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Abstract:  
 
In this report, we present a novel method for designing polynomial FIR predictors (PFP) and polynomial-
predictive FIR differentiators (PPFD) for fixed-point environments. Our method yields filters that perform exact 
prediction and differentiation even with short coefficient word lengths. Under ordinary coefficient truncation or 
rounding, prediction and differentiation capabilities of these filters degrade considerably, or may even be totally 
lost. With the proposed method, the filters are designed so that the prediction and differentiation properties are 
exactly preserved in fixed-point implementations. The presented filter design method is based on integer 
programming (IP) and can be directly applied to fixed-point FIR design specifications which can be formulated 
in a form of linear constraints on the filter coefficients.  
 
 
Keywords: error free coefficient quantization 
 Diophantine equation 
 FIR design 
 fixed-point filter design 
 integer programming 
 perfect quantization 
 polynomial differentiation 
 polynomial prediction 
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1. INTRODUCTION 
 
By their nature, digital devices handle numbers using a finite number of bits per digit [7]. On the other hand, 
digital filters are typically designed using general-purpose computers. When the target application has the same 
computational precision as the filter design environment, there are usually no implementation problems if the 
filter itself was appropriately designed. Many times this is not the case, however, but the filters are operating 
within inexpensive, fixed-point processors, or in embedded applications using highly optimized, compact and 
less power consuming application specific integrated circuit (ASIC) designs. In these cases, there might be a 
great difference between the calculation precisions of the filter design environment and the final operation 
platform. This obviously results in filter quality degradation and possibly even in a totally unintended kind of 
filtering operation. In practice, even if the finite word length effects are paid adequate attention to, there has 
really been no other way to design these filters but to check if the filter with rounded or truncated coefficients is 
still within the design specifications [8]. In this paper, we present a novel method for designing polynomial FIR 
predictors (PFP) [4] and polynomial-predictive FIR differentiators (PPFD) [9] whose quantized coefficients 
exactly fulfill the set constraints for prediction, and prediction and differentiation, respectively, even with short 
word lengths, e.g., with six bits in some cases. 
 
In many engineering disciplines, accurate control of physical processes is highly desirable. Many of the real 
world process parameters exhibit more or less smooth transitions. Noisy measurements of these parameters are 
typically used for process control after signal propagation, signal processing, and actuating delays. The research 
presented in this paper has spawned from the needs of application oriented research work; our examples of 
closed loop control include motion control of an elevator car [9], and mobile phone power control [3]. In the 
latter, the inherent closed loop control delays make it a lucrative environment to apply polynomial predictive 
techniques since the received power fluctuations can in many cases be modeled as Rayleigh distributed signals, 
which in turn can be accurately modeled as piece-wise low degree polynomials. Transmitter power control is 
regarded as one of the key issues in the third generation of mobile communications systems [3]. Besides, 
accurate control of an elevator car can effectively utilize, not only predicted position, but also predicted velocity 
and acceleration information. This information can be made available for the controller by a predictive 
differentiator. Here again, the position and velocity of the elevator car can be accurately modeled as piece-wise 
polynomials. Should these controllers be implemented in low-precision fixed-point environments, the properties 
of the actual quantized-coefficient filters are crucial. As the methods presented in this paper yield quantized-
coefficient filters that exactly fulfill the given design constraints, these filters are naturally safe to use even in 
low-precision fixed-point environments. The filters designed by the proposed method to exactly fulfill the set 
constraints and to minimize the noise gain within a limited region of the quantized coefficient space, are here 
called ideally quantized coefficient filters. In this paper, two’s complement presentation is used for fixed-point 
presentation of filter coefficients. Magnitude truncation is applied as the conventional quantization method, and 
‘infinite precision’ means the computational precision of Matlab, i.e., the long number format specified by the 
IEEE floating-point standard. 
 
In Section 2, PFPs and PPFDs are shortly reviewed along with the constraints that are to be exactly fulfilled by 
the coefficients to provide for the desired filter properties. Integer programming interpretation of fixed-point PFP 
and PPFD design, and the proposed design algorithm are presented in Section 3. Characteristics of the 
conventionally quantized-coefficient and ideally quantized-coefficient PFPs and PPFDs are illustrated in Section 
4, and Section 5 concludes the paper. 
 
 

2. POLYNOMIAL FIR PREDICTORS AND POLYNOMIAL-PREDICTIVE FIR 
DIFFERENTIATORS 

 
Polynomial predictive and differentiative filtering theory has been well established [4,5,9,10] but the 
applicability of both PFPs and PPFDs have suffered from the practical constraint of finite coefficient precision, 
which may cause severe degradation of filter characteristics. The fixed-point effects on the PPFDs characteristics 
have been found severe (cf. Figs. 4, 5, and 6) [8], and similar degradation is observed in fixed-point PFPs (cf. 
Figs. 2 and 3). By selecting a filter according to the responses with the infinite precision coefficients, it is most 
certain that the same filter with truncated or rounded coefficients will function inaccurately, in some cases the 
desired filtering properties are totally lost. To some extend these fixed-point effects can be avoided by carefully 
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selecting the filters [8], but by employing the filter design method described in this paper the effects are 
eliminated altogether. 
 
 
2.1. Polynomial FIR Predictors 
 
PFPs, derived in [4], assume a low-degree polynomial input signal contaminated by white Gaussian noise. Filter 
output at a discrete time instant n, x(n), is defined to be a p-step-ahead predicted input,  
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where h(k) are filter coefficients, N is filter length, and p is prediction step. After providing for exact prediction, 
the rest of the degrees of freedom are used to minimize the white noise gain, 
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In [5], a feedback extension to FIR predictors is given to provide considerable noise attenuation while 
maintaining the prediction property set forth by the underlying PFP (PPFD). For the feedback extension to 
function properly, it is necessary that the underlying PFP (PPFD) basis filters are implemented exactly. Until 
now, this has been rarely possible in short word length fixed-point environments. 
 
A set of linear constraints can be derived from the definition of the filter output (1) [4]: 
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The constraints (3)-(6) give the prediction of the polynomial degrees 0, …, I, and from them can closed form 
solutions for the FIR coefficients for low-degree polynomial input signals be solved by the method of Lagrange 
multipliers [1]. The closed form solutions for FIR coefficients for the first, second, and third degree polynomial 
input signals can be found in [4]. In this paper, we consider the case with the highest polynomial input signal 
component degree of two, I = 2, as an example. In this case, we have to fulfill the constraints (3), (4) and (5), and 
use the remaining degrees of freedom to minimize the noise gain (2). The exact, i.e., the infinite precision 
coefficients for the one-step-ahead, p = 1, second degree, I = 2, PFPs are given by [4] 
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2.2. Polynomial-Predictive FIR Differentiators 
 
PPFDs are derived in the similar way as the PFPs. For the PPFDs, the filter input-output relation is written as [9] 
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where the dot denotes time derivative, and the linear constraints on the filter coefficients are now given by [9] 
 

 ( ) 0
1

0 == ∑
=

N

k

khg , (9) 

 ( ) ( ) 1
1

1 =−= ∑
=

N

k

khkNg , (10) 

 ( ) ( ) ( )pNkhkNg
N

k

+−=−= ∑
=

12
1

2
2 , (11) 

 �  

 ( ) ( ) ( ) 1

1

1 −

=

+−=−= ∑ I
N

k

I
I pNIkhkNg . (12) 

 
The constraints (9)-(12) give prediction and differentiation for the polynomial degrees 0, …, I, and the closed 
form solutions for the FIR coefficients for low-degree polynomial input signals are again obtained by the method 
of Lagrange multipliers [1]. The closed form solution for FIR coefficients for the second degree polynomial 
input signals is given in [9]. Again, we use the case with the highest polynomial input signal component degree 
of two, I = 2, as an example, and now have to fulfill the constraints (9), (10) and (11), and use the remaining 
degrees of freedom to minimize the noise gain (2). The exact, i.e., infinite precision, coefficients for the one-
step-ahead p = 1, second degree, I = 2, PPFDs are given by [9]  
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It is worth noting that the coefficients for the filter length N = 3 are still exact if quantized to six bits or more for 
both PFPs (7) and PPFDs (13) with I = 2 and p = 1, but the noise gains (2) of these filters are unpractically high; 
19 and 24.5, respectively. However, the filters of length N = 3 are good basis filters for the feedback extension 
[5,9] which relieves the noise gain problem. Otherwise, longer filters are to be used for achieving acceptable 
noise gains, and the method described in this paper is to be used to obtain correctly functioning fixed-point 
coefficient filters. 
 
 

3. LINEAR DIOPHANTINE EQUATION BASED PFP AND PPFD DESING 
 
3.1. Linear Diophantine Equation Formulation of the Filter Design Problem 
 
The optimization problem that has to be solved can be reformulated as an integer programming (IP) problem. 
Suppose that all coefficients h(k) of the filter are multiplied by n2 where n is the number of bits available, and 
truncated to yield the integer coefficients h*(k). Then the PFP design task can be defined as an algorithm with the 
following input and output: 
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having the constraints 
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on the variables. The constraints (14)-(17) correspond to the constraints (3)–(6) with both sides multiplied by 2n 
and with integers variables. 
 
Output: An integer vector h* = [h*(1), h*(2), …, h*(N)] that minimizes F(·) and satisfies exactly the constrains 
(14)-(17) above.  
 
For designing PPFDs, the integer input constraints corresponding to the constraints (9)-(12) are given by 
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The output of the algorithm is again an integer coefficient vector h* that now exactly fulfills the constraints (18)-
(21) and thereafter minimizes the cost function F(·). 
 
The solution we offer is based on the following considerations: 
1. As the filter coefficients are to be presented with short word-length fixed-point numbers, the task in hand is a 

quadratic integer programming problem, which is well-known to be an NP-complete problem; therefore it is 
unrealistic by any means to find the best solution in a reasonable amount of time, especially for long filters. 
Designing these filters with floating-point coefficients would present us with a quadratic real programming 
problem, which is solvable in polynomial time [6].  

2. Without restricting the variables to be integers, we have closed form solutions of the problem, which are 
given for PFPs and PPFDs, for the case I = 2 and p = 1, by (7) and (13), respectively. Although the values 
computed by these formulas are not integers, these expressions are here used as initial approximations. 

3. To make sure that the conditions (14)-(17), or (18)-(21), are met exactly, one has to solve a desired system 
above in integers. This problem has been a subject of deep investigations in number theory and the theory of 
Diophantine equations. By variable elimination, the problem can be presented as a single linear equation of 
the form 

 
 BxAxAxA ll =+++ �2211  (22) 

 
where A1, A2, …, Al, , B, and x1, x2, …, xl are integers. Equations of the form (22) with given integers Ai and B, 
and with unknown integers xi, i = 1, …, l, are called Diophantine equations. For example, for the PPFD with 
I = 1, one could do the following elimination of variables. Solving for h*(1) in (18) yields 
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Taking h*(1) out of the summation in (19) gives 
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and substituting h*(1) (23) into (25) yields a Diophantine equation of the form (22): 
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A solution [h*(2), …, h*(N)] of (26) is then substituted back into (23) to yield the filter coefficient vector h* 
that exactly satisfies the conditions (18) and (19). Similar variable elimination can be applied for the cases 
when I > 1. 

 
 
3.2. Solving the Diophantine Equations by a Search Algorithm 
 
Solutions of (22) are usually obtained by multidimensional continued fraction algorithms. The approach we use 
here is based on Clausen-Fortenbacher algorithm [2] which in our case is an exhaustive search within a limited 
region around an initial guess. The reasons why we chose this particular technique are: First, with a 166 MHz 
Pentium PC programmed with C, the algorithm succeeds in matter of seconds for N = 8 and in less than one hour 
with N = 16, to find the solutions of (22), amongst whom the optimal one, i.e., the one that minimizes the noise 
gain (2), or, the function F(·), can be found in a fraction of a second, c.f. Table 3 for the numbers of solutions 
whose noise gains are to be calculated and compared. Secondly, the program provided in [2] can be easily 
generalized to more than 16 variables (the largest case analyzed by Clausen and Fortenbacher). Thirdly, we have 
an initial approximation for the algorithm. Without any initial approximations, the whole quantized coefficient 
space would need to be searched, which would be prohibited by the required computation time (of the order of 
1014 hours for 8-bit precision, 1033 hours for 16-bit coefficients). Since the infinite precision solution is known, it 
is intuitive to search for the quantized solutions within a vicinity of it, though it there is no reason why the very 
best quantized coefficient solution should lie close to it. Exhaustive search for ideal quantization is performed 
within a band of ±2 from the coefficients h(k), given by (7) or (13), presented in integer form with a given 
number of bits, i.e, the search space for each coefficient consists of the four integers closest to 2nh(k). The search 
band width ±2 is selected ad hoc to give the search more degrees of freedom than the minimum search band of 
±1 while still being computationally feasible. The found quantized coefficients that exactly fulfill the constraints 
(14)-(17), or (18)-(21), and minimize the noise gain (2) within the search band, are called ideally quantized 
coefficients. The search band with the conventionally and ideally quantized coefficients of the PPFD with I = 2, 
p = 1, and N = 16 is illustrated in Fig. 1 for the coefficient precision of 8 bits. 
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Fig. 1. Ideal quantization search band (between solid lines) for the I = 2, p = 1, N = 16, PPFD with the 
coefficient precisions of 8 bits. Circles ‘o’ denote the magnitude truncated, and plusses ‘+’ the ideally quantized 
coefficients. 
 
 
In Tables 1 and 2, the results of ideal quantization are shown for the I = 2, p = 1, PPFD of length N = 16 with 
coefficient precisions of 8, and 16 bits, respectively, along with the real number form (infinite precision rounded 
to six decimals) solutions of (13). The ideally quantized coefficients shown in Tables 1 and 2 satisfy the 
constraints (18)-(20) exactly and minimize the noise gain (2) within the search band. It is worth noting that 
simple truncation or rounding of the infinite precision coefficients never but once in our experiments (N = 3 is an 
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exception) produced a solution of the system of the Diophantine equations (18)-(20). This demonstrates the 
necessity of special techniques aimed at solving the integer optimization problem. Table 1 shows that with the 
PPFD length N = 16 and coefficient precision of 8 bits, for five out of sixteen coefficients one has to 
approximate the real coefficient with an integer that is not the rounded infinite precision coefficient given by 
(13). In this case, also six out of sixteen ideally quantized coefficients are not equal to the corresponding 
truncated infinite precision coefficients, and two ideally quantized coefficients lie on the search band boundary, 
i.e., are not the closest integers on either side of the real number form coefficients. The 16-bit filter coefficients 
for the same filter are shown in Table 2, and they show similar results are seen in Table 1. In Tables 1 and 2, the 
ideally quantized coefficients that differ from the rounded or truncated real number form coefficients are 
marked. As the search yields several coefficient vectors h* that exactly fulfill the constraints (18)-(20), the one 
that minimizes the noise gain (2) is shown in Tables 1 and 2. 
 
 
Table 1. The infinite precision presentations of the I = 2, p = 1, N = 16, PPFD coefficients computed by (13) and 
rounded to six decimals (real number form), and the corresponding ideally quantized coefficients with the 
coefficient precision of 8 bits.  

Coefficient Real number form Ideally quantized form Coefficient Real number form Ideally quantized form 
256 h(0) 32.313725 32 256 h(8) -16.376471 -17*† 
256 h(1) 20.894118 20* 256 h(9) -15.605602 -17**† 
256 h(2) 10.998319 12**† 256 h(10) -13.310924 -13 
256 h(3) 2.626331 3† 256 h(11) -9.492437 -9 
256 h(4) -4.221849 -4 256 h(12) -4.150140 -4 
256 h(5) -9.546218 -9* 256 h(13) 2.715966 3† 
256 h(6) -13.346779 -13 256 h(14) 11.105882 11 
256 h(7) -15.623529 -16† 256 h(15) 21.019608 21 

* The ideally quantized coefficient is not the rounded infinite precision coefficient. 
** The ideally quantized coefficient is not an integer on either side of the infinite precision coefficient. 
† The ideally quantized coefficient is not the truncated infinite precision coefficient. 
 
 
Table 2. The infinite precision presentations of the I = 2, p = 1, N = 16, PPFD coefficients computed by (13) and 
rounded to six decimals (real number form), and the corresponding ideally quantized coefficients with the 
coefficient precision of 16 bits.  

Coefficient Real number form Ideally quantized form Coefficient Real number form Ideally quantized form 
65536 h(0) 8272.313725 8272 65536 h(8) -4192.376471 -4193*† 
65536 h(1) 5348.894118 5348* 65536 h(9) -3995.034174 -3997**† 
65536 h(2) 2815.569418 2816† 65536 h(10) -3407.596639 -3408† 
65536 h(3) 672.340616 673*† 65536 h(11) -2430.063866 -2430 
65536 h(4) -1080.793277 -1080* 65536 h(12) -1062.435854 -1062 
65536 h(5) -2443.831933 -2444† 65536 h(13) 695.287395 696*† 
65536 h(6) -3416.775350 -3416* 65536 h(14) 2843.105882 2843 
65536 h(7) -3999.623529 -3999* 65536 h(15) 5381.019608 5381 

* The ideally quantized coefficient is not the rounded infinite precision coefficient. 
** The ideally quantized coefficient is not an integer on either side of the infinite precision coefficient. 
† The ideally quantized coefficient is not the truncated infinite precision coefficient. 
 
 
Table 3 lists the numbers of quantized coefficient solutions that exactly satisfy the I = 2, p = 1, PFP or PPFD 
coefficient constraints (14)-(16) or (18)-(20), respectively, for coefficient precisions 6, 8, 10, 12, 14, and 16 bits 
for the filter lengths N = 8 and N = 16. From Table 3 it is seen that there are several quantized coefficient 
combinations within the search band that exactly satisfy the constraints (14)-(16) for PFP, or (18)-(20) for PPFD, 
respectively, and that there thus are some degrees of freedom left for noise gain (2) minimization. To find the 
optimum solution, it is necessary to search all of the solutions in the search band and to select the one which 
minimizes the noise gain (2). For the filter length N = 8, there are altogether Ntot = 48 = 65 536 candidate 
quantized coefficient vectors h* within the search band. For this case the search and selecting the solution with 
the smallest noise gain takes less than one second on a 166 MHz Pentium processor programmed with C 
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language, while for the filter length N = 16, Ntot = 416 = 4 294 967 296, with the total algorithm run time of 47 
minutes. For many applications, also the first-found solution could be adequate taken that the search is organized 
to start from the candidates which have the smallest noise gains, i.e., whose positive coefficients are on the lower 
search band boundary and negative coefficients on the upper search band boundary, cf. Fig. 1. The noise gain (2) 
of the first found solution should be checked against the design specifications.  
 
 
Table 3. The number of ideally quantized solutions that exactly satisfy the I = 2, p = 1, PFP constraints (14)-
(16), or PPFD constraints (18)-(20), for the filter lengths N = 8 and N = 16 with coefficient precisions of 6, 8, 10, 
12, 14 and 16 bits. Ntot is the total number of candidate quantized coefficient vectors within the search band. 

 Coefficient precision (bits) 6 8 10 12 14 16 
PFP, N = 8, Ntot = 48 = 65 536 15 14 15 15 14 15 
PFP, N = 16, Ntot = 416 = 4 294 967 296 55086 54760 49164 54394 54760 49164 
PPFD, N = 8, Ntot = 48 = 65 536 21 14 14 21 14 14 
PPFD, N = 16, Ntot = 416 = 4 294 967 296 56326 53633 58791 55027 58287 57341 

 
 

4. CHARACTERISTICS OF THE QUANTIZED AND IDEALLY QUANTIZED 
COEFFICIENT PSPS AND PPFDS 

 
In this section, frequency response and group delay properties of the infinite precision, quantized-coefficient, and 
ideally quantized-coefficient PFPs and PPFDs are illustrated. The quantization effects on the filter responses can 
be seen in Figs. 2, 4 and 5. From these Figs. it is clearly seen that as the coefficients are quantized, the prediction 
an/or differentiation properties are lost or at least degraded from their exact desired values. As seen comparing 
Figs. 4 and 5, differentiation property is generally more robust to coefficient quantization than prediction 
property which can be lost already with the coefficient word length of 16 bits. The one-step-ahead prediction 
property is identified as the negative unity group delay in Figs. 2b, 4b, and 5b. Differentiation of an input signal 
consisting of polynomial signal components of 0th, 1st and 2nd degree is set forth by the zero magnitude response 
at zero frequency along with the ramp-shaped frequency response within a desired differentiation band as 
explicitly stated by the constraints (9)-(11), Figs. 4a and 5a. As the ideal quantization yields several filters that 
exactly satisfy the PFP constraints (3)-(5), or (9)-(11) for the PPFD, the ones that minimize the noise gain (2) are 
shown in Figs. 2, 4 and 5. In all these figures, the curves for the infinite precision and ideally quantized 
coefficient filters are hardly recognizable since they are exactly on the top of each other at zero frequency, as 
they should since ideal quantization yields exactly the properties of the infinite precision filters at zero 
frequency. Also the responses are seen to be close to each other at higher frequencies but it is to be remembered 
that it is the behavior at and near zero frequency that actually defines the predictive and/or differentiative 
properties, the rest is only additional spectral shaping. 
 
In Fig. 2, the frequency response and group delay of the I = 2, p = 1, N = 8, PFP are shown with the coefficients 
quantized both conventionally and ideally to 8 bits, along with the infinite precision coefficient filter. As seen in 
Fig. 2b, the I = 2, p = 1, N = 8, PFP with conventionally quantized 8-bit coefficients does not provide for exact 
prediction whereas the predictor with the ideally quantized coefficients does, as it should, since it satisfies the 
constraints (3)-(5) exactly. For a polynomial predictor, it is crucial that the dc-gain is exactly unity, Fig. 2a, since 
polynomial signal prediction by its nature operates on the signal amplitude while the noise suppression operates 
in the frequency domain; the same applies to the zero dc-gain of the polynomial-predictive differentiators. In 
Fig. 2a, the conventionally quantized coefficient PFP is seen to have a bias problem whereas the ideally 
quantized coefficient filter shows exact unity dc-gain. Filter degradation effects are seen in Fig. 3 in which a 
polynomial signal is presented in time domain. In Fig. 3, it is seen that as the one-step-delayed polynomial signal 
is fed into a truncated coefficient PFP, the filter output is useless, while the ideally quantized PFP is able to 
recover (predict) the desired signal. With 16 bit coefficients, the filters of length N = 8 and N = 16 behave very 
much like their infinite precision counterparts and for many applications it is sufficient to use the truncated 
coefficients calculated with (7). It is to be noted that generally the deviation from the exact prediction due to 
coefficient quantization gets larger as the filter length increases and for practical applications longer filters are 
necessary to provide for lower noise gains. 
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Fig. 2. Magnitude responses (a) and group delays (b) of the infinite precision (dashed), conventionally quantized 
(dotted), and optimally quantized (dash-dot) coefficient second-degree one-step-ahead PFP of length N = 8 with 
the coefficient precision of 8 bits. 
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Fig. 3. Time domain example of prediction of a one-step-delayed polynomial signal with second and zeroth 
degree polynomial sections; signal, i.e., the desired filter output (dash-dot), delayed signal, i.e., the filter input 
(dashed), prediction with the PFP of length N = 8 with truncated 8-bit coefficients (solid), and prediction with 
the corresponding ideally quantized 8-bit coefficient filter (dotted). 
 
 
In Figs. 4 and 5, the frequency response and group delay of the I = 2, p = 1, N = 16, PPFD are shown with both 
conventional and ideal coefficient quantization to 8 and 16 bits, respectively. Also the infinite precision 
coefficient filter is shown in the Figs. The filter shown in Fig. 4 corresponds to the coefficients in Table 1, and 
that in Fig. 5 to the coefficients in Table 2. It is seen that the prediction property is totally lost in conventional 
coefficient quantization with both precisions, Figs. 4b and 5b, while the ideally quantized coefficient PPFDs 
provide for exact prediction. With 8-bit coefficients, the differentiation property is degraded, Fig. 4a, while with 
16-bit conventional coefficient quantization, the differentiation property is practically undisturbed, Fig. 5a. The 
ideal quantization is seen to yield perfect differentiation with both precisions, as expected. Also generally, the 
PPFD differentiation property is more robust to the coefficient quantization than the prediction property. In Fig. 
6, the time domain polynomial signal in Fig. 3 is fed into both truncated coefficient and ideally quantized 
coefficient PPFDs with sampling frequency of 100 Hz. From Fig. 6 it is seen that the output of the truncated 
coefficient PPFD is useless while the ideal quantization yields predicted differentiation that very closely follows 
the desired filter output. It is also seen in Fig. 6 that after an abrupt change in the derivative, the filter needs 
N = 16 samples to find out the new derivative, as natural. 
 
The noise gains of the ideally quantized filters that minimize the noise gain (2) are shown in Table 4, for the 
PFPs and PPFDs of length N = 16, with coefficients quantized to 8, 10, 12, 14 and 16 bits, along with the noise 
gains of their infinite precision counterparts. The noise gains of the I = 2 PFP and PPFD of length N = 8 are 
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greater than unity and thus they are not very practical unless a feedback extension [10] is applied. From Table 4 
it can be seen that as the coefficient precision is increased, the noise gain approaches that of the corresponding 
infinite precision filter, and that the loss in noise gain is not substantial with any ideally quantized coefficient 
precision. 
 
 
Table 4. Noise gains of the infinite precision and ideally quantized coefficient PFPs and PPFDs with I = 2, p = 1, 
and N = 16 with coefficient precisions of 8, 10, 12, 14 and 16 bits.  

Coefficient precision  
(bits) 

8 10 12 14 16 Inf. 

Noise gain, PFP 0.732421875 0.730468750 0.730363846 0.730359077 0.730357163 0.730357143 
Noise gain, PPFD 0.053619385 0.053543091 0.053536773 0.053536430 0.053536416 0.053536415 
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Fig. 4. Magnitude responses (a) and group delays (b) of the infinite precision (dashed), conventionally quantized 
(dotted), and optimally quantized (dash-dot) coefficient second-degree one-step-ahead PPFD of length N = 16 
with the coefficient precision of 8 bits. 
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Fig. 5. Magnitude responses (a) and group delays (b) of the infinite precision (dashed), conventionally quantized 
(dotted), and optimally quantized (dash-dot) coefficient second-degree one-step-ahead PPFD of length N = 16 
with the coefficient precision of 16 bits. 
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Fig. 6. Differentiation of the one-step-delayed polynomial signal in Fig. 3; result of exact differentiation, i.e., the 
desired filter output (dash-dot), delayed differentiation, i.e., the filter input (dashed), differentiation by the PPFD 
of length N = 16 with truncated 8-bit coefficients (solid), and differentiation by the ideally quantized 8-bit 
coefficient PPFD (dotted). 
 
 

5. CONCLUSIONS 
 

A new technique for perfect digital polynomial FIR predictor and polynomial-predictive FIR differentiator 
coefficient quantization has been proposed. Our method uses an exhaustive search. For designing longer filters 
efficient number-theoretic tools would be needed for solving the Diophantine equation associated with the filter 
design problem. As it is demonstrated in the paper, the given filter design constraints giving the filters their 
polynomial signal prediction and/or differentiation properties, can be exactly satisfied with low-precision fixed-
point coefficients, and thus, the influence of round-off errors is eliminated. For the second degree one-step-ahead 
polynomial FIR predictors and polynomial-predictive FIR differentiators used as examples in this paper, the 
conditions can be exactly satisfied with even as low as 6-bit coefficient precision, with still some degrees of 
freedom available to minimize the noise gain of the designed fixed-point coefficient filter. The proposed integer 
programming based search method for fixed-point filter design may be applied also to other filter design tasks in 
which the design criteria can be formulated in a form of linear constraints on the filter coefficients. 
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