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Abstract

Methods are proposed for separation of harmonic sound sources using sinusoidal

modeling. A local nonlinear least-squares (NLS) frequency estimator is proposed

to resolve sinusoids that are close in frequency. An iterative analysis scheme us-

ing interpolated parameter trajectories and subtraction of detected components is

presented. A measure is proposed for testing the accuracy of the model.

0 Introduction

Separation of sound source signals is a task that is often encountered in digital audio.

Historically, it has been applied mainly in two areas: separation of speech of two or

more simultaneous talkers and segmentation and transcription of musical signals. The

currently active research �elds of sound source separation include compression coding of

audio signals, computational auditory scene analysis, automatic transcription of music,

and analysis/synthesis applications in computer music.

Separation of sound sources in a mixed sound signal is a di�cult problem and no reliable

methods are available for the general case. However, when certain assumptions can be

made on the properties of the sound sources or the signals they produce, a mixed signal

consisting of several contributing sources may be separated into signals that are perceptu-

ally close to the original signals before mixing. In this study, we concentrate on mixtures

of harmonic or nearly harmonic musical signals and their separation.

This contribution proposes three methods for improving the accuracy of sound source sep-

aration based on sinusoidal modeling: 1) a local nonlinear least-squares (NLS) estimator

for improving the frequency resolution in detection of parameters of sinusoids that are



close in frequency, 2) an iterative analysis scheme using interpolated parameter trajecto-

ries and subtraction of detected components, and 3) a measure for testing the accuracy

of the model.

The paper is organized as follows. Section 1 reviews sinusoidal modeling techniques and

presents an outline of the sound separation algorithm. In section 2, an iterative sinusoidal

modeling algorithmwith interpolated parameter trajectories is proposed that is well suited

for separation of harmonic sound sources. In addition, a measure is proposed that can be

used for estimating the relevance of each sinusoid. Section 3 describes a local nonlinear

least-squares (NLS) method for resolving parameters of sinusoids that are not resolved

by the discrete Fourier transform (DFT). Performance of the method is demonstrated in

Section 4 with a sound separation example. Finally, Section 5 concludes the paper and

proposes research paths for future developments.

1 Sound Separation based on Sinusoidal Modeling

One of the promising methods in sound source separation is sinusoidal modeling that is

based on the short-time Fourier transform (STFT) (McAulay and Quatieri, 1986; Smith

and Serra, 1987; Serra, 1989; Serra and Smith, 1990). It is suited for separation of sound

sources in musical signals since many musical instruments produce harmonic or nearly

harmonic signals with relatively slowly varying sinusoidal partials. Sinusoidal modeling

o�ers a parametric representation of these signal components such that the original signal

can be recovered by synthesis and addition of the components. By grouping the sinusoidal

components to correspond to harmonic tones, the essential features of the sound source

contributions may be separated. Note that since few musical instruments produce strictly

periodic signals, other methods for representing noise and transient components may have

to be used as well. At this time it appears a good compromise o�ering generality and

relatively good analysis accuracy.

1.1 Overview of Sinusoidal Modeling Techniques

Sinusoidal modeling is a set of techniques in which a sound signal is represented as a

set of sinusoids that are parameterized by amplitude, frequency, and phase trajectories

(McAulay and Quatieri, 1986; Smith and Serra, 1987). Later, the sinusoidal modeling

has been accompanied with models for noise (Serra, 1989; Serra and Smith, 1990) and for

transients and noise (Verma et al., 1997; Ali, 1995; Hamdy et al., 1996; Levine, 1998).

Numerous modi�cations and elaborations have been proposed for di�erent sinusoidal mod-

eling applications. Iterative sinusoidal analysis algorithms have been presented in (George

and Smith, 1992, 1997; Macon, 1996; Edler et al., 1996; Edler and Purnhagen, 1998). Het-

erodyne �ltering has also been applied in parameter estimation (Ding and Qian, 1997).

Analysis schemes using di�erent time resolution in di�erent frequency bands have been

presented in (Rodríguez-Hernández and Casajús-Quirós, 1994; Anderson, 1996; Levine et

al., 1997, 1998; Levine and Smith, 1998; Goodwin, 1997).
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Depalle and Tromp (1996) and Depalle and Hélie (1997) propose a method for improving

the estimation of frequencies, amplitudes, and phases of the sinusoidal components. The

method allows for reduction of the length of the analysis window to 1.5 periods of the

lowest frequency of interest. Prandoni et al. (1997) propose a method for window size

optimization using dynamic programming. A technique for synchronizing the analysis

windows of sinusoidal modeling to the transient events in the analyzed signal is presented

by Masri and Bateman (1996).

A method of signal component parameter trajectories estimation based on hidden Markov

models (HMM) is presented by Depalle et al. (1993). The method is promising since it is

reported that the parameters of two crossing partials can be determined using the method.

In general, the peak continuation algorithm of sinusoidal modeling is one of the most

crucial parts of the analysis system. Similar approaches for STFT parameter estimation

using HMMs are described by Streit and Barrett (1990) and Barrett and Holdsworth

(1993).

The above overview of sinusoidal modeling techniques is by no means complete. Its

purpose is just to get a brief review of some of di�erent sinusoidal analysis methods

presented in the literature. In the following, we discuss sinusoidal modeling in the context

of separation of harmonic sound sources.

1.2 Sinusoidal Modeling in Separation of Harmonic Sources

Figure 1 presents a general block diagram of sound source separation based on sinusoidal

modeling. Typically, a pre-analysis block is included to provide information for separation

of the sound source signals. One of the tasks of pre-analysis is to locate sound events and

it may include, e.g., pitch analysis and onset and o�set detection. Pre-analysis may

provide a basis on which the sinusoidal analysis parameters, such as the window size and

the hop size, are chosen. Its results are also used in grouping the sinusoidal components.

For instance, pitch analysis results can be used in selecting sinusoids corresponding to a

harmonic tone.

The sinusoidal modeling block is the core of the separation system providing a low level

representation of the signal as sinusoids. The sinusoidal modeling block may also include

noise and transient modeling functionalities in which case the low level representational

elements are sinusoids, noise components, and transient components.

After the signal has been decomposed into low level signal elements, a grouping algorithm

is used to form sets of the elements corresponding to sound events. In the broad sense

the grouping block may also provide association of the events into event streams each of

which corresponds to a single sound source. However, the stream formation is beyond the

scope this paper.

Figure 1 also provides a feedback path in which a prominent separated and synthesized

sound source signal may be removed from the original signal for more accurate analysis

of the remaining sound source components. A sound separation example presented in
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Section 4 shows how the iterative sound source separation may be used to detect weaker

tones that are not observable directly.

It is clear that sinusoidal modeling alone is not a su�cient representation for audio signals

in general and that methods for noise and transient components are required in a sound

separation system. However, in this contribution we concentrate on developing techniques

that improve the accuracy and quality of sinusoidal modeling. We assume that this will

also improve the performance of noise and transient modeling methods.

2 Iterative Analysis

In iterative sinusoidal modeling the analysis stage is a recursive algorithm which in each

step detects and removes the most prominent sinusoidal component. It thus automatically

sorts the sinusoidal parameters according to the prominence criterion used. Iterative

sinusoidal modeling is computationally considerably more expensive than the regular non-

recursive analysis but it may provide substantially more accurate parameter estimation,

as shown in an example below.

Figure 2 shows a general block diagram of iterative sinusoidal analysis. Analysis algo-

rithms used in parametric audio coding (Edler et al., 1996), analysis and synthesis of

musical tones (George and Smith, 1992) and of speech (George and Smith, 1997; Macon,

1996) are examples of this approach. The input to the recursive algorithm is a windowed

segment of an audio signal. In each iteration, the most prominent sinusoid is �rst de-

tected. In (George and Smith, 1992, 1997), the prominence criterion is the energy of the

residual signal, i.e., the aim is to select a sinusoid which minimizes the energy of the

residual signal that is obtained by subtracting the synthesized sinusoid from the original

one. In (Edler et al., 1996), on the other hand, the criterion is based on a psychoacoustic

model which attempts to select the perceptually most signi�cant component.

After the most prominent component is detected, its parameters are estimated. Using

the estimated parameters, a representation of the sinusoid is synthesized and removed

from the previous residual signal or the original signal in the �rst iteration. The removal

is typically performed by subtracting the synthesized sinusoid from the residual of the

previous step in the time or the frequency domain, depending on the parameterization.

Naturally, if time-domain subtraction is used, a new DFT representation is required in

each recursion. The recursion is continued until all signi�cant components have been

detected and removed. The signi�cance criteria are discussed in the following subsection.

An example shows the accuracy gain that is available using iterative sinusoidal analysis

instead of non-recursive analysis. The test signal consists of two sinusoids with frequencies

400 Hz and 600 Hz (sampling rate is 22050 Hz) with amplitudes 1 and 0.1, respectively.

A hamming window with a length of 46.4 ms (1023 samples) is used. Figure 3 depicts

the spectral representation of the windowed signal segment. The peaks are well-separated

and the di�erence of magnitudes is 20 dB.

In this example we are interested in accuracy of parameter estimation on the sinusoid at
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600 Hz when non-recursive and recursive sinusoidal analysis are used. In non-recursive

modeling, the peaks are located directly at the magnitude spectrum of Figure 3, the

location and magnitude estimates are �ne-tuned using parabolic interpolation (see, e.g.,

Smith and Serra (1987)), and the phase value is linearly interpolated from the phase

spectrum. In iterative modeling, the higher peak at 400 Hz is �rst detected, its parameters

are estimated and a sinusoid is synthesized. The synthetic component is subtracted from

the original signal and a �rst-order residual is obtained. The parameters of the weaker

sinusoid are detected in the residual signal.

The same experiment was conducted using two similar test signals that had the sinusoid

at 600 Hz with amplitudes of 0.01 and 0.5 corresponding to magnitude di�erences of 40

dB and 6 dB, respectively. Table 1 presents the results of the experiment. The results are

sorted in rows according to the magnitude di�erence of the two sinusoids. The second and

the third column tabulate the error in frequency estimation without and with iterative

analysis, and the fourth and the �fth column show the amplitude estimation error without

and with iterative analysis, respectively. The residual signals that are studied here are

obtained by subtracting the synthesized weaker sinusoid from the original weaker sinusoid.

The sixth and seventh column show the energies of the residual signals. Finally, the ratios

of the residual energies are presented in the eighth column.

This example shows the improvement in accuracy that may be gained by using an it-

erative analysis. With 40 dB magnitude di�erence of the sinusoids, the improvement is

most pronounced. Surprisingly, even when the magnitude di�erence is only 6 dB, the

improvement is clear. Note that in some applications the accuracy gain obtained with

iteration is not critical and the computationally more e�cient non-iterative analysis may

be preferred.

2.1 Signi�cance Measure for Detected Sinusoids

In iterative analysis, recursion is carried on until no signi�cant sinusoidal components

are found in the current analysis frame. In audio coding applications where the main

attempt is to minimize the signal bandwidth and where a psychoacoustic model is avail-

able, the signi�cance criterion is straightforward: detect components until according to

the psychoacoustic model no signi�cant components exist. However, in applications that

alter the signal in synthesis stage or synthesize only a part of the analyzed signal, e.g.,

in sound source separation, the psychoacoustic model simulating auditory masking may

be too tight a criterion. For instance, a partial of a harmonic tone may be masked by

partials of other harmonic tones in the mixture signal while when separated, the excluded

partial may make an audible di�erence in the original and the synthesized signals.

Another simple method for estimating the signi�cance of a partial is magnitude response

thresholding. A preferably frequency-dependent threshold value is determined and all

peaks that do not exceed the threshold are excluded. The main problem with this method

is adaptive determination of the threshold. One can also observe the di�erence of energy

of the residual signal in consecutive steps. When the di�erence is su�ciently small, i.e.,

when removing a sinusoid makes little di�erence in the residual, the iteration is stopped.
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Determination of the signi�cance criterion is closely related to the model order estima-

tion problem in detection of parametric line spectra (Kay, 1988; Stoica and Moses, 1997).

Methods for model order estimation include the use of the Akaike information criterion

and autocorrelation matrix eigenvalues. Ali (1995) and Hamdy et al. (1996) apply a fre-

quency estimation method based on works of Slepian (1978) and Thompson (1982). They

have proposed another test for locating relevant sinusoidal components in the spectral

representation (Ali, 1995).

We propose the following measure for signi�cance of a sinusoidal component that is suited

for iterative analysis of sinusoidal parameters:

Rk =

����
r
T
k sk

s
T
k sk

���� (1)

where rk is the residual signal after the kth sinusoid has been removed and sk is the

synthesized kth sinusoid. Equation 1 essentially measures the correlation between the

residual signal and the synthesized sinusoid and scales it with the energy of the synthesized

sinusoid. If the model of the sinusoid is accurate, we expect Rk to be small.

Some insight to the behavior of the signi�cance measure may be gained by considering

a simple example. The test signal consists of a single sinusoid with a known amplitude,

frequency and phase:

xtest(n) = a cos(!n+ �); n = 0; : : : ; Nwin � 1:

We assume that the estimated parameters produce a synthesized signal

stest(n) = (a+�a) cos(!(n+�n) + �+��); n = 0; : : : ; Nwin � 1

where �a, �!, and �� are the errors in amplitude, frequency, and phase, respectively.

The plots from the left to the right in Figure 5 show the value of the signi�cant measure

as a function of amplitude, frequency, and phase error, respectively. In each �gures, the

other two errors are assumed zero. Naturally, these plots only show the behavior of the

signi�cance measure along the axis of the three-dimensional space and they do not provide

information when all the errors are non-zero.

More insight to the signi�cance measure may be gained by considering how the measure

is related to the energies of the original, sinusoidal, and residual signals. The original

signal x may be expressed as a sum of the residual signal of the �rst iteration and the

corresponding sinusoid, i.e.,

x = r1 + s1:

The energy of the original signal is

x
T
x = (r1 + s1)

T (r1 + s1) = r
T
1 r1 + s

T
1 s1 + 2rT1 s1:

The signi�cance measure may thus be expressed as

R1 =

����
r
T
1 s1

s
T
1 s1

���� =
����
x
T
x� r

T
1 r1 � s

T
1 s1

2sT1 s1

����
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which shows that R1 measures the energy di�erence of the original signal and the sinusoid

and the residual signals relative to the energy of the sinusoidal signal. It is evident that

when energies of the sinusoidal and the residual signal sum to that of the original signal

the measure is zero.

2.2 Iterative Analysis Using Interpolated Parameter Trajectories

A typical problem with the iterative analysis model of Figure 2 is that sinusoids are

synthesized with constant amplitudes and frequencies in the iteration although after the

parameter trajectories have been formed, the instantaneous amplitudes and phases of the

sinusoids are interpolated between the frames. Thus, the iterative analysis scheme using

constant parameters does not fully exploit the initial assumption made for the sinusoids,

namely, that the sinusoids are slowly varying in amplitude and frequency. In fact, the DFT

provides parameters for the middle point of the analysis frames and they are extrapolated

to obtain instantaneous amplitude and phase for that frame.

In (Edler et al., 1996), linearly varying frequency was permitted but the amplitudes of

the sinusoids were required constant or forced to follow and amplitude envelope detected

on the mixture signal. In the following, we present an analysis algorithm that uses inter-

polated parameter trajectories also in the iterative parameter detection. The proposed

algorithm is motivated by more accurate parameter estimation due to decreased errors

in the residual signal in each iteration. Furthermore, the algorithm together with the

signi�cance measure presented in the previous subsection may be used to decide on the

accuracy of each synthesized sinusoid in each analysis frame.

In the proposed method, the previous and the next analysis frames are incorporated in

iterative analysis of the parameters of the sinusoids in the current analysis frame. Figure 6

illustrates the principle. In each iteration, the most prominent component is �rst detected

in the current frame. Its parameters are then detected in the previous and the next frame,

and a sinusoid is synthesized using the parameters at three points, i.e., at the middle of

the previous, current, and next frame. The time span of the synthesized sinusoid is shown

with a dashed line. The only extrapolation of the parameter trajectories takes place at

the end of the next frame.

The performance of the normal iterative analysis and the iterative analysis using interpo-

lated parameter trajectories are compared in an example presented in Figure 7. Now the

test signal is a sinusoid with linearly changing amplitude and frequency. The amplitude

is changed from 1 to 0 and the frequency is changed from 400 to 540 Hz in 450 ms. The

top plot presents a segment of the test signal. The residual signal of the normal itera-

tive analysis is plotted in the middle, and that with the trajectory interpolation in the

bottom. Notice the di�erent amplitude scales in the �gure. As expected, the trajectory

interpolation signi�cantly reduces the residual signal. In this case, the di�erence in the

residual amplitude is approximately an order of magnitude.

The values of R for the iterative analysis without and with interpolated parameter tra-

jectories are 0.0082, 0.0013, respectively. The ratio of the energies of the residual is 17.6
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dB. This indicates that the analysis using interpolated parameter trajectories yields more

accurate results than analysis using constant instantaneous frequency and amplitude en-

velope.

3 High-Resolution Estimation of Parameters of Collid-

ing Sinusoids

Methods based on sinusoidal modeling have been proposed for separation of sound source

contributions in musical duet signals (Maher, 1990) and for suppression of co-channel

interference in speech signals (Quatieri and Danisewicz, 1990). Both of these studies report

problems related to the frequency resolution of the discrete Fourier transform (DFT). The

problem is particularly pronounced when two sinusoids corresponding to partials of two

tones of di�erent fundamental frequency are close to each other in frequency. In this case

the sinusoidal components may not be resolved and the detected parameters are typically

inaccurate.

An iterative method for estimation of sinusoidal parameters has been proposed by Depalle

and Tromp (1996); Depalle and Hélie (1997). With that method, the analysis window

size is reducible to 1.5 periods of the lowest frequency (frequency resolution).

In the following, we represent another technique that may be used for increasing frequency

resolution. As explained in the next subsection, the technique is based on �tting a model

of two sinusoids with closely spaced frequencies to the analysis signal.

3.1 Nonlinear Least-Squares Estimation of Colliding Sinusoids

The proposed technique in separation of colliding sinusoids is based on nonlinear least-

squares (NLS) method in a relatively small vicinity in the frequency space. NLS is the

most accurate (minimum-variance) unbiased method for estimating sinusoids in additive

Gaussian white noise (Stoica and Moses, 1997; Kay, 1988). In the Gaussian noise case,

it can be shown to equal the maximum likelihood estimator (MLE). Even when the noise

process is not white, the estimator gives consistent estimates. It is thus better suited

for the problem at hand compared to, e.g., other high-resolution frequency estimation

methods, such as MUSIC and ESPRIT (Stoica and Moses, 1997; Kay, 1988). Furthermore,

the general NLS estimator is easily modi�ed to perform search only in the desired vicinity.

The basic idea is to apply the estimator locally in a vicinity that is determined from

analysis of the fundamental frequencies. Global application of the estimator is infeasible

since that would involve a highly nonlinear search over a high-dimensional parameter

space. In this local application, the parameter space is essentially two-dimensional and

the search space may be de�ned in advance for faster convergence. Furthermore, the

estimates of the fundamental frequencies provide initial values for the search algorithm.

The global nonlinear least squares approximation has the following cost function (Stoica
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and Moses, 1997)

G(f; a; �) =

N�1X
n=0

����y(n)�
KX
k=1

ake
i(2�fkn+�k)

����
2

(2)

where f is a vector of normalized frequencies of the sinusoids, a is a vector of amplitudes,

� is a vector of initial phases, N is the length of the analysis frame, and K is the number

of sinusoids. The parameters that minimize function G(f; a; �) determine the sinusoidal

model that produces the optimal least-squares estimate of the observed data y(n).

The cost function of the local model is derived from Equation 2 as

G(f; a; �) =

N�1X
n=0

����y(n)�
2X

k=1

ake
i(2�fkn+�k)

����
2

; f1 2 [f1;min; f1;max]; f2 2 [f2;min; f2;max] (3)

where the ranges [f1;min; f1;max] and [f2;min; f2;max] are pre-determined from the estimates

of the corresponding fundamental frequencies.

As shown by, e.g., Stoica and Moses (1997), the cost function of Equation 3 is minimized

with the following separated equations

f̂ = argmaxf [Y
HB(BHB)�1BHY ]

�̂ = (BHB)�1BHY jf=f̂ (4)

where

�k = ake
i�k

� = [�1 �2]
T

Y = [y(0) � � �y(N � 1)]T

B =

2
6664

1 1

ei2�f1 ei2�f1

...
...

ei2�(N�1)f1 ei2�(N�1)f1

3
7775

Given the initial approximations of the frequencies, an iterative optimization algorithm,

such as the Newton method, may be used to maximize the �rst equation of (4) and thus

obtain the frequencies of the sinusoids. After the frequencies are obtained, the amplitudes

and initial phases are computed using the second equation of (4).

The examples in Figures 8�10 illustrate local NLS frequency estimation of two closely

spaced sinusoids. The two sinusoids are of equal amplitude and have frequencies of 400

and 420 Hz. The analysis frame length is 46.4 ms giving 1=N frequency resolution of

21.5 Hz (the frame length is 1023 in samples at a sampling rate of 22050 Hz). In the

example in Figure 8, the test signal consists only of the two sinusoids. The magnitude

spectrum of the Hamming-windowed test signal is presented on the left. The Hamming-

windowed DFT does not provide a su�cient frequency resolution for the two sinusoids to

be separated, and a single broad peak is produced near 400 Hz. The plot on the right
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shows a close-up of the magnitude spectrum. The two dashed vertical lines at 400 and

420 Hz present the actual frequencies of the two sinusoids. The two solid vertical lines

almost coinciding with the dashed lines depict the frequency estimates obtained using the

local NLS estimator at 400.2 and 419.8 Hz. In this case, the amplitude errors are 0.3 %

and 0.1 % and the phase errors are 0.04 and 0.03 radians for the sinusoids at 400 and 420

Hz, respectively. The values of R for the �rst and the second sinusoid are R1 = 0:0034,

R2 = 0:0008, respectively.

In the next example, a correlated noise signal is added to the test signal. The noise is

produced by �ltering white Gaussian noise by an allpole �lter. The �lter parameters are

obtained with linear prediction from a Finnish vowel /a/ spoken by a male. The �lter order

is 20. Correlated noise was used since many parametric frequency estimator methods are

dependent on the assumption that the additive noise is uncorrelated. However, as shown

by the example of Figure 9 and suggested in, e.g., (Stoica and Moses, 1997; Kay, 1988),

the NLS method does not rely on such an assumption. That is an attractive feature in

audio applications where the noise components are rarely uncorrelated. The signal-to-

noise ratio is 7.6 dB. The plot on the left again shows the magnitude spectrum of the

signal up to 2000 Hz. As before, the two sinusoids result in a single broad peak. In

addition, numerous spurious peaks appear in the magnitude spectrum as a result from

the additive noise. The plot on the right presents a close-up to the two sinusoids. The

solid lines are close to the dashed lines indicating a relatively accurate estimation of the

frequencies of the sinusoids. The detected frequencies are 400.1 and 420.9 Hz. Now the

amplitude errors are 2.7 % and 4.2 % and phase errors are 0.16 and 0.11 radians for the

sinusoids at 400 and 420 Hz, respectively. It is evident that the noise increases estimation

error but it does not prohibit the identi�cation of two components. Now the values of

the signi�cance measure are R1 = 0:022 R2 = 0:042 for the �rst and the second sinusoid,

respectively.

The third example of the local NLS parameter estimator is presented in Figure 10. In

this experiment, a harmonic tone is added to the test signal of the previous example. The

fundamental frequency of the tone is 265 Hz. The left plot shows the magnitude spectrum

of the test signal. The the spectrum exhibits the peak corresponding to the two sinusoids

near 400 Hz, peaks corresponding to the harmonic tones at integral multiples of the fun-

damental frequency, and spurious peaks due to the correlated noise. The close-up on the

right indicates that the estimates of the frequencies of the sinusoids are again relatively

accurate. The estimated frequencies are 400.2 and 418.8 Hz and the corresponding ampli-

tude errors are 4.0 % and 0.5 % and phase errors are 0.15 and 0.17 radians, respectively.

Again the NLS frequency estimator is able to distinguish the two sinusoids and provide

reasonable estimates of their parameters. In this case, R1 = 0:033 and R2 = 0:012.

4 Sound Source Separation Example

The following example illustrates the use of sinusoidal modeling in sound source sepa-

ration in a system of Figure 1. In this example, the pre-analysis block in Figure 1 is a

multi-pitch analyzer that is reported in (Karjalainen and Tolonen, 1999). The multi-pitch
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analysis model essentially divides the signal into two channels, below and above 1000 Hz,

computes a �generalized� autocorrelation of the low-channel signal and of the envelope

of the high-channel signal, and sums the autocorrelation functions. The summary auto-

correlation function (SACF) is further processed to obtain an enhanced SACF (ESACF)

which suppresses spurious periodicities. The SACF and ESACF representations are used

in observing the (multiple) periodicities of the composite signal. The parameters of the

model have been tuned experimentally to obtain good separation of typical harmonic

complex mixtures.

The most prominent periodicities are detected in the ESACF representation and used

in grouping of the sinusoidal components that have been detected using the iterative

sinusoidal analysis algorithm using interpolated parameter trajectories. The sinusoidal

components of the most prominent tone in each frame are subtracted from the original

signal.

Figure 11 depicts the ESACF representation of each step of the iterative sound source

separation. The test signal is a polyphonic excerpt of music by the classical guitar. Time

is presented on the horizontal axis and periodicity lag on the vertical axis. The gray scale

represents the prominence of periodicity. The ESACF of the test signal before any sound

source have been separated is plotted on the top of Figure 11. A prominent melody of six

notes around a lag of 2 ms (corresponding the a fundamental frequency of 500 Hz) may be

identi�ed in the ESACF representation. The trajectory of the fundamental frequency of

this melody line has been detected and used in grouping of the sinusoidal components so

that a representation of the harmonic tones of the melody line is obtained. The ESACF

of the sinusoidal representation is depicted in the middle plot. The sinusoidal model is

subtracted from the original signal and a residual signal is obtained. The ESACF of the

residual signal is plotted on the bottom of Figure 11.

The plots of Figure 11 show the potential of iterative analysis. In the top plot, the

prominent melody masks the other components in the ESACF representation. When

the sinusoidal model is subtracted, the other tones become visible in the ESACF of the

residual signal, as can be seen at the bottom of the �gure. It is now possible to detect

the most prominent tones in the residual signal and remove them in the next iteration.

5 Summary and Conclusions

We have discussed methods for separation of harmonic sound sources using sinusoidal

modeling. The proposed techniques are 1) a local nonlinear least-squares (NLS) frequency

estimator for sinusoids that are closely spaced in frequency, 2) an iterative analysis algo-

rithm using interpolated parameter trajectories, and 3) a measure for testing signi�cance

and accuracy of detected sinusoids. An example was presented that shows how the meth-

ods may be used in sound source separation.

While the separation techniques perform reasonably well with sound signals that have

prominent harmonic tones, they are not yet su�ciently robust to yield reliable separation
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in the general case. In most cases, however, iterative sinusoidal analysis and recursive

removal of prominent harmonic tones are able to detect and separate more harmonic

tones with better accuracy than a one-run separation algorithm.
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Figure 1: A block diagram of sound source separation system based on sinusoidal mod-

eling.
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Figure 2: A block diagram of iterative sinusoidal analysis.
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Figure 3: Spectrum of the test signal used in an example of iterative sinusoidal modeling.

The test signal consists of two sinusoidal componensts with frequencies 400 and 600 Hz

and amplitudes 1 and 0.1.
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Figure 4: An example of iterative sinusoidal parameter estimation. Top: the weaker

sinusoidal component of the test signal, middle: residual of the weaker sinusoid after

regular sinusoidal modeling, and bottom: residual of the weaker sinusoid with iterative

sinusoidal modeling.

Amplitude Frequency Energy

Magn. di�. �fno�iter �fiter �ano�iter �aiter Eno�iter Eiter Eiter=Enoiter

6 dB 0.1776 0.0076 0.0028 8.6546e-05 0.0390 1.2905e-04 0.0033

20 dB 0.7585 0.0022 0.0031 7.4245e-06 0.0352 4.1625e-06 1.1837e-04

40 dB 3.1197 0.0583 0.0040 1.0469e-05 0.0196 1.5689e-06 7.9867e-05

Table 1: Iteration results.
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Figure 5: An example of the signi�cance measure. The value of R is shown as a function

of amplitude error (�� = 0 and �! = 0) in the left plot, as a function of frequency error

(�a = 0 and �� = 0) in the middle plot, and as a function phase error (�a = 0 and

�! = 0) in the right plot.
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Figure 6: A schematic presenting the principle of iterative sinusoidal analysis with in-

terpolated parameter trajectories.
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Figure 7: An example of interpolated iterative sinusoidal parameter estimation. Top:

the test signal; middle the residual signal after iterative sinusoidal modeling using ex-

trapolated parameter trajectories, and bottom: the residual using interpolated parameter

trajectories.
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Figure 8: An example of the local nonlinear least-squares estimation of sinusoidal pa-

rameters. The test signal consists of two sinusoids with equal amplitudes and frequencies

400 and 420 Hz.
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Figure 9: An example of the local nonlinear least-squares estimation of sinusoidal pa-

rameters. The test signal consists of two sinusoids with equal amplitudes and frequencies

400 and 420 Hz and correlated noise.
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Figure 10: An example of the local nonlinear least-squares estimation of sinusoidal pa-

rameters. The test signal consists of two sinusoids with equal amplitudes and frequencies

400 and 420 Hz, additive correlated noise, and a harmonic tone.
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Figure 11: An example of separation of harmonic sound sources. The ESACF represen-

tation of the test signal is shown on the top. The ESACF of the sinusoidal model of a

detected melody line is depicted in the middle. The bottom plot presents the ESACF of

the residual signal.
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