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Abstract

Quantum mechanical plane-wave pseudopotential (PWPP) calculations are
used to study properties of vacancies and oxygen-related defects in Si and
GaAs. Total energies, atomic geometries, charge states, ionization levels,
and local vibrational modes for the defects are reported.

The convergence of electronic structure calculations with respect to su-
percell size is studied for the vacancy (V) and divacancy (Va) in Si. The
negative- U behaviour has been explored in the case of V in Si. The dou-
bly negative charge state of V is shown to have a split structure which can
lead to ionization-enhanced diffusion of V. V5 in Si is shown to have four
separate charge states in agreement with experiments. It is found that the
neutral (V) and negative divacancy (V3 ) have a mixed structure, including
both pairing and resonant-bond characters, V§ being more of the pairing
type and V5 more of the resonant-bond type.

The ionization levels, microscopic structures and local vibration (LV)
modes are calculated for vacancy-oxygen (VO) defects in Si. The ioniza-
tion level for VO is found near the computational conduction band and the
charge-state induced shift in the LV frequency is predicted to be upwards as
a function of defect level occupation, in agreement with experiments. VOq
is found to have two degenerate asymmetric stretching modes and thus only
one observable mode despite the two oxygen atoms.

The LV frequencies for electrically inert oxygen interstitials (O;) and oxy-
gen dimers (Oo;) are presented. The computed asymmetric stretching fre-
quency of the puckered O; is found to be slightly underestimated compared
to the experimental value. Two competing structures for Oy; are found: the
staggered O;-Si-O; configuration and the skewed O;-Si-Si-O; configuration.
The changes in the LV frequency spectrum with isotopic substitutions of O
are calculated, and the experimental frequencies are shown to originate from
the staggered form of O;. The effects of external pressure on structures and
vibrational frequencies are reported.

Various oxygen chain models for thermal double donors (TDDs) in Si are
presented. The first three TDDs (TDDO0-TDD2) are found to consist of
one four-membered ring where two O atoms are bonded to two common
Si atoms with one or two adjacent interstitial O atoms. The following
TDDs (TDD3-TDD7) are found to consist of similar rings with flanking O;
atoms. The anomalously fast aggregation of oxygen may be explained by
the diffusion of these structures. At the later stages shallow donors with a



central ”di-Y-1id” core are found to become energetically competitive with
the ring structures.

An isolated oxygen atom in GaAs is shown to occupy an interstitial Ga-
O-As position and to be electrically inactive. The properties of the sub-
stitutional off-centered oxygen in arsenic vacancy (Oag) are shown to be at
variance with the experimental results. A close similarity of the (Asga)2-Oas
complex with the experimentally observed Ga-O-Ga defect is found. Espe-
cially the negative-U and charge-state induced shifts in local vibrational
frequencies are in close agreement with the experiments.
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1 Introduction

The most important method to grow bulk Si and also GaAs is the Czochral-
ski (Cz) method. In this method a crystal ingot is pulled from the melt held
in a rotating quartz crucible. As a byproduct of this process oxygen is in-
corporated into the crystal lattice.

Oxygen in Cz-Si is supersaturated and inhomogeneously distributed with
a concentration of the order of 10'® cm™3. Therefore heat treatments are
used to homogenize the oxygen distribution. At elevated temperatures oxy-
gen complexes dissociate and a high concentration of interstitial oxygen (O;)
forms. At annealing temperatures higher than 350°C, O;s start to diffuse
and cluster exhibiting donor character form. As a first step in clustering,
single O;s bind to interstitial dimers Os;, which have a decisive role in the
donor formation process [1-3]. There are several families of thermal donors
in Si, their existence depending on the annealing temperature [4-7]. The
most important ones from the technological point of view are the thermal
double donors (TDDs) [4,5]. Unfortunately, performing electronic structure
calculations for the TDDs is difficult because the highest occupied electronic
state is spatially extended [5] and the TDD core structure consisting of
oxygen atoms is larger than the supercell sizes typically used in electronic
structure calculations. This has hindered electronic structure calculations
related to TDDs.

[on implantation is a widely used technique for the introduction of dopants
into semiconductors. Doping of semiconductors with foreign atoms leads to
changes in the electronic character of the semiconductor: it can have an
excess of electrons (n type semiconductor) or an excess of holes (p type
semiconductor). As a byproduct of ion implantation interstitial-vacancy -
pairs are produced. The vacancy (V) in bulk Si is the simplest example of a
native point defect in a semiconductor lattice. Vacancies have an important
role, e.g., in point-defect mediated diffusion and therefore the knowledge of
the ionic and electronic structures of V is important. Experimentally, vacan-
cies in Si have successfully been monitored using the electron paramagnetic
resonance (EPR) technique [8]. Despite of its importance the theoretical
description of V in Si has been turned out to be a difficult task.

The divacancy (Vz) in Si is attractive from the theoretical point of view
because it has been identified by means of EPR and many of its properties
are known. Early EPR measurements and linear-combination-of-atomic-
orbitals (LCAO) models give a pairing mode relaxation for both positive



and negative charge states of Vg [9]. The pairing mode relaxation of Vg
was later questioned by Saito and Oshiyama [10].

Annealing of irradiated silicon produces off-site substitutional vacancy-
oxygen pairs (VO) and more complicated oxygen-related defects. VO is
the famous A center with an ionization level at E. — 0.17 eV (E, denotes
the conduction band minimum) [11,12]. The structure of VO~ has been
determined experimentally already in the sixties [11,12] and therefore it is
suitable for testing computational methods.

GaAs is the most important compound semiconductor. Especially it is
used in applications requiring high performance and fast electronics. GaAs
crystals can be grown with a variant of the Czochralski method, called
the liquid encapsulated Czochralski (LEC) method. In this method liquid
GaAs is held in a quartz crucible and there is considerable amount of oxygen
present in the as-grown crystal. The structure of oxygen defects in GaAs
has so far been assumed to resemble the ones in Si.

In this thesis, defects in semiconductors are studied using ab initio calcu-
lations. In Publication I, V in Si is studied as a test case for the convergence
of the electronic structure calculations. In Publication II, a spin-density
study of the V5 is carried out. Publication III contains a systematic study
of oxygen-related defects in Si. Publication IV is a computational study of
the vibrational properties of oxygen dimers in Si. Publication V contains
a systematical study of the structures of the thermal double donors in Si.
In Publication VI, the Ga-O-Ga defect structure in GaAs is reported. The
summary part of the thesis contains also novel complementary results which
were not included in Publications I-VI.

The summary part of this thesis is organized as follows. The computa-
tional methods are reviewed in Section 2. The results obtained are reviewed
in Section 3. A brief summary is given in Section 4.



2 Electronic Structure Calculations

The fundamental problem of computational solid state physics is the solu-
tion of the many-body Schrodinger equation for a system containing inter-
acting electrons and ions. Usually the time scale of electrons is several orders
of magnitude smaller than the ionic time scale and therefore it can be as-
sumed that the electrons adapt instantaneously the current ionic positions.
In this Born-Oppenheimer approximation electrons follow adiabatically the
movements of the ions. Even with this approximation the problem is still far
too complicated to be solved in the actual solid state environment. In 1964
Hohenberg and Kohn [13] and in 1965 Kohn and Sham [14] introduced the
density-functional theory (DFT) that reduces the problem to the effective
one-electron problem. During the last decades there have been numerous
successful applications of DFT to solid state problems. Combined with the
Hellmann-Feynman theorem [15], DFT forms an efficient method to study
electronic, structural and dynamic properties of matter.

2.1 Density Functional Theory

The Kohn-Sham total-energy functional for a general electron-ion system is
written as follows (Hartree atomic units are used throughout):
wiv(r)>

Bul{bia} Rad] = 3 fia (alr) |5V

/
o L )
2 |r — 1|
ZoZs
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+ /V}m(r)n(r)dr + = —_
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+ Exe[ng(r),ny(r)]. (1)

This total energy functional depends on the positions of atoms R, and
the single particle Kohn-Sham spin-orbitals v;, only. The first term is the
kinetic energy of non-interacting electrons where the summation runs over
all spin-orbitals (i for orbital and o for spin) and the occupation number
fio gets values 0 or 1. The electron density is calculated from the single
particle Kohn-Sham spin-orbitals

n(r) = Zf10|1/}w<r)|2 (2)
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The second term in Eq. (1) is the Hartree energy, the energy term arising
from the electrostatic electron-electron interaction. The third term is the
interaction energy of the electron density in the potential Vi, created by
the ions. The fourth term describes the ion-ion interaction of ions with
point charges Z, and Zg. The last term is the exchange-correlation energy.
All quantum mechanical many-body effects are buried in this term which
then contains approximations made forming the Kohn-Sham total energy
functional. The exact form of E,. is not known. The most widely used
approximation is the local spin-density approximation (LSDA), where the
exchange-correlation energy is approximated by the exchange-correlation
energy of the uniform electron gas

Brolny (1), my(v)] = [ ehom (1 (1), my (0))m(x) . 3)

where €, is the exchange-correlation energy density of the homogeneous
electron gas and n; and n| are the densities of spin-up and spin-down
electrons, respectively. The use of E,. of the homogeneous electron gas
was originally proposed by Kohn and Sham [14] in the non-spin-polarized
form and later augmented to this spin-polarized case by Gunnarsson and
Lundqvist [16]. For practical use in DFT, €0, has been calculated by the
Monte Carlo methods [17] and has several parametrisations [18,19]. Re-
gardless of their simplicity LSDA and the non-spin-polarized local density
approximation (LDA) [obtained by setting n(r)-n;(r)=0] have been suc-
cessfully used in calculations during past decades. Especially structural
properties are obtained in agreement (with the known exceptions, e.g., too
small bond lengths for molecules) with experiments. When applied to semi-
conductors, the most severe deficiency of LDA is the size of the forbidden
energy gap. For example, the size of the calculated Si bandgap based on
Kohn-Sham one-electron states is approximately one half of the experimen-
tal value, only 0.6 eV. This influences the ionization levels (to be discussed
below), especially in the upper part of the energy gap. Another LDA-related
feature is the underestimation of the lattice constant and too large cohesive
energy for solids. This leads usually to overestimation of the local vibration
(LV) frequencies by a few percents.

Several attempts have been made to improve LDA. These include gen-
eralized gradient approximations (GGA) [20], local mass approximation
(LMA) [21], and screened non-local exchange potential (sX-LDA) [22]. None
of these have succeeded in correcting all errors and still being useful in large-
scale electronic structure calculations.



Taking the functional derivative of Eq. (1) with respect to ¢}, results in
the Kohn-Sham equation for ¢, [23]

(—57+ Vi) (1) = i), @

Eq. (4) is an effective single-particle Schrodinger equation that has exactly
the same form as the Schrodinger equation for the non-interacting electrons
in an external potential. Here, the effective potential is

e%f = Vi + Vion + V;caca (5)

where V.7 is a functional derivative of the exchange-correlation energy with
respect to the spin density (n,) and Vj is the electrostatic potential due to
electrons.

The effective potential depends on the electron density, which in turn
depends on the spin-orbitals. Therefore the Kohn-Sham equations should
be solved in a self-consistent manner. After every update of spin-orbitals,
the corresponding electron density and the effective potential are to be
calculated. The corresponding new Hamiltonian then operates on the spin-
orbitals and so on. This should be continued until the total energy and the
spin-orbitals do not change more than a preset limit.

The Born-Oppenheimer approximation allows the ionic positions to be
treated as a set of parameters in Eq. (1). The Hellmann-Feynman theorem
used in the computational studies states that the forces on ions can be
calculated as derivatives of Eq. (1) solely with respect to ionic positions [15]:

o 8Etot

F, = :
IR,

(6)

According to the Hellmann-Feynman theorem the calculation of the ionic
forces reduces to the calculation of the derivative of the electrostatic energy
of the ion with respect to R. Hellmann-Feynman forces can then be used in
relaxing the ionic coordinates, obtaining the second derivatives for the LV
calculation or taking the next ionic step in molecular dynamics.

In this work plane-waves are used as basis functions to form ;,’s. This is
a natural choice, if combined with the periodic boundary conditions and the
supercell approximation. Plane-waves form a complete set that is simple
and unbiased. The completeness means that an arbitrary accuracy can
be obtained by increasing the number of plane-waves. Hellmann-Feynman



forces are easy to calculate for plane-waves because they do not depend
on the ionic positions. It is especially important for calculations that the
fast Fourier transform (FFT) can be used in switching between the real
and reciprocal spaces. This facilitates the calculations because some of
the energy terms are more easily calculated in the real and others in the
reciprocal space.

Inner electrons that have low eigenvalues (for example 1s, 2s, 2p and 3s
in Si) are not affected by the chemical bonding which is basically due to
the valence electrons. Therefore it is not necessary to describe the former
explicitly in the calculations. By combining the ionic potential of the form
Z/r with the potential of the inner electrons in the pseudopotential decreases
the computational burden significantly. First of all, the number of electrons
(states) drops, because only 4 of 14 electrons in the Si atom need to be
treated as valence electrons. Second, the steep nature of the wavefunctions
of inner (or core) electrons would require huge kinetic energy cut-offs for
the plane-wave basis. Smoothing of the potential removes wiggles from the
valence wavefunctions and reduces the number of the plane-waves needed
to describe the wavefunctions.

Pseudopotentials are typically constructed for atoms and then applied
to solid state problems. The construction scheme can preserve the orig-
inal electron density inside some set radius, thus the method is norm-
conserving [24-27], or this requirement can be relaxed leading to a non-
norm-conserving or ultrasoft Vanderbilt pseudopotentials [28]. In this work
norm-conserving pseudopotentials are used for Si, Ga, and As, while ultra-
soft Vanderbilt pseudopotentials are used for O.

The special k-point sampling schemes can be used for the Brillouin zone
integrations. In this work the Monkhorst-Pack or uniform sampling [29],
the Makov-Shah k-points that minimize the defect-defect interaction [30],
and simple ['-point samplings are used.

Use of the periodic supercells to describe isolated point defects requires
supercells which are large enough to prevent spurious interactions between
the defects in the adjacent supercells. These interactions can be mechanical
(elastic) or electronic. Elastic interaction between the defect replicas hin-
ders the relaxation of the defect ionic structure. The electronic interaction
manifests itself in the dispersion of the defect levels in the supercell. This
means that the eigenvalues depend on the position in the k-space, which can
lead to the hybridization of the delocalized Bloch states and the localized
defect states.



Makov and Payne [31] discussed the correction of spurious Madelung-
type interactions of charged defects with their periodic replicas in solids in
supercell calculations. Using their theory the correction is estimated to be
of the order of 0.1 eV and 0.2-0.3 eV, for singly positive or negative and
doubly positive or negative charge states, respectively, when a 64 atom-site
supercell is used [32].

2.2 Defect formation energies

The energy required to form a defect in an otherwise perfect crystal is
the formation free energy (2 = E; — T'S). The entropy term can be
approximated to be constant, i.e. it does not change significantly between
different charge states of the defect. Thus, the ionization level positions can
be obtained based on Ef, only. For the thermodynamical concentration of
a defect the entropy term is essential. It contains both the configurational
entropy of a defect population and the local defect entropy, due to changes
in the vibrational degrees of freedom. The formation energy of a defect in
the charge state @ is given by [33-36]

Ei(Q) = Buor(Q) + Q(B, + 1) — Y ot 7)

where @ is the charge of the defect in units of the elementary charge, F, is
the valence band maximum and g, is the electron chemical potential relative
to the valence band maximum. The constituents of the last summation, ng
and pg are the number of the s type atoms in the supercell and the atom
chemical potential, respectively.

The values for the valence band maximum and the host atom chemical
potential are obtained from a defect-free bulk calculation by using the same
computational approximations as the defect calculations.

In the case of a compound semiconductor such as GaAs the atomic chem-
ical potentials are constrained by the equation

HGa + Has = /Ll()}lgks' (8)

pdlk - can be obtained from the total energy of the defect-free GaAs bulk,

but pgs, and pas are determined by the growth conditions. Setting fias
equal to the elemental value (from rhombohedral arsenic), so that the pg,



is determined from the equation above, describes the As-rich growth con-
ditions. The heat of formation (AH) for GaAs determines the range where
the energies can vary:

AH = UGabull) + Hasbulk) — Hemass (9)

where figabui) and fiasuk) are the values for the elemental Ga and As

bulk.

The low temperature form of SiO,, a-quartz, is used to obtain the chemi-
cal potential of an oxygen atom in Si. Similarly, in the case of oxygen defects
in GaAs, the chemical potential for oxygen should be calculated from some
relevant compound. The compound used in this work is GasOs.

After determining the chemical potentials, Eq. (7) can be applied to ob-
tain the ionization levels and formation energies for the defects. The ion-
ization levels mark the electron chemical potential values which change the
charge state of the defect to another with lower formation energy according
to Eq. (7). The binding energy of the system can also be calculated with the
help of the formation energies. For example the binding energy of oxygen
dimer is

By = 2E;(0)) — E¢(Os). (10)

The valence band maximum FE, has been corrected using the average
potential correction [36] as

E, = E,(bulk) + (Ve (defect) — Vgye(bulk)) . (11)

The average potential correction is needed because of the limited supercell
size. At the boundary of the supercell ("far” away from the defect) the dif-
ference in the average potential of the defect calculation and corresponding
bulk calculation reflects the supercell size effect. Basically this correction
aligns the energies so that comparison between different charge states can
be made.

2.3 Calculation of Local Vibrational Modes

For the calculation of the LV modes of a defect it is sufficient to consider
only a single supercell. This is because the interaction between the defect
replicas is neglibly small and has only a minor effect on the localized vi-
brations of a defect [37]. In contrast, the phonon density of states can not

9



be obtained without properly dealing with the periodicity. The total en-
ergy of a supercell can be written as a Taylor series around the equilibrium
positions of ions R,

Etot({Rai + Sai}) - Etot({Rai})
* 32 9R.0R,

at

B3

SaiSB3j + ... (12)

where s,; is the 7’th Cartesian component of the atomic displacement of the
ion a.. Neglecting higher order terms leads to the harmonic approximation
used here.

The derivatives of the total energy in Eq. (12) are called the coupling

constants
: 0 oF,
P = ( t‘”) . (13)
OR.; \ ORg;

They are obtained as numerical derivatives of the Hellmann-Feynman forces
in this work.

Using the standard method of substituting the normal mode trial solution

1 ot
Spi = ——"Upi € 14
Vars )
to the ionic equations of motion, the frequencies and amplitudes of the
displacements can be solved. The substitution results in the equations

~wP g + Y Dlug; =0, (15)
B

where Dg{ is defined as the dynamical matrix

o) = p—— (16)
Mo M3

In practice the LV mode calculations are done using the following proce-
dure. Selected atoms in the supercell are displaced to all three Cartesian
directions. After each displacement electronic structure for this configura-
tion is optimized and the resulting Hellmann-Feynman forces are calculated.
This is done for all atoms which were a priori considered important for the
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description of the local modes of the defect. The dynamical matrix is then
calculated by finite differences using these forces and displacements. The
normal modes and the corresponding vibrational frequencies can then be
obtained by diagonalizing the dynamical matrix [38].

The motion of the ions can be directly simulated with ab initio molecular
dynamics (MD). In the MD simulation the simulation time has to be chosen
so long that all relevant vibration modes have evolved several periods. If
the defect includes some light element, like oxygen, the highest LVs have
high enough frequency to be distinguished from the host lattice vibrations.
The frequency of this vibration mode can then be obtained from the power
spectrum of the velocity or position autocorrelation function of the ionic
coordinates [39]. These two methods produce similar frequencies, but with
the dynamical matrix method, also the normal modes are obtained.

It was found for the small 32 atom-site supercell that the interactions
between the localized modes of the defect in the central supercell and the
periodic replicas are insignificant. This was tested by taking a large super-
cell and different numbers of atoms around the defect into account in the
calculations. It turned out that in describing the localized modes such as
the asymmetric stretching mode of the vacancy-oxygen defect in Si only a
very limited number of atoms are needed [37]. More crucial for the cal-
culation is the convergence of the forces when the defect ionic structure is
optimized. The resultant ionic forces should be of the order of 0.5 meV/A,
if accuracy of a few cm™! is required in the calculated LV frequencies. An-
other important point is the convergence of the electronic structure in the
actual LV mode calculations. As a basic rule, the atom-shift-induced force
should be at least 100 times larger than the forces on other atoms that are
far away from the ion considered.

3 Results

3.1 Vacancies and divacancies in silicon

In Publications I and II the convergence of the supercell calculations for the
vacancy (V) and divacancy (V3) in Si has been studied. The ionic relax-
ations, defect formation energies, and ionization levels have been calculated
with several different supercell sizes and k-point meshes. Figure 1 shows
the convergence of formation energies and point group symmetries for the
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neutral V and V,. As can be seen, the convergence is slow for V and a
216 atom-site supercell is required to obtain the final Dy; symmetry (see
Fig. 2 for the relaxation modes of the monovacancy). In the case of Vj the
symmetry obtained in calculations is Sy with all supercells and the main dif-
ference is in different relaxation modes that all preserve the Sy point group
symmetry (see Fig. 3).

38} Vacancy
~ Daq
—. 36}
D Ty
Z 34}
é C D 2d
o) 2v
s 32 ~ Doy
c
9 3 o D -
g ~ Oy, 6 S, Ivacancy
-
5 28f 55
N S 2
5
2.6t
45 S
2.4} 64MP2 128r 2168
oar GarL 6AMP2 6AMP3 287 2167

Figure 1: Formation energies Iy and point group symmetries for the neutral
vacancy and divacancy in Si. Schematic figures of the symmetries of the
relaxation modes are given in Figs. 2 and 3. Integers on the x-axis denote the
numbers of atom sites in the supercell. MP2 and MP3 denote Monkhorst-
Pack 23 and 32 k-point samplings used.

Figure 4 shows the ionization levels for both V and V, obtained by solv-
ing p. from the equation E;(Q) = E;(Q’) using different supercells and
k-point samplings. Monkhorst-Pack (MP) k-point meshes give Ty symme-
tries for positive and neutral charge states and no negative- U effect!. This
is in disagreement with the negative- U property of V that has been the-

U is the energy change when a electron is placed on the highest energy orbital
occupied by one electron. If U is negative, the Coulombic repulsion energy between
electrons is exceeded by the energy obtained by ionic relaxation [40-42].
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Figure 2: Relaxation modes for a vacancy in silicon. a) Breathing mode
with symmetry Ty. b) Two short and four long bonds: Dsy. ¢) Two short,
unequal and four equal long bonds: Cy,.

Figure 3: Relaxation modes for divacancy in silicon. a) Ideal V,. b) Pairing

mode (Cyp,). ¢) Resonant-bond mode (Csyy,). d) Mixed mode (Ss).

oretically predicted by Baraff et al. [43] and experimentally confirmed by
Watkins and Troxell [8]. The reason for this discrepancy is the hybridiza-
tion of the defect state with the valence band states due to the dispersion
in one-electron states and MP k-point sampling. In contrast to these MP
results, all I'-point calculations give correctly a negative- U effect: the singly
positive charge state is thermodynamically metastable in agreement with
the experiments [8]. Recently Ogiit et al. [44] studied V by the cluster
method. Their results are in close agreement with the results obtained here
using largest 216 atom-site supercell.

The negative charge states of V behave in a complex way (Fig. 4). The
calculations with the MP k-points give all three charge states 0, - and 2-,
but the I'-point approximation results in the case of 64 and 216 atom-
site supercells in another negative- U phenomenon, now the singly negative
charge state being thermodynamically metastable. In the case of singly
and doubly negative charge states the calculations with the supercell of 216
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Figure 4: ITonization levels of vacancy and divacancy in silicon. Solid lines
represent the positions of ionization levels. The valence band top is located
at the zero energy.

atomic sites and the I'-point sampling result in an ion configuration of a split
vacancy shown in Fig. 5(a). In this configuration one of the nearest-neighbor
Si atoms has moved halfway towards the center of the vacancy resulting in
the D3y point symmetry, that is, the symmetry of an ideal divacancy. The
split-vacancy geometry has been suggested for the doubly negative vacancy
by Corbett and Bourgoin [45]. The stability of the configuration arises from
the reduced electron repulsion, because in the split configuration the deep
level electrons are localized over six dangling bonds. The split-vacancy is the
saddle point for the vacancy migration. Therefore, the charge state change
can result in a migration of the vacancy through silicon lattice without
thermal activation over a barrier.

In Publication II it was found that the computed formation and binding
energies and ionization levels of V5 converge nicely as a function of the su-
percell size (Fig. 4). Ionization level positions are slightly underestimated
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Figure 5: a) The split configuration of doubly negative Si vacancy. b) Up-
permost occupied electronic state of V5. The unpaired electron is located
opposite to the short bonds. The defect has an approximative Cy;, symme-
try.

and the binding energy of Vj is in close agreement with experiments. How-
ever, the resulting atomic geometries show a large scatter depending on the
approximations used. It was found that using the largest 216 atom-site su-
percell results in a mixed structure of the Sy symmetry for the positively
charged, neutral and negatively charged divacancies. The structures of the
positive and neutral divacancies are of the pairing type whereas the nega-
tively charged divacancy is of the resonant-bond type. Figure 3 shows the
different relaxation modes for V,. The resonant mode relaxation for Vy
was originally found by Saito and Oshiyama in their DFT supercell calcula-
tions using a 64 atom-site supercell [10]. Watkins and Corbett, interpreting
their EPR experiments using an LCAO-model concluded that both singly
positive and negative divacancies experience pairing type relaxations with
point group symmetry Cyy, [9] [See Fig. 3(b)]. According to their results
the uppermost occupied electronic state has a non-vanishing density on the
mirror plane [dashed line in Fig. 3(b)]. This was explained to be a result of
a large Jahn-Teller distortion that changes the order of defect levels in the
forbidden energy gap.

Figure 5(b) shows the uppermost occupied electronic state for the singly
positive charge state of V,. In the case of VJ the uppermost occupied
electronic state has a non-vanishing electronic density on the mirror plane
and the deviation from the Cy;, symmetry is small.

In the case of the singly negative V,, the mixed relaxation pattern is found
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with a resonant bond character [Fig. 3(c)]. Recently Ogiit and Chelikowsky
found based on their large cluster calculations that the relaxation mode
of V5 is due to a large Jahn-Teller distortion [46]. The changes on the
structure of Vs are highly anisotropic in nature. Even the largest supercell
of 216 atom-sites used in Publication IT is not large enough in the [110]
direction to allow proper relaxations.

3.2 Vacancy-oxygen defects in silicon

Electron and ion implantation produces Frenkel pairs consisting of Si inter-
stitial (I) and V. Most of these pairs recombine and only a small fraction
survives. V and I are mobile at room temperature and are known to con-
tribute to the self-diffusion in Si significantly. Their migration can be inter-
rupted by recombination, agglomeration into defect clusters such as V5, and
by interaction with impurities and dopant atoms. Experiments have shown
that vacancies form pairs with interstitial oxygen and phosphorus, while
interstitials replace carbon and boron atoms in the substitutional sites [47].
VO is observed in all electrical and optical studies irrespective of the type
of the irradiation used. VO has an acceptor level (0/-) near the conduc-
tion band minimum [48-50]. The structure of the negatively charged VO
has been established by EPR measurements [11,12], and LVM studies have
shown that the structure of the neutral defect deviates only marginally from
this [51]. The diffusion barrier for VO is low, 1.4-1.8 eV compared to 2.53
eV for O; [52,53].

Table 1 shows the calculated and experimental frequencies related to VO
and other complexes studied in Publication III. The calculated asymmetric
stretching frequencies of neutral defects are overestimated (probably due to
the LDA overestimation of the bonds) but the isotopic shifts are in excellent
agreement with the experimental values. A larger difference is found in the
charge-state induced shift of the asymmetric stretching mode for VO. The
calculated value is only 7 cm™! while the experimental value is 50 cm™!.
The reason for this is probably related to the insufficient relaxations due
to the small 32 atom-site supercell used in the calculations. The acceptor
level is found 0.4 eV above valence band top near the calculated conduction

band minimum, in qualitative agreement with the experiments.

It is interesting to note that the highest LV frequencies of VO complexes
are generally lower than those measured for the thermal donors. Therefore
bare VO complexes are not suitable thermal donor candidates. They should
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Table 1: Asymmetric stretching mode frequencies for VO, VO,, and V,O.
The isotopic shifts (10— 180) are given in parentheses.

| [ VO VO]~ VO, V0]
Calculations: | 843 (37) 850 912 (41) 829

Experiments: | 835¢ (37)® 885% 895¢ (39)¢ -
“Ref. [51], *Ref. [54], ‘Ref. [55], Ref. [56],

have flanking interstitial oxygen atoms that could generate higher LV fre-
quencies. It should also be noted that VO complexes studied in Publication
III are not shallow donors but acceptors.

The possibility of silicon interstitial (I) ejection can be studied with the
formation and binding energies. The calculated energy gain when I and
V recombine is several electron volts. This is reflected also to the process
where I recombines with VO complexes. In the case of VO the reaction is:

VO+1—-0;  (6.8¢V) (17)
and with VO,

Thus it is not likely that I's would be ejected from small O; chains. However,
the binding energy drops rapidly with increasing chain size and I ejection
may take place in the case of the larger O; chains.

In the annealing of VO and V3 second order defects such as V,0 and
VO, are formed. The symmetry of VO, was found to be Dyy and the
normal modes of the oxygen atoms in the asymmetric stretching mode are
orthogonal and decoupled. This leads to a degenerate asymmetric stretching
mode with a slightly higher frequency than the corresponding frequency of
VO.

V50 is shown to have a high-spin (S=1) state 0.18 eV higher than the spin-
compensated state in agreement with the experiments [57]. The ionization
level associated to this complex is found to lie 0.34 eV above the valence
band top. The highest vibrational frequency of V5,0 is lower than the
corresponding frequencies of VO and VO,.
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3.3 Interstitial oxygen complexes in silicon

Isolated interstitial oxygen (O;) is the dominant form of oxygen in Cz-Si
after the homogenizing heat treatments. As a fingerprint of O;, infrared
(IR) absorption spectra show a peak related to the Si-O-Si at 1106 cm™!
and 1136 cm™! at room temperature and the low temperatures, respec-
tively [58-60]. The large temperature shift may indicate possible anhar-
monicities. No other known oxygen-related defect exhibits such a large
shift in the LV frequency. In Publication III it was found that the struc-
ture of O; is bond-centered with oxygen atom displaced slightly from the
actual bond center forming a puckered structure. The bond center bar-
rier is small (20 meV) but nonzero. The upper panel in Fig. 6(a) shows
the calculated and experimental frequencies related to O;. The calculated
asymmetric stretching frequency of 1098 cm™! is slightly below the experi-
mental value. This and the other differences between the calculations and
experiments may be a reflection of the anharmonicity of O;. In Publication
ITI a qualitative agreement in the pressure coefficient of the asymmetric
stretching vibration mode was found: the frequency drops when the exter-
nal hydrostatic pressure in the supercell was risen, in agreement with the
experiments [61].

O;s become mobile at temperatures larger than 350°C and begin to ag-
glomerate and form first oxygen dimers. In Publications III and IV two
electrically inactive Oo; structures were studied. The staggered Si-O;-Si-O;-
Si and skewed Si-O;-Si-Si-O;-Si structures are nearly degenerate in energy
and were found to have binding energies of 0.2 and 0.1 eV, respectively.
The lower panel of Fig. 6(a) shows the calculated LV frequencies for the two
dimer structures and positions of experimentally measured peaks [3,62,63].
As can be seen the experimental frequencies of Oy at 1060, 1012, 690, and
556 cm ™! are most naturally associated with the staggered Q. The experi-
mental frequency of Oy at 1105 cm™! is found to originate from the skewed
configuration of Oy;.

Figure 6(b) shows the LV frequencies of different isotope configurations
of Oy. The calculated LV frequencies for the staggered dimer and their
isotopic shifts agree closely with the experimental values, whereas those for
the skewed dimer show considerable differences.

The differences in the LVs for the two dimer structures can be explained
with the variation of the strength of interaction between the oxygen atoms.
Closely placed O;s cause larger splittings in the LV frequencies due to their
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Figure 6: a) Local vibration frequencies for O; and Oy. CALC, EXPT,
SK, and S denote our calculations, experiments from Refs. [3,59, 62, 63],
(calculated) skewed O;-Si-Si-O; and staggered configurations, respectively.
The experimental dash-dotted bar in the lower panel belongs to a different
configuration than the solid bars. b) LV frequencies for Oy with different O
isotopes. The uppermost panel shows the experimental frequencies [3,62],
the middle panel shows the frequencies for the staggered Os; and the lowest
panel shows the vibration frequencies of the skewed O;-Si-Si-O;.

mutual interaction. In the skewed configuration the oxygen atoms are sep-
arated by two silicon atoms whereas in the staggered configuration only by
one silicon atom. Thus oxygen atoms have a stronger interaction in the
latter case [see the lower panel of Fig. 6(a)].

In Publication V the lowest energy configurations for the electrically inert
O3; and Oy were calculated. The configurations turned out to be staggered
[110] chains. Table 2 shows the formation and binding energies for the first
five electrically inactive complexes. The formation energy per oxygen atom
drops when the oxygen cluster size increases. Therefore the binding energy
of a single oxygen in a cluster increases with increasing cluster size. Thus
it can be concluded that during annealing and in the TDD growth process
Oy chains form and should also be observed in IR experiments. The LV
calculation for the staggered Os; gives a triplet of asymmetric stretching
frequencies at 984, 947, and 900 cm ™! below the corresponding Oo; doublet
at 1033 and 984 cm~!. Therefore this frequency of Os; may be related to
the 1005 cm™! frequency observed in the IR absorption experiments [64].
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Table 2: Formation and binding energies of neutral interstitial oxygen com-
plexes.

’ Complex ‘ Ef ‘ Ef/NO ‘ Oni VS. IlOi ‘ Oni VS. O(n—l)i & Oi ‘

O 1.1 1.1 -

Oy 2.0 1.0 0.2 0.2
Og; 2.8 0.9 0.5 0.3
Oy 3.3 0.8 1.1 0.6
Os: 3.8 0.8 1.7 0.6

3.4 Structures of thermal double donors in silicon

When Czochralski-grown Si crystal is annealed at 300-550°C thermal donors
form. Thermal donors were first observed over 40 years ago [4] and since
then they have been studied extensively [65-69]. Thermal donors have
been found to consist of TDDs and single donors called shallow thermal
donors (STD). In addition, at higher annealing temperatures a third family
of donors, with a continuous distribution of energy levels is formed [70].
In 1978 two different thermal donors were detected with EPR. They were
named NL8 and NL10 (the former being the donor considered here) [71].
Later it was found that both NL8 and NL10 consist of a series of donors.
Recently, NL10 was shown to contain hydrogen or aluminum in the core
and to be related to the STD [72]. The NL8 defect signal was found to
consist of several TDDs, evolving with time. Subsequently, up to 17 TDDs
have been observed [5,73,74]. The (0/+) and (+/++) levels of TDDO are
around E. — 0.07eV and E. — 0.15eV, respectively and they shift upwards
with increasing TDD number [5,65,75]. The main contribution to NL8
comes from TDD3. Both EPR and electron nuclear double resonance (EN-
DOR) measurements require high concentration of donors and thus long
annealing times. Long anneals destroy early donors (TDDO0-TDD2) and
thus these experiments give information only on TDDn’s, n>2. The sym-
metry of TDD3 was deduced to be orthorhombic-I or Cy, with possible small
deviations [65,76-78]. Thus the defect has two symmetry (110) planes and
a <001> symmetry axis. Measurements with oxygen isotope 17 showed
that oxygen atoms lie in one (110) plane, and that no oxygen atoms are on
the Cq axis [77,78]. TDDs are believed to have a common core into which
oxygen atoms are added in the (110) plane. To maintain the Cy, symmetry,
oxygen atoms are to be added in pairs to the TDD core. If the O atoms
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are added one by one, then the symmetry should alternate between C;; and
Ca, [76].

Early TDDs (TDDO0O-TDD2) exhibit bistability: they have electrically
neutral counterparts (X states) [5,65,75,76]. TDDs and X states form
a negative- U-system with the levels at E. — 0.32eV and at E, — 0.22eV [5]
for TDD1 and TDD2, respectively. The X states can be frozen-in, if the
crystal is cooled in darkness from room temperature to the temperatures
where structural transformations are not possible [5].

(a) (b)
VO A LA

Figure 7: The calculated three-oxygen structures, a) O;-Oq;, b) Staggered
O3;.

The calculated O;-Os, structure shown in Fig. 7(a) consists of one O; and
one four-membered ring (two oxygen atoms - both denoted by O, - bonded
to two common Si atoms). This structure was originally proposed by Snyder
and Corbett [79]. Chadi obtained a Cy, symmetric configuration with an O
atom on the C, axis. He also found that small deviations from the perfect
Cq, symmetry lower the total energy by 0.07 eV [67]. In Publication V it
is also found that this Cy, symmetric configuration is unstable and relaxes
to a structure shown in Fig. 7(a) in agreement with Ramamoorthy and
Pantelides [69]. O;-O,, has an electronic state near the conduction band
and it is thus a thermal donor. O;-O,, has a bistable electrically inactive
configuration shown in Fig. 7(b) which is formed from O;-Oq, by shifting
one Si atom in the (110) plane. Since O;-Os has the lowest energy of
three-oxygen chains, it is assigned to TDDO.

Adding one oxygen atom to the O;-O,, structure results in O;-O,,-O;
shown in Fig. 8(a), or a more asymmetric Og-Oy, structure [Fig. 8(b)].
These both have a donor level near the conduction band minimum (See the
insert in Fig. 10 below). 0;-O,-O; and O9-O4, have a common bistable
electrically inert Oy configuration shown in Fig. 8(c). Aberg et al. studied
the TDD formation process using kinetic models based on IR absorption
data [64]. They found that TDD2 could be formed from TDDI1 via re-
configuration by migration of a single O;. The calculated barrier between
OQi—OQr and Oi—OQr‘Oi is IOW, equal to 0.36 eV. 021‘021- and Oi—OQr‘Oi are
assigned to TDD1 and TDD2, respectively.
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Figure 8: a) O;-04,-O;, b) O9-04,, ¢) Staggered Oy;, d) 0;-0,,-O;, n=3.

Adding more oxygen atoms to the O4 chain results in a series of O;-O,,-O;
donors, n=3-8 having the alternating C,,-Cy;, symmetry: the chains with an
even number of oxygen atoms have the symmetry of Cy;,, those with an odd
number the symmetry Csy,, in agreement with the experimental information
on TDDs [65,76-78]. However, the O;-O,,-O; structures (n=3-8) have one
oxygen atom on the Cy axis. Since ENDOR and EPR experiments do not
always detect light elements on the Cy axis of a defect [80] and O;-O,,-O;
(n=3-7) are found to be the most stable among the possible candidates
of donors including 5 - 9 O atoms, they are identified as TDD3-TDD?7,
respectively.

One of the oldest and most popular models for the TDD cores is the so-
called di-Y-lid configuration [O;-Ogy-O;, shown in Fig. 9(a)]. One reason
for its popularity is the Cy, symmetry without any O atom on the C, axis.
In Publication V it is found that the formation of the Si-Si bond drops
the donor level from the E. so that actually O;-O5y-0O; is a deep donor.
Moreover, the formation energy of O;-Osy-0; is more than 0.6 eV higher
than that of O;-O4,-O; and Os-Os,.

@
T E%?féé

Figure 9: The calculated di-Y-lid configuration O;-O9y-0O; a) ) Neu-
tral configuration derived from O;-Osy-O; configuration.

The calculated formation energies per oxygen atom and the Kohn-Sham
donor levels are given in Fig. 10. The formation energy per oxygen atom of
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the ring structures saturates to the value of 0.4 eV, while that of the di-Y-lid
structures steadily decreases when N, < 10. This is due to the larger ability
of the di-Y-lid core to deform and release the strain caused by oxygen. The
decrease leads to a crossover at 10 oxygen atoms, after which the di-Y-lid
structures are energetically more favorable. The di-Y-lid structure has a
stable configuration shown in Fig. 9(b) in which the silicon atom - crucial
to obtain threefold coordinated oxygens - is shifted in the <001> direction
near to the T interstitial site. This breaks the Si-O bonds and removes the
donor character of the defect. The Si atom at the T, interstitial site is not as
strongly bonded to the oxygen chain as in the original three-valent position.
The ejection of I from the oxygen chains N, > 10 leads to the increase in I
concentration, which has also been observed in experiments [81].
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Figure 10: Formation energy per oxygen atom. Insert: behaviour of donor

level position as a function of the number of oxygen atoms. Rings and
diamonds denote ring and di-Y-lid structures, respectively.

Further evidence on behalf of ring structures is given by the behaviour of
the Kohn-Sham donor levels as a function of the number of oxygen atoms
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in the TDD (see the insert of Fig. 10). As observed in IR absorption mea-
surements [5,73,74,76] the donor level approaches similarly the conduction
band minimum with increasing TDD number.

3.5 Oxygen-related defects in GaAs

In LEC-grown GaAs isolated oxygen impurities occur in the interstitial (Ga-
O-As defect) and in the off-center substitutional (Ga-O-Ga defect) positions.
A specific feature for the GaAs IR spectroscopy is the fine structure of
the LVM bands due to the natural isotopes of Ga: %°Ga and "Ga with
the abundances of 60 % and 40 %, respectively. Therefore the Ga-O-As
defect gives rise to a LV frequency doublet at 845 cm™!, corresponding to
two different Ga isotopes [82]. As in Cz-Si, interstitial oxygen in GaAs
is electrically inactive. Another set of LV frequencies are detected at 731
and 715 cm™! (denoted by A and B, respectively) [83]. These frequencies
show a characteristic triplet fine structure caused by the Ga isotopes [83,
84]. From the observed ¥O— 00 isotopic shifts in LV frequencies it has
been concluded that oxygen is involved in this defect [82] and thus the
frequencies originate from a Ga-O-Ga structure. The LV frequencies show
photosensitivity: in semi-insulating (SI) GaAs the band A can be converted
by illumination into the band B via a third band B’ located 0.7 cm ™! below
B [83,85,86]. A, B’, and B are zero-, one-, and two-electron states of the Ga-
O-Ga defect, respectively [85]. The Ga-O-Ga defect exhibits a negative-U
property [85], B’ being a metastable paramagnetic state [87]. The ionization
levels are 0.15 (level filled by one electron) and 0.62 eV (level filled by two
electrons) below the conduction band [85].

In Publication VI the origin of these LV frequencies in GaAs were studied.
The assumed similarity between oxygen-related defects in Si and GaAs has
led to a proposition that the microscopic structure of the Ga-O-Ga defect is
similar to the A center in Si. In Publication VI it was shown that the prop-
erties of this model, O4 (an off-centered substitutional oxygen in arsenic
vacancy) are inconsistent with experimental data.

Recently, Taguchi and Kageshima [88] suggested that an interstitial oxy-
gen near the Ty position (denoted by Oyp) is the Ga-O-Ga defect. In their
calculations O is bonded to two Ga atoms and therefore this structure could
give the LV modes and frequencies similar to the experimentally observed
ones. In Publication VI it was shown that the oxygen atom near the T}
position is bonded to three or four Ga atoms depending on the charge state
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Table 3: Properties of defects having oxygen in substitutional off-centered
position.

Complex A’ B’ defect state

Calculations
VO in Si 843 850 antibonding
Oas 648 705 antibonding

(Asga)2-Oas 748 738 bonding

Experiments
VO in Si 835 885 antibonding
Ga-0O-Ga 730 715 -

of the defect. Furthermore, it was shown that the Ga-O-As defect is more
than 1 eV lower in energy than Oy, thus rejecting the model. The Ga-O-As
defect occupies a similar bond-centered structure as interstitial oxygen in Si.
The calculated asymmetric stretching frequency of Ga-O-As is calculated to
be 869 cm ™!, in close agreement with the experimental value of 845 cm™1.

In Publication VI also a new structure for the Ga-O-Ga defect is intro-
duced. It exhibits a strong negative- U character as well as LV frequencies
in agreement with the experimental values. This structure consists of two
arsenic antisites and one substitutional oxygen [(Asga)2-Oas]-

One of the strongest points on behalf of (Asga)2-Oas is based on a sim-
ple tight-binding argument. Figure 11(a) shows a tight-binding model for
(Asga)2-Oas. The downwards shift in the LV frequency A—B induced by
charging originates from the bonding nature of the defect state in the for-
bidden energy gap. In Table 3, the antibonding - bonding character and
the LV frequencies of some defects are listed. Similarity between Oaq and
VO in Si is apparent: filling the defect level of antibonding nature leads
to an increase in the LV frequencies. The defect level and the correspond-
ing wavefunction of (Asga)2-Oas is of bonding nature and its occupation
changes the structure of the defect in such a way that the LV frequency
shifts downwards. Figure 11(b) shows this bonding Kohn-Sham electronic
state of the defect in the plane containing the Asg,s and the oxygen atom.

Other studied structures include Asg,-Oas and Gaas-O;. Table 4 shows
the calculated formation energies for these and also for some relevant native
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Figure 11: a) Schematic tight-binding diagram for (Asga)s-Oas. The
negative- U effect is seen in the Kohn-Sham eigenvalue of the defect level.
b) The uppermost occupied electronic state in the plane containing arsenic
antisites and oxygen atom. The defect state occupied by one electron in the
neutral charge state is of the bonding type between the two Asg, defects.

defects.

The driving force in the defect complex formation is the Coulomb inter-
action between the constituents of the defect. Oppositely charged defects
feel mutual interaction, while there is an electrostatic barrier to overcome
for similarly charged defects.

Another contributing factor is the concentration of the defects. In SI
GaAs there are more Vg, than Va4 defects. It is also known that SI GaAs
contains EL2 defects about 10'° 1/cm? [89]. The EL2 defects have a (++/0)
level in the band gap and they are thought to be arsenic antisites. The
(Asga)2-Oas model contains two Asg,s and therefore the EL2 defect related
closely to Asg, may be an essential part of the Ga-O-Ga defect.

When the Fermi level is in the mid-gap, the thermodynamically stable
charge state of the Vg, is trebly negative. Therefore the formation of the
Asga-Vaa complex is facilitated by Coulomb attraction between it and the
positively charged Asg,. Vaga is known to be metastable with the competing
Vas-Asga structure [36]. This leads to a possibility of a defect (Asga)o-
Vs which is a native defect missing only an oxygen atom to form the
needed (Asga)2-Oas model of the Ga-O-Ga defect. In the As-rich GaAs the
formation energy of (Asga)2-Vas is lower than the formation energy of Vg
(See Table 4).
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Table 4: Formation and binding energies of neutral interstitial oxygen com-
plexes in As-rich GaAs. All calculations are done with the same 32 atom-
site supercell and MP k-point sampling. In the case of charged defects the
electron chemical potential is set to be in the midgap (pe = E,/2).

Complex E; (eV)

ASGa 1.7

Ve 2.1
(ASGa)Q—VAS 3.4
Vs 3.8
Ga-0O-As 3.2
Oxe 3.2
[ASGa‘OAs ]7 3.5
[(ASGa)Q-OAS ]7 3.9
Oy 47

Early studies by Watkins and Corbett showed that the A center reori-
ents with a barrier of 0.38 eV when uniaxial stress is applied to the Si
crystal [12]. However, Song et al. [90] concluded based on their piezospec-
troscopic measurements that the Ga-O-Ga defect does not exhibit such a
behaviour. Structurally both Oa¢ and O; have no mechanism which would
hinder their reorientation. The presence of two Asg,s in the (Asga)a-Oas
model explains the absence of reorientation in a natural way.
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4 Summary

In this thesis vacancies and oxygen-related point and extended defects in Si
and GaAs have been studied.

The plane-wave pseudopotential (PWPP) calculations give reliable elec-
tronic and structural information about defects in semiconductors. It has
been shown that using calculated defect formation energies and local vibra-
tions, defects can be efficiently identified. PWPP calculations are thus a
powerful method with a predictive power.

In Publications I and II the convergence of electronic structure calcu-
lations with respect to supercell size and k-point sampling in the case of
vacancies in Si were studied. It was shown that although the energies are
converged, obtaining convergence in the ionic structures requires large su-
percells.

Publication IIT contained a systematic study of VO complexes and small
interstitial oxygen complexes. The calculated properties of oxygen-related
defects were shown to be in agreement with the experiments. Especially the
ionization levels and local vibrational modes and frequencies are obtained
with reasonable accuracy.

Publication IV utilizes the information obtained in Publication III and
applies it to oxygen dimers in silicon. With the help of calculated local
vibrational frequencies the IR frequencies were assigned to the staggered
configuration of the oxygen dimer.

Publication V is the first electronic structure study of oxygen clusters
containing more than five oxygen atoms. The formation energy differences
between two competing oxygen-only structures were considered. First three
TDDs were assigned to structures consisting of one four-member ring, con-
taining two three-fold coordinated O atoms responsible for the donor prop-
erty and one or two adjacent interstitial O atoms. TDD3-TDD7 were as-
signed to structures consisting of more adjacent four-member rings with
interstitial O atoms at the ends. The chains with a central di-Y-lid core
were found to become energetically competitive with the four-member ring
structures at ten O atoms.

In Publication VI the structure of the Ga-O-Ga defect in GaAs was shown
to be (ASga)2-Oas. This defect exhibits the negative- U phenomenon and
charge-state-induced shifts in local vibrational modes, in agreement with
the experiments.
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