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ABSTRACT

The question of data representation is central to any
data analysis problem. Ideally, the representation
should faithfully describe the domain to be analyzed
and in addition, the model used should be able to pro-
cess such a representation. In practice, however, the
modeler must often compromise how the problem is de-
scribed, since the class of possible representations is con-
strained by the model. This problem may be circum-
vented by extending conventional models to handle more
unconventional data representations. These data are of-
ten found in industrial environments and especially in
telecommunications. In this paper, we consider an ex-
tension of hidden Markov models (HMM) for modeling
data streams, which switch between metric and event-
based representations. In a HMM, the representation of
the observed data is constrained by the emission prob-
ability density. Since this density can not change its
representation once it is fixed, modeling data streams in-
volving different types of data semantics can be difficult.
In the extension introduced in this paper, an additional
data semantics variable is introduced, which is condi-
tional on the hidden variable. Furthermore, data itself
is conditioned on its semantics, which enables correct in-
terpretation of the observed data. We briefly review the
essentials of HMMs and present our extended architec-
ture. We proceed by introducing inference and learning
rules for the extension. As an application, we present a
HMM for user profiling in mobile communications net-
works, where the data exhibits switching behavior.

1 INTRODUCTION

Hidden Markov models (HMM) are widely used in se-
quence processing and speech recognition [1, 8, 10, 7, 2].
The key benefit of HMM is their ability to model tem-
poral statistics of data by introducing a discrete hid-
den variable that undergoes a transition from one time
step to the next according to a stochastic transition ma-
trix. At each time step, the HMM emits symbols, whose
statistics are dependent on the current state of the hid-
den variable. Distribution of the emission symbols is
embodied in the assumption of the emission probabil-

ity density. Since this density can not change represen-
tation between different data semantics, data streams
which involve different types of data can be difficult to
model.

In this paper, we extend the HMM to handle cases
where the data stream may switch between metric- and
event-based representations. We define events to be cat-
egorical data with discrete outcomes, which are repre-
sented in discrete-time. The extension presented in this
paper involves an introduction of a variable data seman-
tics. This variable indicates whether data is to be in-
terpreted as metric- or event-based. Data is conditioned
on the data semantics variable in order to ensure correct
interpretation. Moreover, the data semantics variable is
dependent on the hidden state variable. This has impor-
tance in user profiling, where hidden states are thought
to form a subpopulation, and where the data semantics
becomes a quantity of its own importance.

Data exhibiting switching behavior is prevalent in in-
dustrial environments and telecommunications. It may
rise as an inherent data generating mechanism of the
industrial process, or may be introduced to the task by
a feature extraction step. In an industrial process, an
event may for example signify a condition under which
a metric measurement can not be made. Feature ex-
traction in turn aggregates a set of data points by cal-
culating statistics over the set. These statistics are not
always defined, as in the case of an empty set. This
setting leads to special situations, which require the no-
tion of an event variable. In the experiments, we use
call data to model user behavior in a mobile commu-
nications network. We use average length of calls per
day as our feature variable, and in case of no calls, we
introduce an event no calling, since the average value is
not defined on an empty set. This event is considered
an important part of the user profiles describing user’s
behavior.

In Section 2, we briefly review the basic concepts of
a HMM. In Section 3, we present the extended archi-
tecture allowing the semantics of data to change. The
inference and learning procedures are presented in the
framework of maximum likelihood estimation. In Sec-
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tion 4, experiments in a user profiling problem are pre-
sented. The paper ends with Summary in Section 5.

2 HIDDEN MARKOV MODEL (HMM)

A hidden Markov model [7, 10, 2] assumes a discrete
hidden variable st, which can be in one of exhaustive
and mutually exclusive n states. The state changes
in time stochastically according to a transition matrix
A = (aji) = P (st = j|st−1 = i); i, j = 1, . . . , n. The
density of the observed variable yt depends on the state
of the hidden variable and is defined by P (yt|st = j; θ1),
parameterized bt θ1. Denoting the hidden variables
by S = {s0, . . . , sT }, the observed variables by Y =
{y0, . . . , yT }, and the prior of the state and data at t = 0
by P (s0, y0), the joint probability density parameterized
by aji and θ1 becomes

P (S, Y ) = P (s0, y0)
T∏

t=1

P (st|st−1;A)
T∏

t=1

P (yt|st; θ1).

Observed variables yt may be either continuous or dis-
crete, which is determined by the choice of a distri-
bution. Discrete observations are easily modeled by
assuming multinomial distributions or count distribu-
tions where appropriate; continuous measurements call
for parametric distributions like the normal distribution,
finite mixture distributions [5], or neural networks [3].
Inference and learning in the framework of maximum
likelihood estimation are solved with the EM algorithm
[1, 4, 9].

s1 s2 s3 s4 s5

y1 y2 y3 y4 y5

Figure 1: A HMM assumes a hidden variable st that
changes state stochastically in time, the observations
yt are dependent on the hidden variable st through a
emission probability density P (yt|st).

3 HMM FOR METRIC AND EVENT-BASED
DATA

The standard HMM is defined by a single emission prob-
ability density, which models either continuous or dis-
crete variables. We are interested in formulating an al-
ternative model, where data can be either continuous
(metric) data or discrete (event-based) data without re-
stricting ourselves to one kind. There are many appli-
cations, where a more faithful problem representation is
achieved by considering switching between event-based
and metric data. We define events to be categorical data
with discrete outcomes represented in discrete-time. An
example of the representation is presented in Table 1.

Time index: 1 2 3 4 5 6
Time series data: 3.4 5.6 a 3.4 a b
transformed data yt: 3.4 5.6 1 3.4 1 2
semantics y∗

t : m m e m e e

Table 1: Original, switching time-series transformed to
separate time-series for data and data semantics. Events
a and b must be enumerated and have been assigned
numerical values 1 and 2, respectively.

The solution involves conditioning the emission proba-
bility density of data on the new variable data seman-
tics, which enables the correct interpretation of data.
Furthermore, the data semantics variable is dependent
on the hidden variable st. Denoting the data by yt

and data semantics by y∗
t , and all of the data semantics

Y ∗ = {y∗
0 , . . . , y∗

T }, the joint probability of the variables
in the model is

P (S, Y, Y ∗) = P (s0, y0, y
∗
0)

T∏

t=1

P (st|st−1;A)

×
T∏

t=1

P (yt|st, y
∗
t ; θ

2)
T∏

t=1

P (y∗
t |st; θ3).

By conditioning on the semantics of the data one chooses
the right type of model to be used in calculating the
probability of data, which in turn is used in calculat-
ing the posterior of the hidden state. Note also that the
variable data semantics is dependent on the state, which
reflects the frequencies of each type of data in each state.
In the case of metric variables, we have for the data se-
mantics y∗

t = m and when we encounter event based
data, we have y∗

t = e. We are interested in estimating
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Figure 2: The extended HMM introduces a data seman-
tics variable y∗

t that enables the correct interpretation of
the observed variable yt and is conditioned on the hid-
den state. The variable y∗

t is assumed to be observed.

the parameters of this model from data and once the
model is learned, we want to estimate the state of the
hidden variable based on observed variables (inference).
The learning is done in the framework of maximum like-
lihood estimation using the EM algorithm [1, 4, 9].



3.1 Inference: Filtering and Smoothing
Inference is the procedure of estimating the state of the
hidden variables given the observed variables. Inference
can be divided into two parts: filtering and smoothing.
In filtering, we move forward in time and infer on the
states of the hidden variables given data up to present
time. In smoothing, we move backward in time and infer
on the hidden variables given all data available. The
extended model is no longer a tree structured model as
is the HMM, but a directed acyclic graph. The inference
can be implemented using the junction tree algorithm
[6, 11] for the underlying graphical model. We can write
the equations for inference as iterative update rules for
the model. The forward part of the inference involves
calculating the predicted state of the hidden variable st

given observed variables up to time t−1 and the density
of st−1. This is based on the transition matrix A = (aji).
The notation Yt means that we have data available up
to time t.

P (st = j|Yt−1, Y
∗
t−1) =

n∑

i=1

ajiP (st−1 = i|Yt−1, Y
∗
t−1).

The filtered state of the hidden variable is calculated
based on the predicted state, the observed data and its
semantics. In effect, the predicted state is multiplied by
the joint probability of the data and the semantics

P (st = j|Yt, Y
∗
t ) = c · P (st = j|Yt−1, Y

∗
t−1)

×P (y∗
t |st = j)P (yt|st = j, y∗

t ).
c is a normalizing constant. The forward part of the
inference consist of applying these two equations for
t = 1, . . . , T , after which the values of P (st|Yt, Y

∗
t ) are

estimated. The key to the extended architecture is the
explicit decoupling of the data semantics and the data
itself, which is reflected in the inference procedure in the
decoupling of the joint probability density of data and
its semantics according to the conditional independence
assumptions in the model. Conditional independence as-
sertion allows a factorization of the two, which enables
using each dimension independently in a user profiling
problem.

In smoothing, the information flows backward in time
and the states of the hidden variables are estimated
given all data. This is important in retrospective analy-
sis of time series, and is also needed in learning. Smooth-
ing consists of two equations, which are evaluated alter-
nately for t = T − 1, . . . , 1. These are equivalent in the
standard formulation of the hidden Markov model,

P (st = j, st+1 = i|YT , Y ∗
T ) =

P (st = j|Yt, Y
∗
t )

P (st+1 = i|YT , Y ∗
T )

P (st+1 = i|Yt, Y ∗
t )

aij .

By marginalizing with regard to st+1, we get the poste-
rior of st given all data

P (st = j|YT , Y ∗
T ) =

n∑

i=1

P (st = j, st+1 = i|YT , Y ∗
T ).

3.2 Learning
In order to learn the parameters from data, we apply
the EM algorithm, which is a iterative algorithm con-
sisting of an E-step which is implemented through the
inference procedure described in the last section and the
maximization step, where the parameters are updated
accordingly. The M-step for the transition probabilities
in the Markov chain is the same as in the standard HMM

a
(new)
ji =

∑T
t=1 P (st = j, st−1 = i|YT , Y ∗

T )
∑T

t=1 P (st−1 = i|YT , Y ∗
T )

.

It is natural to consider events ei, i = 1, . . . , k to be
multinomially distributed with probability of event i oc-
curring in the state j as P (yt = i|y∗

t = e, st = j) = θ2
ij

with the constraint that
∑

i θij = 1. For the state de-
pendent event probabilities we have the following M-step

θ
2,(new)
ij =

∑T
t=1,y∗

t =e,yt=i P (st = j|YT , Y ∗
T )

∑T
t=1,y∗

t =e P (st = j|YT , Y ∗
T )

.

The priors for the data semantics can easily be calcu-
lated, since the semantics are always observed

θ
3,(new)
j =

∑T
t=1,y∗

t =e P (st = j|YT , Y ∗
T )

∑T
t=1 P (st = j|YT , Y ∗

T )
.

The probability for data semantics to be metric is then
P (y∗

t = m|st = j) = 1−P (y∗
t = e|st = j) = 1−θ3

j , since
the semantics can be one of the two. The M-step for the
observed metric data model is dependent on the kind
of model used. Interesting alternatives are the Gaus-
sian or exponential distributions (length distribution)
or mixtures thereof.

4 EXPERIMENTS

In user profiling, one is interested in expressing expected
behavior of users through models. In mobile communi-
cations networks, call detail records store attributes of
individual calls and the call data collectively describes
the calling behavior of mobile phone subscribers. In
the data, calling activity of fraudulent and normal users
were recorded. We use a two-state hidden Markov model
for learning two user profiles from this call data. The
time index t in our HMM denotes a day. For the ob-
served variable we have the average length of the calls
per day; if no calls are made, there is an event no call-
ing. The variable data semantics is set accordingly. For
instance, if we have an average call length of 5.5 min-
utes, we have yt = 5.5 and y∗

t = m, since the data
has a metric representation. If we have an event, we
have yt = 1 and y∗

t = e. Notice that events are enu-
merated. Representing average of zero calls by zero
or by missing data would make modeling of such data
possible with a standard HMM, but would be simply
incorrect. Moreover, the statistics about different se-
mantics occurring forms an independent part of its own



in our user profiling formulation. We used call data
from 200 mobile phone users in estimating the model
parameters. The switching time series describing the
calling behavior were of variable lengths. Altogether
there were 11388 recorded calling days. The EM algo-
rithm was performed for 20 iterations. Transition ma-
trix was given to reflect the dynamic characteristics of
the states (a11 = 0.93, a22 = 0.7). Our model iden-

◦◦◦◦ ◦◦ ◦
◦
◦ ◦◦◦◦◦

◦◦◦◦◦ ◦

◦

◦
◦

◦

◦◦◦
◦◦◦◦◦◦◦◦ ◦

◦
◦
◦

•••• ••••••••• • • •••• •• •
0 20 40 60

0

5

10

15

20

0 20 40 60

0
0.2
0.4
0.6
0.8
1

0 20 40 60

0
0.2
0.4
0.6
0.8
1

Figure 3: In the top panel, data is shown. Events no
calling are marked with black circles, metric measure-
ments are marked with open circles. Time-varying pos-
teriors for the state st = 2 are shown in the lower panels.
The middle panel shows the filtered P (st = 2|Yt, Y

∗
t )

probabilities, the bottom panel shows the smoothed
P (st = 2|YT , Y ∗

T ) probabilities.

tified the first state as the infrequent user with lots of
events no calling P (y∗

t = e|st = 1) = 0.56. In the other
state, average length of calls was larger and the event
no calling very rare P (y∗

t = e|st = 2) = 0.004. In the
state st = 1, the identified average length of the calls
was 1.66 minutes, in state st = 2 the average length
was 8.35 minutes. Exponential distribution for the call
lengths was assumed.

5 SUMMARY

In data analysis problems, data representation acts as a
mediator between the problem domain and the model.
Ideally, it should describe the world well and be suitable
for the model. Often, representation is compromised to
be compatible with the model. An alternative approach
is to develop extensions of established models in order
to preserve the data representation that best serves the
purpose without having to compromise how the prob-
lem is described. In this paper, we extended the HMM
for modeling time-series that exhibit switching between

metric- and event-based representations.This essentially
combines an HMM with continuous emission distribu-
tion and one with discrete emission distribution. An
additional variable data semantics controls the interpre-
tation of data and is dependent on the hidden variable.
Inference and learning rules were developed within a
maximum likelihood framework. The approach was il-
lustrated in a user profiling problem, where the mecha-
nism leading to the event representation was important
from user profiling point of view. In further work, the
ideas concerning the conditioning of the data on its se-
mantics is generalized to Bayes networks or in the con-
text of neural networks.
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