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Abstract

This study presents a framework for audio and music processing which consists
of an analysis and a synthesis path that are connected at three representational levels.
Auditory signal analysis techniques include a multi-pitch analysis model, an event-
detector, and sinusoidal modeling that are combined in an iterative sound separation
system. Techniques are presented for detection of perceptually relevant features, such
as inharmonicity, vibrato, and decay characteristic, from polyphonic mixtures of har-
monic sounds. The integration of the analysis and synthesis parts is demonstrated with
examples where two-voice acoustic guitar signals are analyzed into an object-based rep-
resentation and resynthesized using sound source models.

O Introduction

Rapid development of communication technology imposes new requirements for creation,
processing, and rendering of music and audio. Particularly, multimedia communication in-
cluding interactive music and audio will beamajor driver in devel opment of new applications
and solutions for fixed and wireless networks. Great challenges and opportunities lie ahead
for developers of audio technology.

One of the promising methodologies for interactive audio solutions is object-based audio.
Rather than to process the sound waveform or its frequency representation, the aim is to
process sound through relevant objects and their attributes that depend on the application at
hand. These can include perceptua objects for studying human audition, musical objects
in music applications, and sound source objects for study of musical instruments and voice
as well as for sound synthesis. For instance, the concept of auditory scene analysis (ASA)
and creation of computational models for ASA is one of the hot topics of research. On
the other hand, researchers in synthetic audio, musical acoustics, and model-based sound
synthesis have developed object-based methods for generation of sound. The recent ad-
vances in object-based audio [1], and particularly the MPEG-4 multimedia standard [2, 3],
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enable interactive, low-bit-rate audio and music solutionsthat are attractive, e.g., for mobile
multimedia applications. In addition, the object-based methodology can be applied in auto-
matic transcription, musical information retrieval, identification of musical instruments, and
object-based audio coding.

This study presents a framework for audio and music processing. The framework consists
of an analysis and a synthesis path which are connected at three representational levels. The
presented model-based analysis elaborates previous work on auditory analysis techniques
and integrates it into a system that analyzes musical signals into an object-based representa-
tion. The synthesis part of the framework is exemplified using model-based sound synthesis
methods for plucked string instruments. These include computationally efficient models that
can be used to generate synthetic tones that are virtually indistinguishable from original
tones.

Understanding of the human auditory system and its ability to process sound into content
is often important for development of audio and music processing systems. However, the
framework presented here attempts to be genera in that it combines auditory-based tech-
niques with techniques that find little motivation from the human audition but that are useful
in audio and music applications. An example is signal-level sound source separation: while
it isunlikely that such a separation takes place in human auditory processing, such an audio
processing tool isuseful in numerous applications. Furthermore, combining pure signal pro-
cessing techniques with auditorily motivated analysis methods has proven successful results
in sound source separation as well as in other applications such as audio coding [4].

The presented framework is not unique; many parts are similar to those in computational
auditory scene analysis (CASA) and sound-source recognition systems [5, 6, 7, 8]. The
framework isversatile in that its constituent parts can be used in awide range of applications
including sound-source recognition, extraction of expressive features, automatic transcrip-
tion and musical information retrieval, audio coding, and sound synthesis.

The organization of the paper is the following. Section 1 describes the framework for au-
dio and music processing. Section 2 discusses an analysis system that is employed in this
study, and shows with examples how perceptually relevant features of sound sources can be
obtained. It also presents how the parameters of a simple but powerful model of the acoustic
guitar can be obtained from realistic musical signals. Analysis/synthesis examples of two-
voice guitar music is demonstrated in Section 3. Finally, Section 4 concludes the paper and
presents directions for future research. The test signals include natural and synthetic poly-
phonic mixtures of musical instruments. Sound demonstrations of these signals are available
a[9].

1 Framework for Audio and Music Processing

Since digital audio and music processing consists of a multitude of technologies, it is useful
to devise aframework which hel psto organize and rel ate the technigues and methods. Figure
1 depicts such a genera framework based on the virtual acoustics framework presented by
Karjalainen [10]. The framework showstwo vertical paths: an analysis path on the left and a
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Figure 1: A framework for audio and music processing (after [10]).

synthesis path on the right. The analysis and synthesis sides are connected at three represen-
tation levels corresponding to different levels of abstraction between the signal and content
representations. Naturally, this framework organization is only one of many alternatives, but

it suites the work presented in this study and the methodologies on which the ideas presented

here are built.

Most of the present digital audio applications consist of techniques at direct transmission/storage
or parametric representation level. However, as the focus of research is steadily climbing up

in both the analysis and synthesis path, we are likely to see new applications and solutions
that operate on the object- and content-based levels. The following discussithy adie

dresses the three representational levels, and gives examples of analysis and synthesis tech-
nigues in each.



1.1 Parametric Representations

If the “direct transmission and stordgeath is discarded, the parametric representation pro-
vides the strongest connection between the analysis and synthesis sides of the framework.
For instance, audio compression methods, such as those of the natural audio coding part of
MPEG-4 [2, 11] belong to this level implementing the whole chain starting from and ending

in a sound signal or an acousfield. However, more interesting for the present discus-
sion are methods that can be used to link to the two higher levels of the framework. On
the analysis side, these consist of signal and auditory analysis tools that provide low-level
parametric representations that are useful at the object-based level for, e.gficaki

of perceptually relevant entities and objects and their perceptual features. On the synthesis
side, such techniques include model-based sound synthesis methods (synthesis engines), i.e.,
computational algorithms that are controlled from the sound-object synthesis level.

Low Level Signal Components Sinusoidal modeling is a common example of a tech-
nique for presenting a signal with low level components, namely sinusoids, noise clouds,
and transients [12, 13, 14, 15, 16, 17, 18]. The basic sinusoidal modeling is a pure signal
processing method in which peaks corresponding to sinusoids are detected in a short-time
Fourier transform (STFT) representation and associated in consecutive frames so that slowly
time-varying parameter trajectories are obtained. Amplitude, frequency, and phase trajecto-
ries are typically used although in some cases the phase trajectory is discarded. Recently,
auditorily motivated methods have been devised for sinusoidal modeling [19, 16]. In this
case, the sinusoids are iteratively detected and sorted according to their masking properties.

Sinusoidal modeling is a useful tool in many audio applications. In principle, sinusoids
with slowly time-varying parameters, noise with slowly varying frequency envelope, and
transients appear an attractive combination of primitive signal components.

Periodicity Representations Periodicity or pitch detectors try to imitate auditory system
amazing ability to segregate pitched sound objects in polyphonic mixtures. Although the
current computational methods are far behind the performance of the auditory system, recent
models have been applicable in simple polyphonies. One of the promising approach is based
on peripheral perception and it uses a multi-chafitter bank with periodicity detection in

each channel [20, 21, 22, 7]. Recently, a computationafigient two-channel model has
been presented that in many cases produces similar results to the multi-channel case [23].

The main attraction of periodicity detectors is that the auditory system often fuses periodic
or nearly periodic signal components into a single percept. This is particularly important
with musical instruments many of which produce harmonic tones. It is hard to imagine,
e.g., a musical scene analysis system without pitch or periodicity detection at some stage.
Periodicity representations are also useful when combined with sinusoidal modeling since
these two together provide a means for separation of signal components corresponding to
harmonic tones. Examples of this are presented in Section 3.



Onset/Offset Representations The auditory system is perceptive to rapid changes in the
auditory scene [24]. Thus, an onset/offset detector is a typical component of an analysis
system, particularly in an CASA system [5, 6, 7]. Such a representation is typically based
on changes in the signal energy in different channels. Onset/offset representation is useful
when combined with the periodicity representation so that the perceptual sound events can
be identfied more accurately. However, the system presented here does not currently employ
an explicit onset/offset detector. As explained in Section 2, the onsets and offsets are handled
through the multipitch representation.

Common Modulations Yet another means for idefitation of perceptual events and as-
sociation of low-level components such as sinusoids is detection of common periodicity and
amplitude modulations [25, 26, 27, 28]. Also this detector has a strong background in human
audition [29]. Common modulation detection is useful when combined with periodicity and
onset/offset detectors in identifying perceptual objects.

Model-Based Synthesis Model-based synthesis consists of numerous methods that sim-
ulate the sound production mechanisms of various musical instruments and of the human
voice production. The synthesis models are computational algorithms that are executed at
the sound signal generation block of the framework. Their control is typically obtained from
the higher level and the control information is presented as events. Recent overviews of
physical modeling and particularly digital waveguides, which are particularly popular for
sound synthesis, are presented in [30, 31]. Section 3 shows a digital-waveguide-derived
model applied in analysis/synthesis of acoustic guitar signals.

While the environment and receiver modeling is important for generation of high-quality
virtual acoustics, it is beyond the scope of this work. More information on 3-D sound and
virtual acoustics can be found, e.g., in [32, 33].

1.2 Object-Based Representations

The sound object modeling block of Figure 1 can be divided into three groups of techniques
that are applicable in different applications, nhamely, perceptual modeling, musical object
analysis, and sound source modeling. Whilefir& corresponds to the perceptual aspects
of the framework, the latter two fiect more the engineering side: solving practical audio
and music applications with the help of signal and auditory analysis.

Perceptual Modeling Perceptual modeling is a set of techniques that analyze signal and
auditory representations into perceptually relevant entities. Computational auditory scene
analysis is a typical example of these applications [24, 25, 6, 7]. The goal of perceptual
modeling is to computationally identify and describe auditory percepts, thus simulating the
human auditory system. Note that perceptual objects do not always correspond to musical
objects [8, 26, 27].



Musical Object Analysis In certain applications, the interest is in obtaining an object-
based representation thaflexts the musical content, e.g., in terms of common notation.
These applications include automatic transcription (cf. a review in [34]) in which the aim is
to obtain a score from a recording, and musical information retrieval [35, 36] where, e.g., a
song or a melody is being idefied. Another application in this category is tempo and beat
tracking [37].

Musical objects do not always correspond to perceptual objects, although often the corre-
lation is strong [8, 26, 27]. Thus, application such as automatic transcription differs from
perceptual modeling since humans do not perceive common notation. Howevereageh
neering problems can often befiefrom the theory of perception, as proven in, e.g., audio
coding [4]. Similarly, it is likely that musical object analysis will improve through inclusion

of auditorily motivated processing principles.

Sound Source Modeling In sound source modeling the goal is to obtain a representation

of a sound in terms of models of the sources that produced the sound. Depending on the
application, sound source modeling techniques may be closely related to the synthesis side
of the framework. For instance, the generalized audio coding paradigm allows to represent
individual sound sources as they are presented with synthesis models in the synthesis path
[38]. Another example is sound source idéottion where the aim is to identify a musical
instrument from a recording of the sound of the instrument [8, 39].

Sound-Object Generation The object-based representation for synthesis typically con-
sists of information about sound generation models and their dynamic control. This involves
specfication of properties of a sound generation model and event control by passing note-on
and note-off events as well as other control data. A widely spread but limited protocol for
sound-object control is MIDI [40]. Another example is the structured audio part of MPEG-

4 that has been derived from the CSound language [1, 3]. This paradigm also hosts the
generalized audio coding concept.

1.3 Content-Based Representation

At this time, content-based audio analysis is limited. In a primitive sense, applications such
as automatic transcription and musical information retrieval can be interpreted as approach-
ing content-based processing. On the synthesis side, the chain from a content-based repre-
sentation into an audio signal is more developed. An application example is the expressive
notation package (ENP) which allows a composer or performer to add expressive informa-
tion related to the performance with a particular virtual instrument into an extended common
music notation [41]. Laurson et al. have demonstrated how the ENP notation can be pro-
cessed into an object-level control stream that is used to control a virtual guitar at the sound
signal generation level (see [41] for examples, links also available at [9]). See also [42, Part
V] for literature review of high-level control of music synthesis.
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2 Analysis Techniquesfor Sound Source M odeling

Depending on the application, the signal and auditory analysis techniques and perceptual

sound source modeling can consist of a multitude of methods, as discussed in Section 1. As

an example of how the signal and auditory analysis methods can be combined with perceptual

sound source modeling including the feedback paths (cf. Figure 1), an iterative sound source

separation system is presented. Figure 2 shows a general block diagram of the system. The
pre-analysis block extracts information related to pitched sound objects, such as fundamental

frequency trajectories, onsets/offsets, and common modulations, as described in Section 1.
These representations are used on one hand to help the extraction of low level components
(sinusoids in this case) and to group the components into perceptually relevant entities. The

feedback path is included so that a detected prominent components can be extracted either
from the signal or from the low-level representations.

In the following we brifly summarize a previously presented system of iterative sound
source separation based on multi-pitch analysis and fiatton of pitched sound compo-
nents that follows the structure of Figure 2 [43]. A heuristic sound-source foeniton tech-

nique is described, and a previously reported technique for separation of colliding sinusoids
is implemented in a computationallyfieient way. A method fofine-tuning the estimate

of fundamental frequency is described and it is applied in detection of inharmonicity and
vibrato in mixtures of tones. Finally, techniques are described for obtaining a model-based
representation using a plucked string model described in Section 2.4.

2.1 Iterativeldentification and Separation of Harmonic Tones

The key component of the separation system is a computationfitieet multi-periodicity
model [23]. The model has also been incorporated in an iterative multi-pitch analysis and
prediction system for separation of speech signals [44]. Figure 3 shows a block diagram of
the model. The input signal f&rst pre-whitened using the warped linear prediction (WLP)
technique [45, 46]. The signal is divided into two channels below and above 1 kHz. The
amplitude envelope of the high-channel signal is detected using half-waviecegain and
low-passfiltering. A periodicity representation is computed on both channels by means of
an autocorrelation with magnitude compression in the frequency domain. The periodicity
representations are summed into a summary autocorrelation function (SACF). Finally, the
SACF representation is post-processed into an enhanced SACF (ESACF) in which pitched
sound components may be idér&d.

Figure 4 shows an example of the ESACF representation. The analyzed signal is a violin
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Figure 4. ESACF representation of a violin melody in an orchestral background.

melody in an orchestral background [9, Example 1]. As seen ifithee, the melody is

clearly visually idenfiiable in the representation. However, the plot also shows spurious
peaks that do not correspond to pitched sound objects. Thus, we present a heuristic event
detector for idenfication of pitched sound objects which helps to automate the crucial iden-
tification step in the separation process. The proposed event detector also sorts the event
candidates according to a relevance measure.

The technique for detecting pitched sound objects is based on trajectory tracking. A similar
technique is frequently used in sinusoidal modeling [47]. Starting fronfitbeframe, all

local maxima are detected. After a maximum has been detected, the corresponding peak is
deleted in the representation [48]. For each detected maximum, a corresponding maximum
is sought in the consecutive frames in a vicinity of the location of the original maximum.
This search is continued until all maxima are assigned to a trajectory. These trajectories are
treated as pitched sound event candidates.

In order to sort the events, a relevancy measure is attached to each event. The measure
is computed as follows. The sum of the ESACF values of each frame are computed for
normalization. Each of the values of the maxima are normalized with the corresponding
ESACF frame sum. The normalized maxima values are summed over each event. This
kind of heuristic measure was selected so that the relative weight of each ESACF frame
is constant (normalization) and the events that last long in time are weighted more than
short ones (summing over events). A similar approach of favoring long events was taken
in detecting sinusoids in consecutive frames [17]. Naturally, this is but one alternative for
sorting the events but this method has been useful in separating the spurious short events
from events corresponding to actual tones.

The solid lines in Figure 5 (a) show the events corresponding to the violin melody of Figure 4.
The event detector was in this case able to follow the melody with only a few discontinuities
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Figure5: An example of detection of vibrato.

with events. These, however, may be problematic and a post-processing step for merging
discontinuities that are likely to correspond to a single event may be useful. Similar merging
techniques have been used in sinusoidal modeling [47].

In many cases, the separation of a complex sound signal into its all constituent components at
the signal level is not possible or the result is of poor perceptual quality (cf. [9, Examples 4
6]). Note that this kind of functionality is very unlikely in the human auditory system. How-
ever, there are applications where the separation of prominent contributors, e.g. a melody,
is suficient. Such applications include musical information retrieval, e.g., iieation of

a song based on melody, and melody sound-source fobetiton. Reasonable tasks at this
time may include the following: Is there a prominent plucked string instrument in this seg-
ment? Name a likely prominent instrument in this segment. Even these simple applications
still require extensive development. In addition to these examples, the sinusoidal separation
approach is useful in obtaining a model-based representation from recordings, as described
in Section 3.

The examples that follow show how the ESACF representation combined withnange
estimator of fundamental frequency can be used to detect vibrato and inharmonicity of a
tone in a mixture of tones, and to obtain a model-based representation using a plucked-string
model.



2.2 Computationally Efficient Implementation of NL S Sinusoidal M od-
eling

In a previous work, a technique for separation of colliding sinusoids was presented based
on thenonlinear least-squares (NLS) method in a relatively small vicinity of the frequency
space [43]. The NLS technique is the most accurate (minimum-variance) unbiased method
for estimating sinusoids in additive Gaussian white noise [49, 50, 51, 52].

The basic idea is to apply the estimator locally in a vicinity that is pre-determined from
analysis of the fundamental frequencies or from investigation of thefgignce measure.
Global application of the estimator is infeasible since that would involve a highly nonlinear
search over a high-dimensional parameter space. In this local application, the parameter
space is essentially two-dimensional and the search space mayibedd& advance for

faster convergence. Furthermore, the estimates of the fundamental frequencies may provide
initial values for the search algorithm.

As described in [43], the cost function of the local model given as

,_.

2

N—
f,(l ¢ = y Z 2Trfkn+¢k) ) fl € [fl,min; fl,max]a f2 € [fZ,min; f2,max]
n=0 k=
(1)

where the rangely; min, f1.max) aNA[f2.min, f2.max] @re pre-determined from the estimates of
the corresponding fundamental frequencies or from the shape of the peak.

As shown in, e.g., [51], the cost function of Equation 1 is minimized with the following
separated equations

f = argmax,[Y"B(B"B)"' B"Y]
B = (B"B)'BUY|; @)
where
Be = ape'®
B = [6 5]
Y = [y(0)---y(N -1)]"
1 1
ei27‘rf1 ei27rf2
B =
.GiZTr(Nfl)ﬁ l€i27r(N*1)f2

The sinusoidal frequencies are obtained usinditiseequation of (2) after which the ampli-
tudes and initial phases are computed using the second equation of (2).

Direct application of Equation 2 is unattractive due to the computational demands. Particu-
larly, computation ofY # B(B2 B) ' BEY| is expensive. However, examination of the term
(Bf B)~! reveals that it can be expressed as a function of the difference of the frequencies
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The values of the termtiB B) ! can be stored in memory with appropriate resolution and
range of the differencg, — f,. In addition, the values of B can be stored during the
computation so that each vector product is only computed once. These procedures have
resulted in sigrficant computational savings making the NLS technique feasible in practical
analysis applications.

2.3 NLS-Based Estimation of Fundamental Frequency

The NLS estimator is readily employed irfirdng an estimate of the fundamental frequency
of a harmonic tone. In this case the cost function to be minimized is

N-1 Nharm ' 2
G(fo) = 3 [y(n) = D Bue o) (5)
n=0 k=1

over a meaningful range of the fundamental frequeficyParametery and NV,..., are the
window length and the number of harmonics, respectively.

Equation 5 can be solved using Equation 2 whemow consist ofV,,..., complex ampli-

tudes and thé3 matrix of NV,..., complex sinusoids. Notice that computational complexity

of the method can be considerably larger compared to detection of two complex sinusoids
depending on the number of harmonics used in detection. Particularly with low tones with
numerous harmonics in the signal band, it is advisable to limit the number of harmonics used
in estimation. If computational #€iency is of the essence, the Goertzel algorithm [53, 54]
can be used to reduce the computational requirements. In addition, the valug$Bf—!

can be precomputed and stored in a memory with facseift f, range and resolution.

This method has been applied in separation of speech signalsfilmngethe estimate of
the fundamental frequency [44]. The NLS fundamental frequency estimator may be readily
included in the pre-analysis block of Figure 2.

Application of the fundamental frequency estimator in detection of vibrato and tremolo and
of inharmonicity parameters is described next.

2.3.1 Detection of Vibrato

Vibrato is a perceptually important expressive feature related to variation of the fundamental
frequency. It is controlled by the singer or the player of the instrument. Vibrato and its
characteristics have also been found useful for instrument fo=tion [8].

11



0.5 1 1.5 2 2.5 3 3.5
Time (s)

Figure 6: (a): ESACF representation of a mixture of piano dide tones. (b): detected
fundamental frequency trajectories of the mixture (solid) and the isolated tone (dashed).

The NLS fundamental frequency analysis model provideg,amajectory on which the vi-

brato can be estimated. An example of detection of vibrato is demonstrated in Figure 5. The
test signal is an excerpt of classical music with a violin solo and an orchestral background.
Figure (a) shows the ESACF representation of the excerpt. The solid lines mark the detected
events that correspond to the violin melody (cf. the sound signal at [9, Example 1]). Plot
(b) shows thef, trajectory obtained using Equation 5 using the fundamental periods of the
events in (a) as initiaf, estimates. Figure (c) shows a more detailed view offittst eight
seconds of fundamental frequency trajectory. The modulation of fundamental frequency is
clearly observable in the plot.

As noted, e.g., in [8, 55], in many cases amplitude modulation of partials is related to the
fundamental frequency modulation. Common period and amplitude modulations of partial
components also appear to provide a means for segregation of individual sources [24]. This
property has been applied for a computational model for segregation of sound sources com-
ponents [26, 27]. As Figures 6 and 7 show, the NLS-based fundamental frequency estimator
provides an alternative way of detection of common period and amplitude modulations. In
this case the test signal has been composed of tones from the McGill University Master Sam-
ples set [56] (cf. [9, Example 2]). A C major seventh chord is obtained by summing three
piano tones (g, E,;, and G), and aflute tone B with vibrato. The period modulation and the
amplitude modulation of thirstfive harmonics of th8ute tone was analyzed. Figure 6 (a)
shows the ESACF representation of the signal. The detected event correspondirftyitie the
tone is depicted with a solid line. The solid and dashed plots in (b) show the fundamental
frequency trajectories detected in the mixture of tones and in the isolated tone, respectively.
The plots suggest that the fundamental frequency variation can be detected in a mixture of
tones, as long as the desired event can be ifiledtin an ESACF or a similar representation

so that the initial estimate used in the NLS-method i$icleintly accurate.

The NLS estimator also tracks the amplitudes of individual harmonics, as demonstrated in
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Figure 7. Amplitude envelopes of the five lowest partials of the flute tone in mixture (a) and
in isolation (b).

Figure 7 which shows the amplitude envelopes of the five lowest partials of the flute tone
in the mixture (a) and in isolation (b). The envelopes are positioned on the figure manually
so that they can be easily visually examined; the figure does not reflect the relative levels of
amplitudes of partials. Partials 1, 2, 3, and 5 exhibit amplitude modulation that is related to
the period modulation (cf. Fig. 6). Only the envelope of the fourth partial differs considerably
in the two cases.

Vibrato is an expressive feature with characteristics that are controlled by the player, includ-
ing the frequency and the amplitude of the modulation. In [41, 57], the vibrato characteristic
of isolated classical acoustic guitar tones were analyzed and the data was used to obtain
parameters for model-based synthesis. The use of the NLS-based fundamental frequency
estimator allows detection of the vibrato in real musical performances. It also appears an
attractive front-end tool for investigation of fine-structure of vibrato in actual performances
and provides a feature extractor for music recognition models presented in Figure 1.

A recent study of sound-source recognition proposes to use several features related to spec-
tral structure, pitch, vibrato, tremolo (over-all amplitude modulation), and inharmonicity [8].
Although application of the NLS-based techniques to sound-source recognition is beyond the
scope of this work, it appears promising for detection of such features in mixtures of sim-
ple polyphonic signals or in signals with a prominent source, e.g., an instrument playing a
melody.
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Another phenomenon that causes variation of the fundamental frequency is the tension mod-
ulation: a freely vibrating string exhibits a nonlinearity that causes the pitch of the perceived
tone to vary during vibration. The nonlinearity is generated by tension modulation that is
related to elongation of the string during vibration. For a review of analytic and experimen-
tal studies on tension modulation as well as methods for simulating the phenomenon using
computational models, see [58].

The fundamental frequency variation takes place in every vibrating string but is typically
perceivable only in plucked strings where the overall displacement distribution variation is
larger compared to, e.g., struck strings. Moreover, the effect is large if the initial tension
of the string is relatively small allowing large-amplitude vibration. Instruments with per-
ceptually relevant tension modulation include guitars, the tanbur, and the kantele, which are
traditional Turkish and Finnish string instruments, respectively. Examples of fundamental
frequency variation in these instruments are presented in [58, 59, 60].

The NLS fundamental frequency estimator can be used to detect the pitch drift caused by
tension modulation. Since this pitch drift is related to the attenuation of the tone, it may be
a useful feature, e.g., in recognition of musical instruments. Note, however, that the phe-
nomenon is only observable in tones that are plucked relatively hard and at a position with a
considerable distance from the string termination for a sufficiently large initial displacement
distribution.

2.3.2 Model for Inharmonicity

The NLS fundamental frequency estimator can also be applied for detection of inharmonicity
parameters in tones. More precisely, a model of inharmonicity can be incorporated in the
estimation. For instance, the frequencies of partials of a freely vibrating stiff string are given
as [61]

fr = kfo(1 + BE*)'/? (6)
wheref is the frequency of the first partial, ailis the inharmonicity coefficient given by

B mES*
© G6402F,’

whereF is the Young’s modulusS is the string diametey, is the string length, and; is the
tension of the string.

Using Equations 5 and 6, the cost function for detection of inharmonicity is given by

=

-1 Nharm 2

y(n) . Z akei(2rrkf0(1+Bk2)n) (7)
k=1

G(fo) =

n

Il
=)

The following example demonstrates how the inharmonicity coefficient of a piano tone can
be estimated in a mixture of three tones. The tones are from the McGill University Mas-
ter Samples set [56] (cf. [9, Example 3]). The instrument was 9 Hamburg Steinway, that
was played loud (volume 3, track 2). The selected tones wegr& L and G. The tones
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were selected so that there were several partials of the tones colliding in narrow frequency
bands. The tones were manually set to start approximately simultaneously, and the tones
were summed without altering the amplitude ratios.

The inharmonicity coefficienB of the tone G was estimated using Equation 7 both from

the mixture and the Ctone without mixing. The number of harmonics used in analysis
was limited to 30 for computational reasons. This limit has also a perceptual motivation
based on a study where the bandwidth of perceived inharmonicity of piano tones was studied
[62, 63]. That study suggested that in synthesis of the piano tgné €uffices to capture

the inharmonicity of the first 30 partials accurately.

A 740-ms segment was selected after the attack of both signals. An exhaustive search was
performed over the two parametggsand B. An initial estimate off, was obtained through
investigation of the DFT. Thé¢, range was set around this value. The grid of Bhgarameter

values was set on a logarithmic scale betw&ea 10-6, B = 10~3. Also a valueB = 0

was included in the estimation corresponding to a perfectly harmonic tone.

Table 1 shows the results of the estimation. It is seen that the estim&terothe mixed

case is quite close to that estimated in thet@e directly. Notice also that there is a small
deviation in the value of, estimated using the model of Equation 7 and the value that was
obtained initially using the DFT. From a computational efficiency viewpoint, it would be
attractive to use the initial estimate as fixgdand perform only a one-dimensional search
over theB parameter. Although the deviation jfy estimates is small, it is large enough

to degrade the estimation procedure if only thgarameter value is estimated. In fact, in

the case of the present example, no local maxima was found in the the one-dimensional cost
function when thefy was fixed to the initial estimate.

| signal || B | o [ foum |
C, 1.04+10 7 130.6] 130.4
mixed || 1.05 % 10~* | 130.6| 130.4

Table 1. Inharmonicity coefficient estimation example.

Figure 8 shows the spectra of the mixture of piano tones (a) and of the isolated;tofieeC
dotted vertical lines show the frequencies of the 30 lowest partials according to the detected
values of the model in Equation 6.

The presented example and other similar test cases performed during this study suggest that
the NLS-based inharmonicity estimator is a useful tool for analysis of musical sound sources.
However, experiments with a wider variety of test signals need to performed for gaining in-
sight into the limitations of the method. One clear drawback is the computational complexity
of the method particularly when an exhaustive search is applied. Further analysis of the esti-
mator performance and cost functions computed on realistic musical signals may justify the
use of more efficient numerical methods.

An application where an inharmonicity estimator, such as the one presented here, is useful is
determination of the perceptual relevance or audibility of inharmonicity of tones. Recently,
listening experiments have been conducted for determining the audibility thresholds of inhar-
monicity of plucked string tones [64]. The listening experiment results and the inharmonicity
estimator can be integrated into an analysis tool for this perceptual feature.
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Figure 8: Spectra of the mixture of piano tones (a) and the isolated tone C; (b). The dotted
lines indicate the estimated frequencies of the inharmonic partials.

Asof now, no resultswerefound in the literature for just noticeable difference of inharmonic-
ity related to a model similar to that of Equation 6. Such results would be useful for setting
the resolution of the B parameter in a perceptually motivated way, similarly to the decay
characteristic of plucked-string tones described in a companion paper [65]. Another future
direction isto incorporate the results of alistening experiment on the effect of inharmonicity
to the pitch of string instrument sounds [66] into the perceptual analysistool.

2.4 Model-Based Representation

Besides separation of sound source signals and estimation of perceptual features, the pre-
sented analysis methods can also be applied in obtaining a model-based representation of a
sound signal. Next, we briefly describe a physics-based synthesis model of a plucked-string
instrument and its parameter estimation. In the following section, we apply the model in an
analysis/synthesis task.

24.1 Mode-Based Plucked-String Synthesis

A block diagram of the string model is presented in Figure 9. The model is derived from abi-
directiona digital waveguide [67, 68, 69], and it uses the method of commuted waveguide
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synthesis (CWS) [70, 71]. Derivation of the model of Figure 9 from a digital waveguide
model ispresented in [72].

The transfer function for the string is

B 1
1 - zLiF(2)Hy(2)’

5(z) (8)

where L isthe length of the delay line,

_9(1—a)
H() =~ (9)
is the one-pole lowpass loop filter which determines the decay of the tone, and F'(z) afrac-
tional delay filter implementing the non-integer part of the string length [74, 75]. The string
transfer function S(z) is fully described by the string length L in samples, the loop gain g
and the loop filter cutoff parameter a.

The model of Equation 8 can be used for synthesis of high-quality tones when the CWS
technique is employed. In commuted synthesis, the string model parameters are calibrated
based on analysis of recorded tones [73, 76, 57]. After parameter calibration, the inverse of
the model in Equation 8 is used to inverse-filter the recorded tones. If the calibration is done
properly, the residual of the inverse-filtering is a relatively short signal that consists of the
contributions of the pluck and the body response. When this excitation is used in synthesis,
an identical copy to the original is obtained. The excitation signals are typically windowed
into a length of approximately several hundreds of milliseconds in order to save memory.
Other methods of reducing the length of the excitation signal include modeling of the signal
with a digital filter and the use of separate parametric models for the most prominent body
resonances [77, 76, 60]. Sound examples of synthetic guitar tones are available at [9].

2.4.2 Estimation of Model Parameters

The methods presented above can also be applied in obtaining an object-based representation
of a polyphonic guitar signal based on the model of Figure 9. Next, we describe how its
parameters can be obtained in the case of polyphonic signals.

The ESACF representation combined with the NL S fundamental-frequency refiner may be
directly applied to obtain a fundamental-frequency trajectory from which the fundamental
frequency can be estimated. If desired, the NLS-refiner may be applied in a longer time
window to obtain a long-term estimate of f;. Thus, the main problem is in detection of
parameters g and a.
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In previous studies, the decay parameters have been obtained from recordings of isolated
tones using a sinusoidal modeling approach [73, 76, 57]. The sinusoidal models provide
amplitude envelopes of the decaying partials from which the decay time constants are es-
timated. A digital filter is designed so that the synthetic tone produces an optimal decay.
A similar approach can be applied directly aso in the polyphonic case. However, now the
sinusoidal modeling step is more demanding requiring identification of the components cor-
responding to the desired tone. Another problem is reverberation that istypically present in
actual recordings. Estimating a decay characteristic of atone with reverberation is prone to
more errors than the anechoic case. The following section includes examples with synthetic
signals with and without reverberation and a recorded anechoic signal. These examples give
an idea how the reverberation may affect the synthesis results.

A companion paper describes listening experiments conducted to investigate the perception
of changes in decay of synthetic plucked string tones [65]. These results are valuable also
here since they give perceptual thresholds for the decay parameters g and a. The paper
also describes how the listening experiment results can be used in an iterative parameter
estimation method proposed in [57].

The companion paper also suggests an alternative method for parameterizing the decay char-
acteristic of the string model interms of overall decay time constant and the cut-off frequency
of the decay. This parameterization is more genera and descriptive than using directly the
values of the parameters. In addition, as described in [78], this approach isjustified from the
perceptual viewpoint since the perceptual thresholds can be easily expressed in this parame-
terization.

The plucked-string model used here as a case example isasimple linear model with straight-
forward parameter estimation methods. However, many model-based synthesis techniques
are nonlinear which makes their parameter estimation more elaborate. Drioli and Rocchesso
describe a nonlinear predictor and synthesis model where the nonlinear part is realized with
aneura network [79]. The model learns its parameters with nonlinear identification proce-
dures based on waveform or spectral matching. Although this work is a promising step, in
order for the nonlinear models to be applicable in analysis/synthesis systems, techniques for
parameter estimation need to developed further.

3 Mode-Based Analysisand Synthesisof the Acoustic Gui-
tar

Model-based synthesis of acoustics guitar tones has been an active area of research for the
last two decades. Combined with techniques for obtaining model parameters from record-
ings, this approach has resulted in realistic high-quality synthetic guitar pieces[80, 41, links
to demos: [9]].

Many synthesis examples have been based on the CWStechnique [70, 71], and the model pa-
rameters have been obtained from anechoic recordings of individual guitar tones[73, 76, 57].
With CWS, the synthetic tones can be copies of the original within the limits of numerical
accuracy. However, typically the parameters need to be fine-tuned according to musical
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Figure 10: Block diagram of analysis/synthesis of guitar tones.

context so that naturalness of the virtual performance isincreased. Another problem is that
the models require through analysis of a particular instrument with preferably an anechoic
chamber recordings.

In the following, we apply the sound source separation system discussed in Section 2 to
obtain a model-based representation of simple two-voice guitar music and resynthesize the
excerpt using the CWS-approach and the model of Equation 8. Three versions of the two-
voice excerpt are analyzed and resynthesized: dry synthetic signal, synthetic signal with
reverberation, and real recording in an anechoic chamber.

The selected examples are simple two-voice polyphonies with a long tone with low funda-
mental frequency and a six-tone melody at higher frequencies. We are not aiming to provide
a comprehensive treatment of the model-based sound processing; rather, the objective here
isto show what kind of results can be expected with the model-based coding approach, and
describe the shortcomings that require further development. While this particular example
is limited to classical guitar tones, it should at least qualitatively give insight into how this
approach is suited to other plucked string instruments.

Figure 10 shows a block diagram of the analysis/synthesis process. The sound source com-
ponents are first iteratively separated using the iterative technique described in Section 2.
The model parameters are estimated from the sinusoidal representation. The loop filter is
matched to the decay of amplitude envelopes and the delay line length is selected so that the
desired fundamental frequency is obtained. In the third stage, the CWS excitation signals
are obtained using the estimated model parameters. The excitation signals are windowed
into short 100 ms signals. So the representation of each tone consists of the attack and
damp locations, the excitation signal and the model parameters. Finally, the synthetic parts
are computed from the representations and summed into a synthetic version of the origina
signal.

The original, intermediate, and synthetic signals of all three cases are available at [9, Exam-
ples 4-6]. The synthesis results show that main features of the parts are captured in all cases
but fine details related to the attack and time-variation of the timbre are either missing or
degraded.

The analysis/synthesis approach works best on the synthetic signals. Thiswas expected since
the original signal is produced with a similar model. The reverberation caused problemsin
that the melody tones had a quite large variation in timbre from tone to tone. In the non-
reverberant case the variation was not so pronounced. The main problems with the recorded
excerpt was related to the attacks of the synthetic melody tones which exhibited clearly
audible artifacts. This may be due both to inaccuracies in sinusoidal modeling in separation
and to inaccurate estimation of the string model parameters. All the examples retained the
identity of the instrument, although the quality was degraded.
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In some applications a more attractive approach may be to not transmit the excitation signals
but to use a completely different set of signals that are made available at the synthesis stage.
This naturally reduces the bandwidth required for transmission considerably as al the tones
are represented by merely attack and damp locations, overal amplitude, and the model pa-
rameters. Note that this approach does not typically produce exactly similar synthetic signal,
but in many applications it can still be useful.

4 Conclusionsand Future Work

A framework for audio and music processing has been presented. The framework essentially
consists of two vertical paths, one for analysis and another for synthesis, and three rep-
resentational levels for parametric, object-based, and conceptual representations. Analysis
methods were described for identification and separation of harmonic tones and for detecting
perceptual features of tones, such as vibrato and inharmonicity. Finaly, analysis/synthesis
examples were presented using a model-based synthesis of acoustic guitar signals.

The presented analysis techniques combine signal and auditory analysis methods with per-
ceptual sound source modeling in an iterative way. Although the presented work has but
scratched the surface, the results support that further research with this approach is attrac-
tive. There are numerous ways the improve the presented system. Improvements may be
expected with development of the multi-periodicity analysis model and integration of that
with onset/offset and common modulation representations, improving the separation stage,
and elaborating the models and their parameter estimation.

It will take along time before the analysis and synthesis paths of the framework are generally
connected at all levels. In the mean time, research and development within the areas of the
framework will yield novel and useful techniques that enable new solutions, services, and
applications in digital audio and multimedia communication.
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