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Abstract

Methods are proposed for separation of harmonic sound sources using sinusoidal
modeling. A local nonlinear least-squares (NLS) frequency estimator is proposed
to resolve sinusoids that are close in frequency. An iterative analysis scheme us-
ing interpolated parameter trajectories and subtraction of detected components is
presented. A measure is proposed for testing the accuracy of the model.

0 Introduction

Separation of sound source signals is a task that is often encountered in digital audio.
Historically, it has been applied mainly in two areas: separation of speech of two or
more simultaneous talkers and segmentation and transcription of musical signals. The
currently active research fields of sound source separation include compression coding of
audio signals, computational auditory scene analysis, automatic transcription of music,
and analysis/synthesis applications in computer music.

Separation of sound sources in a mixed sound signal is a difficult problem and no reliable
methods are available for the general case. However, when certain assumptions can be
made on the properties of the sound sources or the signals they produce, a mixed signal
consisting of several contributing sources may be separated into signals that are perceptu-
ally close to the original signals before mixing. In this study, we concentrate on mixtures
of harmonic or nearly harmonic musical signals and their separation.

This contribution proposes three methods for improving the accuracy of sound source sep-
aration based on sinusoidal modeling: 1) a local nonlinear least-squares (NLS) estimator
for improving the frequency resolution in detection of parameters of sinusoids that are



close in frequency, 2) an iterative analysis scheme using interpolated parameter trajecto-
ries and subtraction of detected components, and 3) a measure for testing the accuracy
of the model.

The paper is organized as follows. Section 1 reviews sinusoidal modeling techniques and
presents an outline of the sound separation algorithm. In section 2, an iterative sinusoidal
modeling algorithm with interpolated parameter trajectories is proposed that is well suited
for separation of harmonic sound sources. In addition, a measure is proposed that can be
used for estimating the relevance of each sinusoid. Section 3 describes a local nonlinear
least-squares (NLS) method for resolving parameters of sinusoids that are not resolved
by the discrete Fourier transform (DFT). Performance of the method is demonstrated in
Section 4 with a sound separation example. Finally, Section 5 concludes the paper and
proposes research paths for future developments.

1 Sound Separation based on Sinusoidal Modeling

One of the promising methods in sound source separation is sinusoidal modeling that is
based on the short-time Fourier transform (STFT) (McAulay and Quatieri, 1986; Smith
and Serra, 1987; Serra, 1989; Serra and Smith, 1990). It is suited for separation of sound
sources in musical signals since many musical instruments produce harmonic or nearly
harmonic signals with relatively slowly varying sinusoidal partials. Sinusoidal modeling
offers a parametric representation of these signal components such that the original signal
can be recovered by synthesis and addition of the components. By grouping the sinusoidal
components to correspond to harmonic tones, the essential features of the sound source
contributions may be separated. Note that since few musical instruments produce strictly
periodic signals, other methods for representing noise and transient components may have
to be used as well. At this time it appears a good compromise offering generality and
relatively good analysis accuracy.

1.1 Overview of Sinusoidal Modeling Techniques

Sinusoidal modeling is a set of techniques in which a sound signal is represented as a
set of sinusoids that are parameterized by amplitude, frequency, and phase trajectories
(McAulay and Quatieri, 1986; Smith and Serra, 1987). Later, the sinusoidal modeling
has been accompanied with models for noise (Serra, 1989; Serra and Smith, 1990) and for
transients and noise (Verma et al., 1997; Ali, 1995; Hamdy et al., 1996; Levine, 1998).

Numerous modifications and elaborations have been proposed for different sinusoidal mod-
eling applications. Iterative sinusoidal analysis algorithms have been presented in (George
and Smith, 1992, 1997; Macon, 1996; Edler et al., 1996; Edler and Purnhagen, 1998). Het-
erodyne filtering has also been applied in parameter estimation (Ding and Qian, 1997).
Analysis schemes using different time resolution in different frequency bands have been
presented in (Rodriguez-Hernandez and Casajis-Quirds, 1994; Anderson, 1996; Levine et
al., 1997, 1998; Levine and Smith, 1998; Goodwin, 1997).
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Depalle and Tromp (1996) and Depalle and Hélie (1997) propose a method for improving
the estimation of frequencies, amplitudes, and phases of the sinusoidal components. The
method allows for reduction of the length of the analysis window to 1.5 periods of the
lowest frequency of interest. Prandoni et al. (1997) propose a method for window size
optimization using dynamic programming. A technique for synchronizing the analysis
windows of sinusoidal modeling to the transient events in the analyzed signal is presented
by Masri and Bateman (1996).

A method of signal component parameter trajectories estimation based on hidden Markov
models (HMM) is presented by Depalle et al. (1993). The method is promising since it is
reported that the parameters of two crossing partials can be determined using the method.
In general, the peak continuation algorithm of sinusoidal modeling is one of the most
crucial parts of the analysis system. Similar approaches for STFT parameter estimation
using HMMs are described by Streit and Barrett (1990) and Barrett and Holdsworth
(1993).

The above overview of sinusoidal modeling techniques is by no means complete. Its
purpose is just to get a brief review of some of different sinusoidal analysis methods
presented in the literature. In the following, we discuss sinusoidal modeling in the context
of separation of harmonic sound sources.

1.2 Sinusoidal Modeling in Separation of Harmonic Sources

Figure 1 presents a general block diagram of sound source separation based on sinusoidal
modeling. Typically, a pre-analysis block is included to provide information for separation
of the sound source signals. One of the tasks of pre-analysis is to locate sound events and
it may include, e.g., pitch analysis and onset and offset detection. Pre-analysis may
provide a basis on which the sinusoidal analysis parameters, such as the window size and
the hop size, are chosen. Its results are also used in grouping the sinusoidal components.
For instance, pitch analysis results can be used in selecting sinusoids corresponding to a
harmonic tone.

The sinusoidal modeling block is the core of the separation system providing a low level
representation of the signal as sinusoids. The sinusoidal modeling block may also include
noise and transient modeling functionalities in which case the low level representational
elements are sinusoids, noise components, and transient components.

After the signal has been decomposed into low level signal elements, a grouping algorithm
is used to form sets of the elements corresponding to sound events. In the broad sense
the grouping block may also provide association of the events into event streams each of
which corresponds to a single sound source. However, the stream formation is beyond the
scope this paper.

Figure 1 also provides a feedback path in which a prominent separated and synthesized
sound source signal may be removed from the original signal for more accurate analysis
of the remaining sound source components. A sound separation example presented in



Section 4 shows how the iterative sound source separation may be used to detect weaker
tones that are not observable directly.

It is clear that sinusoidal modeling alone is not a sufficient representation for audio signals
in general and that methods for noise and transient components are required in a sound
separation system. However, in this contribution we concentrate on developing techniques
that improve the accuracy and quality of sinusoidal modeling. We assume that this will
also improve the performance of noise and transient modeling methods.

2 Iterative Analysis

In iterative sinusoidal modeling the analysis stage is a recursive algorithm which in each
step detects and removes the most prominent sinusoidal component. It thus automatically
sorts the sinusoidal parameters according to the prominence criterion used. Iterative
sinusoidal modeling is computationally considerably more expensive than the regular non-
recursive analysis but it may provide substantially more accurate parameter estimation,
as shown in an example below.

Figure 2 shows a general block diagram of iterative sinusoidal analysis. Analysis algo-
rithms used in parametric audio coding (Edler et al., 1996), analysis and synthesis of
musical tones (George and Smith, 1992) and of speech (George and Smith, 1997; Macon,
1996) are examples of this approach. The input to the recursive algorithm is a windowed
segment of an audio signal. In each iteration, the most prominent sinusoid is first de-
tected. In (George and Smith, 1992, 1997), the prominence criterion is the energy of the
residual signal, i.e., the aim is to select a sinusoid which minimizes the energy of the
residual signal that is obtained by subtracting the synthesized sinusoid from the original
one. In (Edler et al., 1996), on the other hand, the criterion is based on a psychoacoustic
model which attempts to select the perceptually most significant component.

After the most prominent component is detected, its parameters are estimated. Using
the estimated parameters, a representation of the sinusoid is synthesized and removed
from the previous residual signal or the original signal in the first iteration. The removal
is typically performed by subtracting the synthesized sinusoid from the residual of the
previous step in the time or the frequency domain, depending on the parameterization.
Naturally, if time-domain subtraction is used, a new DFT representation is required in
each recursion. The recursion is continued until all significant components have been
detected and removed. The significance criteria are discussed in the following subsection.

An example shows the accuracy gain that is available using iterative sinusoidal analysis
instead of non-recursive analysis. The test signal consists of two sinusoids with frequencies
400 Hz and 600 Hz (sampling rate is 22050 Hz) with amplitudes 1 and 0.1, respectively.
A hamming window with a length of 46.4 ms (1023 samples) is used. Figure 3 depicts
the spectral representation of the windowed signal segment. The peaks are well-separated
and the difference of magnitudes is 20 dB.

In this example we are interested in accuracy of parameter estimation on the sinusoid at



600 Hz when non-recursive and recursive sinusoidal analysis are used. In non-recursive
modeling, the peaks are located directly at the magnitude spectrum of Figure 3, the
location and magnitude estimates are fine-tuned using parabolic interpolation (see, e.g.,
Smith and Serra (1987)), and the phase value is linearly interpolated from the phase
spectrum. In iterative modeling, the higher peak at 400 Hz is first detected, its parameters
are estimated and a sinusoid is synthesized. The synthetic component is subtracted from
the original signal and a first-order residual is obtained. The parameters of the weaker
sinusoid are detected in the residual signal.

The same experiment was conducted using two similar test signals that had the sinusoid
at 600 Hz with amplitudes of 0.01 and 0.5 corresponding to magnitude differences of 40
dB and 6 dB, respectively. Table 1 presents the results of the experiment. The results are
sorted in rows according to the magnitude difference of the two sinusoids. The second and
the third column tabulate the error in frequency estimation without and with iterative
analysis, and the fourth and the fifth column show the amplitude estimation error without
and with iterative analysis, respectively. The residual signals that are studied here are
obtained by subtracting the synthesized weaker sinusoid from the original weaker sinusoid.
The sixth and seventh column show the energies of the residual signals. Finally, the ratios
of the residual energies are presented in the eighth column.

This example shows the improvement in accuracy that may be gained by using an it-
erative analysis. With 40 dB magnitude difference of the sinusoids, the improvement is
most pronounced. Surprisingly, even when the magnitude difference is only 6 dB, the
improvement is clear. Note that in some applications the accuracy gain obtained with
iteration is not critical and the computationally more efficient non-iterative analysis may
be preferred.

2.1 Significance Measure for Detected Sinusoids

In iterative analysis, recursion is carried on until no significant sinusoidal components
are found in the current analysis frame. In audio coding applications where the main
attempt is to minimize the signal bandwidth and where a psychoacoustic model is avail-
able, the significance criterion is straightforward: detect components until according to
the psychoacoustic model no significant components exist. However, in applications that
alter the signal in synthesis stage or synthesize only a part of the analyzed signal, e.g.,
in sound source separation, the psychoacoustic model simulating auditory masking may
be too tight a criterion. For instance, a partial of a harmonic tone may be masked by
partials of other harmonic tones in the mixture signal while when separated, the excluded
partial may make an audible difference in the original and the synthesized signals.

Another simple method for estimating the significance of a partial is magnitude response
thresholding. A preferably frequency-dependent threshold value is determined and all
peaks that do not exceed the threshold are excluded. The main problem with this method
is adaptive determination of the threshold. One can also observe the difference of energy
of the residual signal in consecutive steps. When the difference is sufficiently small, i.e.,
when removing a sinusoid makes little difference in the residual, the iteration is stopped.



Determination of the significance criterion is closely related to the model order estima-
tion problem in detection of parametric line spectra (Kay, 1988; Stoica and Moses, 1997).
Methods for model order estimation include the use of the Akaike information criterion
and autocorrelation matrix eigenvalues. Ali (1995) and Hamdy et al. (1996) apply a fre-
quency estimation method based on works of Slepian (1978) and Thompson (1982). They
have proposed another test for locating relevant sinusoidal components in the spectral
representation (Ali, 1995).

We propose the following measure for significance of a sinusoidal component that is suited
for iterative analysis of sinusoidal parameters:

rl'sy,
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where ry is the residual signal after the kth sinusoid has been removed and sj is the
synthesized kth sinusoid. Equation 1 essentially measures the correlation between the
residual signal and the synthesized sinusoid and scales it with the energy of the synthesized
sinusoid. If the model of the sinusoid is accurate, we expect Ry to be small.

Some insight to the behavior of the significance measure may be gained by considering
a simple example. The test signal consists of a single sinusoid with a known amplitude,
frequency and phase:

Tiest(n) = acos(wn + @), n=20,..., Nyin — 1.
We assume that the estimated parameters produce a synthesized signal
Stest () = (@ + Aa) cos(w(n + An) + ¢+ A¢), n=0,..., Ny, — 1

where Aa, Aw, and A¢ are the errors in amplitude, frequency, and phase, respectively.
The plots from the left to the right in Figure 5 show the value of the significant measure
as a function of amplitude, frequency, and phase error, respectively. In each figures, the
other two errors are assumed zero. Naturally, these plots only show the behavior of the
significance measure along the axis of the three-dimensional space and they do not provide
information when all the errors are non-zero.

More insight to the significance measure may be gained by considering how the measure
is related to the energies of the original, sinusoidal, and residual signals. The original
signal x may be expressed as a sum of the residual signal of the first iteration and the
corresponding sinusoid, i.e.,

X =7T; +S;.

The energy of the original signal is

x"'x = (r1 + Sl)T(I‘l +81) = riprl + Sipsl + Qrfsl.

The significance measure may thus be expressed as
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which shows that ; measures the energy difference of the original signal and the sinusoid
and the residual signals relative to the energy of the sinusoidal signal. It is evident that
when energies of the sinusoidal and the residual signal sum to that of the original signal
the measure is zero.

2.2 TIterative Analysis Using Interpolated Parameter Trajectories

A typical problem with the iterative analysis model of Figure 2 is that sinusoids are
synthesized with constant amplitudes and frequencies in the iteration although after the
parameter trajectories have been formed, the instantaneous amplitudes and phases of the
sinusoids are interpolated between the frames. Thus, the iterative analysis scheme using
constant parameters does not fully exploit the initial assumption made for the sinusoids,
namely, that the sinusoids are slowly varying in amplitude and frequency. In fact, the DFT
provides parameters for the middle point of the analysis frames and they are extrapolated
to obtain instantaneous amplitude and phase for that frame.

In (Edler et al., 1996), linearly varying frequency was permitted but the amplitudes of
the sinusoids were required constant or forced to follow and amplitude envelope detected
on the mixture signal. In the following, we present an analysis algorithm that uses inter-
polated parameter trajectories also in the iterative parameter detection. The proposed
algorithm is motivated by more accurate parameter estimation due to decreased errors
in the residual signal in each iteration. Furthermore, the algorithm together with the
significance measure presented in the previous subsection may be used to decide on the
accuracy of each synthesized sinusoid in each analysis frame.

In the proposed method, the previous and the next analysis frames are incorporated in
iterative analysis of the parameters of the sinusoids in the current analysis frame. Figure 6
illustrates the principle. In each iteration, the most prominent component is first detected
in the current frame. Its parameters are then detected in the previous and the next frame,
and a sinusoid is synthesized using the parameters at three points, i.e., at the middle of
the previous, current, and next frame. The time span of the synthesized sinusoid is shown
with a dashed line. The only extrapolation of the parameter trajectories takes place at
the end of the next frame.

The performance of the normal iterative analysis and the iterative analysis using interpo-
lated parameter trajectories are compared in an example presented in Figure 7. Now the
test signal is a sinusoid with linearly changing amplitude and frequency. The amplitude
is changed from 1 to 0 and the frequency is changed from 400 to 540 Hz in 450 ms. The
top plot presents a segment of the test signal. The residual signal of the normal itera-
tive analysis is plotted in the middle, and that with the trajectory interpolation in the
bottom. Notice the different amplitude scales in the figure. As expected, the trajectory
interpolation significantly reduces the residual signal. In this case, the difference in the
residual amplitude is approximately an order of magnitude.

The values of R for the iterative analysis without and with interpolated parameter tra-
jectories are 0.0082, 0.0013, respectively. The ratio of the energies of the residual is 17.6



dB. This indicates that the analysis using interpolated parameter trajectories yields more
accurate results than analysis using constant instantaneous frequency and amplitude en-
velope.

3 High-Resolution Estimation of Parameters of Collid-
ing Sinusoids

Methods based on sinusoidal modeling have been proposed for separation of sound source
contributions in musical duet signals (Maher, 1990) and for suppression of co-channel
interference in speech signals (Quatieri and Danisewicz, 1990). Both of these studies report
problems related to the frequency resolution of the discrete Fourier transform (DFT). The
problem is particularly pronounced when two sinusoids corresponding to partials of two
tones of different fundamental frequency are close to each other in frequency. In this case
the sinusoidal components may not be resolved and the detected parameters are typically
inaccurate.

An iterative method for estimation of sinusoidal parameters has been proposed by Depalle
and Tromp (1996); Depalle and Hélie (1997). With that method, the analysis window
size is reducible to 1.5 periods of the lowest frequency (frequency resolution).

In the following, we represent another technique that may be used for increasing frequency
resolution. As explained in the next subsection, the technique is based on fitting a model
of two sinusoids with closely spaced frequencies to the analysis signal.

3.1 Nonlinear Least-Squares Estimation of Colliding Sinusoids

The proposed technique in separation of colliding sinusoids is based on nonlinear least-
squares (NLS) method in a relatively small vicinity in the frequency space. NLS is the
most accurate (minimum-variance) unbiased method for estimating sinusoids in additive
Gaussian white noise (Stoica and Moses, 1997; Kay, 1988). In the Gaussian noise case,
it can be shown to equal the mazimum likelihood estimator (MLE). Even when the noise
process is not white, the estimator gives consistent estimates. It is thus better suited
for the problem at hand compared to, e.g., other high-resolution frequency estimation
methods, such as MUSIC and ESPRIT (Stoica and Moses, 1997; Kay, 1988). Furthermore,
the general NLS estimator is easily modified to perform search only in the desired vicinity.

The basic idea is to apply the estimator locally in a vicinity that is determined from
analysis of the fundamental frequencies. Global application of the estimator is infeasible
since that would involve a highly nonlinear search over a high-dimensional parameter
space. In this local application, the parameter space is essentially two-dimensional and
the search space may be defined in advance for faster convergence. Furthermore, the
estimates of the fundamental frequencies provide initial values for the search algorithm.

The global nonlinear least squares approximation has the following cost function (Stoica



and Moses, 1997)
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where f is a vector of normalized frequencies of the sinusoids, a is a vector of amplitudes,
¢ is a vector of initial phases, N is the length of the analysis frame, and K is the number
of sinusoids. The parameters that minimize function G(f,a, ¢) determine the sinusoidal
model that produces the optimal least-squares estimate of the observed data y(n).

The cost function of the local model is derived from Equation 2 as

N-1 2 2
G(f,a,0) = |y(n) =Y ape® e 00 £ € [fi min, frmaxls f2 € [frmin: fomax] (3)
n=0 k=1

where the ranges [fimin, f1,max] a0d [f2.min, f2,max] are pre-determined from the estimates
of the corresponding fundamental frequencies.

As shown by, e.g., Stoica and Moses (1997), the cost function of Equation 3 is minimized
with the following separated equations

f = argmax;[Y"B(B"B)"'B"Y]
B = (B"B)'BY, @
where
B = ape'®
g = [51 52]T
Y = [y(0)---y(N-1)"
1 1
6i27rf1 eiQﬂ'fl
B =
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Given the initial approximations of the frequencies, an iterative optimization algorithm,
such as the Newton method, may be used to maximize the first equation of (4) and thus
obtain the frequencies of the sinusoids. After the frequencies are obtained, the amplitudes
and initial phases are computed using the second equation of (4).

The examples in Figures 8-10 illustrate local NLS frequency estimation of two closely
spaced sinusoids. The two sinusoids are of equal amplitude and have frequencies of 400
and 420 Hz. The analysis frame length is 46.4 ms giving 1/N frequency resolution of
21.5 Hz (the frame length is 1023 in samples at a sampling rate of 22050 Hz). In the
example in Figure 8, the test signal consists only of the two sinusoids. The magnitude
spectrum of the Hamming-windowed test signal is presented on the left. The Hamming-
windowed DFT does not provide a sufficient frequency resolution for the two sinusoids to
be separated, and a single broad peak is produced near 400 Hz. The plot on the right
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shows a close-up of the magnitude spectrum. The two dashed vertical lines at 400 and
420 Hz present the actual frequencies of the two sinusoids. The two solid vertical lines
almost coinciding with the dashed lines depict the frequency estimates obtained using the
local NLS estimator at 400.2 and 419.8 Hz. In this case, the amplitude errors are 0.3 %
and 0.1 % and the phase errors are 0.04 and 0.03 radians for the sinusoids at 400 and 420
Hz, respectively. The values of R for the first and the second sinusoid are R; = 0.0034,
Ry = 0.0008, respectively.

In the next example, a correlated noise signal is added to the test signal. The noise is
produced by filtering white Gaussian noise by an allpole filter. The filter parameters are
obtained with linear prediction from a Finnish vowel /a/ spoken by a male. The filter order
is 20. Correlated noise was used since many parametric frequency estimator methods are
dependent on the assumption that the additive noise is uncorrelated. However, as shown
by the example of Figure 9 and suggested in, e.g., (Stoica and Moses, 1997; Kay, 1988),
the NLS method does not rely on such an assumption. That is an attractive feature in
audio applications where the noise components are rarely uncorrelated. The signal-to-
noise ratio is 7.6 dB. The plot on the left again shows the magnitude spectrum of the
signal up to 2000 Hz. As before, the two sinusoids result in a single broad peak. In
addition, numerous spurious peaks appear in the magnitude spectrum as a result from
the additive noise. The plot on the right presents a close-up to the two sinusoids. The
solid lines are close to the dashed lines indicating a relatively accurate estimation of the
frequencies of the sinusoids. The detected frequencies are 400.1 and 420.9 Hz. Now the
amplitude errors are 2.7 % and 4.2 % and phase errors are 0.16 and 0.11 radians for the
sinusoids at 400 and 420 Hz, respectively. It is evident that the noise increases estimation
error but it does not prohibit the identification of two components. Now the values of
the significance measure are R; = 0.022 Ry = 0.042 for the first and the second sinusoid,
respectively.

The third example of the local NLS parameter estimator is presented in Figure 10. In
this experiment, a harmonic tone is added to the test signal of the previous example. The
fundamental frequency of the tone is 265 Hz. The left plot shows the magnitude spectrum
of the test signal. The the spectrum exhibits the peak corresponding to the two sinusoids
near 400 Hz, peaks corresponding to the harmonic tones at integral multiples of the fun-
damental frequency, and spurious peaks due to the correlated noise. The close-up on the
right indicates that the estimates of the frequencies of the sinusoids are again relatively
accurate. The estimated frequencies are 400.2 and 418.8 Hz and the corresponding ampli-
tude errors are 4.0 % and 0.5 % and phase errors are 0.15 and 0.17 radians, respectively.
Again the NLS frequency estimator is able to distinguish the two sinusoids and provide
reasonable estimates of their parameters. In this case, R; = 0.033 and Ry = 0.012.

4 Sound Source Separation Example

The following example illustrates the use of sinusoidal modeling in sound source sepa-
ration in a system of Figure 1. In this example, the pre-analysis block in Figure 1 is a
multi-pitch analyzer that is reported in (Karjalainen and Tolonen, 1999). The multi-pitch
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analysis model essentially divides the signal into two channels, below and above 1000 Hz,
computes a “generalized” autocorrelation of the low-channel signal and of the envelope
of the high-channel signal, and sums the autocorrelation functions. The summary auto-
correlation function (SACF) is further processed to obtain an enhanced SACF (ESACF)
which suppresses spurious periodicities. The SACF and ESACF representations are used
in observing the (multiple) periodicities of the composite signal. The parameters of the
model have been tuned experimentally to obtain good separation of typical harmonic
complex mixtures.

The most prominent periodicities are detected in the ESACF representation and used
in grouping of the sinusoidal components that have been detected using the iterative
sinusoidal analysis algorithm using interpolated parameter trajectories. The sinusoidal
components of the most prominent tone in each frame are subtracted from the original
signal.

Figure 11 depicts the ESACF representation of each step of the iterative sound source
separation. The test signal is a polyphonic excerpt of music by the classical guitar. Time
is presented on the horizontal axis and periodicity lag on the vertical axis. The gray scale
represents the prominence of periodicity. The ESACF of the test signal before any sound
source have been separated is plotted on the top of Figure 11. A prominent melody of six
notes around a lag of 2 ms (corresponding the a fundamental frequency of 500 Hz) may be
identified in the ESACF representation. The trajectory of the fundamental frequency of
this melody line has been detected and used in grouping of the sinusoidal components so
that a representation of the harmonic tones of the melody line is obtained. The ESACF
of the sinusoidal representation is depicted in the middle plot. The sinusoidal model is
subtracted from the original signal and a residual signal is obtained. The ESACF of the
residual signal is plotted on the bottom of Figure 11.

The plots of Figure 11 show the potential of iterative analysis. In the top plot, the
prominent melody masks the other components in the ESACF representation. When
the sinusoidal model is subtracted, the other tones become visible in the ESACF of the
residual signal, as can be seen at the bottom of the figure. It is now possible to detect
the most prominent tones in the residual signal and remove them in the next iteration.

5 Summary and Conclusions

We have discussed methods for separation of harmonic sound sources using sinusoidal
modeling. The proposed techniques are 1) a local nonlinear least-squares (NLS) frequency
estimator for sinusoids that are closely spaced in frequency, 2) an iterative analysis algo-
rithm using interpolated parameter trajectories, and 3) a measure for testing significance
and accuracy of detected sinusoids. An example was presented that shows how the meth-
ods may be used in sound source separation.

While the separation techniques perform reasonably well with sound signals that have
prominent harmonic tones, they are not yet sufficiently robust to yield reliable separation
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in the general case. In most cases, however, iterative sinusoidal analysis and recursive
removal of prominent harmonic tones are able to detect and separate more harmonic
tones with better accuracy than a one-run separation algorithm.
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Figures and Tables
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Figure 1: A block diagram of sound source separation system based on sinusoidal mod-
eling.
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Figure 2: A block diagram of iterative sinusoidal analysis.
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Figure 3: Spectrum of the test signal used in an example of iterative sinusoidal modeling.

The test signal consists of two sinusoidal componensts with frequencies 400 and 600 Hz
and amplitudes 1 and 0.1.
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Figure 4: An example of iterative sinusoidal parameter estimation. Top: the weaker
sinusoidal component of the test signal, middle: residual of the weaker sinusoid after
regular sinusoidal modeling, and bottom: residual of the weaker sinusoid with iterative
sinusoidal modeling.

Amplitude Frequency Energy
Magn- diff. Afno—iter Afiter Aano—iter Aaiter Eno—iter Eiter Eiter/Enoiter
6 dB 0.1776 0.0076 | 0.0028 8.6546e-05 | 0.0390 | 1.2905e-04 | 0.0033
20 dB 0.7585 0.0022 | 0.0031 7.4245e-06 | 0.0352 | 4.1625e-06 | 1.1837e-04
40 dB 3.1197 0.0583 | 0.0040 1.0469e-05 | 0.0196 | 1.5689e-06 | 7.9867e-05
Table 1: Iteration results.
0.2 0.2 0.2
o 0.15 0.15 0.15
©
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Figure 5: An example of the significance measure. The value of R is shown as a function
of amplitude error (A¢ = 0 and Aw = 0) in the left plot, as a function of frequency error
(Aa = 0 and A¢ = 0) in the middle plot, and as a function phase error (Aa = 0 and
Aw = 0) in the right plot.
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Figure 6: A schematic presenting the principle of iterative sinusoidal analysis with in-
terpolated parameter trajectories.
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Figure 7: An example of interpolated iterative sinusoidal parameter estimation. Top:
the test signal; middle the residual signal after iterative sinusoidal modeling using ex-
trapolated parameter trajectories, and bottom: the residual using interpolated parameter
trajectories.
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Figure 8: An example of the local nonlinear least-squares estimation of sinusoidal pa-
rameters. The test signal consists of two sinusoids with equal amplitudes and frequencies

400 and 420 Hz.

17



—~ —~ -
Q40 aQ S0 | |
@ @ 45 .
s g | |
= 20 ‘= 40 | |
2 % | |
= 0 35 ! |

| I

0 1000 2000 360 380 400 420 440 460
Frequency (Hz) Frequency (Hz)

Figure 9: An example of the local nonlinear least-squares estimation of sinusoidal pa-

rameters. The test signal consists of two sinusoids with equal amplitudes and frequencies
400 and 420 Hz and correlated noise.
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Figure 10: An example of the local nonlinear least-squares estimation of sinusoidal pa-
rameters. The test signal consists of two sinusoids with equal amplitudes and frequencies
400 and 420 Hz, additive correlated noise, and a harmonic tone.
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Figure 11: An example of separation of harmonic sound sources. The ESACF represen-
tation of the test signal is shown on the top. The ESACF of the sinusoidal model of a
detected melody line is depicted in the middle. The bottom plot presents the ESACF of
the residual signal.
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