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Abstract

In data mining and in classification specifically, cost issues have been undervalued
for a long time, although they are of crucial importance in real-world applications.
Recently, however, cost issues have received growing attention, see for example
[1,2,3]. Cost-sensitive classifiers are usually based on the assumption of constant
misclassification costs between given classes, that is, the cost incurred when an
object of classj is erroneously classified as belonging to classi. In many domains,
the same type of error may have differing costs due to particular characteristics
of objects to be classified. For example, loss caused by misclassifying credit card
abuse as normal usage is dependent on the amount of uncollectible credit involved.
In this paper, we extend the concept of misclassification costs to include the influ-
ence of the input data to be classified. Instead of a fixed misclassification cost
matrix, we now have a misclassification cost matrix of functions, separately evalu-
ated for each object to be classified. We formulate the conditional risk for this new
approach and relate it to the fixed misclassification cost case. As an illustration,
experiments in the telecommunications fraud domain are used, where the costs are
naturally data-dependent due to the connection-based nature of telephone tariffs.
Posterior probabilities from a hidden Markov model are used in classification, al-
though the described cost model is applicable with other methods such as neural
networks or probabilistic networks.
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1 Introduction

Classification has important applications in data mining. Having modeled the char-
acteristics of classes, we can use Bayes rule for making statements about class
membership of data, on which decisions can be based on. Optimal decisions are
dictated by decision goals, which are specific for a given problem. Automatic clas-
sification is important in practical applications, like in medical diagnosis and fraud
detection. Such domains involve large amounts of data, which is cumbersome and
expensive to analyze by human experts. Consequences of decisions taken by a
classifier are another important aspect of such domains. In cancer screening, for
instance, a wrong decision has far reaching implications. Considering a healthy
patient classified as sick or a sick patient as healthy are very different in nature.
Furthermore, an incorrectly classified sick patient suffers from an uncured disease
that may lead to death, but a misclassified healthy patient is only subject to addi-
tional examination before the correct decision. In fraud detection, the timeliness
of correct decisions has a direct connection to monetary loss. On the other hand, a
fraud detection system is faced with the annoyance of unnecessarily interrogated
customers.

According to [4], cost issues are discussed surprisingly little in the literature. Of-
ten, they are neglected entirely and if considered, the standard way of incorporating
them in classification is to state a fixed misclassification cost matrix, which sum-
marizes the cost of misclassifying an entity [5]. Such statements do not include
specific characteristics of a given entity, but are based on the average costs for the
entire population. Additionally, cost structure may be misused to tackle the prob-
lem of highly imbalanced class distributions. For this approach, fixed misclassifi-
cation cost matrix is sufficient, since in cost-aware decisions it has the same effect
as corrected prior probabilities. This is equivalent to replacing the common with
the cheap and the rare with the expensive. Although this assertion often happens
to be successful, the very problem of real costs is not addressed. In this paper,
we introduce a cost model that incorporates the specific properties of objects to be
classified. Instead of a fixed misclassification cost matrix, we now have a more
general matrix of cost functions. These functions operate on the data to be classi-
fied and are re-calculated for each data point separately. Using telecommunication
fraud as an example, we incorporate the real cost of telephone calls made in our
decisions. In [2], use of a cost model in evaluation and fine-tuning of a fraud model
is reported, where the cost reflects the summed connection time of mobile phone
calls. Our work, in contrast, integrates a similar cost model in the classification
phase itself. In section 2, we review the Bayes rule in classification and relate our
new method (section 2.3) to the readily established methods of cost-ignorant (sec-
tion 2.1) and cost-aware classification (section 2.2). In section 3, experiments in
the telecommunications domain are presented. The paper proceeds with a discus-
sion in section 4 and ends with a summary in section 5.



2 Decision Goals and Classifier Design

The Bayes rule forms the foundation of pattern recognition and embodies the def-
inition of conditional probability. The main application of it is to invert the class
conditional probabilities of data to data conditional probabilities of classes. In the
following equation, we denote classi by ωi and data byx.

P(ωi;x) = P(ωijx)P(x) ; P(x;ωi) = P(xjωi)P(ωi)

By symmetry, we equate the above equations and solve forP(ωijx) to get the Bayes
rule

P(ωijx) =
P(ωi)P(xjωi)

P(x)
:

The termP(ωi) is the prior class probability of the classi, or the general knowledge
of the class prevalence. The termP(xjωi) expresses the likelihood of datax under
the assumption of classi. The denominator serves merely as a normalization factor.

Many classifiers use the above mentioned probabilities as the basis for decision-
making. Before put to use, however, a decision goal must be formulated. Various
decision goals come from different setups of the problems and lead to the corre-
sponding decision functions. For instance, the goal to minimize the probability of
misclassification leads to classifying samples to the class with the largest posterior
probability [5]. This is valid for problems, where classes have equal importance.
When highly imbalanced class distributions are encountered and the rare class is
the interesting one, more advanced solutions are called for.

2.1 Equal Misclassification Cost

Cost-neutral approach to classification assumes equal misclassification costs be-
tween classes. This decision goal is realized through the so-called maximum
posterior classification rule, in which a sample is classified to the class with the
largest posterior probability [5]. Imbalanced priors are often encountered in prac-
tical problems, like medical screening or fraud detection. Expressing negative log
posterior for the classω2 as in the equation below, we can see the leverage effect
of the ratio of class priorsP(ω1)

P(ω2)
on the ratio of class likelihoodsP(xjω1)

P(xjω2)

� logP(ω2jx) = log

�
1+

P(ω1)P(xjω1)

P(ω2)P(xjω2)

�
:

2.2 Fixed Misclassification Cost

Neglecting cost issues is unacceptable in many domains. The standard approach to
incorporating costs in decision-making is to define fixed and unequal misclassifi-
cation costs between classes. Cost model takes the form of a cost matrix, where the



cost of classifying a sample from a true classj to classi corresponds to the matrix
entry λ i j. This matrix is usually expressed in terms of average misclassification
costs for the problem. The diagonal elements are usually set to zero, meaning
correct classification has no cost. We may define conditional risk for making a
decisionα i as

R(αijx) =
n

∑
j=1

λi jP(ωjjx):

The equation states that the risk of choosing classi is defined by fixed misclas-
sification costs and the uncertainty of our knowledge about the true class ofx
expressed by the posterior probabilities. The goal in cost-sensitive classification is
to minimize the cost of misclassification, which can be realized by choosing the
class with the minimum conditional risk. The decision function for the two-class
case becomes then

R(α1jx)
α1
<

>

α2

R(α2jx):

This notation means that actionα1 is chosen if the left-side of the inequality is
smaller than the right-side of it. Actionα2 is chosen, if the opposite holds. Ex-
pressing the decision function as a posterior probability of the classω2 we get a
linear function according to which decision threshold is selected.

[λ12+λ21]P(ω2jx)�λ21

α2
>

<

α1

0

2.3 Input-dependent Misclassification Cost

In practice, the same type of misclassification may have different costs depending
on the object to be classified, contrary to the fixed misclassification cost approach,
where costs remain constant regardless of the data to be classified. Costs are often
naturally derived from the problem setting and may involve transaction costs or
other factors involving direct monetary loss. Using this approach, the conditional
risk for making a decisionα i is defined as

R(αijx) =
n

∑
j=1

λi j(x)P(ωjjx)

where theλ i j(x) is the misclassification cost function taking into account the prop-
erties of the data pointx, for example the amount of credit used, and is recalculated
for each case separately. Typically, these functions are not very complex, but are
naturally defined by the real-life setting of costs.

The form of the decision function, which minimizes the conditional risk of our
action remains the same as in the previous section, only the cost depends now on



the input data. The risk minimizing decision function is

[λ12(x)+λ21(x)]P(ω2jx)�λ21(x)
α2
>

<

α1

0:

This is similar to the decision function presented in the previous section, except
that the factors, which were constant are now data-dependent. As a consequence,
decision function becomes non-linear. In the next section on experiments, we will
illustrate and discuss our new approach more closely and formulate the cost model
for our fraud detection problem.

3 Experiments

In order to compare the effectiveness of previously described methods, we present
empirical experiments in the telecommunications fraud domain. The summed
length of calls of one day is used as an observed variable in a hidden Markov
model (HMM) [6]. The experiments are performed on real data involving fraudu-
lent behavior and on similar, simulated data obeying theoretical assumptions.

For assessment, we use a cost model that measures the gross profit of the operator.
This model should reflect the practical costs involved in the operation of a real
network. Therefore, cost of fraudulent activity is treated as lost revenue. Moreover,
in the case of legitimate subscribers falsely classified as fraudsters we discount the
future profit by a constant factor, e.g. 0.99. This accounts for annoyance on the
customer’s part due to an interrogation. Additionally, a fixed transaction cost is
calculated for needless inquiries. This cost model is an extension of that presented
in [2]. The parameters for the profit calculation are presented in the appendix.

To model the distributions of normal and fraudulent populations, we use a hidden
Markov model [6]. In HMM, the observed variables are assumed to be condi-
tionally dependent on a discrete hidden variable. The hidden variable undergoes a
transition in time according to a linear transition matrix. In our models, we assume
two hidden statessi; i = 1;2 for modeling legitimate and fraudulent subscribers.
The probability densities for the observed variables areP(xjs i) = λsie

�λsi x. This
assumes the summed length of calls of the current day to be exponentially dis-
tributed. The transition matrix was set to reflect the real dynamics of fraud. More
specifically, the expected time spent in the fraud state was set to be shorter than
that spent in the normal state and the probability of entering the fraud state was set
to be low. We furthermore extend the HMM to include the effect of imbalanced
population priors by setting a prior for the hidden variable. Through inference, we
calculate the time-varying posteriors for normal and fraudulent behavior, on which
the detection is based. The parameters of our model are given in the appendix.
Real data used in the experiments spanned a period of seven weeks. Activity of
304 fraudulent and 1988 legitimate users was recorded. For each subscriber, we
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Figure 1: The results from the real data experiment.

calculated the total length of calls performed during one day and used it as an ob-
served variable in our HMM. Since the priors are unknown in practical problems,
we performed a series of experiments assuming different values for priors. For
each setting of priors, we compared the profit of the operator using fraud detection
with equal, fixed and input-dependent misclassification cost approaches based on
the same class posteriors. Fixed misclassification cost for false negatives was cal-
culated as the inverse of the assumed prior, the false positive cost was unity. For
the input-dependent misclassification, the cost for a false negative isλ 12(x) = ux,
wherex is the summed length of calls of the current day and for the false posi-
tive λ21(x) = a+(1� k)ux. The value ofk = 0:999 corresponds to discounting
the profit due to dissatisfaction of the customer anda = 1 is a transaction cost.
The pricing of calls assumes unit priceu = 1 for one unit of air time. The input
dependent misclassification cost matrixΛ is

Λ = (λi j) =

�
0 ux

a+(1� k)ux 0

�
:

The same parameter values were used in the evaluation phase. The same set of
experiments with artificial data was repeated to gain additional control over the
experimental setting. In this case, the same model from which the data was sam-
pled was also used in the detection phase in order to rule out any inaccuracies in
the model estimation. We sampled 100 fraudulent users and 10000 normal users
from the emission probability densities of the HMM. For each user 100 days of
calling activity were sampled.

The results with real data are shown in the Figure 1 and with artificial data in the
Figure 2. On both figures, the gross profit of the network operator is plotted as



a function of assumed priors. It is relative to the profit from classifying all sub-
scribers as normal and is rescaled by the difference between perfect detection and
no detection (one means profit under perfect detection and zero under no detec-
tion). The dash dotted line corresponds to the cost-neutral case, the dotted line
to the fixed cost classifier, and the solid line to the input-dependent cost model.
Experiments were repeated for the following fraud priors: 0.0001, 0.005, 0.001,
0.005, 0.01 (true prior in the artificial data), 0.05, 0.1, 0.133 (true prior in the real
data), and 0.5. The values of the assumed priors are plotted on a logarithmic scale,
the vertical lines mark the true priors in the data.
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Figure 2: The results from the artificial data experiment.

4 Discussion

In order to make the experiment more realistic, parameters of the cost models were
not optimized for the data sets, rather they were educated guesses. In the case
of fixed misclassification cost, the relationship between false negative and false
positive costs was chosen to be the inverse of the assumed prior to compensate
for the imbalanced priors. This seems, according to the experiments, to make this
classifier overly sensitive when the assumed prior is very small. In the artificial
data experiment, the classifier was still erratic even when the prior was correct.
In the real data experiment, when the assumed fraud prior approached the correct
value, performance of the fixed cost classifier improved.

The input dependent misclassification cost approach enables incorporating the real
costs from the network operator’s point of view. Parameters used with this ap-
proach were chosen to be the same as the stated profit model used in evaluation.



Those parameters should be readily available to the network operator from the his-
tory data. The input dependent misclassification cost approach performed well,
although the assumed priors were far away from the ones present in the data. This
supports the applicability of this method in real-world problems, since true priors
are often unknown and difficult to estimate.

When the model was accurate, as in the artificial data experiment, and the assumed
fraud prior was close to the real one, the performance of the cost-neutral classifier
was better than others. A similar superiority is also reported in [7]. In the real
data experiment, this method also delivered good performance, but it degraded
gracefully as the assumed priors moved further away from the correct one.

It is interesting to relate the three methods with the help of Receiver Operating
Characteristic (ROC) curves. ROC curve is a function that visualizes the trade-off
between false alarms and detection performance for different decision functions
[8,9]. In the case of equal costs, the cost can be calculated easily as the sum of er-
rors. Calculating the expected costs with fixed misclassification costs corresponds
to a linear mapping from the posteriors by the coefficients in the cost matrix. In
the new approach, this mapping is additionally parameterized by the data, enabling
the costs to vary from one case to another.

5 Summary

A cost model for input dependent misclassification costs was presented. Exper-
iments were performed in fraud detection within telecommunications domain,
where calling behavior was modeled using a simple hidden Markov model. Cost-
neutral, fixed misclassification cost and input dependent misclassification cost ap-
proaches were used in detecting fraud. The experiments were performed with both
real and simulated data and a comparison was made in terms of profit.

The input dependent misclassification cost approach performed favorably espe-
cially in the practical problem exemplified by our real data, despite a simplified
model and inaccurate priors. Problems in data mining are often characterized by
these properties, making this novel method attractive for cost-sensitive classifica-
tion under the assumption that the input dependent cost model is easily formulated.
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Appendix

In the hidden Markov model, the parameters of the exponential distributions used
for modeling the summed length of the of calls per day were for the normal state
λs1 = 3:2 and for the fraudulent stateλ s2 = 10:6. The initial probability of fraud
was zero. The transition matrix for the HMM was set to be

P(st = jjst�1 = i) = (a ji) =

�
0:97 0:2
0:03 0:8

�
:

The parameters used in the profit calculation for all methods were 1 and 0:999, for
the transaction cost and the discounting of future profit, respectively.
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