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ABSTRACT: The Self-Organizing Map (SOM) is a powerful neural network method
for analysis and visualization of high-dimensional data. It maps nonlinear statistical
dependencies between high-dimensional measurement data into simple geometric rela-
tionships on a usually two-dimensional grid. The mapping roughly preserves the most
important topological and metric relationships of the original data elements and, thus,
inherently clusters the data. The need for visualization and clustering occurs, for instance,
in the analysis of various engineering problems. In this paper, the SOM has been applied
in monitoring and modeling of complex industrial processes. Case studies, including pulp
process, steel production, and paper industry are described.

INTRODUCTION

In modeling and control of industrial processes,
it is usually assumed that a global, analytical sys-
tem model can be defined. If such a model can-
not be built, or different kind of approach is de-
sirable, Artificial Neural Networks (ANNSs) can be
used. ANN models are built directly based on pro-
cess measurements, and thus provide a means to
analyze processes without explicit physical process
model. ANNs can also be used as “soft sensors”
to estimate signal values or process variables that
are difficult to obtain or can only be measured off-
line. The use of the ANNs, however, requires that
a large amount of good quality, stable, numerical
data describing the process are available.

The Self-Organizing Map (SOM) (Kohonen,
1995) is one of the most popular neural network
models. The algorithm is based on unsupervised
learning, which means that the training is entirely
data-driven. Unlike networks based on supervised
learning (like the multi-layer perceptron) which
require that target values corresponding to in-
put vectors are known, the SOM can be used for
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clustering data without knowing the class mem-
berships of the input data. It can, thus, be used to
detect features inherent to the problem.

The SOM has been successfully applied in
various engineering applications (Kohonen, Oja,
Simula, Visa and Kangas, 1996b) covering, for
instance, areas like pattern recognition, image
analysis, process monitoring and control, and
fault diagnosis (Simula, Alhoniemi, Hollmén and
Vesanto, 1996; Simula and Kangas, 1995; Tryba
and Goser, 1991). In telecommunication systems,
the SOM has been used in adaptive resource allo-
cation and optimization (Tang and Simula, 1996a;
Tang and Simula, 1996b). In speech processing,
the SOM has been used in phoneme recognition
(Kohonen, 1988) and in speech signal quality anal-
ysis (Leinonen, Hiltunen, Torkkola and Kangas,
1993). It has also proven to be a valuable tool in
data mining and knowledge discovery with ap-
plications in full-text and financial data analysis
(Kaski, 1997; Kohonen, Oja, Simula, Visa and
Kangas, 1996b).

In this paper, SOM based methods in the anal-
ysis of complex systems are discussed. Special em-
phasis is on industrial applications in which a lot
of measured information is available from automa-
tion systems.
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THE SELF-ORGANIZING MAP

The SOM algorithm performs a topology pre-
serving mapping from high-dimensional space onto
map units so that relative distances between data
points are preserved. The map units, or neurons,
form usually a two-dimensional regular lattice. The
SOM can thus serve as a clustering tool of high-
dimensional data. It also has capability to gener-
alize, i.e. the network can interpolate between pre-
viously encountered inputs.

Each neuron i of the SOM is represented by
an n-dimensional weight, or model vector, m; =
[ma, ... ,mm]T (n is the dimension of the input
vectors). The weight vectors of the SOM form a
codebook. The neurons of the map are connected
to adjacent neurons by a neighborhood relation,
which dictates the topology, or the structure, of
the map. Usually rectangular or hexagonal topol-
ogy is used. Immediate neighbors (adjacent neu-
rons) belong to neighborhood N; of the neuron 1.
In the basic SOM algorithm, the topological rela-
tions and the number of neurons are fixed from the
beginning. The number of neurons determines the
granularity of the mapping, which affects accuracy
and generalization capability of the SOM.

An example of applying the SOM in industrial
process analysis is shown in Figure 1. The different
stages in the figure are discussed more closely in
the following four subsections.

Data Processing

The SOM, like other neural network models, fol-
lows the “garbage in - garbage out” principle: if er-
roneous data are used, the result is poor. For that
reason, the input data must be processed carefully.
Figure 2 illustrates data acquisition and manipu-
lation process before training the SOM.

Data acquisition means making a database
query, measuring variables etc. Data of this form
are often called raw data. If the data are coded
in a non-metric scale, the coding must be trans-
formed. Measurements must be quantifiable, be-
cause the Euclidean distance is usually used as a
measure of similarity by the SOM. Coding must
be in harmony with the similarity measure used.
Symbolic data cannot be processed with the SOM
as such, but it can be transformed to a suitable
form (Ritter and Kohonen, 1989).

Data preprocessing stage removes or corrects er-
roneous data. Typical preprocessing operation is
filtering using fixed or adaptive conditions. The fil-
ters are typically built using a priori knowledge of

the problem domain. Unfortunately, filtering some-
times leaves gaps of missing values in the input
vectors. However, even this kind of data can be
utilized elegantly by the SOM (Samad and Harp,
1992).

Segmentation divides the input data into sepa-
rate subsets according to criteria, which are often
determined using a priori knowledge.

Feature extraction transforms input data vec-
tors into such form that they describe the problem
better from the analysis’ point of view. In speech
recognition, for instance, spectral features may be
computed using the Fourier transform.

Normalization gives input data components a
desired weight in the SOM training. One may, for
example, scale the components so that they all have
unit variance. This assures that each component
has equal influence in training.

Training of the SOM

During iterative training procedure, the SOM
forms an elastic net that folds onto “cloud” formed
by input data. The net tends to approximate the
probability density of the data (Kohonen, 1995):
the codebook vectors tend to drift there where the
data are dense, while there are only a few codebook
vectors where data are sparse.

At each training step, one sample vector x is
randomly drawn from the input data set. Dis-
tances (i.e., similarities) between the x and all
the codebook vectors are computed. The best-
matching unit (BMU), noted here by c, is the map
unit whose weight vector is closest to the x. For
BMU holds

[Ix —m|| = min{[|x —mj||}, 1
where || - || is a distance measure, typically Eu-
clidean.

After finding the BMU, the weight vectors of the
SOM are updated. The BMU and its topological
neighbors are moved closer to the input vector in
the input space (for an illustration see Figure 3).

The update rule for the weight vector of unit ¢ is:

m,'(t + 1) =

m;(t) + a(t)[x(t) — m;(t)], 7€ N(t) @)
m;(t), i & Ne(t)

where ¢ denotes time. The x(t) is the input vector
randomly drawn from the input data set at time
t, N.(t) is non-increasing neighborhood function
around the winner unit ¢ and 0 < a(t) < 1is
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learning coefficient, which is a decreasing function
of time.

Training is usually performed in two phases. In
the first phase, relatively large initial alpha value is
used (a(tp) = 0.3,...,0.99) whereas small initial
alpha value (a(to) = 0.01,...,0.1) is used during
the second phase. This procedure corresponds to
first tuning the SOM approximately to the same
space as the input data and then fine-tuning the
map.

Validation and Interpretation

The quality of the mapping is usually deter-
mined based on (1) precision and (2) topology
preservation. The former can be measured using
average quantization error: the average distance
between the input vectors of the testing set and
the corresponding BMUs. Different topology mea-
sures have been studied e.g. by Kiviluoto (Kivilu-

Updating the BMU and its neighbors towards the input vector x. The solid and dashed lines correspond to

oto, 1996) and Kaski and Lagus (Kaski and La-
gus, 1996), who proposed a goodness meter which
combined both properties.

The SOM can be interpreted by naming the units
according to input vectors, whose type (e.g., class)
is known. This labeling gives physical interpreta-
tion of the network. If labeled vectors are not avail-
able, the map can be interpreted by direct inspec-
tion of the weight vectors and clusters on the map.
This is easiest to accomplish using different visu-
alization techniques discussed in the next section.
Also automatic interpretation of the map is possi-
ble using fuzzy rules as done by Pedrycz and Card
(Pedrycz and Card, 1992).

Visualization

The SOM can be used efficiently in data visual-
ization due to its ability to approximate the prob-
ability density of input data and to represent it in



6 ALHONIEMI ET AL.

two dimensions. In the following, several ways to
visualize the network are introduced using a sim-
ple application example, where a computer system
in a network environment was measured in terms
of utilization rates of the central processing unit
and traffic volumes in the network. The SOM was
used to form a representation of the characteristic
states of the system.

The unified distance matriz (u-matriz) method
by Ultsch (Ultsch and Siemon, 1990) visualizes the
structure of the SOM. Firstly, a matrix of dis-
tances (u-matrix) between the weight vectors of
adjacent units of a two-dimensional map is formed.
Secondly, some representation for the matrix is se-
lected (for example, a grey-level image (livarinen,
Kohonen, Kangas and Kaski, 1994). The u-matrix
of the example system is shown in Figure 4a. The
lighter the color between two map units is, the
smaller is the relative distance between them. On
the left side, there is a large uniform area, which
corresponds to idle state of the computer system.
Top right corner forms a clearly separated area,
which corresponds to high CPU load in the system.

Component plane representation visualizes rel-
ative component values of the weight vectors of
the SOM. The illustration can be considered as
a “sliced” version of the SOM, where each plane
shows the distribution of one weight vector com-
ponent. Using the distributions, dependencies be-
tween different process parameters can be roughly
studied. For example, Tryba et al. (1989) have used
this kind of visualization to investigate parameter
variations in VLSI circuit design.

The component planes of the example system
are presented in Figure 4c. The colors of map units
have been selected so that the lighter the color
is, the smaller is the relative component value of
the corresponding weight vector. It can be seen,
for instance, that the components #1, #2 and #6
(blocks per second, written blocks per second and
write I/O percentage) are highly correlated.

Sammon’s mapping is an iterative algorithm
(Sammon Jr., 1969) to project high-dimensional
vectors in two dimensions. The nonlinear mapping
tries to preserve the relative distances between in-
put vectors. The algorithm can be used to visualize
the:SOM by mapping the values of the weight vec-
tors onto a plane. To enhance the net-like look, the
neighboring map units may be connected to each
other with lines to show the topological relations.
Since the SOM tends to approximate the prob-
ability. density: of the. input data, the Sammon’s
mapping of the SOM -can be used as a very rough
approximation of the form of the input data. The

Sammon’s mapping of the example system is illus-
trated in Figure 4d. According to the mapping, the
SOM seems to be well-ordered in the input space.

Naturally Sammon’s mapping can be applied di-
rectly to data sets, but because it is computation-
ally very intensive, it is too slow for large data sets.
However, the SOM quantizes the input data to a
small number of weight vectors, which lightens the
burden of computation to an acceptable level.

Data histogram shows how input data are clus-
tered by the SOM. In other words, it shows how
many input vectors belong to clusters defined by
each map unit. The histogram is formed using a
trained SOM and a data set: for each data set vec-
tor, BMU is determined, and “hit counter” of that
unit is increased by one. The histograms may be
visualized in many ways. In our example, we have
used squares of different sizes: the larger the square
is, the larger is the counter value. The data his-
togram of the example application is shown in Fig-
ure 4e.

Operating point and trajectory can be used to
study the behavior of a process in time. The oper-
ating point of the process is the BMU of the current
measurement vector. The location of the point on
the topologically ordered SOM can be easily visu-
alized and used to determine the current process
state. If also the history of the process is of interest,
a sequence of operating points in time forming a
trajectory can be studied. The trajectory shows the
movement of the operating point, which in some
cases may be a very useful piece of information. A
piece of trajectory of the example system is illus-
trated in Figure 4b. The trajectory starts from the
normal operation area and moves through disk in-
tensive phase to high load area.

Software Tools

SOM_PAK. The SOM algorithm has been imple-
mented in a free software package SOM_PAK (Ko-
honen, Hynninen, Kangas and Laaksonen, 1996a)
written in ANSI C. The package includes tools for
SOM training (see the previous three subsections).
The software uses simple ASCII files and can use
data with missing vector components (Samad and
Harp, 1992). Graphical output of the program is
in encapsulated postscript (eps) format. An ex-
haustive description of the package can be found
in Kohonen et al. (1996a).

SOM Toolbox. Since the flexibility of the SOM can
only be fully exploited in a versatile computing en-
vironment, a freely available software package SOM
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Figure 4

Different visualizations of the SOM. U-matrix presentation (a), trajectory on top of labeled u-matrix (b),

planes representation (c), Sammon’s mapping (d) and data histogram on top of a component plane (e). In Figures (a) and

(b) the black spots denote map units.

Toolbox (Alhoniemi, Himberg, Kiviluoto, Parvi-
ainen and Vesanto, 1997) has been developed for
Matlab 5 environment (Mathworks Inc., 1996).
The package includes basic initialization, training
and validation algorithms of the SOM. Special at-
tention has been given to easy and effective SOM
visualization. The Figures 4a—4e in the second sec-
tion were produced using the SOM Toolbox. Since
all the algorithms have been implemented using
simple and well documented Matlab scripts, the
functions are easy to use and modify in the diverse
needs that unavoidably arise. The package is also
compatible with the SOM_PAK.

PROCESS MONITORING USING THE
SELF-ORGANIZING MAP

Figure 1 shows how the input vectors of the SOM
are formed and manipulated when the monitored
process is an industrial process. Input and output
measurements as well as process parameters are
collected into data buffer, where data is processed.

In process monitoring, two different approaches
can be distinguished. (1) The SOM may be applied
in on- or off-line process analysis. In this case, typ-
ically analysis of normal operation of the process
is essential — not possible system faults. (2) The
SOM may be used to detect (and possibly identify)
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faults occurred in the process. Now the situation
is opposite: role of faults is emphasized and varia-
tions in the normal operation are less important.
Representative examples and many references can
be found in articles by Kohonen et al. (1996b) and
Simula and Kangas (1995).

Process Analysis

A fruitful application area for process analysis is,
for instance, chemical process industry. The SOM
may be applied to on-line observation of processes
as well as off-line analysis of process data. Because
clear faults seldom occur in such processes and
are typically quite uninteresting, faulty situations
should be filtered out from the training data set
to be able to analyze normal operation more accu-
rately.

In on-line use, the SOM is used to form a display
of the operational states of the process. The op-
eration point (i.e., the current process state) and
its history in time can be visualized as a trajec-
tory on the map which makes it possible to track
the process dynamics in a new way (see Figure
4b). The SOM facilitates understanding of pro-
cesses so that several variables and their interac-
tions may be inspected simultaneously. In off-line
analysis, the SOM is also a highly visual data ex-
ploration tool. Non-linear dependencies between
process variables can be effectively presented using
several techniques some of which were described in
the previous section under Visualization.

Kasslin et al. (1992) used the SOM to monitor
the state of a power transformer and to indicate
when the process was entering a non-desired state
represented by a “forbidden” area on the map.
Tryba and Goser (Tryba and Goser, 1991) applied
the SOM in monitoring of a distillation process
and discussed its use in chemical process control in
general.

Fault Detection

If only detecting a fault is desired, the SOM is
trained using measurement vectors describing nor-
mal operation only. Vectors representing abnor-
mal behavior of the process need to be removed
from the training data set. This means the SOM
is trained to form a mapping of the “normal oper-
ation” input space. A faulty situation can be de-
tected by monitoring the quantization error (dis-
tance between input vector and the BMU). Large
error indicates that the process is out of the nor-
mal operation space. For example, Alander et al.

(1991) and Harris (1993) have used the SOM for
this purpose.

The problem of fault detection and identification
is more difficult. The SOM is trained using all pos-
sible data describing the process: both normal and
abnormal situations should be present in the train-
ing data set; if necessary, measurements describing
simulated faults may be added. Map units repre-
senting faulty states of the process may be marked
(labeled) according to known samples. The moni-
toring is based on tracking of the operation point:
location of the point on the map indicates the pro-
cess state and the possible fault type. Vapola et al.
(1994) constructed a two-level SOM model, which
was used first to detect and then to identify fault
conditions in an anesthesia system.

PROCESS MODELING USING THE
SELF-ORGANIZING MAP

SOM as Non-Linear Regression Tool

General regression of y on x is usually defined as
9 = E(y|x). That is, the expectation of the output
y given the input vector x. To motivate the use of
the SOM for regression, it is worth noting that the
codebook vectors represent local averages of the
training data.

The SOM can be used for predicting, for exam-
ple, the output quality of a process given the mea-
surements of incoming raw material characteristics
and process parameter settings (Hollmén and Sim-
ula, 1996). Regression is accomplished by search-
ing for the BMU using

¢ = argmin Z(x] - my;)?, 3)
i s

where S is the set of known vector components of
x. As an output, a copy of components k ¢ S of
the codebook vector m.: § = mg are given (see
Figure 5).

The accuracy of the model is controlled by the
number of codebook vectors. A SOM with large
number of map units quantizes the data space
densely enabling an accurate regression, while a
SOM with only a few map units provides a sparse
quantization of the data space, in which case the
regression is very coarse but a better generaliza-
tion is achieved.
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Local Linear Models

The accuracy of the SOM model can be increased
by building local models for the data in the Voronoi
sets of the SOM. The Voronoi set V; of map unit
i is a set of vectors {xi,...,X,}, for which the
codebook vector m; is closest:

Vi = {x| llm; — x|| < |lm; — x|, Vj, j #i}. (4)

The Voronoi sets provide a partitioning of the in-
put data into disjoint sets. Each set contains points
that are near each other in the data space. Subsets
are modeled by independent local models, which
together are considered a solution to the modeling
problem. Each model is based on local data set V;
only. This kind of approach could be called divide-
and-conquer modeling. The models are not con-
strained to be of any specific form, or not even of
similar form. In our experiments, only simple local
linear models have been considered.

A total least squares type of linear regression can
be performed using Principal Component Analysis
(PCA) in model fitting. This approach allows mea-
surement errors also in inputs while the usual least

squares approach assumes that the input variables
are accurate and there is error in the output vari-
ables only (Rao and Toutenburg, 1995). These two
modeling methods combined take advantage of the
nonlinear elasticity of the SOM as well as the local
efficiency of the PCA.

Also the topology preservation property of the
SOM projection can be incorporated by allowing
neighboring data sets and models to interact in
some way. Ritter et al. (1992) used this approach in
local modeling of three-dimensional working space
of a robot arm.

Sensitivity Analysis

It is often desirable to know behavior of a system
under small changes made in the system parame-
ters. This is especially the case in industrial envi-
ronments, where noise is present both in measure-
ments and in operating conditions. In process con-
trol, the state of the process is desired to be moved
in such a direction that better quality is achieved.
The operation point needs to be stable: small ran-
dom fluctuations in input parameters must riot
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cause large changes in output parameters.

The model described at the beginning of this
section can be used to investigate leverage effects
of small changes made in one of the process pa-
rameters. This is possible because the system can-
not reach all the possible values in the space de-
fined by the measurements, but may be limited to
a low-dimensional manifold. The state space, or
the space of possible values, is constrained by the
characteristic behavior of the system. This is illus-
trated in Figure 6, which depicts a two-dimensional
SOM trained with data originating from a three-
dimensional measurement space. As a small change
along one of the axes defined by the measurements
is imposed, the BMU changes to another map unit.
By tracking the change of the BMU caused by the
change of the parameters, the mutual nonlinear
dependence of the parameters is revealed; one is
“surfing” on a low-dimensional manifold defined
by the SOM projection.

SOME CASE STUDIES
Monitoring: A Continuous Pulp Digester
In a case study, a continuous pulp digester of a

pulp mill was studied. Input vectors of the SOM
consisted of 11 temperature sensor readings from

digester sides and one output quality measure-
ment, kappa number. The aim of the test was to
study correlation between the kappa number and
the temperatures. The process temperature was
beforehand known to be one of the most important
factors in successful digester operation.

Input data consisted of material collected during
a half year period at the mill (about 20000 mea-
surements per channel). Erroneous measurements
were filtered out from the input data using a pri-
ori knowledge of the process. Only data depicting
steady operation of the process were selected for
use. The input vector components were delayed
with respect to each other in time so that each
vector consisted of the temperature profile of “a
piece” of pulp and corresponding kappa number.
After input data processing, there were 9975 12-
dimensional input data vectors. A SOM of 40 by
25 units was trained using the vectors so that the
BMU was searched using the 11 temperatures, and
the adaptation was made using the temperatures
and the kappa number. This way it was possible
to study the correlation between temperatures and
end product quality.

The component planes of the SOM are presented
in Figure 7. Black color indicates high temperature
and white correspondingly low. For example, high
temperatures in eight first measurements #1-#8
(black spot in the middle of plane) are reflected
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in last plane, the kappa number, by small values
(white spot in the middle). The kappa number
roughly correlates (inversely) with the eight first
temperature measurements. The phenomenon has
clear explanation: when the cooking temperature
is high, the delignification reactions are fast and
the kappa number becomes low. Because the kappa
number also depends on factors not included in
the analysis (like concentration of cooking chemi-
cals participating in the delignification reaction),
kappa number variations that cannot be explained
by temperatures are observed.

Modeling: Steel Production

The methods described in the previous section
were used in modeling of a steel production pro-
cess. The part of the process studied consisted of
a cold rolling and batch annealing process.

Prior to cold rolling, steel coils are opened and
pickled in an acid bath to remove corrosion and ex-
cess dirt from the surface of the coil. In cold rolling,
the coils are rolled using a tandem mill, where a
few consecutive rolls reduce the thickness of the
coil. In addition to thinning effects, this improves
the strength of the steel. Then, a batch annealing
follows the rolling operation. The coils are heated
to high temperature, after which they are cooled
off slowly. This improves the microstructure of the
steel which affects such qualities as strength and
elasticity. As the last processing step, the coils go
through a temper mill, where a slight reduction
in the thickness is made. This improves the mi-
crostructure of the steel as well as the strength.

The analysis was based on measurements made
in the production environment. The inputted steel
coils were characterized by their element concen-
trations (C St Mn P S Al Nb V Ti Cu Cr Ni Mo
B N), the production environment by the pre-set
reductions of the steel rolls and the end quality,
which was measured by three quality parameters
that reflected the mechanical properties of steel
(such as tensile strength). The goal was to pre-
dict the end product quality with the knowledge
of inputted steel element concentrations as well as
production parameters. In this way, costly off-line
measurements could be replaced by on-line predic-
tion of the output quality.

The measurements were collected from the fac-
tory automation system and divided into two dif-
ferent sets: the training set (2306 coils) and the
testing set (906 coils). The models were trained
with the training set and their performance was
tested with the testing set not used in training.

Table I The prediction errors for an independent testing
set

Method MSE
Global PCA 1.8858
SOM (8 x 6 map units) 0.8098
SOM (14 x 10 map units) 0.6059
SOM (20 x 14 map units) 0.5668
SOM (8 x 6 map units) and local PCA 0.6785

When testing the model, the measured end product
quality was compared with model output to pro-
duce an error estimate of the models (see Table I).
The first row of the table demonstrates the inferi-
ority of linear models in this application. The three
next rows show the performance of the SOM mod-
els at three different resolutions. It can be clearly
seen that increasing number of codebook vectors
improves the accuracy. By the introduction of lo-
cal linear models, we can further improve the ac-
curacy of these models.

Data Mining: Pulp and Paper Mills

In this study, the SOM was used for data min-
ing to analyze the technology data of the world
pulp and paper industry. There were three data
sets which contained information of (1) the produc-
tion capacities of different product types in pulp
and paper mills, (2) the technology of paper ma-
chines and (3) technology of pulp lines. Since each
mill could contain several paper machines and pulp
lines, a hierarchical structure of maps was used
(see Figure 8). The two low-level maps extracted
relevant information regarding the paper machines
and pulp lines data of a mill and the high-level map
combined this with production capacity data.

The low level maps (size 20 by 1 units) were con-
structed using paper machine and pulp line data
sets. The seven component planes of the paper ma-
chine map are shown in Figure 9. Based on the
map, three main types of paper machines could be
determined: (1) new paper machines with very big
capacity, (2) paper machines with big paper weight
and (3) paper machines whose size and capacity de-
crease steadily with increasing age. A similar study
of the pulp line map produced three main pulp line
types: (1) those using waste paper for pulp, (2)
those making unbleached pulp and (3) those mak-
ing chemical pulp mainly from wood fiber.

The high level map (size 40 by 25 units) was
trained using the mill-specific production capacity
information of the first data set and histograms
from the low level maps. For each mill, the his-
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The hierarchical map structure. Data histograms from individual low level maps were utilized in the training

Figure 9 The component planes of the paper machine map: the component names are on the left and the corresponding
values in the map units in the middle. The three first components have a strong correlation, as do the next two components.

tograms were computed using data of the paper
machines and pulp lines of the mill. Figures 10a
and 10b show the u-matrix of the high level map
and the distribution of Scandinavian and Chinese
pulp and paper mills on the map, respectively. The
two sets are easily separable although there was no
geographic information present in the data.
Scandinavia represents a technologically ad-
vanced region. The mills are new, they have big-
capacity paper machines and the majority pro-
duces printing/writing papers or pulp. Chinese
mills, on the other hand, have many machines and
they produce both industrial and printing/writing
papers. It can also be seen that in the area where
the majority of the Chinese mills are the values of
the u-matrix are very low. That is, the variation
between weight vectors in that area is low, which
means that these mills resemble each other.

SUMMARY

In this paper, the use of the SOM in analy-
sis, monitoring and modeling of various industrial
applications has been presented. Practical results
show that the SOM is especially suitable in tasks
which require processing of large amounts of nu-
merical data. The method is readily explainable,
simple and highly visual.

The SOM provides data-driven approach to pro-
cess monitoring. When using the SOM, it is not
necessary to define process model analytically. The
SOM has the desirable feature of describing nonlin-
ear relationships between large number of parame-
ters and variables of complex systems phenomeno-
logically. By using a history of measurements, dy-
namical behavior of the process can be introduced
into the map, or set of maps. This approach has
been used to model the sequence of states and
based on that to predict the future state in the sys-
tem operation (Principe and Wang, 1995; Simula,
Alhoniemi, Hollmén and Vesanto 1996).

The SOM facilitates visual understanding of
processes. For instance, process operation person-
nel may learn to adjust the control variables in
such a way that the operation point, or trajectory,
stays in the desired region on the map. In this way,
correct control action may be easily learned based
on the visual output.

The construction of feature vectors allows fusion
of different data and measurement sources. For in-
stance, in the analysis of complex industrial pro-
cesses, technical, economical, and environmental
data can be combined (Vesanto, Vasara, Helminen
and Simula, 1997). This allows the analysis and
simulation of various effects in the entire field of
industry, e.g., the influence of various technical in-
vestments can be analyzed in the factory level.
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Figure 10

The data set histograms of two different geographical regions on the u-matrix of the high level map. The

bigger the square, the more mills were projected to that unit on the map.
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