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Abstract: A framework for a national building product
data model standard, the RATAS-model, was proposed
in an industry-wide cooperation project in Finland in
1987. The model structures the information describing a
building using an object-oriented semantic data model.
In follow-up projects a number of prototypes have been
developed using different  software tools. These
prototypes have aimed at illustrating the potential of the
product data model approach for facilitating data
exchange between heterogeneous computing applications
in comstruction, as well as at testing the implementation
of the data structures (attributes, object classes,
relationships between objects) of the product data
models. The prototypes have been based on relational
databases, hypermedia software, CAD-systems and
combinations of these.

INTRODUCTION

The use of computers is rapidly growing in the
construction industry. During the 1970s computing
became a necessity in structural design and the 1980s saw
the rapid development of computer-aided drafting. At
the beginning of the 1990s micros and their basic
software have become affordable for any firm and can be
found on virtually any designer’s desk, on construction
sites and as integrated parts of building monitoring

* The work described in this paper has been carried out in a
project funded by the Technical Research Centre of Finland
and the Technology Development Centre. One version of
prototype no. 3 was developed in a separate project funded by
the Energy Department of the Ministry of Trade and
Commerce.

systems. A first generation of construction robots is also
under development in research laboratories all over the
world.

A major obstacle for getting the full scale cost and
qualitative benefits of all these information technology
applications during the construction process is their lack
of communication capability. Despite the fact that many
applications treat the same data items, they cannot share
this information with each other. This leads to a lot of
duplication in manual data input tasks, to redundant
and contradictory information, and to slow information
transfer between applications. Many researchers have
described a target state (computer-integrated construc-
tion) in which all of the heterogeneous applications in
construction can communicate with each other without
human interpretation, using software tools and computer
networks. 33

There seems to be a wide-spread consensus that a key
feature in computer-integrated construction will be the
use of neutral standards for the structuring of data
describing a building.'”-** Such international or national
building product data model standards may in the future
replace current building classification systems as the
primary method for structuring information in advanced
CAD-systems, knowledge-based systems and data bases.
In many countries prestandardization as well as pro-
totype development projects using product modelling
techniques have been started, and on an international
scale the effort to develop a generic product data model
standard for all branches of industry, the PDES/STEP
effort,> 2 might provide a valuable backbone also for
building oriented submodels.
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CONCEPTUAL MODELS - DATA MODELS

The basic philosophy of building product data models is
the separation of the structure of information from the
structure of how this information is represented and
stored in different media. Standardization is limited to
the structure of information in product data models.
This separation has clearly been stated in data base
theory as the separation between conceptual data models
and the corresponding physical data models. Thus the
conceptual level contains a logical or semantic de-
scription of the data item types that are contained in a
database or application program and their inter-
dependencies. The basic philosophy is illustrated in
Fig. 1. The physical level deals with how the information
structure described in the conceptual model has been
implemented as physical records in databases or files,
and is concerned with issues such as record and field
lengths, etc. It should be noted that for each conceptual
model there is a multitude of possible physical data
models. A prerequisite for data transfer between different
applications is the similarity of their conceptual models,
conversions between different physical formats are much
easier to handle.

Conceptual models are constructed from a limited set
of basic data structures. A coherent set of such data
structures is called a data model. Over a dozen such data
models have been suggested in the theoretical literature
of data base theory, artificial intelligence and pro-
gramming language theory, and a few of these have
gained wider acceptance through their use in commercial
applications. Examples of data models are the hier-
archical and network data model, the relational data
model, the entity-relationship model, the frame, the
object of object oriented programming.

Similar basic data structures can be found in almost all
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Fig. 1. Conceptual models specify what information is

contained in a model, physical data models how this in-

formation is represented in different types of media and
documents.

data models. Thus almost all data models include the
idea of a basic information unit called entity, object,
frame, etc., and the ability to classify these into entity
types or classes. With some notable exceptions data
models include the ability to cluster elementary data to
an object in the form of attributes or slots. The idea of
relationships between objects is typical for many of the
more advanced data models. Different types of ab-
straction mechanisms (aggregation, generalization) can
be found in data models. Related to these are inheritance
of data structures between classes of information units.
Data structures used in particular data models are for
instance methods and messages.

In the actual process of defining conceptual data
models, formal tools can be quite useful. In STEP a
formal data definition language called Express® is used.
Other useful tools are graphical schema definition
languages such as Entity-Relationship, NIAM or
IDEFI1X diagrams.

The emphasis of this article is clearly not on the basic
theory of conceptual and data models. Good general
discussions can be found in Brodie er al.*®* and Peckham
and Maryanski.*’

A Building Product Data Model is a conceptual data
model which structures the information needed to define
a building for the purposes of design, construction and
maintenance. Being a conceptual data model it needs to
adhere to a particular data model. It is, however,
possible to extend a previously defined conceptual data
model to more complex data models. Discussions of the
choice of suitable data models for building product data
models as well as of requirements that product data
models should meet can be found in Eastman et al.’ and
Bjork and Penttild.!®

THE RATAS BUILDING PRODUCT MODEL

The basic framework of a building product data model”
was proposed in a research project in Finland in 1987
(the RATAS project). The project aimed at defining the
major ingredients necessary for computer-integrated
construction, and the results have been given a lot of
publicity in Finland. The project has continued and a
permanent committee under the Building Information
Foundation, with representation from all branches of the
construction industry, is constantly monitoring a number
of development projects related to computer integrated
construction (EDI, general data bases, more detailed
definitions of subsets of the product data model, etc.).
The RATAS building product model is defined using
the entity-relationship datamodel, extended with the
notion of inheritance of data structures between classes.
The overall structure of the model uses an abstraction
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Fig. 2. The overall structure of the RATAS building project
model viewed as an abstraction hierarchy based on
decomposition.

hierarchy starting at the top with a single object collecting
information relevant to the building as a whole, going
through intermediate levels of system and subsystem
objects down to part and detail level object. This
structure is shown graphically in Fig. 2.

The RATAS-model subdivides relationships between
objects into two major categories, part of-relationships,
and connected to-relationships. The division was orig-
inally based on the semantic meaning of the relationships,
but later it has been realized that a more relevant
categorization is based on the dynamic behavior of
objects in the events of changes in a data base. Thus a
division into existency dependency and other relation-
ships would seem more appropriate. In an existency
dependency relationship the dependent object is deleted
automatically from a database if the father object is
deleted. In most cases, but not all, this is equivalent to
the semantic idea of part of-relationship.

In addition any number of attributes can be specified

for each object class. The attributes can be of different
types such as integer and real numbers, strings and more
complex data types.

From a more consiruction related viewpoint an
interesting feature of the model is the explicit inclusion of
empty room-spaces as one object class. Information
related to spaces is very relevant to architectural and
HVAC-design as well as to facilities management. Many
traditional building classification systems, which pri-
marily have been developed for construction manage-
ment purposes, lack a separate category for room-spaces.
Spaces as independent objects are only included in some
geometric modelling methodologies, and are altogether
lacking in 2-D drafting systems.

STRATEGY OF THE PROTOTYPE WORK

Following the second phase of the RATAS-project in
1987-88, during which the framework of the model was
defined, a number of prototypes have been developed to
test and illustrate the ideas. Most of these have been
developed as a part of a larger research programme for
‘Information and automation systems in construction’
carried out by the technical research centre of Finland.
All of the prototypes have been developed by the same
team and each prototype has been able to benefit from
experiences with the earlier prototypes.

Some important restrictions on the prototype work
were agreed on from the start. With the limited resources
available (up till now in the order of five man years) it
was realized that it would be impossible to build a full
scale prototype including class definitions of all possible
object classes and all information types which should be
defined in the ‘ideal’ building product model. Rather
than that each prototype has concentrated on a number
of limited technical or user interface aspects and the
number of classes has been kept moderate. In particular,
the conceptual modelling of shape information has
received little attention, since it is hoped that the RATAS

Table 1
The four prototypes developed during the product model project

Data storage media User
interface

Object classes/
objects modelled

Case buildings

1 Relational database
2 Hypermedia

SQL-queries
Hypermedia
3 Relational database Hypermedia

CAD-system and
hypermedia

CAD-system and
relational database

Existing office building floor 20/ ~ 2000
Imaginary 10/40
Imaginary 30/75

Existing health center 11/~ 1000
Existing office building 50/~ 1000
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model could use the results of the STEP standardization
effort for this type of information.

Another restriction has concerned the software tools
to be used. There is a clear trade-off between the
generality of a tool and the effort needed to build
applications. Using basic programming languages, such
as LISP, Smalltalk or C, it is possible to make any kind
of prototypes with hardly any inherent restrictions. The
use of commercially available software, such as relational
databases, poses severe restrictions on the data structures
that can be implemented. The other side of the coin is,
however, that the use of basic programming languages
would have implied that a large part of the project’s
resources had been spent on programming data manip-
ulation or user interface features which already exist
in available software. Another aspect is that industry
clearly is waiting for guidelines for how the data
structures of product data models can be implemented in
the kind of commercial software environments which
will be available at affordable prices to the construction
industry in 2-3 years time.

The prototypes represent an ascending order of
complexity. The first prototype uses only one basic type
of software whereas the last prototype integrates three
types of software. Table 1 provides a brief overview of
the prototypes. Descriptions of different buildings have
been used as case material in the different prototypes.
This is partly due the fact that not all prototypes have
been made in the same project.

RELATIONAL DATABASE PROTOTYPE (NO. 1)

The tool chosen for the first prototype was a commercial
relational database system running on a standard
MS/DOS microcomputer. The actual software chosen
was Oracle, but the choice between different relational
database implementations is a matter of taste only and
has little relevance for the issues studied with this
prototype. Differences between programs are mainly in
the user interface, query languages and query processing
efficiency, not in the basic way of structuring data. One
factor in favor of Oracle was that the query language it
uses follows a widely used de facto standard, SQL.
Another factor was its availability for different computer
environments (MS/DOS, UNIX, Macintosh, main-
frames).

The actual data input into the relational data base was
done manually in a rather cumbersome way using
straightforward SQL commands. In principle, it would
have been possible to develop a friendlier user interface
using the form development facilities of the software, but
this would have necessitated additional programming
resources. In real commercial applications such user
interfaces would obviously have to be developed.

In order to make the prototype more realistic, data
about an existing building was used as case material. One
floor of a four floor high office building was modelled.
The needed data was analysed from drawings and textual
specifications by research assistants and input manually
into the relational data base. 20 object classes were
included in the model which altogether contains some
2000 object instances. Between 3 to 25 attributes (average
8), were defined for each object class.

In this particular prototype only binary relationships
were defined. There are strong reasons to restrict
relationships in product data models to only binary
relationships, since relationships involving more than
two objects are reducible to sets of binary relationships,
and since handling binary relationships in data base
manipulations is much more straightforward.?

Relationships between objects can be modelled in
different ways in relational data bases, depending on
their cardinality.?® Relationships of cardinality one-to-
one or many-to-one can be modelled in relational tables
in a straightforward way, by including a column for the
key of the latter object participating in the relationship in
the table describing the first object. The implementation
of relationships is consequently exactly the same as that
of attributes.

Relationships of cardinality one-to-many or many-
to-many cannot be handled in this way. For these a
separate, albeit more cumbersome method, has to be
used. A separate relational database table has to be
created for each relationship type in the conceptual
model. These tables contain two columns, one for the
keys of each of the objects participating in the relation-
ships. One benefit from this approach is that the
relationship information is equally accessible through
both of the participating objects. The inclusion of other
data qualifying the relationship can also be done in a
more straightforward fashion by adding more columns
to the tables. The major drawback of this technique is
that database queries become quite complicated since
they involve a lot of join operations. In large databases
this will slow down operations considerably.

Using both of these implementation techniques in
parallel would obscure the mapping of data structures of
the conceptual model to the relational data base
implementation. Consequently, the prototype was con-
structed using the second option only, since it is more
general, and can handle one-to-one and many-to-one
relationships as well. In order to make tables as
transparent as possible a naming convention was
adopted, whereby the name of a table describing a
relationship was formed by concatenating the names of
the object classes participating in the relationship.
Examples of relationship types modelled in this way are
given in Table 2.
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Table 2
Examples of relationship types implemented in the relational database prototype

Ist class

2nd class

FLOORS

ROOM-SPACES

ROOM-SPACES

ROOM-SPACES

ROOM-SPACES

HORIZONTAL STRUCTURES
HORIZONTAL STRUCTURE ELEMENTS
HORIZONTAL STRUCTURE ELEMENTS
SLAB FIELDS

BEAMS

BEAMS

COLUMNS

COLUMNS

WALLS

WALLS

WALLS

ROOM-SPACES

ROOM-SPACES

SURFACES

WALLS

HORIZONTAL STRUCTURE ELEMENTS
HORIZONTAL STRUCTURE ELEMENTS
SLAB FIELDS

SURFACES

SLABS

SLAB FIELDS

SLABS

COLUMNS

BEAMS

WINDOWS

SURFACES

WALLS

DATA TABLES SURFACES - ROOMS
Surface | Room
FS 020
ﬁ{ 020
Cs1 020
FS2 021
LA Ad LA
SURFACES \ ROOMS
id. pe | code | material | explan.|area id. purp.of use|vol. area |
FS1 ¢ [floor |M1 [ Carpet.. |Plastic. |15 Yo20 Office 45 15
WS1 wall | T2 | W.paper. |Pape.. | 18 021 Office 45 15
CS1 ceiling | AK1 | Metal... |Metal...| 15 022 WC/M 12 4
FS2 floor |LK1 | Stone... |Sto... |55 023 Corridor {150 55
eee (XX ] (XX LXK ] 200 (XX ] 299 200 (XX} s0 0
PQLQUERY SELECT ROOMS.id, purp of use, SURFACES.type, explanation
FROM SURFACES - ROOMS, SURFACES, ROOMS
WHERE ROOMS.id = SURFACES - ROOMS.room
AND SURFACES.id = SURFACES - ROOMS.surface
SORTED BY. - ROOMS.id, SURFACES.type
OUTPUT 020 Officeroom  Floor Carpet floor is made of....
DOCUMENT Wall-1 Wall paper is fixed to......
Wall-2 Wall is painted with acrylic...
Ceiling Ceiling is of a pre-fab. metal...
021 Officeroom  Floor Stone floor is fixed with...
Wall Wall surf. is painted with...
LK} eoce LR LAR)

Fig. 3. An example of a query involving three different data tables in the relational database prototype.

The main purpose of this prototype was to show the
benefits of the relational data base approach in allowing
the users of the information the ability to produce a large
variety of output documents structured according to
their particular needs. This is of course assuming that the
problems of entering the information into such data

bases, either by manual take off of quantities or as a by-
product of CAD-systems, have been solved. In order to
do this some twenty different queries were formulated
and tested. The actual task of defining these takes very
little time. Figure 3 shows an example of such a query
involving data from three different tables. This query
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finds all the surfaces in a building, sorts them by rooms
and lists information related to these. This could
correspond to a new type of specification documents
which is currently under consideration in Finland.

The usefulness of this flexible query definition facility
was illustrated by a seemingly trivial problem given by an
architect participating in the prototype development
work.'! In a real construction project there was a need to
find all the locks from a certain manufacturer used in the
building, and to specify the rooms to which the doors
containing the locks lead. The extraction of this
information from drawings and specifications took
several hours. A corresponding query for the prototype
was written in five minutes and can provide the answer in
seconds.

The prototype also highlighted the usefulness of
having separate object classes for room-spaces and for
surfaces. Since spaces and their higher aggregate level
objects, such as floors, organizational zones, etc., form
the functional structure of the building, a vast number of
design information can be sorted for many purposes
according to these objects, either by directly being
attributes of spaces or through the relationships of their
host objects to spatial objects.

In traditional classification systems and project speci-
fications information related to surfaces has to be stored
either as belonging to the wall and other structures which
they cover, or more seldom as attributes related to the
spaces they bound. The former would typically be the
viewpoint of the contractor and the latter the viewpoint
of the architect. In the prototype both viewpoints can be
accommodated simultaneously through the use of space—
surface and surface—structure relationships.

Collectively the prototypes confirmed the hypothesis
about the usefulness of relational databases for structur-
ing information, especially the kind of information
typically defined in specifications and bills of quantities.
Other researchers who have developed relational data
base prototypes have reached similar conclusions.? ¢
Since no shape and location information was included in
the prototype no inferences could be made related to the
suitability of relational databases for the physical
implementations of full scale building product data
models, which also would contain geometrical data.
Earlier experiences with relational data bases for storing
CAD-data had not been very successful,'* mainly due to
efficiency considerations and to the discrepancy between
the data structures suited to design problems and the
ones easily implemented in relational data bases (for a
possible extension of the relational data model which
solves some of these problems see Wiederhold et al.??).
The efficiency problems are less important today due to
the increased processing power of computers, but the
data structuring problems still exist. Possibly, object

oriented data bases may provide suitable solutions in
the future.!®

HYPERMEDIA PROTOTYPE (NO. 2)

The second prototype differs radically from the first one.
The emphasis is no longer on implementing the basic
data structure of the RATAS model. Instead, the
prototype aims at illustrating and testing different kinds
of user interfaces to data about a building, which is
structured according to the product data model ap-
proach. The tool chosen was a hypermedia program
(Hypercard), running on a Macintosh Plus micro. At the
time when the development work started (late 1988) this
was one of the only hypermedia programs available with
good facilities for handling graphics as well as text.
Recently programs with similar facilities have also been
released for PC-micros.

The data structures of hypermedia programs differ
from the data models reviewed earlier in this paper (see
for instance Conclin**). In hypermedia programs, such as
Hypercard, the equivalent to an object instance is the
card (a particular screen image with graphical and
alphanumeric data) and the equivalent of a class is a
stack of cards having the same overall structure and
layout. Much in the same way as objects can have
attributes cards can have fields or slots with information.

The main distinction is the more flexible way in which
different cards can be interrelated. The relationship types
are not so much predetermined in conceptual models but
relationships are determined at runtime by the user when
he inputs information. Relationships can be established
between any items of information stored in hypermedia
databases. Physically these links are usually implemented
as invisible or visible buttons in the hypertext or
hypergraphics. Strings of executable code, called scripts,
can also be attached to these buttons in a way similar to
the methods of the frame data model. The similarities to
object-oriented programming are also evident.

In the second prototype the object classes of the
conceptual model were implemented as stacks of cards.
Since the purpose of the prototype was illustration it is
very small in size, it only contains 10 object classes and
some 40 objects. Later on, it has been extended with
classes related to urban planning. The basic card type is
the conceptual window (Fig. 4) which contains all the
attribute information of the object under scrutiny, as
well as the information about all the other objects to
which this object has relationships. As a graphical
convention all father objects are shown above the object
and all child objects below. All objects to which the
object has connected-to relationships are shown to the
left. The fields containing names of related objects all
contain invisible buttons. By clicking these the user
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Fig. 4. The basic card of the hypermedia prototype is ‘ the conceptual window’, which shows information from the viewpoint of one
object instance at a time.

moves to another image where information is ordered
with the related object in center. This allows the user to
browse through the data base in highly unpredictable
ways using the network of links between objects.

In addition, the cards also contain buttons with links
to drawings with partly the same information. These
drawings are hyperdrawings in the sense that all objects
shown in them are touch sensitive. Clicking such an
object moves the user to a conceptual card with that
object in center. Alternatively, one can jump to detail
drawings of the same object. It should be noted that in
this prototype the drawings were done separately using
drafting software and are not created dynamically.
Dynamic drawing creation from product model data is in
principle possible but would have demanded a much
more sophisticated conceptual model, containing de-
tailed data structures for shape and location data, and a
lot of programming work with the script language.

Looking at the building description in this way may
seem quite chaotic. Therefore a visual image of the
abstraction hierarchy of the conceptual model was
created as a sort of basic menu, from which the user can
jump into detail (Fig. 5). This basic menu also contains
buttons which allow the user to make simple queries
producing tabular data much in the same way as in the
first prototype.

The experiences with this prototype were very good,
despite the fact that it is a small scale system and that it
could never be used for productive work. During the
earlier phase of the RATAS project the researchers had
a lot of problems presenting the abstract ideas of
conceptual models and objects to people from industry.

Building level

System level

Links to other applications
- CAD-system

S ub-system level - Word processing

Floors ire areas

Part level

CAD-system

<

Written specification

. $
X

Doors

Detail level

Fig. 5. The hypermedia prototype is entered via this card, which
shows the abstraction hierarchy of the model. From this card
the user can enter into detailed class specific cards.

It was only through this prototype that a tool became
available to demonstrate what working with product
models could look like. In any demonstration of VIT’s
prototypes this prototype is used initially, to give the
audience a quick overview of the basic ideas of product
modelling.

Similar ideas to the ones included in the prototype
may in the near future be incorporated in commercial
CAD-systems. Software for producing and presenting
building specifications, with their often numerous re-
ferences to other documents, would also be an obvious
application area. Another related area where hypermedia
will make an impact in the near future is the presentation
of regulations and standards information.! ¢
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RELATIONAL DATABASE PROTOTYPE WITH
HYPERMEDIA USER INTERFACE (NO. 3)

The experiences gained with the first two prototypes
where utilized in the creation of the third prototype,
which is based on storing the information in a relational
database (Oracle) but viewing the information through a
user interface created with a more powerful hypermedia
program (Supercard). In addition to the use of colors
Supercard allows dynamic window sizes and multiple
windows on the same screen. This prototype runs on a
Macintosh II and necessitates at least 5 Mbytes of main
memory.

Two different versions of this prototype exist. One
version only contains a very limited amount of data, in
line with the second prototype. The second version
contains complete data from a narrow conceptual
domain about an existing medium-sized healthcare
center and was used for energy related modelling. The
two versions differ slightly in their user interfaces.

A new feature in this prototype, compared to the
earlier ones, is an object class editor, which allows the
user to define new object classes and attribute types
(Fig. 6). In addition the user can create new objects and
specify relationships to pre-existing objects by pointing
at object lists presented in scrollable windows. The user
also has the possibility to specify SQL-queries to the
database in a menu oriented way under Supercard, rather
than writing straightforward SQL-statements. Once
created SQL-queries can be named and stored in a
library and are instantly accessible under a hypermedia
button. Work by other researchers on flexible user
interfaces to structural design data stored in relational
databases, has suggested user interfaces in combined
pictoral and standard query language mode for defining
queries.?*

This prototype differs from prototype no. 1 in its
treatment of relationship information. In prototype no. 1
a separate table was created for each relationship type
defined in the underlying conceptual model. This leads to

CREATE NEW OBJECT CLASS
ALL OBJECT CLASSES ATTRIBUTE TYPES OF INSTANCES OF THE
THE SELECTED CLASS SELECTED CLASS
COLUMNS [A] [waLLs j
CONCRETE SLABS
BEAMS loc A || WALL 123 7N
DOORS yloc | ||WALL 124 L
FLOORS zloc WALL 125
RODMS wall type WALL 400
WALLS length WALL 401
height
WINDOWS
L thickness L L
v area v v

Fig. 6. User interface for the creation of new object classes in
the third prototype.

a very large number of relationship tables and to explicit
references to them in all query statements referencing
them. Since relational data bases have no inheritance
mechanisms, it is not possible to write code applying to
several relationship tables at the same time.

In prototype no. 3 only one relationship table is used.
The first two columns contain the keys of the participat-
ing object instances and the third column the type of the
relationship. This means that the length of the query
code can be significantly reduced and the same code
applies to all relationships. On the other hand, the
relationship type attribute of this table is needed as a
discriminator in many operations. One drawback is that
the size of this table becomes overwhelming in full size
implementations (maybe tens of thousands of rows). All
queries needing relationship information need to run
through all of these, slowing down the performance of
the system considerably, unless some mechanisms for
tuning the system are used.

One aspect studied with this prototype was the
structuring of results of database queries (database
views) in the form of graphical documents. Typical
examples could be room cards containing information
for surface treatment or door cards, which could be
useful for specifications writing (Fig. 7). The door card
can also be used as an input medium, since technical
information about the doors can be input also through
the fields of the door card.

The second version of this prototype was developed to
test the automatic transfer of data from a product model
building description to energy calculation software. This
kind of transfer has, in the past, been highly problematic,
due to the often badly documented conceptual data
structures of energy calculation software, and to the
incompatibility of the drawing-oriented conceptual data
models of CAD-systems with the space and building
part-models of energy software.**

This prototype contained only a very limited number
of object classes needed for the calculation of the heating
power need. The case building was a four-floor health-
care center containing some 200 separate room spaces.
Altogether the prototype contains approximately 1000
object instances and some 450 relationships. A notable
feature is that walls, floors and ceiling structures have
been partitioned into segment objects corresponding to
individual spaces. These correspond to the viewpoint and
data needs of the energy calculation program. More
aggregate objects could easily be formed from these
through part of-relationships.

For each object class the attributes necessary from the
energy calculation viewpoint were defined. These include
information about volumes, surface areas, materials, etc.
Originally the idea was to input the actual data through
the object editor. Due to the often large number of
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Fig. 7. In the third prototype information is stored in relational database tables, and it can be viewed and altered in user interfaces
developed with a hypermedia software Supercard.

attributes and to the repetitiveness of the data, it was
found that it was much quicker to input the data into a
standard spreadsheet program (EXCEL) and then read it
into the relational database program with a small
conversion program. In particular, the data about wall
structures would have been difficult to input since the
different material layers in a wall and their related data
were treated as attributes, rather than as sub-objects of
type ‘wall layer’. In the longer run it is obvious that these
input problems have to be solved as integral parts of
the architectural designers CAD-program (see below
prototype no. 4).

Two different energy calculation programs used the
prototype as a source of input information. The first runs
on the Macintosh and is built using the WINGZ
spreadsheet program. The Program corresponds to the
energy calculation guidelines issued by the Finnish
authorities. The second program was a previously
existing application called Microtase running on a PC-
micro on top of Lotus 123, which follows the ASHRAE
BIN calculation method. The extraction and the trans-
formation of the data from the relational data base to
formats readable by the spreadsheet programs, was done
using programming facilities of Supercard’s interface
into Oracle.

The lesson learnt from this prototype was that the
object card type of user interface may be nice for viewing
information and for browsing through the data base, but
that it is too slow and cumbersome a method for data
input in real design work. Also the need for some library
mechanism for handling type objects was recognized.
This would correspond to the use of symbol libraries in
CAD systems or to the use of a restricted number of

predefined wall types defined in section drawings and
specifications in manual draughting. The division of labor
between the hypermedia interface and the relational data
base seemed to work quite well.

RELATIONAL DATABASE AND CAD
PROTOTYPE (NO. 4)

The fourth prototype®® specifically addresses the problem
of data entry in a form more suited to a designer’s way
of working. It also contains a more extensive conceptual
model than the earlier prototypes.

The prototype has been developed as a part of the
third phase of the RATAS-project (1990-91) and its data
structures have been much more closely reviewed by
experts from industry, than was the case of the earlier
prototypes. The basic aim has been to define the object
classes, attributes and relationship types needed for
information transfer from the designers to the contrac-
tors. Specifically the information should be sufficient for
the quantity estimation for costing and bidding and also
the management of quantities in the later production
stages of a project. The emphasis has consequently been
on crude dimensions and material specifications etc. and
not on the definition of shape information sufficient for
3-D visualizations.

The prototype runs on a Macintosh II with § Mbytes
of main memory and consists of a commercial CAD
system (Intergraph’s Microstation), Oracle and Supercard
(Fig. 8). The main factor in the choice of CAD system
was the built-in communication facility with the rela-
tional database. Despite this, third party programming
work had to be ordered to tailor the data exchange to the
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Oracle-relational database
All product model objects’
quantity data is stored in data tables

Microstation CAD-system
All product model objects have
corresponding graphical elements

I

[5

User defined different output documents
o for different users o for different purposes ¢ for different phases e

Fig. 8. The overall architecture of the fourth prototype, which
integrates a CAD-system, a relational database management
system and a hypermedia software.
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Fig. 9. The total information describing an object instance is

distributed in two different relational data tables. In a certain

sense this is a way of emulating inheritance in a relational
database system.

needs of the project. Only the basic drafting and 3-D
modelling capabilities of the CAD software have been
used : applications oriented symbol libraries or facilities
were out of the question. This also makes the results
more widely applicable, since any CAD-system with
similar basic facilities and with the capability to
communicate with relational databases could be used in
implementations.

The structuring of the data in the relational data base
differs from the earlier prototypes. An important

distinction has been made between information ap-
plicable to all objects in the database and information
specifying data particular to specific types of similar
objects (within a class) with several occurrences in the
data base. The total information related to a single object
can consequently be collected from two separate tables,
one table containing all objects in the database with
location information, and secondly from a class-specific
table containing descriptions of all the object types
within that class (Fig. 9). This is in fact an emulation of
an inheritance mechanism with one supertype or class to
which all objects belong. This structure considerably
decreases the size of the database and allows certain
operations to be performed at the type level rather than
at the instance level.

In this prototype the definition of a unique identifier
for each object instance assumes added importance. This
is due to the fact that this unique identifier is the key
through which we can keep track of the instance’s
appearance throughout the design, construction and
building maintenance process in different drawing views,
bills of materials, etc. Once an object has been created
this identifier sticks with the object through its lifetime as
surely as the social-security number sticks to a citizen of
Finland. The actual coding protocol used in the identifier
is irrelevant provided it is unique within the database. It
could in fact be generated by a suitable random number
generator. In practice it might however be a good idea to
use a naming convention which, as far as possible, is
based on methods used in conventional design practice
(for instance, for numbering rooms in a building).

The basic media for entering the information about
the objects is the CAD system. Symbol libraries
corresponding to all the object classes in the conceptual
model have to have been created (Fig. 10). In some
classes type objects can also appear in the symbol
libraries. The designer is not allowed to use any
elementary graphics since this information bears no
relation to the classes and could not be transferred to the
relational data base. Dimensioning lines, etc., are
obviously not transferred, but can be seen as part of the
user interface of the CAD-system. In the transfer to the
relational data base, the location of the component in the
CAD-model’s coordinate system is transferred, as well as
the identifier of the object, data about the designer and
versioning information.

The data stored in the relational data base is not
sufficient for the full re-creation of the CAD-drawing.
Consequently the CAD-model needs to be stored in the
format of the native CAD-system and any additions of
objects, deletions of object or object moves have to be
done first via the CAD-system. In this sense the data
transfer in the prototype is unidirectional. In the long
run and for reasons of database integrity, automatic
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Fig. 10. The representation of object classes and type objects in the CAD-system is through symbol libraries.

creation of objects by knowledge based systems, etc., the
link should preferably be bi-directional.

Once the information is stored in the relational
database it can be handled and viewed via the Supercard
user interface. The user interface was in this prototype
specifically developed with the handling of quantity data
in mind. Different kinds of tables, which correspond to
the information produced today in manual quantity take
off work, can easily be produced, and this information
can be used for costing. The values of crude shape
attributes, as well as rules for calculating amounts of
concrete and reinforcement needed etc., are usually
specified on the type object level. The visual appearance
of this information is the type object card (Fig. 11),
which can be accessed any time, and makes this
information very transparent to the end user.

In discussions with practitioners the importance of
transferring the data base information itself, rather than
the above mentioned predefined tables and documents
has been stressed again and again. Given the data base
and suitable software, a contractor can generate the
tables he is used to, but he can also use the information
in more flexible and unforeseeable ways. In order to
demonstrate this, the contents of the Oracle data base on
the Macintosh was transferred to a DBaselV database on
a standard PC and its query facilities were used to
produce output information.

The path from this prototype to commercial applica-
tions could be quite short. At the end of the project the
specification of the object classes, attributes and relation-
ships was published and possibly the national RATAS
committee may give them some formal status (guide-
lines). It is now up to developers of CAD-applications
and of cost estimation and production management
software to write commercial applications which can
produce and extract information according to this
specification.

20

Oracle-relational database

Supercard user interface

Data from
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Fig. 11. In the type object cards calculation methods, integrity
rules, etc., attached to object classes and type objects can be
shown to the program user in a transparent way.

Among the lessons learnt is that we still need more
processing power in workstations to achieve acceptably
short response times with software of this complexity,
even with relatively small databases. The notion of type
object, which has been discussed also in other models
than the RATAS-model (the Dutch GARM-model,?* the
Swedish Neutral byggproduktmodell,®*) seems useful
both from a data management viewpoint and because it
reflects the way design actually occurs. A unidirectional
link from a CAD-system to a relational data base was
demonstrated in this prototype, but the goal in the long
run should be a multidirectional link, where changes to
data could be made in any software or user interface of
an integrated system and propagated to all relevant
places.

ECM 6
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CONCLUSIONS

Above all, the work on the four prototypes described in
this paper has enabled the researchers to spread the word
about building product modelling to practitioners. At
some point during the three-year project the research
team decided to start a log-book of all the demonstra-
tions given, and that log now contains around two
hundred entries, with an audience from one to about ten
people for each entry. It can thus be concluded that
several hundred people, of whom many are involved in
the development of computer applications for the
Finnish construction industry, have been exposed to
the object-oriented paradigm of product modelling.

From the researchers’ viewpoint the prototype work
has highlighted certain aspects of the implementation of
building product models, which did not receive much
attention in the earlier phase of the RATAS-project.
Above all this concerns the technical issues in implement-
ing certain data structures (relationships, inheritance) in
relational data bases. In contrast to some larger
prototype efforts abroad, where frames have been used
as the basic data model in the central data structures or
in neutral formats,?® ?° relational data bases were chosen
in this project. This was due to the strong impact that
relational data bases undoubtedly will have on con-
struction computing in the short run. Frames, object-
oriented programming and object-oriented data bases
have many nice features, but it will take some time before
they have a wide influence on tools widely used in
practice.

The prototypes also highlighted the importance of
good and innovative interfaces to design data. Clearly
product data models will not only be used as mechanisms
for data transfer between different computer applica-
tions, but they could also significantly affect the way
designers structure their own decision processes, their
perception of the building being modelled and user
interfaces to design software.® They could also provide a
way of thinking about buildings, which would bring
applications from diverse subdisciplines conceptually
closer to each other, with significant savings in the time
that end users need to learning new computer applica-
tions.
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