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Abstract — In this paper, a genetic algorithm for designing polynomial-
predictive FIR differentiators (PPFD) for short word length fixed-point 
realizations is presented. Critical design aspects are pointed out, and a 
fitness function for genetic algorithms is designed to strive for desired 
prediction and differentiation properties with filter coefficients 
quantized to eight bits. The genetic algorithm is in many cases found to 
produce better quantized coefficient filters than the original quantized 
coefficient PPFDs. 
 

I. INTRODUCTION 

 
Both predictive and derivative signal processing have been 

introduced into diverse range of control applications, like ra-
dio transmitter power control [1], and motion control, for ex-
amples, controlling motor drives of elevator cars [2,3]. In 
these examples, the main feature of interest is the physical 
near piece-wise polynomial nature of control input signal; 
Rayleigh fading radio channel power response, or position or 
velocity information of the elevator car. 
 

The basics of polynomial-predictive filtering [4,5] as well 
as of polynomial-predictive differentiating filtering [2,3] are 
well established. While many implementation of the filters 
are done with general purpose processors or digital signal 
processors, still many applications require cost effective mass 
production of application specific integrated circuits (ASIC). 
To reduce ASIC cost, silicon area, and power consumption, 
short word length implementations are naturally highly desir-
able. Realizing a filter with a short coefficient word length, 
e.g. 8 bits, naturally introduces errors to the filter 
coefficients. Effects of coefficient quantization to PPFDs 
have been analyzed in [6] where also guidelines for word 
length robust direct, lattice structure, and sectioned 
implementations are proposed. In this paper, a genetic 
algorithm with a fitness function is proposed for designing 
PPFDs for short word length applications. Genetic algorithms 
are used in two ways; to produce new filters from a diverse 
initial population without specifying the filter length or, to 
find a short word length solution from a smaller search space 
for a given filter length. 

 
The paper is organized as follows: In the Section II, PPFDs 

are shortly reviewed, along with a short review on the 

coefficient quantization effects, elaborated upon in [6]. In 
Section III, a genetic algorithm is proposed to produce 
quantized coefficient PPFDs, and some genetic filter design 
results are given in Section IV. Section V presents the 
conclusions. 
 

II. POLYNOMIAL-PREDICTIVE FIR DIFFERENTIATORS AND 

COEFFICIENT QUANTIZATION EFFECTS 

 
General predictive filtering theory has been well estab-

lished [7]. Here we concentrate on polynomial-predictive FIR 
differentiators (PPFD), derived much like Heinonen-Neuvo 
polynomial predictors in [4], except that the filter output is 
defined as [2] 
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where h(k) are filter coefficients, N is filter length, x(n) are 
filter input samples, m is a prediction step, and the dot de-
notes time derivative. From (1) a set of linear constraints on 
filter coefficients can be derived [2]: 
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providing for the prediction and differentiation of the poly-
nomials of degrees 0, …, M. From the constraints (2)-(5) can 
closed form solutions for the PPFD coefficients for low-
degree polynomial input signals be found by the method of 
Lagrange multipliers [2]. The rest of the degrees of freedom 
are used to minimize the noise gain  
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The coefficients for the one-step-ahead second degree 
PPFDs, M = 2, m = 1, are given by [2]  
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Fig. 1 provides a typical example of exact and degraded 
frequency responses of a one-step-ahead PPFD. In Fig. 1 a) 
the frequency response of the second degree one-step-ahead 
PPFD of length N = 11 is shown with exact coefficients (7) 
and with coefficients quantized to 8 bits, along with the ideal 
PPFD frequency response. The corresponding group delays 
are shown in Fig. 1 b). One-step-ahead prediction, m = 1, can 
be identified as the negative unity group delay in Fig. 1 b), 
and the differentiation property is set by the zero magnitude 
response at zero frequency along with the ramp-shaped 
response near zero frequency, Fig. 1 a). As also seen in Fig. 
1, differentiation property is generally more robust to 
coefficient quantization than prediction property which can 
be lost already with the coefficient word length of 16 bits. 
Finite word length effects are analyzed more closely in [6] 
where also some short word length robust designs are 
proposed. An exhaustive search method for finding the same 
type of quantized coefficient filters as in this paper, but 
satisfying exactly the constraints (2)-(5), is proposed in [8], 
and a fast search algorithm yielding exact fixed-point 
solutions for a related FIR family is proposed in [9]. 
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Fig. 1. a) Frequency responses of the second degree one-step-ahead PPFD of 
length N = 11 with coefficient word length of 8 bits (dotted) and with exact 

coefficients (solid), along with the frequency response of the ideal PPFD 
(dash-dot). b) Group delay of the same filter with quantized (dotted) and 

exact coefficients (solid). 
 

III. GENETIC ALGORITHM FOR PPFD DESIGN 

 
The genetic algorithm [5,10] applied in this paper is a sim-

ple and straight forward design that is aimed at producing 
quantized coefficient PPFDs that exhibit closer to ideal mag-
nitude response and group delay performances than the corre-
sponding filters obtained from (7) after coefficient 
quantization.  In this paper, we consider only second degree, 
M = 2, one-step-ahead, m = 1, PPFDs. For fixed-point 
number representation, two’s complement presentation with 
magnitude truncation is used. Matlab’s full computational 
precision is considered the exact (infinite precision) number 
presentation. 
 

A. Genetic Algorithm in General 
 

 For a genetic algorithm, solutions of a problem are to be 
formulated in a form of strings of bits, or numbers, which 
evolve through generations by mutation, crossover and re-
production [10]. For each solution in each generation, a fit-
ness function is evaluated. Generally, the fittest solutions are 
preferred, and the population hopefully includes more and 
more fitter solutions as the generations pass. Here, the solu-
tions are vectors whose elements are filter coefficients pre-
sented with eight bits. 
 

To preserve the differentiating property under coefficient 
quantization would require that the quantized coefficients ful-
filled the constraints (2)-(5) exactly.  It is clear that analyti-
cally finding quantized coefficient that fulfilled (2)-(5) would 
be a very tedious task. Here we apply a genetic algorithm in 
search of quantized coefficient filters that behave as much as 
possible like the ideal second degree one-step-ahead PPFD in 
the sense of the frequency response and group delay at a low 
frequency range. 

  
B. Fitness Function 

 
Our fitness function (error) e (8) that is to be minimized, 

consists of the mean squared errors (MSE) of the frequency 
response and group delay of a candidate. The errors are cal-
culated with respect to the ideal differentiator frequency re-
sponse, c.f. the ideal ramp-like PPFD frequency response in 
Fig. 1 a), and the ideal one-step-ahead predictor group delay 
of negative unity. The fitness function to minimize is given 
by 

 GF eee +=  (8) 

with squared magnitude response and group delay errors  
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respectively. In (9) and (10), F and G are values of the fre-
quency response and group delay of the ideal filters calcu-
lated at sets of frequency points fF and fG, respectively, and 
the subscript quant denotes the corresponding responses of 
candidate solutions. Here we have used frequency point sets 
fF and fG with normalized frequencies 

 { }001.0,0001.0=Ff  and { }001.0,0001.0=Gf  (11) 

to stress the frequency domain behavior in the low frequency 
band where these filters are to exhibit prediction and differ-
entiation properties. 
 

Another possibility would be to create a fitness function 
directly based on the constraints (2)-(5). This would speed up  
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the algorithm, and provide clear indication of the found solu-
tions that exactly fulfill the constraints (2)-(5) but nonzero 
fitness (error) values would require extra interpretation, since 
such a fitness function value could not directly indicate how 
good the frequency response and group delay characteristics 
of a candidate solution were. 

 
C. Initial Population and Mutation 
 

Searching the whole quantized coefficient space with to-
tally random initial populations would be a prohibitively 
large task. Here we unfortunately have excellent initial 
guesses available, namely the filters whose coefficients given 
by (7). Some experiments were conducted with initial popu-
lations of 500 filters consisting of five randomly mutated 
copies of the filters of lengths N = 3, …, 102, hoping that the 
algorithm would converge faster since it had a diverse initial 
population and also the filter length could vary. With differ-
ent parameters values for the genetic algorithm, this approach 
never produced a filter that had both satisfactory frequency 
response and group delay properties.  

 
Instead, like successfully applied in [8], we here restrict 

each initial solution within ±2/28 from the coefficients given 
by (7) after quantization. Also coefficient changes in muta-
tions are restricted to ±1/28, ±2/28. This means that each 
mutation may affect the two least significant bits. Since loca-
tion of the binary point is set for each coefficient according to 
its magnitude, larger coefficients are not affected. In this 
approach, it is the designer’s task to select the filter length, 
and the genetic algorithm is used to find a better behaving 
quantized coefficient solution. Mutation probabilities applied 
are PM = 0.1/N, 1/N, 4/N. Mutation probability over each run 
is fixed. 

 
Initial populations of 500 filters are formed from the filter 

of the selected length, provided by (7), after coefficient 
quantization to eight bits. Each initial population consists of 
10 unmutated copies of this quantized coefficient filter, 290 
filters with coefficients mutated with the probability of 1/N 
randomly by ±1/28, and 200 filters with coefficients mutated 
with the probability of 1/N randomly by ±1/28 or ±2/28. 

 
D. Crossover, Elitism, and Reproduction 
 

With a fixed probability over each run, pairs of filters are 
selected for crossover with probability PCO = 0.1, 0.4, 0.8, and 
crossover is performed at a random location. Note that cross-
over is done between coefficients, i.e., each coefficient value 
is preserved in crossover. Mutation and crossover probabili-
ties for each run are set in pairs as 

 ( ) ( ) ( ) ( ){ }1.0,4,4.0,1,8.0,1.0, NNNPP COM = . (12) 

Also, elitist strategy is employed; two copies of the 10 
fittest filters, i.e., of the 10 filters with minimum e (8), are 
passed unaltered to the next generation, and also the 40 next  
 

fittest filters are copied directly to the next generation. The 
rest 450 filters are killed. The 50 fittest filters reproduce 440 
new filters by roulette wheel selection with probabilities that 
are inversely proportional to their noise gains (6). This way 
we can strive for minimizing both frequency response and 
group delay errors, and also noise gains, without having to 
create one single fitness function that would take into account 
all these aspects. 

 
IV. DESIGN RESULTS 

 
The genetic algorithm was run for the filter lengths N = 40, 

and N = 80. The algorithm was run for 300 generations, and 
the best filters and their fitnesses were recorded for each gen-
eration. For each parameter pair (12) and filter length, results 
of three runs are summarized in Table 1. For each of these 
cases, fitness (8) of the best candidate solution in the initial 
population, and the fitness of the best solution after a number 
of generations are shown in Table 1, along with the noise 
gains (6) of the latter. For the filter length N = 40, with the 
parameters (PM, PCO) = (0.1/N, 0.8) the algorithm did not 
converge to anything usefull. For the parameters 
(PM, PCO) = (1/N, 0.4), two out of the three runs produced 
quite nice filters in 165 and 214 generations, and with 
(PM, PCO) = (4/N, 0.1) all the runs produced filters with de-
sired qualities in 4, 116, and 136 generations. Similarly, the 
results for the filter length N = 80 are listed in Table 1. From 
Table 1 it is seen that for filter length N = 40, convergence 
gets better as the mutation probability PM is increased and 
crossover probability PCO is decreased. Though the statistics 
shown in Table 1 are not sufficient for removing the effect of 
the fitness of the initial population for drawing conclusions, 
this conclusion can be drawn from the number of converged 
runs with each parameter pair. 

 
TABLE 1. 

RESULTS OF THREE RUNS OF THE GENETIC ALGORITHM FOR THE THREE PARAMETER PAIRS (PM, PCO) 
(12), AND FILTER LENGTHS N = 40 AND N = 80. FOR EACH RUN, THE FITNESS (ERROR) (8) OF THE 
BEST CANDIDATE IN THE INITIAL POPULATION I, AND THE FITNESS OF THE BEST CANDIDATE F 
AFTER G GENERATIONS, ARE SHOWN, ALONG WITH THE NOISE GAINS NG OF THE FOUND 
SOLUTIONS. NOISE GAINS OF THE EXACT COEFFICIENT FILTERS OF LENGTHS N = 40 AND N = 80 
ARE 3.2⋅10-3 AND 3.8⋅10-4, RESPECTIVELY. THE CASES MARKED N/A DID NOT CONVERGE TO ANY 
APPROPRIATE SOLUTION. 

  (PM,PCO) = (0.1/N,0.8) (PM,PCO) = (1/N,0.4) (PM,PCO) = (4/N,0.1) 
N = run 1 run 2 run 3 run 1 run 2 run 3 run 1 run 2 run 3 
40 I 0.25 11.76 0.021 11.27 6.94 16.26 0.034 1.47 0.065 

 G N/A N/A N/A 214 165 N/A 116 4 136 
 F N/A N/A N/A 8.6⋅10-6 1.6⋅10-6 N/A 1.9⋅10-6 4.2⋅10-5 4.3⋅10-6 
NG N/A N/A N/A 2.6⋅10-3 3.9⋅10-3 N/A 4.3⋅10-3 3.6⋅10-3 3.6⋅10-3 

80 I 1.96 7.4⋅10-3 2.88 3.21 2.34 0.18 68.65 14.11 32.91 
 G 100 100 181 6 20 12 164 100 2 
 F 2.6⋅10-5 5.3⋅10-5 6.9⋅10-5 4.2⋅10-3 2.4⋅10-3 2.2⋅10-3 3.9⋅10-5 2⋅10-4 2.1⋅10-3 
NG6.7⋅10-4 6.1⋅10-4 8.9⋅10-4 6.7⋅10-4 1.0⋅10-3 7.6⋅10-4 2.7⋅10-3 1.4⋅10-3 7.0⋅10-4 

 

It was noted that not having the zero frequency included in 
the frequency point sets (11) for calculating the fitness func-
tion (8), and also calculating the errors (9) and (10) with re-
spect to the ideal frequency response and group delay, and 
not with respect to the frequency response and group delay of 
the filters given by (7), caused some quite good initial solu-
tions to be discarded. Also because of these reasons, fitness 
values do not provide full knowledge of the properties of the 
solutions, and the solutions listed in Table 1 are thus not  
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selected strictly according to the values of the fitness 
function, but also according to a visual inspection of 
frequency responses and group delays near the zero 
frequency. 
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Fig. 2. Fitness (8) of the best solution in each generation over one run for 

filter length N = 80 with each of the parameters (12); (PM, PCO) = (0.1/N, 0.8), 
run 3 (solid), (PM, PCO) = (1/N, 0.4), run 2 (dotted), and (PM, PCO) = (4/N, 0.1), 

run 1 (dash-dot). 
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Fig. 3. Frequency response of the solution found for N = 80 with 
(PM, PCO) = (0.1/N, 0.8) after 181 generations (run 3 in Table 1) (solid). Also 
shown are the frequency response of the exact coefficient filter given by (7) 
for N = 80 (dotted), and of the same filter with the coefficients quantized to 8 

bits (dash-dot). 
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Fig. 4. Group delays of the filters shown in Fig. 3; genetic solution (solid), 
exact coefficient filter (dotted), and the exact coefficient filter after 

coefficient quantization to 8 bits (dash-dot). 
 
In Fig. 2, a representative fitness value history of the best 

solution in each generation for one run with each parameter 
pair (12) is shown for the filter length N = 80. Figs. 3 and 4 
show a representative solution found by the algorithm for  
 
 

N = 80 and (PM, PCO) = (0.1/N, 0.8) after 181 generations, run 
3 in Table 1. From Figs. 3 and 4, it can be seen that the algo-
rithm has found a PPFD whose properties near zero fre-
quency closely resemble those of the exact coefficient filter 
obtained from (7). The found solution is also much better 
than the corresponding ordinary 8-bit coefficient filter shown 
in Figs. 3 and 4. 

 
V. CONCLUSIONS 

 
We have demonstrated that genetic algorithms can find 

quantized-coefficient PPFDs with close to desired magnitude 
response and group delay properties, though the filters pro-
duced by genetic algorithms have to be screened carefully. 
The most difficult coupling between zero locations and 
quantized coefficients makes quantized-coefficient filter de-
sign a lucrative challenge to genetic optimization. Genetic al-
gorithms are well applicable to the problem since the exact 
infinite precision filter coefficients are known, and can be 
used in forming the initial populations, and search space can 
be limited to a close vicinity of the initial solutions. Genetic 
algorithms are found capable of finding quantized coefficient 
PPFDs which are much better than the original quantized co-
efficient filters. Also, one important aspect of programming 
and running genetic filter design algorithms is that a filter de-
signer can gain much useful insight into the meaning of dif-
ferent filter quality measures by observing the evolution of 
filter populations with different fitness functions. 
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