch i. Eq. 108 can be transformed into the frequency domain and the magnetomotive

force can be expressed as a function of Laplace variable s and average �ux density
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fh(s) =
l

�(s)
Bave (109)

�(s) = �
tanh

p
s��

d

2p
s��

d

2

(110)

Frequency response of the permeability can be calculated from Eq. 110. However, the

complex permeability is not very convenient for control design purposes, because the network

solution would have to be solved for every frequency. Thus, a model in Laplace domain is

preferred. The magnetomotive force of Eq. 109 is de�ned in another way

fh(s) =
l

�
Bave � iec(s) (111)

The iec is the e�ect of eddy currents in the lamination and can be interpreted as a one-turn

coil, around the particular reluctance network branch i, carrying an arbitrary current. The

electric circuit equations of pole winding are written assuming that iec's are arbitrary inputs

to the system. The current iec is then determined by the transfer function

iec(s)

�h(s)
= (

l

Ah�
� l

Ah�(s)
) (112)

�h = BaveAh (113)

where �h is the total �ux �owing through the lamination of branch i and Ah is the cross

sectional area of the branch i. The hyperbolic tangent can be expanded in continued fraction

form as

tanh(x) =
x

1 + x2

3+ x2

5+���

(114)

This can be substituted into Eq. 112 to yield

iec(s)

�h(s)
= �

 
l

Ah�

!
s


2

1 + s
2

3+ s
2

5+���

(115)


 =
p
��

d

2
(116)

This can be rearranged into the form

iec(s)

�h(s)
=

�s
Rec1 +

1
1

sLec1
+ 1

Rec2+
1

1
sLec2

+���

(117)



71

Lecj =
Ah�

(4j + 1)l
(118)

Recj =
4(4j � 1)Ah

�ld2
: (119)

Fig. 34 presents the interpretation of Eq. 117. Eq. 117 can be viewed as a chain of

inductances and resistances driven by a one-turn coil. Thus, the e�ect of eddy currents can

be viewed as a parasitic winding around each section of the iron �ux path. For a �nite-state

model, the chain is truncated after an arbitrary number of resistances and inductances.

Ah

L ec11 L ec12 L ec13

ec12i ec13i

B

ec11i

R ec11 R ec12 R ec13

Figure 34: Interpretation of the eddy current model in one branch reluctance.

3.3.2 Implementation into the reluctance network model

It is possible to implement the above model into the reluctance network model of radial

magnetic bearings. As a result, a model of relatively low order (at least compared to 3-D

FEM) is formed. The model is a linearised model, which can be e�ectively included in the

control system design and it can take into account both the saturation of the magnetic circuit

and the eddy current e�ects. It is worth noticing that the saturation is taken into account

by linearising the system at a certain operation point. Thus, the model is a small-signal

model and the validity at larger amplitudes is at least questionable. In the model presented

in this thesis, the regular eight pole radial bearing is considered.

The nature of the model is similar to the standard linearised dynamic model of the

magnetic bearings in the sense that the induced voltage term is divided into current and

velocity induced terms

u =
d	

dt
+Ri (120)

u = N Td�

dt
+Ri (121)

� = K 1i +K 2p �K 3i ec (122)



72

where u is the vector of the coil voltages, i is the vector of the coil currents, p is the

displacement of the rotor, i ec is the vector of the eddy currents of the model, R is the

diagonal resistance matrix, 	 is the vector of the coil �uxes, � is the vector of the loop-

�uxes, N is the matrix coupling the loop-�uxes and the coil voltages, K 1 is the matrix of the

linearised current to loop-�ux coe�cients, K 2 is the matrix of the linearised displacement

to loop- �ux coe�cients, K 3 is the matrix coupling the eddy currents of the model and the

loop-�uxes. The coupling matrices are calculated from the reluctance network �eld solution

of the magnetic bearing in the following way

K 1 =
@�

@i
= P�1

@M f

@i
= P�1N (123)

K 2 =
@�

@p
(124)

K 3 =
@�

@i ec
= P�1

@M f

@i ec
= P�1 T (125)

where the notation is the same as in the previous section. It should be noticed that in

Eq. 125 the partial di�erentiation is presented as if eddy currents �owed in all the branch-

reluctances. However, it is obvious that e.g. in the airgap reluctances no eddy currents

exist.

The model of the eddy currents consists of the chain of inductances and resistances as

can be seen from Fig. 34 . Every �ux path through iron acts as a source of its chain of

inductor-resistor pair. Thus, for the network model a system of equations is

d�hfe

dt
= Lec

di ecfe

dt
+Reci ecfe (126)

�hfe = [�hf1

o�1z }| {
0 � � � 0 �hf2

o�1z }| {
0 � � � 0 � � � �hfm

o�1z }| {
0 � � � 0]T (127)

iecfe = [iec11 iec12 � � � iec1o � � � iecm1 iecm2 � � � iecmo]
T (128)

i ec =

2
4 oX
j=1

i ec1j

oX
j=1

iec2j � � � 0 0 0 � � �
oX

j=1

iecmj � � � 0 0 � � �
3
5 T (129)

where �hfe is a modi�ed branch-�ux vector, where �hf are only those branch-reluctances

where eddy currents exist. The i ecfe is the vector of the eddy currents in the model and

corresponds to the currents �owing through the inductors in Fig. 34. The i ec is a vector of

size n, thus an element for every branch (also for airgap elements). o is the number of the

inductor-resistor pairs of the model used, n is the total number of branch-reluctances of the

model and m is the number of iron branch-reluctances.

The transformation matrices are de�ned

�hfe = Ktf1�h (130)
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i ec = Ktf2i ecfe (131)

The inductance and resistance matrices of Eq. 126 are as follows

Lsub1 =

2
66666666664

Lec11 0 � � � � � � 0

�Lec11 Lec12
. . .

...

0 �Lec12 Lec13
. . .

...
...

. . .
. . .

. . . 0

0 � � � 0 �Lec1(o�1) Lec1o

3
77777777775

Lec =

2
66666664

Lsub1 0 � � � 0

0 Lsub2
. . .

...
...

. . .
. . . 0

0 � � � 0 Lsubm

3
77777775

(132)

Rsub1 =

2
66666666664

Rec11 Rec11 � � � � � � Rec11

0 Rec12 � � � � � � Rec12

0 0 Rec13 � � � Rec13

...
. . .

. . .
...

0 � � � � � � 0 Rec1o

3
77777777775

Rec =

2
66666664

Rsub1 0 � � � 0

0 Rsub2
. . .

...
...

. . .
. . . 0

0 � � � 0 Rsubm

3
77777775

(133)

The values of the matrix components are calculated from Eqs. 118 and 119. Based on the

Eqs. 120 � � � 133 a linear model in state-space form can be written.

_X B = ABX B +BBU B (134)

Y B = CBX B +DBU B (135)

X B = [i1 � � � ik iec11 � � � iec1(o) � � � iecm1 � � � iecm(o) p
T]T (136)

Y B = [i1 � � � ik FT
B]

T (137)

U B = [u1 � � � uk _pT]T (138)

AB =

2
6664

�I BR �I BN TK 3 Ktf2I ARec 0

�I A Ktf1 T
TK 1IBR �I ARec � IA Ktf1T

TK 1I BN
TK 3 Ktf2IARec 0

0 0 0

3
7775

(139)
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CB =

2
4 I 0 0

h f hi cefe
c

3
5 (141)

I A = [Lec + Ktf1T
TK 3 Ktf2]

�1 (142)

I B = [Ldyn �N TK 3 Ktf2I A Ktf1 T
TK 1]

�1 (143)

hi ecfe
= �T

T
@Rm

@p
T
TP�1 T Ktf2 (144)

where c is the position sti�ness as shown in the previous section.

3.4 Hysteresis model of the radial AMB

3.4.1 Hysteresis model

In the previous sections, the magnetic nonlinearity of iron was described by a single-valued

reluctivity curve. In case of hysteresis, this has to be abandoned. In order to be able to

model the magnetic hysteresis in AMB, a mathematical model of hysteresis is needed. Several

models starting from analytical models and extending to well known models of Preisach, Jiles

and several others are presented by Ivanyi [Ivanyi 1997]. However, in this section, a hysteresis

model developed by Tellinen [Tellinen 1998] is used. This model is a relatively simple scalar

model and appropriate to be used in accordance with the reluctance network model. The

model has the property that both magnetic �eld intensity and magnetic �ux density can be

used as an input variable. In this section, the model is used as a quasistatic model, meaning

that the eddy currents are neglected in the analysis. As the input data of the model, the

limiting hysteresis loop has to be known. In this thesis, a measured limiting loop shown in

Fig. 35 is used. The material used is Bochum V270-35A in rotor and V270-50A in stator

parts. The scalar model used is

dB

dH
= �0 +

BH�(H)� B

BH�(H)�BH+(H)

"
dBH+

dH
(H)� �0

#
dH > 0 (145)

dB

dH
= �0 +

B �BH+(H)

BH�(H)�BH+(H)

"
dBH�

dH
(H)� �0

#
dH < 0 (146)

dH

dB
=

1

�0 +
BH�(H)�B

BH�(H)�BH+(H)

h
dBH+

dH
(H)� �0

i dB > 0 (147)

dH

dB
=

1

�0 +
B�BH+(H)

BH�(H)�BH+(H)

h
dBH�

dH
(H)� �0

i dB < 0 (148)
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Figure 35: Measured hysteresis loop of V270-35A.

where BH� and BH+ represent limiting hysteresis curves with decreasing and increasing

magnetic �eld intensity, correspondingly. Similarly,
dBH�

dH
and

dBH+

dH
are the tangents of

the limiting hysteresis curves. It should be noticed that the model has only two possible

directions of changes in the BH-plane. The previous history of the magnetisation is not

taken directly into account. This property, called local memory, restricts the applicability of

the model. However, the simplicity of the model enables a straightforward implementation

into the reluctance network.

3.4.2 Implementation of the hysteresis model into the reluctance network

The reluctance network model is a nonlinear model coupling both the magnetomotive force

equations and circuit equations. In this case, it is necessary to use time stepping simulations

to solve the system of equations. Also, the equation of motion of the rotor can be included in

the model by changing the lengths of the airgap reluctances at every time step. The circuit

and magnetomotive force equations are

u =
d	

dt
+Ri (149)

Tf h = M f (150)

These equations can be expressed as a function of loop-�uxes and coil currents, the

notation being similar to the previous sections.
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N Td�

dt
+Ri = u (151)

TRm(�h) T
T� �Ni = 0 (152)

In the time stepping formulation, the time derivatives of the loop- �uxes are approximated

by �rst order di�erences known as backward Euler method

d�

dt
=
�t+1 ��t

�t
(153)

Finally, the time stepping nonlinear system of equations from time step t to t+1 can be

written

2
4 N T 1

2
R�t

TRm T
T �N

3
5
2
4 �t+1

i t+1

3
5 =

2
4 1

2
�t N T �1

2
R�t

0 0 0

3
5
2
6664
u t+1 + u t

�t

i t

3
7775 (154)

=) (155)

Qz = u s (156)

As the backward Euler method approximates the time derivative of the loop �uxes in the

middle of the time steps, in Eq. 155 the averages of the current and voltage vectors between

time steps t and t + 1 are used. Above, the loop-�ux and current variables are collected in

vector z , the right hand side of the equation into source vector u s and the system matrix

into Q .

Eq. 155 can be solved from the information of the previous time step and from the

source voltage if it is known whether the �ux densities in branch reluctances are increasing

or decreasing. This can be found out based on the Jacobian of the previous time step. The

Jacobian is formed with the aid of the hysteresis model of Eq. 145.

P t =

2
64 N t

1
2
R�t

T

�
@(Rm(�h)�h)

@�h

�
t

T
T �N

3
75 (157)

@(Rmi(�hi)�hi)

�hi

=
li

Ahi

dHi

dBi

(158)

where P t is the Jacobian at time step t. The values of the Jacobian and variables at next

time step are calculated as follows. The sign of the �ux density di�erence is calculated from
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sign(�z t+1) = sign[(Pt)
�1(�u s)t+1] (159)

�z t+1 = z t+1 � z t (160)

(�u s)t+1 = (u s)t+1 � (u s)t (161)

(�u s)t+1 =
1

2
(u t+1 + u t)�Ri t (162)

Based on this information the Jacobian at time step t + 1 is then calculated and the

values of the loop-�uxes and coil currents as well.

P t+1 = P t+1(sign(�z t+1); z t) (163)

�z t+1 = (P t+1)
�1(�u s)t+1 (164)

z t+1 = z t +�z t+1 (165)

It should be noticed that the Jacobian depends only on the values of the previous time step

and on the sign of the �ux density changes in the branch-reluctances. Thus, the model has

only so called local memory and is exactly valid at an in�nitesimally small time step. This

feature makes the model simple as no iterative method has to be used. On the other hand,

the time step has to be chosen carefully. However, the general choice of the time step is

left as an open question in this thesis. A time step of 0:00002s is used, which has proven

to be reasonable at the simulations done in this work. The force at a certain time step is

calculated as was shown in Eq. 91.

An example of the results of a time stepping simulation is shown in Fig. 36. The

calculations are made for the radial bearing of the test machine 2. The simulation is done

for the current control circuit and the current reference value of 1.5 A at the frequency of

50 Hz. The current reference is supplied only in the x-direction. At y-direction only the

bias current of 2.0 A is supplied. The initial values for the loop-�uxes are calculated by the

stationary reluctance network model, where the permeability of the iron is modelled with

a single valued monotonic permeability curve. The time dependence of the coil voltages,

currents and bearing forces is shown. Also, the traces of the BH-curve in the stator tooth

tips of the positive x-magnet are presented. The hysteresis e�ect is clearly seen in the

trace plots. In the same plot, the limiting hysteresis curve of the material is shown. In the

next section, based on these time stepping simulations the dynamic linearised parameters of

radial bearing are calculated. The calculations are done by the describing function method.

Thus, the components of the fundamental frequency are determined and, based on these

components, the linearised parameters are calculated.
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Figure 36: Time stepping simulation with the hysteresis model of the current control circuit

of the test machine 2. The current reference is 1.5 A at the frequency of 50 Hz in x-direction.

The bias-currents are 2.0 A.
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3.5 Experimental and calculated e�ects of eddy currents and hys-

teresis

3.5.1 Impedance measurement

As a �rst indication of the validity of the eddy current and hysteresis models, the dynamic

inductance at two di�erent airgaps was measured. The measurements were done with test

machine 2. The frequency was swept from 50 Hz to 3 kHz. In these measurements, the rotor

was locked with mechanical wrenches, hence the controller was turned o�. However, the

position of the rotor was measured from the electronics. Only one coil was supplied at a time.

The coil was supplied by a linear power ampli�er. In addition to the bias current, an AC-

component of varying amplitude was supplied. The main interest in these measurements was

the deviation of the phase angle of the dynamic inductance from the nominal value. Thus,

with a pure inductive load the angle between voltage and current should be 90 degrees,

but eddy currents reduce the phase angle by a few degrees depending on the frequency.

The voltage was measured straight from the coil and the current was measured by a shunt

resistor. The e�ect of the coil resistance was reduced from the measurements according to

Eq. 166

Ldyn =
uAC � RiAC

j!
(166)

The estimation based on the eddy current model and the measured dynamic inductance of

test machine 2 and is presented in Fig. 37. The impedance was measured at two airgap

values. The DC-current was in both measurements 0.25 A. This corresponded to the airgap

�eld of 0.15 T in the smaller airgap. Thus, both measurements were done in the linear

region. Fig. 38 shows the same quantities calculated by the hysteresis model.

As can be seen, the calculated magnitudes of the impedance deviate from the measured

ones. This is due to the inability of the reluctance network to model the airgap region

properly. The proper modelling has to be done with FEM [Antila et al. 1998]. Interestingly,

the hysteresis model estimates the magnitude to be about 5 % lower than the eddy current

model, which is based on the single-valued reluctivity curve. As a crude estimate, one can

assume the estimated phase to be the sum of eddy current and hysteresis model estimates.

At higher frequencies, the agreement is not good. The main e�ects at higher frequencies

are caused by the eddy currents. As was already mentioned, the excess loss component,

which has a signi�cant e�ect, was totally neglected in the analysis. The excess loss would

roughly double the eddy current e�ect, so it is obvious that the deviation of the measured

and calculated phases is not only because the excess loss is neglected.

The hysteresis model is a pseudostationary model, therefore the lowest measured fre-

quency of 50 Hz does not strictly correspond to the model. In any case, it can be seen that



80

10
1

10
2

10
3

10
4

0.02

0.04

0.06

freq [Hz]

M
ag

ni
tu

de
 [H

]

Dynamic inductance

10
1

10
2

10
3

10
4

−10

−5

0

freq [Hz]

P
ha

se
 [d

eg
re

e]

Figure 37: Dynamic inductances calculated by the eddy current model and the measured

values.The `+' and `o' are the measurements at smaller (0.216 mm) and larger airgap (0.884

mm), respectively. The dashed and solid lines are the corresponding calculated values.

the deviation of the phase from the pure inductance is larger with the smaller airgap. This is

due to the fact that with the smaller airgap the iron part of the circuit plays a greater role.

When assuming that the force is proportional to the time integral of voltage, this phase lag

can be considered as an additional phase lag between current and bearing force.
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Figure 38: Dynamic inductances calculated by the hysteresis model and the measured val-

ues.The `+' and `o' are the measurements at smaller (0.216 mm) and larger airgap (0.884

mm), respectively. The dashed and solid lines are the corresponding calculated values.
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3.5.2 Dynamic force measurement

As a second measurement, the dependence of the bearing force from the coil current was

measured. This measurement should reveal any additional phase lag in the current sti�ness,

which is the primary bearing parameter. The measurement was done by supplying distur-

bance at several frequencies to the controller output and measuring the acceleration of the

rotor at both ends of the rotor. Thus, the bearing forces could be calculated. The voltage

was measured directly from the coil ends and the current was measured by LEM-current

transducers. The amplitude of the current at lower frequencies was chosen to be the same

as the bias current, that is 2.0 A. The pole- con�guration was NNSS. The bearing force

was calculated based on the modal reduced �nite element rotor model [Lantto 1997] and the

values can be found in App. B.1

M rot�q +
K rot

s2
�q = BbF b (167)

�q = Cmac (168)

F b =

2
4Cm

 
M rot +

K rot

s2

!
�1

Bb

3
5
�1

a c (169)

F b = [F bD F bN]
T (170)

ac = [acD acN]
T (171)

where M rot, K rot are the modal mass and sti�ness matrix in one plane, F b is the bearing

force vector, ac is the vector of acceleration measurements, Bb, Cm are coupling matrices.

The model for magnetic bearing force is the familiar one dimensional form

F bD = hfDicD + cDxD (172)

where the quantities are at the D-end of the rotor. The primary interest is the current

sti�ness. Thus, the position sti�ness was considered to be real valued and was estimated from

the measurements by least square method. The current sti�ness was then calculated from

Eq. 172. In Fig. 39, comparison between the measured and calculated current sti�nesses

are presented.

Both models overestimate the magnitude of the current sti�ness. Once again the main

source of error is the airgap area. On the one hand network model is unable to properly

model the airgap area and on the other hand the magnetic airgap may deviate from the

mechanical airgap [Antila et al. 1998]. The hysteresis model estimates the magnitude of �ve

percent smaller than the eddy current model, as in case of the dynamic inductance. At low

frequencies, the measured magnitude decreases. This is a purely calculational phenomenon

as the position sti�ness in Eq. 172 is estimated by one constant value. However, at smaller
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Figure 39: Current sti�ness as a function of the frequency. The measured values and corre-

sponding error margins are labelled with '+'. The solid line is the estimate based on the eddy

current model. The dashed line is the eddy current estimate at double lamination thickness.

The dashed-dot line is the estimate based on the hysteresis model.

frequencies, the vibration amplitudes are considerable with respect to airgap. So, the ap-

proximation of the position sti�ness with one constant value is not valid at low frequencies.

The large oscillations of the measured phase at around 50-100 Hz are caused by the cylin-

drical and conical resonances of the system, which makes the phase measurement di�cult.

The agreement between the measured and calculated phases is not good. The fact that the

excess loss was neglected explains some of the discrepancy. The deviation is larger at higher

frequencies and could be caused by the additional unmodeled eddy current paths or the

assumptions of the model. These are discussed in the conclusions.

The calculated current sti�ness at the double lamination thickness are also plotted. This

is purely to demonstrate the magnitude of the phase deviation. In any case, the important

detail to consider is the phase lag of about �ve degrees between the measured current and

bearing force. This causes a deterioration of the performance of the bearing system designed

with the static parameters. Therefore, the designer can take this phase lag into consideration

when designing the controller.
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Figure 40: Relative dynamic current sti�ness hfrel based on the eddy current model at several

frequencies. The parameter is bearing force and it varies from zero to 490 N. The current

sti�ness is hfrel � 145N=A. The sector lines are drawn at a half degree steps.

When designing the control system one would like to know the maximum phase lag these

e�ects cause in realistic operation points. Based on the eddy current and hysteresis models,

the dependance of the magnitude and phase lag on the operation point is studied. In Fig.

40, the relative dynamic current sti�ness hfrel is presented. The current sti�ness estimates

based on the eddy current model are calculated at the lamination thicknesses 1 mm and at

frequencies of 100, 300, 500, 700, 1000 and 2000 Hz.

The main interest is to �nd the relative changes of the phase as a function of the bearing

force. The relative change is relatively independent of the frequency. Both pole- con�gura-

tions are compared. In Fig. 41, the hysteresis estimates as a function of the bearing force

are shown. The current amplitude of 0.3 A was used in the calculation.
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Figure 41: Dynamic current sti�ness based on the hysteresis model as function of the bearing

force. The current amplitude is 0.3 A.

The decrement of the magnitude due to the saturation was also seen in the previous chap-

ter. The saturation of the magnetic circuit is the major cause of the magnitude variations.

The eddy current and hysteresis are of minor importance in this respect. However, the phase

lag due to eddy currents increases as a function of the bearing force until the maximum is

reached. This maximum is about 20-50 % higher than at the nominal point. The NSNS

pole-con�guration has smaller phase lag than NNSS -con�guration. The phase lag due to

hysteresis is at maximum at high bearing loads. Hence, one can estimate that the maximum

phase lag due to a bearing load can be twice the phase lag at the nominal operation point.
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3.6 Conclusions of the dynamic parameters

The reluctance network model estimates the magnitudes of dynamic impedance and current

sti�ness reasonably. The deviation between calculated and measured parameters is about

7-20 %. The eddy currents and hysteresis have a small e�ect on the magnitudes of these

parameters. However, the saturation of the magnetic circuit and eccentricity of the rotor are

the primary reasons for the variation of the magnitudes.

The phase estimations at lower frequencies are reasonable, indicating the validity of the

hysteresis model. However, uncertainties exist which can produce errors in the hysteresis

modelling. The magnetic properties of silicon iron are known to depend also on the mechan-

ical stresses. In high-speed machines, in particular the rotor laminations are stacked with

high pressure. This means that the real limiting hysteresis curve is not necessarily the one

shown in Fig. 35.

At higher frequencies the agreement of the phase is not good. Part of this discrepancy is

explained by the fact that we neglected the excess losses. The extra deviation is mainly due

to two sources.

First, the model is inadequate to describe the eddy current e�ects. The main assumption

is the form of the �ux density inside the lamination, that is Eq. 102. This formula neglects the

saturation in the lamination. At higher frequencies saturation is to happen near the surface

of the sheet. In the impedance measurement, the AC-component was of the same size as

the DC-component. Thus, even at smaller airgap the saturation is unlikely. The saturation

could cause an unmodeled phase lag of few degrees. Anyhow at larger airgap, the �ux

density should remain well below saturation and no additional phase lag due to saturation

should occur. Thus, the saturation inside the lamination is unlikely to be the reason for the

discrepancy in the dynamic inductance measurement. In the current sti�ness measurement,

the current and �ux density amplitudes are larger. For this reason, the saturation inside

the lamination is likely to happen. A decrement in current sti�ness above 500 Hz can be

seen. This can be the e�ect of the saturation at the surface of the lamination. Another

assumption in the model is that the end e�ects of the eddy currents are neglected. Thus,

the model should overestimate the eddy currents. This means that the assumptions of the

model are unlikely to explain the discrepancy of the measured and calculated phases.

Secondly, it was already mentioned that there are a lot of possible unmodeled eddy current

paths. Fig. 39 presents also calculation with double lamination thickness. Qualitatively the

e�ect is the same as the interlaminate currents, of course quantitatively nothing can be said.

But a part of the discrepancy between the measured and calculated phases are propably due

to the unmodelled eddy currents paths.

Thus, one can conclude that the accurate modelling of eddy currents is di�cult. But

from the practical point of view one can determine some guidelines for an AMB control
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system designer.

The eddy currents and hysteresis have no signi�cant e�ect on the magnitudes of the

linearised parameters below 1000 Hz. Fig.37 and 38 showed clearly that the airgap has a

large e�ect on the phase lag. From the controller's point of view the worst case is if the

rotor is eccentric and a bearing load is applied in the direction of eccentricity. Then, on

the one hand, the phase lag is large and, on the other hand, the gain of the system might

be increased as the current sti�ness can be large. Thus, the phase margin decreases and

at same time the crossover frequency increases. The crossover frequency is typically around

100-200 Hz. At this frequency range, both the eddy currents and hysteresis a�ect the phase

of the current sti�ness. Therefore, it is reasonable to assume that the maximum phase lag

can be twice the phase lag of the nominal point. By considering the measurements and the

results of the calculation, the additional phase lag due to hysteresis and eddy currents at

the crossover frequency region is up to ten degrees. In case the airgap length relative to the

length of the iron part of the circuit is larger than in test machine 2, the above statement is

conservative. The same applies if thicker lamination sheets are used in the bearing.
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4 Summary

This thesis deals with the electromagnetic properties of radial active magnetic bearings. The

approach is to study the electromagnetic actuator as a part of the control circuit. To be

aware of the uncertainties of the system model is of primary importance for the control

system designer. Keeping this in mind, the linearised parameters are studied in detail. A

special interest is in studying the capabilities of extending the operation range into the

magnetic saturation region. To be able to do this, a powerful nonlinear analysis method

has to be found, and the �nite element method is used. In addition, the extension of the

operation range demands a careful investigation of the cross coupling properties. Based on

nonlinear simulations, the e�ect of the power ampli�er saturation has been quanti�ed. The

uncertainties of the linearised parameters caused by the hysteresis and eddy currents are

studied by measurements and models based on the reluctance network �eld solution.

The stationary two dimensional �nite element method is also found to be suitable for

estimating the static linearised parameters of radial AMB in the magnetic saturation region.

Accuracy of 10-15 % is achieved, which is appropriate. The dynamic inductance can change

dramatically due to the saturation. For test machine 2, the range is from 25 mH to 5 mH. In

the eccentric cases, the variation is even larger. The main dynamic e�ect is the phase lead at

high frequencies, caused by the decrement of the dynamic inductance. This can destabilise

the bending modes of the rotor. The variation of the current and position sti�ness due to the

saturation can be minimised by an appropriate choice of the bias current. For test machine

2, the minimum range is from 130 N/A to 50 N/A. This causes variations of the gain in

the typical crossover frequency range and above. The ratio of the current and the position

sti�ness decreases due to the saturation. This dominates the dynamics at low frequencies

and causes eventually instability when the ratio has decreased into the neighbourhood of the

inverse of the proportional gain. Based on these parameter informations, it is possible to

design linear controllers which perform satisfactorily also in the saturation region. With a

simple gain scheduling scheme, the operation range could be widened and the performance

improved. In this scheme, the gain of the controller is increased and the current control loop

slowed when the load increases.

When the operation range is extended, the cross coupling of the bearing force can be

signi�cant. It turned out that the NNSS pole-con�guration had signi�cant cross couplings

in the saturation range. The eccentricity worsened the situation. By considering the actuator

response to a rotational control, the cross coupling can be regarded as a phase lag or phase

lead. The cross coupling in NNSS- con�guration can be regarded as producing phase errors

up to 10 degrees. The NSNS pole con�guration has negligible cross coupling and is also

capable of producing a larger force than the NNSS -con�guration at a same magnetomotive

force. The NSNS -con�guration also provides an opportunity for making the rotor shaft



89

radius larger. This has a signi�cant e�ect on the rotor bending modes. Therefore, NSNS

-con�guration gives a greater freedom when designing the rotor.

The power ampli�er saturation results in a serious additional phase lag in the current

control loop. An interesting feature is that in presence of a high frequency large amplitude

disturbance, which saturates the ampli�er, the phase of the low frequency response increases

with the amplitude of the low frequency reference. This property enables limit cycle oscil-

lations. This can happen when e.g. the unbalance response saturates the ampli�er or an

unmodeled mechanical (stator) resonance is destabilised.

The eddy currents and hysteresis cause an additional phase lag in the control loop of a

radial AMB. Eddy currents are especially important above 1 kHz. But even at lower frequen-

cies the measurements reveal a phase lag of around �ve degrees. Based on the comparison

of the models and measurements, it can be said that the quantitative estimation of the eddy

current e�ects is di�cult. The presumable reason is the unmodeled eddy current paths in

the machines. Based on the measurements and models, the phase errors due to eddy currents

and hysteresis below 1 kHz can be estimated to be up to 10 degrees.



90

References

[Ahrens and Kucera 1995] Ahrens M., Kucera L., �Cross Feedback Control of a Magnetic

Bearing System,� Proceedings of the 3rd International Symposium on Magnetic Suspen-

sion Technology, Tallahassee, FL, USA, 1995.

[Antila et al. 1996] Antila M., Lantto E., Saari J., Esa H., Lindgren O., Saily K., �Design of

Water Treatment Compressors Equipped with Active Magnetic Bearings,� Proceedings

of the Fifth International Symposium on Magnetic Bearings, pp. 259-264, Kanazawa,

Japan, 1996.

[Antila et al. 1998] Antila M., Lantto E., Arkkio A., �Determination of Forces and Linearised

Parameters of Radial Active Magnetic Bearings by Finite Element Technique,� accepted

to be published in IEEE Transactions on Magnetics, 1998.

[Arkkio 1987] A. Arkkio, �Analysis of induction motors based on the numerical solution of

the magnetic �eld and circuit equations,� Acta Polytechnica Scandinavica, Electrical

Engineering Series No. 59, Helsinki, Finland, 1987.

[Bleurer 1992] H. Bleurer, �A survey of magnetic levitation and magnetic bearing types,�

JSME International Journal Series III, Vol. 35, No. 3, 1992.

[Bleurer et al. 1994] H. Bleurer, C. Gahler, R. Herzog, R. Larsonneur, T. Mizuno, R. Sieg-

wart, �Application of digital signal processors for industrial magnetic bearings,� IEEE

Transactions on Control Systems Technology, pp. 280-289, Vol. 2, No. 4, December 1994

[Bornstein 1991] Bornstein K.R., �Dynamic Load Capabilities of Active Magnetic Bearings,�

Transactions of the ASME, Journal of Tribology, Vol. 113, April 1991,pp. 598-603.

[Bottauscio 1996] Bottauscio O., Chiampi M., Repetto M., �Finite Element Analysis of Iron

Loss Behaviour: E�ect of Frequency and Lamination Thickness,� Proceedings of the 3rd

International Workshop on Electric and Magnetic Fields, pp. 417-422, Liege, Belgium,

1996.

[Brunet 1988] Brunet M., �Practical Applications of the Active Magnetic Bearings to the

Industrial World,� Proceedings of the First International Symposium on Magnetic Bear-

ings, pp. 224-244, Zurich, Switzerland, 1988.

[Coulomb 1983] J.L. Coulomb, �A methodology for the determination of global quantities

from a �nite element analysis and its application to the evaluation of magnetic forces,

torques and sti�nesses,� IEEE Transactions on Magnetics MAG-19, pp. 2514-2519, No.

6.

[Cui and Nonami 1992] W.M. Cui, K. Nonami, �H
1
-Control of �exible rotor-magnetic bear-

ing systems,� Proceedings of the 3rd International Symposium on Magnetic Bearings,

pp. 505-516, Alexandria , VA, USA, 1992.

[Dussaux 1990] M. Dussaux, �The industrial applications of the active magnetic bearings

technology,� Proceedings of the Second International Symposium on Magnetic Bearings,

pp. 33-38, Tokyo, Japan, 1990.

[Earnshaw 1842] S. Earnshaw, �On the nature of the molecular forces which regulate the

constitution of the lumiferous ether,� Trans. Camb. Phil. Soc., vol. 7, pp. 97-112, 1842.



91

[Fremerey 1988] J.K. Fremerey, �Radial shear force permanent magnet bearing system with

zero-power axial control and passive radial damping,� Proceedings of the First Interna-

tional Symposium on Magnetic Bearings, pp. 25-31, Zurich, Switzerland, 1988.

[Fujita et al. 1992] M. Fujita, F. Matsumura, T. Namerikawa, ��-Analysis and synthesis

of a �exible beam magnetic suspension system,� Proceedings of the 3rd International

Symposium on Magnetic Bearings, pp. 495-504, Alexandria , VA, USA, 1992.

[Habermann and Brunet 1984] H. Habermann, M. Brunet, �The active magnetic bearing

enables optimum damping of �exible rotor,� ASME Paper No. 84-GT-114, 1984.

[Hara et al. 1996] Hara S., Namerikawa T., Matsumura F., �Improvement of Dynamic Re-

sponse by Flux Feedback on Active Magnetic Bearings,� Proceedings of the Fifth Inter-

national Symposium on Magnetic Bearings, pp. 49-54, Kanazawa, Japan, 1996.

[Hsiao and Lee 1994] Hsiao F.-Z., Lee A.-C., �An investigation of the characteristic of elec-

tromagnetic bearings using the �nite element method,� Transaction of the ASME Jour-

nal of Tribology, pp. 710-719, vol. 116, October 1994.

[Humpris et al. 1986] R. Humpris, R. Kelm, D. Lewis, P. Allaire, �E�ect of control algo-

rithms on magnetic journal bearing properties,� Transactions of the ASME, Journal of

Engineering for Gas Turbines and Power, Paper No. 86-GT-54, 1986.

[Imlach et al. 1991] Imlach J., Blair B.J., Allaire P., �Measured and predicted force and sti�-

ness characteristic of industrial magnetic bearings,� Transaction of the ASME Journal

of Tribology, pp. 784-788, vol. 113, October 1991.

[Ivanyi 1997] Ivanyi A., �Hysteresis Models in Electromagnetic Computation,� Akademiai

Kiado, Budapest, Hungary, 1997.

[Jayawant 1981] B.V. Jayawant, �Electromagnetic suspension and levitation,� Reports on

Progress in Physics, Vol. 44, pp. 411-477, April 1981.

[Kasarda et al. 1994] Kasarda M., Allaire P., Maslen E., Gillies G., �Design of a High Speed

Rotating Loss Test Rig for Radial Magnetic Bearings,� Proceedings of 4th International

Symposium on Magnetic Bearings, pp. 577-582, Zurich, Switzerland, 1994

[Knight et al. 1992] Knight J., Xia Z., McCaul E., Hacker H.Jr., �Determination of forces in

a magnetic bearing actuator: Numerical computation with comparison to experiment,�

Transaction of the ASME Journal of Tribology, pp. 796-801, vol. 114, October 1992.

[Knight et al. 1993] Knight J., Xia Z., McCaul E., �Forces in Magnetic Journal Bearings:

Nonlinear Computation and Experimental Measurement,� Proceedings of 3rd Interna-

tional Symposium on Magnetic Bearings, pp. 441-450, Alexandria, VA, USA, 1992.

[Knospe and Collins 1996] Knospe C.R., Collins E.G., �Special issue on magnetic bearing

control,� IEEE Transactions on Control System Technology, Vol. 4, No. 5, September

1996.

[Knospe et al. 1997] Knospe C.R., Fedigan S.J., Hope R.W., Williams R.D., �A Multitasking

DSP Implementation of Adaptive Magnetic Bearing Control,� IEEE Transactions on

Control Systems Technology, Vol. 5, NO. 2, pp. 230-238, March 1997.



92

[Lantto and Antila 1995] Lantto E., Antila M., �Active Magnetic Bearings for High-Speed

Machines,� The Proceedings of Stockholm Power Tech, International Symposium on

Electric Power Engineering, Royal Institute of Technology and IEEE Power Engineering

Society, pp. 69-74, Stockholm, Sweden, 1995.

[Lantto et al. 1996] Lantto E., Vaananen J., Antila M., �E�ect of Foundation Sti�ness on

Active Magnetic Bearing Suspension,� Proceedings of the Fifth International Symposium

on Magnetic Bearings, pp. 37-43, Kanazawa, Japan, 1996.

[Lantto 1997] Lantto E., �Finite Element Model for Elastic Rotating Shaft,� Acta Polytech-

nica Scandinavica. Electrical Engineering Series No. 88, 1997.

[Lantto et al. 1997] Lantto E., Antila M., Tommila V., Saari J., Lindgren O., �Experiences

on 250 kW High-Speed Turbocompressors installed in a pulp and paper mill,� Proceeding

of MAG '97, Virginia, USA, 1997.

[Lantto et al. 1998] Lantto E., Antila M., Tommila V., �Robustness Analysis of AMB sus-

pension,� to be published in the Proceedings of 6th ISMB, 1998.

[Lantto 1998] Lantto E., Thesis for Doctor of Technology.

[Larjola 1988] Larjola J., �The principle of high speed technology.� Proceedings of the Con-

ference on High Speed Technology, August 21-24 1988,pp. 11-28, Lappeenranta, Finland,

1988.

[Larsonneur 1990] Larsonneur R., �Thesis for Doctor of Technical Sciences,� Diss. ETH No.

9140, Zurich, Switzerland, 1990.

[Larsonneur and Herzog 1994] Larsonneur R., Herzog R.J.P., �Feedforward Compensation

of Unbalance: New Results and Application Experiences,� Proceedings of IUTAM Sym-

posium the Active Control of Vibration, Bath, UK, pp.45-52, 1994.

[Lee et al. 1994] A.-C. Lee, F.-Z. Hsiao, D. Ko, �Analysis and testing of magnetic bearing

with permanent magnets for bias,� JSME International Journal, Series C, pp. 774-782,

vol. 37, No. 4, 1994.

[Lindgren et al. 1995] Lindgren O.,Saily K.,Lantto E., Saari J., Antila M., �Electromechan-

ical design of motors and active magnetic bearings for high-speed compressors,� Pro-

ceedings of MAG'95 Magnetic Bearings, Magnetic Drives and Dry Gas Seals Conference

and Exhibition, pp. 47-55, Alexandria, VA, USA, 1995.

[Maslen et al. 1989] Maslen E., Hermann P., Scott M., Humphris R.R., �Practical Limits

to the Performance of Magnetic Bearings: Peak Force, Slew rate, and Displacement

sensitivity,� Transactions of the ASME, Journal of Tribology, Vol. 111, pp. 331-336,

April 1989.

[Matsumura and Hatake 1992] Matsumura F., Hatake K., �Relation between Magnetic Pole

Arrangement and Magnetic Loss in Magnetic Bearing,� Proceedings of 3rd International

Symposium on Magnetic Bearings, pp. 274-283, Alexandria, VA, USA, 1992.

[Meeker and Maslen 1996] D.C. Meeker, Maslen E.H., �Augmented Circuit Model for Mag-

netic Bearings Including Eddy Currents, Fringing and Leakage,� IEEE Transactions on

Magnetics, pp. Vol. 32, NO. 4, July 1996.



93

[Meeks et al. 1994] C. Meeks, P. Mc Mullen, D. Hibner, L. Rosado, �Lightweight magnetic

bearing system for aircraft gas turbine engines,� Proceedings of the Fourth International

Symposium on Magnetic Bearings, pp. 429-434, Zurich, Switzerland, 1994.

[Mizuno and Higuchi 1994] Mizuno T., Higuchi T., �Experimental Measurement of Rota-

tional Losses in Magnetic Bearings,� Proceedings of 4th International Symposium on

Magnetic Bearings, pp. 591-595, Zurich, Switzerland, 1994.

[Moon 1994] F. Moon, �Progress in superconducting magnetic bearings,� Proceedings of the

Fourth International Symposium on Magnetic Bearings, pp. 411-416, Zurich, Switzer-

land, 1994.

[Nonami and Yamaguchi 1992] K. Nonami, H. Yamaguchi, �Robust control of magnetic

bearing systems by means of sliding mode control,� Proceedings of the 3rd International

Symposium on Magnetic Bearings, pp. 537-546, Alexandria , VA, USA, 1992.

[Patent U.S. 5473211] �Asynchronous electric machine and rotor and stator for use in asso-

ciation therewith,� Patent U.S. 5473211, High Speed Tech Oy Ltd, Tampere, Finland,

Appl. No. 86880, 9 p, 7.7.1992.

[Reichert et al. 1976] K. Reichert, H. Freundl, W. Vogt, �The calculation of forces and

torques within numerical magnetic �eld calculation methods,� Proceedings of Com-

pumag, Oxford, UK, pp. 64-73, 1976.

[Saari 1995] Saari J., �Thermal modelling of High-Speed Induction Machines� Acta Poly-

technica Scandinavica, Electrical Engineering Series No. 82, 1995.

[Saari 1998] Saari J., �Thermal Analysis of High-Speed Induction Machines� Acta Polytech-

nica Scandinavica, Electrical Engineering Series No. 90, 1998.

[Satoh et al. 1990] I. Satoh, C. Murakami, A. Nakajima, Y. Kanemitsu, �A Self-Excited

Vibration of Magnetic Bearing System with Flexible Structure,� Proceedings of the

Second International Symposium on Magnetic Bearings, pp. 329-335, Tokyo, Japan,

1990.

[Saitz 1997] J. Saitz, �Calculation of iron losses in electrical machines,� Report 51, 57p.,

Espoo, Finland, Helsinki University of Technology, Laboratory of Electromechanics,

1997.

[Schmidt et al. 1996] E. Schmidt, T. Platter, H. Springer, �Force and Sti�ness Calculations

in Magnetic Bearings-Comparision between Finite Element Method and Network The-

ory,� Proceedings of the Fifth International Symposium on Magnetic Bearings, pp. 259-

264, Kanazawa, Japan, 1996.

[Schweitzer et al. 1994] G. Schweitzer, H. Bleurer, A. Traxler, �Active Magnetic Bearings,�

Zurich, Switzerland, Vdf Hochschulverlag AG an der ETH Zurich, 1994.

[Sortore et al. 1990] C. Sortore, P. Allaire, Maslen E., R. Humpris, P. Studer, �Permanent

magnet biased magnetic bearings,� Proceedings of the Second International Symposium

on Magnetic Bearings, pp. 175-182, Tokyo, Japan, 1990.

[Stoll 1974] Stoll R.L., �The Analysis of Eddy Currents,� London:Oxford University Press,

1974.



94

[Tellinen 1998] Tellinen J., �A simple scalar model for magnetic hysteresis,� accepted to be

published in IEEE Transactions on Magnetics, 1998.

[Ueyama and Fujimoto 1990] Ueyama H., Fujimoto Y., �Iron losses and Windy Losses of

High Rotational Speed Rotor Suspended by Magnetic Bearings,� Proceedings of 2nd

International Symposium on Magnetic Bearings , pp. 237-242, Tokyo, Japan, 1990.

[Vance 1988] Vance J.M., �Rotordynamics of Turbomachinery,� New York, John Wiley &

Sons, 1988.

[Zhuravlyov 1992] Y. Zhuravlyov, �Active Magnetic Bearings,� Report 37, 92p., Espoo, Fin-

land, Helsinki University of Technology, Laboratory of Electromechanics, 1992.

[Zmood et al. 1987] Zmood R.B., Anand D.K., Kirk J.A., �The in�uence of Eddy Currents

on Magnetic Actuator Perfomance,� Proc. IEEE, Vol. 75,pp. 259-260, Feb. 1987.



95

Appendix

A Controllers

A.1 1D controller

iref = Gcxref (A.1)

iref = irefDC +�iref (A.2)

i = iDC +�ic (A.3)

Gc =
1

s2

(!0)2
+ s2�

!0
+ 1

[kp(1 +
1

sT i

) +
skd

sT d + 1
] (A.4)

�uc = kcf(�iref ��ic) (A.5)

A.2 1-plane controller

2
4 irefD

irefN

3
5 =

2
4 GC kcrGC

kcrGC GC

3
5
2
4 xrefD

xrefN

3
5 (A.6)

Gc =

2
4 GC kcrGC

kcrGC GC

3
5 (A.7)

!0 2 � 707 [rad/s]

� 0.1

kp 16911 [A/m]

kd 38 [A s/m]

kcf 75 [V/A]

kcf 0.3

T i 0.15 [s]

T d 0.00015 [s]
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B Rotor model

B.1 The rotor model of the test machine 2

M rot =

2
6664
20:89 0 0

0 0:3817 0

0 0 8:7439� 107

3
7775 (B.8)

K rot =

2
6664
0 0 0

0 0 0

0 0 2:5232� 107

3
7775 (B.9)

Grot =

2
6664
0 0 0

0 1:8839� 10�2 �3:2711� 10�3

0 �3:2711� 10�2 3:2323�2

3
7775 (B.10)

Bb =

2
6664

1 1

0:2089 �0:2161
0:09296 0:16391

3
7775 (B.11)

Cm =

2
4 1 0:2838 0:5482

1 �0:2831 0:38142

3
5 (B.12)


