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For want of skilful strategy an army is lost;
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Abstract

The properties of vehicle time headways are fundamental in many traffic
engineering applications, such as capacity and level of service studies on
highways, unsignalized intersections, and roundabouts. The operation of
modern vehicle-actuated traffic signals is based on the measurement of time
headways in the arriving traffic flow. In addition, the vehicle generation
in traffic flow simulation is usually based on some theoretical vehicle time
headway model.

The statistical analysis of vehicle time headways has been inadequate
in three important aspects: 1) There has been no standard procedure to
collect headway data and to describe their statistical properties. 2) The
goodness-of-fit tests have been either powerless or infeasible. 3) Test results
from multi-sample data have not been combined properly.

A four-stage identification process is suggested to describe the headway
data and to compare it with theoretical distributions. The process includes
the estimation of the probability density function, the hazard function, the
coefficient of variation, and the squared skewness and the kurtosis. The
four-stage identification process effectively describes those properties of the
distribution that are most helpful in selecting a theoretical headway model.

One of the major problems in the headway studies has been the method
for goodness-of-fit tests. The two most commonly used tests are the chi-
square test and the nonparametric Kolmogorov-Smirnov test. The chi-
square test is not very powerful. The nonparametric Kolmogorov-Smirnov
test should be applied only, when the parameters of the distribution are
known. If the parameters are estimated from the data, as in typical headway
studies, the nonparametric Kolmogorov-Smirnov test gives too conservative
results. These problems are addressed by parametric goodness-of-fit tests
based on Monte Carlo methods.

Another great problem has been the lack of theoretical foundation in
dealing with multi-sample data. The headway data usually consist of several
samples, and the null hypothesis is tested against each of them. Two meth-
ods are presented to strengthen the evidence of multi-sample tests: 1) The
combined probability method gives a single significance probability based



on several independent tests. 2) The moving probability method is used to
describe the variation of combined probabilities against traffic volume.

These methods were applied to time headway data from Finnish two-
lane two-way roads. The independence of consecutive headways was tested
using autocorrelation analysis, runs tests and goodness-of-fit tests for the
geometric bunch size distribution. The results indicate that the renewal
hypothesis should not be accepted in all traffic situations. This conclusion
is partly supported by a further analysis of previous studies.

Five theoretical distributions were tested for goodness of fit: the negative
exponential distribution, the shifted exponential distribution, the gamma
distribution, the lognormal distribution and the semi-Poisson distribution.
None of these passed the tests. In the parameter estimation the maximum
likelihood method was preferred. For distributions having a location (thresh-
old) parameter, a modified maximum likelihood method was shown to give
good estimates.

The proposed procedures give a scientific foundation to identify and esti-
mate statistical models for vehicle time headways, and to test the goodness
of fit. It is shown that the statistical methods in the analysis of vehicle
headways should be thoroughly revised following the guidelines presented
here.
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Glossary of Notation

A2 Anderson-Darling statistic
A-D Anderson-Darling
ANCOVA Analysis of covariance
BAN Best asymptotically normal
BLUE Best linear unbiased estimator
C Sample coefficient of variation
C(T ) Coefficient of variation of the distribution for T
corr(x,y) Correlation coefficient between x and y
c.v. Coefficient of variation
D Deterministic distribution
D Kolmogorov-Smirnov statistic
E(T ) Expectation for random variable T
EDF Empirical distribution function
edf Empirical density function
ehf Empirical hazard function
eq. Equation
exp(x) Exponential function (ex)
F(t) Probability distribution function (P{T ≤ t})
Fn(t) Empirical probability distribution function for sample of

size n
f(t) Probability density function
f∗(s) Laplace transform of f(t)
fig. Figure
G General distribution
HCM Highway Capacity Manual
h(t) Hazard function
i.i.d. Independent and identically distributed
K(x) Kernel function
K-S Kolmogorov-Smirnov
M Exponential distribution
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M’ Modified exponential distribution
m Number of replications, number of samples
mk The kth central sample moment

∑n
j=1(xj − x̄)k/n

m′
k The kth noncentral sample moment

∑n
j=1 xk

j /n

MCS Minimum chi-square
Md Median
MLE Maximum likelihood estimator
MME Method of moments estimator
MMLE Modified maximum likelihood estimator
MMME Modified method of moments estimator
Mo Mode
MVUE Minimum variance unbiased estimators
N(t) Number of events in (0, t]
N(a,b] Number of events in (a, b]
N(µ,σ) Normal distribution with mean µ and standard deviation σ
n Sample size
o(∆) lim∆→0 o(∆)/∆ = 0
P Significance probability (P-value of a test), combined

probability
Pk(λ̃k,j) The jth term of a k-point moving probability
p Probability, proportion of follower headways
pi Significance probability (P-value of a test) for sample i
P(A-D) Significance probability of the Anderson-Darling test
P(K-S) Significance probability of the Kolmogorov-Smirnov test
PDF Probability distribution function
pdf Probability density function
Ph Peak height
P{A} Probability of event A
Q Kendall’s rank correlation test statistic
Re = Re1 Set of real numbers
Re+ Set of positive real numbers
R2 Coefficient of determination (multiple correlation coefficient)
r Pearson’s correlation coefficient
rxy Sample correlation coefficient between x and y
rxy·z Sample correlation coefficient between x and y with z

held constant
r.v. Random variable
rrmse Relative root mean square error
S Weighted sign test statistic
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s Sample standard deviation, Laplace transform variable
Sr Sum of r random variates
s.e. Standard error
SL Speed limit [km/h]
T Time headway variable
t Time headway (value)
t̄ Sample mean of headways
ti The ith headway
T(1) The first order statistic of the distribution for T

t(1) The first order statistic of a sample; i.e., min{t1, . . . ,tn}
U(a,b) Uniform (rectangular) distribution between a and b
V Exponential ordered scores test statistic
W 2 Cramér-von Mises statistic
X+ Positive part of X; i.e., (X + |X|)/2
xj(ω) Position of vehicle j at time ω
ẋj(ω) Differential of xj with respect to ω (speed)
ẍj(ω) Second differential of xj with respect to ω (acceleration)
α Shape parameter of the gamma distribution
α3(T ) Skewness of the distribution for T
α3 Sample skewness
α4(T ) Kurtosis of the distribution for T
α4 Sample kurtosis
β Scale parameter of the gamma distribution
Γ(x) Gamma function
γ(a,x) Incomplete gamma function
δ Threshold for exponential tail
θ Parameter of a distribution
θ̂ Maximum likelihood estimator for θ

θ̌ Modified maximum likelihood estimator for θ

θ̆ Minimum chi-square estimator for θ

θ̃ Estimator for θ
λ Flow rate, traffic intensity
λ̃ Traffic volume, estimated flow rate
µ Scale parameter of the lognormal distribution
µ(T ) Mean of the distribution for T
ν Degrees of freedom
ρ Server utilization factor
ρi Autocorrelation coefficient at lag i
ρ̃i Sample autocorrelation coefficient at lag i
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ρi·x Partial correlation coefficient for autocorrelation at lag i
with x held constant

σ Shape parameter of the lognormal distribution,
σ(T ) Standard deviation of the distribution for T
σ2(T ) Variance of the distribution for T
τ Location (threshold) parameter of a headway distribution,

rank correlation coefficient (Kendall’s τ)
υ Speed difference
Φ(X) Probability distribution function of the standard normal

distribution
φ(X) Probability density function of the standard normal

distribution
ω Time
∗ Convolution operator
#{ x | A } Number of x’s fulfilling condition A



Preface

The work started with the aim of finding more effective methods for vehicle-
actuated traffic signal control on two-lane roads. Part of the project was
the development of a traffic signal control simulation program. In order to
find a suitable headway variate generator, some field measurements were
performed on two-lane roads with speed limits not greater than 70 km/h.
(In Finland traffic signal control is not allowed on roads with higher speed
limits.) The location and time of each measurement was selected so that
the expected flow rate would not be much above 1,000 veh/h.

The analysis of the vehicle time headway data soon appeared to be a
far more complex issue than was initially assumed. It became evident that
the methods commonly used in the literature were not very efficient, and
in many cases they were infeasible. Consequently, the focus of the study
shifted from traffic signal control to the statistical analysis of vehicle head-
ways. Some shortcomings in this report are due to this fact. When the
field measurements were made, the extent and type of the analyses to be
performed was not anticipated.

Many of the theoretical distributions and their basic properties have been
described in an introductory paper (Luttinen 1990). The major results have
been published earlier: the goodness-of-fit tests and parameter estimation
for the gamma distribution (Luttinen 1991); the basic statistical properties
of time headways (Luttinen 1992); and the methods of identification, es-
timation, and goodness-of-fit tests (Luttinen 1994). The comments of the
reviewers of these papers have been very helpful.

The traffic analyzer measurements were performed by the Laboratory of
Transportation Engineering at the Helsinki University of Technology. My
special thanks to Mr. Kari Hintikka for all the care he has taken with the
measurements. I gratefully acknowledge professors Arde Faghri, Sulevi Lyly,
Hannu Niemi and Matti Pursula for their advice and support. Professor
Faghri has given very valuable help to make the purpose and style of the
text more clear. Professor Lyly has helped me in many practical matters.
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the financial support from the Henry Ford Foundation in Finland.

Finally, my deepest thanks to my wife Tarja, to my children Mikko,
Hanna, and Jaakko, and to my parents Raili and Matti for their continuous
support during the past years. Without their patience and encouragement
this report would never have seen the daylight.

Lahti, Finland
April 28, 1996
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Chapter 1

Introduction

1.1 Definitions

Time headway, or headway for short, is the time interval between two vehi-
cles passing a point as measured from the front bumper to the front bumper.
A headway is accordingly the sum of the time used by a vehicle to pass the
observation point (occupancy time) and the time interval (gap) to the arrival
of the next vehicle.

In platoons the gap is usually more meaningful to the driver than the
headway. Headways are, however, more important in the traffic flow theory.
Because the flow rate1 is reciprocal to the mean headway, the study of
headways is closely connected to the study of highway capacity. In selecting
a headway a driver establishes a flow rate for the vehicle (Dawson & Chimini
1968).

The headways are measured in time rather than in space. Time head-
ways, rather than space headways or spacings between consecutive vehicles,
have been selected as the subject because:

1. Time headways and flow rates are directly connected. There is a simi-
lar connection between spacings and densities, but flow rates are usu-
ally more meaningful and more easily measured by practicing traffic
engineers.

2. In platoons the driver of a trailing vehicle adjusts the gap considering
safety, one aspect of which is the reaction time. It can be assumed

1The flow rate or traffic flow means the expected number of vehicles per time unit
passing the reference point. The traffic volume is the measured number of vehicles per
time unit. In HCM (1994) the terms have been used in a different sense.

15



16 CHAPTER 1. INTRODUCTION

that the gap, and hence the headway of a trailing vehicle, is not as
sensitive to vehicle speeds as the spacing.

3. An estimate of the spacing can be obtained as the product of speed
and headway, assuming constant speed during the headway.

In the literature on point processes the counting specification is often
taken as primary, because it allows a generalization to higher dimensional
spaces (e.g., Daley & Vere-Jones 1988). This study, however, discusses the
traffic flow as a process on the real line. For this purpose the interval
specification is more informative.

1.2 Importance of headway studies

Many traffic operations (such as passing, merging, and crossing) depend
on the availability of large headways in the traffic flow. Consequently, the
distribution of headways has an effect on platoon formation and delays.

In the 1985 Highway Capacity Manual (HCM 1985) the level of service
on two-lane rural highways is approximated by the proportion of headways
less than five seconds—thus making a connection between the headway dis-
tribution and the level of service. In addition, the headways play a crucial
role in the analysis of unsignalized intersections and roundabouts (Sullivan
& Troutbeck 1994).

Although the average delay in fixed time traffic signals is not very sensi-
tive to the detailed stochastic properties of the arrival model (Newell 1956,
Newell 1965, Kingman 1962), in vehicle actuated traffic signals the con-
trol, the extension time in particular, is very sensitive to the arrival pattern
(Darroch, Newell & Morris 1964). The characteristics of vehicle headways
are accordingly quite relevant in the study of optimal traffic signal control.

The mathematical analysis and simulation of traffic operations are based
on theoretical models, which must be evaluated against the properties of real
world data. More advanced methods have increased the need for reliable
knowledge of the statistical properties of vehicle headways.

1.3 History and problems

Traffic flow has been considered as a stochastic process at least since Adams
(1936). He formulated the idea of arrivals as a random (i.e., Poisson) process
and verified good agreement with theory and observations. Since then many
more sophisticated models have been proposed.
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The properties of headways have been extensively studied, especially in
the 60’s. Some of this earlier work is now drawn together and evaluated in
the light of recent data and more powerful statistical methods.

No unified framework has been developed for traffic flow theory. Accord-
ingly, the vehicle headway studies have been concentrated on the statistical
analysis of headway data. There have been, however, some notable excep-
tions. Greenberg (1966) has found a connection between the microscopic
traffic flow theory and the lognormal follower headway distribution.

An interesting new approach has been developed by Heidemann (1990,
1993). He has applied the theory of stochastic processes to analytically
derive the headway distribution as a function of traffic density. Heidemann
criticizes the statistical approach for lacking in detailed analytical reasons
that would justify the various types of distributions. His approach may
provide a link between the macroscopic traffic flow theory and the headway
distributions, but so far it has not found many applications. The distribution
function is rather complicated, and its statistical properties have not been
widely explored. The Heidemann model is not discussed below, but it well
deserves further studies.

The statistical analysis of vehicle headways has been inadequate in three
important aspects:

1. There has been no standard procedures to collect headway data and
to describe their statistical properties.

2. The goodness-of-fit tests have been either powerless or infeasible.

3. Test results from several samples have not been combined properly.

In the literature on vehicle headways the shape of the empirical (sam-
ple) distributions have been mostly described by cumulative distribution
functions and histograms. In some studies measures such as the mode
(May 1961, Summala & Vierimaa 1980, Rajalin & Hassel 1992), the median
(May 1961) and the coefficient of variation (May 1965, Buckley 1968, Dunne,
Rothery & Potts 1968, Breiman, Lawrence, Goodwin & Bailey 1977, Pur-
sula & Sainio 1985, Griffiths & Hunt 1991) have been presented. The re-
newal hypothesis (mutually independent and identically distributed head-
ways) has also drawn the attention of several researchers (e.g., Dunne et al.
1968, Breiman, Gafarian, Lichtenstein & Murthy 1969, Cowan 1975, Chris-
sikopoulos, Darzentas & McDowell 1982).
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The work of Breiman et al. (1969) deserves special attention. They have
made a serious attempt to standardize the analysis of headway data by
presenting a method to determine trendless time periods in the traffic flow,
and by introducing a set of three tests for the renewal hypothesis. The idea
of trendless data has not, however, been unanimously accepted. In addition,
the comparison of the headway data presented by various authors is difficult,
because no standard set of analyses has been applied to identify the most
important properties of the headway data.

The goodness of fit has been tested mainly by three methods: (1) graph-
ical evaluation, (2) the chi-square test, and (3) the Kolmogorov-Smirnov
test. The graphical evaluation has been based on the probability distribu-
tion function (e.g., Akçelik & Chung 1994) or the probability density func-
tion (e.g., Buckley 1968). These methods are highly subjective and should
be used only in preliminary studies. The use of histograms to estimate the
probability density function has sometimes even produced a distorted idea
of the distribution.2

The chi-square test is theoretically justified, but it is based on the re-
duction of observations into counts, which decreases the power of the test
considerably. The Kolmogorov-Smirnov test has been even more problem-
atic. It has been used in its nonparametric form, which is based on the
assumption that the parameters of the distribution are known. In the head-
way studies the parameters are, however, usually estimated from the data.
Because the estimation makes the fit better, the critical values should be
smaller. This correction has not been made in any of the studies reviewed.
Consequently, the results have been too conservative. The problems asso-
ciated with the goodness-of-fit tests have not received proper attention in
previous studies.

Another great problem has been the lack of theoretical foundation in
dealing with multi-sample data. The headway data usually consist of several
samples, and the null hypothesis is tested against each sample. The result
has often been presented as the number or proportion of tests which have
led to the rejection of the null hypothesis (e.g., Buckley 1968, Breiman et al.
1969). In some cases even the average significance probability has been used
(e.g., Branston 1976). In none of the studies reviewed have the individual
tests been properly combined to give a scientifically valid evaluation of the
overall acceptability of the hypothesis.

2The figure on page 459 of Griffiths & Hunt (1991) gives the impression of a bell shaped
probability density function that is not supported by their equation 1.
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1.4 Purpose of the study

The scope of this study is the statistical analysis of vehicle headways on two-
lane two-way roads. The headways on both lanes are analyzed separately.
The study has two purposes:

1. To introduce a statistical methodology for the analysis of the headway
data and for the evaluation of the proposed models

2. To get information about the statistical properties of headways on two-
lane two-way roads.

The main objective is to present proper statistical methods for the goodness-
of-fit tests and for the combination of significance probabilities. The second
objective is to present a set of methods to effectively describe the statistical
properties of headway data. These tests and methods will be applied to
some of the most commonly used headway distribution models. Combined
with the discussion on the data collection and parameter estimation, the
text presents a scientific foundation for the statistical analysis of vehicle
headways.

Although the data are from two-lane two-way roads, the statistical meth-
ods presented can be applied to any headway data. Some methods have even
more general interest.

1.5 Summary of contents

The presentation follows the statistical modeling process in figure 1.1. Chap-
ter 2 reviews the microscopic traffic flow theory in the light of vehicle head-
ways. There is also a short introduction to the main statistical methods
used. The problem of combining the test results from several samples is
solved by the method of combined probabilities (Fisher 1938). The moving
probability method developed by Luttinen (1992) allows the analysis of test
results over another variable, such as traffic volume.

Chapter 3 discusses the measurements and the preliminary analysis of
the Finnish headway data. The methods introduced in earlier literature to
obtain stationary headway data are evaluated. Because the combination of
samples introduces a bias in the data, data collection based on trend analysis
gives better results.

Chapter 4 introduces methods for model identification. In addition to
the conventional probability distribution function and the probability den-
sity function, the shape of the headway distribution is analyzed using the
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Theory
Parameter
estimation

GOF
tests

Data
collection

Model
identification

Applications

Figure 1.1: Statistical modeling process

hazard function, which has been extensively applied in life and reliability
data analyses. The first four moments are shown to be very informative
measures of location and dispersion. On the basis of these analyses a four-
stage identification process (Luttinen 1994) is introduced. In addition, three
methods are used to test, whether the renewal hypothesis can be accepted
for the headway data.

Chapter 5 analyses the applicability of several statistical distributions as
models for the headway distributions on two-lane two-way roads. Main em-
phasis is on the goodness-of-fit tests and the parameter3 estimation. Para-
metric goodness-of-fit tests are compared with the nonparametric Kolmo-
gorov-Smirnov tests.

It is assumed that the reader has a basic knowledge of the probability
theory as well as statistical and numerical methods. The theory is described
only to the extent that is essential to understand the text. More detailed
descriptions can be found in the references given.

3The parameters are called location, scale and shape parameters following the terminol-
ogy of D’Agostino & Stephens (1986), Johnson, Kotz & Balakrishnan (1994), and Stuart
& Ord (1987). A parameter τ is called the location parameter, if the distribution has the

form f(t− τ), and θ is called the scale parameter, if the form is θf(θt) or
1
θ
f

(
t

θ

)
(Stuart

& Ord 1987). If higher moments (skewness and kurtosis) of a distribution are defined by
a third parameter, it is called the shape parameter.



Chapter 2

Theoretical background

2.1 Microscopic traffic flow theory

The microscopic theory of traffic flow describes the movements of vehicles
on road sections. The movement of vehicles on a lane can be displayed
as a time-space digram (fig. 2.1). The distances between vehicles can be
studied either at a fixed location (headways) or at a fixed time (spacings)
or as a dynamic (car-following) model, which is the most comprehensive
approach. A short review of the car-following models gives a broader view
on the properties of vehicle headways.

Let the position of a vehicle j at a moment ω be xj(ω). The time instant
for the vehicle to pass the observation point (x) is:

ωj(x) = { ω | xj(ω) = x }. (2.1)

Thus, the time headway of vehicle j at point x is:

tj(x) = ωj(x) − ωj−1(x). (2.2)

Assuming constant speed for vehicle j during the headway, the headway
of vehicle j at time ω is:

tj(ω) =
xj−1(ω) − xj(ω)

ẋj(ω)
, (2.3)

where the numerator is the spacing of vehicle j at time ω, and the dot
denotes differentiation with respect to time. This equation gives the ba-
sic relationship between time headways, space headways, and car-following
models.

21
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Position

x

Time

Vehicle j-1

Headway

ω

Spacing

Vehicle j+1Vehicle j

Figure 2.1: Time-space diagram of vehicle trajectories

Let us assume that the driver of vehicle j has reaction time Rj . The
length of the vehicle ahead is Lj−1. The driver of vehicle j wants to keep a
net safety spacing Bj in front of the vehicle. This spacing allows the driver
to avoid too strong decelerations. The desired headway is then (Daou 1966):

tj = Rj +
Lj−i + Bj

ẋj−1
. (2.4)

Daou analyzed over 24,000 headways from the Holland Tunnel and obtained
least squares estimates for reaction time Rj = 1.488 s and (gross) safety
spacing Lj−1 + Bj = 35.0 ft (10.7 m).

According to this theory, there is a correlation between desired headways
and speeds as shown in figure 2.2. At higher speeds the follower headways
are shorter.

In a car-following model the driver of a following vehicle can control the
vehicle by accelerating and decelerating. The researchers in the General
Motors (see May 1990) developed several models based on the assumption
that the response (control) is a function of stimuli and sensitivity.

According to the linear car-following model the response is a linear
function of the speed difference between the vehicles (Chandler, Herman
& Montroll 1958):

ẍj (ω + Rj) = α0 [ẋj−1 (ω) − ẋj (ω)] . (2.5)

Because the response does not depend on the headway or the spacing be-
tween vehicles, the model is unrealistic, and it cannot describe the desired
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Figure 2.2: Speed and desired headway according to Daou (1966)

headway.
Gazis, Herman & Potts (1959) have proposed a nonlinear car-following

model :
ẍj (ω + Rj) =

α1

xj−1 (ω) − xj (ω)
[ẋj−1 (ω) − ẋj (ω)] , (2.6)

where the sensitivity is a function of a parameter (α1) and the spacing, and
the stimulus is the speed difference between vehicles j − 1 and j.

The model produces different equilibrium headways for different initial
headways and relative speeds. Long initial headways and low initial relative
speeds result in long equilibrium headways.

The headway of a vehicle approaching the vehicle ahead is shown in figure
2.3. The leading vehicle has constant speed of 80 km/h. The follower starts
the car-following at initial headway 10 s and speed 100 km/h. Reaction
time is 1.5 seconds. Sensitivity coefficients (α1) are 3.0 m/s (upper curve),
2.6 m/s (middle curve), and 2.0 m/s (lower curve). The straight line shows
the headway if the follower maintains constant speed (100 km/h).

Gazis, Herman & Rothery (1961) have further modified the nonlinear
model:

ẍj (ω + Rj) = α2
ẋm

j (ω + Rj)

[xj−1 (ω) − xj (ω)]l
[ẋj−1 (ω) − ẋj (ω)] . (2.7)

Increasing l makes the model less sensitive to the initial headway, because
the response is more strongly inversely proportional to the spacing. The
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Figure 2.3: Headway as a function of time, when a vehicle is approaching the
vehicle ahead according to the nonlinear car-following model (2.6)

response is rather weak until the spacing between vehicles is short. A larger
value of m makes the steady state headway less dependent on the initial
speed difference, because the sensitivity is proportional to the speed of the
follower.

On the basis of the car-following models the variation in the follower
headways can be explained by seven factors:

1. Differences in the sensitivity between followers

2. Delayed responses to speed variations of the leading car

3. Oscillation due to strong and delayed responses

4. Variation in the length of leading vehicles

5. Approaching (transition) phase in the beginning of the car-following
process

6. Variation in the initial headway, when the car-following process starts

7. Variation in the initial speed difference, when the car-following process
starts.

Factors 1–4 describe the typical car-following process, when a vehicle has
finished the approaching phase and is following the leading vehicle. Factors
5–7 describe the situation, when a vehicle approaches the leading vehicle
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and shifts from the free-moving state to the car-following state. Factors 1,
6, and 7 describe different types of drivers.

The car-following models have serious limitations in headway studies:

1. Even in a reasonably dense traffic some drivers will not attempt to
follow the car preceding them (Herman & Potts 1961), because the
desired speed of a driver can be lower than the speed of the vehicle
ahead. The models can only be applied to vehicles that are following
another vehicle.

2. At long spacings the speed difference does not influence the follower.
The models do not, however, have a threshold for car-following and
free driving.

3. Some short headways are caused by passing vehicles. The models do
not, however, describe passing.

4. The models developed by the researchers in the General Motors do not
have a connection between speed and spacing. The equilibrium head-
way is different depending on the initial speed of the follower (fig. 2.3).
In addition, the models do not allow the possibility of differences in
the “desired spacing” among followers.

5. According to Leutzbach (1988) “the perceptual threshold for positive
speed differences (the spacing decreases) is smaller than that for neg-
ative speed differences (the spacing increases)”. The models have the
same sensitivity for negative and positive speed differences.

6. The car-following theory does not deal with the inherent fuzziness of
the car-following process. The follower cannot observe and does not
continuously react to variations smaller than a perception threshold
in the spacing or the speed of the leading car (Leutzbach 1988). This
“acceleration noise” causes random variation in the process.

7. A driver’s reaction pattern is imprecise, but the reaction of the follower
is deterministic in the models (Kikuchi & Chakroborty 1992).

These considerations have led to psycho-physical1 (Leutzbach 1988) and
fuzzy (Kikuchi & Chakroborty 1992) car-following models.

1Psycho-physiologisch in German.
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2.2 Statistical methods

2.2.1 Sampling techniques

Headway (ti ) is the time between successive vehicles (i − 1 and i) as they
pass a point on a lane or roadway measured from front bumper to front
bumper (HCM 1994). The mean headway (t̄) and the traffic volume (λ̃) in
a sample are connected in an obvious way:

λ̃ =
n∑n
i=1 ti

=
1
t̄
, (2.8)

where n is the number of observations in the sample. Because the expected
traffic volume is, by definition, the flow rate, the expected mean headway
at flow rate (λ) is:

E( t̄ | λ ) =
1
λ

. (2.9)

In order to get generally applicable results about the properties of head-
ways, it is necessary to study stationary conditions.2 Consequently, all
nonrandom variation must be removed from the measurements as far as
possible. Otherwise the parameters of the distribution change as a function
of time.

In previous studies mainly two approaches have been used to overcome
the problem of nonrandom variation: The samples have been collected either
as fixed time slices or on the basis of trend analysis. Quite often the method
of collecting and analyzing the data is not specified.

In some studies the measurements are investigated in fixed time slices
of length short enough to exclude any significant trend (typically 30 s to
10 min). It is, however, possible to have a significant trend in a 5–10 minute
time period. One minute period, on the other hand, is too short, at least
under light flow conditions.

As the time period (Sn, sum of sample headways) gets shorter, sample
mean (t̄ ) longer or standard deviation (s) larger, the standard error in the

2The stationarity is considered to be equivalent to trendlessness. It is possible that
the process is nonstationary, although the flow rate remains constant. This possibility
is, however, ignored, as suggested by Cox & Lewis (1966).—Because traffic flow is a
dynamic process in time and space, stationarity can be defined both in time and in space
(McLean 1989). Only stationarity in time is considered here.



2.2. Statistical methods 27

mean headway estimate increases:

s.e.[µ̃(T )] =
s√
n

= s

√
t̄

Sn
.

(2.10)

Under light flow conditions the number of observations per period is small.
The growth of the standard deviation as the mean headway increases3 makes
the mean estimate even more unreliable. As Botma (1986) has noted, the
number of long headways in small samples is a highly fluctuating quantity.

Because the number of headways in a short observation period is usually
too small for testing goodness of fit, it is necessary to group samples having
nearly equal means. This may result in a sampling error as the sample means
have an inappropriate distribution. The artificial homogenization of the
data leads to the narrowing of the headway distributions, and it can happen
that the tails of the underlying distributions are undersurveyed (Heidemann
1990). According to Greenberg (1966) the stratification of headways by flow,
density or other criteria will introduce a truncation into the data.

Consider m samples, each sample having size ni and mean and variance
equal to:

t̄i =
1
ni

ni∑
k=1

tik (2.11)

s2
i =

1
ni

ni∑
k=1

(tik − t̄i)2, (2.12)

where tik the kth headway in sample i. The combined sample mean is:

t̄ =
1
n

m∑
i=1

nit̄i, (2.13)

where

n =
m∑

i=1

ni. (2.13a)

3See section 4.3.3.
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The variance of the combined sample is:

s2
t =

1
n

m∑
i=1

ni∑
k=1

(tik − t̄ )2

=
1
n

m∑
i=1

ni∑
k=1

(tik − t̄i + t̄i − t̄ )2

=
1
n

m∑
i=1

[
ni (t̄i − t̄ )2 +

ni∑
k=1

(tik − t̄i)
2 + 2 (t̄i − t̄ )

0︷ ︸︸ ︷
ni∑

k=1

(tik − t̄i)
]

=
1
n

m∑
i=1

ni

[
(t̄i − t̄ )2 + s2

i

]

=
1
n

m∑
i=1

ni (t̄i − t̄ )2 +
1
n

m∑
i=1

nis
2
i .

(2.14)

Consequently, the variance of the combined sample is the variance of sam-
ple means plus the mean of sample variances. If true mean of the combined
sample is used, the mean of sample variances can be assumed rather con-
stant. The range of sample means, however, should be defined so that the
variance of sample means is not biased. Too narrow (wide) range results in
underestimation (overestimation) of the variance of the headways.

By the central limit theorem, the distribution of sample means from a
population with mean µ and variance σ2 approaches normal distribution
with mean µ and variance σ2/n, when the sample size (n) is large (Stuart &
Ord 1987). If the flow rate is changing during the time of measurement, the
sample means between the selected lower (a) and upper (b) limits can be
assumed to be uniformly distributed. The range can be selected so that the
variance [(b − a)2/12] of the sample means is realistic, but the distribution
of the sample means is still biased.

The other approach, adopted by Dunne et al. (1968), and by Breiman
et al. (1969), is to analyze several long time periods showing no trend. If
the number of observations per sample is large, the estimate of the mean is
more reliable. It is not necessary to group samples. Greater variation and
serial correlation is allowed without a strong impact on the mean estimate.
Longer sampling periods enable the detection of lower frequencies in the
spectral analysis, if it is performed. There is, however, a loss of data, because
nonstationary time periods are discarded.

Despite the use of trend tests, there is a possibility of short deterministic
patterns in the traffic flow. This additional component of variation may
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cause a small increase in the variance of the headway data (Heidemann
1990).

2.2.2 Trend tests

In order to obtain trendless samples, it is necessary to subject the data to
trend tests. Three tests are evaluated:

1. Weighted sign test

2. Kendall’s rank correlation test

3. Exponential ordered scores test.

Cox & Stuart (1955) suggested the weighted sign test as a quick and simple
but less efficient alternative to the rank correlation test. For a pair { ti, tj |
i < j } of observations a score is defined:

hij =

{
1, if ti > tj

0, if ti < tj .
(2.15)

The test statistic is a weighted number of points of decrease:

S =

1
2n∑

k=1

(n − 2k + 1)hk,n−k+1. (2.16)

Under the null hypothesis (no trend) the observations are not correlated,
and S is asymptotically normal (Brockwell & Davis 1987) with mean and
variance equal to:

µ(S) =
1
8
n2 (2.17)

σ2(S) =
1
24

n(n2 − 1). (2.18)

The Kendall’s rank correlation test (Kendall & Ord 1990, Stuart & Ord
1991) extends the pairwise comparison to all pairs { ti, tj | i < j }:

Q =
n−1∑
i=1

n∑
j=i+1

hij . (2.19)
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The rank correlation coefficient is:

τ = 1 − 4Q

n(n − 1)
. (2.20)

Under the null hypothesis (no trend) τ tends to normality rapidly (Stuart
& Ord 1991) with mean and variance given by:

µ(τ) = 0 (2.21)

σ2(τ) =
2(2n + 5)
9n(n − 1)

. (2.22)

The exponential ordered scores test of Cox & Lewis (1966) attaches the
score

sr,n =
1
n

+ · · · +
1

n − r + 1
, r = 1, . . . ,n (2.23)

to the rth order statistic (t(r), the rth longest headway) in a sample of size
n. Let sn(i) be the score of headway ti. The test statistic is:

V =
n∑

i=1

sn(i)
(

i − n + 1
2

)
. (2.24)

The test statistic is asymptotically normally distributed with mean zero and
variance

σ2(V ) =
n∑

i=1

(
i − n + 1

2

)2

K2,n, (2.25)

where

K2,n = 1 − 1
n − 1

(
1
n

+
1

n − 1
+ · · · +

1
2

)
. (2.25a)

Empirical power curves4 were evaluated for the three tests by a Monte
Carlo method with shifted exponential pseudo-random variates generated
by the following algorithm:

Tj+1 = τ −
(

1
λ(ωj)

− τ

)
ln(U), j = 0,1,2, . . . , (2.26)

4See page 36.
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where

ωj =
j∑

i=1

Ti (2.26a)

ω0 = 0, (2.26b)

λ(ωj) is the current flow rate, τ is the location parameter of the shifted
exponential distribution, and U is a pseudo-random number from the uni-
form distribution (0,1]. The algorithm allows negative random variates to be
generated. Because negative vehicle headways are unrealizable, the power
curves for negative trends (displayed on a gray background in figure 2.4)
should be viewed for comparison only.

Linear trend was used. Consequently, the average headway at time in-
stant ωj is:

E(Tj+1) =
1

λ(ωj)
=

1
λ0

(1 + θωj), (2.27)

where λ0 is the initial traffic intensity and θ is the trend factor. Facto-
rial design (Montgomery 1984) was used with λ0 = 100 veh/h, 200 veh/h,
500 veh/h, and 1,000 veh/h, as well as θ = -500 %/h, -200 %/h, -100 %/h,
-50 %/h, -10 %/h, 0 %/h, 10 %/h, 50 %/h 100 %/h, 200 %/h, and 500 %/h.
The sample sizes were 50, 100 and 200, and the number of replicas was 100.
The two-sided significance level was 0.05.

Figure 2.4 shows the empirical power curves of the tests based on Monte
Carlo runs. A test is powerful if its power curve is equal to the significance
level for trendless samples and near unity for samples with trend. The curves
are at 0.05, when there is no trend (θ = 0), that is the tests reject 5 % of the
samples. As the absolute value of the trend increases, the tests can detect
the trend more efficiently. The exponential ordered scores test is superior to
the other tests, and the weighted sign test is the least powerful. Although
the exponential ordered scores test is computationally more strenuous, it
was selected as the prime method of testing trend.

According to Stuart (1956) the asymptotic relative efficiencies of the
weighted sign test and the rank correlation test against the regression co-
efficient test are 0.83 and 0.98, respectively. The empirical power curves in
figure 2.4 confirm the superiority of the rank correlation test against the
weighted sign test.
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Figure 2.4: Empirical power curves for three trend tests

2.2.3 Parameter estimation

Method of moments

The parameters of a distribution can be estimated by equating the expres-
sions for the first k population moments to the corresponding expressions for
the k sample moments, and solving the k parameters from the set of equa-
tions. This method of moments has been widely used in headway studies
because of its simplicity: Raw data is not required after the first k moments
have been calculated, and the first moment (mean headway) is directly ob-
tained from the traffic volume (see eq. 2.8). Also, the solution to the set of
equations is usually simple.

The method of moments estimators are usually consistent (Dudewicz
& Mishra 1988); i.e., the mean squared error of the estimator decreases
to zero as the sample size increases. The method is, however, usually not
efficient5 (Stuart & Ord 1991), except for distributions closely resembling the
normal (Greenwood & Durand 1960). This is to be expected, because the
information in the data is reduced to the sample moments. Accordingly, the
method of moments is usually not appropriate to estimate the parameters
of skew distributions, like the headway distributions, but it can be used to
give first approximations for more efficient methods.

5The estimator is (asymptotically) efficient if it has in large samples the smallest vari-
ance among all consistent and asymptotically normal estimators. (Stuart & Ord 1991)
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Maximum likelihood method

The maximum likelihood method is the other traditional method to estimate
the parameters (θ = θ1, . . . ,θk) of a distribution. Let us assume that the
probability density function is f( t |θ ). For a sample of n independent
observations the parameter estimators (θ̂) are obtained by maximizing the
likelihood function:

L(θ̂) =
n∏

i=1

f
(

ti

∣∣∣ θ̂ ) . (2.28)

subject to parameter vector θ̂. In contrast to the method of moments, the
likelihood function contains all the information in the sample.

Usually the same estimators can be obtained more easily by finding the
maximum of the log-likelihood function:

lnL(θ̂) =
n∑

i=1

ln f
(

ti

∣∣∣ θ̂ ) . (2.29)

A necessary condition for the maximum is that the partial derivatives equate
to zero:

∂ lnL(θ̂)

∂θ̂1
= 0

...
∂ lnL(θ̂)

∂θ̂k

= 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.30)

This set of equations is called the likelihood equations. A sufficient, though
not a necessary, condition that a solution to these equations is a local max-
imum is:

∂2 lnL(θ̂)

∂θ̂2
1

< 0

...
∂2 lnL(θ̂)

∂θ̂2
k

< 0.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.31)

If there are more than one maxima, the largest one of them is chosen. The
resulting estimators (θ̂ = θ̂1, . . . , θ̂k) are the maximum likelihood estima-
tors (MLEs), provided that there is no terminal maximum at the extreme
permissible values of the parameters. (Stuart & Ord 1991)
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The maximum likelihood method has several desirable properties. Under
very general conditions a MLE is consistent, and under certain regularity
conditions it is efficient. Also, if there is an efficient estimator, the maxi-
mum likelihood method will produce it. Under some general conditions the
MLE is asymptotically normally distributed with mean equal to the true pa-
rameter value, and among all estimators that are asymptotically normally
distributed, the MLE possesses the minimum asymptotic variance; i.e. a
MLE is a best asymptotically normal (BAN) estimator. The properties of
the MLEs for large samples are, accordingly, excellent. (Stuart & Ord 1991)

Modified maximum likelihood method

According to Cohen & Whitten (1988) the first order statistic (the smallest
observation) of a sample contains more information about the location6 pa-
rameter (τ ≡ θ1; threshold for the minimum headway) than any of the other
sample observations, often more than all the other observations combined.
This property can be used to modify the maximum likelihood method.

The modified maximum likelihood estimators (MMLEs, θ̌) are obtained
by substituting the equation of the partial derivative with respect to the
location parameter (τ) with the following equation:

F
(
t(1)
∣∣ θ̌ ) = Fn(t(1)) =

1
n + 1

, (2.32)

where t(1) is the first order statistic of the sample. The equation can also
be written in terms of the inverse probability distribution function:

F−1
(

1
n + 1

∣∣∣∣ θ̌
)

= t(1) (2.33)

In some situations the modified method gives better estimators than the
maximum likelihood method. The modified method has been used to esti-
mate the parameters of the gamma and the lognormal distributions. Cohen
& Whitten (1980) and Cohen & Whitten (1982) give additional information
about the properties of MMLEs.

Minimum chi-square method

For a sample classified into m mutually exclusive and exhaustive classes,
the minimum chi-square (MCS) estimators are obtained by minimizing the

6See page 20, footnote 3.
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chi-square statistic7 (Cox & Hinkley 1974):

χ2 =
m∑

i=1

[ni − np( i | θ̆ )]2

np( i | θ̆ )
, (2.34)

where ni is the number of observations in class i, n is the sample size, and
p( i | θ̆ ) is the probability of an observation falling into class i conditional
upon parameter vector (θ̆).

Like the MLE, the MCS estimator is also asymptotically efficient and
a best asymptotically normal (BAN) estimator (Stuart & Ord 1991). The
MCS method, however, wastes some information because of the data classi-
fication.

The maximum likelihood method is considered computationally better
and more effective in small samples than the MCS method. The classifica-
tion of data is troublesome, especially in small samples. Also, the maximum
likelihood method, unlike the MCS method, gives closed form solutions for
some distributions. In the analysis of the headway data the maximum like-
lihood method is given preference. When it fails, the modified maximum
likelihood method is used.8

2.2.4 Goodness-of-fit tests

Testing hypotheses

Goodness-of-fit tests are used to test the hypothesis that some particular
distribution F( t |θ ) is the true unknown distribution G(t), which has gen-
erated the sample:

H0 : G(t) = F( t |θ ) . (2.35)

The null hypothesis (H0) that the distributions are equal, is tested against
the alternative hypothesis (HA) that the distributions are not equal. The
null hypothesis should be rejected if the distributions differ.

If F( t |θ ) is completely specified, the null hypothesis is called simple.
If the parameters (θ) are partly or completely unspecified, H0 is called
composite—it is composed of various simple hypotheses. In the goodness-
of-fit tests for headway distributions, H0 is simple, while HA is composite;
i.e., the alternative headway distribution is unspecified. It is obvious that
simple hypotheses are easier to test.

7See also page 37.
8For the shifted exponential distribution the modified method of moments estimators

are used, because they are easier to calculate and give practically the same results.
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The test fails if H0 is rejected while it is true (type I error), or H0 is
accepted while it is false (type II error). The probability of type I error is
called the significance probability9, and the maximum probability of rejecting
H0 is called the significance level of the test. The probability of type II error
is difficult to determine in headway studies, because HA is composite.

The result of a test is either “H0 is rejected” or “H0 is not rejected”. In
the first case HA is accepted, and the significance probability gives the prob-
ability of an erroneous judgment. The second case is interpreted that there
is not enough evidence to show that H0 is false. This does not necessarily
mean that H0 is true. Accordingly, it is possible for several distributions to
pass the goodness-of-fit test, although only one or none of them is the true
distribution G(t). In the future larger data sets and more powerful tests
may lead to the rejection of these hypotheses. This is typical of statistics:
Much can be said about what is (probably10) not true, but very little about
what is true.

The ability of a test to detect that H0 is false, is called the power of
the test. For a composite alternative hypothesis the power depends on the
particular (simple) models in HA. Consequently, the power is best described
as a curve or function, which shows the probability of rejecting H0 as a
function of simple models in HA. (Figure 2.4 on page 32 shows the power
curves for three trend tests.) In an ideal test the probability of rejecting H0
while it is true (type I error) is nul, and the probability of rejecting it while
it is false is unity.

Because the true distribution G(t) behind a headway sample is unknown,
G(t) cannot be used in the test, but F( t |θ ) must be tested against the
properties of the sample:

H0 : The random sample {t1, . . . , tn} is generated by F( t |θ ) . (2.36)

If the parameters of F(t) are estimated from the sample, the null hypothesis
becomes:

H0 : The random sample {t1, . . . , tn} is generated by F
(

t
∣∣∣ θ̃ ) . (2.37)

9Although the term “P-value” is more commonly used, the term “significance proba-
bility” is used here to emphasize the fact that the significance of a test is the probability
of type I error.

10Popper (1983) states this even more strictly: “Probability hypotheses do not rule out
anything observable. . . Probability estimates are not falsifiable. Neither, of course, are
they verifiable.” Probabilistic explanations are, however, important, because “often the
best that can be established with some warrant is a statistical regularity” (Nagel 1982).
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In both cases the problem is to find a powerful test statistic (B), which
measures the goodness of fit. If the distribution FB(·) of the test statistic
under H0 is known, the significance probability (p) is the probability that a
random variate (B) from distribution FB(·) is greater than or equal to b:

p = P{B ≥ b} = 1 − FB(b). (2.38)

If H0 is true, the significance probabilities are uniformly (0,1) distributed
(Fisher 1938). This is the consequence of the probability integral transfor-
mation: If X is a continuous random variate and P{X ≤ x} = F(x), then
F(X) is distributed according to the uniform (0,1) distribution (Johnson et
al. 1994).11

If the distribution of the test statistic is the same for all distributions and
their parameters, the statistic is called distribution-free, and the hypothesis
is called nonparametric12. A test using a statistic whose distribution is
different depending on F( t |θ ) is called parametric. Such a test is usually
more powerful, because it is based on the known properties of the statistical
model.

Nonparametric tests

Chi-square test If a sample follows distribution F( t |θ ), it can be di-
vided into m exclusive and exhaustive classes A1, . . . , Am so that the propor-
tion of observations in a class corresponds to the probability of a random
variate from F( t |θ ) falling into the same class. In headway studies an
obvious classification is a set of consecutive headway ranges:

{tj ∈ Ai} ⇐⇒ {Ti < tj ≤ Ti+1} . (2.39)

11Consequently, the inverse probability distribution function can be used to generate a
random variate X following distribution F(x) from a uniformly U(0,1) distributed random
variate Y :

X = F −1(Y ).

12The terminology follows loosely that of Stuart & Ord (1991). They confine the ad-
jectives “parametric” and “nonparametric” to statistical hypotheses and apply the adjec-
tive “distribution-free” to the test statistic, the distribution of the test statistic, and so
on. Often the terms “nonparametric” and “distribution-free” are used interchangeably
(Conover 1980).
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In this case the probability P{tj ∈ Ai} can be calculated as follows:

p( i | θ ) = P{tj ∈ Ai}
= P{Ti < tj ≤ Ti+1}
= F( Ti+1 |θ ) − F( Ti |θ ) .

(2.40)

The goodness of fit can be measured by Pearson’s chi-square statistic:

χ2 =
m∑

i=1

[ni − np( i | θ )]2

np( i | θ )
, (2.41)

where m is the number of classes, ni is the number of observations in class
i, and n is the sample size. If the null hypothesis is true, ni is a binomial
random variate with parameters n and p( i | θ ), and expectation E(ni) =
np( i | θ ). The statistic is then asymptotically (i.e., for large n) chi-square
distributed with ν = m − 1 degrees of freedom.

If some or all of the parameters (θ = θ1, . . . , θk) are estimated from
the sample, the degrees of freedom becomes ν = m − 1 − r, where r is
the number of estimated parameters. When more parameters are estimated
from the sample, the fit is bound to be better, and the test statistic must
be smaller (Lilliefors 1967).

The significance probability p of the chi-square test is the probability
that a random variate (χ2) following the chi-square distribution is greater
than or equal to x2:

p = P
{
χ2 ≥ x2} = 1 − Fχ2( x2 | ν ), (2.42)

where Fχ2(·) is the probability distribution function (PDF) of the chi-square
distribution. The asymptotic distribution of χ2 does not depend on the dis-
tribution F( t |θ ) tested or its parameters, but only on ν. Consequently,
asymptotically the test statistic is distribution-free, and the test is nonpara-
metric.

Because the test statistic is only asymptotically chi-square distributed,
the sample size must be large enough. It has been found, that the approxi-
mation is rather good, when the sample size is about four times greater than
the number of cells, even if some of the expected frequencies [np( i | θ )] are
quite small. If the cells are approximately equiprobable the sample size can
be two times greater or even equal to the number of cells, depending on the
significance level. (Conover 1980, Moore 1986)
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Kolmogorov-Smirnov test For a sample {t1, . . . , tn} of n observations
the empirical distribution function (EDF) gives the proportion of observa-
tions not greater than t:

Fn(t) =
{

j

n

∣∣∣∣ t(j) ≤ t < t(j+1)

}
, j = 1, . . . , n. (2.43)

If {t1, . . . , tn} is drawn from F( t |θ ), the EDF approaches F( t |θ ) as the
sample size increases (Dudewicz & Mishra 1988):

lim
n→∞ Fn(t) = F( t |θ ) . (2.44)

The null hypothesis is that the distributions are similar enough for Fn(t) to
be the EDF of a random sample generated by F( t |θ ):

H0 : Fn(t) ∼ F( t |θ ) . (2.45)

It is possible to test the goodness of fit by measuring the discrepancy between
the EDF and the proposed distribution. Such a statistic is called an EDF
statistic (Stephens 1986a).

The Kolmogorov-Smirnov (K-S) statistic D is the largest absolute verti-
cal difference between Fn(t) and F( t |θ ):

D = sup
t∈Re+

|Fn(t) − F( t |θ )| . (2.46)

Under H0 the distribution of D is known, and it is independent of F( t |θ ).
D can be calculated as follows:

D = max
{
D+, D−} , (2.47)

where

D+ = max
j∈{1,...,n}

{
j

n
− F
(
t(j) |θ )} (2.47a)

D− = max
j∈{1,...,n}

{
F
(
t(j) |θ )− j − 1

n

}
. (2.47b)

The statistic is distribution-free, and its distribution is known. The signifi-
cance probability of the test is

p = 1 − FD( D | n ), (2.48)
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where FD(·) is the PDF of the K-S distribution.
The K-S test avoids the arbitrary discretizing of the distribution func-

tion, and the transformation of the observations to counts. This process,
troublesome in small samples, is required by the chi-square test. The reduc-
tion of data makes the chi-square test less powerful than the K-S test (See
Moore 1986).

Stuart & Ord (1991) report some comparisons between the chi-square
and the K-S tests: For large samples with equal significance level (0.05) and
equal power (0.5), the K-S test can detect a deviation about half as small as
the chi-square test can. The ratio declines steadily in favor of the K-S test as
the sample size increases. On the other hand, to detect an equal deviation,
the K-S test requires the sample size to be of order n4/5 compared to n for
the chi-square test. As the sample size increases, the relative efficiency of
the chi-square test tends to zero. The K-S test is a very much more sensitive
test of fit for a continuous distribution. It is also asymptotically much more
efficient.

The K-S test does not have a nonparametric modification for the case
that the parameters are estimated from the sample. The alternative is a
parametric test.

Parametric tests

Parametric Kolmogorov-Smirnov test If the parameters of a theoret-
ical distribution must be estimated from the sample, the null hypothesis
is:

H0 : Fn(t) ∼ F
(

t
∣∣∣ θ̃ ) . (2.49)

The K-S test statistic is now:

D(θ̃) = sup
t∈Re+

∣∣∣Fn(t) − F
(

t
∣∣∣ θ̃ )∣∣∣ . (2.50)

Because fitting the parameters makes it possible to adjust the tested
distribution more efficiently than by using predetermined parameters, the
critical values for a given significance probability must be smaller. The test
statistic is no longer distribution free, but different critical values relate to
different null hypotheses (Green & Hegazy 1976). The test depends on the
distribution tested, the parameters estimated, the method of estimation,
and the sample size (Stephens 1986a).

Although the distribution of D(θ̃) is unknown, the significance proba-
bility can be evaluated by a Monte Carlo method (see algorithm 2.1). For
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Step 1 Estimate sample parameters θ̃.

Step 2 Calculate test statistic Dn(θ̃) for the sample.

Step 3 Set i = 1 and k = 0.

Step 4 Generate random replica (i) with distribution F
(

t
∣∣∣ θ̃ ) and size n.

Step 5 Estimate the parameters θ̃i of replica i.

Step 6 Calculate test statistic Di(θ̃i) for replica i.

Step 7 If Di(θ̃i) ≥ D(θ̃) set k = k + 1.

Step 8 If i < m, set i = i + 1, and go to step 4. Else calculate

p̃m =
(k + 1)
(m + 1)

and stop.

Algorithm 2.1: A Monte Carlo method for testing goodness of fit

each sample, m random replicas are generated from F
(

t
∣∣∣ θ̃ ). For each

replica (i), the test statistic [Di(θ̃i)] is calculated, and the number of repli-
cas (k) having test statistic greater than or equal to [D(θ̃)] is counted. The
estimator for the significance probability is:

p̃m =
k + 1
m + 1

, (2.51)

where

k = #
{
i
∣∣ Di(θ̃i) ≥ D(θ̃)

}
. (2.51a)

Noreen (1989) has shown the validity of this test, and presented confi-
dence intervals for the method. Assuming that all pm are a priori equally
likely (H0 is assumed to be true), the probability that the true significance
probability p is less than or equal to pu is:

P{ p ≤ pu | k, m } =

∫ pu

0 pk(1 − p)m−kdp∫ 1
0 pk(1 − p)m−kdp

. (2.52)
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The upper confidence limit pu,α at confidence level α can be obtained by
solving the equation:

P{ p ≤ pu,α | k, m } = α. (2.53)

For p̃9999 = 0.05 the 95 % upper confidence limit is 0.059, for p̃999 = 0.05
the limit is 0.062, for p̃499 = 0.05 it is 0.067, and for p̃99 = 0.05 it is 0.089.

The results of the parametric K-S tests for the exponential distribution
were compared with tables available in the statistical literature (Stephens
1986a, Durbin 1975). There were no significant differences.

Lilliefors (1967) compared the results of nonparametric and parametric
K-S tests for the normal distribution: The 1 % critical values of the para-
metric test were approximately the same as the 20 % critical values of the
nonparametric test. For the exponential distribution the percentages were
5 and 20, respectively (Lilliefors 1969). Accordingly, the nonparametric K-
S test is much too conservative if the parameters are estimated from the
sample.

Other parametric tests The K-S statistic measures the largest absolute
difference between the EDF and the proposed model. Typically the largest
differences are in the middle region of the distribution. Near the tails the
absolute differences are smaller, but relative differences may be quite large.
In this sense, the K-S statistic gives less weight to the tails. The statistic
can be improved using a quadratic measure (Stephens 1986a):

Q = n

∫ ∞

0
[Fn(t) − F(t)]2 ψ[F(t)] dF(t) , (2.54)

where ψ[F(t)] is a weight function. If ψ[F(t)] ≡ 1, the statistic is the
Cramér-von Mises statistic (W 2), which can be calculated as follows (Green
& Hegazy 1976):

W 2 =
n∑

j=1

(
F
(

t(j)

∣∣∣ θ̃ )− j − 1
2

n

)2

+
1

12n
. (2.55)

Anderson & Darling (1952) suggested ψ[F(t)] = {F(t) [1−F(t)]}−1 as the
weight function. Because this is the reciprocal of the variance of

√
n[Fn(t)−

F(t)], in a certain sense, the statistic assigns equal weight to each point of
the distribution F(t). The Anderson-Darling (A-D) statistic (A2) can be
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calculated as (Green & Hegazy 1976):

A2 = −n − 2
n∑

j=1

{
j − 1

2
n

[
lnF
(

t(j)

∣∣∣ θ̃ )+ ln
(
1 − F

(
t(n−j+1)

∣∣∣ θ̃ ))]}.

(2.56)
The A-D test will fail if there are observations outside the range of

the distribution. If even a single F(tj) is 0 or 1, the statistic grows to
infinity, leading to the rejection of H0. Consequently, the location parameter
(threshold for minimum headway) should always be estimated smaller than
the shortest headway in the sample.

Studies of these test have suggested that the parametric EDF tests are
more powerful than the chi-square test. Among the parametric EDF tests,
the K-S test is the least powerful, and the A-D test slightly better than the
Cramér-von Mises. Stephens (1986a) suggests the A-D test as a omnibus
test statistic for EDF tests with unknown parameters.

Based on these results, the goodness-of-fit tests for the headway data
have been performed by the A-D method. The test procedure followed
algorithm 2.1 with 9,999 replicas.13 (In the tests for the semi-Poisson dis-
tribution the number of replicas was, however, 500.) The nonparametric
K-S tests were calculated for comparison. Although these results could not
be used to test H0, they gave a measure of the closeness of fit comparable
between different models. The comparison of the nonparametric K-S and
parametric A-D tests also revealed the difference in the power of these tests.

2.2.5 Combination of probabilities

In the analysis of multi-sample data, it is desirable to find a single measure
to describe the overall acceptability of the null hypothesis. The problem can
be described by an example:

Example 2.1 The balance of a dice is tested. The null hypothesis is that the dice
is balanced, and each outcome (1, 2, 3, 4, 5, and 6) has equal probability (1

6 ). The
alternative hypothesis is that the dice favors large numbers. The dice is thrown five
times, and the result is {5, 6, 6, 5, 6}. The probability for this or a better result is( 1

6

)5∑5
i=3

(5
i

)
= 0.002.

It should be noted that the average probability (0.233) is not a proper
measure of significance. Another interesting feature in the example is that

13The parameter estimation and the goodness-of-fit tests were performed by a computer
program called Testfit. It is coded in C language, and it calls IMSL Fortran subroutines.
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none of the individual test probabilities pi is statistically significant, while
the combined probability is highly significant.

In the example the probabilities were multiplied. An alternative method
is to operate with the sum of the logarithmic probabilities (ln pi). The latter
method will now be followed, as suggested by Fisher (1938) and Stephens
(1986b).

In the study of headways, the overall null hypothesis (H0) can be com-
posite, such as:

H0 : The headway data is generated by F( t | · ) . (2.57)

The hypothesis is composite, because the parameters of the distribution are
unspecified. For each sample, the parameters are estimated, and the null
hypothesis is simple:

H0i : The headway sample i is generated by F
(

t
∣∣∣ θ̃ ) . (2.58)

H0 is true if and only if H0i is true for all samples.
If the null hypothesis (H0i) is true for all samples, and the tests are in-

dependent, then the significance probabilities (pi) are uniformly distributed
between 0 and 1 [U(0,1)]. If k tests are made, the probabilities p1, . . . , pk are
a random sample from U(0,1). This can be tested by a method presented
by Fisher (1938).

For the chi-square distribution with two degrees of freedom it holds:

p = Fχ2( x | ν = 2 ) = e− 1
2x. (2.59)

Taking the natural logarithm of the probability p and multiplying it by -2
gives the equivalent value of x for two degrees of freedom:

x = F−1
χ2 ( p | ν = 2 ) = −2 ln p. (2.60)

If p is a uniform (0,1) random variate, then x follows the chi-square distri-
bution with two degrees of freedom.

The sum of m variates following the chi-square distribution with two
degrees of freedom is itself chi-square distributed with 2m degrees of free-
dom. If H0 is true, and the samples are independent, then the significance
probabilities pi are U(0,1), and the statistic

z = −2
m∑

i=1

ln pi (2.61)
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has chi-square distribution with 2m degrees of freedom (Stephens 1986b).
The significance (P ) of the combined test is now the probability that a ran-
dom variate (Z) having chi-square distribution with 2m degrees of freedom,
is greater than or equal to z:

P = P{Z ≥ z} = 1 − Fχ2( z | ν = 2m ). (2.62)

This method can be used to obtain a single significance probability for a
multi-sample data set.

2.2.6 Moving probability

Sometimes it is desirable to know, whether a null hypothesis should be
rejected in some conditions but not rejected in other conditions. It is possible
to divide the samples into classes according to some factor and to calculate
the combined probability for each group. The classification of the data is
not, however, always obvious. For example, there is no obvious way to
classify samples by traffic volume.

Let us assume that a set of probabilities pi is arranged in ascending
order according to the traffic volume. The combined probability for the
first k samples can be calculated as described above. It describes the com-
bined significance probability corresponding to the traffic volume equal to
the mean of the first k sample volumes. Next the second sample is selected
as a starting point, and the combined probability for k consecutive sam-
ples and the corresponding mean volume is calculated. This procedure is
repeated until the combined probability is calculated for the last k samples.
This series of combined probabilities is called the moving probability. This
method, suggested by Luttinen (1992), smoothes the variation of the signif-
icance probabilities and increases the power of the tests by combining the
significance probabilities for several samples.

If the samples are arranged in an ascending order according to the traffic
volume, the k-point moving probability is:

Pk(λ̃k,j) = 1 − Fχ2( zk,j | ν = 2k ), (2.63)

where

zk,j = −2
j+k−1∑

i=j

ln pi (2.63a)

λ̃k,j =
1
k

j+k−1∑
i=j

λ̃i, j + k − 1 ≤ m, (2.63b)
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λ̃i is the traffic volume of sample i, λ̃k,j is the traffic volume of the jth term,
and m is the total number of samples. The traffic volume of term j is the
mean of the sample volumes in the term.

A balance must be found between sensitivity and power. A large number
of points (k) in each term makes the curve smoother and increases the
power of each combined significance, but the curve is also less sensitive to
deterministic variations. A small number of points makes the curve more
sensitive and ragged, but the power of each combined significance decreases.

In a moving average the number of points should be selected as the lowest
value producing a reasonably smooth curve. For a moving probability the
situation is different: Assume that all tests give significance probabilities
near 0.2. Even a small number of points produces a smooth curve, but the
result is not realistic, because the combined probabilities are too large. (For
a 5-point moving probability the values are near 0.1, while a 10-point moving
probability is near 0.04.) Consequently, the number of points k in each term
should be as large as possible, but such that the moving probability still
covers a sufficiently wide range of traffic volumes, and that it is sensitive to
local variations.



Chapter 3

Data collection

3.1 Measurements

The purpose of the field studies was to examine the time headways in freely
flowing traffic on two-lane two-way roads. All the road sections selected
were reasonably level, straight and with no nearby traffic signals.

Arrival characteristics were measured by a traffic analyzer. The data
were collected by the staff of the Laboratory of Transportation Engineering
at the Helsinki University of Technology. Using two inductive loops in both
directions (fig. 3.1), the analyzer recorded for each passing vehicle its se-
rial number, gross time headway (time interval from front bumper to front
bumper in units of 1/100 s), net time headway (time interval from back
bumper to front bumper in units of 1/100 s), speed (in units of 1 km/h) and
length (in units of 1/10 m). The data were transmitted to a computer. The
headways on both lanes were measured and analyzed separately.

The measurements were performed during the summer of 1988 in south-
ern Finland on 9 locations having speed limits 50, 60, and 70 km/h. These
roads are called “low speed roads”. The locations and the measurement
times were selected so that the expected flow rates were preferably below
1,000 veh/h. The weather was mostly dry, but two measurements failed
because of rain or detector malfunction.

Also some data from year 1984 (Pursula & Sainio 1985) measured on 10
locations with speed limits 80 and 100 km/h (“high speed roads”) have been
used. These measurements were concentrated on higher volumes, because
capacity was a major aspect of that study. Consequently, the opposite
volumes tend also to be higher than on the low speed roads. The data
have been previously analyzed by Pursula & Sainio (1985) and by Pursula
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Figure 3.1: Inductive loops of the traffic analyzer

& Enberg (1991). In all of these measurements more than 73,000 headways
were recorded.

In addition to the speed limits and the volumes, the road categories have
other differences. The speed limit describes also the road conditions, most
importantly the road geometry and the intersection density. High speed
roads have usually a better geometry. Lower speed limits (50 and 60 km/h,
in particular) are typically located near densely populated areas, where the
intersection density is high.

3.2 Preliminary data analysis

The data were checked for consistency. The measured speeds (km/h) were
corrected on the basis of radar measurements. The corrected speed (vc) was
calculated from the measured speed (vm) using the relation:

vc = 4.77 + 0.911vm. (3.1)

Measuring periods having more than one percent passing vehicles, were
discarded. Also, the first observation (time from the beginning of the mea-
surement to the arrival of the first vehicle) and passing vehicles (crossing the
detectors to the wrong direction) were removed from the data. Accordingly,
the sampling was synchronous (see Luttinen 1990).

Detection and elimination of outliers was done during the trend analysis
on the basis of graphical displays of headways and speeds. The outliers were
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quite apparent.

3.3 Selection of trend free samples

In order to obtain samples with stationary data, trend analysis was per-
formed by a computer program called Trendana1 showing graphically each
headway, the 15-point moving average, the cumulative vehicle count and the
speed of each vehicle.

The data were analyzed sequentially using the exponential ordered scores
trend test (section 2.2.2). The sample size was incremented by 50 vehicles
until the test reported trend at 5 % level of significance. The sample was
then decremented until the level of significance for trend was near 50 % or
at least between 30 and 70 %, the sample size was greater than 100, and the
sampling period was between 5 and 40 minutes. The 40 minute limit was
set in order to keep the test sensitive to local trends, but under low flow
conditions the sample size or the period length condition had to be relaxed
sometimes.

If a satisfactory sample was not found, the first observations in the sam-
ple that seemed to cause the trend were removed, and the process was re-
peated. Also, periods with low speeds indicating disturbances were excluded,
and the process was repeated starting after the excluded observations. Sam-
ples with more than 10 % heavy vehicles (longer than 6 m) were excluded
from further analysis.

3.4 Description of selected samples

The preliminary analysis and the trend tests produced 65 samples consisting
of 16,780 observations. The samples represent speed limits 50, 60, 70, 80 and
100 km/h (fig. 3.2). The per lane flow rates vary from 150 to 1,840 veh/h
(figs. 3.3 and 3.4). The basic properties of the samples are listed in appendix
A.

The observations from high speed roads were gathered in 1984. Because
that study was more focused on the capacity and level of service issues,
the observations concentrate on high volumes. On low speed roads the
observations are more concentrated on low volumes. Consequently, speed
limits and volumes are correlated. The high speed roads also have a higher
overall standard and more opposing traffic. Hence, care must be taken

1The program is coded in C language, and it calls IMSL Fortran subroutines.
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Figure 3.4: Sample volumes by speed limit

in conclusions about the influence of the speed limit and the volume on
headways.

From low speed (50–70 km/h) roads there are no observations with vol-
ume range 1,000–1,250 veh/h. From high speed (80–100 km/h) roads the
observations are missing for volume range about 500–700 veh/h. From roads
having speed limit 70 km/h there are only low volume (< 500 veh/h) sam-
ples. In the whole data set, there is only one sample having volume greater
than 1,500 veh/h.

Figure 3.5 shows the volume and the space mean speed (calculated as
harmonic mean of spot speeds) of each sample. Because the samples are from
different locations, no curve fitting has been done. The data, however, shows
the decrease of mean speed with increasing volume. Except for two samples
(12 and 33), the figure does not reveal any congestion or disturbances in the
flow.

The low mean speed of sample 12 indicates congestion. Sample 33 has a
low mean speed relative to flow rate (361 veh/h). Further analysis showed
that the sample also has a very high variation in relative speeds of leading
vehicles. This indicates some kind of a disturbance in the flow.

After the exclusion of samples 12 and 33, the final data set consists of 63
samples having 16,417 observations. Accordingly, less than 25 % of the total
measurements were included in the analysis. These data describe traffic flow
on two-lane two-way roads under stationary conditions with not more than
10 % heavy vehicles and very few passing vehicles.
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Chapter 4

Identification

4.1 The purpose of identification

A headway (T ) describes the time interval between consecutive vehicles in
traffic flow. For a traffic engineer it is interesting to examine the shape and
structure of the headway distribution. The differences between follower and
free flowing headways are of special interest. In capacity and level-of-service
studies, the proportions of short and long headways deserve attention. A
simulation designer is interested in the possible correlation between consec-
utive headways.

Identification is the process of finding, from a set of models, the best
theoretical model to describe the data. It can be a stochastic model or,
as here, a probability distribution. An effective description of the most
important properties of the data is essential in order to find a theoretical
model which has properties similar to the data.

This chapter discusses the shape of the headway distribution, measures
of location and dispersion, and tests for the renewal hypothesis, which are
concerned with the autocorrelation of consecutive headways. Some of the
methods (e.g., the hazard function and the KS2-chart) have not been used
in headway studies—at least not widely. For some commonly used methods,
more efficient procedures are presented. The concluding section presents a
four stage identification process, which is suggested as a standard procedure
in headway studies.
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4.2 Shape of the distribution

4.2.1 Empirical distribution function

The probability distribution function (PDF) defines the probability that a
headway random variate (T ) is not greater than some given value t:

F (t) = P{T ≤ t}. (4.1)

The PDF which has generated a sample of size n can be estimated by the em-
pirical distribution function (EDF). It gives the proportion of observations
less than or equal to t in the sample:

Fn(t) =
{

j

n

∣∣∣∣ t(j) ≤ t < t(j+1)

}
, j = 1, . . . ,n. (4.2)

The EDF has a central role in the goodness-of-fit tests (section 2.2.4).
Figure 4.1 shows contour plots of empirical headway distribution func-

tions. Separate plots for low speed (50–70 km/h) and high speed (80–
100 km/h) roads were produced by smoothing the sample EDFs. Because
the traffic volume of only three (low speed) samples is below 200 veh/h, the
low volume contour lines are not very reliable.

The proportion of extremely short headways is small, but between one
and three seconds the EDF rises steeply. On high speed roads the concen-
tration on short headways is more substantial than on low speed roads. At
500 veh/h the low speed roads have about 30 % of headways shorter than
two seconds. At the same volume the high speed roads have about 40 % of
headways shorter than two seconds, and the proportion of short headways is
rather constant at moderate to high flow rates. The 0.9 contours are almost
identical in both road categories.

At high volumes the contour lines are very densely concentrated at short
headways, but they curve toward longer headways at lower volumes, thus
indicating a greater proportion of long headways. This is only natural, con-
sidering that traffic volume is the reciprocal of the mean headway. According
to May (1990), the percentage of vehicles having headways less than or equal
to the mean headway is rather constant, about 67 %. This approximation
holds for the low speed data.

In HCM (1985) the percent time delay is used as a level of service mea-
sure. For practical purposes, the percent time delayed is approximated by
the percentage of vehicles traveling in platoons (t < 5). The level of service
is accordingly based directly on the empirical headway distribution. In fig-
ure 4.2 the proportion of vehicles having headways less than five seconds,



4.2. Shape of the distribution 55

Headway [s]

2 6 8 10

500

0

1000

1500

0
4

Volume [veh/h] Speed limit: 50-70 km/h

2 6 8 10

500

0

1000

1500

0
4

Headway [s]

Volume [veh/h] Speed limit: 80-100 km/h

Mean headwayMean headway

Figure 4.1: Contour plots of empirical headway distribution functions

is plotted against the traffic volume. Except for two low volume samples
(45 and 46), the proportion is larger than in a totally random, or Poisson,
process (negative exponential headways). The proportion is also larger on
high speed roads than on low speed roads.

It should be noted that the data in figure 4.2 are from several sites.
Thus, the variation is partly caused by local conditions. However, the figure
shows that the data are consistent in respect of the level of service.

Figure 4.3 shows the proportion of headways less than or equal to one
second. The proportion is 0.11 for high speed roads and 0.062 for low speed
roads. There is no significant correlation with the traffic volume. For all
but the lowest volumes, the proportion is lower than in a Poisson process.

Enberg & Pursula (1992) obtained similar results for Finnish high-class
two-lane roads.1 The data did not indicate a significant correlation between
very short (t < 1 s) headways and traffic volume. There is, however, some
evidence that on Finnish freeways the proportion of headways less than one
second increases with increasing traffic volume (Salonen 1982).

1These roads have a very high standard of alignment and grade-separated intersections.
The speed limit is 100 km/h, and only fast motor vehicles are allowed.
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Figure 4.2: Proportion of headways less than five seconds
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4.2.2 Empirical density function

The probability distribution function (PDF) can be defined in terms of the
probability density function (pdf):

F (t) =
∫ t

0
f(x) dx. (4.3)

Thus, the pdf is the derivative of the PDF, and:∫ ∞

0
f(x) dx = 1. (4.4)

Both the PDF and the pdf have the same and complete information about
the distribution, but the pdf is visually more informative. Because of this,
the plotting of the pdf estimates (empirical density functions, edf’s) is a
standard procedure in headway studies.

The density function is usually estimated by the histogram method.
Starting from an origin (t0), the range of the data is partitioned into bins
(class intervals) having the same width (h), which is also called the window
width. The height of the histogram at point t is the number of observations
belonging to the same bin as t divided by the number of total observations
(n) and the bin width (h):

fn(t) =
1

nh
#
{
i
∣∣ [t0 + jh ≤ t < t0 + (j + 1)h]

∧ [t0 + jh ≤ ti < t0 + (j + 1)h]
}

i = 1, . . . , n and j = 0, 1, . . . (4.5)

The total area under the histogram is unity. Once the origin and the bin
width are selected, the method is very straightforward, and there are many
programs to automate the process.

The histogram method has two major drawbacks: Firstly, the location
of the origin (t0) and the bin width (h) can have a considerable effect on
the shape of the estimate, especially at low values of t. Secondly, the dis-
continuity of the histograms causes even more difficulties if the derivatives
of the density estimate are needed, or if the density estimate is needed as
an intermediate component for other methods. (Silverman 1986)

The histogram method calculates the frequency of observations in a win-
dow of width h. The window is first placed at the origin, and then shifted to
the right by its own width. Each observation in the window is given equal
weight. Better estimates are, however, obtained if the the window slides
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smoothly along the x-axis, and the observations are weighted by an appro-
priate smoothing function (kernel). The observations in the middle of the
window should have greater weight, while the observations near the sides of
the window should be given less weight. This procedure is called the kernel
method.

The kernel method produces a continuous estimate of the pdf, avoiding
the pitfalls of the histogram method, but some noise in the tail cannot be
avoided without losing essential details. The kernel density estimator with
kernel K(·) at point t is defined as:

fn(t) =
1

nh

n∑
i=1

K

(
t − ti

h

)
. (4.6)

Too small values of h produce noisy estimates. On the other hand, too large
values smooth away essential details of the density.

For headway data, the estimate should reproduce the sharp peak of the
pdf without too much noise in the tail. As the density estimates were further
smoothed in order to produce the surface plots (figures 4.4 and 4.5), a small
smoothing parameter (h = 0.3) was selected. This estimator was able to
produce the sharp peak of the density, even though there was some noise in
the tail.

The estimates are based on the Epanechnikov kernel (Silverman 1986):

K(x) =

⎧⎨
⎩

3
4
√

5

(
1 − 1

5x2
)
, if |x| <

√
5

0, otherwise.
(4.7)

It is the most efficient kernel function, although the differences between the
best kernels are very small (Silverman 1986).

Figures 4.4 and 4.5 show surface plots of headway density estimates.
The surfaces were smoothed by a polynomial fit for each t in the grid. The
method produces some wavelike nonsmoothness in the t direction of the
surface, but the shape of the density functions is very clear. The method of
distance weighted least squares was also tried. The surfaces were smoother,
but the peak was lower, and it had saddle points in the regions of missing
observations (see Luttinen 1994).

The density is unimodal, bell-shaped and skewed to the right. The pro-
portion of headways less than one second is small. The mode is between
one and two seconds, after which the frequencies diminish in an exponential
way. The most striking difference between the figures is that under low vol-
ume conditions the frequency of short headways is much lower on low speed
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Figure 4.4: Empirical headway density function on low speed (50–70 km/h) roads
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roads
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roads. As the volume increases, the frequency of short headways, of course,
increases on both road categories.

The difference between the two road categories may be caused by greater
variation in speed differences on high speed roads (fig. 5.30, page 133), dif-
ferent road conditions, and differences in the opposite flow level. The low
speed (50–70 km/h) data were collected near densely populated areas, where
intersection density was higher than on high speed (80–100 km/h) roads.

The edf’s have some similarity with the pdf’s of the gamma and the
lognormal distributions. Also, several mixed distributions have similar den-
sities. The densities of the negative exponential and the shifted exponential
distributions are, however, different. These distributions have the great-
est density at the shortest headways, whereas the edf increases smoothly
from zero to the mode. Consequently, the exponential distributions are not
appropriate models for short headways.

4.2.3 Empirical hazard function

The hazard function is widely used in reliability and life data analysis. It
gives the instantaneous failure rate for a system that has not failed until t.
The hazard function for a random variable T is defined as:

h(t) = lim
∆t→0

P{ t ≤ T < t + ∆t | t ≤ T }
∆t

=
f(t)

1 − F (t)
.

(4.8)

The pdf and the PDF can be expressed in terms of the hazard function as
follows:

f(t) = h(t) exp
(
−
∫ t

0
h(u) du

)
(4.9)

F(t) = 1 − exp
(
−
∫ t

0
h(u) du

)
. (4.10)

The hazard function also has the complete information of the distribution. If
the hazard function has a simple shape, it is possible to form a hazard-based
model using the equations above.

In terms of traffic flow, the hazard function h(t) is the instantaneous
termination rate of headways conditional upon lasting to time t. Besides
of its theoretical significance, the hazard function shows properties of the
distribution that are not so clearly seen in either the pdf or the PDF.
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A crude estimate of the hazard function can be quickly calculated by
classifying the data into intervals of length a, and calculating:

hn(t) =
#{ ti | t ≤ ti < t + a }

#{ tj | t ≤ tj } , i,j = 1, . . . ,n. (4.11)

Better estimates can, however, be obtained by the kernel method. The
smoothed empirical hazard function (ehf) of the headway data was calcu-
lated using a biweight kernel (IMSL 1989):

K(x) =

⎧⎨
⎩

15
16
(
1 − x2

)2
, if |x| < 1

0, otherwise.
(4.12)

The smoothed kernel is:

Ks(t − t(i)) =
1

αdik
K

(
t − t(i)

βdik

)
, (4.13)

where α, β, and k are smoothing parameters, dik is the distance to the kth
nearest “failure” from t(i), and t(i) is the ith order statistic of the sample.
The smoothing parameters were estimated by a modified maximum likeli-
hood method.2 Consequently, the ehf was calculated as follows:

hn(t) =
n∑

i=1

1
n − i + 1

Ks(t − t(i)), (4.14)

where n is the sample size.
Figures 4.6 and 4.7 show surface plots of the empirical hazard functions.

The surfaces are smoothed by making a polynomial fit for each t in the grid.
The method produced a little nonsmoothness in the t direction, but the
shape is obvious. The method of distance weighted least squares was also
tried. It produced smoother surfaces, but the peak had saddle points in the
regions of no observations.

The figures have some common properties: The peak is between 1.5 and
2 seconds. It moves slightly to the right, as the volume increases. The peak
is low at low volumes, and increases as the volume increases. After the peak,
the ehf decreases, until it reaches a constant level. This level is higher at
high volumes.

2IMSL subroutines DHAZEZ and DHAZST were used to estimate the parameters and
to calculate the empirical hazard functions.
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Figure 4.6: Empirical headway hazard functions for low speed (50–70 km/h) roads
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Figure 4.7: Empirical headway hazard functions for high speed (80–100 km/h)
roads
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At low volumes the peak is higher on high speed roads. When the
volume on low speed roads is greater than about 1,000 veh/h, the peak rises
very steeply. There are, however, only two low speed samples for volumes
higher than 1,000 veh/h. The extremely high peak is caused by one small
(n = 150) sample (no. 52), which has h(2.0) = 1.8. Thus, the high peak
should be viewed with some skepticism. Although the ehf in figure 4.6 is
nonsmooth at high volumes, the basic shape is obvious.

The hazard function of the exponential distribution is constant, and equal
to the flow rate. The exponential tendency of low volume traffic is evident
on low speed roads; the ehf becomes more level as the volume decreases.

If the tail of the distribution is exponential, the hazard function reaches
a constant value at long headways. This value is proportional to the flow
rate. Constant ehf values at large headways are accordingly an indication
of an exponential tail in the headway distribution.

The hazard rate of the gamma distribution is monotone decreasing from
infinity if the shape parameter (α) is less than unity, monotone increasing
from zero if α is greater than unity, and in both cases approaches a constant
value (scale parameter β) as t becomes large (Kalbfleisch & Prentice 1980).
If the shape parameter is α = 1, the distribution is exponential, and the
hazard function remains constant [h(t) = β ]. This kind of shape is seen
at the lowest volumes on low speed roads, except for the low peak in the
ehf. This suggests that at low volumes the headway distribution resembles
a gamma distribution, and the shape parameter (α) approaches unity from
above, as the flow rate decreases to zero. Because h(0) = 0 for α > 1, the
gamma distributions do not produce extremely short headways, and because
h(t) approaches β as t becomes large, the tail of the distributions approaches
exponentiality.

The lognormal hazard function is zero at t = 0, increases to maxi-
mum, and then decreases, gradually approaching zero at long headways
(Kalbfleisch & Prentice 1980). The basic shape is similar to the ehf, but the
fall after the peak is more gradual.

The hazard function of the semi-Poisson distribution is similar to the
headway hazard function estimate. The model in figure 5.49 (page 160) has
gamma distributed short headways and exponential tail.

In conclusion, the ehf suggests a mixed distribution with an exponential
tail as a theoretical headway distribution. The lognormal distribution has
desirable properties at short headways only. The gamma distribution could
be considered for low volumes.
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4.3 Measures of location and dispersion

4.3.1 Mode and peak height

The mode (Mo) is the point where the density reaches its maximum. So, it
is an approximation of the most frequent value in the distribution. Summala
& Vierimaa (1980) describe the mode as an approximation of the headway
that most drivers select when they are following the vehicle ahead. As such,
the mode is a measure of typical platoon behavior and a crude estimate of
highway capacity.

The peak height (Ph) is a measure of the frequency at mode. For uni-
modal distributions the mode and the peak height can be defined as:

Mo = {t ∈ Re+
∣∣ f(t) = max

x∈Re+
f(x)} (4.15)

Ph = f(Mo). (4.16)

The mode and the peak height of the headway data were estimated using
kernel estimates for density. The smoothing parameter of the Epanechnikov
kernel (4.7) was h = 0.2. A low smoothing parameter was used, because the
density was estimated only at the range where the observations were most
densely concentrated. Consequently, the peak height obtained was higher
than in the density estimates. The golden section search (Gill, Murray &
Wright 1981) with absolute precision of 0.01 was used to find the maximum
of the edf.

The mode values are shown in figure 4.8. There is no significant cor-
relation with flow rate. The mode is about 1.53 (with standard deviation
of 0.29) on low speed roads and 1.41 (with standard deviation of 0.22) on
high speed roads. The difference is, however, not statistically significant at
5 % risk level (P = 0.08), according to the t-test. Thus, the mode is a little
below 1.5 (95 % confidence region is 1.46–1.48) at both high and low speed
roads.

Summala & Vierimaa (1980) measured the modes of headway distribu-
tions on two-way two-lane roads with speed limits 50–100 km/h. The mode
varied between 1.0 and 1.9, but it was rather constant at all traffic volumes.
Rajalin & Hassel (1992) studied net time interval (gap) distributions on
two-way two-lane roads with speed limits 80 km/h and 100 km/h. They
reported a mode of 0.8 s at all traffic volumes.

The peak heights are shown in figure 4.9. The peak rises as the flow
increases. On high speed roads (speed limit 80–100 km/h) the peak is higher
than on low speed roads, especially at low volumes. At high volumes the
speed limit looses its significance.
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Figure 4.8: Mode of empirical headway distributions
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A regression analysis was performed by means of a logarithmic regression
[a + b ln(λ̃)] for low speed roads and a power regression (aλ̃b) for high speed
roads. The fit is reasonable: R2 = 0.737 on low speed roads and R2 = 0.620
on high speed roads. The equality of residual means between high speed
and low speed roads was tested using the t-test. The hypothesis should
be rejected on risk level P = 0.002. The exclusion of the two very low
(< 0.05) peak values (samples 45 and 46) makes the result statistically more
significant (P = 0.001). Similar result (P = 0.007) was obtained using
analysis of covariance (ANCOVA). Accordingly, separate models should be
presented for lower and upper speed levels.

Enberg & Pursula (1991) reported only small differences in peak heights
on high-class two-lane rural roads in Finland. The sampling period was 15
minutes. The mode was in the interval 1–2 s. When 60 minute samples
were used, the increase in the peak height was more evident (Enberg &
Pursula 1992).

4.3.2 Median

The median (Md) of a continuous random variate is the 50th percentile of
the distribution:

P{T ≤ Md} = 0.5. (4.17)

The sample median is a value such that half of the sample observations are
to the left and half to the right of it:

M̃d =

{
t(k), if n = 2k − 1
1
2

(
t(k) + t(k+1)

)
, if n = 2k.

(4.18)

where t(k) is the kth order statistic of the sample, and n is the sample size.
Sample medians of the headway data are shown in figure 4.10. The median
on high speed roads is surprisingly level (R2 = 0.462), but there are only
few low volume samples. On low speed roads the volume and the median
are more clearly correlated (R2 = 0.855).

For symmetrical unimodal distributions the mean, the median and the
mode coincide. It is a known property of nonsymmetric unimodal distri-
butions that the mean, the median, and the mode occur in the same or
the reverse order as in the dictionary, and that the median is nearer to the
mean than to the mode (Stuart & Ord 1987). Because the headway pdf is
positively skewed, these measures occur in the reverse dictionary order.
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Figure 4.10: Median of empirical headway distributions

According to Stuart & Ord (1987) the following approximate relation
holds for unimodal probability distributions of moderate asymmetry:

Md − Mo ≈ 3[ µ(T ) − Md ]. (4.19)

The headway distribution is, however, too asymmetric for this relation to
hold, and the relation gives too high estimates of the median. The linear
least squares estimates are (fig. 4.11):

M̃dL = 0.529 + 0.465t̄ (4.20)

M̃dH = 1.601 + 0.107t̄. (4.21)

The accuracy of the estimate for high speed roads (M̃dH) is, however, sus-
pect, because there are only few low volume observations. The coefficient of
determination is only R2 = 0.520 for M̃dH , as compared to R2 = 0.825 for
M̃dL.

Separate models were estimated for low and high speed roads, although
ANCOVA gave significance probability of only P = 0.059 for the homogene-
ity of slopes. The figure, however, shows that the slopes of the regression
lines are quite different, but most of the points from the high speed roads
are near the intersection of the lines. In order to stabilize the variance, a
weighting factor of 1/t̄2 was used. The R2 for the weighted values was 0.966
for the low speed data and 0.990 for the high speed data. The adjusted
significance probabilities were P < 0.001 and P = 0.002, respectively. The
regression is accordingly statistically significant for both data sets.



68 CHAPTER 4. IDENTIFICATION

0 5 10 15 20 25 30

0

5

10

15

20

Median

Speed limit

50-70 km/h

80-100 km/h

Symmetrical

distribution

Figure 4.11: Mean and median of empirical headway distributions

4.3.3 Coefficient of variation

The coefficient of variation (c.v.) is the proportion of the standard deviation
to the mean of a random variable (T ):

C(T ) =
σ(T )
µ(T )

. (4.22)

The sample c.v. is the proportion of the sample standard deviation to the
sample mean:

C =
s

t̄
. (4.23)

The negative exponential distribution (headway distribution of a totally
random arrival process) has C(T ) equal to unity. Because the negative
exponential distribution is central in the theory of stochastic processes, and
it is widely applied in traffic flow theory, C(T ) = 1 provides a convenient
point of comparison.

The CV-chart in figure 4.12 shows the sample coefficients of variation
for the headway data. Some basic properties can be observed:

1. Under heavy traffic conditions, the proportion of freely moving vehicles
is small. The variance of headways is accordingly small. In figure 4.12,
the c.v. decreases below unity at high flow levels.
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Figure 4.12: CV-chart (sample coefficient of variation) of the headway data

2. The Poisson tendency of low density traffic has a theoretical (Breiman
1963, Heidemann 1990) as well as an intuitive basis: Under low density
conditions, the vehicles can move freely, and randomness of the process
increases. Hence, the c.v. is expected to approach unity as the traffic
flow approaches null. This phenomenon can be observed only at low
speed roads, where more low volume samples are available.

3. Under medium traffic, there is a mixture of free-flowing vehicles and
followers. This increases the variance above pure random process.
Accordingly, the c.v. rises above unity. This is in contrast to the
statement of May (1990) that the c.v. approaches unity under low
flow conditions, but decreases continuously as the flow rate increases.
According to Pursula & Sainio (1985) the result of May is valid for
the first lane on a freeway.

4. The c.v. is larger on high speed roads than on low speed roads. In
these data, the opposite flow rate was higher on high speed roads,
thus reducing passing opportunities. Other explaining factors may
be higher variation of speeds and greater willingness to pass on high
speed roads. In addition, the intersection density was higher on the
low speed roads. Consequently, there were more joining and departing
vehicles, thus reducing the platooning.

To test whether it is appropriate to model the C(T ) on high speed and
on low speed roads separately, a third degree polynomial curve was fit to the
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c.v. data. The equality of the means of the residuals for high speed and low
speed roads were tested using a t-test. Using residuals instead of actual c.v.
values, increases the power of the test, because the effect of traffic volume
can be circumvented. The equality of the means should be rejected at risk
level 2.2 · 10−6. Because there was a significant difference between the c.v.
values on high speed and low speed roads, a separate model was construed
for both.

Two polynomial curves were fitted on the data (figure 4.12): one for
the high speed (80–100 km/h) roads and the other for the low speed (50–
70 km/h) roads. The regression equations are:

C̃L = −7.667λ̃2 + 2.247λ̃ + 1 (4.24)

C̃H = (1 − 1.8λ̃)(1 + 20.173λ̃ − 82.189λ̃2 + 114.839λ̃3). (4.25)

The coefficient of determination for the mixed model is R2 = 0.685. That is,
about 69% of the variance in the c.v. can be explained by the traffic volume.
A single model for all speed limits has R2 = 0.226. Modeling high speed
and low speed roads separately explains about 46% more of the variance.

There are some points worth consideration in the equations. The curves
were forced to unity when the traffic volume was zero. This was based on
the assumption of the Poisson tendency in low density traffic. The upper
curve was forced to zero at volume 2,000 veh/h in order to prevent extensive
curviness.

The curves have maxima at flow rates 530 veh/h (low speed roads) and
440 veh/h (high speed roads). This corresponds to mean headways 6.8 s and
8.2 s. Under lower flow rates, the long headways predominate and reduce
the c.v. Traffic density is low, and there are ample opportunities for passing.
Under higher flow rates, short headways predominate and reduce the c.v.
Drivers are more content to follow in platoons (Pursula & Sainio 1985).
Thus, the maximum is likely to be connected with the passing behavior. In
Bureau of Public Roads (1950) it was shown that typically the demand for
passing becomes greater than the opportunities at flow rate 500 veh/h (see
also Wardrop 1952).

These observations gain at least partial support from other authors, as
seen in figure 4.13, although the results are based on very different data.
The data of Dunne et al. (1968) are from a two-lane rural road, but the
data of Breiman et al. (1977), Buckley (1968) and May (1965) come from
freeway lanes. The traffic volumes in all the samples of May are higher than
in the samples of Dunne et al. (1968).

The traffic volumes in the samples of Dunne et al. (1968) are between 350
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Figure 4.13: Coefficient of variation in other headway studies: Dunne et al.
(1968), Buckley (1968), May (1965), Breiman et al. (1977), and Grif-
fiths & Hunt (1991)

and 700 veh/h; i.e., the volume range that has the highest c.v. values in figure
4.12. In accordance with these results, all the samples of Dunne et al. have
c.v. greater than unity. The c.v. is less than unity in the freeway samples of
May (1965) and Breiman et al. (1977) (lanes one and two), and near unity in
the samples of Buckley (1968) and Breiman et al. from freeway lane three.
The data of Buckley represent a wide variety of volume levels, and the c.v.
is similar to the results for the low speed roads in figure 4.12. The data
of May were measured for gap availability studies near freeway ramps, and
results are very different from the others. More general conclusions from the
data of May should be drawn only with great care.

Griffiths & Hunt (1991) have studied headways on urban areas. They
found a linear relation between the standard deviation and the mean head-
way, which can be expressed in terms of the sample c.v. and the traffic
volume (λ̃, veh/h):

C̃ = 1.07 +
0.160λ̃

3600
. (4.26)

This line is shown in figure 4.13.

Finnish studies by Pursula & Sainio (1985) suggest that the c.v. on
freeways, especially on the first lane, is lower than on two-lane highways
with speed limit 80–100 km/h. The results of Breiman et al. (1977) also
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show that lane one has lower c.v. than lane two, which has lower c.v. than
lane three.

4.3.4 Skewness and kurtosis

The proportion of the first two moments was discussed above. The third and
the fourth central moments, skewness (α3) and kurtosis (α4), give us more
information about the shape of the distribution. Skewness is a measure
of symmetry. For symmetric distributions α3 = 0. If the data are more
concentrated on the low values, as in a headway distribution, skewness is
positive. Kurtosis is a measure of how “heavy” the tails of a distribution
are. Sample skewness and kurtosis are defined as follows:

α3 =
∑n

i=1(ti − t̄ )3

ns3 (4.27)

α4 =
∑n

i=1(ti − t̄ )4

ns4 . (4.28)

where t̄ and s are sample mean and standard deviation, respectively.
The skewness of the headway data is displayed in figure 4.14. Analysis

of covariance shows that the skewness of headway distributions on low speed
and high speed roads differs significantly (P < 0.001). Consequently, the
linear regression analysis was performed separately for the low speed and the
high speed data. On low speed roads the linear model explains 36 % (R2 =
0.36) of the variance, and the significance of the regression is P < 0.001.
On high speed roads the respective values are R2 = 0.073 and P = 0.136,
indicating that the correlation is not significant, and the skewness is about
4.05, irrespective of the traffic volume.

On low speed roads, the skewness is near two at low volumes. This
corresponds to the skewness of the negative exponential distribution. At
higher volumes the skewness increases.

Following Ramberg, Tadikamalla, Dudewicz & Mykytka (1979), figure
4.15 shows the sample kurtosis against the squared sample skewness. (The
figure is called here a KS2-chart.) This relation is occasionally used as a
guide in selecting theoretical distributions (Cochran & Cheng 1989). The
relation in the KS2-chart is almost linear, but a slightly better fit (R2 =
0.981) was obtained by the power curve:

α4 = 2.297(α2
3)

0.847. (4.29)

For comparison, figure 4.15 shows also corresponding points and curves of
some theoretical distributions. The negative exponential distribution (along
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with normal and uniform distributions) reduces to a single point. As the
squared skewness grows the kurtosis grows more slowly than in the case of
either the gamma or the log-normal distribution, but the gamma distribution
is more close to the observed values. The strong correlation of the squared
skewness and the kurtosis motivates a further search for the theoretical
headway distribution.

4.4 Tests for the renewal hypothesis

4.4.1 Background

According to the renewal hypothesis, the headways are independent and
identically distributed (i.i.d.):

H0 : P{ Ti ≤ t |T1, . . . ,Ti−1 } = P{Ti ≤ t} = F(t) , i = 2,3, . . . (4.30)

and

P{T1 ≤ t} = F(t) . (4.30a)

Such a stochastic process is called an ordinary renewal process. If the first
headway (T1) has a different probability distribution, the process is called
a modified renewal process. In the headway data under study, the first
headway in the sample is measured from an arbitrary arrival (synchronized
sampling). Consequently, the first headway can be assumed to have the
same distribution as the other headways.

The alternative hypothesis is that the headways are mutually correlated:
If a short (long) headway has a higher probability after previous short (long)
headways the data has positive autocorrelation. If a short (long) headway is
more probable after long (short) headways the autocorrelation is negative.
If the headways can be assumed i.i.d., the statistical analysis and modeling
of vehicle headways is much less complicated.

At low flow rates, with only small differences in desired speeds and good
passing opportunities, the vehicles can move freely, and correlation between
consecutive headways is unlikely. At high flow rates, with large variation
in desired speeds and restricted passing opportunities, platooning increases.
Because the speeds of the followers are restricted, the platoons are likely
to grow. A short headway is then more likely followed by another short
headway. This makes the hypothesis of positive correlation plausible. On
the other hand, negative autocorrelation would appear in such conditions
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which favor platoons of size two (each leader has one follower). This situation
could realize, when both the demand and the opportunities for passing are
“reasonable”. Otherwise the hypothesis of negative autocorrelation is not
justifiable. Consequently, positive autocorrelation should be considered as
an alternative to the renewal hypothesis.

If consecutive headways are positively correlated, short and long head-
ways are not randomly distributed, but clustered. This can be tested by the
runs test. In addition, the positive autocorrelation affects the distribution of
platoon sizes. Consequently, three methods are presented to test the renewal
hypothesis for vehicle headway: (1) autocorrelation analysis, (2) runs tests
for randomness, and (3) tests for the distribution of the platoon length. This
set of three tests was first proposed by Breiman et al. (1969). The power
of these tests is now further enhanced by calculating the combined proba-
bilities and the moving probabilities. The combined probabilities of some
earlier test results are also presented.

4.4.2 Autocorrelation

The sample autocorrelation (or serial correlation) coefficient gives a measure
of correlation between observations at different distances apart. For a sample
of n observations the autocorrelation coefficient at lag k is:

ρ̃k =

∑n−k
j=1 (tj − t̄ )(tj+k − t̄ )∑n

j=1(tj − t̄ )2
, (4.31)

where

t̄ =
1
n

n∑
j=1

tj . (4.31a)

Note that ρ̃0 ≡ 1. The sample autocorrelation coefficients are plotted in a
correlogram (see figure 4.16).

In a sample of n observations the autocorrelation coefficients are asymp-
totically normally distributed with mean zero and standard deviation 1/n
(Brockwell & Davis 1987). Thus, under null hypothesis, approximately 95 %
of the coefficients are within bounds ±1.96n−1/2. The dashed lines in figure
4.16 show these bounds.

Autocorrelation coefficients give a rough guide, whether the observations
are from a renewal process (ρk = 0, k = 1,2, . . . ). The most important
coefficient in this respect is ρ1. Figure 4.17 displays ρ̃1 for each headway
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Figure 4.16: Correlograms with 0.95 confidence limits

sample. The coefficients have a large variance, but most values are positive.
This indicates that there may be some small positive autocorrelation, but
larger samples are needed to detect it.

Two methods have been used to make the evidence stronger: (1) The sig-
nificance probabilities of ρ̃1 for each sample were combined using the moving
probabilities method. (2) Samples were grouped and partial correlation co-
efficients for autocorrelation were calculated. The methods and their results
are described below.

The test for autocorrelation at lag 1 is:

H0 : ρ1 = 0 (4.32)

against

HA : ρ1 > 0. (4.33)

This is a one-sided test in contrast to the two sided tests normally used
(Dunne et al. 1968, Breiman et al. 1969, Chrissikopoulos et al. 1982), because
it is reasonable to assume that platooning causes positive autocorrelation.
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Figure 4.17: Autocorrelation coefficients at lag 1

The test for negative autocorrelation gave clearly nonsignificant values. The
autocorrelation (ρ̃1) is negative in some small samples only. For samples
larger than 250 observations, only one negative autocorrelation was found
(sample 11: ρ1 = −0.017).

The variation of the significance probabilities over traffic volumes (fig.
4.18) is described by the moving probability method (see section 2.2.6). On
high speed (80–100 km/h) roads there is significant autocorrelation between
consecutive headways. There is, however, a spike in the moving probability
curve, which may indicate better passing opportunities in some samples.
(Similar, although lower spikes are in figures 4.19 and 4.20.) On low speed
(50–70 km/h) roads there is no significant autocorrelation, at least under low
volumes. The moving probability curve, however, goes down to significant
values near 900 veh/h.

The combined significance of all high speed samples is about 3 · 10−22,
and for all low speed samples 0.04. Consequently, the renewal hypothesis
should be rejected on high speed roads, at least when the traffic volume
is above 500 veh/h. On low speed roads the possibility of autocorrelation
should be considered at high volumes (λ̃ > 900 veh/h).

On high speed roads the combined ρ̃1 is 0.07. Since largest samples give
more accurate estimates, the sample coefficients were weighted by the sample
sizes. The weighted estimate is ρ̃1 = 0.09, and the 95 % confidence interval
is 0.06–0.12. On low speed roads the coefficient does not differ significantly
from zero. Accordingly, the tests indicate a small, but statistically significant
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Figure 4.18: Significance of tests for renewal hypothesis against positive autocor-
relation (ρ1 > 0), and 9-point moving probabilities

autocorrelation at lag one on high speed roads.
The autocorrelation was also tested using the partial correlation coeffi-

cients. The samples of low speed and high speed roads were combined into
three classes: (0, 500], (500, 1000], and (1000, 1500] veh/h. Because each
sample has a different mean headway (t̄ ), there is correlation between head-
ways and their sample means rti t̄ = corr(ti, t̄ ). The correlation of headways
and sample means increases the autocorrelation [ρ̃1 = corr(ti, ti−1)] in a com-
bined sample. The effect of the mean headway can, however, be eliminated
by the partial correlation coefficient (Fisher 1938):

ρ̃1·t̄ = corr( ti, ti−1 | t̄ ) =
ρ̃1 − rti t̄ rti−1 t̄ [(1 − r2

ti t̄
)(1 − r2

ti−1 t̄)
] 1

2 . (4.34)

The partial correlation coefficient for autocorrelation at lag one gives the au-
tocorrelation coefficient, when the mean headway is held constant. Because
rti t̄ and rti−1 t̄ can be assumed equal (rtt̄), the partial correlation coefficient
can be calculated as:

ρ̃1·t̄ =
ρ̃1 − r2

tt̄

1 − r2
tt̄

. (4.35)

The null hypothesis
H0 : ρ1·t̄ = 0 (4.36)
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can be tested using the following test statistic (Fisher 1938):

y =
ρ̃1·t̄√

1 − ρ̃2
1·t̄

√
n − 4, (4.37)

where n is the number of observations in the class. The statistic y follows
t-distribution with n−4 degrees of freedom.3 The test results are presented
in table 4.1.

Table 4.1: Partial correlation coefficients (ρ1·t̄)

Volume class n ρ̃1·t̄ Significance
50–70 km/h

0– 500 veh/h 2494 0.017 0.198
500–1000 veh/h 2832 0.025 0.092

1000–1500 veh/h 500 0.053 0.120
0–1500 veh/h 5826 0.018 0.081

80–100 km/h
0– 500 veh/h 580 0.064 0.062

500–1000 veh/h 2361 0.093 3.30 · 10−6

1000–1500 veh/h 7650 0.092 3.94 · 10−16

0–1500 veh/h 10591 0.076 3.24 · 10−15

The partial correlation coefficients do not indicate any significant auto-
correlation at lag one on low speed roads. On high speed roads the positive
autocorrelation is extremely significant under volumes 500–1,500 veh/h. At
lower volumes the autocorrelation is not significant, but the calculation is
based on 580 observations only.

The results of the moving probability method and the partial correlation
coefficients are similar. To sum up, the tests indicate that on high speed
roads at volumes greater than 500 veh/h the autocorrelation coefficient at
lag 1 is about 0.09. Under lower volumes and on low speed roads, there is no
evidence of autocorrelation. It should be emphasized that the decisive factor
may not be the speed limit, at least alone. Other road conditions, such as
the intersection density and the opposite flow rate may have an impact on
the autocorrelation, as well.

Some earlier results are discussed below. Combined probabilities and
one-sided test results have been calculated by the present author on the

3The degrees of freedom are k−3, where k is the number of correlation pairs {ti, ti−1},
which is equal to n − 1. This is also true for the rightmost rooted term in the equation
for y.
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basis of the original results. Dunne et al. (1968) studied the autocorrelation
of trend-free samples from a two-lane road. The combined probability of
their nine data sets (lag 1) was 0.702 (one-sided test), which is consistent
with the renewal hypothesis. Two-sided test gives 0.284, which is also non-
significant. Breiman et al. (1969) found in one of eight data sets (three-lane
unidirectional section of John Lodge Expressway in Detroit) significant au-
tocorrelation (lag 1) at 0.05 level. The hypothesis of independent intervals
was not rejected. The combined significance is 0.23. Testing for positive
autocorrelation only (one-sided test) the combined significance is 0.05, sug-
gesting possible positive autocorrelation. In a later article Breiman et al.
(1977) proposed that a small positive correlation between successive space
headways may be present. Cowan (1975) studied 1,324 successive head-
ways on a two-lane road in Australia. On the basis of the autocorrelation
coefficient and a runs test, the renewal hypothesis was not rejected. Chris-
sikopoulos et al. (1982) studied six headway samples from U.K. trunk roads.
The result of their unspecified tests was that the headways were indepen-
dently distributed. However, the combined significance probability (lag 1)
of their data is 0.012 using 2-sided test, and 0.0015, when testing against
positive autocorrelation.

Previous studies have so far given support to the renewal hypothesis.
Further analysis of this material has cast some doubt on the conclusions.
Also the new data presented, shows that the possibility of a small positive
autocorrelation between consecutive headways should be taken seriously.
Although the autocorrelation is statistically significant, it is virtually in-
significant in many applications.

4.4.3 Randomness

Randomness of the headway data was tested using the Wald & Wolfowitz
(1940) runs test. It tests, whether long and short headways are randomly
distributed, or if short headways are clustered. Testing runs above and
below the median (M̃d) (Madansky 1988) is appropriate in this case (see
also Breiman et al. 1969).

Let each observation ti be associated with a variable xi so that:

xi =

{
1, if ti > M̃d
0, if ti < M̃d .

(4.38)

The observations equal to the median are ignored. A sequence {xj+1,
xj+2,. . . , xj+k} is called a run if xj+1 = xj+2 = · · · = xj+k and xj 
= xj+1



4.4. Tests for the renewal hypothesis 81

0 500 1 000 1 500

0.0

0.2

0.4

0.6

0.8

1.0

Significance

Sample

50-70 km/h

80-100 km/h

Moving probability

50-70 km/h

80-100 km/h

Figure 4.19: Significance probabilities of one-sided runs tests and 7-point moving
probabilities

and xj+k 
= xj+k+1. The first and the last observation begin and end, re-
spectively, a run.

The number of runs is asymptotically normally distributed with mean
and variance equal to (Wald & Wolfowitz 1940):

µ =
2r(n − r)

n
+ 1 (4.39)

σ2 =
2r(n − r)[2r(n − r) − n]

n2(n − 1)
, (4.40)

where n is the total number of observations and r is the number of observa-
tions below the median. Clustering reduces the number of runs. The number
of runs is reduced also by a trend in the data. Hence, the trendlessness of
the data is important.

The one-sided tests for the probability of less runs were used, in order
to test if the platooning reduces the number of runs. Figure 4.19 shows
the significance of the one-sided tests and the moving probabilities (section
2.2.6) for high speed and low speed roads. The combined probabilities are
displayed in table 4.2. The combined probabilities for two-sided tests are
presented for comparison.

On high speed roads the moving probabilities are significant almost
throughout the volume range. On low speed roads the nonrandomness is
significant for volumes greater than 700 veh/h. The combined significance
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Table 4.2: Significance probabilities of the runs tests

Speed limit [km/h] One-sided test Two-sided test
50–70 0.001 0.074
80–100 0.000 0.000

on high speed roads is 1.6 ·10−20 and on low speed roads 0.001. It is evident
that the headways are not i.i.d., but clustered.

Breiman et al. (1969) found only one significant value (0.03) in eight
runs tests. The combined probability (0.49) is also nonsignificant. This is
contrary to the results presented above.

4.4.4 Platoon length

Vehicle (i) is defined to be a follower (0) if its headway is at most t0, oth-
erwise it is a leader (1). The status of a vehicle is accordingly defined as
follows:

xi =

{
0, if ti ≤ t0

1, otherwise.
(4.41)

The difference in speed is ignored.
The number of vehicles in a platoon is the number of consecutive gaps

ti ≤ t0 (followers) plus 1 (leader). The platoon has length k if x1 = 1,
x2 = 0, x3 = 0, . . . , xk = 0, and xk+1 = 1. The platoon may consist of a
single vehicle (k = 1).

If the headways are i.i.d., the probability of vehicle i being a follower is:

p = P{ti ≤ t0} = F (t0). (4.42)

The platoon length is then geometrically distributed (Drew 1968), and the
probability for length k is:

pk = pk−1(1 − p), k = 1,2, . . . (4.43)

The renewal property (i.i.d. headways) can be tested using the null hy-
pothesis:

H0 : pk = pk−1(1 − p) (4.44)
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Figure 4.20: Chi-square tests for geometrically distributed platoon lengths and
9-point moving probabilities

against the alternative hypothesis:

HA : pk 
= pk−1(1 − p). (4.45)

The tests are based on platoon criterion t0 = 5 s, and the chi-square
goodness-of-fit test is used. The chi-square test was performed with k − 2
degrees of freedom. One degree of freedom was lost, because p was esti-
mated from the sample. Platoon lengths 1, 2,. . . , 20 and > 20 were defined
as distinct classes. They were combined so that the expectation for each
class was not less than five, except for the last class the expectation was
not less than unity. On high speed roads one sample was excluded from the
analysis, because, after combining classes, there were no degrees of freedom
left. The results of the tests are displayed in figure 4.20.

The significance probabilities of the low speed samples are rather evenly
spread, and the moving probability stays above significant values. The sig-
nificance probabilities of the high speed samples are more concentrated on
the low values. The combined probability is 0.13 for low speed samples and
1.9 · 10−9 for the high speed samples. Consequently, the hypothesis of geo-
metric platoon length distribution should be rejected on high speed roads,
at least for volumes above 500 veh/h.

In addition to the geometric distribution, several other distributions have
been proposed as models for the platoon length distribution, such as the
Borel-Tanner distribution (Tanner 1953, Tanner 1961) and the Miller distri-
bution (Miller 1961) with one and two parameters. Miller (1961) found that
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his one parameter model fitted the data about as well as the Borel-Tanner
distribution. Galin (1980) found the Borel-Tanner and the two-parameter
Miller models more accurate than the geometric distribution or the one-
parameter Miller model. The headway data were from two-lane Israeli roads.
The combined significance probability for the geometric distribution can be
calculated as 0.0001. For comparison, the respective probability for the
Borel-Tanner distribution is 0.739, for the one parameter Miller distribution
0.0007, and for the two parameter Miller distribution 0.889. These results
confirm the rejection of the geometric distribution.

4.5 Discussion

After the measurements, trend tests and other preliminary analysis, 63
trendless samples consisting of 16,417 headways were analyzed. The samples
were classified into two road categories according to the speed limit: the low
speed roads (50–70 km/h) and the high speed roads (80–100 km/h).

The renewal hypothesis was tested using three methods: autocorrelation
analysis, runs tests and tests for geometrically distributed platoon lengths.
The significance probabilities of individual samples were combined, and the
variation of significance over different flow levels was described by moving
probabilities. In contrary to many previous papers, the headway data indi-
cates that the possibility of a small positive autocorrelation should not be
neglected.

A four-stage identification process (Luttinen 1994) is suggested to de-
scribe the properties of the headway distribution. This process combines
the most powerful analyses presented above:

1. The empirical probability density function (edf) shows the basic shape
of the headway distribution more clearly than the empirical distribu-
tion function. It should be estimated by a kernel method in order to
obtain a continuous estimate, and to avoid the bias due to the his-
togram method.

2. The empirical hazard function (ehf) gives even more information about
the statistical properties of headways than the edf. A graphical exam-
ination of both the edf and the ehf gives a clear indication about the
shape of the headway distribution.

3. The moments of a distribution provide some numerical measures for
the identification process. The sample moments may have large varia-
tion, but their relations provide proper measures for the identification.
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The coefficient of variation is a scaled measure of the distribution
spread. A CV-chart gives essential information about the headway
data and proposed theoretical distributions. It is especially worth
checking, whether the coefficient of variation is near, below, or above
unity.

4. The kurtosis and the squared skewness of the headway samples have
a close, linear or quasi-linear relation, which supports their applica-
tion in the identification. The KS2-chart shows very effectively the
differences between theoretical distributions and the data.

The four-stage identification process reveals many shortcomings of the
simple distributions. The exponential distribution does not pass any of the
identification phases. The hazard function and the coefficient of variation
reveal the problems of the gamma distribution most clearly. The deviation
of the lognormal distribution from the headway data is most obvious, when
the kurtosis and the squared skewness are measured. The empirical hazard
function indicates that the tail of the headway distribution is exponential.
Consequently, the four-stage identification process suggests mixed distribu-
tions with an exponential right tail. The process can be applied to further
evaluate such models.

The identification process has demonstrated some general properties of
headways. There is, however, wide variability among the samples and the
road categories. High speed roads have a higher peak in the empirical den-
sity and hazard functions, a higher proportion of trailing vehicles, and a
higher coefficient of variation, as well as more significant serial correlation
between consecutive headways. These differences all relate to the higher pla-
tooning on high speed roads, which can be explained by many factors: The
number of passing opportunities depends on the headway distribution of the
opposite flow. If the passing rate is different from the catch-up rate, the flow
is not in equilibrium but in a transition state (McLean 1989). The shape of
the headway distribution changes, as the measurement point is moved along
the road. When the passing demand exceeds the passing opportunities, it
can be expected that, moving in the direction of the traffic stream on a lane,
the speeds will decrease and the platooning increase (Botma 1986). On a
non-uniform road, the equilibrium will not be achieved if the sub-section
is shorter than the required transition length (McLean 1989). In addition,
speed limit, passing sight distance, lane and shoulder width, climbing lanes,
flow rate of the opposing traffic,4 intersection density, and distance to major

4When the opposing volume is above 400–450 veh/h, the headway distribution does
not change relevantly (Heidemann 1993).
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traffic generators will have an effect on the headway distributions. Conse-
quently, the traffic flow is not stationary in space, but each cross-section on
each road has its own traffic characteristics. A headway model is necessarily
a gross simplification of the reality.

The data from high speed roads have been analyzed previously by Pur-
sula & Sainio (1985) and Pursula & Enberg (1991). Some comparisons of
the results are presented below:

1. The density estimates were not calculated by Pursula & Sainio (1985),
but frequency diagrams were displayed with bin width 0.5 s and the
origin at zero. Because the frequencies were not corrected by the
interval width, the values were lower by a factor of 0.5, as compared
to the density estimates. The basic shape was, however, the same as
presented here. As Pursula & Sainio (1985) observed, the mode of the
headway distributions is between 1 and 2 seconds.

2. The peak heights are in the same range, when the correction due to
the interval width is made. The comparison with the exponential
distribution is different, because the correction is not made in figure
23 of Pursula & Sainio (1985). If the correction is made, the results
are very similar.

3. The coefficients of variation have similar values. The c.v. is above
unity at volumes less than about 1,500 veh/h. In the data of Pursula &
Sainio (1985) the c.v. decreases steeply at volumes above 1,200 veh/h.
In the present data, the decrease begins gradually and at lower vol-
umes.

4. The platoon percentage is similar here as presented by Pursula &
Sainio (1985) and Pursula & Enberg (1991). The curve in figure 4.2
is, however, in the upper part of the range in figure 24 of Pursula &
Sainio (1985), especially at low volumes.

A major reason for the differences may be in the data collection prin-
ciple. Trend analysis was not used, but the headways were collected
in 5 minute time slices. Moreover, the proportion of heavy vehicles
and passing vehicles did not have any effect on the data collection. In
the present analysis, the rejection of measure periods with more than
1 % passing vehicles may have favored samples with more vehicles in
platoons and no “holes” in the flow. There may also be differences in
the opposite traffic volumes.



Chapter 5

Theoretical headway models

5.1 Principles of evaluation

The evaluation of the headway distribution models is based on three con-
siderations:

1. Reasonability. It is an advantage if the structure of the model
is based on explicit theoretical reasoning about the characteristics of
traffic flow. The parameters of such models can give additional infor-
mation on the properties of traffic flow.

2. Applicability. In mathematical analysis the model should have a
simple structure to avoid insurpassable problems, and the existence
and simple form of the Laplace transform1 is often an advantage. If
simulation is considered as an alternative, the generation of pseudo-
random variates should be fast and reliable. Parameter estimation
should not be too complicated.

3. Validity. The model should give a good approximation of the real
world phenomena; i.e., the empirical headway distributions. This is
tested first by the identification process and finally by the goodness-
of-fit tests.

1Laplace transforms, or some other transforms, are commonly used in probability the-
ory, because they make many calculations easier. The Laplace transforms can be used to
obtain the moments of a distribution (see footnote 5, page 129). When dealing with sums
of random variates, the convolution property of the Laplace transform is most helpful:

f∗
X+Y (s) = f∗

X(s)f∗
Y (s).

(See Kleinrock 1975, Luttinen 1990).
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Five theoretical distributions were selected for a more detailed analysis:
the negative exponential distribution, the shifted exponential distribution,
the gamma distribution, the lognormal distribution and the semi-Poisson
distribution. The negative exponential distribution is the interarrival time
distribution of a totally random arrival process, i.e. the Poisson process.
The shifted exponential distribution avoids the problem of extremely short
headways by setting a threshold for short headways. The gamma distribu-
tion is a generalization of the exponential distributions. A special case of
the gamma distribution, namely the Erlangian distribution, has been widely
used in the traffic flow theory. The lognormal distribution has a theoretical
connection to the car-following models (Greenberg 1966). As an example
of mixed models, the semi-Poisson distribution is studied. It has combined
the follower headway distribution and the exponential tail most elegantly.
Some other mixed models are discussed briefly.

The theoretical models are divided into two classes: the simple distribu-
tions and the mixed distributions. The simple distributions have the same
model for all vehicles. The mixed distributions typically have two distinct
headway distributions: one for free-moving and the other for trailing (fol-
lowing) vehicles.

5.2 Simple Distributions

5.2.1 Negative exponential distribution

Properties of the negative exponential distribution

The negative exponential distribution is the interarrival time distribution
of the Poisson process. The Markov property2 makes the distribution ana-
lytically simple to use. Consequently, the distribution is widely used in the
theory of point processes. In traffic flow theory, the negative exponential
distribution has been used since Adams (1936).

A process, which has the following four properties, is a Poisson process
(Khintchine 1960):

1. The number of events at the beginning of the process is zero; i.e.,
N(0) = 0.

2Also called “lack of memory”:

P{ T > t + u | T > t } = P{T > u} .
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2. The process has independent increments:

P{N(l1,u1] = n1, . . . , N(lr,ur] = nr} =
r∏

i=1

P{N(li,ui] = ni}

for all l1 < u1 ≤ l2 < u2 ≤ · · · ≤ lr < ur, r = 1,2, . . . (5.1)

3. The process has stationary increments:

P{N(a,b] = k} = P{N(a + c,b + c] = k}
= P{N(b − a) = k} 0 ≤ a < b, c ≥ 0.

(5.2)

4. At any time instant only one event can occur:

P{N(t, t + ∆] ≥ 2} = o(∆) as ∆ → 0. (5.3)

The basic statistical properties of the negative exponential distribution
are presented in table 5.1. Concerning the four-stage identification process,
the following observations can be made:

1. The negative exponential density function (fig. 5.1) has mode at zero.
The peak height is f(0) = λ, after which the density decreases expo-
nentially. The distribution overestimates the frequency of extremely
short intervals and underestimates the frequency of headways near
the mode of the empirical headway distribution. Longer headways are
again overestimated (fig. 5.2).

2. The hazard rate is equal to the flow rate [h(t) = λ].

3. The coefficient of variation is equal to unity.

4. The skewness and the kurtosis have constant values, independent of
the scale parameter (λ).

The negative exponential distribution does not pass the four-stage identifi-
cation process. In fact, it fails in all four stages.

Parameter estimation

The expectation of the distribution is the reciprocal of the scale parameter
(Luttinen 1990). Accordingly, the method of moments estimator (MME) for
the scale parameter (λ) is the reciprocal of the sample mean:

λ̃ =
1
t̄
. (5.4)
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Figure 5.1: Negative exponential density function
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Table 5.1: Properties of the negative exponential distribution

PDF F (t) =

{
1 − e−λt, if t ≥ 0
0, otherwise

pdf f(t) =

{
λe−λt, if t ≥ 0
0, otherwise

Hazard function h(t) =

{
λ, if t ≥ 0
0, otherwise

Laplace transform f∗(s) =
λ

s + λ

Mean µ(T ) =
1
λ

Median Md =
1
λ

ln 2

Mode Mo = 0

Variance σ2(T ) =
1
λ2

Coefficient of variation C(T ) = 1

Skewness α3(T ) = 2

Kurtosis α4(T ) = 9

λ > 0

The likelihood function and the loglikelihood function are:

L(λ) = λne−λ
∑n

j=1 tj (5.5)

lnL(λ) = n lnλ − λ

n∑
j=1

tj . (5.6)

The maximum likelihood estimator (MLE) is obtained by differentiation

∂ lnL(λ̂)

∂λ̂
=

n

λ̂
−

n∑
j=1

tj = 0 (5.7)

λ̂ =
1
t̄
. (5.7a)
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Figure 5.3: The nonparametric K-S and the parametric A-D goodness-of-fit tests
for the negative exponential distribution

The MLE and the MME are identical for the negative exponential distribu-
tion. This estimator has been used in the following statistical analyses.

Goodness-of-fit tests

The goodness of fit was tested using the parametric Anderson-Darling (A-D)
test. For each sample 9,999 replications were generated and analyzed. Figure
5.3 shows the test results. For comparison, the results of nonparametric
Kolmogorov-Smirnov (K-S) tests are also presented.

The combined significance probability of the A-D tests is practically zero
(2.9 · 10−150). Even for the three low volume (less than 160 veh/h) samples,
the combined significance is 0.00016. Only two small samples (45 and 46) of
no more than 100 observations yield nonsignificant results. Consequently,
the negative exponential distribution should be rejected, at least for volumes
greater than 140 veh/h.
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Negative exponential distribution in headway studies

Reasonability The Poisson process describes situations, where vehicles
without physical length can move freely. Several authors (e.g., Weiss &
Herman 1962, Breiman 1963, Thedéen 1964) have shown that under rather
weak assumptions (no driver interactions and i.i.d. speeds) the number of
vehicles in an arbitrary interval will be asymptotically Poisson distributed
as time tends to infinity. Thus, the headways will asymptotically follow the
negative exponential distribution. This is called the Poisson tendency of
low density traffic.

Some platooning nearly always occurs on two lane roads, because passing
is restricted, and even in good passing conditions some drivers are content
to follow behind. The Poisson process cannot deal with this phenomenon.

Applicability Because of the Markov property, the negative exponential
distribution lends itself to demanding mathematical analyses. A further ad-
vantage is the simple form of the Laplace transform. Therefore, the negative
exponential distribution is often preferred over other, more realistic but also
more complex distributions. In many cases explicit solutions can only be
found, when the arrival process is assumed Poisson.

Because the traffic volume is the only information needed, the parame-
ter estimation is very straightforward. Also, the generation of exponential
random variates is very effective. Hence, the applicability of the negative
exponential distribution is excellent.

Validity The frequency of unrealistically short headways in the negative
exponential distribution is too large. In fact, extremely short headways have
the highest probability density. The model gets more distorted as the flow
rate increases (fig. 5.2).

On the basis of the Poisson tendency theory, the exponential distribution
could be used in the study of low density traffic conditions. Wattleworth (in
Baerwald 1976) suggests flow rates of 500 veh/h or less. The coefficient of
variation data and the goodness-of-fit tests above suggest even lower volumes
(about 100 veh/h or less). There is, however, not enough low volume data
to make accurate recommendations.

The negative exponential distribution has since Adams (1936) played a
major role in the theoretical study of traffic flow, and especially in traffic
signal control. The studies of Garwood (1940), Darroch et al. (1964), and
many others rely on the exponential headway distribution. Also in some
modern studies on adaptive traffic signal control, the queue length predictor
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algorithm is based, at least partially, on Poisson arrivals (Baras, Levine &
Lin 1979b, Betró, Schoen & Speranza 1987).

In conclusion, the negative exponential distribution can be considered as
a model for vehicle headways under very low flow conditions and for appli-
cations that are not very sensitive to the shape of the headway distribution.
In some cases the analytical solution of the problem may only be possible
with a very simple model. In such situations the limitations of the model
should be clearly indicated.

5.2.2 Shifted exponential distribution

Properties of the shifted exponential distribution

One possibility to avoid the extremely short headways predicted by the
negative exponential distribution is, in queuing theory terminology, to add a
phase with deterministic service time (τ) in series with the exponential server
(Luttinen 1990). This is equivalent to shifting the negative exponential
distribution τ seconds to the right. A headway is then considered as a
random variate T = τ + X, where τ is a nonnegative constant, and X is a
random variate following the negative exponential distribution.

The density function is obtained from the negative exponential pdf by
replacing t with t − τ :

f( t | τ, θ ) =

{
θe−θ(t−τ), if t ≥ τ

0, otherwise,
(5.8)

where τ and θ are the location and scale parameters, respectively.
The basic statistical properties of the shifted exponential distribution

are presented in table 5.2. Concerning the four-stage identification process,
the following observations can be made:

1. The pdf (fig. 5.4) has mode at τ with peak height f(τ) = θ, after
which the density decreases exponentially. Figure 5.5 shows the shifted
exponential pdf estimates for four headway samples. The pdf under-
estimates the density near the sample mode, and overestimates the
frequency of long headways.

2. The hazard rate is equal to the scale parameter; i.e., h(t) = θ for t ≥ τ .

3. In terms of flow rate [λ = 1/µ(T )], the coefficient of variation is
C(T ) = 1 − λτ . Because the location parameter is always nonneg-
ative (τ ≥ 0), the c.v. is less than or equal to unity.
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Table 5.2: Properties of the shifted exponential distribution

PDF F (t) =

{
1 − e−θ(t−τ), if t ≥ τ

0, otherwise

pdf f(t) =

{
θe−θ(t−τ), if t ≥ τ

0, otherwise

Hazard rate h(t) =

{
θ, if t ≥ τ

0, otherwise

Laplace transform f∗(s) = e−sτ θ

s + θ

Mean µ(T ) = τ +
1
θ

Median Md = τ +
ln 2
θ

Mode Mo = τ

Variance σ2(T ) =
1
θ2

Coefficient of variation C(T ) =
1

1 + θτ

Skewness α3(T ) = 2

Kurtosis α4(T ) = 9

θ > 0, τ ≥ 0

4. The skewness and the kurtosis have constant values, independent of
the parameters.

The shifted exponential distribution does not pass the identification process.
Like the negative exponential distribution, it fails in all the four stages.

Parameter estimation

Method of moments estimators The method of moments estimators
(MMEs) are obtained by equating the expressions for the mean and the
variance (table 5.2) to the sample mean (t̄) and the sample variance (s2):

t̄ = τ̃ +
1
θ̃

(5.9)
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Figure 5.4: Shifted exponential density function
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s2 =
1
θ̃2

. (5.10)

By solving this pair of equations the MMEs are obtained as:

τ̃ = t̄ − s (5.11)

θ̃ =
1
s

=
1

t̄ − τ̃
. (5.12)

If the sample c.v. is greater than unity, the sample standard deviation
(s) is greater than the sample mean (t̄). The location parameter estimate is
then infeasible (τ̃ < 0), and the best estimate, in the sense of the method of
moments, is τ = 0, which leads to the negative exponential distribution.

Modified method of moments estimators The first order statistic
(T(1)) in a sample of size n from a shifted exponential distribution f( t | τ, θ )
follows the shifted exponential distribution with the scale parameter equal
to nθ (Cohen & Whitten 1988). Thus:

f
(
t(1) | τ, nθ

)
=

{
nθe−nθ(t(1)−τ), if t(1) ≥ τ

0, otherwise.
(5.13)

T(1) has expectation:

E(T(1)) = τ +
1
nθ

. (5.14)

The estimating equations of the modified method of moments estimators
(MMMEs) are then:

E(T ) = t̄ = τ̃ +
1
θ̃

(5.15)

E(T(1)) = t(1) = τ̃ +
1
nθ̃

. (5.16)

The MMMEs are now obtained as follows:

τ̃ =
nt(1) − t̄

n − 1
(5.17)

θ̃ =
1

t̄ − τ̃
. (5.18)

According to Cohen & Whitten (1988) these are both the best linear un-
biased estimators (BLUE) and the minimum variance unbiased estimators
(MVUE), and therefore they are the preferred estimators.
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Figure 5.6: MMMEs for the location parameter of the shifted exponential distri-
bution

Figure 5.6 shows the MMMEs for τ̃ . The estimates do not correlate with
the volume. The mean of the estimates is 0.63 s on low speed roads and
0.38 s on high speed roads. The difference in the estimates is statistically
significant (P < 0.0005). The two estimates (samples 45 and 46) greater
than one second must be considered outliers due to small sample sizes (n ≤
100). If they are removed, the mean for the low speed roads is 0.59 s, which
is still significantly larger than the mean for high speed roads.

Maximum likelihood estimators The likelihood function and its loga-
rithm for the shifted exponential distribution are:

L(τ, θ) =

{
θne− ∑n

j=1 θ(ti−τ), if t(1) ≥ τ

0, otherwise
(5.19)

lnL(τ, θ) =

{
n ln θn −∑n

j=1 θ(ti − τ), if t(1) ≥ τ

−∞, otherwise.
(5.20)

For any fixed θ, the likelihood function is maximized by choosing τ as
large as possible so that:

f( ti | τ, θ ) > 0 for all i = 1, . . . , n. (5.21)

This leads to:
τ̂ = min{t1, . . . , tn} = t(1). (5.22)
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If the location parameter estimate τ̂ is known, the scale parameter estimate
(θ̂) is obtained by solving (Dudewicz & Mishra 1988):

∂L(τ̂ , θ̂)

∂θ̂
=

n

θ̂
−

n∑
i=1

(ti − τ̂) = 0, (5.23)

which gives:

θ̂ =
1

t̄ − τ̂
. (5.24)

Because the probability P
{
T ≤ t(1)

}
= F
(

t(1)

∣∣∣ θ̂, τ̂ ) is null, the MLEs give
bad goodness-of-fit test results.

Modified maximum likelihood estimators The modified maximum
likelihood estimate (MMLE) for τ is calculated from the following equation:

F
(
t(1)
∣∣ τ̌ , θ̌

)
=

1
n + 1

. (5.25)

The estimator for θ is the same as given by the maximum likelihood method,
as well as by the other methods. The MMLEs are accordingly:

τ̌ =
ln
(

n
n+1

)
t̄ + t(1)

ln
(

n
n+1

)
+ 1

(5.26)

θ̌ =
1

t̄ − τ̌
. (5.27)

For sample sizes near and above 100, the MMLEs are virtually equal to the
MMMEs. The MMMEs were used, because they could be calculated more
effectively.

Goodness-of-fit tests

The goodness of fit was tested using the parametric Anderson-Darling (A-D)
test. For each sample 9,999 replications were generated and analyzed. Fig-
ure 5.7 shows the test results. For comparison, the results of nonparametric
Kolmogorov-Smirnov (K-S) tests are also presented. The combined proba-
bility of the A-D tests is 5.3 · 10−150. Even for the three low volume (less
than 160 veh/h) samples, the combined significance is 0.002. The shifted
exponential distribution does not score much better than the negative expo-
nential distribution, and it should be rejected, at least for volumes greater
than 140 veh/h.
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Figure 5.7: The nonparametric K-S and the parametric A-D goodness-of-fit tests
for the shifted exponential distribution

Shifted exponential distribution in headway studies

Reasonability The location parameter (τ) prevents the occurrence of ex-
tremely short headways, which is a major problem of the negative exponen-
tial distribution. A fixed threshold for the minimum headway is a simplistic
solution that is not in accordance with the car-following dynamics. The
shifted exponential distribution is not a reasonable model for headways, but
its properties are best under low flow rates.

Applicability If the exponential distribution has a positive location pa-
rameter, it loses the Markov property. The applicability, however, remains
good. The Laplace transform is not complicated, the parameter estimation
is straightforward, and pseudo-random variates can be generated efficiently.
The shifted exponential distribution has been widely used in simulation
studies (Lin 1985b, Lin 1985a, Shawaly, Ashworth & Laurence 1988).

Validity The goodness of fit is only a little better than for the negative
exponential distribution. The shifted exponential distribution can be con-
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sidered for very low flow conditions, or for applications that are sensitive
to extremely short headways but not to other properties of the headway
distribution.

In some applications, it may be better to choose a location parameter
larger than t(1). Statistically such headway distributions are infeasible, but
they may give better results, because the mode moves closer to the sample
mode. The validity of the application should be judged by verifying the
accuracy of the results.

5.2.3 Gamma distribution

Properties of the gamma distribution

The shifted exponential distribution avoids the problem of extremely short
headways by adding a constant (τ) to an exponential random variate. In
queuing theory terminology this means adding a server with constant service
time in series with a server having negative exponential service time distri-
bution (Luttinen 1990). Another approach is to put α exponential servers in
series, thus reducing the probability of extremely short departure intervals
(Luttinen 1990). In both cases, the service is in stages, so that only one
server can be occupied at a time.

The resulting departure interval is a sum of α mutually i.i.d. exponential
random variates:

Sα = X1 + X2 + · · · + Xα, α ∈ {1,2, . . .}. (5.28)

The new random variate (Sα) is said to follow the α-phase Erlangian distri-
bution.

The probability distribution function of the Erlangian distribution is:

F( t |β, α ) = 1 −
α−1∑
j=0

(βt)j

j!
e−βt. (5.29)

The probability density function (fig. 5.8) follows by differentiation:

f( t |β, α ) =
(βt)α−1

(α − 1)!
βe−βt. (5.30)

The negative exponential distribution is a special case (α = 1) of the Erlan-
gian distribution.

If the number of phases in the Erlangian distribution is allowed to be non-
integer (α > 0), the resulting generalization is called the gamma distribution.
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Figure 5.8: 3-phase Erlangian density function

The proportion of short headways can be further adjusted by introducing a
location parameter (τ). The pdf is then:

f( t | τ, β, α ) =
βα(t − τ)α−1

Γ(α)
e−βt, (5.31)

where

Γ(x) =
∫ ∞

0
yx−1eydy (5.31a)

is the gamma function. It is a generalization of the factorial function:

(x − 1)! = Γ(x). (5.32)

The parameters of the distribution are called the location parameter (τ),
the scale parameter (β) and the shape parameter (α).

The basic statistical properties of the gamma distribution are presented
in table 5.3. Concerning the four-stage identification process, the following
observations can be made:

1. If the shape parameter (α) is equal to unity, pdf (fig. 5.9) has mode at
τ with peak height f(0) = β (i.e., the shifted exponential distribution).
As α increases above unity, the mode approaches the mean. If α is
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less than unity, the mode is at τ , and the peak height rises to infinity:
limt→τ+ f(t) = ∞. Figure 5.10 shows gamma pdf estimates for four
samples.

2. The hazard rate is h(t) = β for α = 1, monotone decreasing from
infinity for α < 1, and monotone increasing from zero for α > 1 (see
figures 5.11 and 5.12). If α 
= 1, the hazard rate approaches β as t
increases. For t < τ the hazard rate is h(t) = 0.

3. If τ = 0, the coefficient of variation is equal to unity for α = 1, less
than unity for α > 1 and greater than unity for α < 1. As τ increases,
the coefficient of variation decreases.

4. The skewness [α3(T )] and the kurtosis [α4(T )] are functions of the
shape parameter (α) only. Both are positive and decrease, as the
shape parameter increases. The kurtosis and the squared skewness
have the following relation:

α4(T ) = 3 +
3
2
α2

3(T ). (5.33)

For a corresponding value of squared skewness, the kurtosis is a little
larger than the headway kurtosis (fig. 4.15, page 73).

The gamma distribution does not pass the four-stage identification pro-
cess. The hazard function is most informative in this respect. Also, for
(α > 1) the coefficient of variation decreases below unity and, as α increases,
the distribution soon becomes too smooth and too symmetric.

Parameter estimation

Method of moments estimators The estimating equations for the
MMEs are:

t̄ = τ̃ +
α̃

β̃
(5.34)

s2 =
α̃

β̃2
(5.35)

α3 =
2√
α̃

. (5.36)
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Table 5.3: Properties of the gamma distribution

PDF F (t) =

⎧⎨
⎩

γ[α, β(t − τ)]
Γ(α)

, if t ≥ τ

0, otherwise

pdf f(t) =

⎧⎨
⎩

βα(t − τ)α−1

Γ(α)
e−β(t−τ), if t ≥ τ

0, otherwise

Hazard rate h(t) =
f(t)

1 − F (t)

Laplace transform f∗(s) = e−sτ

(
β

s + β

)α

Mean µ(T ) = τ +
α

β

Median Md = F−1(0.5)

Mode Mo =

⎧⎨
⎩τ +

α − 1
β

, if α > 1

τ, otherwise

Variance σ2(T ) =
α

β2

Coefficient of variation C(T ) =
√

α

α + βτ

Skewness α3(T ) =
2√
α

Kurtosis α4(T ) = 3 +
6
α

α, β > 0, τ ≥ 0

γ(α, y) =
∫ y

0 xα−1e−xdx
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Figure 5.9: Gamma density functions (τ = 0) for flow rate 600 veh/h
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Figure 5.11: Gamma hazard functions (τ = 0) for flow rate 600 veh/h
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There is an explicit solution:

τ̃ = t̄ − 2s

α3
(5.37)

β̃ =
2

sα3
(5.38)

α̃ =
4
α2

3
. (5.39)

The estimate of the shape parameter (α) is directly proportional to the
squared sample skewness (α3) and independent of the location parameter.
This may result in a serious fault (Bowman & Shenton 1988). The efficiency
of the shape parameter estimate can be as low as 22 % (Stuart & Ord
1991). Furthermore, the location parameter estimate can be greater than the
smallest sample observation t(1), and hence inadmissible (Cohen & Whitten
1988).

The method of moments is inefficient in parameter estimation, except for
distributions closely resembling the normal (Greenwood & Durand 1960).
Headway distributions are positively skew and do not resemble the normal
distribution. Preliminary studies by the author have demonstrated the poor
performance of the MMEs for the gamma distribution.

A MME can be used to make a crude estimate of the range of α. Figure
4.14 (page 73) shows that the sample skewness is mostly greater than two
and in all cases greater than 1.25. This means that the shape parameter
values are expected to be mostly below unity, and not much greater than
three. This information is useful in the evaluation of other methods.

Cohen & Whitten (1988) have suggested modified method of moments
estimators (MMMEs), because they are easy to calculate and applicable
over the entire parameter space. The estimating equations are:

t̄ = τ̃ +
α̃

β̃
(5.40)

s2 =
α̃

β̃2
(5.41)

F
(

t(1)

∣∣∣ τ̃ , β̃, α̃
)

=
1

n + 1
. (5.42)
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Maximum likelihood estimators

The likelihood and the log-likelihood functions of the gamma distribution
are:

L(τ, β, α) =
n∏

j=1

f( tj | τ, β, α )

=
(

βα

Γ(α)

)n n∏
j=1

(tj − τ)α−1e−β(tj−τ)

(5.43)

lnL(τ, β, α) = n[α lnβ − ln Γ(α)] +
n∑

j=1

(α − 1) ln(tj − τ) − β(tj − τ).

(5.44)

The equations for the MLEs are obtained by equating to zero the partial
derivatives and dividing by n:

1
n(1 − α̂)

∂ lnL(τ̂ , β̂, α̂)
∂τ̂

=
β̂

1 − α̂
+

1
n

n∑
j=1

1
tj − τ̂

= 0 (5.45)

1
n

∂ lnL(τ̂ , β̂, α̂)

∂β̂
=

α̂

β̂
− 1

n

n∑
j=1

(tj − τ̂) = 0 (5.46)

1
n

∂ lnL(τ̂ , β̂, α̂)
∂α̂

= ln β̂ − Ψ(α̂) +
1
n

n∑
j=1

ln(tj − τ̂) = 0, (5.47)

where Ψ(·) is the digamma function:

Ψ(x) =
d[ln Γ(x)]

dx
. (5.47a)

The equations can be expressed in terms of modified arithmetic (A),
geometric (G) and harmonic (H) means:

A =
1
n

n∑
j=1

(tj − τ̂) (5.48)

G = n

√√√√ n∏
j=1

(tj − τ̂) (5.49)

H =
1
n

n∑
j=1

1
tj − τ̂

(5.50)
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as follows (Bowman & Shenton 1988):

β̂

α̂ − 1
= H (5.51)

α̂

β̂
= A (5.52)

Ψ(α̂) − ln β̂ = lnG. (5.53)

If the shape parameter estimate α̂ is less than unity, the likelihood func-
tion (L) becomes infinite as the location parameter approaches the first order
statistic of the sample:

lim
τ̂→t(1)

L(τ̂ , β̂, α̂) = ∞. (5.54)

In this case τ̂ = t(1), but β̂ and α̂ fail to exist since (Cohen & Whitten 1982):

lim
τ̂→t(1)

∂L(τ̂ , β̂, α̂)
∂α̂

= −∞. (5.55)

If the shape parameter estimate α̂ is less than unity, the left hand side of
equation (5.51) becomes negative, indicating that some observations should
be less than τ̂ , which is infeasible. As a conclusion, the maximum likelihood
method cannot be applied for shape parameter values less than unity, which
is mostly the case in the headway data.

Johnson et al. (1994) observe that the MLEs are rather unstable if α̂ is
near to unity, even though it exceeds it. They recommend that the MLEs
should be used only if it is expected that α̂ is at least 2.5 (α3 < 1.27).

Modified maximum likelihood estimators

As explained above, shape parameter estimates less than unity are to be
expected in the headway data. The MLEs are then infeasible, but the max-
imum likelihood method can be modified (algorithm 5.1) by replacing the
equation (5.51) by:

F
(
t(1)
∣∣ τ̌ , β̌, α̌

)
=

1
n + 1

. (5.56)

Solving for the scale parameter estimator in equations (5.52) and (5.53), the
following equations are obtained:

ln(α̌) − Ψ(α̌) = ln
(

A

G

)
(5.57)

β̌ =
α̌

A
. (5.58)
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Step 1 Give two initial location parameter estimates. Set τ̌0 to some large
value. Assign τ̌1 = (1 − ε)t(1), where ε is the stopping criterion (see
step 2). Assign j = 1. Go to step 2.

Step 2 Determine shape and scale parameter estimates. The shape param-
eter estimate (α̌) is computed using algorithm (5.59). The scale pa-
rameter estimate (β̌j) is given by equation (5.58). If |τ̌j − τ̌j−1|/τ̌j ≤ ε,
go to step 4, else go to step 3.

Step 3 Determine new location parameter estimate (τ̌j+1) from equation
(5.61). If τ̌j+1 ≥ t(1), go to step 4, else increment j by 1 and go to
step 2.

Step 4 Output parameter estimates (τ̌ , β̌, α̌). Stop.

Algorithm 5.1: Calculation of the MMLEs for the gamma distribution (Luttinen
1991)

The shape parameter estimator α̌ is solved using a rapidly converging
algorithm (Bowman & Shenton 1988):

α̌j = α̌j−1[ln(α̌j−1) − Ψ(α̌j−1)]/ξ, j = 1,2, . . . , (5.59)

where

ξ = ln
(

A

G

)
, 0 < ξ (5.59a)

and

α̌0 =
0.5000876 + 0.1648852ξ − 0.0544276ξ2

ξ
, 0 ≤ ξ < 0.5772 (5.59b)

α̌0 =
8.898919 + 9.059950ξ + 0.9775373ξ2

ξ(17.79728 + 11.968477ξ + ξ2)
, 0.5772 ≤ ξ. (5.59c)

If α̌ > 1, then 0 < ln(α̌) − Ψ(α̌) < 0.5772 and ξ ≥ 0.5772 leads to no
solution.

The location parameter estimator can be solved by finding the τ̌ , which
gives probability 1/(n + 1) for a headway less than or equal to the shortest
sample headway:

F−1
(

1
n + 1

∣∣∣∣ τ̌ , β̌, α̌

)
= t(1), (5.60)
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where F−1(·) is the inverse of the gamma PDF. Once an old estimator τ̌j is
known, the new estimator (τ̌j+1) can be obtained as follows:

τ̌j+1 = τ̌j + t(1) − F−1
(

1
n + 1

∣∣∣∣ τ̌j , β̌, α̌

)
. (5.61)

Accuracy of parameter estimates

The accuracy of the parameter estimates was evaluated by a C-language
computer program calling IMSL Fortran subroutines (IMSL 1989). For each
combination of parameters, 1,000 replicas of 365 observations were gener-
ated. The accuracy demand for location parameter estimate was ε = 10−6.
The subroutine RNGAM was used to generate the observations, and the
parameters were estimated using the modified maximum likelihood method
(algorithm 5.1). The accuracy of the estimates was measured by a loss
function called relative root mean square error (rrmse) (Bai, Jakeman &
Taylor 1990):

rrmse(θ) =

⎡
⎣ 1

m

m∑
j=1

(
θ̌j − θ

θ

)2
⎤
⎦

1
2

. (5.62)

where m is the number of replications, θ is the true value of the parameter,
and θ̌j is the parameter estimate for replica j.

Table 5.4 presents the rrmse’s for different values of location (τ) and
shape (α) parameters. The scale parameter (β) is set to unity to make the
table comparable with the data presented by Bai et al. (1990).

Some accuracy is lost as compared to the maximum likelihood method,
especially when the shape parameter (α) is large. The restriction of α < 1
is, however, avoided. The accuracy is quite good for α ≤ 1. The loss of
accuracy in the location parameter estimate (τ̌) with large values of the
shape parameter is unavoidable. Consequently, the accuracy of the MMLEs
is considered appropriate for the shape parameter values near or below unity.

Bowman & Shenton (1988) consider the MMLEs particularly successful
for 1/4 ≤ α < 1, and quite acceptable for 1 ≤ α < 2. (1/4 was the
lowest shape parameter value that they tested.) In the goodness-of-fit tests
below, the parameters were estimated by the modified maximum likelihood
method. This method uses all the information in the samples, and it is not
as sensitive to outliers as the moment methods (Bowman & Shenton 1988).

Figures 5.13, 5.14 and 5.15 show the parameter estimates for the gamma
distribution. The location parameter estimates are mostly between 0.2 and



112 CHAPTER 5. THEORETICAL HEADWAY MODELS

Table 5.4: Relative root mean square error (rrmse) of MMLEs for the gamma
distribution. The rrmse’s of MLEs in (Bai et al. 1990) are shown in
parentheses.

α θ τ = 0.2 τ = 0.6 τ = 1.0
α 0.063 0.061 0.062

α = 0.50 β 0.098 0.094 0.094
τ 0.000 0.000 0.000
α 0.065 0.070 0.066

α = 0.75 β 0.089 0.091 0.085
τ 0.002 0.001 0.001
α 0.073 0.073 0.075

α = 1.00 β 0.086 0.085 0.088
τ 0.015 0.005 0.003
α 0.133 0.123 (0.11) 0.136

α = 2.00 β 0.102 0.099 (0.10) 0.106
τ 0.299 0.094 (0.05) 0.061
α 0.156 0.230 (0.27) 0.312

α = 6.00 β 0.124 0.144 (0.16) 0.170
τ 2.011 0.944 (0.65) 0.751

0.8. The scale parameter rises exponentially as the volume increases. The
shape parameter estimates are concentrated between 0.4 and 3.1. On high
speed roads the shape parameter is larger at high volumes. On low speed
roads the correlation is not significant.

Goodness-of-fit tests

For each sample the parameters were estimated using the modified maxi-
mum likelihood method. The goodness of fit was tested using Monte Carlo
tests with the A-D statistic (section 2.2.4). For each sample 9,999 replica-
tions were generated and analyzed. Figure 5.16 shows the test results. For
comparison, the results of nonparametric K-S tests are also presented.

As figure 5.16 shows, the goodness of fit is poor. The points are not
evenly distributed between 0 and 1 at any flow level. The combined signifi-
cance of the A-D tests is 4.1 · 10−141. For volumes less than 160 veh/h the
K-S tests give combined significance probability of 0.25. The corresponding
probability of the A-D tests is 0.001.

In figure 5.17, the nonparametric K-S tests are compared with the para-
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Figure 5.13: Location parameter estimates (MMLE) for the gamma distribution
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Figure 5.14: Scale parameter estimates (MMLE) for the gamma distribution
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Figure 5.15: Shape parameter estimates (MMLE) for the gamma distribution
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Figure 5.17: Comparison of the nonparametric K-S and the parametric A-D tests
for the gamma distribution

metric A-D tests. The figure confirms the statement that the nonparametric
K-S test gives too conservative results (section 2.2.4). The 5 % significance
level of the parametric A-D test is about the same as the 20 % significance
level of the nonparametric K-S test. A similar result was obtained by Lil-
liefors (1969) for the negative exponential distribution. Since the shape
parameter estimates are concentrated near unity (mean 1.09, standard de-
viation 0.62), the similarity of the results is to be expected.

Gamma distribution in headway studies

Reasonability The gamma distribution with α > 1 has a bell-like shape,
which gives low probability to extremely short headways. The coefficient
of variation, however, decreases below unity. Consequently, the the shape
parameter α is estimated below unity in most samples. In these cases, the
problem with extremely short headways is even more critical than with the
negative exponential distribution. The location parameter can be used to
ease the problem, but then the original motivation for the application of the
gamma distribution is lost.

Figure 5.18 shows the skewness of the headway data and estimated
gamma distributions. Although figure 4.15 indicated that the relation be-
tween the skewness and the kurtosis of the gamma distribution does not
differ much from the headway data, figure 5.18 shows that a gamma dis-
tribution cannot model very skew (α3 > 3) headway distributions. In fact,
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Figure 5.18: Skewness of the headway data and fitted gamma distributions

the skewness of the fitted gamma distributions does not correlate positively
with the skewness of the empirical headway distributions. The MMEs would
give different results, but the fact remains that the properties of the gamma
distribution are very different from the properties of the headway distribu-
tions.

As α = 1 the gamma distribution is equal to the negative exponential
distribution (τ = 0) or the shifted exponential distribution (τ > 0). The dis-
cussion on these distributions is relevant here also. The gamma distribution
can therefore be justified as a model for low traffic flow conditions.

When the flow rate is high, most vehicles are followers, and the headways
are concentrated near the mode. The bell-like shape of the corresponding
headway distribution is typical of the gamma distribution with large α. How-
ever, as the the flow rate increases, the headway distribution becomes more
skew (fig. 4.14, page 73), whereas the skewness of the gamma distribution
decreases for large α.

Applicability The gamma distribution is rather simple in mathematical
analysis, especially when dealing with transforms, or if the analysis is re-
stricted to the Erlangian distribution. Efficient subroutines can be found to
generate gamma variates.

Parameter estimation of the gamma distribution presents some problems,
but in many practical situations reasonable results can be obtained by letting
τ̂ = t(1) − ε (where ε is some small value), and estimating α and β by the
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method of moments.

Validity For shape parameter values greater than unity, the density
function has the skewed bell-like shape typical of headway distributions.
Goodness-of-fit tests do not, however, support the use of the gamma distri-
bution in traffic flow studies, except perhaps at very low and very high flow
rates. There is not, however, enough data to make accurate recommenda-
tions. At low flow conditions, the exponential distribution is usually more
simple, and both theoretically and statistically justifiable. At higher vol-
umes the gamma distribution can be given preference over the exponential
distribution.

In the tradeoff between applicability and validity, the gamma distribu-
tion offers a little more credibility and a little more hard work than the
negative exponential distribution. The pdf of the gamma distribution is
appealing, when the shape parameter is greater than unity, but it fails to
model both the strong accumulation of headways near the mode and the
skewness of headway distributions. If the gamma distribution is used as a
model for vehicle headways, the process studied should not be very sensitive
to the shape of the headway distribution.

5.2.4 Lognormal distribution

Properties of the lognormal distribution

If a variate Y = ln(T − τ) follows the normal distribution N(µ, σ2), then T
follows the lognormal distribution:

f( t | τ, µ, σ ) =
1

t − τ
φ

(
ln(t − τ) − µ

σ

)

=
1

σ(t − τ)
√

2π
exp
(

− [ln(t − τ) − µ]2

2σ2

)
, t > τ

(5.63)

The lognormal relation holds if the change in a headway during a small
time interval is a random proportion of the headway at the start of the
interval, and the mean and the variance of the headway remain constant
over time. Greenberg (1966) has shown the resulting connection between
the lognormal headway distribution and car-following theory.

The most important properties of the lognormal distribution are pre-
sented in table 5.5. Concerning the four-stage identification process, the
following observations can be made:
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Table 5.5: Properties of the lognormal distribution

PDF F (t) =

⎧⎨
⎩Φ

(
ln(t − τ) − µ

σ

)
, if t ≥ τ

0, otherwise

pdf f(t) =

⎧⎨
⎩

1
t − τ

φ

(
ln(t − τ) − µ

σ

)
, if t ≥ τ

0, otherwise

Hazard rate h(t) =
f(t)

1 − F (t)

Laplace transform —

Mean µ(T ) = τ + eµ+ 1
2 σ2

Median Md(T ) = τ + eµ

Mode Mo(T ) = τ + eµ−σ2

Variance σ2(T ) = e2µ+σ2
(
eσ2 − 1

)
Coefficient of variation C(T ) =

√
es2 − 1

1 + τe−µ− 1
2 s2

Skewness α3(T ) = (ω + 2)
√

ω − 1

Kurtosis α4(T ) = ω4 + 2ω3 + 3ω2 − 3

µ, σ > 0, τ ≥ 0

ω = eσ2
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1. The lognormal pdf (fig. 5.19) has a shape similar to the empirical head-
way density function, especially at high flow rates. As the coefficient
of variation decreases, the mode moves towards the mean (fig. 5.20).
A closer examination of the pdf (fig. 5.21), however, shows that the
decrease of the density after the peak is too slow.

2. The lognormal hazard function (figs. 5.22 and 5.23) is zero at t = 0,
increases to maximum, and decreases gradually, approaching zero as
the headway becomes large (Kalbfleisch & Prentice 1980). The hazard
function is similar to the empirical hazard function, but the fall after
the peak is more gradual.

3. The coefficient of variation does not present any limitations for the
lognormal distribution. It τ = 0, the c.v. is:

C(T ) =
√

es2 − 1. (5.64)

4. For a corresponding value of the squared skewness, the kurtosis of the
lognormal distribution is too large. See figure 4.15 on page 73.

The lognormal distribution differs most from the headway data, when the
kurtosis and the squared skewness are measured. In addition, the pdf and
the hazard function, in particular, fall too gradually after the peak. The log-
normal distribution fails in three stages of the identification process. Stages
2 and 4 are most clear in this respect.

Parameter estimation

Maximum likelihood estimators The likelihood function of the lognor-
mal distribution is:

L(τ, µ, σ) =
exp
(
−∑n

i=1
[ln(ti − τ) − µ]2

2σ2

)(
σ
√

2π
)n

n∏
j=1

(tj − τ). (5.65)

This function has global maximum at τ̂ = t(1), µ̂ = −∞, σ̂2 = ∞ regard-
less of the sample (Crow & Shimizu 1988). Consequently, the maximum
likelihood method is not feasible.
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Figure 5.19: Lognormal density function [C(T ) = 1.2]
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Figure 5.20: Lognormal density function for flow rate 600 veh/h
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Figure 5.21: Lognormal pdf’s and sample edf’s
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Figure 5.22: Lognormal hazard function [C(T ) = 1.2]
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Figure 5.23: Lognormal hazard function for flow rate 600 veh/h

Local maximum likelihood estimators Local maximum likelihood es-
timating equations for the lognormal distribution are obtained by differen-
tiating the loglikelihood function (Cohen & Whitten 1980):

∂ lnL(τ̂ , µ̂, σ̂)
∂τ̂

=
1
σ̂2

n∑
j=1

ln(tj − τ̂) − µ̂

tj − τ̂
+

n∑
j=1

1
tj − τ̂

= 0 (5.66)

∂ lnL(τ̂ , µ̂, σ̂)
∂µ̂

=
1
σ̂2

n∑
j=1

[ln(tj − τ̂) − µ̂] = 0 (5.67)

∂ lnL(τ̂ , µ̂, σ̂)
∂σ̂

=
n

σ̂
+

1
σ̂3

n∑
j=1

[ln(tj − τ̂) − µ̂]2 = 0. (5.68)

By eliminating µ̂ and σ̂ from these equations, the equation for τ̂ is obtained:( n∑
j=1

1
tj − τ̂

)[ n∑
j=1

ln(tj − τ̂) −
n∑

j=1

ln2(tj − τ̂) +
1
n

( n∑
j=1

ln(tj − τ̂)
)2 ]

− n

n∑
j=1

ln(tj − τ̂)
tj − τ̂

= 0. (5.69)

The local maximum likelihood estimate (LMLE) for τ̂ can now be calculated
iteratively. Only values τ̂ < t(1) are accepted.
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After τ̂ has been solved, the scale and shape3 parameters can be esti-
mated as follows (Cohen & Whitten 1980):

µ̂ =
1
n

n∑
j=1

ln(tj − τ̂) (5.70)

σ̂2 =
1
n

n∑
j=1

ln2(tj − τ̂) −
(

1
n

n∑
j=1

ln(tj − τ̂)
)2

. (5.71)

Although the LMLEs gave the best estimates of all the methods exam-
ined, the method had convergence problems—and a series of Monte Carlo
tests with 9,999 replications of 63 samples is very sensitive to convergence
problems. As a result, the local maximum likelihood method was rejected.

Modified maximum likelihood estimators The local maximum like-
lihood method can be modified as explained on page 34. Equation (5.66) is
replaced by:

F−1
(

1
n + 1

∣∣∣∣ τ̌ , µ̌, σ̌

)
= t(1). (5.72)

This can be expressed in terms of the inverse normal PDF:

Φ−1
(

1
n + 1

)
=

ln(t(1) − τ̌) − µ̌

σ̌
. (5.73)

Now the set of equations consists of equations (5.67) and (5.68), and the
above equation. By eliminating µ̌ and σ̌ from these equations, the estimating
equation for τ̌ is obtained (Cohen & Whitten 1980):

ln(t(1) − τ̌) − 1
n

n∑
j=1

ln(tj − τ̌)

− Φ−1
(

1
n + 1

)[
1
n

n∑
j=1

ln2(tj − τ̌) −
(

1
n

n∑
j=1

ln(tj − τ̌)
)2 ] 1

2

= 0. (5.74)

This equation can be solved iteratively. The scale and shape parameter
estimates follow from (5.70) and (5.71).

The moment estimators for the lognormal distribution have a large sam-
pling error, and they are not uniquely determined. The modified moment

3For terminology see (Crow & Shimizu 1988).
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Figure 5.24: The nonparametric K-S and the parametric A-D goodness-of-fit tests
for the lognormal distribution

estimation of Cohen & Whitten (1980) was also applied. The estimates
were not as accurate as the modified maximum likelihood estimates. The
local maximum likelihood method gave the most accurate estimates, but it
was rejected because of convergence problems. In the goodness-of-fit tests
below the parameters were estimated by the modified maximum likelihood
method.

Goodness-of-fit tests

The goodness-of-fit was tested using the parametric Anderson-Darling (A-D)
test. For each sample 9,999 replications were generated and analyzed. Figure
5.24 shows the test results. For comparison, the results of nonparametric
Kolmogorov-Smirnov (K-S) tests are also presented.

The results are better than for the exponential or the gamma distri-
bution, but the combined probabilities are still practically zero (A–D test:
1.80 · 10−114, K–S test: 1.84 · 10−36). The fit is better on low speed roads
(A–D test: 1.78 · 10−15), but the hypothesis of lognormal vehicle headways
should be rejected.
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Figure 5.25: Comparison of the tests for the lognormal distribution

The comparison of the K-S and the A-D tests (fig. 5.25) shows that the
20 % significance level of the nonparametric K-S test is about equal to the 1–
2 % significance level of the parametric A-D test. This, again, demonstrates
the superiority of the parametric tests over the standard K-S test.

Lognormal distribution in headway studies

Reasonability Daou (1964) reported a good fit to lognormal distribu-
tion of spacings within platoons. He considered space headways less than
200 ft (61 m) with speed differences less than 5 ft/s (5.5 km/h). Two years
later Daou (1966) presented a more detailed analysis of the data and also
a theoretical justification for using lognormal distribution as a model of
constrained headways.

Greenberg (1966) observed that “there may be some ‘universal’ law of
traffic described (or at least approximated) by log-normal distribution”. The
lognormal relation holds if the change in the headway of a vehicle in any
small interval of time is a random proportion of the headway at the start
of the interval, and the mean headway of a vehicle and the variance of its
headways remain constant over time. Greenberg also showed a connection
between this model and the car-following models.

According to Baras, Dorsey & Levine (1979a), multiplicative, indepen-
dent, and identically distributed errors by various drivers attempting to
follow each other combine to give a lognormal density. Consequently, the
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lognormal distribution appears to be an attractive model for follower head-
ways.

Applicability The modified maximum likelihood method requires raw
headway data and the application of numerical methods, but modified mo-
ment estimates are relatively easy to calculate, although with some loss of
accuracy. Lognormal random variate generation is relatively efficient with
currently available routines. The lack of Laplace transform, however, limits
the applicability of the lognormal distribution.

With currently available routines to calculate the PDF of the normal
distribution, even in pocket calculators, there is potential for a wider appli-
cation of the lognormal distribution. In mathematical analysis the lognormal
distribution is more complicated than, say, the gamma distribution.

Validity Tolle (1971) studied the three parameter lognormal distribution
for headway data from a corridor on Interstate 71 in Ohio. The traffic vol-
umes ranged from 800 to 1,900 veh/h. The location parameter was fixed
(τ = 0.3). The K-S tests gave nonsignificant results in all samples at 5 %
level. Six out of eleven samples produced nonsignificant values at 5 % sig-
nificance level using the chi-square test. The results were best under lowest
flow (800–1,200 veh/h) conditions. The significance probabilities were not
presented.

Branston (1976) studied headway data from M4 motorway in West Lon-
don and from 50 sites on two-way roads around Bloomington, Indiana. The
results of the chi-square tests4 for the 3-parameter lognormal distribution
were not very encouraging. Branston also used the lognormal distribution
as a model for constrained headways in his lognormal generalized queuing
model (see section 5.3.7).

As a statistical model for vehicle headways, the lognormal distribution
has two major problems (Luttinen 1994):

1. The goodness of fit, although better than for the exponential or the
gamma distributions, is not acceptable.

2. The mathematical analysis presents some problems, because the log-
normal distribution does not have a Laplace transform. If it is neces-

4Branston used average probability as a combined measure for goodness of fit. This,
however, gives an unduly optimistic view. As an example: The five samples from the slow
lane on M4 gave average probability 0.105, but the combined probability is 0.0002. For
the mixed model, the 11 samples from loop 10 (Indiana) gave the best average probability
0.327, but the combined probability is only 0.036.
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sary to use numerical or Monte Carlo methods, one may as well use a
distribution which fits the headway data better. Thus, the lognormal
distribution is neither simple enough nor realistic enough.

Consequently, the lognormal distribution has a limited use as an overall
headway distribution model, but it deserves proper attention in studies on
follower headways.

5.3 Mixed distributions

5.3.1 Structure of the model

The main problem of the simple distributions is their inability to describe
both the sharp peak and the long tail of the headway distribution. Even
at low volume conditions, there is a considerable accumulation of head-
ways near the mode. Furthermore, the empirical hazard functions (figs. 4.6
and 4.7, page 62) indicate that the tail is exponentially distributed. These
properties of the headway distributions suggest two vehicle categories—free
flowing and following. Because vehicles in different categories have different
headway properties, the division should be included in the model, which
accordingly becomes a mixture of two distributions.

According to Dawson & Chimini (1968) a vehicle is considered free, if:

1. The headway is of “adequate” duration.

2. The free vehicle is able to pass so that it does not have to modify its
time-space trajectory, as it approaches the preceding vehicle.

3. A passing vehicle has sustained a positive speed difference after the
passing maneuver so that the free vehicle is still able to operate as an
independent unit.

The other vehicles are followers. The vehicles could also be classified into
four or five categories:

1. Free flowing vehicles

2. Followers

3. Vehicles in a transition stage from free flowing to follower

4. Vehicles starting a passing maneuver.
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Figure 5.26: Queuing model for a mixed headway distribution

A fifth category would include the vehicles in the state of passing, but these
vehicles are driving on the other lane.

The vehicles with moderate headways are a mixture of categories 1, 2,
3 and 4. Because it is difficult to make a distinction between vehicles in
categories 2, 3 and 4, and in order to keep the model simple, the headway
distribution is considered as a mixture of free headways and constrained
(follower) headways only. A follower is then any vehicle in category 2, 3 or
4.

The most common approach with two vehicle categories is to consider a
mixture of two probability distributions. A vehicle (X) is either a follower
(X = 1) or a free flowing vehicle (X = 2). In terms of queuing theory, this
model may be described as a system of two servers, only one of which may
serve at a time (fig. 5.26). There is a continuous queue of vehicles to the
system. Each vehicle is served by server 1 with probability p and by server
2 with probability 1 − p. Server i has service time distribution fi(t). The
headway distribution model is the distribution of departure intervals from
the system. This system differs from an ordinary queuing system in two
respects:

1. The system is always busy because of a continuous queue to the system.

2. Only one customer (vehicle) may be in the system at a time.

The model may be analyzed by the methods of the queuing theory, and
especially by the method of stages (Cooper 1981, Luttinen 1990).
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5.3.2 Properties of the model

The density functions for constrained headways [f1(t)] and free headways
[f2(t)] are the conditional densities:

f1(t) = f( t |X = 1 ) (5.75)
f2(t) = f( t |X = 2 ) . (5.76)

If the proportion of constrained headways is p, the probability density func-
tion (pdf) of the headway distribution is:

f(t) = pf1(t) + (1 − p)f2(t). (5.77)

The hazard function is:

h(t) =
f(t)

1 − F (t)
=

pf1(t) + (1 − p)f2(t)
1 − [pF1(t) + (1 − p)F2(t)]

. (5.78)

The distribution has Laplace transform:

f∗(s) = pf∗
1 (s) + (1 − p)f∗

2 (s) (5.79)

where f∗
i (s) is the transform of fi(t), if the transform exists.

The mean is:

µ(T ) = pµ(T1) + (1 − p)µ(T2). (5.80)

where µ(Ti) is the expectation of headway variate Ti from distribution fi(t).
Higher noncentral moments are obtained similarly:5

E(T r) = pE(T r
1 ) + (1 − p)E(T r

2 ). (5.81)

Variance, skewness and kurtosis can be calculated using the relations be-

5 The moments can also be obtained by using the derivatives of the Laplace transform:

E(T r) = (−1)r drf∗(s)
dsr

∣∣∣∣
s=0

.
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tween central and noncentral moments:

σ2(T ) = E[T − µ(T )]2 (5.82)

= E(T 2) − [µ(T )]2

α3(T ) =
E[T − µ(T )]3

σ3(T )
(5.83)

=
1

σ3(T )
{
E(T 3) − 3µ(T )E(T 2) + 2[µ(T )]3

}
α4(T ) =

E[T − µ(T )]4

σ4(T )
(5.84)

=
1

σ4(T )
{
E(T 4) − 4µ(T )E(T 3) + 6[µ(T )]2E(T 2) − 3[µ(T )]4

}
.

Some proposed mixed distribution models are presented below. Detailed
analysis and goodness-of-fit tests for all these distributions are beyond the
scope of this research. The semi-Poisson distribution is given considerable
attention, but other mixed distributions are discussed more briefly, using
only information that has been readily available. Because all the models are
based on the assumption of exponentially distributed large headways, the
exponential tail hypothesis is examined first.

5.3.3 The exponential tail hypothesis

Goodness-of-fit tests

The exponential tail hypothesis states that headways greater than a thresh-
old (δ) follow the negative exponential distribution:

H0 : 1 − Fn(t) ∼ e−θ̂t, t > δ, (5.85)

where θ̂ is the scale parameter estimate and n is the number of headways
greater than δ in the sample. The test has two stages:

1. Determination of δ

2. Goodness-of-fit test for headways greater than δ.

The goodness-of-fit tests were conducted using threshold values 0–14.5 in
increments of 0.5. Parametric Monte Carlo tests with the A-D statistic were
used. The number of replications was 9,999. The significance probabilities
were combined using the method described in section 2.2.5 (page 43).
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Figure 5.27: Goodness-of-fit tests for the exponential tail (50–70 km/h)

Figures 5.27 and 5.28 show the combined significance probabilities for
different volume levels. Figure 5.29 shows the combined significance prob-
abilities for different speed limits. The threshold value for the exponential
tail hypothesis is eight seconds, after which the test results are nonsignif-
icant. Because of such a large threshold value, a positively skew headway
distribution should be considered for the follower headways.

Low speed roads (fig. 5.27 and 5.29) show nonsignificant values also at
4.5 ≤ δ ≤ 6 s. This phenomenon appears at all volume levels. It may indi-
cate lower threshold values. The lower threshold (δ = 4.5) is, however, not
accepted, because there are significant deviations from the exponential dis-
tribution at (4.5s < δ < 8s). The speed difference data (fig. 5.30, page 133)
also support a higher threshold.

Miller (1961) tested for threshold values four, five and six seconds, and
found δ = 6 s about ideal. His data were from a straight section on a two-
lane road between Stockholm and Uppsala in Sweden. He noted that there
is a slight excess of observed intervals in the 6–8 s range as some drivers
begin to slow down, when they approach this close to the vehicle ahead. He
decided that some criterion based upon relative velocities is necessary for
determining the platoons, when time intervals are less than eight seconds.

Wasielewski (1979) studied the exponential tail hypothesis of headway
distributions from the center westbound lane of Route I-94, a six-lane di-
vided urban expressway in Detroit. He found no significant deviations from
the exponential distribution, when the threshold was 2.5 seconds for volumes
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Figure 5.28: Goodness-of-fit tests for the exponential tail (80–100 km/h)
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Figure 5.29: Goodness-of-fit tests for the exponential tail
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Figure 5.30: Standard deviation of speed differences

less than 1,450 veh/h and 3.5 seconds for volumes greater than 1,450 veh/h.
These values are too low for two-lane roads.

It is possible that the goodness-of-fit tests give too small threshold es-
timates. The tests cannot detect small deviations from the exponential
distribution for headways slightly greater than δ, if the tail is exponential.
Consequently, an alternative approach was also examined.

Speed differences

Properties of speed differences Car-following models (section 2.1) sug-
gest that the speed difference (relative speed) between the leader and the
follower (vi−1−vi) is a decisive factor in the car-following process. A follower
adjusts the speed of the vehicle to the speed of the leading vehicle. This
speed adjustment decreases the variation of speeds among trailing vehicles.
At some time distance the interaction of speeds vanishes.

Figure 5.30 shows the standard deviation (sυ) of speed differences of
consecutive vehicles against the headway. Headways are combined in one
second intervals (t−1,t]. At short headways (1–5 s) sυ is small and increases
as the headway increases. At large headways (t > 10 s) sυ is rather constant.
On high speed roads sυ is larger than on low speed roads.

A piecewise linear model was fitted to the data—rising slope for head-
ways less than the threshold and a constant value for headways greater than
the threshold. The sυ’s were weighted by the number of observations in the
interval. On both low and high speed roads the threshold value of about 9 s
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was obtained. However, more extensive data sets and more accurate mea-
suring equipment are needed for further analysis, because speed differences
have larger measurement errors than absolute speeds.

This result is in agreement with the goodness-of-fit tests above. The
original Bureau of Public Roads (1950) reports a similar analysis and virtu-
ally the same result. Chishaki & Tamura (1984) present a very similar figure
of the variance of the speed differences. Branston (1979) reports threshold
values 4.5 s and 3.75 s for the nearside and offside lanes on M4 motorway
in West London.

Enberg & Pursula (1992) have shown that on high-class two-lane rural
roads, the relation between the headways and the standard deviation of
speed differences is similar to figure 5.30. For headways larger than about
five seconds, there is no significant increase in the standard deviation. When
the headway is less than one second, the standard deviation jumps to about
10 km/h. This phenomenon is also reported in Bureau of Public Roads
(1950) and by Branston (1979). A similar, but not as strong, phenomenon
can be seen on high speed roads in figure 5.30. It may be assumed, that at
very short headways some vehicles are starting to pass the vehicle ahead.
The increase in sυ is very small or nonexistent in figure 5.30, because there
were only few passing vehicles.

Figure 5.30 shows that vehicles may be divided into three categories.
Leading vehicles are not affected by vehicles ahead. The drivers select their
own desired speed and headways can be assumed to follow the exponen-
tial distribution. Trailing vehicles follow the vehicle ahead and adjust their
speeds accordingly. Because the mode of the headway distribution is about
1.5 seconds, this headway can be assumed to be the average desired head-
way of the followers. In addition to these two classes there are vehicles in
a transition stage. These vehicles are neither following the vehicle ahead
nor driving freely. The transition stage seems to begin, when the headway
is about 8–9 seconds. Speed adjustment decreases the variation between
speeds of consecutive vehicles. At headways less than one second, the speed
variation increases again on high speed roads, because the vehicles starting
to pass have greater speed than the vehicle ahead.

Figures 5.31 and 5.32 show some basic statistics of speed difference distri-
butions. Mean is near zero at all headways. As the headway is between two
and eight seconds, the mean is slightly positive, which is probably caused
by passers that have returned to the right lane. For headways greater than
eight seconds the variation in the mean increases, and the mean oscillates
around zero. When the headways are greater than ten seconds, the mean
speed difference is negative. In this case some proportion of the vehicles
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Figure 5.31: Mean, skewness and kurtosis of speed difference distributions (50–
70 km/h)

ahead are followers having constrained speeds (vi−1), while the speeds of
the vehicles behind (vi) are nonconstrained.

The skewness indicates that the speed difference distribution is practi-
cally symmetric. On high speed roads at headways less than one second, the
skewness has a rather large negative value. Considering the slightly negative
mean and the increased standard deviation, the negative skewness is most
likely caused by vehicles beginning to pass, thus producing negative speed
differences.

Summala & Vierimaa (1980) found that the speed difference distribution
becomes skew, as the spacing grows over 50 m. At spacings longer than
200 m the distribution is again symmetric. This phenomenon is not found
in figures 5.31 and 5.32.

The most significant feature in the figures is the excessively positive
kurtosis at short headways. (The kurtosis is scaled so that the normal dis-
tribution has null kurtosis.) The speed difference distributions are more
sharply peaked than the normal distribution (see also fig. 5.33). This is
true especially for headways less than four seconds. The kurtosis is largest
at headways between one and two seconds, and the peak is higher on high
speed roads. Because at headways between one and two seconds the distri-
bution is symmetric with zero mean, it is evident that at these headways
most drivers are content to follow the leader at the same speed. The kurto-
sis approaches zero and the distribution approaches normality at headways
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Figure 5.32: Mean, skewness and kurtosis of speed difference distributions (80–
100 km/h)

larger than seven seconds on low speed roads, and at headways larger than
ten seconds on high speed roads. The variation in the kurtosis increases at
large headways due to fewer observations.

Proportion of free headways The distribution of speed differences at
long headways can be assumed to be the distribution of speed differences for
free flowing vehicles. The mean and standard deviation of speed differences
at headways t ≥ 10 s are ῡ = −0.879 and sυ = 10.492 on low speed roads,
and ῡ = −0.862 and sυ = 11.660 on high speed roads. Assuming normality,
the means do not differ significantly from zero, but the nonequality of the
standard deviations is statistically significant (at level P = 0.001). On high
speed roads the speed differences have larger variation.

Because not every vehicle having a headway shorter than eight seconds
is a follower, the distribution of their speed differences is a mixture of free
speed differences and constrained speed differences. If the speed difference
distribution f2(µ1, σ2) of free flowing vehicles is estimated, the speed differ-
ence distribution f(µ, σ) of all vehicles can be estimated as a mixed normal
distribution (fig. 5.30):

f(µ, σ) = pf1(µ1, σ1) + (1 − p)f2(µ2, σ2), (5.86)

The proportion of trailing vehicles (p) and the parameters of the speed
difference distribution (µ1, σ1) of trailing vehicles must be estimated from
the data.
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Figure 5.33: Mixed normal distribution for speed differences on high speed (80–
100 km/h) roads

The minimum chi-square method (section 2.2.3) was used to estimate p,
while maximum likelihood estimates were used for µ1 and σ1. The estimate
for the proportion of free flowing vehicles (1 − p̃) among headways t ≤ 8 s
is 20 % on high speed roads and 15 % on low speed roads. The proportion
of trailing vehicles is approximately the same as the proportion of headways
t ≤ 3 s on high speed roads and t ≤ 5 s on low speed roads.

Parameter estimation for the exponential tail

The goodness-of-fit tests above (p. 130) indicated that headways larger than
eight seconds belong to the exponential tail. Assuming the eight second
threshold, the scale parameter estimate for the exponential tail is equal to
the scale parameter estimate for the shifted exponential distribution with
τ = 8 s:

θ̂ =
1

t̄8 − 8
(5.87)

where t̄8 is the mean of headways greater than eight seconds.
The number of free vehicles can be assumed to increase with increasing

flow rate. Consequently, the scale parameter (θ) of the exponential tail can
be assumed to have a positive correlation with the traffic volume (λ̃).6 A
linear model (θ̃ = a + bλ̃) was tested using the linear regression analysis.

6See also section 4.2.3, page 60.
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Figure 5.34: Scale parameter estimates for the exponential tail

Because the analysis of covariance (ANCOVA) indicated that there is a
significant (P = 0.006) difference between the scale parameter estimates for
low speed and high speed roads, separate models (θ̃50, θ̃80) were tested for
both road categories. The constant term (a) was omitted, because it did not
differ significantly from zero. (As the flow rate approaches zero, the scale
parameter must also approach zero.) The following equations for the scale
parameter estimates were obtained (fig. 5.34):

θ̃50 = 0.813λ̃ (5.88)

θ̃80 = 0.561λ̃, (5.89)

where λ̃ is the traffic volume [veh/s].7

In order to stabilize the variance, which increases with growing traffic
volume, 1/λ̃2 was used as a weighting factor. The coefficient of determina-
tion is R2 = 0.936 for low speed roads and R2 = 0.823 for high speed roads.
The significance of the regression is P < 0.0005 in both cases.

On high speed roads the estimates are lower. This indicates a “longer
tail” and accordingly higher coefficient of variation, skewness and kurtosis.
The scale parameter estimates are also the estimates for the hazard rate at
the tail of the headway distribution.

7Wasielewski (1979) obtained for a center expressway lane:

θ̃ = −0.058 + 1.401λ̃. (5.90)
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The scale parameter was estimated using the location parameter value
of eight seconds. The estimate is, however, valid even if the true location
parameter has a lower value. This can be shown easily. If the true location
parameter is a, then:

P{T > t} = e−θ(t−a). (5.91)

If only headways greater than b (and a < b) are examined, then:

P{ T > t |T > b } =
e−θ(t−a)

e−θ(b−a)

= e−θ(t−b).

(5.92)

A larger location parameter does not cause any bias in the scale parame-
ter estimate. The estimate is, however, based on fewer observations, thus
reducing the accuracy.

5.3.4 Hyperexponential distribution

Properties of the hyperexponential distribution

Hyperexponential distribution was first applied to headway studies by
Schuhl (1955), hence it is also known as Schuhl’s (composite exponential)
distribution. If both leader and follower headways are exponential, the head-
way distribution is:

f( t | p, θ1, θ2 ) = pθ1e
−θ1t + (1 − p)θ2e

−θ2t. (5.93)

The headways are produced by a service system with two parallel servers,
each having exponential service times (fig. 5.35). As noted above, there is a
constant queue to the system.

The pdf of the hyperexponential distribution (fig. 5.36) starts from
f(0) = pθ1 + (1 − p)θ2 and decreases asymptotically to zero. The hazard
function decreases from h(0) = pθ1 +(1−p)θ2 to limt→∞ h(t) = min {θ1, θ2}
(Trivedi 1982). The coefficient of variation is C(T ) ≥ 1 (Trivedi 1982).

Schuhl (1955) used a location parameter (τ) for the follower headways.
The resulting pdf was:

f( t | p, τ, θ1, θ2 ) = pθ1e
−θ1(t−τ) + (1 − p)θ2e

−θ2t. (5.94)

Free headways were not given a location parameter, because these vehicles
were considered free to pass.
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Figure 5.35: Queuing model for the hyperexponential distribution
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Figure 5.36: Hyperexponential density functions with parameters by Grecco &
Sword (1968)
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Hyperexponential distribution in headway studies

Reasonability As compared with the negative exponential and the shifted
exponential distributions, the hyperexponential distribution has the advan-
tage of being able to produce a larger coefficient of variation. It also has
separate models for free and follower headways. The negative exponential
distribution is, however, not an appropriate model for constrained headways.
The problem of too short headways can be avoided by location parameters,
but this introduces an artificial discontinuity in the density function.

Applicability Pseudo-random number generation is fast, although not as
efficient as for the negative exponential distribution. The Laplace transform
has a simple form:

f∗( s | p, θ1, θ2 ) = p
θ1

s + θ1
+ (1 − p)

θ2

s + θ2
. (5.95)

Without location parameters the hyperexponential distribution has three
parameters to estimate. Introducing one or two location parameters in-
creases the total number of parameters to four or five, which makes the
parameter estimation more difficult.

Grecco & Sword (1968) assumed a fixed value of τ = 1 s for the location
parameter, and estimated the three remaining parameters by minimizing
the chi-square statistic. The regression equations for the parameters were:

p̃ =
0.115λ̃

100
(5.96)

τ̃ = 1 (5.97)

θ̃1 = 0.4 (5.98)

θ̃2 =
1

24 − 0.0122λ̃
, (5.99)

where λ̃ is the traffic volume [veh/h]. These estimates are, however, valid
only for λ̃ < 870 veh/h, since p̃ > 1 for λ̃ ≥ 870 veh/h. Figure 5.36 shows
the pdf calculated with these parameter values.

Griffiths & Hunt (1991) applied the location parameter (τ) to both f1(t)
and f2(t), and called the model double displaced negative exponential distri-
bution (DDNED). The parameters were estimated by a “hybrid method”,
using the equations for the mean and the variance as constraints, and min-
imizing the chi-square statistic. The estimation was constrained so that p̃
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remained in the range 0 < p̃ ≤ 0.5, and τ̃ was required to be greater [sic]8

than the smallest observed headway (t(1)).

Validity Grecco & Sword (1968) collected headway data on a two-lane
portion of the U.S. 52 bypass. The headway data were grouped in one
second intervals up to twenty seconds. The data were collected in volume
groups using the class length of 100 veh/h. The chi-square tests with 8–17
degrees of freedom gave acceptable fit for volumes less than 700 veh/h. The
combined probability (calculated by the present author) of the six tests is
0.79.

Griffiths & Hunt (1991) examined the vehicle headways in urban areas.
The model had the same location parameter τ for both f1(t) and f2(t).
The mean of τ̃ was 1.5 s, the minimum 0.58 s, and the maximum 2.66 s.
The chi-square test with 5 % significance level gave acceptable fit for 78 of
86 data sets. Because τ̃ was greater than the shortest observed headway in
each sample, the model would have failed all A-D tests with null significance
level.

Sainio (1984) tested the hyperexponential distribution9 against headway
data from high class Finnish highways. He presented only the chi-square
test statistic values for the five samples. When the significance probabilities
are calculated (ν = 10), the model is rejected in three samples at 0.01 level.
The combined significance probability is 3.9 · 10−6.

The hyperexponential distribution does not pass the identification pro-
cess. Although the coefficient of variation can be greater than unity, the
shape of the pdf and the hazard function do not have the correct shape.
The hyperexponential distribution has similar properties as the gamma dis-
tribution with shape parameter less than unity. The pdf has a similar shape,
and the c.v. is larger than unity. The hyperexponential distribution, how-
ever, has a more reasonable hazard rate at t = τ , and the kurtosis is slightly
closer to the empirical kurtosis, when plotted against the squared skewness.
Consequently, the identification process suggests that the hyperexponential
distribution could perform slightly better than the gamma distribution as a
headway model.

8If the location parameter (τ) is greater than the smallest headway (t(1)), the proba-
bility P

{
T ≤ t(1)

}
is null. Consequently, the headway sample cannot be generated by the

proposed model.
9Sainio (1984) called it the Kell distribution (see Kell 1962).
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Figure 5.37: Queuing model for the hyperlang distribution

5.3.5 Hyperlang distribution

Properties of the hyperlang distribution

Dawson (in Drew 1967, Dawson & Chimini 1968, Dawson 1969) has sug-
gested the Erlang-distribution as a model for constrained headways. The
headways in the hyperlang (hyper-Erlang) model are produced by a service
system with two alternative channels (fig. 5.37). Channel 1 is selected with
probability p, and it has one server with Erlang-distributed service times,
or alternatively r servers in series each having the same exponential service
time distribution. The service time distribution in channel 2 is exponential.
A location (threshold) parameter is shown as a server (D) with a constant
service time.

The hyperexponential distribution is naturally a special case of the hyp-
erlang distribution (r = 1). The generalization to exponential-gamma mix-
ture distribution is straightforward.

The pdf of the hyperlang distribution is:10

f( t | p, τ1, θ1, τ2, θ2, r ) = p
θr
1(t − τ1)r−1

(r − 1)!
e−θ1(t−τ1) + (1 − p)θ2e

−θ2(t−τ2).

(5.100)

10In place of θi Dawson (1969) used parameter γi, so that:

θi =
1

γi − τi
,

where γi is the average headway in channel i.
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The distribution has Laplace transform (Luttinen 1990):

f∗( s | p, τ1, θ1, τ2, θ2, r ) = p

(
θ1

s + θ1

)r

e−sτ1 + (1 − p)
θ2

s + θ2
e−sτ2 . (5.101)

The mean and the variance are (Luttinen 1990):

µ(T ) = p

(
1
θ1

+ τ1

)
+ (1 − p)

(
r

θ2
+ τ2

)
(5.102)

σ2(T ) = p

[(
1
θ1

+ τ1

)2

+
1
θ1

]
+ (1 − p)

[(
r

θ2
+ τ2

)2

+
r

θ2

]
(5.103)

−
[
p

(
1
θ1

+ τ1

)
+ (1 − p)

(
r

θ2
+ τ2

)]2
.

The hazard function of the hyperlang distribution is similar to the empir-
ical hazard function, except that at zero headway h( 0 | p, θ1, θ2, r ) = θ2,
assuming τ1 = τ2 = 0 (Trivedi 1982).

Hyperlang distribution in headway studies

Reasonability The hyperlang distribution has exponential tail, and the
shape of the pdf is similar to the empirical headway distributions. Some
additional flexibility could be obtained using gamma distribution for con-
strained headways.

The distribution avoids extremely short headways, but the location pa-
rameter (τ2) of the free headway distribution makes the pdf and the hazard
function discontinuous. The model assumes that the frequency of free head-
ways is highest, when the headway is only slightly greater than τ2, and there
are no free headways, when t is a little smaller than τ2. The problem is more
outstanding at low flow conditions, when the proportion of free headways is
large.

Applicability The large number of parameters (six) causes problems in
parameter estimation. Dawson & Chimini (1968) and Summala & Vierimaa
(1980) have estimated the parameters using least squares fit. For the head-
way data in HCM (1965), Dawson & Chimini (1968) estimated r = 2 and
τ2 = 0.75 for all samples. The estimated density and hazard functions are
displayed in figures 5.38 and 5.39.

The generation of pseudorandom numbers is reasonably effective. The
Laplace transform exists, but the mathematical analysis is more tedious
than the analysis of the exponential and the gamma distributions.
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Figure 5.38: Hyperlang density functions [parameters by Dawson & Chimini
(1968)]
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Figure 5.39: Hyperlang hazard functions [parameters by Dawson & Chimini
(1968)]
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M

Figure 5.40: M/D/1 queuing model

Validity Dawson & Chimini (1968) and Dawson (1969) did not report any
goodness-of-fit tests. Because the hyperlang distribution is a generalization
of negative exponential, shifted exponential, Erlang and hyperexponential
distributions, it is likely to fit the headway data better. But for a six pa-
rameter distribution, the goodness-of-fit requirements are extremely high.

5.3.6 M/D/1 queuing model

Tanner (1953, 1961) has modeled the arrival process as a M/D/1 queuing
process (fig. 5.40). The service system has one server with constant service
time (τ). There is not, however, a continuous queue to the service point,
but the arrival process is Poisson.

The vehicles in platoons have constant headways, and the free headways
follow the shifted exponential distribution. The probability for a follower
headway (t = τ) is equal to the utilization factor11 (ρ) of the server:

P{T = τ} = λτ = ρ (5.104)

For steady state conditions, the utilization factor must be less than unity.
The platoon length follows the Borel distribution, and the probability for
platoon length k is (Tanner 1961):

pk =
(λτk)k−1

n!
e−λτk. (5.105)

Because the platoon length distribution is not geometric, the headways are
not i.i.d.

11The utilization factor (ρ) is the expected number of arrivals per mean service time
in the limit (Gross & Harris 1985), or equivalently the fraction of time that the server is
busy (Kleinrock 1975).
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Figure 5.41: M/D/1 density function (τ = 1 s)

The PDF of departure intervals (headways) is discontinuous (Luttinen
1990):

F( t |λ, τ ) =

{
0, if t < τ

1 − (1 − λτ)e−λ(t−τ), otherwise.
(5.106)

The pdf is obtained by differentiation (Luttinen 1990):

f( t |λ, τ ) =

{
0, if t < τ

(1 − λτ)λe−λ(t−τ), otherwise.
(5.107)

The pdf is equal to the pdf of the shifted exponential distribution multiplied
by the server idleness factor (1 − ρ). The mean, the variance, and the
coefficient of variation are (Luttinen 1990):

µ(T ) =
1
λ

(5.108)

σ2(T ) =
1
λ2 − τ2 (5.109)

C(T ) =
√

1 − λ2τ2 ≤ 1. (5.110)

Cowan (1975, 1978), used the headway distribution assuming a renewal
process. The Cowan M3 model is accordingly a generalization of the M/D/1
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model:

F( t | θ, λ ) =

{
0, if t < τ

1 − (1 − θ)e−λ(t−τ), otherwise.
(5.111)

The parameters of the M/D/1 headway model can be easily estimated
by the method of moments. The scale parameter estimate (λ̃) is equal to
the traffic volume:

λ̃ =
1
t̄
, (5.112)

and it does not depend on τ . The trailing headway (τ) can be estimated
using the sample variance:

τ̃ =
√

1
λ̃2

− s2 (5.113)

M/D/1 queuing model in headway studies

Reasonability In some sense the M/D/1 model follows logically from the
shifted exponential distribution: If the vehicles move freely at headways
greater than τ , and headways shorter than τ are not possible, there must
be some platooning with headways equal to τ . The model separates leading
and following vehicles, but the hypothesis of constant headways for following
vehicles is unrealistic.

Applicability The M/D/1 model is rather simple to analyze mathemat-
ically. The parameter estimation is straightforward, and the generation of
pseudorandom variates does not present any problems.

Validity Sullivan & Troutbeck (1994) applied the Cowan’s M3 model to
urban traffic flow. They concluded that the model is appropriate to eval-
uate the performance of roundabouts and unsignalized intersections, where
accuracy is only required for headways greater than the critical gap. They
did not present any goodness-of-fit tests.

Akçelik & Chung (1994) described the calibration of the M3 model,
which they called the “bunched exponential distribution”. On the basis of
visual evaluation they considered that the model provides good estimates
of arrival headways, and they strongly recommended its use in stead of the
negative exponential and the shifted exponential distributions.
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Figure 5.42: M/D/1 hazard function (τ = 1 s)

The discontinuity of the pdf and even the PDF is a major problem in
the model. The goodness-of-fit becomes worse as the proportion of trailing
vehicles (ρ) increases. The unfeasibility of the model is, however, most
obvious in the hazard function plot of figure 5.42. In addition, the coefficient
of variation is too low for most flow conditions.

5.3.7 Generalized queuing model

A queuing model with Poisson arrivals and a general service time distribu-
tion (fig. 5.43) is called the M/G/1 queuing system (fig. 5.43). It produces
follower headways (T1) as long as the server is busy. With probability 1−p,
the server experiences some idleness during the interdeparture period. The
length of an interdeparture time with idleness is the sum of the service time
(T1) and the idle time (T2) (Gross & Harris 1985). The density of this sum
is the convolution (f1 ∗ f2) of the service time density and the interarrival
time density, where interarrival time density (f2) is exponential.

The pdf of the interdeparture time distribution is:

f(t) = pf1(t) + (1 − p)
∫ t

0
f1(u)θe−θ(t−u)du

= pf1(t) + (1 − p)θe−θt

∫ t

0
f1(u)eθudu.

(5.114)
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M

Figure 5.43: M/G/1 queuing system

The PDF is (Gross & Harris 1985):

F (t) = pF1(t) + (1 − p)
∫ t

0
F1(t − u)θe−θudu, (5.115)

or equivalently:

F (t) = pF1(t) + (1 − p)
∫ t

0
f1(u)

(
1 − e−θ(t−u)

)
du

= F1(t) − (1 − p)e−θt

∫ t

0
f1(u)eθudu.

(5.116)

The Laplace transform is obtained using the convolution property12 of the
transform:

f∗(s) = pf∗
1 (s) + (1 − p)f∗

1 (s)f∗
2 (s)

= pf∗
1 (s) + (1 − p)f∗

1 (s)
θ

s + θ
.

(5.117)

The proportion of interdeparture times with no idleness (p) is equal to the
utilization factor (ρ) of the server (Gross & Harris 1985):

ρ =
µ(T1)
µ(T2)

. (5.118)

Cowan (1975) used gamma distributed service times. Branston (1976)
applied both gamma and lognormal service time distributions. The models
were modified so that p was not equal to the utilization factor, but it was
estimated from the data. Cowan called this model M4, while Branston called
it the generalized queuing model. Figure 5.44 shows the pdf of the model with
lognormal follower headways. The parameters follow the approximations
given by Branston. Figure 5.44 shows the corresponding hazard function.
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Figure 5.44: Density function of the lognormal generalized queuing model
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For comparison with the semi-Poisson distribution, some properties of
the generalized queuing model with gamma distributed service times are
presented. The pdf is:13

f( t | p, β, α, θ ) = p
βαtα−1

Γ(α)
e−βt + (1 − p)

βα

Γ(α)
θe−θt

∫ t

0
uα−1e−u(β−θ)du

= p
βαtα−1

Γ(α)
e−βt

+ (1 − p)
(

β

β − θ

)α γ[α, t(β − θ)]
Γ(α)

θe−θt,

(5.119)

where γ(·) is the incomplete gamma function (see table 5.3, page 104). The
pdf may also be expressed as:

f( t | p, β, α, θ ) = pf1( t | β, α )

+ (1 − p)
(

β

β − θ

)α

F1( t | β − θ, α )f2( t | θ ). (5.120)

Correspondingly, the PDF can be expressed as:

F ( t | p, β, α, θ ) =
γ(α, βt)

Γ(α)
− (1 − p)

(
β

β − θ

)α γ[α, t(β − θ)]
Γ(α)

e−θt

= F1( t | β, α ) − (1 − p)
(

β

β − θ

)α

F1( t | β − θ, α )[1 − F2( t | θ )]. (5.121)

The Laplace transform is:

f∗(s) =
(

β

s + β

)α(
p + (1 − p)

θ

s + θ

)
. (5.122)

The moments as well as the measures of variation, skewness and kurtosis

12Convolution property of the Laplace transform:

f∗
X+Y = f∗

Xf∗
Y .

See Kleinrock (1975).
13See relation 3.381.1 in Gradshteyn & Ryzhik (1980).
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are now easily obtained:

µ(T ) =
α

β
+

1 − p

θ
(5.123)

σ2(T ) =
α

β2 +
1 − p2

θ2 (5.124)

C(T ) =

√
αθ2 + β2(1 − p2)
αθ + β(1 − p)

(5.125)

α3(T ) =
2[β3(1 − p3) + αθ3]

[β2(1 − p2) + αθ2]3/2 (5.126)

α4(T ) =
3
{
β4
[
4 − (1 + p2)2

]
+ αθ2[2β2(1 − p2) + θ2(α + 2)]

}
[β2(1 − p2) + αθ2]2

. (5.127)

Three special cases are worth mentioning:

1. p = 1. The model is equal to the gamma distribution [µ(T ) = α/β].

2. p = 0. The headway distribution is the sum of a gamma and an ex-
ponential random variate [µ(T ) = α/β + 1/θ]. As the mean follower
headway (α/β) approaches null, the distribution of all headways ap-
proaches exponentiality [µ(T ) = 1/θ].

3. p = ρ < 1. The departure rate is equal to the arrival rate [1/µ(T ) = θ].
This is the M/G/1 model.

Generalized queuing model in headway studies

Reasonability According to Cowan (1975) the generalized queuing model
describes a situation that an ∞-lane road merges into one lane according
to the first-come–first-merge rule such that each driver leaves a randomly
chosen tracking headway. The headways at the entry point can be described
by the generalized queuing model.

Wasielewski (1979) criticizes the generalized queuing model for lacking
in a physical basis. A free headway is a sum of a constrained headway (T1)
and an exponential variate (T2). But the rationale for selecting exponential
distribution for free headways lies in the fact that these vehicles are not
influenced by the vehicle ahead.

Wasielewski prefers the semi-Poisson distribution, but as will be shown,
the free headway in the semi-Poisson model is also a sum of two random vari-
ates. In fact, the two distributions are extremely similar: The generalized
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queuing model with gamma distributed follower headways was plotted us-
ing the same parameter values as for the semi-Poisson distribution in figure
5.48. The two pdf’s were virtually indistinguishable.

Although the generalized queuing model gives separate models for free
and follower headways, it is not based on the principles of the traffic flow
dynamics. The model is, however, very flexible, or actually a family of
models.

Applicability One of the benefits of this model is that it enables the use
of queuing theory tools for the M/G/1 systems. The Laplace transform
exists, if it exists for the follower headway distribution. In addition, the
random number generation is straightforward.

The mathematical tractability of the generalized queuing model depends
on the service time distribution. The gamma distribution does not present
unsurpassable problems. The lognormal distribution is theoretically inter-
esting as a model for follower headways, but it leads to more complicated
formulas. Moreover, it does not have the Laplace transform.

Parameter estimation for the generalized queuing model is problematic.
Branston (1976) estimated the parameters by minimizing the chi-square
statistic. Cowan (1975) tried the maximum likelihood method, but could not
solve the resulting set of four likelihood equations. The method of moments
yielded easier equations, but the estimates were infeasible. Finally, Cowan
estimated the parameters by minimizing the K-S statistic.

Validity The probability density function (fig. 5.44) and the hazard func-
tion (fig. 5.45) have the correct basic shape. The model is flexible enough
in terms of the coefficient of variation. Figure 5.46 shows the relation of
the kurtosis and the squared skewness for the generalized queuing model
with gamma distributed follower headways. The parameters were generated
randomly within the limits displayed in the figure. The model can produce
distributions such that the kurtosis is only slightly greater than the kurtosis
of empirical headway distributions.

Cowan (1975) fitted the generalized queuing model (he called it M4) to
a data set of 1,324 successive headways from Mona Valley Road in Sydney.
The headways were observed over approximately two hours on the west-
bound lane of a two lane road. He used gamma distributed service time
headways. The minimized K-S statistic was 0.015, which is not significant
at 1 % level.
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Figure 5.46: KS2-chart of the generalized queuing model with gamma distributed
follower headways (simulated data)

Branston (1976) compared the generalized queuing model and the semi-
Poisson distribution. The data were from the fast lane of M4 motorway
in England. He reported average probability of the 16 chi-square tests to
be 0.196 for the semi-Poisson distribution with gamma distributed zone of
emptiness. For the generalized queuing model with gamma and lognormal
service time distributions Branston reported average probabilities of 0.193
and 0.359, respectively. The combined probabilities are, however, 0.0004,
0.0002, and 0.0985, respectively. For the slow lane, the generalized queuing
model did not give substantially better fit.

5.3.8 Semi-Poisson distribution

Properties of the semi-Poisson distribution

The semi-Poisson model of Buckley(1962, 1968) is based on the conjecture
that in front of each vehicle there is a zone of emptiness, which describes
the fluctuations in the car following (Wasielewski 1979), and has probability
density f1(t). The exponential free headway distribution is modified so that
it includes only headways greater than a random variate (Z) sampled from
f1(t). Figure 5.47 shows the semi-Poisson model as a queuing system, where
M’ stands for a modified exponential service time distribution.

The free headway PDF is:

F2(t) = P{ Y ≤ t |Y > Z } , (5.128)
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Figure 5.47: Queuing model for the semi-Poisson distribution

where Y is a random variate from the negative exponential distribution.
Using the definition of the conditional probability, the PDF can be expressed
as:

F2(t) =
P{Y ≤ t, Z < Y }

P{Z < Y }
=

FY Z(t, Y )
F1(Y )

,

(5.129)

where F1(Y ) is the probability that an exponential random variate (Y )
is greater than a random variate from the follower headway distribution.
FY Z(t,Y ) is the probability that t is greater than or equal to an exponential
random variate Y , which, in turn, is greater than a random variate Z from
the follower distribution.

For a fixed value Y = y, the probability P{Z < Y } is the product
P{Y = y} P{Z < y}. If Y is exponentially distributed with pdf g(·), the
probability FY Z(t,Y ) = P{Y ≤ t, Z < Y } can be expressed by integrating
from null to t:

FY Z(t,Y ) =
∫ t

0
g(y)

∫ y

0
f1(z) dz dy

=
∫ t

0
g(y)F1(y) dy.

(5.130)

The pdf is obtained by differentiation:

fY Z(t, Y ) =
d

dt
FY Z(t,Y )

= g(t)F1(t).
(5.131)
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Consequently, the pdf for free headways is:

f2(t) =
fY Z(t,Y )
F1(Y )

=
F1(t)
F1(Y )

g(t).
(5.132)

F1(Y ) is the probability that an exponential random variate (Y ) is
greater than a random variate (Z) from the follower distribution. For
a fixed value Y = y, the probability P{Y > Z} is equal to the product
P{Y = y} P{Z < y}. If Y is exponentially distributed with scale parame-
ter θ, the probability F1(Y ) can be expressed by integrating from null to
infinity:

F1(Y ) =
∫ ∞

0
θe−θy

∫ y

0
f1(z) dz dy. (5.133)

Using the relation 29.2.6 of Abramowitz & Stegun (1972), this probability
is the same as the Laplace transform of the follower distribution (Buckley
1968):

F1(Y ) = f∗
1 (θ). (5.134)

This leads to the equation for the free headway pdf:

f2(t) =
F1(t)
f∗
1 (θ)

g(t). (5.135)

The Laplace transform can be derived using the same property 29.2.6 of
Abramowitz & Stegun (1972):

f∗
2 (t) =

θ

f∗
1 (θ)

∫ ∞

0
e−(s+θ)t

∫ t

0
f1(x) dx

=
θ

s + θ
· f∗

1 (s + θ)
f∗
1 (θ)

.

(5.136)

As Buckley (1968) has observed, the first term is the Laplace transform
of the exponential distribution g(t) = θe−θt. Accordingly, the Laplace trans-
form of the free headway distribution is the convolution of two distributions,
namely g(t) and, say, c(t). Because c(t) has the Laplace transform:

c∗(s) =
f∗
1 (s + θ)
f∗
1 (θ)

, (5.137)
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it can be derived by the inverse transform (Buckley 1968):

c(t) =
f1(t)
f∗
1 (θ)

e−θt. (5.138)

A free headway is thus a sum of two random variates, which follow the
distributions g(t) and c(t).

The pdf for the semi-Poisson distribution is (Buckley 1968):

f(t) = pf1(t) + (1 − p)
F1(t)
f∗
1 (θ)

θe−θt, t ≥ 0, θ > 0, 0 ≤ p ≤ 1. (5.139)

The PDF is obtained by integration:

F (t) = pF1(t) +
1 − p

f∗
1 (θ)

∫ t

0
F1(z)θe−θz dz, t ≥ 0, θ > 0, 0 ≤ p ≤ 1.

(5.140)
The distribution has the Laplace transform (Buckley 1968):

f∗(s) = pf∗
1 (t) + (1 − p)

θf∗
1 (s + θ)

(s + θ)f∗
1 (θ)

. (5.141)

Follower headway distribution

Buckley (1962) suggested the normal distribution as a model for followers’
headways. He found that the error due to the non-zero probability of neg-
ative headways was very small. Later Buckley (1968) applied gamma and
truncated normal distributions. He observed that gamma distribution has
the general shape which is assumed to be correct for follower headways. On
the other hand, he assumed that the truncated normal distribution could
describe the error in the tracking task, when a driver attempts to maintain a
desired spacing. With gamma distributed follower headways Buckley could
not obtain solutions for the parameters at low and low-medium flows. When
the parameters for both models were obtained, the model with gamma dis-
tributed follower headways gave similar or better goodness of fit than the
truncated normal distribution.

Ashton (1971) saw no strong theoretical justification for choosing the
normal distribution. He chose gamma distribution because of its connection
with the exponential distribution. Such a model should be theoretically
more tractable. In the data analysis Ashton, however, used exponential
zone of emptiness.
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Branston (1976) applied the model with the normal and the gamma dis-
tributions for the follower headways. He estimated the parameters by com-
bining the method of moments for p and θ with the minimum chi-square
method for β and α. He did not have similar difficulties as Buckley (1968).
The goodness-of-fit was not acceptable, when the the normal distribution
was used for the follower headways. For gamma distributed follower head-
ways he reported an acceptable goodness of fit.

Wasielewski (1974, 1979) calculated the distribution for the follower
headways directly from the empirical headway distribution without intro-
ducing a parametric form. This nonparametric approach is not followed here,
because in theoretical work and simulation a parametric model is preferable.

To sum up, normal, truncated normal, exponential, and gamma dis-
tributions have been suggested as models for the follower headways. The
exponential distribution can describe the traffic flow with no vehicle inter-
action, but it is unsuitable as a follower headway model. The studies of
Buckley and Branston suggest that the gamma distribution gives better re-
sults than the normal and the truncated normal distributions. Lognormal
distribution would be theoretically an interesting alternative, but its useful-
ness is limited, because it does not have a Laplace transform. Consequently,
the gamma distribution was selected as the follower headway model.

The pdf (fig. 5.48) of the semi-Poisson distribution with gamma dis-
tributed follower headways is:

f( t | p, β, α, θ ) = p
(βt)α−1

Γ(α)
βe−βt + (1 − p)

γ(α, βt)
Γ(α)

(
1 +

θ

β

)α

θe−θt,

t > 0; β, α, θ ≥ 0; 0 ≤ p ≤ 1, (5.142)

where γ(·) is the incomplete gamma function (see table 5.3, page 104). The
PDF is:

F( t | p, β, α, θ ) = p
γ(α, βt)

Γ(α)
+ (1 − p)

θ

Γ(α)

(
1 +

θ

β

)α ∫ t

0
γ(α, βu)e−θudu,

t > 0; β, α, θ ≥ 0; 0 ≤ p ≤ 1. (5.143)

Figure 5.49 shows the estimated semi-Poisson hazard function for sample 4.
The Laplace transform of the semi-Poisson distribution is:

f∗(s) = p

(
β

β + s

)α

+ (1 − p)
θ

θ + s

(
β + θ

β + θ + s

)α

. (5.144)

It is obvious that a free headway is a sum of two random variates: a variate
from the exponential distribution and a variate from the gamma distribution
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with scale parameter equal to the sum (β + θ) of the scale parameters from
the follower gamma distribution and the exponential distribution. This re-
sult can be used in the generation of semi-Poisson pseudo-random numbers.

The moments of the distribution can be obtained using the Laplace trans-
form:

E(T r) = (−1)r drf∗(s)
dsr

∣∣∣∣
s=0

. (5.145)

The first four moments are:

E(T ) = µ(T ) = p
α

β
+ (1 − p)

(
1
θ

+
α

β + θ

)
(5.146)

E(T 2) = p
α(α + 1)

β2 + (1 − p)
(

2
θ2 +

2α

θ(β + θ)
+

α(α + 1)
(β + θ)2

)
(5.147)

E(T 3) = p
α(α + 1)(α + 2)

β3 (5.148)

+ (1 − p)
(

6
θ3 +

6α

θ2(β + θ)
+

3α(α + 1)
θ(β + θ)2

+
α(α + 1)(α + 2)

(β + θ)3

)

E(T 4) = p
α(α + 1)(α + 2)(α + 3)

β4 (5.149)

+ (1 − p)
(

24
θ4 +

24α

θ3(β + θ)
+

12α(α + 1)
θ2(β + θ)2

+
4α(α + 1)(α + 2)

θ(β + θ)3
+

α(α + 1)(α + 2)(α + 3)
(β + θ)4

)
.

The moments can also be expressed recursively:

E(T r) = p
Ar

βr
+ (1 − p)Br, r = 0,1,2, . . . , (5.150)

where

A0 = B0 = 1 (5.150a)
Ar = (α + r − 1)Ar−1 (5.150b)

Br =
r

θ
Br−1 +

Ar

(β + θ)r
. (5.150c)

The central moments can be expressed in terms of the noncentral moments.
The rth central moment about the mean is (Stuart & Ord 1987):

E {[T − µ(T )]r} =
r∑

j=0

(
r

j

)
E(T r−j)[−µ(T )]j . (5.151)
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Thus, the measures of dispersion can be calculated using the following equa-
tions:

σ2(T ) = E
{
[T − µ(T )]2

}
(5.152)

α3(T ) =
E
{
[T − µ(T )]3

}
σ3(T )

(5.153)

α4(T ) =
E
{
[T − µ(T )]4

}
σ4(T )

. (5.154)

Concerning the four-stage identification process, the following observa-
tions can be made:

1. The pdf of the semi-Poisson distribution (figs. 5.48 and 5.50) is very
similar to the empirical density function of the headway data.

2. The hazard rate (fig. 5.49) has the same properties as the empirical
hazard function. It starts from zero, rises to the maximum, falls, and
reaches a constant level.

3. In terms of the coefficient of variation the semi-Poisson distribution is
very flexible.

4. Figure 5.51 shows the kurtosis of the semi-Poisson distribution against
the squared skewness. The parameters were generated randomly
within the limits displayed in the figure. The model can produce sam-
ples such that the kurtosis corresponding to the squared skewness is
only slightly greater than the kurtosis of headway samples. When the
distribution approaches symmetry (α3 → 0), the kurtosis approaches
the values corresponding to the gamma distribution (see fig. 4.15 on
page 73). This is to be expected considering that α4 → 3 (see ta-
ble 5.3 on page 104), and the distribution approaches normality as p
approaches unity, and α tends to infinity (Johnson et al. 1994). The
figure is very similar to the corresponding figure (5.46) of the general-
ized queuing model.

The identification process indicates that the properties of the semi-Poisson
distribution are very similar with the headway data. The KS2-chart displays
most clearly the slight differences between the semi-Poisson distribution and
the headway data.
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Parameter estimation

Method of moments estimators According to Greenwood & Durand
(1960) the method of moments is inefficient, except for distributions closely
resembling the normal. In this case the gamma distribution for follower
headways is expected to have a large shape parameter, which gives the
distribution the bell-like shape typical of the normal distribution. On the
other hand, the method of moments gives good parameter estimates for the
negative exponential distribution also. Consequently, there are grounds for
using the method of moments to estimate the parameters of the gamma
distribution.

The MME’s are obtained by equating the first four moments to the
sample moments and solving simultaneously the parameter values. Buckley
(1968) used this method to estimate the parameters. Because the simul-
taneous equations were not explicitly solvable, he used numerical methods.
He found no physically sensible solutions for flows less than 21 vehicles per
minute (1,260 veh/h). The complicated form of the equations anticipate
severe difficulties in finding feasible parameter estimates.

Modified method of moments estimators To make the estimators
tractable, and to avoid the use of higher moments the method of moments
can be modified: Practically all headways in the exponential tail (ti > δ)
belong to the free headway distribution. The PDF of the follower headways
is then:

F1(t) = 1 − ε(t), when t > δ, (5.155)

where ε(t) is small. Now, p and θ can be estimated using the properties
of the tail of the headway distribution, assuming that there are enough
observations in the tail .

Let us assume a sample of size n with m observations greater than δ.
The scale parameter estimate θ̃ is the inverse of the modified sample mean
of the tail (Wasielewski 1974, Wasielewski 1979):

θ̃ =
(

1
m

n∑
j=n−m+1

t(j) − δ

)−1

, (5.156)

where t(j) is the jth order statistic of the sample.
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The probability that a headway belongs to the tail of the distribution is:

P{T > δ} =
∫ ∞

δ
f(t) dt

= p

∫ ∞

δ
f1(t) dt +

(1 − p)
f∗
1 (θ)

∫ ∞

δ
F1(t)θe−θtdt

= p[1 − F1(δ)] +
(1 − p)
f∗
1 (θ)

∫ ∞

δ
F1(t)θe−θtdt.

(5.157)

If t > δ , the follower headway PDF is near unity (F1(t) ≈ 1), and the
equation simplifies to

P{T > δ} =
1 − p

f∗
1 (θ)

e−θδ

= (1 − p)
(

1 +
θ

β

)α

e−θδ

(5.158)

The proportion of headways in the tail can be used as an estimate for
the probability P{T > δ}. This leads to the following estimator for p:

p̃ = 1 − m

n

(
1 +

θ̃

β̃

)−α̃

eθ̃δ. (5.159)

The system of equations can be completed by equating the first two moments
to the corresponding sample moments:

m′
1 = t̄ = p̃

α̃

β̃
+ (1 − p̃)

(
1
θ̃

+
α̃

β̃ + θ̃

)
(5.160)

m′
2 = p̃

α̃(α̃ + 1)
β̃2

+ (1 − p̃)
(

2
θ̃2

+
2α̃

θ̃ + (β̃ + θ̃)
+

α̃(α̃ + 1)
(β̃ + θ̃)2

)
. (5.161)

Branston (1976) estimated θ and p from these two equations. He then
estimated β and α by minimizing the chi-square statistic.

The equation for the first moment can be solved to obtain the estimator
for the shape parameter:

α̃ =
β̃(β̃ + θ̃)[m′

1θ̃ − (1 − p̃)]
θ̃(β̃ + p̃θ̃)

. (5.162)

The he scale parameter estimator is the solution to the polynomial equa-
tion, which is obtained by substituting for α̃ in the equation for the second
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moment:

[(m′2
1 − m2)θ̃2 + 1 − p̃2]β̃4

+ {(1 − 2p̃)(m′2
1 − m2)θ̃2 + [1 − 2p̃(1 − p̃)]m′

1θ̃ + 5p̃(1 − p̃)}θ̃β̃3

+ {[3m′2
1 − (2 + p̃)m′

2]θ̃
2 + (4p̃ − 1)m′

1θ̃ + 2 − p̃(1 − p̃)}p̃θ̃2β̃2

+ [(m′2
1 − m′

2p̃)θ̃2 + (4p̃ − 1)m′
1θ̃ − p̃(1 − p̃)]p̃θ̃3β̃

+ [m′
1θ̃ − (1 − p̃)]p̃2θ̃4 = 0. (5.163)

This equation has two unknown parameter estimates (p̃ and β̃). Because
this is a fourth degree polynomial, its roots can be solved, assuming either
p̃ or β̃ known. There is an analytic solution to the equation with hundreds
of terms (obtained by the Maple computer algebra system), but it was not
used, because there are well tested, fast and accurate numerical methods for
finding the roots of a polynomial.

Assuming p̃ known, α̃ and β̃ can be solved using equations (5.162) and
(5.163). The estimate is accepted, if the absolute error in the estimate of p
is smaller than the criterion of precision:∣∣∣∣∣∣1 − m

n

(
1 +

θ̃

β̃

)−α̃

eθ̃δ − p̃

∣∣∣∣∣∣ < ε. (5.164)

The problem with this method is that β̃ is not a real number for all
values of p̃. Unfortunately, this often occurs with such values of p̃ that would
result in smallest estimation errors. Consequently, the modified method of
moments was rejected.

Maximum likelihood estimators The likelihood function of the semi-
Poisson distribution with gamma distributed follower headways is:

L(p, β, α, θ) =
n∏

j=1

f( tj | p, β, α, θ )

=
(

1
Γ(α)

)n n∏
j=1

[
p(βtj)α−1βe−βtj

+ (1 − p)γ(α, βtj)
(

1 +
θ

β

)α

θe−θtj

]
. (5.165)
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The log-likelihood function is:

lnL(p, β, α, θ) = −n ln Γ(α) +
n∑

j=1

ln
[
p(βtj)α−1βe−βtj

+ (1 − p)γ(α, βtj)
(

1 +
θ

β

)α

θe−θtj

]
. (5.166)

The maximum likelihood estimators are obtained by equating to zero
the gradient of the log-likelihood function and solving the resulting set of
equations. This must be done by numerical methods.

A modified method was also tested, in which the exponential scale pa-
rameter was estimated from the tail using equation (5.156). This method
decreased the dimensionality of the problem, but there was no significant
increase in speed and the results were less accurate. Accordingly, the maxi-
mum likelihood method was used without any modifications.

In some cases, the results were sensitive to the starting point (see
fig. 5.50).14 Because the calculations were very time consuming, only one
starting point was tried. The parameter estimation of sample 59 failed. In
five samples (26, 38, 45, 46, and 62) p̂ was either unity or null.

Figures 5.52 and 5.53 show the parameter estimates for the headway
data, excluding the six samples listed above. On low speed roads there is
significant correlation between p̂ and volume (r = 0.734, P < 0.0005), and
between θ̂ and volume (r = 0.920, P < 0.0005). That is, the proportion of
follower headways increases with increasing traffic volume. Also, the propor-
tion of short free headways increases. On high speed roads the correlation
between θ̂ and the volume is also strong (r = 0.810, P < 0.0005). For p̂ the
correlation is not as strong, but it is still statistically significant (r = 0.511,
P = 0.004).

The parameters of the gamma distribution do not correlate with traffic
volume, but they have a strong mutual correlation (figure 5.54). The ratio
β̂/α̂ is relatively constant, being 0.60 on low speed roads and 0.59 on high
speed roads. The difference is not statistically significant (P = 0.62), but
the follower flow rate is about 2,140 veh/h on both low speed and high speed
roads. The estimate does not change with the overall traffic flow rate. The
follower flow rate is near the capacity estimate of 2,200 person cars per hour
per lane on multilane highways (HCM 1994).

14Branston (1976) also encountered instability in the parameter estimates.
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Figure 5.52: Maximum likelihood estimates for p and θ
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Figure 5.54: α̂ against β̂

Goodness-of-fit tests

The parameters were estimated using the maximum likelihood method.
Sample 59 was excluded, because its parameter estimation failed. The good-
ness of fit was tested using both the nonparametric K-S test and the para-
metric A-D test. The parametric test was conducted using the Monte Carlo
method described in section 2.2.4.

For each of the 62 samples, 500 replications were generated and analyzed.
The number of replications was low, because the parameter estimation was
very time consuming.15 If the parameter estimation of a replication failed, a
new replication was generated. If more than 25 (5 %) failures were recorded,
the goodness-of-fit test was discarded. Four samples (38, 56, 61, and 64)
failed the test procedure.

Figure 5.55 shows the goodness-of-fit test results for the semi-Poisson
distribution with gamma distributed zone of emptiness. There is an inter-
esting difference in the figures: The significance probabilities of the K-S
tests are mostly between 0.2 and 0.8, while the A-D tests produce signif-
icance probabilities which are mostly either below 0.3 or above 0.6. The
comparison of the results (fig. 5.56) shows that the 5 % significance level
of the parametric A-D test is about the same as the 40 % significance level
of the nonparametric K-S test. Consequently, the semi-Poisson distribution

15It took three weeks to perform the goodness-of-fit tests on three i386/i486 personal
computers.
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Figure 5.55: Goodness-of-fit tests for the semi-Poisson distribution

fits the data extremely well, but it appears to be caused more by the flexi-
bility of the model than by its inherently correct shape. As the flexibility of
the model increases, the bias in the nonparametric EDF tests also increases.

The combined probability of the nonparametric K-S tests is 0.85. The
parametric A-D tests, however, give combined probability of only 4.3 ·10−11.
The fit is best, when the data have large sample variance. When the variance
is larger than 100, the significance probability of the sample is greater than
0.1. Only sample 62 is an exception, but it is probably caused by the
unsuccessful parameter estimation. On the other hand, all the eight samples
of at least 500 observations have significance probability less than 0.1. These
samples are from high speed roads. Accordingly, the semi-Poisson model fits
best small samples with large variances.16 In such cases the “noise” in the
data hides small bias in the model.

Semi-Poisson distribution in headway studies

Reasonability The modification of the free headway distribution f2(t) in
the semi-Poisson model can be criticized: The condition that a free head-

16The data do not contain large (> 500) samples with large variances (> 100).
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Figure 5.56: Comparison of the nonparametric K-S and the parametric A-D tests
for the semi-Poisson distribution

way should be greater than a random variate from the constrained head-
way distribution f1(t) seems arbitrary, because the shape of the constrained
headway distribution is not necessarily the way that the frequency of free
headways decreases near the origin. The process of becoming a follower is
not equal to adjusting the headway while being a follower.

Branston (1976) describes the difference between the semi-Poisson model
and the M/G/1 queuing model as follows:

In the semi-Poisson model each free headway is obtained by com-
paring an exponential headway with a following headway, while
in the queuing model each free headway is obtained by adding
an exponential gap to a following headway.

This description overstates the difference between these distributions. The
nonfollower headway variate in the semi-Poisson distribution is also a sum
of an exponential random variate and another random variate (see equation
5.138). In fact, the M/G/1 model and the semi-Poisson distribution do
not differ significantly when realistic parameter values are used (Botma &
Fi 1991).

Applicability Parameter estimation is time consuming, but semi-Poisson
pseudorandom numbers can be generated efficiently (Buckley 1962). The
pdf is rather complicated, and the PDF must be solved numerically. Now
that numerical integration is widely available in personal computers and
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even in pocket calculators, there are better potentials for the application of
the semi-Poisson distribution. The Laplace transform exists, if it exists for
the follower headway distribution.

Validity The chi-square tests of Buckley (1968) gave all “good” results.
Branston (1976) reported an average probability of 0.196 for 16 chi-square
tests (M4 fast lane). The combined probability, however, is only 0.0004. For
normal zone of emptiness the results were even worse.

The semi-Poisson distribution yields a better fit than any of the simple
distributions. If the K-S tests give as good results as shown above, but the
hypothesis is still rejected, the distribution is likely to be so flexible that an
extremely good fit is required. So good a fit may be impossible for headway
data, where some disturbances cannot always be avoided.



Chapter 6

Conclusions and
recommendations

The main purpose of the study was to present methods in order to improve
the statistical analysis of vehicle headways. A more firm scientific foundation
has been laid for further studies. Also, some new information about the
properties of vehicle headways on two-lane two-way roads has been obtained.

The combined probabilities method of Fisher (1938) provided a scientif-
ically sound method to test a hypothesis on a multi-sample data set. The
method was used extensively throughout the research. It was also demon-
strated that in many earlier headway studies this method would have been
of great help—either further confirming the results or guarding from false
conclusions. The combined probabilities method should be routinely used
in the tests for multi-sample data.

The combined probabilities method forms the basis of the moving proba-
bility method (Luttinen 1992), which appeared to be very helpful in demon-
strating the variation of test results over traffic volumes. This new method
provided results not directly available with the traditional methods. It can
be assumed that the method will have much wider applications in statis-
tics. However, the experience with the method is still limited, and further
research is needed.

The first step in the empirical research (fig. 1.1, page 20) is the data
collection. A major problem in the collection of headway data is to obtain
stationary data. It was shown that the combination of small samples with
nearly equal means produces a biased data set. This bias can be avoided,
if the data collection is based on trend analysis. Tests against trend should
become a standard procedure in headway studies.
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In model identification it is important to find a few methods that show
the most important properties of the data. For the identification of headway
models a four-stage identification process was proposed. It includes the
estimation of:

1. Probability density function

2. Hazard function

3. Coefficient of variation (CV-chart)

4. Kurtosis and squared skewness (KS2-chart).

The probability density function displays the shape of the distribution
better than the probability distribution function. The hazard function is
mostly used in life and reliability data analysis, but it also very informative
in headway studies. The kernel method was shown to produce smooth es-
timates for density and hazard functions. It should be preferred over the
more traditional histogram method.

The coefficient of variation is a scaled measure of the variation in head-
ways. It is a useful measure of dispersion in the headway distribution. The
correlation between the kurtosis and the squared skewness was very high
in the headway data. A KS2-chart displays clearly differences between the
headway data and statistical models.

The four-stage identification process allows an effective statistical de-
scription of the headway data. The process also shows many advantages and
disadvantages of the theoretical statistical distributions when compared to
the headway data. Moreover, the comparison of data from different sources
would be easier, if the data were submitted to standard analyses. The four-
stage identification process is suggested as a framework for future studies.

The independence of consecutive headways was tested using the auto-
correlation analysis, runs tests, and goodness-of-fit tests for the geometric
platoon length distribution. The power of the tests was enhanced by com-
bining the significance probabilities of each sample into a single significance
measure. The variation of significance over traffic volumes was described
and the evidence made stronger by the moving probability methods. The
results indicate that the renewal hypothesis should not be accepted in all
traffic situations, although the possible autocorrelation is weak.

Concerning the parameter estimation, two properties of the headway
distributions are worth consideration:

1. The headway distributions are strongly skewed to the right.
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2. The headways of trailing vehicles have a practical minimum.

Because of the skewness of the headway distribution, the method of mo-
ments does not give as good estimates as the maximum likelihood method.
Because of the practical minimum headway, a location parameter (τ) is often
included in the headway models. In some cases no solutions can be found
for the maximum likelihood equations of such models. The modified maxi-
mum likelihood method was shown to produce good parameter estimates for
distributions with a location parameter.

The main problems of the goodness-of-fit tests in headway studies are:

1. The chi-square test is based on grouping of the data. This makes the
test less powerful than the tests based on the empirical distribution
function (EDF).

2. The nonparametric goodness-of-fit tests based on the EDF can be
applied only, when the parameters of the distribution are known. If
the parameters of the headway distributions must be estimated from
the data, the nonparametric tests give too conservative results.

3. When the parameters are estimated from the data, parametric EDF
tests should be used. The distribution of the test statistic is, however,
not known.

These problems were conquered using parametric EDF test and estimat-
ing the distribution of the test statistic by Monte Carlo methods. The supe-
riority of these tests over the nonparametric Kolmogorov-Smirnov tests was
demonstrated. The power of the tests was further enhanced by combining
the significance probabilities of all samples. It is suggested that the goodness
of fit should be measured by both the nonparametric Kolmogorov-Smirnov
test and by some parametric EDF test. The parametric Anderson-Darling
test is recommended. The conclusions should be based on the parametric
test, but the nonparametric test gives an overall goodness-of-fit measure
against which different models can be compared. This helps to find out if
the problem in the model is lack of fit, or flexibility of the model, which
presents higher requirements for the fit.

Three principles of evaluation were suggested to evaluate the headway
distribution models:

1. Reasonability. It is an advantage if the structure of the model
is based on explicit theoretical reasoning about the characteristics of
traffic flow.
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2. Applicability. The model should have a simple structure to avoid
insurpassable problems in mathematical analysis. If simulation is con-
sidered, the generation of pseudo-random variates should be fast and
reliable. Parameter estimation should not be too complicated.

3. Validity. The model should give a good approximation of the real
world phenomena. This can be tested first by the four-stage identifi-
cation process and finally by the goodness-of-fit tests.

Five statistical distributions were evaluated as models for the headway
distributions on two-lane roads. The results of the goodness-of-fit tests1 are
presented in table 6.1.

Table 6.1: Summary of the goodness-of-fit tests

Distribution P(K-S) P(A-D)
Negative exponential 2.1 · 10−162 2.9 · 10−150

Shifted exponential 3.8 · 10−157 5.3 · 10−150

Gamma 8.7 · 10−106 4.1 · 10−141

Lognormal 1.8 · 10−36 1.8 · 10−114

Semi-Poisson 0.85 4.3 · 10−11

The exponential distribution can be considered as a model for vehicle
headways under extremely low flow conditions, and for applications that
are not very sensitive to the shape of the headway distribution. In some
cases the analytical solution of the problem may only be possible with a
very simple model. In such situations the limitations of the model should
be clearly indicated.

The shifted exponential distribution does not produce extremely short
headways, which is a major problem in the negative exponential distribu-
tion. The goodness of fit is, however, not significantly better. The shifted
exponential distribution can be used in similar situations as the negative
exponential distribution, especially when it is important to set a minimum
headway.

The gamma distribution can be used, if the distribution should have a
simple form and low probability for short headways, and the results are not
too sensitive to other properties of the distribution. Under low-to-moderate

1The precision of the Kolmogorov-Smirnov tests was four decimals. If a test result was
0.0000, the combined probability was calculated using 0.000025 in stead.
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traffic volumes the use of the gamma distribution can be given preference
over the exponential distribution.

The lognormal distribution falls between the simple-nonrealistic and
complex-realistic models. The goodness-of-fit results are better than for
the other simple distributions, but mathematical analysis presents some
problems. There are, however, some theoretical reasons to consider the
lognormal distribution as a model for the follower headway distribution
(Daou 1966, Greenberg 1966).

The semi-Poisson distribution can be recommended for demanding ap-
plications with adequate computational facilities. It produced the best test
results, but even it failed the parametric test.

The data in this study are from Finnish two-lane two-way roads. Such
factors as speed limit, passing sight distance, lane and shoulder width, climb-
ing lanes, proportion of heavy vehicles, flow rate of opposite traffic, traffic
signals, distance to major traffic generators, and intersection density have
an effect on the headway distribution. Our knowledge of these relationships
is, however, very limited. The headway distribution model should be very
adaptive, but not too flexible. It should have all the right parameters, but
none too many. In this respect all the work toward a unified traffic flow
theory is most welcome.

The proposed procedures give a scientific foundation to identify and
estimate statistical models for vehicle headways, and to test the goodness of
fit. It has been shown that the statistical methods in the analysis of vehicle
headways should be thoroughly revised following the guidelines presented in
this text.
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Table A.1: Headway samples from 80–100 km/h roads

No. SL n Volume s2 C α3 α4

1 100 500 912 36.91 1.54 3.89 20.31
2 100 250 967 28.90 1.44 3.61 17.61
3 100 400 1068 18.04 1.26 3.64 20.24
4 100 400 945 30.75 1.46 4.49 30.63
5 100 391 927 26.34 1.32 3.48 16.50
6 100 125 262 725.61 1.96 3.71 19.83
7 100 190 352 247.15 1.54 2.94 13.98
8 100 90 439 332.74 2.23 4.81 31.04
9 100 75 257 805.51 2.03 3.37 15.62

10 100 180 979 23.07 1.31 4.13 25.46
11 100 420 1282 13.68 1.32 5.40 44.68
12 100 153 1837 1.33 0.59 2.95 16.34
13 100 500 1410 8.74 1.16 4.21 25.59
14 100 350 1462 4.64 0.87 3.79 22.70
15 100 250 1388 5.94 0.94 2.89 13.11
16 100 180 1250 15.01 1.34 3.81 18.42
17 100 600 1056 16.46 1.19 3.46 17.79
18 100 500 1145 13.82 1.18 4.22 28.33
19 100 200 1230 13.36 1.25 4.91 30.65
20 100 440 1079 12.84 1.07 2.98 14.02
21 100 200 1118 12.80 1.11 3.66 20.70
22 80 100 207 534.03 1.33 1.96 7.40
23 80 200 1255 8.63 1.02 3.66 18.49
24 80 500 1451 7.62 1.11 7.31 77.03
25 80 900 1439 6.13 0.99 5.16 41.87
26 80 114 1459 1.91 0.56 2.03 9.18
27 80 700 1330 3.29 0.67 3.34 21.93
28 80 370 1245 5.19 0.79 3.59 22.92
29 80 600 1467 3.71 0.78 8.76 132.67
30 80 226 1000 44.65 1.86 5.40 37.66
31 80 250 746 57.48 1.57 3.93 21.83
32 80 390 795 55.47 1.64 4.03 22.02
33 80 210 361 175.94 1.33 2.20 8.58
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Table A.2: Headway samples from 50–70 km/h roads

No. SL n Volume s2 C α3 α4

34 50 200 328 160.87 1.16 2.05 8.50
35 50 170 367 156.78 1.28 2.49 10.54
36 50 200 637 48.95 1.24 2.84 13.40
37 50 251 450 80.59 1.12 1.62 5.16
38 50 150 355 120.85 1.08 1.83 6.17
39 50 167 429 78.92 1.06 1.84 6.71
40 50 100 459 70.88 1.07 1.79 6.15
41 50 200 650 57.29 1.37 4.12 24.56
42 50 150 794 25.49 1.11 3.20 16.12
43 50 350 1291 3.55 0.68 2.11 8.08
44 50 300 662 34.24 1.08 2.56 10.89
45 50 100 158 369.72 0.85 1.38 5.09
46 50 76 148 465.14 0.89 1.41 4.37
47 60 150 613 29.76 0.93 2.09 8.58
48 60 240 764 19.31 0.93 1.93 7.42
49 60 250 646 40.13 1.14 2.50 10.90
50 60 112 533 47.72 1.02 1.27 3.62
51 60 320 885 18.33 1.05 2.47 9.47
52 60 150 1252 8.12 0.99 3.99 22.66
53 60 260 915 22.34 1.20 3.32 17.42
54 60 220 835 27.51 1.22 2.78 11.97
55 60 100 309 218.68 1.27 1.75 5.55
56 60 140 542 58.50 1.15 1.96 7.15
57 60 140 479 95.84 1.30 2.16 7.94
58 60 290 561 62.95 1.24 2.33 9.28
59 70 110 332 200.75 1.30 3.12 16.09
60 70 100 370 154.69 1.28 2.27 8.12
61 70 120 324 156.80 1.13 2.06 8.14
62 70 150 143 1001.61 1.26 1.72 5.90
63 70 100 238 324.00 1.19 1.46 4.41
64 70 160 298 153.24 1.02 1.46 4.81
65 70 300 475 72.28 1.12 1.83 6.05
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